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7.3  State Space Averaging!

•  A formal method for deriving the small-signal ac equations of a 
switching converter!

•  Equivalent to the modeling method of the previous sections!
•  Uses the state-space matrix description of linear circuits!
•  Often cited in the literature!
•  A general approach: if the state equations of the converter can be 

written for each subinterval, then the small-signal averaged model 
can always be derived!

•  Computer programs exist which utilize the state-space averaging 
method!
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7.3.1  The state equations of a network!

•  A canonical form for writing the differential equations of a system!
•  If the system is linear, then the derivatives of the state variables are 

expressed as linear combinations of the system independent inputs and 
state variables themselves!

•  The physical state variables of a system are usually associated with the 
storage of energy!

•  For a typical converter circuit, the physical state variables are the inductor 
currents and capacitor voltages!

•  Other typical physical state variables: position and velocity of a motor shaft!
•  At a given point in time, the values of the state variables depend on the 

previous history of the system, rather than the present values of the 
system inputs!

•  To solve the differential equations of a system, the initial values of the state 
variables must be specified!
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State equations of a linear system, in matrix form!

x(t) =
x1(t)
x2(t) ,

dx(t)
dt =

dx1(t)
dt

dx2(t)
dt

A canonical matrix form:!

State vector x(t) contains 
inductor currents, capacitor 
voltages, etc.:!

Input vector u(t) contains independent sources such as vg(t)!

Output vector y(t) contains other dependent quantities to be computed, such 
as ig(t)!

Matrix K contains values of capacitance, inductance, and mutual 
inductance, so that K dx/dt is a vector containing capacitor currents and 
inductor winding voltages. These quantities are expressed as linear 
combinations of the independent inputs and state variables. The matrices A, 
B, C, and E contain the constants of proportionality.!

K dx(t)
dt = A x(t) + B u(t)

y(t) = C x(t) + E u(t)
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Example!

State vector!

x(t) =
v1(t)
v2(t)
i(t)

Matrix K!

K =
C1 0 0
0 C2 0
0 0 L

Input vector!

u(t) = iin(t)

Choose output vector as!

y(t) = vout(t)
iR1(t)

To write the state equations of this circuit, we must express the inductor 
voltages and capacitor currents as linear combinations of the elements of 
the x(t) and u(t) vectors.!

iin(t) R1 C1

L

C2

R3

R2
+

v1(t)

–

+

v2(t)

–

+
vout(t)
–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)
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Circuit equations!

iC1(t) = C1
dv1(t)
dt = iin(t) –

v1(t)
R – i(t)

iC2(t) = C2
dv2(t)
dt = i(t) – v2(t)

R2 + R3

vL(t) = L
di(t)
dt = v1(t) – v2(t)

Find iC1 via node equation:!

Find iC2 via node equation:!

Find vL via loop equation:!

iin(t) R1 C1

L

C2

R3

R2
+

v1(t)

–

+

v2(t)

–

+
vout(t)
–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)
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Equations in matrix form!

C1 0 0
0 C2 0
0 0 L

dv1(t)
dt

dv2(t)
dt
di(t)
dt

=

– 1R1
0 – 1

0 – 1
R2 + R3

1

1 – 1 0

v1(t)
v2(t)
i(t)

+
1
0
0

iin(t)

K dx(t)
dt = A x(t) + B u(t)

iC1(t) = C1
dv1(t)
dt = iin(t) –

v1(t)
R – i(t)

iC2(t) = C2
dv2(t)
dt = i(t) – v2(t)

R2 + R3

vL(t) = L
di(t)
dt = v1(t) – v2(t)

The same equations:!

Express in matrix form:!
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Output (dependent signal) equations!

Express elements of the vector y as linear combinations of elements 
of x and u:!

y(t) = vout(t)
iR1(t)

vout(t) = v2(t)
R3

R2 + R3

iR1(t) =
v1(t)
R1

iin(t) R1 C1

L

C2

R3

R2
+

v1(t)

–

+

v2(t)

–

+
vout(t)
–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)
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Express in matrix form!

The same equations:!

Express in matrix form:!

vout(t) = v2(t)
R3

R2 + R3

iR1(t) =
v1(t)
R1

vout(t)
iR1(t)

=
0 R3

R2 + R3
0

1
R1

0 0

v1(t)
v2(t)
i(t)

+ 0
0 iin(t)

y(t) = C x(t) + E u(t)
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7.3.2  The basic state-space averaged model!

