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Preface 

Overview 

Although circuit analysis is fundamental to much of the material in electrical and computer en­
gineering curricula, the circuits sequence in these programs, at universities throughout the 
world, appears to be occupying a smaller part of the curriculum. The faculty are caught among 
several constraints: a reduction in the number of hours for graduation, the potential or actual 
growth of the university's core curriculum, and the need to cover more material in a technolo­
gy that seems to advance daily. In view of these very real issues, some faculty have made the 
decision to confine circuits in the curriculum to a single semester course. Thus, it would be ad­
vantageous to have a book that covers the set of required topics in such a course, no more and 
no less. I have designed this book for that purpose. 

This book was organized by judiciously selecting chapters from the seventh edition of 
Basic Engineering Circuit Analysis. The pedagogy of that book has been tested over and over. 
Furthermore, students indicate that it is a book they feel comfortable studying on their own. Thus 
the proper selection of chapters from Basic Engineering Circuit Analysis, 7th Ed., should pro­
duce a short book that enhances the benefits of a one-semester course. 

Perhaps the primary issue in producing a shorter book is the decision of what to include and 
what to leave out. There are undoubtedly a variety of opinions on this issue. In a one-semester 
course, some faculty will cover one set of topics and another faculty will cover a different set­
both with excellent reasons for their selection. However, I believe that this book contains the 
essential topics that will most likely be selected for inclusion in such a one-semester course. 
The chapter titles for the book are 

1. Basic Concepts 

2. Resistive Circuits 

3. Nodal and Loop Analysis Techniques 

4. Additional Analysis Techniques 

5. Capacitance and Inductance 

6. First- and Second-Order Transient Circuits 

7. AC Steady-State Analysis 

8. Variable-Frequency Network Performance 

This set of chapters covers the resistive circuits, the standard analysis techniques, the ca­
pacitor and inductor components, transient analysis, ac steady-state analysis, and the manner 
in which networks perform as a function of frequency, including such topics as resonance and 
various kinds of active and passive filters. Although this streamlined approach does not cover 
such topics as magnetic circuits, electric power circuits, and transform methods, these topics 
will typically be covered elsewhere in the curriculum, and thus if some topics are to be omit­
ted, these appear to be logical candidates. 

- \ 
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This brief book covers all the topics that are basic to an understanding of circuit analysis 
and, furthermore, many of them are addressed in a just-in-time manner. One important exam­
ple of this type of coverage is the manner in which the operational amplifier is presented. For 
example, once it is introduced and the various standard circuits are covered in Chapter 3, these 
op-amps are used to design circuits in Chapter 4, employed to derive differentiator and inte­
grator circuits in Chapter 5, and finally used in conjunction with the new operational transcon­
ductance amplifier (OTA) in Chapter 8 to design active filters. 

Because of the intrinsic relationship of this book to the parent text, the features that have 
made Basic Engineering Circuit Analysis, 7th Ed., popular are naturally contained here also. 
The book's clear and concise explanations, variety of effective learning aids, numerous prob­
lems with varying degrees of difficulty, and the number of real-world examples that demonstrate 
the usefulness of the material have been heralded as components that enhance the use of the 
text for both students and instructors alike. In addition, although this text is relatively short, it 
still provides the instructor with great flexibility within the setting for which it is designed. 
Sections or chapters can be emphasized or skipped in the formation of a coherent presentation. 
Likewise, the CAD tools can be employed to add a new dimension to the presentation or omit­
ted completely with no loss of continuity. 

In the final analysis, the goal of this text is to provide, within the setting of a one-semester 
course, an effective and efficient mechanism for students to obtain a thorough understanding 
of the basics of electric circuit analysis and an introduction to design. 

Pedagogical Structure Designed to Reinforce Learning 
Students don't all learn in the same way. Some are visual learners, while others are more kin­
esthetic. A "learning styles survey" appears after the preface to help each student determine his 
or her particular learning style and gives guidance on how to tailor his or her study habits. 
Pedagogical features are included to fit different learning styles. 

t Learning Goals, listed at the beginning of each chapter, provide an overview of the 
topics within the chapter and the skills and knowledge students should achieve. 

t Learning Hints that appear on many pages of the text help shorten the learning curve. 
These comments in the margin provide guidance for understanding different facets of the 
presentation and problems of all types. Coupled with myriad examples, Learning Hints 
provide readers with a companion tutor. Additionally, they aid the instructor and the 
student by conveying some of the subtleties that are typically implicit in lecture or in 
traditional presentation. 

t Learning Example sections, more often than any other component, provide students 
with the means for acquiring and evaluating new knowledge. The numerous worked-out 
examples in the text are the hallmark feature. 

t An expanded number of real-world examples, labeled Learning by Application, appear 
in many sections of the text, and at the end of every applicable chapter, answer the 
question "Why do we study circuit theory?" Applications frequently deal with design 
issues ranging from very simple matters, such as finding the value of some specific 
component, to modeling the collapse of the Tacoma Narrows Bridge. 

t Learning by Doing and Learning Extensions are assessment tools coordinated within 
the text. The Learning by Doing exercises are quick, simple reinforcements of the 
principles and provide a check of the reader's understanding of the material. Learning 
Extensions provide practice for the reader in applying the basic concepts, as well as 
guidance in understanding the techniques needed to solve the end-of-chapter problems. 

t Problem-Solving Strategies are placed to assist the student in selecting the proper 
solution technique or combination of techniques applicable in a particular situation. This 



assistance not only helps the student understand the subtle differences among various 
techniques in their application to a particular problem, but also helps eliminate the 
psychological barrier that sometimes exists in determining a suitable method of attack. 

t Computer-aided Design (CAD) Tools allow students, like all modern engineers, to apply 
the power of the computer to solve a variety of problems. Special icons are employed 
within the book to indicate sections where the CAD tools are used. The very latest version 
of PSPICE by Cadence is used, and this version coupled with the use of both MATLAB 
and Microsoft EXCEL are integrated within the text and coordinated with the Student 
Study Guide (discussed later) where Electronics Workbench is also introduced. 

t Learning by Design sections appear at the end of each applicable chapter. This feature 
provides the reader with an understanding of how to apply what they have learned to the 
design of circuits. The use of engineering design in a curriculum is a major component 
of the ABET criteria. The inclusion of this material permits its introduction to the student 
at an early stage in the curriculum. 

t Learning Check includes both the Summary and Problems, and appears at the end of every 
chapter. The important topics are reviewed concisely in the Summary as a quick reminder 
for readers. The problems are segmented by chapter subdivision and graduated in difficulty 
to permit users to test their understanding of the material and hone their skills in solving 
different types of problems. The problem sets also include some problems specifically 
designed to mimic those that appear on the Fundamentals of Engineering ( FE) Exam taken 
by students in preparation for becoming a Registered Professional Engineer. 

Companion Web Site 
Among other items, this site contains Answers to Selected Problems. 

Supplements 

The Student Study Guide for the seventh edition contains additional detailed examples that track 
the chapter presentation to aid and check the student's understanding of the problem-solving 
process. Many of these examples involve computer simulations with PSPICE, MATLAB, Mi­
crosoft EXCEL, and Electronics Workbench. A CD bound into the study guide includes circuit 
simulations and five easy-to-use video segments for demonstrating PSPICE solutions. 

EGrade Anonymous Quizzing is also available to students using this text. Students are en­
couraged to visit our Web site atwww.wiley.com/college!circuitsextra and register to begin tak­
ing practice quizzes on eGrade to increase their circuits problem-solving skills. EGrade 
questions are organized by topic and are automatically scored to provide immediate feedback, 
so the student can either drill specifically in problem areas (focusing on topics he or she needs 
more work in) or just do general practice drills to prepare for a test. 

Circuits Extra-Check out the latest offerings for users of Wiley circuits texts. 

EGrade On-line Assessment is also available for this text. EGrade is a tool that allows in­
structors to automate the process of assigning, delivering, grading, and routing all kinds of 
homework, quizzes, and tests, while providing students with immediate scoring and feedback 
on their work. Electric circuits test banks in eGrade format are available for instructors who 
would like to include a Web component in their course in the form of on-line homework and 
quizzing. Questions are arranged by topic and are in a variety of formats, including fill-in-the­
blank, multiple choice, true/false, and more. For more information, and to see a demo of eGrade, 
visitwww.wiley.com/college!egrade. 
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The Solutions Manual, containing solutions to all learning extensions and end-of-chapter prob­
lems, and PowerPoint Slides for this text are available only to instructors who have adopted the 
text for classroom use. The solutions manual and PowerPoint slides are available on the Web 
site at www. wiley.comlcollege!irwin, under the Instructor 's Companion Site. You must first reg­
ister for a password on-line and supply your course information for confirmation before you 
will receive access to these resources. 

Circuit Solutions powered by JustAsk! is a Web site that is essentially a tutor serving the needs 
of both the student and the instructor. Questions and answers are provided for numerous top­
ics within the chapters. Selected problems are worked in detail and explanations of every facet 
of the solution are provided. As such, this Web site is a valuable tool in the use of this book. 
On this site you will gain access to The Problem Solving Companion-a $16.00 value free! 
This companion supplies you with additional problems and complete solutions that are not 
found in the text and a listing of important formulas . 
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Basic 
Concepts 

Today we live in a predominantly electrical world. Although this statement 
may sound strange at first, a moment's reflection will indicate its inherent 
truth. The two primary areas of electrotechnology that permeate essential­
ly every aspect of our lives are power and information. Without them, life 
as we know it would undergo stupendous changes. We have learned to gen­
erate, convert, transmit, and utilize these technologies for the enhancement 
of the whole human race. 

Electrotechnology is a driving force in the changes that are occurring 
in every engineering discipline. For example, surveying is now done with 
lasers and electronic range finders, and automobiles employ electronic 
dashboards and electronic ignition systems. Industrial processes that range 
from chemical refineries and metal foundries to wastewater treatment plants 
use (1) electronic sensors to obtain information about the process, (2) in­
strumentation systems to gather the information, and (3) computer control 
systems to process the information and generate electronic commands to ac­
tuators, which correct and control the process. 

Fundamental to electrotechnology is the area of circuit analysis. A thor­
ough knowledge of this subject provides an understanding of such things 
as cause and effect, amplification and attenuation, feedback and control, 
and stability and oscillation. Of critical importance is the fact that the same 
principles applied to engineering systems can also be applied to economic 
and social systems. Thus, the ramifications of circuit analysis are immense, 
and a solid understanding of this subject is well worth the effort expended 
to obtain it. 

In this chapter we will introduce some of the basic quantities that will 
be used throughout the text. Specifically, we will define electric current, 
voltage, power and energy, as well as the difference between direct current 
and alternating current. In addition, we will classify electric elements as 
either passive or active, the latter of which can be further subdivided into 
both independent and dependent. This basic introduction will lay the 
groundwork for our further study of a wide variety of electric circuits. 

1.1 Systems of Units The international 
system of units is employed in this book. A 
standard set of prefixes is used to display a 
range of magnitudes .. .Page 2 

1.2 Basic Quantities A circuit is an 
interconnection of electrical components. 
The time rate of change of charge 
constitutes an electric current. The two 
common types of current are alternating 
current and direct current. The voltage 
between two points in a circuit is the 
difference in energy level of a unit charge 
located at each of the two points. Power is 
the time rate of change of energy. The 
passive sign convention is used to determine 
whether power is being absorbed or 
supplied by an element...Page 2 

1.3 Circuit Elements Circuit elements are 
broadly classified as either active or passive. 
Active elements are capable of generating 
energy, whereas passive elements do not. 
The active elements presented in this 
chapter are voltage or current sources, and 
each is further categorized as either 
independent or dependent.. .Page 7 

Learning Check .. .Page 11 

Summary .. .Page 11 

Problems .. .Page 11 
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2 I- C H A p T E R 1 BASIC CONCEPTS 

1 ~ 1 System of Units 

The system of units we employ is the international system of units, the Systeme International 
des Unites, which is normally referred to as the SI standard system. This system, which is com­
posed of the basic units meter (m), kilogram (kg), second (s), ampere (A), degree kelvin (°K), and 
candela (cd), is defined in all modem physics texts and therefore will not be defined here. How­
ever, we will discuss the units in some detail as we encounter them in our subsequent analyses. 

The standard prefixes that are employed in SI are shown in Fig. 1.1. Note the decimal re­
lationship between these prefixes. These standard prefixes are employed throughout our study 
of electric circuits. 

10- 12 10-9 10-6 10-3 1 103 106 109 1012 

Figure 1.1 I I I I I I I I I 
Standard SI prefixes. pico (p) nano (n) micro (µ ) milli (m) kilo (kl mega (Ml giga (G) tera (Tl 

Circuit technology has changed drastically over the years. For example, in the early 1960s 
the space on a circuit board occupied by the base of a single vacuum tube was about the size 
of a quarter (25-cent coin). Today that same space could be occupied by an Intel Pentium in­
tegrated circuit chip containing 3.1 million transistors . These chips are the engine for a host of 
electronic equipment. 

1 .2 Basic Quantities 

(a) 

(b) 

Figure 1.2 
Conventional current flow: 
(a) positive current flow; 
(b) negative current flow. 

Before we begin our analysis of electronic circuits, we must define terms that we will employ. 
However, in this chapter and throughout the book our definitions and explanations will be as 
simple as possible to foster an understanding of the use of the material. No attempt will be made 
to give complete definitions of many of the quantities because such definitions are not only 
unnecessary at this level but are often confusing. Although most of us have an intuitive concept 
of what is meant by a circuit, we will simply refer to an electric circuit as an interconnection of 
electrical components, each of which we will describe with a mathematical model. 

The most elementary quantity in an analysis of electric circuits is the electric charge. Our 
interest in electric charge is centered around its motion, since charge in motion results in an en­
ergy transfer. Of particular interest to us are those situations in which the motion is confined 
to a definite closed path. 

An electric circuit is essentially a pipeline that facilitates the transfer of charge from one 
point to another. The time rate of change of charge constitutes an electric current. Mathemat­
ically, the relationship is expressed as 

i(t) 
dq(t) 

dt 
or q(t) = J~i(x) dx 1.1 

where i and q represent current and charge, respectively (lowercase letters represent time 
dependency and capital letters are reserved for constant quantities) . The basic unit of current 
is the ampere (A) and 1 ampere is 1 coulomb per second. 

Although we know that current flow in metallic conductors results from electron motion, the 
conventional current flow, which is universally adopted, represents the movement of positive 
charges. It is important that the reader think of current flow as the movement of positive charge re­
gardless of the physical phenomena that take place. The symbolism that will be used to represent 
current flow is shown in Fig. 1.2. / 1 = 2 A in Fig. 1.2a indicates that at any point in the wire shown, 



SECTION 1.2 BASIC QUANTITIES 

i(t) i (t) 

Figure 1.3 

(a) (b) 
Two common types of current: (a) alternating 
current (ac); (b) direct current (de). 

2 C of charge pass from left to right each second. /2 = - 3 A in Fig. 1.2b indicates that at any point 
in the wire shown, 3 C of charge pass from right to left each second. Therefore, it is important to 
specify not only the magnitude of the variable representing the current, but also its direction. 

There are two types of current that we encounter often in our daily lives, alternating cur­
rent (ac) and direct current (de), which are shown as a function of time in Fig. 1.3. Alternating 
current is the common current found in every household and is used to run the refrigerator, stove, 
washing machine, and so on. Batteries, which are used in automobiles or flashlights, are one 
source of direct current. In addition to these two types of currents, which have a wide variety 
of uses, we can generate many other types of currents. We will examine some of these other 
types later in the book. In the meantime, it is interesting to note that the magnitude of currents 
in elements familiar to us ranges from soup to nuts, as shown in Fig. 1.4. 

We have indicated that charges in motion yield an energy transfer. Now we define the voltage 
(also called the electromotive force or potential) between two points in a circuit as the differ­
ence in energy level of a unit charge located at each of the two points. Work or energy, w( t) 
or W, is measured in joules (J); 1 joule is 1 newton meter (N · m). Hence, voltage [v(t) or V] 
is measured in volts (V) and 1 volt is 1 joule per coulomb; that is, 1 volt = 1 joule per 
coulomb = 1 newton meter per coulomb. 

If a unit positive charge is moved between two points, the energy required to move it is the 
difference in energy level between the two points and is the defined voltage. It is extremely impor­
tant that the variables that are used to represent voltage between two points be defined in such a way 
that the solution will let us interpret which point is at the higher potential with respect to the other. 

106 

104 

102 

$ 100 

"' (l) 
>-, 10-2 (l) 
0. a 
"' 10-4 

·= c; 10-6 
(l) 
I-< 
I-< 
;::J 

10-s u 

10-10 

10- 12 

Lightning bolt 

Large industrial motor current 

Typical household appliance current 

Causes ventricular fibrillation in humans 

Human threshold of sensation 

Integrated circuit (IC) memory cell current 

Synaptic current (brain cell) 
Figure 1.4 

LEARNING by Doing 

D 1.1 Determine the 
amount of time required 
for 100 C of charge to 
pass through the circuit in 
Fig. 1.2a. 

ANSWER 50s 

LEARNING Hint 

w 
V =­

q 

10-14 
Typical current magnitudes. 

3 
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Figure 1.5 

A 
+ , ,_ __ ___, C 

B 

r 
C 1 
u 

A 
+ 

V2 =-5 V 

B 

A 
C C 

r r 
c2 V2 = 5 V 

C 2 
u u 

+ 
B 

Voltage representations. (a) (b) (c) 

LEARNING by Doing 

D 1.2 Determine the 
energy required to move 
120 C of charge from 
point B to point A in the 
network in Fig. 1.5a. 

ANSWER 2401 

Figure 1.6 

In Fig. 1.5a the variable that represents the voltage between points A and B has been de­
fined as Vj, and it is assumed that point A is at a higher potential than point B, as indicated by 
the + and - signs associated with the variable and defined in the figure. The + and - signs define 
a reference direction for Vj . If Vj = 2 V, then the difference in potential of points A and B is 
2 V and point A is at the higher potential. If a unit positive charge is moved from point A 
through the circuit to point B, it will give up energy to the circuit and have 2 J less energy 
when it reaches point B. If a unit positive charge is moved from point B to point A, extra en­
ergy must be added to the charge by the circuit, and hence the charge will end up with 2 J more 
energy at point A than it started with at point B. 

For the circuit in Fig. 1.5b, V 2 = -5 V means that the potential between points A and Bis 
5 V and point B is at the higher potential. The voltage in Fig. 1.5b can be expressed as shown 
in Fig. 1.5c. In this equivalent case, the difference in potential between points A and B is 
V2 = 5 V, and point Bis at the higher potential. 

Note that it is important to define a variable with a reference direction so that the answer 
can be interpreted to give the physical condition in the circuit. We will find that it is not possible 
in many cases to define the variable so that the answer is positive, and we will also find that it 
is not necessary to do so. A negative number for a given variable gives exactly the same 
information as a positive number for a new variable that is the same as the old variable, except 
that it has an opposite reference direction. Hence, when we define either current or voltage, it 
is absolutely necessary that we specify both magnitude and direction. Therefore, it is incomplete 
to say that the voltage between two points is 10 V or the current in a line is 2 A, since only the 
magnitude and not the direction for the variables has been defined. 

The range of magnitudes for voltage, equivalent to that for currents in Fig. 1.4, is shown in 
Fig. 1.6. Once again, note that this range spans many orders of magnitude. 

10s 

106 

104 

~ 102 

Zl 
0 100 
> 
.s 
0) 10-2 t>O 
;cl 

~ 10-4 

10-6 

10- s 

Lightning bolt 

High-voltage transmission lines 
Voltage on a TV picture tube 

Large industrial motors 
AC outlet plug in U.S. households 

Car battery 
Voltage on integrated circuits 
Flashlight battery 

Voltage across human chest produced by the 
heart (EKG) 

Voltage between two points on human scalp (EEG) 

Antenna of a radio receiver 

Typical voltage magnitudes. 10- 10 



SECTION 1 .2 

A 1=2 A A l = 2A 

+ + 

3V 3V 

B I = 2A B l = 2A 

(a) (b) 

Figure 1.7 Voltage-current relationships for (a) energy 
absorbed and (b) energy supplied. 

At this point we have presented the conventions that we employ in our discussions of cur­
rent and voltage. Energy is yet another important term of basic significance. Figure 1.7 illus­
trates the voltage-current relationships for energy transfer. In this figure, the block representing 
a circuit element has been extracted from a larger circuit for examination. In Fig. 1.7a, energy 
is being supplied to the element by whatever is attached to the terminals. Note that 2 A, that is, 
2 C, of charge are moving from point A to point B through the element each second. Each 
coulomb loses 3 J of energy as it passes through the element from point A to point B. There­
fore, the element is absorbing 6 J of energy per second. Note that when the element is absorbing 
energy, a positive current enters the positive terminal. In Fig. 1.7b energy is being supplied by 
the element to whatever is connected to terminals A-B. In this case, note that when the element 
is supplying energy, a positive current enters the negative terminal and leaves via the positive 
terminal. In this convention a negative current in one direction is equivalent to a positive cur­
rent in the opposite direction, and vice versa. Similarly, a negative voltage in one direction is 
equivalent to a positive voltage in the opposite direction. 

LEARNING Example 1.1 

I 
BASIC QUANTITIES f ). 

LEARNING by Doing 

D 1.3 Five joules of 
energy are absorbed by 1 C 
of charge when moved 
from point B to point A. 

Find the voltage between 
points A and B. 

A 

B 

ANSWER 5 V, Bis + 

Suppose that your car will not start. To determine whether the 
battery is faulty, you turn on the light switch and find that 
the lights are very dim, indicating a weak battery. You borrow 
a friend's car and a set of jumper cables. However, how do you 

connect his car's battery to yours? What do you want his bat­
tery to do? 

I 

+ 
Weak 

battery 

Figure 1.8 Diagram for Example 1. 1. 

SOLUTION Essentially, his car's battery must supply energy to 
yours, and therefore it should be connected in the manner shown 
in Fig. 1.8. Note that the positive current leaves the positive 
terminal of the good battery (supplying energy) and enters the 
positive terminal of the weak battery (absorbing energy). Note 
that the same connections are used when charging a battery. 

In practical applications there are often considerations other 
than simply the electrical relations (e.g., safety). Such is the case 
with jump-starting an automobile. Automobile batteries produce 
explosive gases that can be ignited accidentally, causing severe 
physical injury. Be safe-follow the procedure described in your 
auto owner's manual. 

We have defined voltage in joules per coulomb as the energy required to move a positive 
charge of 1 C through an element. If we assume that we are dealing with a differential amount 
of charge and energy, then 

dw 
v=- 1.2 

dq 

,,- / 
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i (1) 

+ 

v(t) 

Figure 1.9 
Sign convention for power. 

LEARNING Hint 
The passive sign 
convention is used to 
determine whether power 
is being absorbed or 
supplied. 

LEARNING Example 1.2 

Multiplying this quantity by the current in the element yields 

1.3 

which is the time rate of change of energy or power measured in joules per second, or watts (W). 
Since, in general, both v and i are functions of time, pis also a time-varying quantity. Therefore, 
the change in energy from time t1 to time t2 can be found by integrating Eq. (1.3); that is, 

Jt2 !'2 Liw= pdt= vidt 
I 11 

1.4 

At this point, let us summarize our sign convention for power. To determine the sign of 
any of the quantities involved, the variables for the current and voltage should be arranged as 
shown in Fig. 1.9. The variable for the voltage v(t) is defined as the voltage across the element 
with the positive reference at the same terminal that the current variable i( t) is entering. This 
convention is called the passive sign convention and will be so noted in the remainder of this 
book. The product of v and i, with their attendant signs, will determine the magnitude and sign 
of the power. If the sign of the power is positive, power is being absorbed by the element; if 
the sign is negative, power is being supplied by the element. 

Given the two diagrams shown in Fig. 1.10, determine whether 
the element is absorbing or supplying power and how much. 

SOLUTION In Fig. 1.10a the power is P = (2 V)(-4 A) = 

- 8 W. Therefore, the element is supplying power. In Fig. 1.10b, 
the power is P = (2 V)(2 A) = 4W. Therefore, the element is ab­
sorbing power. 

4A -2A 

+ 

2V 2V 2V 

+ 

Figure 1.10 
Elements (or Example 1.2. (a) (b) 

E 1.1 Determine the amount of power absorbed or supplied by the elements in Fig. El .1. 

+ + 

Figure E1.1 (a) (b) 

ANSWER (a) P = -48 W; 
(b) P = 8W. 
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LEARNING Example 1.3 

I , 
( 

17 

We wish to determine the unknown voltage or current in Fig. 1.11. 

SA 

A 

V1 =? P=-20W 

B 

-A 

5V 

+B 

I = '! 

1'=40W 

SOLUTION In Fig. 1.1 la, a power of-20 W indicates that the 
element is delivering power. Therefore, the current enters the 
negative terminal (terminal A), and from Eq. (1.3) the voltage is 
4 V. Thus B is the positive terminal, A is the negative terminal, 
and the voltage between them is 4 V. 

(a) (b) 

In Fig 1.11 b, a power of +40 W indicates that the element is 
absorbing power and, therefore, the current should enter the pos­
itive terminal B. The current thus has a value of -8 A, as shown 
in the figure. 

Figure 1. 11 Elements for Example 1.3. 

E1 .2 Determine the unknown variables in Fig. El.2. 

Figure E1.2 

V -') 
I - • 

+ 

1 = 2A 

(a) 

+ 

(b) 

+ 
lOV 

Finally, it is important to note that these electrical networks satisfy the principle of con­
servation of energy. For our present purposes this means that the power supplied in a network 
is exactly equal to the power absorbed. 

1.3 Circuit Elements 

Thus far we have defined voltage, current, and power. In the remainder of this chapter we will 
define both independent and dependent current and voltage sources. Although we will assume 
ideal elements, we will try to indicate the shortcomings of these assumptions as we proceed with 
the discussion. 

In general, the elements we will define are terminal devices that are completely char­
acterized by the current through the element and/or the voltage across it. These elements, 
which we will employ in constructing electric circuits, will be broadly classified as being 
either active or passive. The distinction between these two classifications depends essen­
tially on one thing-whether they supply or absorb energy. As the words themselves imply, 
an active element is capable of generating energy and a passive element cannot generate 
energy. 

However, we will show later that some passive elements are capable of storing energy. 
Typical active elements are batteries, generators, and transistor models. The three common 
passive elements are resistors, capacitors, and inductors. 

ANSWER (a) V1 = -20 V; 
(b) I = -5 A. 
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B 

(a) 

Figure 1.12 

(b) 

Symbols for (a) independent 
voltage source, (b) independent 
current source. 

LEARNING by Doing 

D 1.4 Determine the 
power supplied by the 
12-V source. 

~A 

L:_'.l2V 
ANSWER 24 W 

LEARNING Example 1.4 

In Chapter 2 we will launch an examination of passive elements by discussing the resistor 
in detail. However, before proceeding with that element, we first present some very important 
active elements. • 

1. Independent voltage source 

2. Independent current source 

3. Two dependent voltage sources 

4. Two dependent current sources 

INDEPENDENT SOURCES An independent voltage source is a two-terminal element 
that maintains a specified voltage between its terminals regardless of the current through it. The 
general symbol for an independent source, a circle, is shown in Fig. 1.12a. As the figure indi­
cates, terminal A is v ( t) volts positive with respect to terminal B. 

