7.5 The canonical circuit model

All PWM CCM dc-dc converters perform the same basic functions:

- Transformation of voltage and current levels, ideally with 100% efficiency
- Low-pass filtering of waveforms
- Control of waveforms by variation of duty cycle
- Hence, we expect their equivalent circuit models to be qualitatively similar.

Canonical model:

- A standard form of equivalent circuit model, which represents the above physical properties
- Plug in parameter values for a given specific converter

7.5.1. Development of the canonical circuit model

Steps in the development of the canonical circuit model

2. Ac variations in 1: M(D) $v_g(t)$ induce ac +variations in v(t) these variations $V_g + \hat{v}_g(s)$ $V + \hat{v}(s) \leq R$ are also transformed by the conversion ratio M(D)D Power Control Load input input

Chapter 7: AC equivalent circuit modeling

Steps in the development of the canonical circuit model

3. Converter $H_{\rho}(s)$ must contain an 1: M(D)effective low-+pass filter Effective $Z_{ei}(s)$ $Z_{eo}(s)$ $V_g + \hat{v}_g(s)$ $V + \hat{v}(s) \leq R$ characteristic low-pass filter necessary to filter switching ripple also filters ac D variations Power Control Load input input effective filter elements may not coincide with actual element values, but can also depend on operating point

Chapter 7: AC equivalent circuit modeling

Steps in the development of the canonical circuit model

- 4. Control input variations also induce ac variations in converter waveforms
- Independent sources represent effects of variations in duty cycle
- Can push all sources to input side as shown. Sources may then become frequency-dependent

Transfer functions predicted by canonical model

Fundamentals of Power Electronics

132

7.5.2 Example: manipulation of the buck-boost converter model into canonical form

- Push independent sources to input side of transformers
- Push inductor to output side of transformers
- Combine transformers

- Push voltage source through 1:D transformer
- Move current source through D':1 transformer

Fundamentals of Power Electronics

Chapter 7: AC equivalent circuit modeling

How to move the current source past the inductor:

Break ground connection of current source, and connect to node *A* instead.

Connect an identical current source from node *A* to ground, so that the node equations are unchanged.

The parallel-connected current source and inductor can now be replaced by a Thevenin-equivalent network:

Now push current source through 1:*D* transformer.

Push current source past voltage source, again by:

- Breaking ground connection of current source, and connecting to node *B* instead.
- Connecting an identical current source from node *B* to ground, so that the node equations are unchanged.

Note that the resulting parallel-connected voltage and current sources are equivalent to a single voltage source.

Fundamentals of Power Electronics

Step 5: final result

Push voltage source through 1:*D* transformer, and combine with existing input-side transformer.

Combine series-connected transformers.

Coefficient of control-input voltage generator

Voltage source coefficient is:

$$e(s) = \frac{V_g + V}{D} - \frac{s LI}{D D'}$$

Simplification, using dc relations, leads to

$$e(s) = -\frac{V}{D^2} \left(1 - \frac{s DL}{D'^2 R} \right)$$

Pushing the sources past the inductor causes the generator to become frequency-dependent.

Fundamentals of Power Electronics

139

7.5.3 Canonical circuit parameters for some common converters

Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters

Converter	M(D)	L_e	e(s)	j(s)
Buck	D	L	$\frac{V}{D^2}$	$\frac{V}{R}$
Boost	$\frac{1}{D'}$	$\frac{L}{D^{\prime 2}}$	$V\left(1-\frac{sL}{D^{\prime 2}R}\right)$	$\frac{V}{D'^2 R}$
Buck-boost	$-\frac{D}{D}$	$\frac{L}{D^{\prime 2}}$	$-\frac{V}{D^2}\left(1-\frac{sDL}{D^{\prime^2}R}\right)$	$-\frac{V}{D^{\prime 2}R}$

Fundamentals of Power Electronics