9.5.4. Design example

Quiescent operating point

Small-signal model

Fundamentals of Power Electronics 48 48 *Chapter 9: Controller design*

Open-loop control-to-output transfer function $G_{\text{nd}}(s)$

Fundamentals of Power Electronics $\frac{49}{49}$ Chapter 9: Controller design

Open-loop line-to-output transfer function and output impedance

$$
G_{vg}(s) = D \frac{1}{1 + s\frac{L}{R} + s^2 LC}
$$

—same poles as control-to-output transfer function standard form:

$$
G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + (\frac{s}{\omega_0})^2}
$$

Output impedance:

$$
Z_{\text{out}}(s) = R \parallel \frac{1}{sC} \parallel sL = \frac{sL}{1 + s\frac{L}{R} + s^2 LC}
$$

Fundamentals of Power Electronics 50 50 *Chapter 9: Controller design*

System block diagram

Fundamentals of Power Electronics 51 51 Chapter 9: Controller design

Uncompensated loop gain (with
$$
G_c = 1
$$
)

Lead compensator design

- Obtain a crossover frequency of 5 kHz, with phase margin of 52°
- T_u has phase of approximately -180° at 5 kHz, hence lead (PD) compensator is needed to increase phase margin.
- Lead compensator should have phase of $+52^{\circ}$ at 5 kHz
- T_{μ} has magnitude of -20.6 dB at 5 kHz
- Lead compensator gain should have magnitude of $+20.6$ dB at 5 kHz
- Lead compensator pole and zero frequencies should be

$$
f_z = (5kHz) \sqrt{\frac{1 - \sin(52^\circ)}{1 + \sin(52^\circ)}} = 1.7kHz
$$

$$
f_p = (5kHz) \sqrt{\frac{1 + \sin(52^\circ)}{1 - \sin(52^\circ)}} = 14.5kHz
$$

• Compensator dc gain should be
$$
G_{c0} = \left(\frac{f_c}{f_0}\right)^2 \frac{1}{T_{u0}} \sqrt{\frac{f_z}{f_p}} = 3.7 \Rightarrow 11.3 \text{dB}
$$

Fundamentals of Power Electronics 53 *Chapter 9: Controller design*

9.5.1. Lead (PD) compensator

Lead compensator: maximum phase lead

Fundamentals of Power Electronics 39 39 *Chapter 9: Controller design*

Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency f_c , the pole and zero frequencies should be chosen as follows:

Fundamentals of Power Electronics $\begin{array}{cc} 40 \\ 40 \end{array}$ Chapter 9: Controller design

Lead compensator Bode plot

Loop gain, with lead compensator

1/(1+*T*), with lead compensator

Improved compensator (PID)

T(*s*) and 1/(1+*T*(*s*)), with PID compensator

Open-loop line-to-output transfer function and output impedance

$$
G_{vg}(s) = D \frac{1}{1 + s\frac{L}{R} + s^2 LC}
$$

—same poles as control-to-output transfer function standard form:

$$
G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + (\frac{s}{\omega_0})^2}
$$

Output impedance:

$$
Z_{\text{out}}(s) = R \parallel \frac{1}{sC} \parallel sL = \frac{sL}{1 + s\frac{L}{R} + s^2 LC}
$$

Fundamentals of Power Electronics 50 50 *Chapter 9: Controller design*

Line-to-output transfer function