In contrast to the independent voltage source, the independent current source is a two­
terminal element that maintains a specified current regardless of the voltage across its terminals. 
The general symbol for an independent current source is shown in Fig. 1.12b, where i(t) is the 
specified current and the arrow indicates the positive direction of current flow. 

In their normal mode of operation, independent sources supply power to the remainder of 
the circuit. However, they may also be connected into a circuit in such a way that they absorb 
power. A simple example of this latter case is a battery-charging circuit such as that shown in 
Example 1.1. 

It is important that we pause here to interject a comment concerning a shortcoming of the 
models. In general, mathematical models approximate actual physical systems only under a 
certain range of conditions. Rarely does a model accurately represent a physical system 
under every set of conditions. To illustrate this point, consider the model for the voltage 
source in Fig. 1.12a. We assume that the voltage source delivers v volts regardless of what 
is connected to its terminals . Theoretically, we could adjust the external circuit so that an 
infinite amount of current would flow, and therefore the voltage source would deliver an 
infinite amount of power. This is , of course, physically impossible. A similar argument could 
be made for the independent current source. Hence, the reader is cautioned to keep in mind 
that models have limitations and thus are valid representations of physical systems only 
under certain conditions. 

Determine the power absorbed or supplied by the elements in 
the network in Fig. 1.13. 

l=2A + 6 V -
.------I 1 f----~ 

SOLUTION The current flow is out of the positive terminal of 
the 24-V source, and therefore this element is supplying 
(2)(24) = 48 W of power. The current is into the positive ter­
minals of elements l and 2, and therefore elements 1 and 2 are 
absorbing (2)(6) = 12 Wand (2)(18) = 36 W, respectively. Note 
that the power supplied is equal to the power absorbed. 

24 V 

Figure 1.13 
Network for Example 1.4. 

l=2A 

+ 

18V LEARNING Hint 
Elements that are connected in series have the 
same current. 
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r ,, 
, .,,, LE ARN ING EXTENSION"~;,,~-

E1 .3 Find the power that is absorbed or supplied by the elements in Fig. El.3. 

18V 
l=3A+ 

12 V 3A 

Figure E1.3 

DEPENDENT SOURCES In contrast to the independent sources, which produce a 
particular voltage or current completely unaffected by what is happening in the remainder of the 
circuit, dependent sources generate a voltage or current that is determined by a voltage or cur­
rent at a specified location in the circuit. These sources are very important because they are an 
integral part of the mathematical models used to describe the behavior of many electronic 
circuit elements. 

For example, metal-oxide-semiconductor field-effect transistors (MOSFETs) and bipolar 
transistors, both of which are commonly found in a host of electronic equipment, are modeled 
with dependent sources, and therefore the analysis of electronic circuits involves the use of 
these controlled elements. 

In contrast to the circle used to represent independent sources, a diamond is used to represent 
a dependent or controlled source. Figure 1.14 illustrates the four types of dependent sources. 
The input terminals on the left represent the voltage or current that controls the dependent 
source, and the output terminals on the right represent the output current or voltage of the 
controlled source. Note that in Figs. 1.14a and d the quantities µ and 13 are dimensionless con­
stants because we are transforming voltage to voltage and current to current. This is not the case 
in Figs. 1.14b and c; hence when we employ these elements a short time later, we must describe 
the units of the factors r and g. 

E 
(a) (b) 

i = i3is 

ANSWER Current source 
supplies 36 W, element 1 

. absorbs 54 W, and element 2 
supplies 18 W. 

Figure 1.14 

( c) ( d) 
Four different types of 
dependent sources. 

9 
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LEARNING Example 1.5 

Given the two networks shown in Fig. 1.15, we wish to determine 
the outputs. 

SOLUTION In Fig. 1.15a the output voltage is V 0 = µV s or 
V0 = 20 Vs = (20)(2 V) = 40 V. Note that the output voltage 
has been amplified from 2 V at the input terminals to 40 V at the 

Figure 1.15 
Circuits for Example 1.5. (a) 

output terminals; that is, the circuit is a voltage amplifier with an 
amplification factor of 20. 

In Fig. 1.15b, the output current is /0 = 13Is = 
(50)(1 mA) = 50 mA; that is, the circuit has a current gain of 
SO, meaning that the output current is SO times greater than 
the input current. 

l s= lmA I0 

1----0-+-

(b) 

E1.4 Determine the power supplied by the dependent sources in Fig. El.4. ANSWER (a) Power supplied 
= 80 W; (b) power supplied 
= 160W. 

+ 

Figure E1.4 (a) 

LEARNING Example 1.6 

Let us find the current /0 in the network in Fig. 1.16. 

Figure 1.16 
Circuit used in 
Example 1.6. 

-----l-1---+-~ 

2A 

llA 

SOLUTION First, we must determine the power absorbed or 
supplied by each element in the network. Using the sign con­
vention for power, we find 

(b) 

P 2A = (6)(-2) = -12 w 
P1 = (6)(10 ) = 6/0 W 

P2 = (12)(- 9) = -108 W 

P3 = (10)(-3) = - 30 W 

P4 v = (4)(-8) = -32 W 

P0 5 = (8/x)(ll) = (16)( 11) = 176 W 

Since energy must be conserved, 

-12 + 6/0 - 108 - 30 - 32 + 176 = 0 

or 

610 + 176 = 12 + 108 + 30 + 32 

Hence, 
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LJ~~NING EKTENSI_O~N 

E 1.5 Find the power that is absorbed or supplied by the circuit elements in the network in Fig. El .5. 

8V 

ANSWER ?24 V = 96 w 
supplied, P1 = 32 W 
absorbed, P41 x = 64 W 
absorbed. 

Figure E1.5 

Summary 

t 

t 

t 

The standard prefixes employed 

p = 10- 12 k = 103 

n = 10- 9 

µ, = 10-6 

m = 10- 3 

M = 106 

G = 109 

T = 1012 

The relationships between current and charge 

i(t) = dq(t) 
dt 

or q(t) = i ~i(x) dx 

The relationships among power, energy, 
current, and voltage 

dw . 
p = df = VI 

6.w = f 12p dt = j''vi dt 
I 11 

t The passive sign convention The passive sign 
convention states that if the voltage and current associated 
with an element are as shown in Fig. 1.9, the product of v 
and i, with their attendant signs, determines the magnitude 
and sign of the power. If the sign is positive, power is being 
absorbed by the element, and if the sign is negative, the 
element is supplying power. 

t Independent and dependent sources An ideal 
independent voltage (current) source is a two-terminal 
element that maintains a specified voltage (current) 
between its terminals regardless of the current (voltage) 
through (across) the element. Dependent or controlled 
sources generate a voltage or current that is determined by 
a voltage or current at a specified location in the circuit. 

t Conservation of energy The electric circuits under 
investigation satisfy the conservation of energy. 

Problems 
SECTION 1.2 

For solutions and additional help on problems marked with ~ go to www.wiley.com/college/ irwin 

1.1 If 60 C of charge pass through an electric conductor 
~ in 30 seconds, determine the current in the conductor. 

1.2 If the current in an electric conductor is 2.4 A, how many 
coulombs of charge pass any point in a 30-second interval? 

1.3 Determine the time interval required for a 12-A battery 
charger to deliver 4800 C. 

1.4 A lightning bolt carrying 30,000 A lasts for 50 micro­
seconds. If the lightning strikes an airplane flying at 
20,000 feet, what is the charge deposited on the plane? 

1.5 Determine the energy required to move 240 C 
~ through 6 V. 

1.6 Determine the amount of power absorbed or supplied by 
the element in Fig. Pl.6 if (a) V1 = 4 V, I = 2 A and 
(b) V1 = -4 V, I = -2 A. 

I 

+ 

Figure P1.6 

1. 7 Repeat Problem 1.6 if (a) V1 = -6 V, I = 3 A and 
(b) V1 = 6 V, I = -3 A. 
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1.8 Determine the missing quantity in the circuits in 
Fig. Pl.8. 

+ + 

(a) (b) 

Figure P1.8 

1.9 Repeat Problem 1.8 for the circuits in Fig. Pl.9. 

I= - 2A 

+ 

(a) (b) 

Figure P1.9 

1.10 Repeat Problem 1.8 for the circuits in Fig. Pl.IO. 

I = - 3A I = -4A 

+ 

V1 = - 6V 

+ 

(a) (b) 

Figure P1.10 

1.11 Determine the power supplied to the elements in 
Fig. Pl.11. 

Figure P1. 11 

1.12 Determine the power supplied to the elements in 
Fig. Pl.12. 

2A 

Figure P1.12 

1.13 Two elements are connected in series, as shown in 
~ Fig. Pl.13. Element 1 supplies 24 W of power. Is ele­

ment 2 absorbing or supplying power, and how much? 

Figure P1.13 

1.14 Two elements are connected in series, as shown in 
Fig. Pl.14. Element 1 absorbs 36 W of power. Is element 
2 absorbing or supplying power, and how much? 

Figure P1.14 



PROBLEMS 13 

SECTION 1 .3 

Important note: The values used in the problems of Section 1.3 1.18 Find Ix in the network in Fig. Pl.18. 
are not arbitrary. They have been selected to satisfy the basic 
laws of circuit analysis that will be studied in the following 
chapters . 1 A lA 

1.15 Determine the power that is absorbed or supplied by the 
circuit elements in Fig. Pl.IS. 

(a) 

Figure P1.15 

(b) 

1.16 Find the power that is absorbed or supplied by the circuit 
elements in Fig. Pl.16. 

(a) 

Figure P1.16 

14 V 

(b) 

1.17 Compute the power that is absorbed or supplied by 
~ the elements in the network in Fig. Pl.17. 

1/x 

36V 

Figure P1. 17 

+ 6A + + + 

12 V t 12 V 1 12 V 2 4 12 V 

8V 
2A 

Figure P1.18 

1.19 Is the source V5 in the network in Fig. Pl.19 absorbing or 
supplying power, and how much? 

Vs 

lOV 

Figure P1.19 

1.20 Find Vx in the network in Fig. Pl .20. 

2V 
+ 

Figure P1 .20 

8V 

1.21 Find / 0 in the network in Fig. Pl.21. 
~ 

24 V 

+ 
4 16 V 

Figure P1.21 



2.1 Oltm'a Law The resistor is introduced as 
a circuit element. The resistance of this 
element is measured in ohms. Ohm's law 
states that the voltage across a resistance is 
directly proportional to the current flowing 
through it. Conductance, the reciprocal of 
resistance, is measured in siemens .. .Page 15 
2.2 Kirchhoff's Laws Node, loop, and 
branch are defined. Kirchhoff's current law 
states that the algebraic sum of the currents 
entering a node is zero, and Kirchhoff's voltage 
law states that the algebraic sum of the voltage 
changes around any loop is zero .. .Page 19 
2.3 Single-Loop Circuits Series elements 
carry the same current. Voltage division 
specifies that the voltage is divided between 
two series resistors in direct proportion to 
their resistances. The equivalent resistance 
of resistors in series is the sum of the 
individual resistances .. .Page 25 
2.4 Single-Node-Pair Circuits Parallel 
elements have the same voltage across them. 
Current division specifies the manner in which 
current divides between two resistors in 
parallel. The equivalent conductance of 
resistors in parallel is the sum of the individual 
conductances .. .Page 30 
2.5 Series and Parallel Resistor 
Combinations These specify the 
techniques for determining the equivalent 
resistance of a series-parallel combination of 
resistors .. .Page 35 
2.6 Circuits with Series-Parallel 
Combinations of Resistors Ohm's law, 
Kirchhoff's laws, voltage division, and 
current division are applied in determining 
the voltage or current in a network 
containing a single source .. .Page 38 
2. 7 Wye ~ Delta Transformations 
The wye-to-delta and delta-to-wye 
transformations are introduced .. .Page 41 
2.8 Circuits with Dependent 
Sources Network solution techniques are 
applied to circuits containing a dependent 
source .. .Page 44 
Learning by Application .. .Page 47 
Learning by Design .. .Page 48 
Learning Check .. .Page 50 

Summary .. .Page 50 
Problems .. .Page 51 
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Resistive 
Circuits 

In this chapter we introduce the basic concepts and laws that are funda­
mental to circuit analysis. These laws are Ohm's law, Kirchhoff's current 
law (KCL), and Kirchhoff's voltage law (KVL). We cannot overempha­
size the importance of these three laws because they will be used extensively 
throughout our entire study of circuit analysis . The reader who masters 
their use quickly will not only find the material in this text easy to learn, but 
will be well positioned to grasp subsequent topics in the field of electrical 
engineering. 

As a general rule, most of our activities will be confined to analysis; that 
is, to the determination of a specific voltage, current, or power somewhere 
in a network. The techniques we introduce have wide application in circuit 
analysis, even though we will discuss them within the framework of sim­
ple networks. 

Our approach here is to begin wi~h the simplest passive element, the re­
sistor, and the mathematical relationship that exists between the voltage 
across it and the current through it, as specified by Ohm's law. As we build 
our confidence and proficiency by successfully analyzing some elemen­
tary circuits, we will introduce other techniques, such as voltage division 
and current division, that will accelerate our work. 

In this chapter we introduce circuits containing dependent sources, 
which are used to model active devices such as transistors. Thus, our study 
of circuit analysis provides a natural introduction to many topics in the area 
of electronics. 

Finally, we present a real-world application to indicate the usefulness 
of circuit analysis, and then we briefly introduce the topic of circuit design 
in an elementary fashion. In future chapters these topics will be revisited 
often to present some fascinating examples that describe problems we en­
counter in our everyday lives. 
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2.1 Ohm's Law 

Ohm's law is named for the German physicist Georg Simon Ohm, who is credited with estab­
lishing the voltage-current relationship for resistance. As a result of his pioneering work, the 
unit of resistance bears his name. 

Ohm's law states that the voltage across a resistance is directly proportional to the current 
flowing through it. The resistance, measured in ohms, is the constant of proportionality be­
tween the voltage and current. 

A circuit element whose electrical characteristic is primarily resistive is called a resistor and 
is represented by the symbol shown in Fig. 2.1 a. A resistor is a physical device that can be pur­
chased in certain standard values in an electronic parts store. These resistors, which find use 
in a variety of electrical applications, are normally carbon composition or wirewound. In ad­
dition, resistors can be fabricated using thick oxide or thin metal films for use in hybrid circuits, 
or they can be diffused in semiconductor integrated circuits. Some typical discrete resistors 
are shown in Fig. 2.lb. 

The mathematical relationship of Ohm's law is illustrated by the equation 

i(t) 

+ 

v(t) 

(a) 

R 

v(t) = R X i(t), where R ~ 0 

(7) 

// 

(4) ~-

' 111, 
(8) 

----
(11) 

(b) 

2.1 

(5) 

Figure 2.1 (a) Symbol for a resistor; (b) some practical devices. (1), (2), and (3) are high-power 
resistors. (4) and (5) are high-wattage fixed resistors. (6) is a high-precision resistor. (7)-(12) are fixed 
resistors with different power ratings. 

LEARNING Hint 
The passive sign convention 
will be employed in conjunction 
with Ohm's law. 

(1) 

(2) 

(3) 

... (6) 

"'--
---Cllit-~ 9) 

,.,. ......... 
(12) 
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Figure 2.2 
Graphical representation of the 
voltage-current relationship for 
(a) a linear resistor and (b) a 
diode. 

v(t) 

(a) 

i(t) 

v(t) 

(b) 

LEARNING by Doing or equivalently, by the voltage-current characteristic shown in Fig. 2.2a. Note carefully the re­
lationship between the polarity of the voltage and the direction of the current. In addition, note 
that we have tacitly assumed that the resistor has a constant value and therefore that the 
voltage-current characteristic is linear. 

D 2.1 Detennine v(t) 
in the circuits. 

2A 

+ 

v(t) sn 

(a) 

+ 

v(t) sn 

2A 

(b) 

ANSWER (a) 10 V 
(b)-10 V 

The symbol D is used to represent ohms, and therefore, 

1 D = 1 V / A 

Although in our analysis we will always assume that the resistors are linear and are thus 
described by a straight-line characteristic that passes through the origin, it is important that 
readers realize that some very useful and practical elements do exist that exhibit a nonlinear 
resistance characteristic; that is, the voltage-current relationship is not a straight line. Diodes 
and transistors are examples of elements that exhibit nonlinear characteristics, and are used 
extensively in electric circuits. A typical characteristic for a diode is shown in Fig. 2.2b. 

Since a resistor is a passive element, the proper current-voltage relationship is illustrated 
in Fig. 2. la. The power supplied to the terminals is absorbed by the resistor. Note that the 
charge moves from the higher to the lower potential as it passes through the resistor and the en­
ergy absorbed is dissipated by the resistor in the form of heat. As indicated in Chapter 1, the 
rate of energy dissipation is the instantaneous power, and therefore 

p(t) = v(t)i(t) 2.2 

which, using Eq. (2.1), can be written as 

p(t) = Ri2(t) 2.3 

This equation illustrates that the power is a nonlinear function of either current or voltage and 
that it is always a positive quantity. 

Conductance, represented by the symbol G, is another quantity with wide application in cir­
cuit analysis. By definition , conductance is the reciprocal of resistance; that is, 

1 
G= ­

R 

The unit of conductance is the siemens, and the relationship between units is 

1 S = 1 A/ V 

Using Eq. (2.4), we can write two additional expressions, 

i(t) = Gv(t) 

2.4 

2.5 
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and 

i2(t) 
p(t) = - = Gv2(t) 

G 

Equation (2.5) is another expression of Ohm's law. 

2.6 

Two specific values of resistance, and therefore conductance, are very important: R = 0 and 
R = oo, 

In examining the two cases, consider the network in Fig. 2.3a. The variable resistance 
symbol is used to describe a resistor such as the volume control on a radio or television set. 
As the resistance is decreased and becomes smaller and smaller, we finally reach a point 
where the resistance is zero and the circuit is reduced to that shown in Fig. 2.3b; that is, the 
resistance can be replaced by a short circuit. On the other hand, if the resistance is increased 
and becomes larger and larger, we finally reach a point where it is essentially infinite and the 
resistance can be replaced by an open circuit, as shown in Fig. 2.3c. Note that in the case of 
a short circuit where R = 0, 

i(t) 

+ 

v(t) 

(a) 

Figure 2.3 

R 

v(t) = Ri(t) 
=O 

+ 

v(t) 

Short-circuit and open-circuit descriptions. 

i(t) i(t) 

+ 

v(t) 

(b) (c) 

Therefore, v( t) = 0, although the current could theoretically be any value. In the open-circuit 
case where R = oo, 

i(t) = v(t)/R 
=O 

Therefore, the current is zero regardless of the value of the voltage across the open terminals. 

LEARNING Example 2.1 

LEARNING by Doing 

D 2.2 Determine i(t) in 
the following two circuits: 

+ i(t) 

4V G=2S 

(a) 

+ i(t) 

- 4V R=2fl 

(b) 

ANSWER (a) 8 A 
(b)-2 A 

In the circuit in Fig. 2.4a, determine the current and the power 
absorbed by the resistor. 

SOLUTION Using Eq. (2.1), we find the current to be 

(a) 

Figure 2.4 
Circuits for Examples 2. 1 and 2.2. 

v,B ~-SOmW 
(b) 

I = V /R = 12/2k = 6 mA 

Note that because many of the resistors employed in our analy­
sis are in kfl, we will use kin the equations in place of 1000. The 
power absorbed by the resistor is given by Eq. (2.2) or (2.3) as 

P =VI= (12)(6 X 10-3) = 0.072W 

= [2R = (6 X 10-3)\2k) = 0.072 W 

= V 2/R = (I2)2/2k = 0.072 w 
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LEARNING Example 2.2 

Given the network in Fig. 2.4b, we wish to find Rand Vs· The voltage can now be derived using Ohm's law as 

Vs = IR= (4 X 10-3)(5k) = 20 V 
SOLUTION Using the power relationship, we find that 

R = P/ 12 = (80 X 10- 3)/(4 X 10- 3)2 = 5k0 
The voltage could also be obtained from the remaining power 
relationships in Eqs. (2.2) and (2.3). 

Before leaving this initial discussion of circuits containing sources and a single resistor, it 
is important to note a -phenomenon that we will find to be true in circuits containing many 
sources and resistors. The presence of a voltage source between a pair of terminals tells us pre­
cisely what the voltage is between the two terminals regardless of what is happening in the 
balance of the network. What we do not know is the current in the voltage source. We must apply 
circuit analysis to the entire network to determine this current. Likewise, the presence of a cur­
rent source connected between two terminals specifies the exact value of the current through 
the source between the terminals. What we do not know is the value of the voltage across the 
current source. This value must be calculated by applying circuit analysis to the entire net­
work. Furthermore, it is worth emphasizing that when applying Ohm's law, the relationship 
V = IR specifies a relationship between the voltage directly across a resistor R and the cur­
rent that is present in this resistor. Ohm's law does not apply when the voltage is present in one 
part of the network and the current exists in another. This is a common mistake made by stu­
dents who try to apply V = IR to a resistor R in the middle of the network while using a V at 
some other location in the network. 

E2.1 Given the circuits in Fig. E2.l, find (a) the current I and the power absorbed by the resis­
tor in Fig. E2. la, and (b) the voltage across the current source and the power supplied by the source 
in Fig. E2.lb. 

ANSWER (a) I = 0.3 mA, 
P = 3.6mW,(b)Vs = 3.6V, 
P = 2.16 mW. 

lZVLi~kfl 
Figure E2.1 (a) 

E2.2 Given the circuits in Fig. E2.2, find (a) Rand V s in the circuit in Fig. E2.2a, and (b) find/ 
and R in the circuit in Fig. E2.2b. 

0.4mALi~cl6mW LI 12V R 
P=0.25W 

Figure E2.2 (a) (b) 

ANSWER (a) R = 10 kO, 
V s = 4 V, (b) I = 20.8 mA, 
R = 576 0. 
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2.2 Kirchhoff's Laws 

The previous circuits that we have considered have all contained a single resistor and were an­
alyzed using Ohm's law. At this point we begin to expand our capabilities to handle more com­
plicated networks that result from an interconnection of two or more of these simple elements. 
We will assume that the interconnection is performed by electrical conductors (wires) that have 
zero resistance; that is, perfect conductors. Because the wires have zero resistance, the energy 
in the circuit is in essence lumped in each element, and we employ the term lumped-parameter 
circuit to describe the network. 

To aid us in our discussion, we will define a number of terms that will be employed through­
out our analysis. As will be our approach throughout this text, we will use examples to illustrate 
the concepts and define the appropriate terms. For example, the circuit shown in Fig. 2.5 will be 
used to describe the terms node, loop, and branch. A node is simply a point of connection of two 
or more circuit elements. The reader is cautioned to note that although one node can be spread 
out with perfect conductors, it is still only one node. For example, node 5 consists of the entire 
bottom connector of the circuit. In other words, if we start at some point in the circuit and move 
along perfect conductors in any direction until we encounter a circuit element, the total path we 
cover represents a single node. Therefore, we can assume that a node is one end of a circuit ele­
ment together with all the perfect conductors that are attached to it. Examining the circuit, we note 
that there are numerous paths through it. A loop is simply any closed path through the circuit in 
which no node is encountered more than once. For example, starting from node 1, one loop would 
contain the elements Ri, v2 , R4 , and ii; another loop would contain R2 , Vi, v2 , R4 , and ii; and so 
on. However, the path R 1, Vi, R5, v2 , R3 , and ii is not a loop because we have encountered node 
3 twice. Finally, a branch is a portion of a circuit containing only a single element and the nodes 
at each end of the element. The circuit in Fig. 2.5 contains eight branches. 

CD 

i3(t) 

Rz 

@ 

Figure 2.5 
Circuit used to illustrate KCL. 

Given the previous definitions, we are now in a position to consider Kirchhoff's laws, named 
after German scientist Gustav Robert Kirchhoff. These two laws are quite simple but extremely 
important. We will not attempt to prove them because the proofs are beyond our current level of 
understanding. However, we will demonstrate their usefulness and attempt to make the reader pro-
ficient in their use. The first law is Kirchhoff's current law (KCL), which states that the algebraic LE ARN ING Hint 
sum of the currents entering any node is zero. In mathematical form the law appears as KCL is an extremely important 

and useful law. 
N 

~>it)= 0 2.7 
j=I 

where ii t) is the jth current entering the node through branch j and N is the number of branch­
es connected to the node. To understand the use of this law, consider node 3 shown in Fig. 2.5. 
Applying Kirchhoff's current law to this node yields 

ii(t) - i4 (t) + i5(t) - i?(t) = 0 
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LEARNING by Doing 

D 2.3 Write the KCL 
equation for the following 
node: 

i5(t) 

ANSWER 
i,(t) - iz(t) - iJ(t) 

- iit) + i5(t) = 0 

LEARNING Example 2.3 

We have assumed that the algebraic signs of the currents entering the node are positive and, 
therefore, that the signs of the currents leaving the node are negative. 

If we multiply the foregoing equation by -1, we obtain the expression 

-i2(t) + i4(t) - i5(t) + i?(r) = 0 

which simply states that the algebraic sum of the currents leaving a node is zero. Alternative­
ly, we can write the equation as 

i2(t) + i5(t) = i4 (t) + i?(t) 

which states that the sum of the currents entering a node is equal to the sum of the currents leav­
ing the node. Both of these italicized expressions are alternative forms of Kirchhoff's current law. 

Once again it must be emphasized that the latter statement means that the sum of the vari­
ables that have been defined entering the node is equal to the sum of the variables that have 
been defined leaving the node, not the actual currents. For example, iit) may be defined en­
tering the node, but if its actual value is negative, there will be positive charge leaving the node. 

Note carefully that Kirchhoff's current law states that the algebraic sum of the currents ei­
ther entering or leaving a node must be zero. We now begin to see why we stated in Chapter 1 
that it is critically important to specify both the magnitude and the direction of a current. 

Let us write KCL for every node in the network in Fig. 2.5 as­
suming that the currents leaving the node are positive. 

Note carefully that if we add the first four equations we ob­
tain the fifth equation. What does this tell us? Recall that this 
means that this set of equations is not linearly independent. We 
can show that the first four equations are, however, linearly in­
dependent. Store this idea in memory because it will become 
very important when we learn how to write the equations nec­
essary to solve for all the currents and voltages in a network in 
the following chapter. 

SOLUTION The KCL equations for nodes 1 through 5 are 

-i,(t) + i2(t) + i3(t) = 0 

i,(t) - i4(t) + i6(t) = 0 

-i2 (t) + i4 (t) - i5(t) + i?(t) = 0 

-i3(t) + i5(t) - i8(t) = 0 

-i6(t) - i?(t) + i8(t) = 0 

LEARNING Example 2.4 

The network in Fig. 2.5 is represented by the topological dia­
gram shown in Fig. 2.6. We wish to find the unknown currents 
in the network. 

CD 

1, 60mA 20mA 

14 Q) I , 

/6 40mA 30mA 

Figure 2.6 
Topological diagram for the circuit in Fig. 2.5. 

SOLUTION Assuming the currents leaving the node are posi­
tive, the KCL equations for nodes 1 through 4 are 

-/1 + 0.06 + 0.02 = 0 

/1 - /4 + /5 = 0 

-0.06 + /4 - /5 + 0.04 = 0 

-0.02 + /5 - 0.03 = 0 

The first equation yields / 1 and the last equation yields / 5. 

Knowing 15 we can immediately obtain / 4 from the third 
equation. Then the values of / 1 and / 4 yield the value of / 6 from 
the second equation. The results are / 1 = 80 mA,14 = 70 mA, 
15 = 50 mA, and / 6 = -10 mA. 