K dx(t)
dt = A1 x(t) + B1 u(t)
y(t) = C1 x(t) + E1 u(t)

K dx(t)
dt = A2 x(t) + B2 u(t)
y(t) = C2 x(t) + E2 u(t)

Given: a PWM converter, operating in continuous conduction mode, 
with two subintervals during each switching period.!

During subinterval 1, when the switches are in position 1, the 
converter reduces to a linear circuit that can be described by the 
following state equations:!

During subinterval 2, when the switches are in position 2, the 
converter reduces to another linear circuit, that can be described by 
the following state equations:!
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Equilibrium (dc) state-space averaged model!

Provided that the natural frequencies of the converter, as well as the 
frequencies of variations of the converter inputs, are much slower than 
the switching frequency, then the state-space averaged model that 
describes the converter in equilibrium is!

0 = A X + B U
Y = C X + E U

where the averaged matrices 
are!
A = D A1 + D' A2

B = D B1 + D' B2
C = D C1 + D' C2

E = D E1 + D' E2

and the equilibrium dc 
components are!
X = equilibrium (dc) state vector
U = equilibrium (dc) input vector
Y = equilibrium (dc) output vector
D = equilibrium (dc) duty cycle
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Solution of equilibrium averaged model!

X = – A– 1 B U

Y = – C A– 1 B + E U

0 = A X + B U
Y = C X + E U

Equilibrium state-space averaged model:!

Solution for X and Y:!
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Small-signal ac state-space averaged model!

K dx(t)
dt = A x(t) + B u(t) + A1 – A2 X + B1 – B2 U d(t)

y(t) = C x(t) + E u(t) + C1 – C2 X + E1 – E2 U d(t)

where!
x(t) = small – signal (ac) perturbation in state vector
u(t) = small – signal (ac) perturbation in input vector
y(t) = small – signal (ac) perturbation in output vector
d(t) = small – signal (ac) perturbation in duty cycle

So if we can write the converter state equations during subintervals 1 
and 2, then we can always find the averaged dc and small-signal ac 
models!
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The low-frequency components of the input and output vectors are 
modeled in a similar manner.!

By averaging the inductor voltages and capacitor currents, one 
obtains:!

7.3.3  Discussion of the state-space averaging result!

As in Sections 7.1 and 7.2, the low-frequency components of the 
inductor currents and capacitor voltages are modeled by averaging 
over an interval of length Ts. Hence, we define the average of the 
state vector as:!

x(t) Ts
= 1Ts

x(o) do
t

t + Ts

K
d x(t) Ts

dt = d(t) A1 + d'(t) A2 x(t) Ts
+ d(t) B1 + d'(t) B2 u(t) Ts
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Change in state vector during first subinterval!

K dx(t)
dt = A1 x(t) + B1 u(t)
y(t) = C1 x(t) + E1 u(t)

During subinterval 1, we have!

So the elements of x(t) change with the slope!
dx(t)
dt = K– 1 A1 x(t) + B1 u(t)

Small ripple assumption: the elements of x(t) and u(t) do not change 
significantly during the subinterval. Hence the slopes are essentially 
constant and are equal to!

dx(t)
dt = K– 1 A1 x(t) Ts

+ B1 u(t) Ts
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Change in state vector during first subinterval!

dx(t)
dt = K– 1 A1 x(t) Ts

+ B1 u(t) Ts

x(dTs) = x(0) + dTs K– 1 A1 x(t) Ts
+ B1 u(t) Ts

final initial interval slope
value value length

Net change in state vector over first 
subinterval:!

K–1 A1 x Ts
+ B1 u Ts

K–1 A2 x Ts
+ B2 u Ts

t

x(t)

x(0) x(Ts)

dTs Ts0

K–1 dA1 + d'A2 x Ts
+ dB1 + d'B2 u Ts

x(t) Ts
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Change in state vector during second subinterval!

Use similar arguments.!
State vector now changes with the essentially constant slope!

dx(t)
dt = K– 1 A2 x(t) Ts

+ B2 u(t) Ts

The value of the state vector at the end of the second subinterval is 
therefore!

x(Ts) = x(dTs) + d'Ts K– 1 A2 x(t) Ts
+ B2 u(t) Ts

final initial interval slope
value value length
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Net change in state vector over one switching period!

