Wide Bandgap Semiconductor Devices

Why wide bandgap semiconductor materials can significantly improve the tradeoff between breakdown voltage, forward voltage drop, and switching speed

Silicon Carbide (SiC) power devices

- Schottky diode
- MOSFET

Gallium Nitride (GaN) power devices

• HEMT

Specific on-resistance R_{on} as a function of breakdown voltage V_B

Majority-carrier device:
$$AR_{on} = \frac{k}{\mu_n \varepsilon_s E_c^3} V_B^2$$

- *A* device area
- V_B device breakdown voltage
- E_c critical electric field for avalanche breakdown
- μ_n electron mobility
- ε_s semiconductor permittivity

Comparison of Power Semiconductor Materials

Material	Bandgap [eV]	Electron mobility μ _n [cm²/Vs]	Critical field E _c [V/cm]	Thermal conductivity [W/mºK]
Si	1.12	1400	$3 \ge 10^5$	130
SiC	2.36-3.25	300-900	1.3-3.2 x 10 ⁶	700
GaN	3.44	1500-2000 (AlGaN/GaN 2DEG)	3.0-3.5 x 10 ⁶	110

Wide-bandgap device advantages

- Much larger E_c , hence much lower specific R_{on} at high breakdown voltages
- Majority carrier devices: no current tail, no reverse recovery
- Capability of operation at increased junction temperature

Comparison of Power Semiconductor Materials

Material	Bandgap [eV]	Electron mobility μ _n [cm²/Vs]	Critical field E _c [V/cm]	Thermal conductivity [W/mºK]
Si	1.12	1400	3 x 10 ⁵	130
SiC	2.36-3.25	300-900	1.3-3.2 x 10 ⁶	700
GaN	3.44	1500-2000 (AlGaN/GaN 2DEG)	3.0-3.5 x 10 ⁶	110

But:

- SiC is inferior to Si at sub-600V voltages because of lower electron mobility
- GaN devices are lateral (not vertical), more difficult to scale to higher voltages and currents
- GaN substrate issues: GaN-on-Si

The SiC Schottky Diode

Available at 600 V, 1200 V, and higher

No reverse recovery

Forward voltage drop 1.5 V – 2 V

Comparison with p-n Si diode at same voltage:

- Much lower switching loss \bullet
- Higher conduction loss ۲
- **Overall higher efficiency**
- More expensive \bullet

Note that silicon Schottky diodes are restricted to < 100V

The SiC MOSFET

We have silicon MOSFETs at up to 600-700 V SiC MOSFETs now are available at 600V – 10kV

- Properties are similar to Si MOSFETs, but with low R_{on} at \bullet these higher voltages
- *p*-*n* body diode has V_F of 3-4 V
- Allows much higher switching frequency than Si IGBT

Part number	Rated maximum voltage	Rated average current	Ron	Q_g (typical)
C3M0030090K	900 V	63 A	$30\mathrm{m}\Omega$	87 nC
C3M0075120K	1200 V	30 A	$75\mathrm{m}\Omega$	51 nC
C2M0045170D	1700 V	72 A	$45\mathrm{m}\Omega$	188 nC
SCT3022AL	650 V	93 A	$22\mathrm{m}\Omega$	133 nC
CPM3-0900-0010A	900 V	196 A	$10\mathrm{m}\Omega$	68 nC

Table 4.4 Characteristics of several commercial SiC MOSFETs

Power GaN HEMT

High Electron Mobility Transistor (HEMT) A heterojunction field effect transistor

Lateral device No oxide layers

AlGaN: low bandgap GaN: high bandgap

The Two-Dimensional Electron Gas (2DEG)

The energy band diagram takes a step at the heterojunction. Under the correct conditions, a 2DEG forms at the surface of the GaN layer. These electronics exhibit very low resistivity (high mobility), and can conduct current between source and drain.

A majority carrier device

High breakdown field Low on resistance

The HEMT is a JFET

The basic device is a depletion-mode junction field-effect transistor:

- Normally on
- To turn off, reverse-bias gate
- Gate-channel junction is a diode that can conduct current when forward-biased

Additional semiconductor design can shift threshold voltage:

- Enhancement-mode JFETs are available
- Then device is off when $v_{gs} = 0$

Electrical Considerations

On state:

- $v_{gs} > V_{th}$ with $V_{th} \sim 3.5$ V
- But don't apply v_{gs} that is too large: gate-source diode will become forward-biased and conduct large current.

Off state:

• $V_{gs} \leq 0$

Reverse conduction:

- No body diode
- Channel can conduct current in either direction
- With v_{gs} = 0, a negative v_{ds} (< V_{th}) can turn device on
- Behavior is similar to having a body diode, except
 - Large forward drop ~ V_{th}
 - No reverse recovery

State of the Art Device Comparison Example

	Si MOSFET	GaN
Voltage rating	600 V	650 V
R_{on} at 25°C-150°C	24-60 mΩ	25-65 mΩ
Q_g at $V_{DS} = 400$ V	123 nC (10V)	12 nC (6V)
C_{oss} (energy eq.)	184 pF	177 pF
C_{oss} (time eq.)	1900 pF	284 pF
V_{SD}	0.8 V	4 V
Q_{rr}	8.7 uC	-
t _{rr}	440 ns	-

State of the Art Device Comparison Example

	Si MOSFET	GaN
Voltage rating	600 V	650 V
R_{on} at 25°C-150°C	24-60 mΩ	25-65 mΩ
Q_g at $V_{DS} = 400$ V	123 nC (10V)	12 nC (6V)
C_{oss} (energy eq.)	184 pF	177 pF
C_{oss} (time eq.)	1900 pF	284 pF
V_{SD}	0.8 V	4 V
Q_{rr}	8.7 μC	_
t _{rr}	440 ns	-

Si MOSFET body diode reverse recovery $Q_{rr} V_{DS} f_s = 350 \text{ W}$ at 400V, 100 kHz