As indicated earlier, dependent or controlled sources are very 
important because we encounter them when analyzing circuits con­
taining active elements such as transistors. The following example 
presents a circuit containing a current-controlled current source. 



LEARNING Example 2.5 

Let us write the KCL equations for the circuit shown in Fig. 2. 7. 

Figure 2.7 
Circuit containing a 
dependent current source. @ 
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SOLUTION The KCL equations for nodes 1 through 4 follow. 

i 1(t) + iz(t) - i5(t) = 0 

-iz(t) + i3(t) - 50i2(t) = 0 

-i1(t) + 50i2(t) + i4(t) = 0 

i5(t) - i3(t) - i 4(t) = 0 

If we added the first three equations, we would obtain the negative 
of the fourth. What does this tell us about the set of equations? 

Finally, it is possible to generalize Kirchhoff's current law to include a closed surface. By a 
closed surface we mean some set of elements completely contained within the surface that are in­
terconnected. Since the current entering each element within the surface is equal to that leaving the 
element (i.e., the element stores no net charge), it follows that the current entering an interconnection 
of elements is equal to that leaving the interconnection. Therefore, Kirchhoff's current law can also 
be stated as follows: The algebraic sum of the currents entering any closed surface is zero. 

LEARNING Example 2.8 

Let us find l 4 and l I in the network represented by the topolog­
ical diagram in Fig. 2.6. 

Figure 2.8 
Diagram used to 
demonstrate KCL for a 
surface. 

Surface 1 

60mA 

Surface 2 

40mA 30mA 

SOLUTION This diagram is redrawn in Fig. 2.8; node 1 is en­
closed in surface 1 and nodes 3 and 4 are enclosed in surface 2. 
A quick review of the previous example indicates that we de­
rived a value for l 4 from the value of 15• However, 15 is now 
completely enclosed in surface 2. If we apply KCL to surface 2, 
assuming the currents out of the surface are positive, we obtain 

/4 - 0.06 - 0.02 - 0.03 + 0.04 = 0 

or 
14 = 70mA 

which we obtained without any knowledge of/ 5. Likewise for sur­
face 1, what goes in must come out and, therefore, I 1 = 80 mA. 
The reader is encouraged to cut the network in Fig. 2.6 into two 
pieces in any fashion and show that KCL is always satisfied at the 
boundaries. 

E2.3 Given the networks in Fig. E2.3, find (a) I 1 in Fig. E2.3a and (b) I 7 in Fig. E2.3b. ANSWER (a) I 1 = -50 mA, 
(b) / 7 = 70 mA. 

SOmA 

Figure E2.3 (a) (b) 
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E2.4 Find (a) / 1 in the network in Fig. E2.4a and (b) / 1 and / 2 in the circuit in Fig. E2.4b. ANSWER (a) / 1 = 6 mA, 
(b) 11 = 8 mA and 
12 = 5 mA. 

4mA 3mA 4mA 

Figure E2.4 (a) (b) 

E2.5 Find the current ix in the circuits in Fig. E2.5. ANSWER (a) ix = 4 mA, 
(b) ix = 12 mA. 

Figure E2.5 

LEARNING by Doing 

D 2.4 Write the KVL 
equation for the following 
loop, traveling clockwise: 

+ 
VR, + 

V, VR, 
V. 

R, + 

ANSWER 
-v 5 + V R, + V R, + V R, = 0 

(a) 

LEARNING Example 2.7 

R 
t !Oi, 

120mA 

i_\ 12 mA 

(b) 

Kirchhoff 's second law, called Kirchhoff's voltage law (KVL), states that the algebraic 
sum of the voltages around any loop is zero. As was the case with Kirchhoff's current law, we 
will defer the proof of this law and concentrate on understanding how to apply it. Once again 
the reader is cautioned to remember that we are dealing only with lumped-parameter circuits. 
These circuits are conservative, meaning that the work required to move a unit charge around 
any loop is zero. 

Recall that in Kirchhoff's current law, the algebraic sign was required to keep track of 
whether the currents were entering or leaving a node. In Kirchhoff's voltage law the algebra­
ic sign is used to keep track of the voltage polarity. In other words, as we traverse the circuit, 
it is necessary to sum to zero the increases and decreases in energy level. Therefore, it is im­
portant we keep track of whether the energy level is increasing or decreasing as we go through 
each element. 

Finally, we employ the convention Vab to indicate the voltage of point a with respect to point 
b: that is, the variable for the voltage between point a and point b, with point a considered positive 
relative to point b. Since the potential is measured between two points, it is convenient to use an arrow 

Consider the circuit shown in Fig. 2.9. If V R , and V R, are known 
quantities, let us find V R,. 

network is a single loop, we have only one closed path. We will 
adopt a policy of considering an increase in energy level as neg­
ative and a decrease in energy level as positive. Using this poli­
cy and starting at point a in the network and traversing it in a 
clockwise direction, we obtain the equation 

30V 

Figure 2.9 
Circuit used to illustrate KVL. 

SOLUTION In applying KVL, we must traverse the circuit and 
sum to zero the increases and decreases in energy level. Since the 

+v R , - 5 + v R, - 15 + v R, - 30 = o 
which can be written as 

+v R, + v R, + v R, = 5 + 15 + 30 

= 50 

Now suppose that V R, and V R, are known to be 18 V and 12 V, 
respectively. Then V R, = 20 V. 



LEARNING Example 2.8 

Consider the network in Fig. 2.10. 

VR VR VR 
a + I - b + ' C + 3 d 

R1 Rz R3 

+ 24 V SY 
+ 

16 V 

Figure 2.10 
Circuit used to explain KVL. 

Let us demonstrate that only two of the three possible loop 
equations are linearly independent. 

SECTION 2.2 KIRCHHOFF'S LAWS 

SOLUTION Note that this network has three closed paths: the 
left loop, right loop, and outer loop. Applying our policy for writ­
ing KVL equations and traversing the left loop starting at point 
a, we obtain 

V R, + V R4 - 16 - 24 = 0 

The corresponding equation for the right loop starting at point b is 

V R, + V R3 + 8 + 16 - V R4 = 0 

The equation for the outer loop starting at point a is 

V R , + V R, + V R, + 8 - 24 = 0 

Note that if we add the first two equations, we obtain the third 
equation. Therefore, as we indicated in Example 2.3 , the three 
equations are not linearly independent. Once again, we will ad­
dress this issue in the next chapter and demonstrate that we 
need only the first two equations to solve for the voltages in 
the circuit. 

between the two points with the head of the arrow located at the positive node. Note that the dou­
ble-subscript notation, the+ and - notation, and the single-headed arrow notation are all the same 
if the head of the arrow is pointing toward the positive terminal and the first subscript in the dou­
ble-subscript notation. All of these equivalent forms for labeling voltages are shown in Fig. 2.11. The 
usefulness of the arrow notation stems from the fact that we may want to label the voltage between 
two points that are far apart in a network. In this case, the other notations are often confusing. 

a a 

:c v,,, 9 
:c'" +> :cV,, +, + 

i,;. = V,,t, = v,, 

Figure 2.11 
Equivalent forms for labeling 

(a) b (b) (c) 

LEARNING Example 2.9 

Consider the network in Fig. 2.12a. Let us apply KVL to deter­
mine the voltage between two points. Specifically, in terms of 
the double-subscript notation, let us find V ae and V ec . 

16V 12V 
a + 

24V R2 

R4 e R3 

f 
Figure 2. 12 

- lOY + - 6V + 

Network used in Example 2.9. (a) 

d 

+ 

(d) h voltage. 

SOLUTION The circuit is redrawn in Fig. 2.12b. Since points a and 
e as well as e and c are not physically close, the arrow notation is 
very useful. Our approach to determining the unknown voltage is 

12V 
a + 

4V 24 V 4V 

f - lOV+ - 6V+ d 

(b) 
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to apply KVL with the unknown voltage in the closed path. There­
fore, to determine V ae we can use the path aefa or abcdea. The 
equations for the two paths in which V ae is the only unknown are 

V ae + 10 - 24 = 0 
and 

16 - 12 + 4 + 6 - vae = 0 

Note that both equations yield V ae = 14 V. Even before cal­
culating V ae, we could calculate V ec using the path cdec or 

cefabc. However, since V ae is now known, we can also use the 
path ceabc. KVL for each of these paths is 

4+6+Vec=O 

-Vee + 10 - 24 + 16 - 12 = 0 

and 
-V ec - V ae + 16 - 12 = 0 

Each of these equations yields V ec = -10 V. 

LEARNING Hint In general, the mathematical representation of Kirchhoff's voltage law is 

KVL is an extremely important 
and useful law. 

N 

LV/t)=O 
j=I 

2.8 

where v/t) is the voltage across the jth branch (with the proper reference direction) in a loop 
containing N voltages. This expression is analogous to Eq. (2.7) for Kirchhoff's current law. 

LEARNING Example 2.10 

Given the network in Fig. 2.13 containing a dependent source, let 
us write the KVL equations for the two closed paths abda and bcdb. 

SOLUTION The two KVL equations are 

V R, + V R, - Vs = 0 

20V R, + V R3 - V R, = 0 

E2.6 Find V ad and V eb in the network in Fig. E2.6. 

+ 

6V 

Figure E2.6 .f + 8 V - e + 12 V - d 

E2. 7 Find V bd in the circuit in Fig. E2. 7. 

6V 

VR VR=lV 

12vt TJ10v, 
Figure E2.7 d 

Figure 2.13 
Network containing a 
dependent source. 

a 

d 

ANSWER Vad = 26 V, 
Veb = 10 V. 

ANSWER V bd = 11 V. 
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R [ 

A [ A 

+ 

V R V R 
--v--

+ [ C D 

B B Figure 2.14 
Circuits used to explain Ohm's 

(a) (b) (c) law. 

Before proceeding with the analysis of simple circuits, it is extremely important that we em­
phasize a subtle but very critical point. Ohm's law as defined by the equation V = IR refers 
to the relationship between the voltage and current as defined in Fig. 2.14a. If the direction of 
either the current or the voltage, but not both, is reversed, the relationship between the current 
and the voltage would be V = -IR. In a similar manner, given the circuit in Fig. 2.14b, if the 
polarity of the voltage between the terminals A and B is specified as shown, then the direction 
of the current / is from point B through R to point A. Likewise, in Fig. 2.14c, if the direction 
of the current is specified as shown, then the polarity of the voltage must be such that point D 
is at a higher potential than point C and, therefore, the arrow representing the voltage V is from 
point C to point D. 

2.3 Single-Loop Circuits 

VOLTAGE DIVISION At this point we can begin to apply the laws we have presented 
earlier to the analysis of simple circuits. To begin, we examine what is perhaps the simplest cir­
cuit-a single closed path, or loop, of elements. The elements of a single loop carry the same 
current and, therefore, are said to be in series. However, we will apply Kirchhoff's voltage law 
and Ohm's law to the circuit to determine various quantities in the circuit. 

Our approach will be to begin with a simple circuit and then generalize the analysis to more 
complicated ones. The circuit shown in Fig. 2.15 will serve as a basis for discussion. This cir­
cuit consists of an independent voltage source that is in series with two resistors. We have as­
sumed that the current flows in a clockwise direction. If this assumption is correct, the solution 
of the equations that yields the current will produce a positive value. If the current is actually 
flowing in the opposite direction, the value of the current variable will simply be negative, 
indicating that the current is flowing in a direction opposite to that assumed. We have also 

i(t) 

v(t) + 

+ 

Figure 2.15 
Single-loop circuit. 

LEARNING Hint 
The subtleties associated with 
Ohm's law, as described here, 
are important and must be 
adhered to in order to ensure 
that the variables have the 
proper sign . 
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LEARNING Hint 
The manner in which voltage 
divides between two series 
resistors 

made voltage polarity assignments for vR, and vR,· These assignments have been made using 
the convention employed in our discussion of Ohm's law and our choice for the direction of 
i(t); that is, the convention shown in Fig. 2.14a. 

Applying Kirchhoff's voltage law to this circuit yields 

-v(t) + vR, + vR, = 0 

or 

However, from Ohm's law we know that 

vR, = R1i(t) 

vR, = R2i(t) 

Therefore, 

Solving the equation for i ( t) yields 

i(t) = v(t) 
R1 + R2 

2.9 

Knowing the current, we can now apply Ohm's law to determine the voltage across each 
resistor: 

vR, = R1i(t) 

= R1[ v(t) J 
R1 + R2 

2.10 

R1 

Similarly, 

2.11 

Although simple, Eqs. (2.10) and (2.11) are very important because they describe the op­
eration of what is called a voltage divider. In other words, the source voltage v( t) is divided 
between the resistors R 1 and R2 in direct proportion to their resistances. 

In essence, if we are interested in the voltage across the resistor R 1, we bypass the calcu­
lation of the current i( t) and simply multiply the input voltage v( t) by the ratio 

As illustrated in Eq. (2.10), we are using the current in the calculation, but not explicitly. 
Note that the equations satisfy Kirchhoff's voltage law, since 



LEARNING Example 2.11 

Consider the circuit shown in Fig. 2.16. The circuit is identical 
to Fig. 2.15 except that R1 is a variable resistor such as the vol­
ume control for a radio or television set. Suppose that V s = 9 V, 
R, = 90 kO, and R2 = 30 kO. 

+ 

Figure 2.16 
Voltage-divider circuit. 

I 

+ 

Let us examine the change in both the voltage across R2 and 
the power absorbed in this resistor as R I is changed from 90 kO 
to 15 kO. 

SOLUTION Since this is a voltage-divider circuit, the voltage V 2 

can be obtained directly as 

V2 = [ R, :2 R2]vs 

[ 90k
3
~k 30k] (9) 

= 2.25 V 
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Now suppose that the variable resistor is changed from 90 kO to 
15 kO. Then 

The direct voltage-divider calculation is equivalent to deter­
mining the current I and then using Ohm's law to find V 2 • Note 
that the larger voltage is across the larger resistance. This volt­
age-divider concept and the simple circuit we have employed to 
describe it are very useful because, as will be shown later, more 
complicated circuits can be reduced to this form. 

Finally, let us determine the instantaneous power absorbed by 
the resistor R2 under the two conditions R, = 90 kO and 
R, = 15 kO. For the case R, = 90 kO, the power absorbed by 
R2 is 

P2 = 12 R2 = ( - 9-)
2 
(30k) 

120k 

In the second case 

= 0.169mW 

P2 = ( 4:k r (30k) 

l.2mW 

The current in the first case is 75 µA, and in the second case 
it is 200 µA. Since the power absorbed is a function of the 
square of the current, the power absorbed in the two cases is 
quite different. 

Let us now demonstrate the practical utility of this simple voltage-divider network. 

LEARNING Example 2.12 

Consider the circuit in Fig. 2.17a, which is an approximation 
of a high-voltage de transmission facility. We have assumed 
that the bottom portion of the transmission line is a perfect 
conductor and will justify this assumption in the next chapter. 
The load can be represented by a resistor of value 183.5 0 . 
Therefore, the equivalent circuit of this network is shown in 
Fig. 2.17b. 

Figure 2.17 
A high-voltage de transmission 
facility. 

Line resistance is 0.04125 !1/mile 

Load 

Perfect conductor 

400-mile transmission line 

(a) 

Let us determine both the power delivered to the load and 
the power losses in the line. 

SOLUTION Using voltage division, the load voltage is 

* Vioad = [ 183.~8~516.5 ]400k 

= 367 kV 

2kA 

16.5 n + 

400 kV V1oad 183.5 n 

(b) ( continued) 
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The input power is 800 MW and the power transmitted to the 
load is 

Since P = VI, suppose now that the utility company supplied 
power at 200 kV and 4 kA. What effect would this have on our 
transmission network? Without making a single calculation, we 
know that because power is proportional to the square of the cur­
rent, there would be a large increase in the power loss in the line 
and, therefore, the efficiency of the facility would decrease sub­
stantially. That is why, in general, we transmit power at high volt­
age and low current. 

P1oad = 12 R1oad 

= 734MW 

Therefore, the power loss in the transmission line is 

Pline = Pin - P1oad = / 2R1ine 

= 66MW 

Figure 2.18 

MULTIPLE SOURCE/RESISTOR NETWORKS At this point we wish to extend 
our analysis to include a multiplicity of voltage sources and resistors. For example, consider 
the circuit shown in Fig. 2.18a. Here we have assumed that the current flows in a clockwise 
direction, and we have defined the variable i(t) accordingly. This may or may not be the case, 
depending on the value of the various voltage sources. Kirchhoff's voltage law for this circuit is 

'Vz(I) 

~----1- + t----~ 

Equivalent circuits with multiple 
sources. (b) 

or, using Ohm's law, 

(R1 + R2)i(t) = V1(t) - vz(t) + vJ(t) - V4(t) - V5(t) 

which can be written as 
(R1 + R2)i(t) = v(t) 

where 

so that under the preceding definitions, Fig. 2.1 Sa is equivalent to Fig. 2.1 Sb. In other words, 
the sum of several voltage sources in series can be replaced by one source whose value is the 
algebraic sum of the individual sources. This analysis can, of course, be generalized to a cir­
cuit with N series sources. 

Now consider the circuit with N resistors in series, as shown in Fig. 2.19a. Applying Kirch­
hoff's voltage law to this circuit yields 

v(t) = vR, + vR, + ... + VRN 

= R1i(t) + R2i(t) + ''' + RNi(t) 

and therefore, 
v(t) = Rsi(t) 2.12 
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+ VR, - + VR2 -

R1 R2 

i(t) 

+ 
i(t) 

v(t) 

RN 
_____ R_0_, "•, ,(,) Li R.,•• R , > R,, R,, ··· , R, 

VRN 
+ 

(a) 

where 

and hence, 

i(t) = v(t) 
Rs 

(b) 

2.13 

2.14 

Figure 2.19 
Equivalent circuits. 

Note also that for any resistor R; in the circuit, the voltage across R; is given by the expression 

2.15 

which is the voltage-division property for multiple resistors in series. 
Equation (2.13) illustrates that the equivalent resistance of N resistors in series is simply 

the sum of the individual resistances. Thus, using Eq. (2.13), we can draw the circuit in 
Fig. 2.19b as an equivalent circuit for the one in Fig. 2.19a. 

LEARNING Example 2.13 

Given the circuit in Fig. 2.20a, let us find I, V bd, and the power 
absorbed by the 30-kD resistor. Finally, let us use voltage divi­
sion to find V bC' 

a lOkD b 20kD C 40kD b 

12 V f]w,n 
30 kD 

e d 

(a) (b) 

Figure 2.20 Circuit used in Example 2. 13. 

SOLUTION KVL for the network yields the equation 

lOkl + 20kl + 12 + 30kl - 6 = 0 
60kl = -6 

I= -0.l mA 

C 

Therefore, the magnitude of the current is 0.1 mA, but its direc­
tion is opposite to that assumed. 

The voltage V bd can be calculated using either of the closed 
paths abdea or bcdb. The equations for both cases are 

lOkl + V bd + 30kl - 6 = 0 

and 
20kI + 12 - vbd = o 

Using I = -0.l mA in either equation yields V bd = 10 V. Fi­
nally, the power absorbed by the 30-kD resistor is 

P = I 2R = 0.3mW 

Now from the standpoint of determining the voltage V be, we can 
simply add the sources since they are in series, add the remain­
ing resistors since they are in series, and reduce the network to 
that shown in Fig. 2.20b. Then 

20k 
vbc = 20k + 40k (-6) 

= -2 V 
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E2.8 Find I and V hd in the circuit in Fig. E2.8. ANSWER I = -0.05 mA 

12 V 
and V bd = 10 V 

a 

6V 40kD 

d 
Figure E2.8 

E2.9 In the network in Fig. E2.9, if V ad is 3 V, find Vs. ANSWER Vs= 9 V. 

Figure E2.9 

Vs 
20kD 

d 

C 

15 kD 

2.4 Single-Node-Pair Circuits 

CURRENT DIVISION An important circuit is the single-node-pair circuit. In this case 
the elements have the same voltage across them and, therefore, are in parallel. We will, how­
ever, apply Kirchhoff's current law and Ohm's law to determine various unknown quantities 
in the circuit. 

Following our approach with the single-loop circuit, we will begin with the simplest case 
and then generalize our analysis. Consider the circuit shown in Fig. 2.21. Here we have an in­
dependent current source in parallel with two resistors. 

Since all of the circuit elements are in parallel, the voltage v( t) appears across each of 
them. Furthermore, an examination of the circuit indicates that the current i( t) is into the upper 
node of the circuit and the currents i1 (t) and i2 ( t) are out of the node. Since KCL essentially 
states that what goes in must come out, the question we must answer is how i 1 ( t) and i2( t) di­
vide the input current i ( t). 

Applying Kirchhoff's current law to the upper node, we obtain 

i(I) 

Figure 2.21 
Simple parallel circuit. 

,--------------,______________+~ 

R2 v(t) 

i/t) / 
~-----<I>-----~ 
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and, employing Ohm's law, we have 

where 

. v(t) v(t) 
t(t) =-+-

R1 R2 

= (_!_ + _!_)v(t) 
R1 R2 

v(t) 

2.16 

2.17 

Therefore, the equivalent resistance of two resistors connected in parallel is equal to the prod­
uct of their resistances divided by their sum. Note also that this equivalent resistance RP is al­
ways less than either R1 or R2 • Hence, by connecting resistors in parallel we reduce the overall 
resistance. In the special case when R 1 = R2 , the equivalent resistance is equal to half of the 
value of the individual resistors. 

The manner in which the current i(t) from the source divides between the two branches 
is called current division and can be found from the preceding expressions. For example, 

and 

and 

v(t) = Rpi(t) 

R1R2 
R + R i(t) 

I 2 

. v(t) 
t2(t) = -

R2 

R1 . 
R1 + R2 t(t) 

2.18 

2.19 

2.20 

Equations (2.19) and (2.20) are mathematical statements of the current-division rule. 

LEARNING Hint 
The parallel resistance equation 

LEARNING Hint 
The manner in which current 
divides between two parallel 
resistors 

LEARNING by Doing 

D 2.5 Find / 1 and / 2 in 
the following circuit: 

/1 lz 

40 1n 

ANSWER 11 = 1 mA 
12 = 4 mA 
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LEARNING Example 2.14 

Given the network in Fig. 2.22a, let us find / 1, / 2 , and V 0 • 

SOLUTION First, it is important to recognize that the current 
source feeds two parallel paths . To emphasize this point, the cir­
cuit is redrawn as shown in Fig. 2.22b. Applying current divi­
sion, we obtain 

I _ [ 40k + 80k ] X _3 

I - 60k + (40k + 80k) (0.9 lO ) 

= 0.6 mA 

and 

12 = [60k + (~~~ + 80k)](0.9 X 10-3) 

= 0.3mA 

Note that the larger current flows through the smaller resistor, 
and vice versa. In addition, note that if the resistances of the two 
paths are equal, the current will divide equally between them. 
KCL is satisfied since / 1 + /2 = 0.9 mA. 

'2 40 k!l 

0.9mA 80k!1 

Figure 2.22 
Circuit used in Example 2. 14. (a) 

LEARNING Example 2.15 

A typical car stereo consists of a 2-W audio amplifier and two 
speakers represented by the diagram shown in Fig. 2.23a. The 
output circuit of the audio amplifier is in essence a 430-mA cur­
rent source and the speakers each have a resistance of 4 n. Let 
us determine the power absorbed by the speakers. 

SOLUTION The audio system can be modeled as shown in 

Figure 2.23 
Circuits used in Example 2. 15. 

Audio 
amplifier 

(a) 

The voltage V O can be derived using Ohm's law as 

V0 = 80k/2 

= 24 V 

The problem can also be approached in the following manner. The 
total resistance seen by the current source is 40 kD, i.e., 60 kD in 
parallel with the series combination of 40 kD and 80 kD as shown 
in Fig. 2.23c. The voltage across the current source is then 

V 1 = (0.9 X 10-3)40k 

= 36V 

Now that V I is known, we can apply voltage division to find V 0 • 

( 80k ) V - V 
0 - 80k + 40k I 

( 80k) - - - 36 
120k 

= 24 V 

+ 

0.9mA 60 k!1 

~40k!1 

~ 

+ 

80 k!1 

(b) (c) 

Fig. 2.23b. Since the speakers are both 4-D devices, the current 
will split evenly between them and the power absorbed by each 
speaker is 

p = 12R 

= (215 X 10-3)\4) 

= 184.9mW 

(b) 
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E2.10 Find the currents 11 and 12 and the power absorbed by the 40-kfl resistor in the network 
in Fig. E2.10. 

Figure E2. 1 O 

MULTIPLE SOURCE/RESISTOR NETWORKS Let us now extend our analy­
sis to include a multiplicity of current sources and resistors in parallel. For example, consider 
the circuit shown in Fig. 2.24a. We have assumed that the upper node is v(t) volts positive 
with respect to the lower node. Applying Kirchhoff's current law to the upper node yields 

i1(t) - i2(t) - iJ(t) + i4(t) - i5(t) - i6(t) = 0 

or 

i(/(1) 

(a) 

+ 

(b) 

The terms on the left side of the equation all represent sources that can be combined alge­
braically into a single source; that is, 

i0 (t) = i1(t) - i3(t) + i4(t) - i6(t) 

which effectively reduces the circuit in Fig. 2.24a to that in Fig. 2.24b. We could, of course, gen­
eralize this analysis to a circuit with N current sources. Using Ohm's law, the currents on the right 
side of the equation can be expressed in terms of the voltage and individual resistances so that the 
KCL equation reduces to 

i 0 (t) = (_!__ + _!__)v(t) 
R1 R2 

Now consider the circuit with N resistors in parallel, as shown in Fig. 2.25a. Applying 
Kirchhoff's current law to the upper node yields 

( 1 1 1 ) - + - + ··· + - v(t) 
R1 R2 RN 

-i;(;)- -------JiN(t) 
R2 RN 

~------+----~-----------

(a) 

2.21 

;,(<)BR, 
(b) 

ANSWER 11 = 12 mA, 
12 = -4 mA, and 
p40kfl. = 5.76 w. 

Figure 2.24 
Equivalent circuits. 

Figure 2.25 
Equivalent circuits. 

33 
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or 

2.22 

where 

2.23 

so that as far as the source is concerned, Fig. 2.25a can be reduced to an equivalent circuit, as 
shown in Fig. 2.25b. 

The current division for any branch can be calculated using Ohm's law and the preceding 
equations. For example, for the }th branch in the network of Fig. 2.25a, 

LEARNING Example 2.18 

. v(t) 
zit)= T 

j 

Using Eq. (2.22), we obtain 

which defines the current-division rule for the general case. 

2.24 

Given the circuit in Fig. 2.26a, we wish to find the current in the 
12-kO load resistor. 

Using these values we can reduce the circuit in Fig. 2.26a to that 
in Fig. 2.26b. Now, applying current division, we obtain 

SOLUTION To simplify the network in Fig. 2.26a, we add the 
current sources algebraically and combine the parallel resistors 
in the following manner: 

Figure 2.26 
Circuits used in 
Example 2. 16. 

1 1 1 1 -= - + - + ­
RP 18k 9k 12k 

RP= 4k0 

18k!l 9k!l 12k!l 

(a) 

IL= -[ 4k :\2k](l X 10-3) 

= -0.25 rnA 

4k!l 12 k!l 

(b) 

E2.11 Find the power absorbed by the 6-kO resistor in the network in Fig. E2. l l. ANSWER P = 2.61 mW. 

