Boost Converter Example

Model same effects as in previous buck converter example:

- •Ideal MOSFET, *p–n* diode with reverse recovery
- • Neglect semiconductor device capacitances, MOSFET switching times, etc.
- •Neglect conduction losses
- \bullet Neglect ripple in inductor current and capacitor voltage

Boost converter

Transistor and diode waveforms have same shapes as in buck example, but depend on different quantities

Inductor volt-second balanceand average input current

$$
v_L(t)
$$
\n
$$
V_g
$$
\n
$$
U_g
$$
\n
$$
U_g
$$
\n
$$
V_g - V
$$
\n
$$
V_g - V
$$
\n
$$
V_g - V
$$
\n
$$
t
$$
\n
$$
V_g - V
$$

As usual: $\langle v_L^-\rangle = 0 = V_g^+ - D'V$

Also as usual: $\langle \; i_g \;\rangle$ = I_L

Construct model

The two independent current sources consume power

 $V(t_r I_L/T_s + Q_r/T_s)$

equal to the switching loss induced by diode reverse recovery

Predicted *V/V_g* vs duty cycle

Switching frequency 100 kHz Input voltage 24 V Load resistance 60 Ω Recovered charge 5μ Coul Reverse recovery time 100 nsec Inductor resistance $R_L = 0.3 \Omega$ (inductor resistance also inserted into averaged model here)

Summary

The averaged modeling approach can be extended to include effects of switching loss

- Transistor and diode waveforms are constructed, including the switching transitions. The effects of the switching transitions on the inductor, capacitor, and input current waveforms can then be determined
- Inductor volt-second balance and capacitor charge balance are applied
- Converter input current is averaged
- Equivalent circuit corresponding to the the averaged equations is constructed