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9.3.  Construction of the important quantities
1/(1+T) and T/(1+T)

Example

T(s) = T0
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+ s
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tp2
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Transient response vs. damping factor
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9.4.  Stability

Even though the original open-loop system is stable, the closed-loop
transfer functions can be unstable and contain right half-plane poles. Even
when the closed-loop system is stable, the transient response can exhibit
undesirable ringing and overshoot, due to the high Q -factor of the closed-
loop poles in the vicinity of the crossover frequency.
When feedback destabilizes the system, the denominator (1+T(s)) terms in
the closed-loop transfer functions contain roots in the right half-plane (i.e.,
with positive real parts). If T(s) is a rational fraction of the form N(s) / D(s),
where N(s) and D(s) are polynomials, then we can write

T(s)
1 + T(s) =

N(s)
D(s)

1 + N(s)
D(s)

= N(s)
N(s) + D(s)

1
1 + T(s) = 1

1 + N(s)
D(s)

= D(s)
N(s) + D(s)

• Could evaluate stability by
evaluating N(s) + D(s), then
factoring to evaluate roots.
This is a lot of work, and is
not very illuminating.
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Effect of feedback on transfer function poles

Feedback moves the poles of the system transfer functions
• Good news: we can use feedback to alter the poles and

improve the frequency response
• Bad news: if you re not careful, feedback can move the poles

into the right half of the complex s-plane (poles have positive
real parts), leading to an unstable system

G(s)

+–

H(s)

T(s)

vout(s)ve(s) G(s)
vin(s)

Open loop Closed loop
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Example

G(s) = 100
1 + s 3

The gain G(s) below has three poles at s = – 1

Re(s)

Im(s)

–1
xxx

Complex s-plane

+—

T(s)

vout(s)ve(s)
G(s)

vin(s)

G(s) = 100
1 + s 3

H(s) = 1

Add a simple feedback loop:

How does the
feedback
change the
poles?
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Exact closed-loop transfer function

For our simple example, the closed-loop transfer function is

Factor denominator numerically:

which has poles at s = – 5.64 (LHP)

and at s = +1.32 ± j4.07 (RHP)

The RHP poles indicate that the
closed-loop system is unstable.

Re(s)

Im(s)

–5.64

x

x

x

j4.07

+1.32

— j4.07

vout
vin

= 1
H

T
1 + T = G

1 + G =

100
1 + s 3

1 + 100
1 + s 3

= 100
101 + 3s + 3s2 + s3

vout
vin

= 100
101 + 3s + 3s2 + s3 = 100

s + 5.64 s – 1.32 – j4.07 s – 1.32 + j4.07
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Transient response of closed-loop system

One can take the inverse Laplace Transform to find the output waveform
vout(t) for a given input. The resulting expression has terms that depend
on the poles, of the form

vout(t) = K1e– 5.64t +K2e (1.32 – j4.07)t + K 2
*e (1.32 + j4.07)t

The terms with positive real exponents, corresponding to the RHP
poles, lead to growing oscillations that are unstable responses.

Reason: the inverse Laplace transform of K2e (1.32 – j4.07)t + K 2
*e (1.32 + j4.07)t is

K2 e1.32t cos 4.07t + K2
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Determination of stability directly from T(s)

• Nyquist stability theorem:  general result.
• A special case of the Nyquist stability theorem: the phase margin test

Allows determination of closed-loop stability (i.e., whether 1/(1+T(s))
contains RHP poles) directly from the magnitude and phase of T(s).
A good design tool: yields insight into how T(s) should be shaped, to
obtain good performance in transfer functions containing 1/(1+T(s))
terms.
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9.4.1.  The phase margin test

A test on T(s), to determine whether 1/(1+T(s)) contains RHP poles.
The crossover frequency fc is defined as the frequency where

|| T(j2πfc) || = 1 ⇒ 0dB

The phase margin ϕm is determined from the phase of T(s) at fc , as
follows:

ϕm = 180˚ + ∠T(j2πfc)

If there is exactly one crossover frequency, and if T(s) contains no
RHP poles, then

the quantities T(s)/(1+T(s)) and 1/(1+T(s)) contain no RHP poles
whenever the phase margin ϕm is positive.
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Example: a loop gain leading to
a stable closed-loop system

∠T(j2πfc) = – 112˚

ϕm = 180˚ – 112˚ = + 68˚

fc

Crossover
frequency

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

f

fp1
fz

|| T ||

0˚

–90˚

–180˚

–270˚

 m

� T

� T|| T ||

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz



Fundamentals of Power Electronics! Chapter 9: Controller design!27!

Computation of crossover frequency!
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1. The expression for T(s) is:!

T (s) = T0

✓
1 +

s

!z

◆

 
1 +

s

Q!p1
+

✓
s

!p1

◆2
!

2. Write the equation of the 
asymptote for f > fz:!

kT (j!)k = T0

✓
!

!z

◆

✓
!

!p1

◆2 = T0
f2
p1

fzf

3. Equate to 1, and solve for f (= fc):!

fc = T0
f2
p1

fz
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Computation of phase!
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T (s) = T0

✓
1 +

s

!z

◆

 
1 +

s

Q!p1
+

✓
s

!p1

◆2
!

Exact expression for phase:!

\T (j!) = tan�1

✓
!

!z

◆
� tan�1

2

6664

1

Q

✓
!

!p1

◆

1�
✓

!

!p1

◆2

3

7775

Expression for phase 
asymptote over frequency 
range as illustrated near fc:!

\T (j!) ⇡ (+45

�/dec) log10

✓
!

!z/10

◆
� 180

�

Evaluate one of the above to find 
∠T(jωc), then compute phase margin:!

ϕm = 180˚ + ∠T(jωc)!
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Example: a loop gain leading to"
an unstable closed-loop system!

∠T(j2πfc) = – 230˚!

ϕm = 180˚ – 230˚ = – 50˚!
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