Figure E2. 11 
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2.5 Series and Parallel Resistor Combinations 

We have shown in our earlier developments that the equivalent resistance of N resistors in series is 

2.25 

and the equivalent resistance of N resistors in parallel is found from 

2.26 

Let us now examine some combinations of these two cases. 

LEARNING Example 2.17 

We wish to determine the resistance at terminals A-Bin the net­
work in Fig. 2.27a. 

SOLUTION Starting at the opposite end of the network from the 
terminals and combining resistors as shown in the sequence of 
circuits in Fig. 2.27, we find that the equivalent resistance at the 
terminals is 5 kO. 

2kn 2kn lOkn 2kn 2kn 
A 

R: ::wLSJ,w i12kflc1Qkfi + RAB- 1 kn 
(6 kfl in p,rnlkl 

B 
with3 kn) 

9kn 2kn 9kn 

(a) (b) 

2kn 2 kn 

R:::kili f 6kfi 
i6kilc2kfl+ 

A 

RAB - 4kn 12 kn= 9 kn+ 
( 6kfl in parnllel ( 6 k!l in parallel 

,Mt 
with 12 kn) 

B 
with 6kn) 

9kn 

( c) (d) 

2kn 

R,~ :_]3 kfi" (4 kfl in parnllel wi<h 12 kfl) 

( e) 

Figure 2.27 Simplification of a resistance network. 
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E2.12 Find the equivalent resistance at the terminals A-Bin the network in Fig. E2.12. ANSWER RAB = 22 kO. 

6k0 3k0 

18 kf1 6k0 

lOkO 

Figure E2.12 B o------~ 

E2.13 Find the equivalent resistance at the terminals A-Bin the circuit in Fig. E2.13. ANSWER RAB = 3 kO. 

4 kO 4k0 

Figure E2. 13 

R:,~ 6kOB?112]8kO 

Problem-Solving Strategy 
Simplifying Resistor Combinations 

When trying to determine the equivalent resistance at a pair of terminals of a network com­
posed of an interconnection of numerous resistors, it is recommended that the analysis begin 
at the end of the network opposite the terminals. Two or more resistors are combined to form 
a single resistor, thus simplifying the network by reducing the number of components as the 
analysis continues in a steady progression toward the terminals. The simplification involves 
the following: 

1. Resistors in series. Resistors RI and R2 are in series if they are connected in tandem and 
carry exactly the same current. They can then be combined into a single resistor Rs, 
where Rs = R1 + R2 • 

2. Resistors in parallel. Resistors R 1 and R2 are in parallel if they are connected to the 
same two nodes and have exactly the same voltage across their terminals. They can then 
be combined into a single resistor RP' where RP = R1R2/(R1 + R2). 

These two combinations are used repeatedly, as needed, to reduce the network to a single 
resistor at the pair of terminals. 

RESISTOR SPECIFICATIONS Some important parameters that are used to specify 
resistors are the resistor's value, tolerance, and power rating. The tolerance specifications for re­
sistors are typically 5% and 10%. A listing of standard resistor values with their specified 
tolerances is shown in Table 2.1. 
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Table 2.1 Standard resistor values for 5% and 10% tolerances (10% values shown in 
boldface) 

1.0 10 100 I.Ok 10k 100k l.OM lOM 
1.1 11 110 l.lk llk 110k 1.lM llM 
1.2 12 120 1.2k 12k 120k 1.2M 12M 
1.3 13 130 1.3k 13k 130k 1.3M 13M 
1.5 15 150 1.5k 15k 150k I.SM ISM 
1.6 16 160 1.6k 16k 160k 1.6M 16M 
1.8 18 180 1.8k 18k 180k 1.8M 18M 
2.0 20 200 2.0k 20k 200k 2.0M 20M 
2.2 22 220 2.2k 22k 220k 2.2M 22M 
2.4 24 240 2.4k 24k 240k 2.4M 
2.7 27 270 2.7k 27k 270k 2.7M 
3.0 30 300 3.0k 30k 300k 3.0M 
3.3 33 330 3.3k 33k 330k 3.3M 
3.6 36 360 3.6k 36k 360k 3.6M 
3.9 39 390 3.9k 39k 390k 3.9M 
4.3 43 430 4.3k 43k 430k 4.3M 
4.7 47 470 4.7k 47k 470k 4.7M 
5.1 51 510 5.lk 51k 510k 5.lM 
5.6 56 560 5.6k 56k 560k 5.6M 
6.2 62 620 6.2k 62k 620k 6.2M 
6.8 68 680 6.8k 68k 680k 6.8M 
7.5 75 750 7.5k 75k 750k 7.5M 
8.2 82 820 8.2k 82k 820k 8.2M 
9.1 91 910 9.lk 91k 910k 9.lM 

The power rating for a resistor specifies the maximum power that can be dissipated by the 
resistor. Some typical power ratings for resistors are i W, ! W, 1 W, 2 W, and so forth, up to very 
high values for high-power applications. Thus in selecting a resistor for some particular appli­
cation, one important selection criterion is the expected power dissipation. 

LEARNING Example 2.18 

37 

Given the network in Fig. 2.28, we wish to find the range for 
both the current and power dissipation in the resistor if R is a 
2.7-kfl resistor with a tolerance of 10%. 

Minimum resistor value = R( 1 - 0.1) = 0.9 R = 2.43 kfl 

Maximum resistor value = R(l + 0.1) = 1.1 R = 2.97 kfl 

Figure 2.28 
Circuit used in Example 2. 18. 

SOLUTION Using the equations I= V /R = 10 /R and 
P = V2 / R = 100/R, the minimum and maximum values for the 
resistor, current, and power are outlined next. 

Minimum current value = 10 /2970 = 3.37 mA 

Maximum current value = 10/2430 = 4.12 mA 

Minimum power value = 100/2970 = 33.7 mW 

Maximum power value = 100/ 2430 = 41.2 mW 

Thus the range for the current and power are 3.37 mA to 4.12 mA 
and 33 .7 mW to 41.2 mW, respectively. 
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LEARNING Example 2.19 

Given the network shown in Fig. 2.29: (a) find the required value 
for the resistor R; (b) use Table 2.1 to select a standard 10% toler­
ance resistor for R; ( c) using the resistor selected in (b ), determine 
the voltage across the 3.9-kfl resistor; (d) calculate the percent error 
in the voltage V 1, if the standard resistor selected in (b) is used; 
and (e) determine the power rating for this standard component. 

24 V 

Figure 2.29 
Circuit used in Example 2. 19. 

SOLUTION 
(a) Using KVL, the voltage across R is 19 V. Then using 

Ohm's law, the current in the loop is 

I = 5/3.9k = 1.282 mA 

The required value of R is then 

R = 19 /0.001282 = 14.82 kfl 

(b) As shown in Table 2.1, the nearest standard 10% tolerance 
resistor is 15 kfl. 

(c) Using the standard 15-kfl resistor, the actual current in the 
circuit is 

I = 24 / 18.9k = 1.2698 mA 

and the voltage across the 3.9-kfl resistor is 

V = JR= (0.0012698)(3.9k) = 4.952 V 

(d) The percent error involved in using the standard resistor is 

% Error = ( 4.952 - 5) /5 x 100 = -0.96% 

(e) The power absorbed by the resistor R is then 

P =IR= (0.0012698)2(!5k) = 24.2 mW 

Therefore, even a quarter-watt resistor is adequate in this 
application. 

LEARNING by Doing 

D2.6 Find the possible range of resistance for the follow­
ing resistors: 

(a) A 27-fl resistor with a tolerance of 5% 

(b) A 1.5-kfl resistor with a tolerance of 10% 

ANSWER (a) 25.65 fl to 28.35 fl, (b) 1.35 kfl to 
1.65 kfl. 

2.6 Circuits with Series-Parallel Combinations of Resistors 

At this point we have learned many techniques that are fundamental to circuit analysis. Now 
we wish to apply them and show how they can be used in concert to analyze circuits. We will 
illustrate their application through a number of examples that will be treated in some detail. 

LEARNING Example 2.20 

We wish to find all the currents and voltages labeled in the lad­
der network shown in Fig. 2.30a. 

SOLUTION To begin our analysis of the network, we start at the 
right end of the circuit and combine the resistors to determine the 
total resistance seen by the 12-V source. This will allow us to 
calculate the current I 1. Then employing KVL, KCL, Ohm's law, 
and/or voltage and current division, we will be able to calculate 
all currents and voltages in the network. 

At the right end of the circuit, the 9-kfl and 3-kfl resistors 
are in series and, thus, can be combined into one equivalent 
12-kfl resistor. This resistor is in parallel with the 4-kfl resistor, 
and their combination yields an equivalent 3-kD resistor, shown 
at the right edge of the circuit in Fig. 2.30b. In Fig. 2.30b the 
two 3-kfl resistors are in series and their combination is in par­
allel with the 6-kfl resistor. Combining all three resistances yields 
the circuit shown in Fig. 2.30c. 

Applying Kirchhoff's voltage law to the circuit in Fig. 2.30c 
yields 

l1(9k + 3k) = 12 

11 = l mA 

LEARNING by Doing 

D 2. 7 Find V O in the following network: 

2kf! 

3V 
2 kf! 2 kf! 

ANSWER V 0 = 1 V 

+ 
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11 

9kf1 f 2 3kf1 9kf1 
+ + + 

12V i,;, 6kf1 Vi, 4kf1 i,; 3kf1 

l 1 l, f 5 

(a) 

1 mA + 9V _ 

9kf1 

3V 

12V 3 kf1 

12 V 

1t2 mA 
+ 

6W 

9 kf1 l z 
+ 

3 kf1 
+ 

i,;, 6kf1 Vi, 3 kf1 

(b) 

312 V f mA fv 
+ 

3W 9kf1 

+ f mA + 

312 V 4kf1 tv 3kf1 LI/I 12V + 

~---------------------~ 
Figure 2.30 
Analysis of a ladder network. 

Va can be calculated from Ohm's law as 

V0 = f 1(3k) 

=3V 

or, using Kirchhoff's voltage law, 

V 0 = 12 - 9k/ 1 

= 12 - 9 

=3V 

(c) 

Knowing/ 1 and Va, we can now determine all currents and volt­
ages in Fig. 2.30b. Since Va = 3 V, the current / 2 can be found 
using Ohm's law as 

3 
12 = -

6k 
1 

= -mA 
2 

Then, using Kirchhoff's current law, we have 

11 = 12 + /3 

l 
1 X 10- 3 = - X 10-3 + / 3 

2 

1 
/ 3 = -mA . 2 

Note that the / 3 could also be calculated using Ohm's law: 

Va= (3k + 3k)/3 

3 
13 = 6k 

l 
= -mA 

2 

Applying Kirchhoff's voltage law to the right-hand loop in 
Fig. 2.30b yields 

(d) 

Va - Vb= 3k/3 

3 
3 - vb= 2 

3 
Vb= -V 

2 

or, since Vb is equal to the voltage drop across the 3-kD resistor, 
we could use Ohm's law as 

vb = 3k!3 

3 
= -v 

2 

We are now in a position to calculate the final unknown currents 
and voltages in Fig. 2.30a. Knowing Vb, we can calculate / 4 

using Ohm's law as 
vb = 4k/4 

3 

2 
/4 = -

4k 
3 

= -mA 
8 

LEARNING by Doing 

D 2.8 Find I O in the following circuit: 

ANSWER 10 = l A 

1 kf1 

lkf1 1 kf1 

( continued) 
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Then, from Kirchhoff's current law, we have 

/ 3 =/4+/5 

1 3 
- X 10- 3 = - X 10- 3 + / 
2 8 5 

1 
!5 = 8mA 

We could also have calculated/ 5 using the current-division rule. 
For example, 

4k 
I - I 

5 - 4k + (9k + 3k) 3 

1 
=-mA 

8 

Finally, V c can be computed as 

Ve= I 5(3k) 

3 
= - V 

8 

V c can also be found using voltage division (i.e., the voltage Vb 
will be divided between the 9-kO and 3-kO resistors). Therefore, 

V - V [ 3k J 
C - 3k + 9k b 

3 
=-V 

8 

Note that Kirchhoff's current law is satisfied at every node and 
Kirchhoff's voltage law is satisfied around every loop, as shown 
in Fig. 2.30d. 

The following example is, in essence, the reverse of the previous example in that we are given 
the current in some branch in the network and are asked to find the value of the input source. 

LEARNING Example 2.21 

Given the circuit in Fig. 2.31 and / 4 = 1 mA, let us find the 
source voltage VO • 

3 kll 15 

+ 

i,;, + 
+ 

1 k!1 

4k!1 z 

Figure 2.31 Example circuit for analysis. 

SOLUTION If 14 = 1mA, then from Ohm's law, Vb= 3 V. 
Vb can now be used to calculate/ 3 = 1 mA. Kirchhoff's current 
law applied at node y yields 

I 2 =l3+ l4 

= 1.5 mA 

Then, from Ohm's law, we have 

V 0 = (1.5 X 10-3)(2k) 

=3V 

Since Va + Vb is now known, / 5 can be obtained: 

Va+ Vb 
15 = 3k + lk 

1.5 mA 

Applying Kirchhoff's current law at node x yields 

11 = 12 + ls 

= 3mA 

Now KVL applied to any closed path containing V O will yield the 
value of this input source. For example, if the path is the outer 
loop, KVL yields 

-V0 + 6kI1 + 3kl5 + lk/5 + 4k/1 = 0 

Since / 1 = 3 mA and / 5 = 1.5 mA, 

V 0 = 36 V 

If we had selected the path containing the source and the points 
x, y, and z, we would obtain 

Once again, this equation yields 

V 0 = 36 V. 
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E2.14 Find V O in the network in Fig. E2.14. ANSWER V0 = 2 V. 

+ 

12V 

Figure E2. 14 

E2.15 Find V s in the c·r ANSWER Vs = 9 V. 

60 kfl 120 kfl 

0.lmA 
Figure E2. 15 

E2.16 Find / s in the circuit in Fig. E2. l 6. ANSWER l s = 0.3 mA. 

90 kfl 

+ 

60 kfl 30 kfl 3V 

Figure E2. 16 

Problem-Solving Strategy 
Analyzing Circuits Containing a Single Source 
and a Series-Parallel Interconnection of Resistors 

Step 1. Systematically reduce the resistive network so that the resistance seen by the source 
is represented by a single resistor. 

Step 2. Determine the source current for a voltage source or the source voltage if a current 
source is present. 

Step 3. Expand the network, retracing the simplification steps, and apply Ohm's law, KVL, 
KCL, voltage division, and current division to determine all currents and voltages 
in the network. 

2. 7 Wye ~ Delta Transformations 

To provide motivation for this topic, consider the circuit in Fig. 2.32. Note that this network has es­
sentially the same number of elements as contained in our recent examples. However, when we at­
tempt to reduce the circuit to an equivalent network containing the source V 1 and an equivalent 
resistor R, we find that nowhere is a resistor in series or parallel with another. Therefore, we cannot 
attack the problem directly using the techniques that we have learned thus far. We can, however, re­
place one portion of the network with an equivalent circuit, and this conversion will permit us, with 
ease, to reduce the combination of resistors to a single equivalent resistance. This conversion is 
called the wye-to-delta or delta-to-wye transformation. 
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Figure 2.33 

RESISTIVE CIRCUITS 

Figure 2.32 
Network used to illustrate the 
need for the wye ~ delta 
transformation. 

R6 

Consider the networks shown in Fig. 2.33. Note that the resistors in Fig. 2.33a form a~ (delta) 
and the resistors in Fig. 2.33b form a Y (wye). If both of these configurations are connected at 
only three terminals a, b, and c, it would be very advantageous if an equivalence could be 
established between them. It is, in fact, possible to relate the resistances of one network to 
those of the other such that their terminal characteristics are the same. This relationship between 
the two network configurations is called the Y-~ transformation. 

a 

a 

C b 

Delta and wye resistance networks. (a) (b) 

The transformation that relates the resistances R1, R2 , and R3 to the resistances Ra, Rb, and Re 
is derived as follows. For the two networks to be equivalent at each corresponding pair of termi­
nals, it is necessary that the resistance at the corresponding terminals be equal (e.g., the resistance 
at terminals a and b with c open-circuited must be the same for both networks). Therefore, if we 
equate the resistances for each corresponding set of terminals, we obtain the following equations: 

R2(R1 + R3) 
Rab= Ra+ Rb= 

R2 + R1 + R3 

RJ(R, + R2) 
Rbc =Rb+ Re= 

R3 + R1 + R2 

R1(R2 + R3) R = R + R = _ _.:_ __ _.:_ 
ca c a R, + R2 + R3 

Solving this set of equations for Ra, Rb, and Re yields 

R1R2 
R =----=--=---

a R, + R2 + R3 

R2R3 
Rb=------=-----=---

R1 + R2 + R3 

R1R3 
R =-----=------=----

c R, + R2 + R3 

2.27 

2.28 
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Similarly, if we solve Eq. (2.27) for R 1, R2 , and R3 , we obtain 

RaRb + RbRc + RaRc 

Rb 

RaRb + RbRc + RaRc R2 = ---------
Re 

RaRb + RbRc + RaRc 
R3=--------­

Ra 

2.29 

Equations (2.28) and (2.29) are general relationships and apply to any set of resistances con­
nected in a Y or A. For the balanced case where Ra = Rb = Re and R 1 = R2 = R3 , the equa­
tions above reduce to 

2.30 

and 

2.31 

It is important to note that it is not necessary to memorize the formulas in Eqs. (2.28) and 
(2.29). Close inspection of these equations and Fig. 2.33 illustrates a definite pattern to the re­
lationships between the two configurations. For example, the resistance connected to point a 
in the wye (i.e., Ra) is equal to the product of the two resistors in the A that are connected to 
point a divided by the sum of all the resistances in the delta. Rb and Re are determined in a 
similar manner. Similarly, there are geometrical patterns associated with the equations for cal­
culating the resistors in the delta as a function of those in the wye. 

Let us now examine the use of the delta~ wye transformation in the solution of a net­
work problem. 

LEARNING Example 2.22 

Given the network in Fig. 2.34a, let us find the source current Is· 

Is Is 
6k!1 

12 kll 

+ 12V + 12V 3k!1 

2k!1 

4k!1 
4k!1 9k!1 

(a) (b) 

Figure 2.34 Circuits used in Example 2.22. 

SOLUTION Note that none of the resistors in the circuit are in 
series or parallel. However, careful examination of the network 
indicates that the 12k-, 6k-, and 18k-ohm resistors, as well as the 
4k-, 6k-, and 9k-ohm resistors each form a delta that can be con­
verted to a wye. Furthermore, the 12k-, 6k-, and 4k-ohm resistors, 
as well as the 18k-, 6k-, and 9k-ohm resistors each form a wye 
that can be converted to a delta. Any one of these conversions will 
lead to a solution. We will perform a delta-to-wye transformation 
on the 12k-, 6k-, and 18k-ohm resistors, which leads to the circuit 
in Fig. 2.34b. The 2k- and 4k-ohm resistors, like the 3k- and 9k­
ohm resistors, are in series and their parallel combination yields 
a 4k-ohm resistor. Thus, the source current is 

ls= 12/(6k + 4k) 

= 1.2 mA. 
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2.8 Circuits with Dependent Sources 

In Chapter 1 we outlined the different kinds of dependent sources. These controlled sources are 
extremely important because they are used to model physical devices such as npn and pnp bipolar 
junction transistors (BJTs) and field-effect transistors (FETs) that are either metal-oxide-semi­
conductor field-effect transistors (MOSFETs) or insulated-gate field-effect transistors (IGFETs). 
These basic structures are, in turn, used to make analog and digital devices. A typical analog de­
vice is an operational amplifier (op-amp). Typical digital devices are random access memories 
(RAMs), read-only memories (ROMs), and microprocessors. We will now show how to solve sim­
ple one-loop and one-node circuits that contain these dependent sources. Although the following 
examples are fairly simple, they will serve to illustrate the basic concepts. 

Problem-Solving Strategy 
Circuits with Dependent Sources 

Step 1. When writing the KVL and/or KCL equations for the network, treat the dependent 
source as though it were an independent source. 

Step 2. Write the equation that specifies the relationship of the dependent source to the 
controlling parameter. 

Step 3. Solve the equations for the unknowns. Be sure that the number of linearly 
independent equations matches the number of unknowns. 

The following four examples will each illustrate one of the four types of dependent sources: 
current-controlled voltage source, current-controlled current source, voltage-controlled voltage 
source, and voltage-controlled current source. 

LEARNING Example 2.23 

Let us determine the voltage VO in the circuit in Fig. 2.35. 

,_.-.J'VV'- ---<- +'>----- --0 
+ 

12V 

Figure 2.35 Circuit used in Example 2.23. 

LEARNING Example 2.24 

Given the circuit in Fig. 2.36 containing a current-controlled cur­
rent source, let us find the voltage V 0 • 

SOLUTION Applying KCL at the top node, we obtain 

V V 
lO X 10- 3 + s + _J_ - 4/ = 0 

2k + 4k 3k · 0 

SOLUTION Applying KVL, we obtain 

-12 + 3k/ 1 - VA + 5k/ 1 = 0 

where 
VA = 200011 

and the units of the multiplier, 2000, are ohms. Solving these 
equations yields 

Then 

+ 
2k!l 

Vs 
4k!l 

Figure 2.36 Circuit used in Example 2.24. 
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where 

Vs 
I=-

0 3k 

Substituting this expression for the controlled source into the 
KCL equation yields 

V V 4V 10-2 + _§_ + _§_ - __ s = 0 
6k 3k 3k 

LEARNING Example 2.25 

The network in Fig. 2.37 contains a voltage-controlled voltage 
source. We wish to find V O in this circuit. 

J 3 k!l 
,.......___,'V"'~---<·+ -·>----<) 

Figure 2.37 
Circuit used in 
Example 2.25. 

12V 

2 v,, 
1 k!l 

SOLUTION Applying KVL to this network yields 

-12 + 3k/ + 2V0 + lk/ = 0 

LEARNING Example 2.26 

+ 

V,, 

An equivalent circuit for a FET common-source amplifier or 
BJT common-emitter amplifier can be modeled by the circuit 
shown in Fig. 2.38a. We wish to determine an expression for 
the gain of the amplifier, which is the ratio of the output voltage 
to the input voltage. 

+ 

v;(t) R5 v0 (1) 

(a) 

v;(t) 

(b) 

Figure 2.38 Example circuit containing a voltage-controlled 
current source. 

Solving this equation for Vs, we obtain 

Vs= 12 V 

The voltage VO can now be obtained using a simple voltage 
divider; that is, 

[ 4k J V - V 
0 - 2k + 4k s 

=8V 

where 

Hence, the KVL equation can be written as 

-12 + 3k/ + 2k/ + lk/ = 0 

or 

Therefore, 

I= 2mA 

V 0 = lk/ 

=2V 

SOLUTION Note that although this circuit, which contains a 
voltage-controlled current source, appears to be somewhat com­
plicated, we are actually in a position now to solve it with tech­
niques we have studied up to this point. The loop on the left, or 
input to the amplifier, is essentially detached from the output 
portion of the amplifier on the right. The voltage across R 2 is 
vg( t ), which controls the dependent current source. 

To simplify the analysis, let us replace the resistors R 3 , R 4 , 

and R5 with RL such that 

l l I l 
-=-+-+­
RL R3 R4 R5 

Then the circuit reduces to that shown in Fig. 2.38b. Applying 
Kirchhoff's voltage law to the input portion of the amplifier 
yields 

and 
vg(t) = i 1(t)R2 

Solving these equations for vg(t) yields 

R2 
Vg(t) = R1 + R2 V;(t) 

( continued) 
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From the output circuit, note that the voltage v0 ( t) is given by the 
expression 

v0 (t) = -g,,,vg(t)RL 

Combining this equation with the preceding one yields 

-g RR 
vo(t) = "' L 2 V;(t) 

R1 + R2 

Therefore, the amplifier gain, which is the ratio of the output 
voltage to the input voltage, is given by 

Reasonable values for the circuit parameters in Fig. 2.38a 
are R 1 = 100 fl , R2 = 1 kfl, g 111 = 0.04 S, R3 = 50 kfl, and 
R 4 = R 5 = 10 kfl. Hence, the gain of the amplifier under 
these conditions is 

-( 0.04) ( 4.545)( 103)(1)(103) 

( 1.1 )( 103) 

= -165.29 

Thus, the magnitude of the gain is 165.29. 

At this point it is perhaps helpful to point out again that when analyzing circuits with 
dependent sources , we first treat the dependent source as though it were an independent 
source when we write a Kirchhoff's current or voltage law equation . Once the equation is 
written, we then write the controlling equation that specifies the relationship of the depen­
dent source to the unknown variable. For instance, the first equation in Example 2.24 treats 
the dependent source like an independent source. The second equation in the example spec­
ifies the relationship of the dependent source to the voltage, which is the unknown in the 
first equation. 

E2.17 Find V O in the circuit in Fig. E2. l 7. 

6V 

Figure E2. 17 

E2.18 Find V O in the network in Fig. E2. l 8. 

Figure E2. 18 

i;, 

2000 

+ 

6 kfl 

ANSWER V O = 12 V. 

+ 

ANSWER V 0 = 8 V. 

lkfl 

+ 
t 2mA 

2 kfl ~) 
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Learning by Application 

Throughout this book we endeavor to present a wide variety of examples that demonstrate the use­
fulness of the material under discussion in a practical environment. To enhance our presentation 
of the practical aspects of circuit analysis and design, we have dedicated sections, such as this one, 
in most chapters for the specific purpose of presenting additional application-oriented examples. 

LEARNING Example 2.27 

An equivalent circuit for a transistor amplifier used in a portable 
tape player is shown in Fig. 2.39. The ideal independent source, 
V 5 , and Rs represent the magnetic head playback circuitry. The 
dependent source, R0 and R;n model the transi stor. Finally, the 
resistor RL models the load, which in this case is another tran­
sistor circuit. Let us find the voltage gain of the network. 

+ 

R;,, = 8 kfl V V/100 

Figure 2 .39 Transistor amplifier circuit model. 

SOLUTION The gain of the transistor amplifier can be derived 
as follows . The output voltage can be expressed as 

LEARNING Example 2.28 

A Wheatstone Bridge circuit is an accurate device for measuring re­
sistance. The circuit, shown in Fig. 2.40, is used to measure the un­
known resistor Rx. The center leg of the circuit contains a 
galvanometer, which is a very sensitive device that can be used to 
measure current in the microamp range. When the unknown resis­
tor is connected to the bridge, R3 is adjusted until the cmTent in the 
galvanometer is zero, at which point the bridge is balanced. In this 
balanced condition 

Figure 2.40 
The Wheatstone 
bridge circuit. 

where (R 0 I I RL) represents R0 in parallel with RL. 
From the input voltage divider, we can express V as a func­

tion of V s· 

( R ) V = V 5 '" 
R;n + Rs 

Therefore, 

V s ( R ) V -- -- '" R R 
0 - 100 R + R ( of I L) 

,n s 

Given the component values in Fig. 2.39, the voltage gain is 

Vo 
Av = - = -160 

Vs 

so that 

Rx= (~~)R3 
Engineers also use this bridge circuit to measure strain in 

solid material. For example, a system used to determine the 
weight of a truck is shown in Fig. 2.41a. The platform is sup­
ported by cylinders on which strain gauges are mounted. The 
strain gauges, which measure strain when the cylinder deflects 
under load, are connected to a Wheatstone bridge as shown in 
Fig. 2.41 b. The strain gauge has a resistance of 120 !1 under no­
load conditions and changes value under load. The variable re­
sistor in the bridge is a calibrated precision device. 

