Wide Bandgap Semiconductor Devices

- Schottky diode
- MOSFET

Why wide bandgap semiconductor materials can significantly improve the tradeoff between breakdown voltage, forward voltage drop, and switching speed

Silicon Carbide (SiC) power devices

Gallium Nitride (GaN) power devices

• HEMT

Specific on-resistance R_{on} as a function of breakdown voltage V_B

Majority-carrier device:
$$
AR_{on} = \frac{k}{\mu_n \varepsilon_s E_c^3} V_B^2
$$

- *A* device area
- *V_B* device breakdown voltage
- *Ec* critical electric field for avalanche breakdown
- μ_n electron mobility
- ε _s semiconductor permittivity

Comparison of Power Semiconductor Materials

Wide-bandgap device advantages

- Much larger E_c , hence much lower specific R_{on} at high breakdown voltages
- Majority carrier devices: no current tail, no reverse recovery
- Capability of operation at increased junction temperature

Comparison of Power Semiconductor Materials

But:

- SiC is inferior to Si at sub-600V voltages because of lower electron mobility
- GaN devices are lateral (not vertical), more difficult to scale to higher voltages and currents
- GaN substrate issues: GaN-on-Si

The SiC Schottky Diode

Available at 600 V, 1200 V, and higher

No reverse recovery

Forward voltage drop $1.5 V - 2 V$

- Much lower switching loss
- Higher conduction loss
- **Overall higher efficiency**
- More expensive

Comparison with *p–n* Si diode at same voltage:

Note that silicon Schottky diodes are restricted to < 100V

The SiC MOSFET

We have silicon MOSFETs at up to 600-700 V SiC MOSFETs now are available at 600V – 10kV

- Properties are similar to Si MOSFETs, but with low R_{on} at these higher voltages
- *p*–*n* body diode has V_F of 3-4 V
- Allows much higher switching frequency than Si IGBT

Part number	Rated maximum voltage	Rated average current	R_{on}	Q_{g} (typical)
C3M0030090K	900V	63 A	$30 \,\mathrm{m}\Omega$	87 nC
C3M0075120K	1200 V	30A	$75 \,\mathrm{m}\Omega$	51 nC
C2M0045170D	1700 V	72 A	$45 \,\mathrm{m}\Omega$	188 nC
SCT3022AL	650 V	93 A	$22 \,\mathrm{m}\Omega$	133 nC
CPM3-0900-0010A	900V	196A	$10 \,\mathrm{m}\Omega$	68 nC

Table 4.4 Characteristics of several commercial SiC MOSFETs

improvement in specific on-resistance allows a reduction in device area while maintaining the

Power GaN HEMT

High Electron Mobility Transistor (HEMT) A heterojunction field effect transistor

AlGaN: low bandgap GaN: high bandgap

Lateral device No oxide layers

The Two-Dimensional Electron Gas (2DEG)

The energy band diagram takes a step at the heterojunction. Under the correct conditions, a 2DEG forms at the surface of the GaN layer. These electronics exhibit very low resistivity (high mobility), and can conduct current between source and drain.

A majority carrier device

• High breakdown field • Low on resistance

The HEMT is a JFET

The basic device is a depletion-mode junction field-effect $|D|$ transistor:

- Normally on
- To turn off, reverse-bias gate
- Gate-channel junction is a diode that can conduct current when forward-biased

Additional semiconductor design can shift threshold voltage:

- Enhancement-mode JFETs are available
- Then device is off when $v_{gs} = 0$

Electrical Considerations

- On state:
 $\bullet \quad v_{as} > V_{th}$ with $V_{th} \sim 3.5 \text{ V}$ $\boxed{\text{D}}$
	- \cdot But don't apply v_{gs} that is too large: gate-source diode will become forward-biased and conduct large current.

Off state:

• $v_{as} \leq 0$

Reverse conduction:

- No body diode
- Channel can conduct current in either direction
- With $v_{as} = 0$, a negative v_{ds} (< V_{th}) can turn device on
- Behavior is similar to having a body diode, except
	- Large forward drop $\sim V_{th}$
	- No reverse recovery

State of the Art Device Comparison Example

State of the Art Device Comparison Example

Si MOSFET body diode reverse recovery Q_{rr} $V_{DS} f_s = 350$ W at 400V, 100 kHz