
6.3. Transformer isolation

Objectives:

- Isolation of input and output ground connections, to meet safety requirements
- Reduction of transformer size by incorporating high frequency isolation transformer inside converter
- Minimization of current and voltage stresses when a large step-up or step-down conversion ratio is needed —use transformer turns ratio
- Obtain multiple output voltages via multiple transformer secondary windings and multiple converter secondary circuits

A simple transformer model

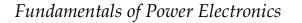
Fundamentals of Power Electronics

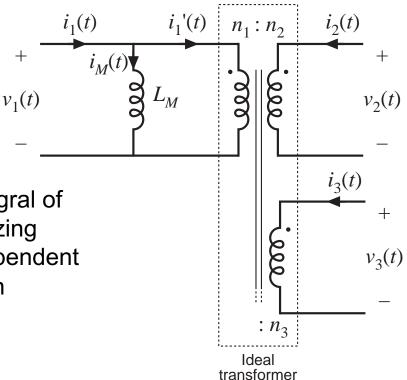
The magnetizing inductance L_M

- Models magnetization of transformer core material
- Appears effectively in parallel with windings
- If all secondary windings are disconnected, then primary winding behaves as an inductor, equal to the magnetizing inductance
- At dc: magnetizing inductance tends to short-circuit. Transformers cannot pass dc voltages
- Transformer saturates when magnetizing current i_M is too large

Volt-second balance in L_M

The magnetizing inductance is a real inductor, obeying


$$v_1(t) = L_M \frac{di_M(t)}{dt}$$


integrate:

$$\dot{i}_M(t) - \dot{i}_M(0) = \frac{1}{L_M} \int_0^t v_1(\tau) d\tau$$

Magnetizing current is determined by integral of the applied winding voltage. The magnetizing current and the winding currents are independent quantities. Volt-second balance applies: in steady-state, $i_M(T_s) = i_M(0)$, and hence

$$0 = \frac{1}{T_s} \int_0^{T_s} v_1(t) dt$$

Transformer reset

- "Transformer reset" is the mechanism by which magnetizing inductance volt-second balance is obtained
- The need to reset the transformer volt-seconds to zero by the end of each switching period adds considerable complexity to converters
- To understand operation of transformer-isolated converters:
 - replace transformer by equivalent circuit model containing magnetizing inductance
 - analyze converter as usual, treating magnetizing inductance as any other inductor
 - apply volt-second balance to all converter inductors, including magnetizing inductance