Weight is determined in the following manner. The !:i.R3 re­
quired to balance the bridge represents the t:i. strain , which when 
multiplied by the modulus of elasticity yields the t:i. stress. The 
t:i. stress multiplied by the cross-sectional area of the cylinder 
produces the t:i. load, which is used to determine weight. 

Let us determine the value of R3 under no load when the 
bridge is balanced and its value when the resistance of the strain 
gauge changes to 120.24 !1 under load. 

( continued) 
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~---- Platform 

Strain gauge 

(a) 

Figure 2.41 
Diagrams used in 
Example 2.28. (b) 

Strain gauge 
Rx 

SOLUTION Using the balance equation for the bridge, the value 
of R 3 at no load is 

R3 = (~:)Rx 
c~~) (120) 

= 109.0909 n 

Learning by Design 

Under load, the value of R 3 is 

R3 = ( 100 )(120.24) 
110 

= 109.3091 n 
Therefore, the 6.R3 is 

6.R3 = 109.3091 - 109.0909 

= o.21s2 n 

Most of this text is concerned with circuit analysis; that is, given a circuit in which all the com­
ponents are specified, analysis involves finding such things as the voltage across some element 
or the current through another. Furthermore, the solution of an analysis problem is generally 
unique. In contrast, design involves determining the circuit configuration that will meet certain 
specifications. In addition, the solution is generally not unique in tl)at there may be many ways 
to satisfy the circuit/performance specifications. It is also possible that there is no solution that 
will meet the design criteria. 

In addition to meeting certain technical specifications, designs normally must also meet other 
criteria, such as economic, environmental, and safety constraints. For example, if a circuit de­
sign that meets the technical specifications is either too expensive or unsafe, it is not viable re­
gardless of its technical merit. 

At this point, the number of elements that we can employ in circuit design is limited pri­
marily to the linear resistor and the active elements we have presented. However, as we progress 
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through the text we will introduce a number of other elements (for example, the op-amp, 
capacitor, and inductor), which will significantly enhance our design capability. 

We begin our discussion of circuit design by considering a couple of simple examples that 
demonstrate the selection of specific components to meet certain circuit specifications. 

LEARNING Example 2.29 

Similarly, 

R2 16 - 4 

120 24 

or 

R2 = 60 fl 

A circuit board within a stereo amplifier requires the use of three 
different voltages at the circuit nodes. The voltages needed are 
4 V, 16 V, and 24 V. Criteria such as weight, cost, and size dic­
tate that these voltages be supplied with a single voltage source. 
Furthermore, heat constraints dictate that the supply must dissi­
pate less than 5 W. Assuming no loading effect from the balance 
of the network, design a voltage string (multiple-resistor voltage 
divider) that will satisfy the requirements. Finally, since the total resistance is 120 fl, R 1 = 40 fl. 

SOLUTION A 24-V source can directly provide one of the volt­
ages, and the voltage divider in Fig. 2.42 can be used to generate the 
other two. The power requirement limits our choices to current less 
than 208.33 mA. The exact value we choose is somewhat arbitrary 
and, therefore, we select / = 200 mA. The total resistance is then 

24 
R1 + R 2 + R3 = - = 120 fl 

0.2 

Using voltage division, we find that 

R3 R3 

R1 + R 2 + R3 120 

or 

LEARNING Example 2.30 

4 

24 Figure 2.42 
Voltage string for 
generating intermediate 
voltages. 

24V + 

I 

+ 

4V 

+ 

16V 

The network in Fig. 2.43 is an equivalent circuit for a tran­
sistor amplifier used in a stereo preamplifier. The input cir­
cuitry, consisting of a 2-m V source in series with a 500-0 
resistor, models the output of a compact disk player. The de­
pendent source, Rin, and R0 model the transistor, which am­
plifies the signal and then sends it to the power amplifier. The 
10-kfl load resistor models the input to the power amplifier 
that actually drives the speakers. We must design a transistor 
amplifier as shown in Fig. 2.43 that will provide an overall 
gain of -200. In practice we do not actually vary the device 
parameters to achieve the desired gain; rather we select a tran­
sistor from the manufacturer's data books that will satisfy the 

required specification. The model parameters for three differ­
ent transistors are listed as follows: 

Rs= 500 0 :··--------------------------------------·: 

+ 

V5 =2mV 

Figure 2.43 Transistor amplifier circuit model. 
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Manufacturer's transistor parameter values 

Part Number 

1 

2 

3 

R;n (kfi) 

1.0 
2.0 
8.0 

50 
75 

80 

9m (mA/V) 

50 
30 

20 

Design the amplifier by choosing the transistor that pro­
duces the most accurate gain . What is the percent error of your 
choice? 

SOLUTION The output voltage can be written 

Summary 

t Ohm's law V = IR 

t The passive sign convention with Ohm's law 
The current enters the resistor terminal with the positive 
voltage reference. 

t Kirchhoff's current law (KCLJ The algebraic sum 
of the currents leaving (entering) a node is zero. 

t Kirchhoff's voltage law (KVLJ The algebraic sum 
of the voltages around any closed path is zero. 

t Solving a single-loop circuit Determine the loop 
current by applying KVL and Ohm's law. 

t Solving a single-node-pair circuit Determine the 
voltage between the pair of nodes by applying KCL and 
Ohm's law. 

t The voltage-division rule The voltage is divided 
between two series resistors in direct proportion to their 
resistance. 

Using voltage division at the input to find V, 

V = Vs( R;n ) 
R;n + Rs 

Combining these two expressions, we can solve for the gain: 

V 0 ( R;n )( ) Av = V = -gm R + R R) / RL 
S m S 

Using the parameter values for the three transistors, we find that 
Obviously, the best alternative is transistor number 2, which has 
a gain error of 

( 211.8 - 200) 
Percent error = 200 X 100% = 5.9% 

t The current-division rule The current is divided 
between two parallel resistors in reverse proportion to their 
resistance. 

t The equivalent resistance of a network of 
resistors Combine resistors in series by adding their 
resistances . Combine resistors in parallel by adding their 
conductances. The wye-to-delta and delta-to-wye 
transformations are also an aid in reducing the complexity 
of a network. 

t Short circuit Zero resistance, zero voltage; the current 
in the short is determined by the rest of the circuit. 

t Open circuit Zero conductance, zero current; the 
voltage across the open terminals is determined by the rest 
of the circuit. 
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Problems 
SECTION 2.1 

For solutions and additional help on problems marked with .,.. go to www.wiley.com/college/irwin 

2.1 Find the current I and the power supplied by the 
.,.. source in the network in Fig. P2.1. 

Figure P2.1 

2.2 In the circuit in Fig. P2.2, find the voltage across the cur­
rent source and the power absorbed by the resistor. 

3 k0 

Figure P2.2 

2.3 If the 10-kO resistor in the network in Fig. P2.3 absorbs 
2.5 mW, find V s . 

Figure P2.3 

2.4 In the network in Fig. P2.4, the power absorbed by Rx is 
5 mW. Find Rx. 

Figure P2.4 

2.5 In the network in Fig. P2.5, the power absorbed by Rx 
.,.. is 20 mW. Find Rx. 

Figure P2.5 

2.6 A model for a standard two D-cell flashlight is shown in 
Fig. P2.6. Find the power dissipated in the lamp. 

1-0 lamp 

1.5V 

Figure P2.6 

2. 7 An automobile uses two halogen headlights connected as 
shown in Fig. P2.7. Determine the power supplied by the 
battery if each headlight draws 3 A of current. 

12V 

Figure P2.7 
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2.8 Many years ago a string of Christmas tree lights was 
manufactured in the form shown in Fig. P2.8a. Today the 
lights are manufactured as shown in Fig. P2.8b. Is there a 
good reason for this change? 

~········~ 

• 
(a) 

(b) 

Figure P2.8 

SECTION 2. 2 -----------------------------

2.9 Find / 1 in the network in Fig. P2.9. 
~ 

4mA 

12mA 

2mA 

Figure P2.9 

2.10 Find / 1 and / 2 in the circuit in Fig. P2.10. 
~ 

Figure P2. 10 

2.11 Find I x and J Y in the network in Fig. P2.11. 

4mA 

12mA~ r ~ t p8mA 

Figure P2. 11 

2.12 Find Ix, l y, and Jz in the circuit in Fig. P2.12. 

Ix 12mA 

Iy 

2mA 

Figure P2. 12 

2.13 Find Ix in the circuit in Fig. P2.13. 
~ 

lmA 

Figure P2. 13 



2.14 Find I x, l y, and / z in the network in Fig. P2.14. 

Figure P2. 14 

2.15 Find/ x in the circuit in Fig. P2.15. 

Figure P2. 15 

2.16 Find / x in the network in Fig. P2. l 6. 

Figure P2. 16 

PROBLEMS 

2.17 Find Vx in the circuit in Fig. P2.17. ... 
+ v.: -

9V 

Figure P2. 17 

2.18 Find V bd in the circuit in Fig. P2. l 8. 

6V 
12 V 

Figure P2. 18 

2.19 Find V ad in the network in Fig. P2. l 9. 

a b 

- 3V + 

4V 

+ 3V _ 

e 

Figure P2. 19 

C 

C 

+ 

2V 

12V 

2.20 Find V af and V ec in the circuit in Fig. P2.20. 

a 

12V 3V 
2V 

+ 11 

g 2V + f 

Figure P2.20 

d 

+ 

3V 

53 
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2.21 Find Vac in the circuit in Fig. P2.21. 
~ 

Figure P2.21 

C 

ll,=2V 

2 .22 Find V ad and V ce in the circuit in Fig. P2.22. 

a b C 

- 1 V + + 
11, = 2V 

12 V 

+ 1 V _ 

e d 

Figure P2.22 

SECTION 2. 3 ------------------------------

2.23 Find V ab in the network in Fig. P2.23. 

---~'"'"~----b 
3 fl 

12 V 6 fl 

Figure P2.23 C 

2.24 Find V bd in the network in Fig. P2.24. 

Figure P2.24 

2.25 Find Vx in the circuit in Fig. P2.25. 
~ 

2 kfl 

24 V 

6V 

Figure P2.25 

+ 

2.26 Find Vx in the circuit in Fig. P2.26. 

24V 

Figure P2.26 

2.27 Find V x in the network in Fig. P2.27. 

+ 

Figure P2.27 

2.28 Find VI in the network in Fig. P2.28. 

+ 11, -

Figure P2.28 
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2.29 Find the power absorbed by the 30-k!l resistor in the 
~ circuit in Fig. P2.29. 

12V 

Figure P2.29 

SECTION 2. 4 ------------------------------

2.30 Find I O in the network in Fig. P2.30. 

Figure P2.30 

2.31 Find I O in the circuit in Fig. P2.3 l. 

Figure P2.31 

8k!l 

4k!l 

2.32 Find I O in the network in Fig. P2.32. 

Figure P2.32 

4k!l 

2.33 Find V0 in the circuit in Fig. P2.33. 
~ 

24mA t Sk!l 

6k!l 

Figure P2.33 

2.34 Find I O in the network in Fig. P2.34. 

3k!l 6k!l 

12mA t 
2k!l 

Figure P2.34 

8k!l 

4k!l 
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2.35 Determine IL in the circuit in Fig. P2.35. 2.36 Determine IL in the circuit in Fig. P2.36. 

+ + 

2kfl 4k!1 2kfl 3 
6kfl 

Figure P2.35 Figure P2.36 

SECTION 2. 5 ------------------------------

2.37 Find R AB in the circuit in Fig. P2.37 . 

• 
2kfl 

Figure P2.37 

2.38 Find RAB in the circuit in Fig. P2.38. 

Skfl 

12 kfl 

2kfl 2kfl 

2kfl 
2kfl 

En----->------------

Figure P2.38 

2.39 Find RAB in the network in Fig. P2.39. 

Skfl 4kfl 

4kfl 
6kfl 

3k!l 3kfl 

2kfl 

8kfl 

B o------4t-----------..w 

Figure P2.39 

2.40 Find R AB in the circuit in Fig. P2.40. 

Figure P2.40 

2.41 Find R AB in the network in Fig. P2.41. .. 

6kfl 

6kfl 

6kfl 

12kfl 

2kfl 

3n-------<..._ _______ __, 

Figure P2.41 

2.42 Find RAB in the circuit in Fig. P2.42. 

12 k!1 

ED-------------~ 

Figure P2.42 



2.43 Find RA8 in the circuit in Fig. P2.43. 

2k!1 2k!1 

2k!1 2k!1 

4k!1 4kn 

A 

2k!1 2k!1 

Figure P2.43 2 k!1 2k!1 

2.44 Find the range of resistance for the following resistors . 
(a) 1 kO with a tolerance of 5% 
(b) 470 0 with a tolerance of 2% 
(c) 22 kO with a tolerance of 10% 

2.45 Given the network in Fig. P2.45, find the possible 
~ range of values for the current and power dissipated 

by the following resistors. 
(a) 390 n with a tolerance of 1 % 
(b) 560 n with a tolerance of 2 % 

Figure P2.45 

2.46 Given the circuit in Fig. P2.46. 

(a) find the required value of R. 

(b) use Table 2.1 to select a standard 10% tolerance 
resistor for R. 

(c) calculate the actual value of/. 

(d) determine the percent error between the actual value 
of I and that shown in the circuit. 

(e) determine the power rating for the resistor R. 

l= 40 mA 

Figure P2.46 

2.47 
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The resistors R1 and R2 shown in the circuit in Fig. P2.47 
are 1 0 with a tolerance of 5% and 2 0 with a tolerance 
of 10%, respectively. 

(a) What is the nominal value of the equivalent 
resistance? 

(b) Determine the positive and negative tolerance for the 
equivalent resistance. 

Figure P2.47 

2.48 Find / 1 and V O in the circuit in Fig. P2.48. 

6V 12 k!l 3k!l 

Figure P2.48 

2.49 Find / 1 and V0 in the circuit in Fig. P2.49. 
~ 

2k!l 

12V 

Figure P2.49 

Sk!l 

6k!l 4k!l 

2.50 Find / 1 in the circuit in the Fig. P2.50. 

Figure P2.50 

2k!l 

lOkf! 

2k!l 

2kn 

+ 

v,, 

+ 

v,, 

2kf! 
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2.51 Determine V O in the network in Fig. P2.5 l. 

14 kfl 

Figure P2.51 

2 kfl 

12 kfl 

2.52 Find V O in the network in Fig. P2.52. 

2 fl 8 fl 

4 fl 4 fl 

24V 

Figure P2.52 

2.53 Find 10 in the circuit in Fig. P2.53. 
~ 

9 kfl 4 kfl 

24V 6 kfl 
6 kfl 

Figure P2.53 

2.54 Find VO in the circuit in Fig. P2.54. 

4 kfl 

2 kfl 

Figure P2.54 

2 kfl 

12 kfl 3 kfl 

+ 

3 kfl 

+ 

+ 

Vo 

2.55 Find 10 in the network in Fig. P2.55. 

1 kfl 10 kfl 

12 V 

Figure P2.55 

2.56 Find V O in the network in Fig. P2.56. 

6 kfl 

Figure P2.56 

8 kfl 

4 kfl 

2.57 Find 10 in the circuit in Fig. P2.57. 
~ 

6 kfl 

12V + 

2 kfl 

Figure P2.57 

2 kfl 

6 kfl 

+ 

4 kfl 

2.58 If V O = 4 V in the network in Fig. P2.58, find V s. 

8 kfl + 

4 kfl Ya =4 V 

Figure P2.58 
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2.59 If the power absorbed by the 4-kO resistor in the network 2.63 In the circuit in Fig. P2.63, / = 4 mA. Find V s· 

in Fig. P2.59 is 36 mW, find / 0 • 

9 kfl 

4 kfl 

Figure P2.59 

2.60 If the power absorbed by the 4-kO resistor in the circuit 
in Fig. P2.60 is 36 mW, find V s· 

Figure P2.60 

2.61 In the network in Fig. P2.61, the power absorbed by 
~ the 4-fi resistor is 100 W. Find Vs. 

Figure P2.61 

2.62 In the network in Fig. P2.62, V O = 6 V. Find/ s · 

+ 

Figure P2.62 

2 kfl 5 kfl 

6 kfl 3 kfl 

I 

Figure P2.63 

2.64 In the circuit in Fig. P2.64, / 0 = 2 mA. Find I s. 

4 kfl 

Figure P2.64 

2.65 In the network in Fig. P2.65, V 1 = 12 V. Find Vs. 
~ 

4 kfl 

6 kfl 4 kfl 3 kfl 

Figure P2.65 

2.66 In the circuit in Fig. P2.66, V O = 2 V. Find/ 5 • 

+ 

4 fl V,, 

Figure P2.66 
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2.67 In the network in Fig. P2.67, V O = 6 V. Find I s . 

9k0 

Figure P2.67 

3k0 + 1 kO 

2k0 

2.68 In the circuit in Fig. P2.68, I O = 2 A. Find I s. 

80 30 

Figure P2.68 

5k0 

40 

2.69 If / 0 = 4 mA in the circuit in Fig. P2.69, find 15 . 

~ 

1 kO 

Is t lOkO 2k0 

Figure P2.69 

2. 70 Find I O in the circuit in Fig. P2. 70. 

11 = 5mA 

12k0 12 kO 

i 9 mA 

2k0 8k0 

Figure P2. 70 

2.71 Find V O in the circuit in Fig. P2.71. 

12 kO 

+ 

4k0 
6k0 18 kO 

6k0 

42V 
Ji = 4mA 

Figure P2.71 

2.72 Find the power absorbed by the network in Fig. P2.72. 

12 kO 

Figure P2. 72 



2.73 Find I 0 in the circuit in Fig. P2.73. ... 

3 D, 

36V 12!1 

5 D, 

18 D, 

Figure P2. 73 

2.74 Find I 0 in the circuit in Fig. P2.74. 

12!1 12 il 

12V + 

Sil 14!1 

Jo 

Figure P2.74 

2. 75 Find I O in the circuit in Fig. P2. 7 5. 

12!1 

6 kil 18!1 

4!1 

12A 

Figure P2. 75 

6!1 

4!1 
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2.76 Find I O in the circuit in Fig. P2.76 . 

4!1 

4!1 

4 D, 

Figure P2. 76 

2.77 Find I 0 in the circuit in Fig. P2.77. .. 
6!1 6!1 

12 D, 

6!1 6!1 

Figure P2. 77 

2.78 Find V O in the circuit in Fig. P2.78. 

12!1 

12!1 

...-.~J\AJ'------<-- +)--+-----0 

3kil + 
200015 

12 V Skil 

Figure P2. 78 
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2.79 Find V O in the network in Fig. P2.79. 

I 

2 v,, 
12 V 2kD 

Figure P2. 79 

2.80 Find V O in the network in Fig. P2.80. 

Figure P2.80 

2.81 Find / 0 in the network in Fig. P2.81. 
~ 

6D t SA 

4D 

Figure P2.81 

+ 

v,, 

2.82 Find V 0 in the circuit in Fig. P2.82. 

2k!l 

~ t t 6k!l 4mA 
2000 + 

lk!l Vo 

Figure P2.82 

2.83 A single-stage transistor amplifier is modeled as shown 
in Fig. P2.83. Find the cun-ent in the load RL. 

+ Rs= l k!l Rb = 250 n 
Ifs = 250 mV 

Figure P2.83 

R 0 = 4 k!l 

2.84 A typical transistor amplifier is shown in Fig. P2.84. 
Find the amplifier gain G (i.e., the ratio of the output 
voltage to the input voltage). 

soon 
Vs = 250 mV 

Figure P2.84 

+ 



2.85 For the network in Fig. P2.85, choose the values of R in 

.,. and R 0 such that V0 is maximized. What is the result­
ing ratio, Vo/Vs? 

Rs Ra 

+ + 

Vs Rin Vin µVin RL Vo -

Figure P2.85 

2.86 In many amplifier applications we are concerned not 
only with voltage gain, but also with power gain. 

Power gain = AP = (power delivered to the 
load)/(power delivered by the input) 

Find the power gain for the circuit in Fig. P2.86, where 
RL = 50 kfl. 

Rs= 2k.O 

+ 

Figure P2.86 
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2.87 Find the power absorbed by the 10-kfl resistor in the cir­
cuit in Fig. P2.87. 

+ 

4k.O 4k0 
11 mA 

t 
2k.O 

i Vo 10 k.O 
V, + 

2000 V, 3k.0 

Figure P2.87 

2.88 Find the power absorbed by the 12-kfl resistor in the cir­
cuit in Fig. P2.88. 

+ 

4k.O 

6mA t 6k.O 12 k.O 

6k.O 3 k.O 

Figure P2.88 

Typical Problems Found on the FE Exam 

2FE-1 Find the power generated by the source in the 
.,. network in Fig. 2PFE-1. 

5 k.O 

120V 

Fig. 2PFE-1 

2FE-2 Find the equivalent resistance of the circuit in 
Fig. 2PFE-2 at the terminals A-B . 

A 

6k.O 

R AB -----+- 6k0 
12 kO 

4k0 
Bo-------+---.1\/\J'---+--------J 

Fig. 2PFE-2 

12 kO 

12 kO 
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2FE-3 Find the voltage V0 in the network in Fig. 2PFE-3. 
~ 

lkn 2kn 

3kn 

6kn 

12 kn 

Fig. 2PFE-3 

2FE-4 Find the current I O in the circuit in Fig. 2PFE-4. 

12 kn 

6kn 

6kn 

Fig. 2PFE-4 



Nodal and Loop 
Analysis Techniques 

In Chapter 2 we analyzed the simplest possible circuits, those containing 
only a single-node pair or a single loop. We found that these circuits can be 
completely analyzed via a single algebraic equation. In the case of the sin­
gle-node-pair circuit (i.e., one containing two nodes, one of which is a ref­
erence node), once the node voltage is known, we can calculate all the 
currents. In a single-loop circuit, once the loop current is known, we can cal­
culate all the voltages. 

In this chapter we extend our capabilities in a systematic manner so 
that we can calculate all currents and voltages in circuits that contain mul­
tiple nodes and loops. Our analyses are based primarily on two laws with 
which we are already familiar: Kirchhoff's current law (KCL) and Kirch­
hoff's voltage law (KVL). In a nodal analysis we employ KCL to determine 
the node voltages, and in a loop analysis we use KVL to determine the loop 
currents. 

We present and discuss a very important commercially available circuit 
known as the operational amplifier, or op-amp. Op-amps are used in liter­
ally thousands of applications, including such things as compact disk (CD) 
players, random access memories (RAMs), analog-to-digital (AID) and 
digital-to-analog (D/A) converters, headphone amplifiers, and electronic 
instrumentation of all types. Finally, we discuss the terminal characteristics 
of this circuit and demonstrate its use in practical applications as well as cir­
cuit design. 

3. 1 Nodal Analysis An analysis technique 
in which one node in an N-node network is 
selected as the reference node and 
Kirchhoff's current law is applied at the 
remaining N - 1 nonreference nodes. The 
resulting N - 1 linearly independent 
simultaneous equations are written in terms 
of the N - 1 unknown node voltages. The 
solution of the N - 1 linearly independent 
equations yields the N - 1 unknown node 
voltages, which in turn can be used with 
Ohm's law to find all currents in the 
circuit. . .Page 66 

3.2 Loop Analysis An analysis technique 
in which Kirchhoff's voltage law is applied to 
a network containing N independent loops. 
A loop current is assigned to each 
independent loop, and the application of 
KVL to each loop yields a set of N 
independent simultaneous equations in the 
N unknown loop currents. The solution of 
these equations yields the N unknown loop 
currents, which in turn can be used with 
Ohm's law to find all voltages in the 
circuit.. .Page 80 

3.3 Circuits with Operational 
Amplifiers The operational amplifier, or 
op-amp as it is commonly known, is an 
extremely important electronic circuit. Its 
characteristics are high input resistance, low 
output resistance, and very high gain. It is 
used in a wide range of electronic 
circuits ... Page 87 

Learning by Application .. .Page 97 

Learning by Design .. .Page 98 

Learning Check .. .Page 100 

Summary .. .Page 100 

Problems .. .Page 100 
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3.1 Nodal Analysis 

In a nodal analysis the variables in the circuit are selected to be the node voltages. The node 
voltages are defined with respect to a common point in the circuit. One node is selected as the 
reference node, and all other node voltages are defined with respect to that node. Quite often 
this node is the one to which the largest number of branches are connected. It is commonly called 
ground because it is said to be at ground-zero potential, and it sometimes represents the chas­
sis or ground line in a practical circuit. 

We will select our variables as being positive with respect to the reference node. If one or 
more of the node voltages are actually negative with respect to the reference node, the analy­
sis will indicate it. 

In order to understand the value of knowing all the node voltages in a network, we consider 
once again the network in Fig. 2.30, which is redrawn in Fig. 3.1. The voltages, V s, V a, V b, and 
V c, are all measured with respect to the bottom node, which is selected as the reference and la­
beled with the ground symbol J.. Therefore, the voltage at node 1 is V s = 12 V with respect 
to the reference node 5; the voltage at node 2 is Va = 3 V with respect to the reference node 
5, and so on. Now note carefully that once these node voltages are known, we can immediate­
ly calculate any branch current or the power supplied or absorbed by any element, since we know 
the voltage across every element in the network. For example, the voltage V1 across the left­
most 9-k!l resistor is the difference in potential between the two ends of the resistor; that is, 

V1 = Vs - Va 

= 12 - 3 

=9V 

~=i Y 
- ~,vv~-+- -v-.,,v~-----.....,Jv,J--1@ 

+ 15 9 kfl + 

Figure 3.1 
Circuit with known node 
voltages. 

12V 3kfl 

This equation is really nothing more than an application of KVL around the left-most loop; 
that is, 

In a similar manner, we find that 

and 

Then the currents in the resistors are 

/1 
V1 V s - Va 

9k 9k 

V3 Va - Vb 
/ 3 = - = 

3k 3k 

V s Vb - Ve 
ls = - = 

9k 9k 



In addition, 
V - 0 12 = _a __ 

6k 
vb - o 

/4 =---
4k 

since the reference node 5 is at zero potential. 

SECTION 3.1 NODAL ANALYSIS 

Thus, as a general rule, if we know the node voltages in a circuit, we can calculate the cur­
rent through any resistive element using Ohm's law; that is, 

as illustrated in Fig. 3.2. 

V111 - VN 
i = ----

R 
3.1 

Figure 3.2 
Circuit used to illustrate Ohm's 
law in a multiple-node network. 

In Example 2.3 we illustrated that the number of linearly independent KCL equations for 
an N-node network was N - 1. Furthermore, we found that in a two-node circuit, in which one 
node was the reference node, only one equation was required to solve for the unknown node 
voltage. What is illustrated in this simple case is true in general; that is, in an N-node circuit 
one linearly independent KCL equation is written for each of the N - 1 nonreference nodes, 
and this set of N - 1 linearly independent simultaneous equations, when solved, will yield 
the N - 1 unknown node voltages. 

It is instructive to treat nodal analysis by examining several different types of circuits and 
illustrating the salient features of each. We begin with the simplest case. However, as a prelude 
to our discussion of the details of nodal analysis, experience indicates that it is worthwhile to 
digress for a moment to ensure that the concept of node voltage is clearly understood. 

