7.5 The canonical circuit model

All PWM CCM dc-dc converters perform the same basic functions:

- Transformation of voltage and current levels, ideally with 100% efficiency
- Low-pass filtering of waveforms
- Control of waveforms by variation of duty cycle
- Hence, we expect their equivalent circuit models to be qualitatively similar.

Canonical model:

- A standard form of equivalent circuit model, which represents the above physical properties
- Plug in parameter values for a given specific converter

7.5.1. Development of the canonical circuit model

Steps in the development of the canonical circuit model

Fundamentals of Power Electronics 129 *Chapter 7: AC equivalent circuit modeling*

Steps in the development of the canonical circuit model

3. Converter must contain an effective lowpass filter characteristic • necessary to filter switching ripple • also filters ac variations • effective filter elements may not coincide with actual element values, but can also depend on operating point *+ –* $1 : M(D)$ $V + \hat{v}(s) \leq R$ *+ – Effective low-pass filter* $H_e(s)$ $Z_{ei}(s)$ *Z_{eo}*(*s*) *Control input Power input Load D* $V_g + \hat{v}_g(s)$

Fundamentals of Power Electronics 130 *Chapter 7: AC equivalent circuit modeling*

Steps in the development of the canonical circuit model

- 4. Control input variations also induce ac variations in converter waveforms
- Independent sources represent effects of variations in duty cycle
- Can push all sources to input side as shown. Sources may then become frequency-dependent

Transfer functions predicted by canonical model

Fundamentals of Power Electronics 132 *Chapter 7: AC equivalent circuit modeling*

7.5.2 Example: manipulation of the buck-boost converter model into canonical form

- Push independent sources to input side of transformers
- Push inductor to output side of transformers
- Combine transformers

- Push voltage source through 1:*D* transformer
- Move current source through *D'* :1 transformer

How to move the current source past the inductor:

Break ground connection of current source, and connect to node *A* instead.

Connect an identical current source from node *A* to ground, so that the node equations are unchanged.

The parallel-connected current source and inductor can now be replaced by a Thevenin-equivalent network:

Now push current source through 1:*D* transformer.

Push current source past voltage source, again by:

- Breaking ground connection of current source, and connecting to node *B* instead.
- Connecting an identical current source from node *B* to ground, so that the node equations are unchanged.

Note that the resulting parallel-connected voltage and current sources are equivalent to a single voltage source.

Fundamentals of Power Electronics 137 *Chapter 7: AC equivalent circuit modeling*

Step 5: final result

Push voltage source through 1:*D* transformer, and combine with existing input-side transformer.

Combine series-connected transformers.

Coefficient of control-input voltage generator

Voltage source coefficient is:

$$
e(s) = \frac{V_g + V}{D} - \frac{s}{D} \frac{LI}{D'}
$$

Simplification, using dc relations, leads to

$$
e(s) = -\frac{V}{D^2} \left(1 - \frac{s \, DL}{D'^2 \, R} \right)
$$

Pushing the sources past the inductor causes the generator to become frequency-dependent.

7.5.3 Canonical circuit parameters for some common converters

Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters

Fundamentals of Power Electronics 140 *Chapter 7: AC equivalent circuit modeling*