9.3. Construction of the important quantities
1/(1+T)and T/(1+7)

Example
S
80 dB T (1 - WZ)
|7 1) =T,
60dB 1 | T Qup I+52 (af : I+3
| 0 |dB , Qw,, rl p2
40 dB | Ty
— 40 dB/decade
20 dB
015 OO SPUTTSO P PP
20 dB + Crossover — 40 dB/decade
frequency
-40 dB } } } ' |
1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

At the crossover frequency f,, || T'|| = 1
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Transient response vs. damping factor
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9.4. Stability

Even though the original open-loop system is stable, the closed-loop
transfer functions can be unstable and contain right half-plane poles. Even
when the closed-loop system is stable, the transient response can exhibit
undesirable ringing and overshoot, due to the high Q -factor of the closed-
loop poles in the vicinity of the crossover frequency.

When feedback destabilizes the system, the denominator (1+7(s)) terms in
the closed-loop transfer functions contain roots in the right half-plane (i.e.,
with positive real parts). If T(s) is a rational fraction of the form N(s) / D(s),
where N(s) and D(s) are polynomials, then we can write

N(s
T(s) % _ N(s) « Could evaluate stability by
[+T(s) ~ |, NGs) ~ N(s) +D(s) evaluating N(s) + D(s), then
D(s) factoring to evaluate roots.
| ____D(s) This is a lot of work, and is
L+T(s) NES; ~ N(s) + D(s) not very illuminating.
D(s
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Effect of feedback on transfer function poles

Feedback moves the poles of the system transfer functions

- Good news: we can use feedback to alter the poles and
improve the frequency response

- Bad news: if you’re not careful, feedback can move the poles
into the right half of the complex s-plane (poles have positive
real parts), leading to an unstable system

Open loop Closed loop

‘Gin(s) {}g(s) G( ) {}out(s)
—D‘EE '—b N >

A

—_—| G(s5) —>

H(s) |=
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Example

4 Im(s)
The gain G(s) below has three poles at s = — 1 Complex s-plane
G(s) = 100 .
(1 + s)
_xf\ lie(s)

Add a simple feedback loop:

Gis) = 100
NTRE

V,.(8) D (s) D05
H@—b G(s) >
How does the
Ts) feedback
change the

poles?

Hs) =1
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Exact closed-loop transter function

For our simple example, the closed-loop transfer function is
100

A 3

a1 T _ G _ 1¥5) 100

b, HI1+T " 1+G~ {, 100 101 +3s+ 352 + 53
(1+s)3

Factor denominator numerically:

V()Ll[ - 100 _ 100
P 1014354387+ (54 564)(s- 132~ j4.07)(s~ 132+ j4.07) $Im(s)

Jj4071 x
which has poles at s =—5.64 (LHP)

and at s = +1.32 + j4.07 (RHP)

The RHP poles indicate that the —5.64 +1.32

closed-loop system is unstable.
—j40% x
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Transient response of closed-loop system

One can take the inverse Laplace Transform to find the output waveform
v (1) for a given input. The resulting expression has terms that depend

on the poles, of the form
b (1) = K,e 3% 4K ,e(132- 4071 4 K o132+ j407)

The terms with positive real exponents, corresponding to the RHP
poles, lead to growing oscillations that are unstable responses.

. . sk . .
Reason: the inverse Laplace transform of K,e(132- 401 4 K132+ j407) jg

H K, H el3% cos (4.07t + LKz)
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Determination of stability directly from T(s)

+ Nyquist stability theorem: general result.
A special case of the Nyquist stability theorem: the phase margin test

Allows determination of closed-loop stability (i.e., whether 1/(1+7(s))
contains RHP poles) directly from the magnitude and phase of 7(s).

A good design tool: yields insight into how 7(s) should be shaped, to
obtain good performance in transfer functions containing 1/(1+7(s))
terms.
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9.4.1. The phase margin test

A test on T(s), to determine whether 1/(1+7(s)) contains RHP poles.
The crossover frequency f. is defined as the frequency where

Il T(j2nf,) Il = 1 = 0dB
The phase margin ¢, is determined from the phase of 7(s) at f. , as
follows:

@, = 180" + LT(j2nf.)

If there is exactly one crossover frequency, and if T(s) contains no
RHP poles, then

the quantities T(s)/(1+7(s)) and 1/(1+7(s)) contain no RHP poles
whenever the phase margin ¢, is positive.
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Example: a loop gain leading to
a stable closed-loop system

60 d
H r H H T ” LT
40 dB
Crossover
20 dB - Jrequency
0°
-90°
L —180°
1 =270°
1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

LT(j2nf) =—112°
¢, =180°— 112° = + 68°
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Computation of crossover frequency

1. The expression for T(s) is:

||TH ”TH LT <1+i>
40 dB 1 W,
- T(S) = TO 5
0aB 1 - Cmsmvyef 1 s S
z  frequency 1 + + < )
LT ¢ . Qup1 Wp1
0dB ; 0
20487 -0 2. Write the equation of the
4048 “180° asymptote for f> £,
L —270° w
W, 2
; ; - - ) — i — Jpl
1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz HT(jw)H To W 2 To fof
/ ()

3. Equate to 1, and solve for f (= f,):

21
fc = TO p
I=
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Computation of phase

60 dB

7| il ,r Exact expression for phase:
40 dB F +
1 w
20dB t /Crcr’(cliife(ir:\r T w é <W>
‘ “ /T(jw) = tan™* <> —tan™! 77)12
LT : . Wy w
0dB 0 1- [
<wp1>
—20dB -90°
4048 ~180° Expression for phase
| - asymptote over frequency
range as illustrated near f:
1 Hz lOVHz 10(; Hz 1 k'Hz 10 i<Hz 100 kHz
. o) w o
f LT (jw) =~ (+45° /dec) logyq (m) — 180
()
T(s) = Ty w- Evaluate one of the above to find
L ( s )2 ZT(jw,), then compute phase margin:
prl Wp1

@, =180 + LT(jw,)
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Example: a loop gain leading to
an unstable closed-loop system

60 dB T
|| r || H T H LT
40 dB
Crossover
20dB 71 frequency
LT
0 dB Ty N - 0°
—-20dB T -90°
TO IS | o 3 (SRS N A N, L —180°
\ -270°
1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
f
LT(j2af.) = - 230°

¢,, = 180° —230° = - 50°
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