At the outset it is important to specify a reference. For example, to state that the voltage at 
node A is 12 V means nothing unless we provide the reference point; that is, the voltage at 
node A is 12 V with respect to what. The circuit in Fig. 3.3 illustrates a portion of a network 
containing three nodes, one of which is the reference node. 

CD 

Figure 3.3 
An illustration of node voltages. 
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LEAR NING Hint 
Employing the passive sign 
convention. 

NODAL AND LOOP ANALYSIS TECHNIQUES 

The voltage V1 = 4 Vis the voltage at node 1 with respect to the reference node 3. Simi­
larly, the voltage V2 = -2 Vis the voltage at node 2 with respect to node 3. In addition, how­
ever, the voltage at node 1 with respect to node 2 is +6 V and the voltage at node 2 with respect 
to node 1 is -6 V. Furthermore, since the current will flow from the node of higher potential 
to the node of lower potential, the current in R I is from top to bottom, the current in R2 is from 
left to right, and the current in R3 is from bottom to top. 

These concepts have important ramifications in our daily lives. If a man were hanging in 
midair with one hand on one line and one hand on another and the de line voltage of each line 
was exactly the same, the voltage across his heart would be zero and he would be safe. If, how­
ever, he let go of one line and let his feet touch the ground, the de line voltage would then exist 
from his hand to his foot with his heart in the middle. He would probably be dead the instant 
his foot hit the ground. 

In the town where I live, a young man tried to retrieve his parakeet that had escaped its cage 
and was outside sitting on a power line. He stood on a metal ladder and with a metal pole 
reached for the parakeet; when the metal pole touched the power line, the man was killed in­
stantly. Electric power is vital to our standard of living, but it is also very dangerous. The ma­
terial in this book does not qualify you to handle it safely. Therefore, always be extremely 
careful around electric circuits. 

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim­
ple cases and proceed in a systematic manner to those that are more challenging. Numerous ex­
amples will be the vehicle used to demonstrate each facet of this approach. Finally, at the end 
of this section, we will outline a strategy for attacking any circuit using nodal analysis . 

CIRCUITS CONTAINING ONLY INDEPENDENT CURRENT SOURCES Con­
sider the network shown in Fig. 3.4. There are three nodes, and the bottom node is selected as the 
reference node. The branch currents are assumed to flow in the directions indicated in the figures. 
If one or more of the branch currents are actually flowing in a direction opposite to that assumed, 
the analysis will simply produce a branch current that is negative. 

Applying KCL at node 1 yields 

-iA + i1 + i2 = 0 

Using Ohm's law (i = Gv) and noting that the reference node is at zero potential, we obtain 

-iA + G1(v1 - o) + Gi(v1 - v2) = O 

or 

KCL at node 2 yields 

VI V2 

CD i2 R2 i3 

R1 R3 
i1 

G) 
Figure 3.4 
A three-node circuit. -:-



SECTION 3.1 NODAL ANALYS I S 

or 

which can be expressed as 

-G2V1 + (G2 + G3)V2 = -is 

Therefore, the two equations for the two unknown node voltages v1 and v2 are 

(G1 + G2)v1 - G2v2 = iA 

-G2V1 + (G2 + G3)V2 = -is 3.2 

Note that the analysis has produced two simultaneous equations in the unknowns v1 and v2 • They 
can be solved using any convenient technique, and modern calculators and personal comput­
ers are very efficient tools for their application. 

LEARNING by Doing 

D 3.1 For the following network, write the 
KCL equations for nodes 1 and 2. 

ANSWER 

In what follows, we will demonstrate three techniques for solving linearly independent 
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathe­
matical software package. A brief refresher that illustrates the use of both Gaussian elimi­
nation and matrix analysis in the solution of these equations is provided in the 
Problem-Solving Companion for this text. The use of the MATLAB software is straightfor­
ward, and we will demonstrate its use as we encounter the application. 

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous 
equations: 

-iA + i1 + i2 = Q 

- i2 + is + i3 = 0 

The KCL equation for the third node (reference) is 

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the equa­
tions can be used to derive the remaining equation. Therefore, in this N = 3 node circuit, only 
N - I = 2 of the equations are linearly independent and required to determine the N - I = 2 
unknown node voltages. 

Note that a nodal analysis employs KCL in conjunction with Ohm's law. Once the direc­
tion of the branch currents has been assumed, then Ohm's law, as illustrated by Fig. 3.2 and ex­
pressed by Eq. (3.1), is used to express the branch currents in terms of the unknown node 
voltages. We can assume the currents to be in any direction. However, once we assume a par­
ticular direction, we must be very careful to write the currents correctly in terms of the node 
voltages using Ohm's law. 
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LEARNING Example 3.1 

Suppose that the network in Fig. 3.4 has the following parame­
ters: I A = 1 mA, R 1 = 12 kO, R2 = 6 kO, I 8 = 4 mA, and 
R3 = 6 kO. Let us determine all node voltages and branch cuITents. 

SOLUTION For purposes of illustration we will solve this prob­
lem using Gaussian elimination, matrix analysis, and MATLAB. 
Using the parameter values Eq. (3.2) becomes 

V [-1- + 2_] - V [2_] = 1 X 10-3 
I 12k 6k 2 6k 

-V [2_] + V [2_ + 2_] = -4 X 10- 3 
I 6k 2 6k 6k 

where we employ capital letters because the voltages are con­
stant. The equations can be written as 

~ - V2 = 1 X 10-3 
4k 6k 

- ~ + V2 = -4 X 10-3 
6k 3k 

Using Gaussian elimination, we solve the first equation for V I in 
terms of V2 : 

This value is then substituted into the second equation to yield 

-1 (2 ) V2 _3 - - V + 4 + - = -4 X 10 
6k 3 2 3k 

or 

This value for V 2 is now substituted back into the equation for 
V I in terms of V 2 , which yields 

= -6V 

The circuit equations can also be solved using matrix analysis. 
The general form of the matrix equation is 

GV = I 
where in this case 

l 4lk - 6~ J [V I J [ 1 X 10-3 J G = V = and I= 
1 1 ' V2 ' -4 X 10-3 

-- -
6k 3k 

The solution to the matrix equation is 

V = G-11 

and therefore, 

l:k ~~j-l[ 1 X 10-3] 
-1 l -4 X 10-3 
- -
6k 3k 

To calculate the inverse of G, we need the adjoint and the deter­
minant. The adjoint is 

3k 6k l l 1 J 
Adj G = J_ J_ 

6k 4k 

and the determinant is 

IGI = Uk)(4~) (~~)(~~) 

Therefore, 

1 

18k2 

[~] lSk2l3~ 6
1
kj[ 1 X 10-3

] 
1 1 -4 X 10- 3 

- -
6k 4k 

l3~2 - 6:2J = 18k2 

1 1 
-- -6k2 k2 

The MATLAB solution begins with the set of equations ex­
pressed in matrix form as 

G*V=I 

where the symbol * denotes the multiplication of the voltage 
vector V by the coefficient matrix G. Then once the MATLAB 
software is loaded into the PC, the coefficient matrix (G) and 
the vector V can be expressed in MATLAB notation by typing 
in the rows of the matrix or vector at the prompt >>. Use semi­
colons to separate rows and spaces to separate columns. Brack­
ets are used to denote vectors or matrices. When the matrix G and 
the vector I have been defined, then the solution equation 

V=inv(G)*I 



which is also typed in at the prompt>>, will yield the unknown 
vector V. 

The matrix equation for our circuit expressed in decimal no­
tation is 

[ 0.00025 -0.00016666] [V 1 J [ 0.001 J 
-0.00016666 0.0003333 V 2 - -0.004 

If we now input the coefficient matrix G, then the vector I and 
finally the equation V = inv(G)*I, the computer screen con­
taining these data and the solution vector V appears as follows: 

>> G = [0.00025 -0.000166666; 

-0.000166666 0.00033333] 

G = 

1 .Oe-003 * 

0.2500 -0.1667 
-0.1667 0.3333 

>> I = [O.001 ; -0.004] 

I = 
0.0010 

-0.0040 

>> V = inv(G)*I 
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V = 

-6.0001 
-15.0002 

Knowing the node voltages, we can determine all the currents 
using Ohm's law: 

V1 -6 1 
/1 = - = - = -- mA 

R1 12k 2 

- 6 - (- 15) 3 
---- -=- mA 

6k 2 
and 

V2 - 15 5 
I = - =-= - - mA 

3 6k 6k 2 

Figure 3.5 illustrates the results of all the calculations. Note that 
KCL is satisfied at every node. 

V2 =-15 V 

12 kil 6ki1 

Figure 3.5 Circuit used in Example 3. 1. 

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown in 
the figure. 

At node 1, KCL yields 

or 

At node 2, KCL yields 

R 3 i3 

Vl iz R2 Vz Rs is V3 

CT) 

RI 
iA 

R4 
is 

il i4 
Figure 3.6 

..,. A four-node circuit. 

.... 
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or 

At node 3, the equation is 

or 
V - V 

3 2+. -o la -
Rs 

-v1 _!_ - V2 _!_ + v3(_!_ + _!_) = -i8 
R3 Rs R3 Rs 

Grouping the node equations together, we obtain 

3.3 

Note that our analysis has produced three simultaneous equations in the three unknown node 
voltages v 1, v2 , and v3• The equations can also be written in matrix form as 

1 1 1 1 1 
-+-+-
R1 R2 R3 R2 R3 

[~:] UJ 1 1 1 1 1 
-+-+- 3.4 

R2 R2 R4 Rs Rs 
1 1 1 1 

-+-
R3 Rs R3 Rs 

At this point it is important that we note the symmetrical form of the equations that describe 
the two previous networks. Equations (3.2) and (3.3) exhibit the same type of symmetrical 
form. The G matrix for each network is a symmetrical matrix. This symmetry is not acciden­
tal. The node equations for networks containing only resistors and independent current sources 
can always be written in this symmetrical form. We can take advantage of this fact and learn 
to write the equations by inspection. Note in the first equation of (3.2) that the coefficient of 
v 1 is the sum of all the conductances connected to node 1 and the coefficient of v 2 is the neg­
ative of the conductances connected between node 1 and node 2. The right-hand side of the equa­
tion is the sum of the currents entering node 1 through current sources. This equation is KCL 
at node 1. In the second equation in (3.2), the coefficient of v2 is the sum of all the conductances 
connected to node 2, the coefficient of v 1 is the negative of the conductance connected between 
node 2 and node 1, and the right-hand side of the equation is the sum of the currents entering 
node 2 through current sources. This equation is KCL at node 2. Similarly, in the first equation 
in (3.3) the coefficient of v1 is the sum of the conductances connected to node 1, the coefficient of 
v2 is the negative of the conductance connected between node 1 and node 2, the coefficient of v3 

is the negative of the conductance connected between node 1 and node 3, and the right-hand 
side of the equation is the sum of the currents entering node 1 through current sources. The other 
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two equations in (3.3) are obtained in a similar manner. In general, if KCL is applied to node j 
with node voltage vj, the coefficient of vj is the sum of all the conductances connected to 
node j and the coefficients of the other node voltages ( e.g., vj - J, Vj+ 1) are the negative of the 
sum of the conductances connected directly between these nodes and node j. The right-hand 
side of the equation is equal to the sum of the currents entering the node via current sources. 
Therefore, the left-hand side of the equation represents the sum of the currents leaving node j 
and the right-hand side of the equation represents the currents entering node j. 

LEARNING Example 3.2 

Let us apply what we have just learned to write the equations for 
the network in Fig. 3.7 by inspection. Then given the following 
parameters, we will determine the node voltages using MAT­
LAB: R 1 = R2 = 2k0, R3 = R4 = 4k0, Rs= l kO, 
iA = 4 mA, andi8 = 2 mA. 

Figure 3.7 Circuit used in Example 3.2. 

SOLUTION The equations are 

V1(;1 + ;J -V2(0) - V3(;J = -iA 

-v1(0) + Vz(;3 + ;J - V3(;J = iA - iB 

-vi (J_) - v2(J_) + V3(J_ + J_ + J_) = 0 
R 1 R4 R1 R4 Rs 

which can also be written directly in matrix form as 

1 1 -+- 0 
R1 R2 R1 

[::] 1 1 1 
0 -+-

R3 R4 R4 
1 1 1 1 

-+-+-
R1 R4 R1 R4 Rs 

Both the equations and the G matrix exhibit the symmetry that 
will always be present in circuits that contain only resistors and 
current sources. 

If the component values are now used, the matrix equation 
becomes 

1 1 1 
-+- 0 
2k 2k 2k 

[::] [0001 1 1 1 
0.002 0 -+-

4k 4k 4k 
0 

1 l l 1 1 
-- -- -+-+-

2k 4k 2k 4k lk 

or 

[ 
0.001 

-0.~005 

0 

0.0005 
-0.00025 

-0.0005 J [ V1 J [-0.004 J 
-0.00025 V2 = 0.002 

0.00175 V3 0 

If we now employ these data with the MATLAB software, the com­
puter screen containing the data and the results of the MATLAB 
analysis is as shown next. 

>> G = [0.001 0 -0.0005; 0 0.0005 

-0.00025; -0.0005 -0.00025 0.00175] 

G = 

>> I 

I 

0.0010 
0 

-0.0005 

[-0.004 

-0.0040 
0.0020 

0 

>> V inv(G)*I 

V = 

-4.3636 
3.6364 

-0.7273 

0 -0.0005 
0.0005 -0.0003 

-0.0003 0.0018 

; 0.002 ; OJ 
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E3.1 Write the node equations for the circuit in Fig. E3. l. ANSWER 
1 1 

- V - - V = 4 X 10- 3 
4k I }2k 2 ' 

12 k!l 

6 k!l 6 k!l 2mA 

- 1 1 
12k V1 + 4k V2 = -2 X 10-3. 

Figure E3. 1 

E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB. 

1 k!l 

ANSWER V 1 = 5.4286 V, 
V2 = 2.000 V, V 3 = 3.1429 V. 

Figure E3.2 

2 k!l 4 k!l 
V1 -~'V\J"-----~/\f'.-_. V 3 

CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The pres­
ence of a dependent source may destroy the symmetrical form of the nodal equations that define 
the circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current 
source. The KCL equations for the nonreference nodes are 

V1 V 1 - V2 
[3i + - + = 0 

o R1 R2 

Figure 3.8 
Circuit with a dependent source. 

and 

V z - V1 + . . - 0 
R2 l o - !A -

where i0 = v2/ R3• Simplifying the equations, we obtain 

( G1 + G2)v1 - ( G2 - [3G3)v2 = 0 

-G2V1 + (G2 + G 3)V2 = iA 

or in matrix form 

[ (G1+G2) -(G2 -f3G3)][V1] [?] 
-G2 (G2 + G3) V2 ! A 

Note that the presence of the dependent source has destroyed the symmetrical nature of the 
node equation. 



LEARNING Example 3.3 

Let us determine the node voltages for the network in Fig. 3.8 
given the following parameters: 

13 = 2 

R1 = 12kfl 

SOLUTION Using these values with the equations for the net­
work yields 

1 1 
- V 1 + - V2 =0 
4k 2k 

1 1 
- - V + - V = 2 X 10-3 

6k I 2k 2 

Solving these equations using any convenient method yields 
V 1 = -24/ 5 V and V2 = 12/ 5 V. We can check these answers 
by determining the branch currents in the network and then using 
that information to test KCL at the nodes. For example, the cur­
rent from top to bottom through R3 is 

LEARNING Example 3.4 

Let us determine the set of linearly independent equations that 
when solved will yield the node voltages in the network in Fig. 3.10. 
Then given the following component values, we will compute the 
node voltages using MATLAB: R 1 = 1 kil, R2 = R 3 = 2 kil, 
R4 = 4 kil, iA = 2 mA, is = 4 mA, and ex = 2. 

+ Vx - V3 

VI ----'"'"~-=---~"'"~------~ 

Figure 3.10 R3 

Circuit containing a 
voltage-controlled 
current source. 

SOLUTION Applying KCL at each of the nonreference nodes 
yields the equations 

G3v1 + G1(v1 - v2) - iA = 0 

iA + G1(V2 - V1) + cxvx + Gz(v2 - V3) = 0 

Gi(v3 - v2) + G4 v3 - is = 0 

where vx = v2 - v3 . Simplifying these equations, we obtain 

(G1 + G3)V1 - G1V2 = iA 

-G 1v 1 + (G1 +ex+ G2)v2 - (ex+ G2)v3 = -iA 
- G2 v2 + (G2 + G4)v3 = is 
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V2 12/5 4 
l = - =-=-A 

0 R3 3k 5k 

Similarly, the current from right to left through R2 is 

12/ 5 - (-24/ 5) 6 
------= - A 

6k 5k 

All the results are shown in Fig. 3.9. Note that KCL is satisfied 
at every node. 

f=..2._A 
2 5k 

6 k.!1 

ll= i A Uill 3ill 
o Sk 

.lQ_ A 
5k 

Figure 3.9 Circuit used in Example 3.3. 

Given the component values, the equations become 

1 1 
- + ­
lk 2k 

or 

1 

k 

0 

[ 
0.0015 

-0.001 

0 

k 

1 1 -+ 2 +­
k 2k 

1 
2k 

-0.001 

2.0015 

-0.0005 

0 

-( 2 + 2~) 
1 1 -+-

2k 4k 

[ 
0.002 J 

= -0.002 

0.004 

0 J[V1] [0.002] -2.0005 V2 = -0.002 

0.00075 V 3 0.004 

The MATLAB input and output listings are shown next. 

>> G = [0.0015 -0.001 0 ; -0.001 
2.0015 -2.0005 ; 0 -0.0005 0.00075] 

G = 

0.0015 
-0.0010 

0 

-0.0010 
2.0015 

-0.0005 

0 
-2.0005 

0.0008 
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>> I = [Q. 002 ; -0.002 ; 0.004] >> V = inv(G)*I 

I = V = 
0.0020 11.9940 

-0.0020 15.9910 
0.0040 15.9940 

LEARNt~G EXTENSIQ~...J 

E3.3 Find the node voltages in the circuit in Fig. E3.3 . 

lOkfi 

Figure E3.3 

E3.4 Find the voltages V O in the network in Fig. E3.4. 

lOkfi 

ANSWER V1 = 16 V, 
V2 =-8V. 

ANSWER V 0 = 4 V. 

r---------.---<·-·>-------.----------0 

v., + 

2mA 3 kfi 6000 12 kn 12 kfi v,, 

Figure E3.4 

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is our 
practice, in our discussion of this topic we will proceed from the simplest case to those that are 
more complicated. The simplest case is that in which an independent voltage source is connected 
to the reference node. The following example illustrates this case. 

LEARNING Example 3.5 

Consider the circuit shown in Fig. 3.1 la. Let us determine all 
node voltages and branch currents. 

SOLUTION This network has three nonreference nodes with la­
beled node voltages V 1 , V 2 , and V 3 • Based on our previous dis­
cussions, we would assume that in order to find all the node 
voltages we would need to write a KCL equation at each of the 
nonreference nodes. The resulting three linearly independent si­
multaneous equations would produce the unknown node voltages. 
However, note that VI and V 3 are known quantities because an in­
dependent voltage source is connected directly between the non­
reference node and each of these nodes. Therefore, V 1 = 12 V 
and V 3 = -6 V. Furthermore, note that the current through the 
9-kfl resistor is [ 12 - (-6) J/9k = 2 mA from left to right. We 
do not know V 2 or the current in the remaining resistors. However, 

since only one node voltage is unknown, a single-node equation 
will produce it. Applying KCL to this center node yields 

V 2 - V1 + V 2 - 0 + V2 - V3 = O 
12k 6k 12k 

or 
V2 -l2 V2 V2 -(-6) 
- -- + - + =O 

12k 6k 12k 

from which we obtain 
3 

V2 = 2v 

Once all the node voltages are known, Ohm's law can be used 
to find the branch currents shown in Fig. 3 .11 b. The diagram il­
lustrates that KCL is satisfied at every node. 



Note that the presence of the voltage sources in this example 
has simplified the analysis, since two of the three linear indepen­
dent equations are V 1 = 12 V and V 3 = -6 V. We will find that 
as a general rule, any time voltage sources are present between nodes, 
the node voltage equations that describe the network will be simpler. 

9k!l 

V1 
12k!l 12 k!l 

12V 

-:-
Figure 3.11 
Circuit used in Example 3.5. (a) 

V3 
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LEARNING Hint 
Any time an independent voltage source is 
connected between the reference node and a 
nonreference node, the nonreference node 
voltage is known. 

_LA 
k 9k!l 

8 
ly 
2 ikA 

6V 12V 

ik A 

-:-

(b) 

8 
6V 

77 

E3.5 Use nodal analysis to find the current/ 0 in the network in Fig. E3.5. ANSWER 

6V 3V 

Figure E3.5 

Next let us consider the case in which an independent voltage source is connected between 
two nonreference nodes. Once again, we will use an example to illustrate the approach. 

LEARNING Example 3.8 

We wish to find the currents in the two resistors in the circuit in 
Fig. 3.12a. 

SOLUTION If we try to attack this problem in a brute force man­
ner, we immediately encounter a problem. Thus far, branch cur-

6V 

rents were either known source values or could be expressed as 
the branch voltage divided by the branch resistance. However, 
the branch current through the 6-V source is certainly not known 
and cannot be directly expressed using Ohm's law. We can, of 
course, give this current a name and write the KCL equations 

v;-,., ----+ ->---+----~ ------<+ - I---+-+---~ 

6k!l 12 k!l 

Figure 3.12 
Circuits used in Example 3.6. (a) 

-~Y. _.-
6 k!l 

(b) 

12k!l 

12 

( continued) 
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at the two nonreference nodes in terms of this current. Howev­
er, this approach is no panacea because this technique will result 
in two linearly independent simultaneous equations in terms of 
three unknowns ; that is, the two node voltages and the current in 
the voltage source. 

To solve this dilemma, we recall that N - 1 linearly inde­
pendent equations are required to determine the N - l nonref­
erence node voltages in an N-node circuit. Since our network 
has three nodes , we need two linearly independent equations. 
Now note that if somehow one of the node voltages is known , we 
immediately know the other; that is, if V I is known , then 
V 2 = V 1 - 6. If V 2 is known, then V 1 = V 2 + 6. Therefore, 
the difference in potential between the two nodes is constrained 
by the voltage source and, hence, 

This constraint equation is one of the two linearly independent 
equations needed to determine the node voltages . 

Next consider the network in Fig. 3.12b, in which the 6-V 
source is completely enclosed within the dashed surface. The 
constraint equation governs this dashed portion of the network. 
The remaining equation is obtained by applying KCL to this 

LEARNING Example 3.7 

Let us determine the current/ 0 in the network in Fig. 3.13a. 

Figure 3.13 
Example circuit with 
supernodes. 

(a) 

(b) 

dashed surface, which is commonly called a supernode. Recall 
that in Chapter 2 we demonstrated that KCL must hold for a sur­
face, and this technique eliminates the problem of dealing with 
a current through a voltage source. KCL for the supernode is 

V V 
- 6 X 10- 3 + _!_ + - 2 + 4 X 10- 3 = 0 

6k 12k 

Solving these equations yields V 1 = IO V and V 2 = 4 V and, 
hence, / 1 = 5 / 3 mA and/ 2 = 1 / 3 mA. A quick check indicates 
that KCL is satisfied at every node. 

LEARNING Hint 
The supernode technique 

t Use it when a branch between two nonreference nodes contains 
a voltage source. 

t First encircle the voltage source and the two connecting nodes 
to form the supernode. 

t Write the equation that defines the voltage relationship between 
the two nonreference nodes as a result of the presence of the 
voltage source. 

t Write the KCL equation for the supernode. 

t If the voltage source is dependent, then the controlling equation 
for the dependent source is also needed. 

SOLUTION Examining the network, we note that node volt­
ages V 2 and V 4 are known and the node voltages V I and V 3 are 
constrained by the equation 

The network is redrawn in Fig. 3.13b. 
Since we want to find the current / 0 , V 1 (in the supernode 

containing V I and V 3) is written as V 3 + 12. The KCL equation 
at the supernode is then 

V 3 + 12 - (- 6) V 3 + 12 - 12 
------- + ------ + 

2k 2k 
V3 - (- 6) 

lk 

V3 -12 V 3 
+ + - = 0 

lk 2k 

Solving the equation for V 3 yields 

I O can then be computed immediately as 

6 

7 3 
I = - = -- mA 

0 2k 7 



E3.6 Use nodal analysis to find/ 0 in the network in Fig . E3.6. 

12V 

6V 1 kfl 2 kfl 

Figure E3.6 
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ANSWER / 0 = 3.8 mA. 

4V 

CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As the fol­

lowing examples will indicate, networks containing dependent (controlled) sources are treat­
ed in the same manner as described earlier. 

LEARNING Example 3.8 

We wish to find/ 0 in the network in Fig. 3.14. 

2 kfl 

2 kfl 1 kfl 

KCL at the node labeled V 2 is 

where 

V2 - V1 4 V2 --- - - + - =0 
2k k lk 

Vo 
I = --=-

x lk 

79 

Figure 3.14 Circuit used in Example 3.8. Solving these equations yields V 2 = 8 V and V 1 = 16 V. 
Therefore 

SOLUTION Since the dependent voltage source is connected 
between the node labeled V I and the reference node, 

V 1 = 2klx 

LEARNING Example 3.9 

Let us find the current I O in the network in Fig. 3 .15 . 

Figure 3.15 
Circuit used in 
Example 3.9. 

V 

12 kfl 

6 kfl 

1 

6V 

SOLUTION This circuit contains both an independent voltage 
source and a voltage-controlled voltage source. Note that V 3 = 6 V , 
V 2 = V x, and a supernode exists between the nodes labeled V 1 

and V 2 . 

V1 - V2 
I= ---

0 2k 

= 4mA 

Applying KCL to the supernode, we obtain 

V1 - V3 V1 V2 V2 - V3 __ O --- + - + - + --=---
6k 12k 6k 12k 

where the constraint equation for the supernode is 

V1 -V 2 =2Vx 

The final equation is 
V 3 = 6 

Solving these equations, we find that 

and, hence, 

9 
V 1 = 2v 

V1 3 
/ 0 = - = - mA 

12k 8 
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E3. 7 Use nodal analysis to find/ 0 in the circuit in Fig. E3.7. 

2000 I , 
Vi . Vz 

ANSWER 

~ - - - --ii>-----<·- +>---e----~ 

2mA 
2k!l 

Figure E3.7 

Problem-Solving Strategy 
Nodal Analysis 

t Select one node in the N-node circuit as the reference node. Assume that the node volt­
age is zero and measure all node voltages with respect to this node. 

t If only independent current sources are present in the network, write the KCL equations 
at the N - 1 nonreference nodes. If dependent current sources are present, write the 
KCL equations as is done for networks with only independent current sources ; then write 
the controlling equations for the dependent sources. 

t If voltage sources are present in the network, they may be connected (1) between the ref­
erence node and a nonreference node or (2) between two nonreference nodes. In the for­
mer case, if the voltage source is an independent source, then the voltage at one of the 
nonreference nodes is known. If the source is dependent, it is treated as an independent 
source when writing the KCL equation, but an additional constraint equation is neces­
sary, as described previously. 

