4.2.2. The Power MOSFET

- Gate lengths approaching one micron
- Consists of many small enhancementmode parallelconnected MOSFET cells, covering the surface of the silicon wafer
- · Vertical current flow
- n-channel device is shown

MOSFET: Off state

Fundamentals of Power Electronics

MOSFET: on state

- *p-n⁻* junction is slightly reversebiased
- positive gate voltage induces conducting channel
- drain current flows through n⁻ region and conducting channel
- on resistance = total resistances of n⁻ region, conducting channel, source and drain contacts, etc.

MOSFET body diode

- *p*-*n*⁻ junction forms an effective diode, in parallel with the channel
- negative drain-tosource voltage can forward-bias the body diode
- diode can conduct the full MOSFET rated current
- diode switching speed not optimized —body diode is slow, Q_r is large

Typical MOSFET characteristics

- Off state: $V_{GS} < V_{th}$
- On state: $V_{GS} >> V_{th}$
- MOSFET can conduct peak currents well in excess of average current rating — characteristics are unchanged
- on-resistance has positive temperature coefficient, hence easy to parallel

Fundamentals of Power Electronics

A simple MOSFET equivalent circuit

- C_{gs} : large, essentially constant
- C_{gd} : small, highly nonlinear
- C_{ds} : intermediate in value, highly nonlinear
- switching times determined by rate at which gate driver charges/discharges C_{gs} and C_{gd}

$$C_{ds}(v_{ds}) = \frac{C_0}{\sqrt{1 + \frac{v_{ds}}{V_0}}}$$

$$C_{ds}(v_{ds}) \approx C_0 \sqrt{\frac{V_0}{v_{ds}}} = \frac{C_0}{\sqrt{v_{ds}}}$$

Switching loss caused by semiconductor output capacitances

Buck converter example

Energy lost during MOSFET turn-on transition (assuming linear capacitances):

$$W_{C} = \frac{1}{2} (C_{ds} + C_{j}) V_{g}^{2}$$

MOSFET nonlinear C_{ds}

Approximate dependence of incremental C_{ds} on v_{ds} :

$$C_{ds}(v_{ds}) \approx C_0 \sqrt{\frac{V_0}{v_{ds}}} = \frac{C_0}{\sqrt{v_{ds}}}$$

Energy stored in C_{ds} at $v_{ds} = V_{DS}$:

$$W_{Cds} = \int v_{ds} \, i_C \, dt = \int_0^{V_{DS}} v_{ds} \, C_{ds}(v_{ds}) \, dv_{ds}$$
$$W_{Cds} = \int_0^{V_{DS}} C_0'(v_{ds}) \, \sqrt{v_{ds}} \, dv_{ds} = \frac{2}{3} \, C_{ds}(V_{DS}) \, V_{DS}^2$$

- same energy loss as linear capacitor having value $\frac{4}{3}C_{ds}(V_{DS})$

Characteristics of several commercial power MOSFETs

Part number	Rated max voltage	Rated avg current	R _{on}	Q_{g} (typical)
IRFZ48	60V	50A	0.018Ω	110nC
IRF510	100V	5.6A	0.54Ω	8.3nC
IRF540	100V	28A	0.077Ω	72nC
APT10M25BNR	100V	75A	0.025Ω	171nC
IRF740	400V	10A	0.55Ω	63nC
MTM15N40E	400V	15A	0.3Ω	110nC
APT5025BN	500V	23A	0.25Ω	83nC
APT1001RBNR	1000V	11A	1.0Ω	150nC

MOSFET: conclusions

- A majority-carrier device: fast switching speed
- Typical switching frequencies: tens and hundreds of kHz
- On-resistance increases rapidly with rated blocking voltage
- Easy to drive
- The device of choice for blocking voltages less than 500V
- 1000V devices are available, but are useful only at low power levels (100W)
- Part number is selected on the basis of on-resistance rather than current rating