We have:!

x(dTs) = x(0) + dTs K– 1 A1 x(t) Ts
+ B1 u(t) Ts

x(Ts) = x(dTs) + d'Ts K– 1 A2 x(t) Ts
+ B2 u(t) Ts

Eliminate x(dTs), to express x(Ts) directly in terms of x(0):!

x(Ts) = x(0) + dTsK– 1 A1 x(t) Ts
+ B1 u(t) Ts

+ d'TsK– 1 A2 x(t) Ts
+ B2 u(t) Ts

Collect terms:!

x(Ts) = x(0) + TsK– 1 d(t)A1 + d'(t)A2 x(t) Ts
+ TsK– 1 d(t)B1 + d'(t)B2 u(t) Ts
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Approximate derivative of state vector!

d x(t) Ts

dt 5
x(Ts) – x(0)

Ts

K
d x(t) Ts

dt = d(t) A1 + d'(t) A2 x(t) Ts
+ d(t) B1 + d'(t) B2 u(t) Ts

Use Euler approximation:!

We obtain:!

K–1 A1 x Ts
+ B1 u Ts

K–1 A2 x Ts
+ B2 u Ts

t

x(t)

x(0) x(Ts)

dTs Ts0

K–1 dA1 + d'A2 x Ts
+ dB1 + d'B2 u Ts

x(t) Ts
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Low-frequency components of output vector!

Remove switching harmonics by averaging over one switching period:!

y(t) Ts
= d(t) C1 + d'(t) C2 x(t) Ts

+ d(t) E1 + d'(t) E2 u(t) Ts

y(t) Ts
= d(t) C1 x(t) Ts

+ E1 u(t) Ts
+ d'(t) C2 x(t) Ts

+ E2 u(t) Ts

Collect terms:!

t

y(t)

dTs Ts
0
0

C1 x(t) Ts
+ E1 u(t) Ts

C2 x(t) Ts
+ E2 u(t) Ts

y(t) Ts
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Averaged state equations: quiescent operating point!

K
d x(t) Ts

dt = d(t) A1 + d'(t) A2 x(t) Ts
+ d(t) B1 + d'(t) B2 u(t) Ts

y(t) Ts
= d(t) C1 + d'(t) C2 x(t) Ts

+ d(t) E1 + d'(t) E2 u(t) Ts

The averaged (nonlinear) state equations:!

The converter operates in equilibrium when the derivatives of all 
elements of 〈 x(t) 〉Ts are zero. Hence, the converter quiescent 
operating point is the solution of!

0 = A X + B U
Y = C X + E U

where! A = D A1 + D' A2

B = D B1 + D' B2
C = D C1 + D' C2

E = D E1 + D' E2

X = equilibrium (dc) state vector
U = equilibrium (dc) input vector
Y = equilibrium (dc) output vector
D = equilibrium (dc) duty cycle

and!
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Averaged state equations: perturbation and linearization!

Let! x(t) Ts
= X + x(t)

u(t) Ts
= U + u(t)

y(t) Ts
= Y + y(t)

d(t) = D + d(t) � d'(t) = D' – d(t)

with! U >> u(t)

D >> d(t)
X >> x(t)
Y >> y(t)

Substitute into averaged state equations:!

K
d X+x(t)

dt = D+d(t) A1 + D'–d(t) A2 X+x(t)

+ D+d(t) B1 + D'–d(t) B2 U+u(t)

Y+y(t) = D+d(t) C1 + D'–d(t) C2 X+x(t)

+ D+d(t) E1 + D'–d(t) E2 U+u(t)
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Averaged state equations: perturbation and linearization!

K dx(t)
dt = AX + BU + Ax(t) + Bu(t) + A1 – A2 X + B1 – B2 U d(t)

first–order ac dc terms first–order ac terms

+ A1 – A2 x(t)d(t) + B1 – B2 u(t)d(t)

second–order nonlinear terms

Y+y(t) = CX + EU + Cx(t) + Eu(t) + C1 – C2 X + E1 – E2 U d(t)

dc + 1st order ac dc terms first–order ac terms
+ C1 – C2 x(t)d(t) + E1 – E2 u(t)d(t)

second–order nonlinear terms
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Linearized small-signal state equations!

K dx(t)
dt = A x(t) + B u(t) + A1 – A2 X + B1 – B2 U d(t)

y(t) = C x(t) + E u(t) + C1 – C2 X + E1 – E2 U d(t)

Dc terms drop out of equations. Second-order (nonlinear) terms are 
small when the small-signal assumption is satisfied. We are left with:!

This is the desired result.!