3.2 Loop Analysis 

In the latter case, if the source is independent, the voltage between the two nodes is 
constrained by the value of the voltage source, and an equation describing this constraint 
represents one of the N - 1 linearly independent equations required to determine the 
N-node voltages. The surface of the network described by the constraint equation (i.e., 
the source and two connecting nodes) is called a supernode. One of the remaining N - 1 
linearly independent equations is obtained by applying KCL at this supernode. If the 
voltage source is dependent, it is treated as an independent source when writing the KCL 
equations, but an additional constraint equation is necessary, as described previously. 

In a nodal analysis the unknown parameters are the node voltages, and KCL is employed to de­
termine them. In contrast to this approach, a loop analysis uses KVL to determine currents in 
the circuit. Once the currents are known, Ohm's law can be used to calculate the voltages. Re­
call that, in Chapter 2, we found that a single equation was sufficient to determine the current 
in a circuit containing a single loop. If the circuit contains N independent loops, we will show 
that N independent simultaneous equations will be required to describe the network. For now 
we will assume that the circuits are planar, which simply means that we can draw the circuit 
on a sheet of paper in a way such that no conductor crosses another conductor. 

Our approach to loop analysis will mirror that used in nodal analysis (i .e., we will begin 
with simple cases and systematically proceed to those that are more difficult) . Then at the end 
of this section we will outline a general strategy for employing loop analysis. 
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CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE SOURCES To 
begin our analysis, consider the circuit shown in Fig. 3.16. Let us also identify two loops, 
A-B-E-F-A and B-C-D-E-B. We now define a new set of current variables called loop currents, 
which can be used to find the physical currents in the circuit. Let us assume that current i 1 

flows in the first loop and that current i2 flows in the second loop. Then the branch current 
flowing from B to E through R3 is i1 - i2• The directions of the currents have been assumed. 
As was the case in the nodal analysis, if the actual currents are not in the direction indicated, 
the values calculated will be negative. 

Applying KVL to the first loop yields 

+v1 + V3 + V2 - Vs1 = 0 

KVL applied to loop 2 yields 

+Vs2 + V4 + Vs - V3 = 0 

where v1 = i1R1, v2 = i1R2, v3 = (i1 - i2) R3, v4 = i2R4, and Vs = i2Rs. 

Substituting these values into the two KVL equations produces the two simultaneous equa­
tions required to determine the two loop currents; that is, 

ii(R 1 + R2 + R3) - ii(R3) = Vs1 

-i1(R3) + ii(R3 + R4 + Rs) = -Vs2 
or in matrix form 

At this point it is important to define what is called a mesh. A mesh is a special kind of loop 
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not 
encircle any circuit elements. For example, the network in Fig. 3.16 contains two meshes defined 
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh. 
Since the majority of our analysis in this section will involve writing KVL equations for mesh­
es, we will refer to the currents as mesh currents and the analysis as a mesh analysis. 

VS2 
A C 

(£ 
+ 

V51 R3 V3 R4 V4 

R2 Rs 

F - V2 + - V5 + D Figure 3.16 
A two-loop circuit. 

LEARNING Example 3.10 

LEARNING Hint 
The equations employ the 
passive sign convention. 

LEARNING by Doing 

D 3.2 Write the mesh 
equations for the follow­
ing circuit. 

ANSWER 
-vs1 + i1R1 - Vs2 

+ (i1 - i2)R2 = 0 

i2R3 + (i2 - i1)R2 

+ i2Rs + i2R4 + Vs3 = 0 

Consider the network in Fig. 3.17a. We wish to find the current I O • 

SOLUTION We will begin the analysis by writing mesh equa­
tions. Note that there are no + and - signs on the resistors. Howev­
er, they are not needed, since we will apply Ohm's law to each 
resistive element as we write the KVL equations. The equation for 
the first mesh is 

The KVL equation for the second mesh is 

6k(I 2 - I I) + 3k/ 2 + 3 = 0 

where / 0 = I 1 - I 2 • 

Solving the two simultaneous equations yields / 1 = 5/4 mA 
and/2 = l/2mA.Therefore,/0 = 3/4mA.Allthevoltagesand 
currents in the network are shown in Fig. 3.17b. Recall from nodal 
analysis that once the node voltages were determined, we could 

( continued) 
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check our analysis using KCL at the nodes. In this case we know the 
branch currents and can use KVL around any closed path to check 
our results. For example, applying KVL to the outer loop yields 

Finally, for purposes of comparison, let us find / 0 using nodal 
analysis. The presence of the two voltage sources would indi­
cate that this is a viable approach. Applying KCL at the top cen­
ter node, we obtain 15 3 

-12 + - + - + 3 = 0 
2 2 

0 = 0 

Since we want to calculate the current I O , we could use loop 
analysis, as shown in Fig. 3.17c. Note that the loop current I 1 

passes through the center leg of the network and, therefore, 
I 1 = I O • The two loop equations in this case are 

and hence, 

9 
V = -V 

0 2 

and then 

and 
-12 + 6k( / I + / z) + 3k/ 2 + 3 = Q 

V0 3 
I = - = - mA 

0 6k 4 

Solvingtheseequationsyields/1 = 3/ 4 mAand/2 = 1/ 2 mA. 
Since the current in the 12-V source is / 1 + / 2 = 5 / 4 mA, these 
results agree with the mesh analysis. 

Note that in this case we had to solve only one equation instead 
of two. 

12V 

(a) 

6kil 

6kil 

3kil 
+ 

.2. y 
2 

f mA 

(b) 

3V 

(c) 

Figure 3.17 Circuits used in Example 3.10. 

Once again we are compelled to note the symmetrical form of the mesh equations that de­
scribe the circuit in Fig. 3.16. Note that the coefficient matrix for this circuit is symmetrical. 

Since this symmetry is generally exhibited by networks containing resistors and inde­
pendent voltage sources, we can learn to write the mesh equations by inspection. In the 
first equation, the coefficient of i1 is the sum of the resistances through which mesh current 
1 flows, and the coefficient of i2 is the negative of the sum of the resistances common to mesh 
current 1 and mesh current 2 . The right-hand side of the equation is the algebraic sum of 
the voltage sources in mesh 1. The sign of the voltage source is positive if it aids the assumed 
direction of the current flow and negative if it opposes the assumed flow. The first equation 
is KVL for mesh 1. In the second equation, the coefficient of i2 is the sum of all the 
resistances in mesh 2, the coefficient of i1 is the negative of the sum of the resistances com­
mon to mesh 1 and mesh 2, and the right-hand side of the equation is the algebraic sum of 
the voltage sources in mesh 2. In general, if we assume all of the mesh currents to be in the 
same direction ( clockwise or counterclockwise), then if KVL is applied to mesh} with mesh 
current ij, the coefficient of ij is the sum of the resistances in mesh} and the coefficients of 
the other mesh currents ( e.g., i j -I , i j+i) are the negatives of the resistances common to these 
meshes and mesh j. The right-hand side of the equation is equal to the algebraic sum of the 
voltage sources in mesh}. These voltage sources have a positive sign if they aid the current 
flow ij and a negative sign if they oppose it. 



LEARNING Example 3.11 

Let us write the mesh equations by inspection for the network 
in Fig. 3.18. Then we will use MATLAB to solve for the mesh 
currents. 

4k!1 

9k!1 3 k!1 Cl 12k!1 

Figure 3. 18 Circuit used in Example 3. 11. 

SOLUTION The three linearly independent simultaneous equa­
tions are 

( 4k + 6k)/1 - (0)/2 - ( 6k)/3 = -6 

-(0)/1 + (9k + 3k)/2 - (3k)/3 = 6 

-(6k)/1 - (3k)/2 + (3k + 6k + 12k)/3 = 0 

or in matrix form 

0 

12k 
-3k 

-6k][/1 J - 3k I 

2Ik /: 
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Note the symmetrical form of the equations. The general form of 
the matrix equation is 

RI= V 
and the solution of this matrix equation is 

I= R-1v 
The input/output data for a MATLAB solution are as follows: 

>> R = [10e3 0 -6e3; 0 12e3 -3e3; 
-6e3 -3e3 21e3J 

R = 

10000 0 -6000 
0 12000 -3000 

-6000 -3000 21000 

>> V = [ -6 ; 6 ; OJ 

V = 
-6 

6 
0 

>> I = inv(R)*V 

I = 
1.De-003 * 

-0.6757 
0.4685 

-0.1261 

CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as 
the presence of a voltage source in a network simplified the nodal analysis, the presence of a 
current source simplifies a loop analysis. The following examples illustrate the point. 

t,E'ARNING EXTENSION -- .• ~L ~" --~ ~ 

E3.8 Use mesh equations to find V O in the circuit in Fig. E3.8. ANSWER 

6V 

+ 

2k!1 6k!1 

Figure E3.8 
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LEARNING Example 3.12 

We wish to find V O in the network in Fig. 3 .19. 

+ 

2k!1 

v;, 
4k!1 

(£ 4k!1 

Figure 3. 19 Circuit used in Example 3. 12. 

SOLUTION Since the currents / 1 and / 2 pass directly through 
a current source, two of the three required equations are 

/ 1 = 4 X 10-3 

/ 2 = -2 X 10-3 

The third equation is KVL for the mesh containing the voltage 
source; that is, 

4k(/3 - 12) + 2k(I3 - 11 ) + 6k/3 - 3 = 0 

These equations yield 

and hence, 
-3 

V = 6k/3 - 3 = - V 
0 2 

What we have demonstrated in the previous example is the general approach for dealing 
with independent current sources when writing KVL equations; that is, use one loop through 
each current source. The number of "window panes" in the network tells us how many equa­
tions we need. Additional KVL equations are written to cover the remaining circuit elements 
in the network. The following example illustrates this approach. 

LEARNING Example 3.13 

Let us find IO in the network in Fig. 3.20a. 

2 k!1 2 kfl 

(a) (b) 

(c) (ct) 

2 k!1 r!i) 
2 kfl ' 

/ : 
0 - - - - - - - - -

(e) (f) 

Figure 3.20 Circuits used in Example 3.13. 

2 kfl 

LEARNING Hint 
In this case the 4-mA current source is located on the boundary 
between two meshes. Thus we will demonstrate two techniques 
for dealing with this type of situation. One is a special loop 
technique and the other is known as the supermesh approach. 

SOLUTION First, we select two loop currents / 1 and / 2 such 
that/ 1 passes directly through the 2-mA source, and/ 2 passes di­
rectly through the 4-mA source, as shown in Fig. 3.20b. There­
fore, two of our three linearly independent equations are 

/ 1 = 2 X 10- 3 

/ 2 = 4 X 10- 3 

The remaining loop current I 3 must pass through the circuit elements 
2 kfl not covered by the two previous equations and cannot, of course, 

pass through the current sources. The path for this remaining loop 
current can be obtained by open-circuiting the current sources, as 
shown in Fig. 3.20c. When all currents are labeled on the original cir­
cuit, the KVL equation for this last loop, as shown in Fig. 3.20d, is 

Solving the equations yields 

and therefore, 



Next consider the supermesh technique. In this case the three 
mesh currents are specified as shown in Fig. 3.20e, and since the 
voltage across the 4-mA current source is unknown, it is assumed 
to be V x. The mesh currents constrained by the current sources are 

11 = 2 X 10-3 

/ 2 - 13 = 4 X 10-3 

The KVL equations for meshes 2 and 3, respectively, are 

2k/2 + 2k(12 - 11) - Vx = 0 

-6 + lk13 + vx + lk(/3 - 11) = 0 

Adding the last two equations yields 

-6 + lk13 + 2k/2 + 2k(/2 - 11) + lk(/3 - 11) = 0 
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Note that the unknown voltage V x has been eliminated. The two 
constraint equations, together with this latter equation, yield the 
desired result. \ 

The purpose of the supermesh approach is to avoid intro­
ducing the unknown voltage V x. The supermesh is created by 
mentally removing the 4-mA current source, as shown in 
Fig. 3.20f. Then writing the KVL equation around the dotted 
path, which defines the supermesh, using the original mesh cur­
rents as shown in Fig. 3.20e, yields 

Note that this supermesh equation is the same as that obtained 
earlier by introducing the voltage V x-

.. :\. 'LEARNING EXTENSIONS '}.~· 

E3.9 Find V O in the network in Fig. E3.9. 

4mA 

2k!1 

Figure E3.9 

3.10 Find VO in the network in Fig. E3.10. 

4mA 

Figure E3. 10 

+ v;, -

SY 

+ 

CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits con­
taining dependent sources just as we have in the past. First, we treat the dependent source as 
though it were an independent source when writing the KVL equations. Then we write the 
controlling equation for the dependent source. The following examples illustrate the point. 

LEARNING Example 3.14 

ANSWER 

ANSWER 

The network in Fig. 3.21 contains both a current-controlled volt­
age source and a voltage-controlled current source. Let us use 
MATLAB to determine the loop currents. 

4 

k 
vx 

12 = 2k 

SOLUTION The equations for the loop currents shown in the 
figure are 

-lk1x + 2k(/3 - 11) + lk(/3 - / 4) = 0 

lk(14 - /3) + lk(14 - 12) + 12 = 0 
( continued) 
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2k!1 

(£ 

lk]x ~ Figure 3.21 
Circuit used in 
Example 3.14. 

lk!1 

where 

l x= /4-lz 

Combining these equations yields 

4 
/1 = -

k 

/1 + 12 - / 3 = 0 

lkl2 + 3k/3 - 2k/4 = 8 

lk/2 + lk/3 - 2k/4 = 12 

In matrix form the equations are 

4 

k 

0 

8 

12 

The input and output data for the MATLAB solution are as 
follows: 

>> R = [ 1 0 0 0 ; 1 1 -1 O; 
0 1000 3000 -2000; 
0 1000 1000 -2000] 

R = 

1 

1 
0 

0 

0 

1 
1000 
1000 

0 
-1 

3000 
1000 

>> V = [ 0.004; O; 8; 12] 

V = 

0.0040 
0 

8.0000 
12.0000 

>> I = inv(R)*V 

I = 

0.0040 
-0.0060 
-0.0020 
-0.0100 

0 

0 

-2000 
-2000 

As a final point, it is very important to examine the circuit carefully before selecting an 
analysis approach. One method could be much simpler than another, and a little time invested 
up front may save a lot of time in the long run. 

E3.11 Use mesh analysis to find V O in the circuit in Fig. E3. l l. ANSWER V O = 12 V. 

12 V 

2 k!1 v,, 

Figure E3. 11 
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Problem-Solving Strategy 
Loop Analysis 
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t One loop current is assigned to each independent loop in a circuit that contains N inde­
pendent loops. 

t If only independent voltage sources are present in the network, write the N linearly inde­
pendent KVL equations, one for each loop. If dependent voltage sources are present, 
write the KVL equation as is done for circuits with only independent voltage sources; 
then write the controlling equations for the dependent sources. 

t If current sources are present in the network, either of two techniques can be used. In the 
first case, one loop current is selected to pass through one of the current sources. This is 
done for each current source in the network. The remaining loop currents (N - the num­
ber of cmTent sources) are determined by open-circuiting the current sources in the net­
work and using this modified network to select them. Once all these currents are defined 
in the original network, the N loop equations can be written. The second approach is simi­
lar to the first with the exception that if two mesh currents pass through a particular cur­
rent source, a supermesh is formed around this source. The two required equations for the 
meshes containing this source are the constraint equations for the two mesh currents that 
pass through the source and the supermesh equation. As indicated earlier, if dependent 
current sources are present, the controlling equations for these sources are also necessary. 

E3.12 Use loop analysis to solve the network in Example 3.5 and compare the time and effort 
involved in the two solution techniques. 

E3.13 Use nodal analysis to solve the circuit in Example 3.12 and compare the time and effort 
involved in the two solution strategies. 

3.3 Circuits with Operational Amplifiers 

It can be argued that the operational amplifier, or op-amp as it is commonly known, is the sin­
gle most important integrated circuit for analog circuit design. It is a versatile interconnection 
of transistors and resistors that vastly expands our capabilities in circuit design, from engine 
control systems to cellular phones. Early op-amps were built with vacuum tubes, making them 
bulky and power hungry. The invention of the transistor at Bell Labs in 1947 allowed engineers 
to create op-amps that were much smaller and more efficient. Still, the op-amp itself consist­
ed of individual transistors and resistors interconnected on a printed circuit board (PCB). When 
the manufacturing process for integrated circuits (ICs) was developed around 1970, engineers 
could finally put all of the op-amps transistors and resistors onto a single IC chip. Today, it is 
common to find as many as four high quality op-amps on a single IC for as little as $0.40. A 
sample of commercial op-amps is shown in Fig. 3.22. 

Let us first examine the origin of the term operational amplifier. Originally, the op-amp 
was designed to perform mathematical operations such as addition, subtraction, differentia­
tion, and integration. By adding simple networks to the op-amp, we can create these "building 
blocks" as well as other functions such as voltage scaling, current-to-voltage conversion, and 
a myriad of more complex applications. 
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(a) 

.. 
• • \ 

(b) 

Figure 3.22 A selection of op-amps. On the left in (a) is a discrete op-amp assembled on a printed 
circuit board (PCB). On the right from top to bottom, a LM324 DIP (dual in-line pack), LMC6294 DIP, and 
MAX4240 in a S0-5 package (small outline/5 pins). A penny is shown for purposes of comparison. In (b) 
is the APEX PA03 with its lid removed showing individual transistors and resistors. 

How can we, understanding only sources and resistors, hope to comprehend the perfor­
mance of the op-amp? The answer is modeling. When all the bells and whistles are removed, 
an op-amp is simply a very good voltage amplifier. In other words, the output voltage is a 
scaled replica of the input voltage. Modern op-amps are such good amplifiers that it is easy to 
create an accurate, first-order model. As mentioned earlier, the op-amp is very popular and is 
used extensively in circuit design at all levels. We should not be surprised to find that op-amps 
are available for every application-low voltage, high voltage, micro-power, high speed, high 
current, and so forth. Fortunately, the topology of our model is independent of these issues. 

We begin our discussion with the general purpose LM324 quad (four in a pack) op-amp from 
National Semiconductor. The pinout for the LM324 is shown in Fig. 3.23 for a DIP (dual in-

r. - 0.78--.i~i 

14 13 12 11 10 9 8 
OUT 4 IN 4- IN 4+ VEE IN 3- IN 3+ OUT 3 1-------------1 l 

1 
0.3 

l ~0.1 ~ ~ 0.06 

OUTl INl- INl+ VCC IN2- IN2+ OUT2 
1 2 3 4 5 6 7 

(a) (b) 

Figure 3.23 (a) The pinout and (b) the dimensional diagram of one side of the LM324 quad op-amp. 
Note the pin pitch (distance pin-to-pin) is 0. 1 inches, a standard for DIP packages. 

0.04 

J 
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line pack) style package with the dimensions specified in inches. Recognizing there are four 
identical op-amps in the package, we will focus on amplifier 1. Pins 3 and 2 are the input pins, 
IN+ and / N _, and are called the noninverting and inverting inputs, respectively. The output is 
at pin l. The relationship that exists between the output and input voltages is 

3.5 

where all voltages are measured with respect to ground and A0 is the gain of the op-amp. From 
Eq. (3.5), we see that when IN+, increases, so will V 0 • However, if/ N _ increases, then VO will 
decrease-hence the names noninverting and inverting inputs. We mentioned earlier that op­
amps are very good voltage amplifiers. How good? Typical values for A0 are between 10,000 
and 1,000,000! 

To provide amplification, we need power. This power is obtained from de voltage sources 
connected to pins 4 and 11, called V cc and VEE, respectively. Actual values for these power sup­
plies can vary widely depending on the application, from as little as one volt up to several hun­
dred volts. Traditionally, V cc is a positive de voltage with respect to ground and VEE is either 
a negative voltage or ground itself. 

We can model the input/output relationship of the op-amp, as specified in Eq. (3.5), using 
a dependent voltage source. The currents into and out of the op-amp terminals (pins 3, 2, and 1) 
are fairly proportional to the pin voltages; that is, the relationship is essentially that specified 
by Ohm's law. Thus, we model the 1-V performance with two resistors, one at the input terminals 
(R;) and another at the output (Ro). The resultant circuit is shown in Fig. 3.24. 

Let us now examine the values for A0 , R;, and R0 • Consider the network in Fig. 3.25, where 
we have modeled the driving circuit with Vs and a resistance RTh1, and the output load with a 
resistor RL. 

Since the op-amp is designed to be an excellent voltage amplifier, let us write an equation 
for the overall gain of the circuit V outfVin· Using voltage division at the input and again at the 
output, we quickly produce the expression 

+ + 

Vin(t) R; 

in+(t) Aovin 

+ 
in_(t) 

Ro 

+ 

+ 
V 0 (t) 

-:-

+ 

Figure 3.24 
A simple model of the gain 
characteristics of an op-amp. 

Figure 3.25 

A M n" " " s I 89 

A network that depicts an op­
amp circuit. Vs and RTh1 model 
the driving circuit, while the 
load is modeled by RL. 
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Figure 3.26 
Transfer plots for the op-amps 
listed in Table 3. 1. The supply 
voltages are listed in the plot 
legends. Note that the 
LMC6492 and MAX4240 have 
rail-to-rail output voltages, and 
the LM324 and PA03 do not. 

Table 3.1 A list of commercial op-amps and their model values 

Manufacturer Part No. Ao(V/V) R;(MV) R0 (fi) Comments 

National LM324 100,000 1.0 20 General purpose, up to ±16 V sup-
plies, very inexpensive 

National LMC6492 50,000 107 150 Low voltage, rail-to-rail inputs and 

outputs 

Maxim MAX4240 20,000 45 160 Micro-power (1.8 V supply @ 10 µA), 

rail-to-rail in inputs and outputs 

Apex PA03 125,000 105 2 High voltage, ±75 V, and high output 

current capability, 30 A. That's 2 kW! 

To maximize the gain, regardless of the input resistance and load values, we make A0 very 
large and the voltage division ratios as close to unity as possible. The ideal scenario requires 
A0 be infinite, R; to be infinite, and R0 to be zero, yielding a large overall gain of A0 • Table 3.1 
shows the actual values of A0 , R;, and R0 for a sampling of commercial op-amps intended for 
very different applications. Although A 0 , R;, and R0 are not ideal, they do approximate the 
ideal conditions. 

The power supplies affect performance in two ways. First, each op-amp has minimum and 
maximum supply ranges, sometimes called rail-to-rail (a trademark of Motorola Corporation) 
over which the op-amp is guaranteed to function. Second, for proper operation, the input and out­
put voltages are limited to no more than the supply voltages (Op-amps are available that have 
input and/or output voltage ranges beyond the supply rails: however, these devices constitute a 
very small percentage of the op-amp market and will not be discussed here). If the inputs and 
output can reach within a few dozen millivolts of the supplies, then the inputs and output are 
called rail-to-rail. Otherwise, the inputs/output limits are more severe-usually a volt or so away 
from the supply values. Combining the model in Fig. 3.25, the values in Table 3.1, and these 1/0 
limitations, we can produce the graphs in Fig. 3.26, which show the output-input relationship 
for each op-amp outlined in Table 3.1. From the graph we see that the LM6492 and MAX 4240 
have rail-to-rail outputs and the LM324 and PA03 do not. 
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+ 

+ + 

+ 
vout 

(a) (b) 

In order to examine the performance of the op-amp in a practical circuit, consider the net-
1 

work shown in Fig. 3.27a called a unity-gain buffer. Note that the op-amp schematic symbol 
includes the power supplies. Employing the model in Fig. 3.25 yields the circuit in Fig. 3.27b, 
containing just resistors and dependent sources, which we can easily analyze. The loop equa­
tions for the network are 

Vout =!Ro + AoV in 

Vin = IR; 

Solving for the gain, V 0 u,/ Vs, we find 

For R0 << R;, we have 

And, if A0 is indeed >> 1, 

Vout 

Vs 

1 

v out --~---
1 

1 + ­
Ao 

V out -~ 1 
Vs 

Thus, the origin of the name, unity gain buffer, should be apparent. Table 3.2 shows the ac­
tual gain values for Vs = 1 V using the op-amps listed in Table 3 .1. Note how close the gain 
is to unity and how small the input voltage and current are. These results lead us to simplify 

Table 3.2 Unity gain buffer performance for the op-amps listed in Table 3.1 

Op-Amp Buffer Gain V;n (µV) I (pA) 

LM324 0.999990 9.9999 9.9998 

LMC6492 0.999980 19.999 1.9999 X 10-6 

MAX4240 0.999950 49.998 1.1111 
PAOS 0.999992 7.9999 7.9999 X 10- 5 

Figure 3.27 
Circuit (a) and model (b) for the 
unity gain buffer. 
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Table 3.3 Consequences of the ideal op-amp model 
on input terminal IN values 

Model Assumption Terminal Result 

Input voltage ~ 0 V 
Input current ~ 0 A 

the op-amp in Fig. 3.24 significantly. Hence, we introduce the ideal op-amp model, where A0 

and R; are infinite and R0 is zero. This selection of parameter values produces two important 
results for analyzing op-amp circuits, which are listed in Table 3.3. 

From Table 3.3 we find that the ideal model for the op-amp is reduced to that shown in 
Fig. 3.28. The important characteristics of the model are as follows: (1) Since R; is ex­
tremely large, the input currents to the op-amp are approximately zero (i.e., i+ ~ i_ ~ 0); 
and (2) if the output voltage is to remain bounded, then as the gain becomes very large and 
approaches infinity, the voltage across the input terminals must simultaneously become in­
finitesimally small so that as A -+ oo, V+ - v_ -+ 0 (i.e., V+ - v_ = 0 or V+ = v_). The 
difference between these input voltages is often called the error signal for the op-amp 
(i.e., V+ - V _ = Ve) · 

Figure 3.28 
Ideal model for an 
operational amplifier. 
Model parameters: 
i+ =i_=O, V+=V_. 

The ground terminal J. shown on the op-amp is necessary for signal current return, and it 
guarantees that Kirchhoffs current law is satisfied at both the op-amp and the ground node in 
the circuit. 

In summary, then, our ideal model for the op-amp is simply stated by the following conditions: 

i+ = i_ = 0 

V+ = V_ 

3.6 

These simple conditions are extremely important because they form the basis of our analysis 
of op-amp circuits. 
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Let us now use the ideal model to re-examine the unity gain buffer, redrawn again in 
Fig. 3.29, where the input voltage and currents are shown as zero. Given that Vin = V+ - v_ 
is zero, the voltage at both op-amp inputs is Vs· Since the inverting input is physically connected 
to the output, V out is also V .,----therefore, unity gain! 

+ 
ov + 

Vs + 
+ Vout 

Vs Figure 3.29 
As ideal op-amp 

% % 
configured as a unity 

7 gain buffer. 

An obvious question at this point is this: If v 0 = Vs , why not just connect Vs to v 0 via two 
parallel connection wires; why do we need to place an op-amp between them? The answer to 
this question is fundamental and provides us with some insight that will aid us in circuit anal­
ysis and design. 

Consider the circuit shown in Fig. 3.30a. In this case v0 is not equal to Vs because of the 
voltage drop across Rs: 

v0 = Vs - iRs 

However, in Fig. 3.30b, the input current to the op-amp is zero and, therefore, Vs appears at the op­
amp input. Since the gain of the op-amp configuration is 1, v0 = Vs , In Fig. 3.30a the resistive net-

+ 

~-------<1-----< network 

(a) 

+ 

~----------0---; Resistive 
network 

(b) 

work's interaction with the source caused the voltage v0 to be less than Vs. In other words, the re­
sistive network loads the source voltage. However, in Fig. 3.30b the op-amp isolates the source from 
the resistive network, and therefore the voltage follower is referred to as a buffer amplifier because 
it can be used to isolate one circuit from another. The energy supplied to the resistive network in 
the first case must come from the source Vs, whereas in the second case it comes from the power 
supplies that supply the amplifier, and little or no energy is drawn from Vs, 

As a general rule, when analyzing op-amp circuits we write nodal equations at the op-amp 
input terminals, using the ideal op-amp model conditions. The following example demonstrates 
the simplicity of this approach. 

Figure 3.30 
Illustration of the isolation 
capability of a voltage follower. 



CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES 

LEARNING Example 3.15 

Let us determine the gain of the basic inverting op-amp config­
uration shown in Fig. 3.31. 

Figure 3.31 
The basic inverting gain 
stage. -:-

+ 

-:-

SOLUTION Using the ideal op-amp model conditions, we see 
that V+ = 0 and, therefore v_ = 0. If we now write a node equa­
tion at the negative terminal of the op-amp, we obtain 

LEARNING Example 3.16 

Consider the op,amp circuit shown in Fig. 3.32. Let us deter­
mine an expression for the output voltage. 

+ 

+ 

Vo 

Figure 3.32 Differential amplifier operational amplifier circuit. 

SOLUTION The node equation at the inverting terminal is 

Vi - V_ V 0 - V _ 
---+ =L 

R1 R2 

At the noninverting terminal KCL yields 

LEARNING Example 3.17 

The circuit shown in Fig. 3.33a is a precision differential voltage­
gain device. It is used to provide a single-ended input for an ana­
log-to-digital converter. We wish to derive an expression for the 
output of the circuit in terms of the two inputs . 

V - 0 V - 0 _s __ + _o __ = O 
Ri R 2 

or 

Vo R 2 

Vs R1 

Note that the gain is a simple resistor ratio. This fact makes the 
amplifier very versatile in that we can control the gain accurately 
and alter its value by changing only one resistor. Also, the gain is 
essentially independent of op-amp parameters. Since the precise 
values of A, R;, and R0 are sensitive to such factors as temperature, 
radiation, and age, their elimination results in a gain that is stable 
regardless of the immediate environment. Since it is much easier 
to employ the ideal op-amp model rather than the nonideal model, 
unless otherwise stated we will use the ideal op-amp assumptions 
to analyze circuits that contain operational amplifiers. 

However, i+ = L = 0 and V+ = v_. Substituting these values 
into the two preceding equations yields 

Vi - V _ V 0 - V _ 
--- + =O 

R1 R 2 

and 
v2 - v_ v_ 

R3 R 4 

Solving these two equations for v0 results in the expression 

V = R2 ( 1 + ~) R 4 V 2 - R 2 V1 
0 Ri R 2 R 3 + R 4 R1 

Note that if R 4 = R 2 and R 3 = R 1, the expression reduces to 

V 0 = R2 (v2 -vi) 
Ri 

Therefore, this op-amp can be employed to subtract two input 
voltages. 

SOLUTION To accomplish this , we draw the equivalent cir­
cuit shown in Fig. 3 .33b. Recall that the voltage across the 
input terminals of the op-amp is approximately zero and the 
currents into the op-amp input terminals are approximately 
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zero. Note that we can write node equations for node volt­
ages v 1 and v2 in terms of v 0 and Va . Since we are interested 
in an expression for v O in terms of the voltages v I and v2 , we 
simply eliminate the v 0 terms from the two node equations . 
The node equations are 

Combining the two equations to eliminate V a , and then writing 
V 0 in terms of v 1 and v2 , yields 

E3.14 Find / 0 in the network in Fig. E3. l 4. 

Vo 

12 kfl 

12 V + 

2 kfl 

Figure E3. 14 7 

E3.15 Determine the gain of the op-amp circuit in Fig. E3.15 . 

+ 

Figure E3. 15 
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VJ Vo 

Vo 

R2 

R z 

V I ii = 0 
VI 

R1 
R1 

V2 
Va R e 

Va R e 

R1 
RI 

i2 = 0 
Vl 

Vz 

R 2 
R 2 

7 7 

(a) (b) 

Figure 3.33 Instrumentation amplifier circuit. 

ANSWER l o = 8.4 mA. 

10 kfl 

lo 

ANSWER 

+ 
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E3.16 Determine both the gain and the output voltage of the op-amp configuration shown in ANSWER v0 = 0.101 V, 
Fig. E3.16. gain = 101. 

1 mV 

Figure E3. 16 

Figure 3.34 
(a) An ideal comparator and 
(b) its transfer curve. 

+ 

JOO k!l 

lkfl 

COMPARATORS A comparator, a variant of the op-amp, is designed to compare the 
noninverting and inverting input voltages. As shown in Fig. 3.34, when the noninverting 
input voltage is greater, the output goes as high as possible, at or near V cc· On the other 
hand, if the inverting input voltage is greater, the output goes as low as possible, at or near 
VEE· Of course, an ideal op-amp can do the same thing, that is, swing the output voltage 
as far as possible. However, op-amps are not designed to operate with the outputs saturat­
ed; whereas comparators are. As a result, comparators are faster and less expensive than 
op-amps. 

Vee 

(a) 

~ Vcc 1---+---+---.--+--...-----1 
,:cl 
0 
> 0 1---+---+-----t--+---+----I 
:, 
0.. 

8 VEE I----J---+---1'--t---t----1 

-1.5 -1 -0.5 0 0.5 1.5 

Input voltage (V+ - V_) 

(b) 

We will present two very different quad comparators in this text, National Semiconductor's 
LM339 and Maxim's MAX917. Note that the LM339 requires a resistor, called a pull-up resis­
tor, connected between the output pin and V cc· The salient features of these products are listed 
in Table 3.4. From Table 3.4, it is easy to surmise that the LM339 is a general purpose compara­
tor whereas the MAX917 is intended for low-power applications such as hand-held products. 

A common comparator application is the zero-crossing detector, shown in Fig. 3.35a using 
a LM339 with ±5 V supplies. As seen in Fig. 3.35b, when V 5 is positive, V out should be near 
+5 V and when V 5 is negative, V out should be near -5 V. The output changes value on every 
zero crossing! 

Table 3.4 A listing of some of the features of the LM339 and MAX917 comparators 

Product 

LM339 
MAX919 

Min. Supply 

2V 
1.8 V 

Max. Supply 

36V 
5.5V 

Supply Current 

3mA 
0.8 µ,A 

Max. Output Current 

50mA 
8mA 

Typical RPuLL _ uP 

3 k(1 

NA 
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6 ~-------------, 
- Input 

+5V 
3kfl - Output 

-

-l-
- 4 1--___...---+---t~-------,ll----l-------l 

- 6 ~---------------__J 

Time 

(a) (b) 

Learning by Application 

At this point, we have a new element, the op-amp, which we can effectively employ in both ap­
plications and circuit design. This device is an extremely useful element that vastly expands our 
capability in these areas . Because of its ubiquitous nature, the addition of the op-amp to our 
repertoire of circuit elements permits us to deal with a wide spectrum of practical circuits. 
Thus, we will employ it here, and also use it throughout this text. 

LEARNING Example 3.18 

Figure 3.35 
(a) A zero-crossing detector 
and (b) the corresponding 
input/output waveforms. 

The circuit in Fig. 3.36 is an electronic ammeter. It operates as 
follows: The unknown current, I through R1 produces a voltage, 
V 1 • V I is amplified by the op-amp to produce a voltage, V O , 

which is proportional to /. The output voltage is measured with 
a simple voltmeter. We want to find the value of R2 such that 
10 V appears at V O for each milliamp of unknown current. 

The relationship between the input and output voltages is 

V 0 = v1 ( 1 + ~:) 

or, solving the equation for V of I, we obtain 

V o = R (i + R2) 
I I R1 

97 

SOLUTION Since the current into the op-amp + terminal is 
zero, the relationship between V I and / is 

Using the required ratio V 0 / I of 104 and resistor values from 
Fig. 3.36, we can find that 

Figure 3.36 
Electronic ammeter. 

V 1 = IR 1 

Unknown 
current 

R2 = 9 kf! 

+ 
Voltmeter 

Q 
+ 
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Learning by Design 

LEARNING Example 3.19 

A typical stereo system is shown in block form in Fig. 3.37a. 
The phonograph output signal is only about 2 µ, V. The stan­
dard input voltage for stereo power amplifiers is about 2 mV. 
Therefore, the phonograph signal must be amplified by a fac­
tor of 1000 before it reaches the poweramp. To accomplish this, 
a special-purpose amp, called the phono preamp, is used. Stereo 
manufacturers place them within the preamplifier cabinet, as 
shown in Fig. 3.37a. 

Let us design a phono preamp using an ideal op-amp that 
has an input resistance of at least 1 MD and a voltage gain of 
1000. All resistors must be less than 10 MD to limit noise. 

SOLUTION One possible network is shown in Fig. 3.37b. The 
input resistance requirement can be easily met with a voltage 
follower as the first stage of the amplifier. The second stage, or 
gain stage, can be a noninverting op-amp configuration. We will 
show in later chapters that the overall voltage gain is the prod­
uct of the gains of the two stages, 

To achieve a gain of 1000, we select R 1 = 1 kD and 
R2 = 999 kD. 

LEARNING Example 3.20 

Let us design a temperature sensor that operates from a 3-V sup­
ply, and has a visual display consisting of five LEDs-that is, 
light-emitting diodes. Only one LED should be on at any time, 
indicating one of the following temperature ranges: less than 65, 
65 to 70, 70 to 75, 75 to 80, and greater than 80°F. 

SOLUTION In our proposed sensor, shown in Fig. 3.38, resis­
tor Rx and a thermistor, RT (a temperature sensitive resistor), 
form a voltage divider to produce the voltage VT. 

3.6 

In the temperature range of interest, a curve fit to a particular 
commercial thermistor's R-T data yields 

RT = 57.45e-o.0221T 3.7 

with RT in kD and T in degrees Fahrenheit. From Eqs. (3.6) and 
(3.7), we see that increasing temperature causes RT to decrease 

CD player 

Tape deck 

Phonograph 

+ 

Preamp 

Phono­
preamp 

(a) 

(b) 

Power 

amp ~ 

~:~:er LJ 

+ 

Figure 3 .37 Multistage phonograph amplifier. 

and VT to increase. The voltage VT appears at the unity gain buffer 
output, where it is divided between R 1 , R2 , R3 , and R4 , yielding in­
termediate voltages V 2 , V 3 , and V 4 . All four comparators and the 
de voltage reference, V ref, are contained in the MAX919 package 
listed in Table 3.4. In this package, V ref = 1.245 V. 

Based on fundamental comparator operation, when 
VT < V ref , the output voltage of comparator C1 will be low, near 
zero volts. Since V 4 < V 3 < V 2 < VT , all the other compara­
tor output voltages will be low as well. Thus, there is no voltage 
difference across LED2 , LED3 , LED4 , or LED5 , and these LEDs 
are off. However, the voltage across LED 1 is not zero. Current 
will flow from the 3-V supply, through RLED and LED 1, into the 
output terminal of C 1, through its on-chip circuitry, out of the 
MAX 919 ground pin and back to the 3-V source, turning on 
LED 1• This is the desired display for T < 65°F. 

Then, at exactly 65°F, LED 1 should tum off and LED2 should 
tum on. This requires the output of C1 to go high, near 3 V, while 
all other comparator outputs remain low. Now, only LED2 has a 
nonzero voltage across it. This can be seen in the plots in Fig. 3.39. 
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Both display scenarios (<65° and 65°-70°) will occur properly 
if VT = V ref precisely at T = 65°F. Thus, we must find Rx such 
that VT = V ref at 65°F. From Eqs. (3.6) and (3.7), 

1.245 = 3[ Rx ] 
57.45e---00227(65) + Rx 

which yields Rx = 9.32 kfl. This is the case until T reaches 70°F, 
where the output of C2 must go high, turning offLED2 and turn­
ing on LED3 . Thus, we require V 2 = V ref at exactly T = 70°F. 
Now, V 4 < V 3 < V 2 = V ref and VT > V ref· Repeating this 
idea at T = 75 and 80°F yields the voltage division equations 

[ R2 + R3 + R4] 
V 2IT=?O = 1.245 = R,_ V TIT =?O 

Figure 3.38 
The temperature sensor 
schematic diagram. 

- VT 

1.6 - ---- Vz 

> V3 
1.5 - "'"'"""' V4 ,;, 

Q) 
bJJ 

1.4 

~-,, 
,* 

-:-

Zl = 
I-- -

where R,_ = R, + R2 + R3 + R4 • Arbitrarily selecting R,_ 
to be 100 kfl and using Eqs. (3.6) and (3.7), the required re­
sistor values are R4 = 83.11 kfl, R3 = 5.01 kfl, R2 = 5.60 kfl, 
and R1 = 6.28 kfl. 

The LEDs employed in this design have a voltage of 2 V 
when on and a desired current of 1 mA. Consider again the case 
where LED, is on; that is, the output of comparator C, is zero. 
By KVL, we have 

3 = /LEDRLED + VLED = (O.OOl)RLED + 2.0 

yielding RLED = 1 kfl. Since only one LED is on at any time, 
there is exactly one resistor, RLED, for every possible display 
scenario. 

+ 
VT VLED < 65 °P 

R1 
LED2 Vz 65-70 °P 

Rz 

V3 LED3 70- 75 °P 

R3 
LED4 

75-80 °P 

R4 

I LED5 > 80 °P 

-:- -:- -:-

,;, 

~ LED1 
fl ,~ 
0 ,, fr 

= 0 ---· -----· fl ON ---• 
] • LED2 --- --- .. -• 

> 1.3 
bJJ ,, 
·E 1.2 ~' 
,;, ,, . ,,,,,,, ... ",,,,,, 
B 1.1 

. 
,,, ,,, 

"'',. 

... 
B 
l':: 
"' 0. a 

Cz ----· 
C3 a • • • • • • • • • 

Q) 

.:': 
-i3 
Q ...................... LED4 ...... 

-~ , .. ,," 
,•' 

Q) 1.0 
,,, 

0 u C4 ,,, """"" """""' """"'' 
~ .. • •• •• LED5 

P:: 60 65 70 75 80 85 60 65 70 75 80 85 60 65 70 75 
Temperature (°F) Temperature (°F) Temperature (°F) 

(a) (b) (c) 

Figure 3.39 
Critical voltages in the temperature sensor of Fig. 3.38. Resistor string voltages (a) are compared to V,01 

to produce the comparator output voltages in (b). Resistors Rx and R1-R4 have been selected such that 
the comparator outputs change exactly at the desired temperature boundaries. The LEDs drive voltages 
(c) are such that only one LED is on at any time. 

80 85 
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Summary 

t Nodal analysis for an N-node circuit 

t Select one node in the N-node circuit as the reference node. 
Assume that the node voltage is zero and measure all node 
voltages with respect to this node. 

t If only independent current sources are present in the net­
work, write the KCL equations at the N - 1 nonreference 
nodes. If dependent current sources are present, write the 
KCL equations as is done for networks with only indepen­
dent current sources; then write the controlling equations 
for the dependent sources. 

t If voltage sources are present in the network, they may be 
connected (1) between the reference node and a nonrefer­
ence node or (2) between two nonreference nodes. In the 
former case, if the voltage source is an independent source, 
then the voltage at one of the nonreference nodes is known. 
If the source is dependent, it is treated as an independent 
source when writing the KCL equations, but an additional 
constraint equation is necessary. 

In the latter case, if the source is independent, the 
voltage between the two nodes is constrained by the value 
of the voltage source and an equation describing this con­
straint represents one of the N - 1 linearly independent 
equations required to determine the N-node voltages. The 
surface of the network described by the constraint equa­
tion (i .e. , the source and two connecting nodes) is called a 
supernode. One of the remaining N - 1 linearly indepen­
dent equations is obtained by applying KCL at this su­
pernode. If the voltage source is dependent, it is treated as 
an independent source when writing the KCL equations, 
but an additional constraint equation is necessary. 

t Loop analysis for an N-loop circuit 

t One loop current is assigned to each independent loop in a 
circuit that contains N independent loops. 

t If only independent voltage sources are present in the net­
work, write the N linearly independent KVL equations, one 
for each loop. If dependent voltage sources are present, 
write the KVL equations as is done for circuits with only 
independent voltage sources; then write the controlling 
equations for the dependent sources. 

t If current sources are present in the network, either of two 
techniques can be used. In the first case, one loop current is 
selected to pass through one of the current sources. This is 
done for each current source in the network. The remaining 
loop currents (N - the number of current sources) are de­
termined by open-circuiting the current sources in the net­
work and using this modified network to select them. Once 
all these currents are defined in the original network, the 
N-loop equations can be written . The second approach is 
similar to the first with the exception that if two mesh cur­
rents pass through a particular current source, a supermesh 
is formed around this source. The two required equations 
for the meshes containing this source are the constraint 
equations for the two mesh currents that pass through the 
source and the supermesh equation. If dependent current 
sources are present, the controlling equations for these 
sources are also necessary. 

t Ideal op-amp model For an ideal op-amp, 
ix = i_ = 0 and vx = v_. Both nodal and loop analysis are 
useful in solving circuits containing operational amplifiers. 

Problems For solutions and additional help on problems marked with .,. go to www.wiley.com/college/irwin 

SE CT ION 3 .1 -----------------------------

3.1 Find / 0 in the circuit in Fig. P3.1 using nodal analysis . 
... 

12k!l 6k!l 3k!l 

Figure P3.1 

3.2 Find / 0 in the circuit in Fig. P3.2 using nodal analysis. 

5 k!l 2k!l 

Figure P3.2 



3.3 Find V 2 in the circuit in Fig. P3 .3 using nodal analysis. 

8k!1 

2k!1 6k!1 6mA 

Figure P3.3 

3.4 Use nodal analysis to find V O in the circuit in Fig. P3.4. 

4k!1 

3k!1 4k!1 

Figure P3.4 

3.5 Find / 0 in the circuit in Fig. P3.5 using nodal analysis. 
~ 

3k!1 

9V 

Figure P3.5 

2k!1 

6k!1 2k!1 2k!1 

3.6 Use nodal analysis to find both V I and V O in the circuit in 
Fig. P3.6. 

Figure P3.6 

6k!1 
3k!1 

2k!1 
12k!1 

+ 

3. 7 Find V I and V 2 in the circuit in Fig. P3.7 using nodal 
analysis. Then solve the problem using MATLAB and 
compare your answers. 
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4mA 

+ 4k!1 + 

10k!1 

Figure P3.7 

3.8 Find I O in the network in Fig. P3.8 using nodal analysis. 

12k!1 

12V 

Figure P3.8 

4k!1 

6k!1 6V 

3.9 Find V0 in the network in Fig. P3.9 using nodal analysis. 
~ 

12V 6V 

Figure P3.9 

3.10 Use nodal analysis to find/ 0 and/ 1 in the network in 
Fig. P3.10. 

Figure P3. 10 

6k!1 

3k!1 

4k!1 12V 2k!1 
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3.11 Find I O in the circuit in Fig. P3. l l using nodal analysis. 

Figure P3. 11 

12 kfl 

12 kfl 

Jo 

12 kfl 

3.12 Use nodal analysis to find V O in the network in 
Fig. P3.12. Then solve the problem using MATLAB and 
compare your answers. 

4 kfl 2 kfl 

6V 2 kfl 
2mA 

Figure P3. 12 

3.13 Find / 0 in the network in Fig. P3.13. 
~ 

6V 
6kl1 

Figure P3. 13 

3 mA 
4k!1 

3.14 Find V0 in the network in Fig. P3.14. 

4 kfl 

Figure P3. 14 

3kl1 

+ 

2 kfl Vo 

6kl1 

+ 

4 kfl i,;, 

3.15 Use nodal analysis to find V O in the circuit in Fig. P3.15. 

6 kfl 2 kfl 

6V + + 3V 

1 kfl 

Figure P3. 15 

3.16 Write the node equations for the circuit in Fig. P3.16 in ma­
trix form, and find all the node voltages using MATLAB. 

~----,-+--1----~ 
3mA 

1 kfl 3 kfl 
V, -~,v,,---10-----,J'V"'-- V3 

Figure P3. 16 

3.17 Find / 1 in the network in Fig. P3.17. 
~ 

3V 

3 kfl 

Figure P3. 17 

4 kfl 

6 kfl 



3.18 Find 10 in the network in Fig. P3.18. 

12 kD 2 kD 

Figure P3. 18 

3.19 Find / 0 in the circuit in Fig. P3.19. 

4 kD 4 kD 

6V + 6 kD 

Figure P3. 19 

3.20 Find/ 0 in the network in Fig. P3.20 using nodal analysis. 

4 kD 2 mA 

2kD 

/ (/ 

Figure P3.20 

3.21 Use nodal analysis to find V0 in the network in 
._ Fig. P3.21. Then solve this problem using MATLAB 

and compare your answers. 

12 V 1 kfl 

+ 

v;, 

Figure P3.21 
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3.22 Find V O in the circuit in Fig. P3.22 using nodal analysis. 

~----1 + - t-----~ 

12V 

2k!1 

Figure P3.22 

3.23 Use nodal analysis to find / 0 in the network in 
Fig. P3.23. 

3k!1 

Figure P3.23 

+ 

1 kfl 

3.24 Find IO in the network in Fig. P3.24 using nodal analysis . 

1 kD 

Figure P3.24 
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3.25 Use nodal analysis to find V0 in the circuit in Fig. P3.25. 3.29 Find V0 in the network in Fig. P3.29 using nodal analysis. 
~ ~ 

9mA 
~-----t-1----~ 

6mA 

Figure P3.25 

3.26 Find V O in the circuit in Fig. P3.26 using nodal analysis. 

12 k.O + 12 k.O 

+ 

12V 

Figure P3.26 

3.27 Find VO in the network in Fig. P3.27 using nodal analysis. 

Figure P3.27 

3.28 Find VO in the network in Fig. P3.28 using nodal analysis. 

Figure P3.28 

+ 

6V 2kfl 

Figure P3.29 

3.30 Find/ 0 in the circuit in Fig. P3.30 using nodal analysis. 

4 k.O 

Skfl 4kfl 

l o 

Figure P3.30 

6 kn 

6 k.O 

3.31 Find V O in the circuit in Fig. P3.31 using nodal analysis. 

Vo 
2 

Figure P3.31 

12V 

2kfl 

+ 

1 k.O 

3.32 Use nodal analysis to find V O in the network in Fig. P3.32. 

Figure P3.32 

12V 

1 k.O 1 k.O 

+ 

1 kfl 



3.33 Find V0 in the circuit in Fig. P3.33 using nodal analy-
~ sis. Then solve the problem using MATLAB and 

compare your answers. 

Figure P3.33 

12V 

1 k!l 1 k!l 

3.34 Find I O in the network in Fig. P3.34. 

-~1vv·~---<+ -·>------~ 
1 k!l 

1 k!l 

Figure P3.34 

4000 Ix 

2k!1 4k!1 

+ 

3.35 Find V O in the circuit in Fig. P3.35 using nodal analysis. 

2klx 
.------<-+·}----~ 

1 k!l 1 k!l 

+ 

1 k!l v,, 

Figure P3.35 

3.36 Find I O in the circuit in Fig. P3.36 using nodal analysis. 

lOk!l lOk!l 

Figure P3.36 
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3.37 Find V0 in the network in Fig. P3.37 using nodal 
~ analysis. 

+ 

lOk!l 10 k!1 v,, 

Figure P3.37 

3.38 Use nodal analysis to find V O in the network in 
Fig. P3.38. In addition, determine all branch currents 
and check KCL at every node. 

+ 

6V 

Figure P3.38 

3.39 Use nodal analysis to find V O in the circuit in Fig. P3.39 . 

.------<:- +· >-----

1000 Jx 

v,, 6 k!l 

Figure P3.39 
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3.40 Use nodal analysis to find V O in the circuit in Fig. P3.40. 

Figure. P3.40 

2 Y,; 
1000 lk!1 

+ 

v,, 

3.41 Use MATLAB to find the node voltages in the net-
... work in Fig. P3.41. 

Figure P3.41 

SE CT ION 3. 2 ------------------------------

3.42 Use mesh equations to find V O in the circuit in Fig. P3.42. 

12V 4kfl 

Figure P3.42 

3.43 Find V O in the network in Fig. P3.43 using mesh 
. equations. 

2kD 

Figure P3.43 

+ 

v,, 

+ 

v,, 

3.44 Use mesh analysis to find V O in the circuit in Fig. P3.44. 

4k!1 4k!1 + 

2k!1 2 k!1 v,, 

Figure P3.44 

3.45 Use mesh analysis to find V0 in the network in 
... Fig. P3.45. 

3k!1 

12V 

Figure P3.45 

2k!1 

6k!1 

+ 



3.46 Use loop analysis to find V O in the circuit in Fig. P3.46. 

+ 

12V 2kfl 

Figure P3.46 

3.47 Use loop analysis to find IO in the circuit in Fig. P3.47. 

2mA 2kfl 4mA 

12V 2kfl 

Figure P3.47 

3.48 Use both nodal analysis and mesh analysis to find I O in 
the circuit in Fig. P3.48. 

4mA 

~---1-1----~ 

2 kfl 
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3.50 Find IO in the network in Fig. P3.50 using mesh analysis. 

2 mA 2kfl 

12V 

Figure P3.50 

3.51 Find V O in the circuit in Fig. P3.5 l using mesh analysis. 

1 kfl 

+ 

Figure P3.51 

3.52 Use loop analysis to find V O in the network in Fig. P3.52. 

+ 

Figure P3.52 

Figure P3.48 

3.53 Find I0 in the network in Fig. P3.53 using loop analy-
3.49 Find I0 in the network in Fig. P3.49 using mesh analysis. .,. sis. Then solve the problem using MATLAB and com-
.,. pare your answers. 

4kfl 6kfl 
6 kfl 6 kfl 

2mA i 6kfl i 4mA 

6kfl 

Figure P3.49 Figure P3.53 
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3.54 Use loop analysis to find/ 0 in the circuit in Fig. P3.54. 

4kfl 

12V 2kfl 

Figure P3.54 

3.55 Find V O in the network in Fig. P3.55 using both mesh 
and nodal analyses. 

+ 

4kfl 

2kfl 
6 kfl v,:, 

2kfl 

Figure P3.55 

3.56 Use loop analysis to find V O in the circuit in Fig. P3 .56. 

1 kfl 2kfl + 

lkfl V,, 

Figure P3.56 

3.57 Use loop analysis to find / 0 in the network in Fig. P3.57. 
~ 

12V 

Figure P3.57 

3.58 Use loop analysis to find V O in the network in Fig. P3.58. 

+ 

4 kfl V,, 

2kfl 

Figure P3.58 

3.59 Find VO in the network in Fig. P3.59. 

+ 

Figure P3.59 



3.60 Find V O in the circuit in Fig. P3.60. 

2k!l 

+ 

lk!l Va 

Figure P3.60 

3.61 Find / 0 in the circuit in Fig. P3.61. ... 

Figure P3.61 

4k!l 

2 k!l 

3.62 Use loop analysis to find VO in the network in 
Fig. P3.62. 

6V 
lk!l 1 k!l 

Figure P3.62 

+ 
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3.63 Use mesh analysis to find VO in the circuit in Fig. P3.63. 

2k!l 
~~,vv·~-----<1~--<+ -·>------<1>--------< 1 

+ 

12V 6 k!l 

Figure P3.63 

3.64 Use loop analysis to find V O in the circuit in Fig. P3.64. 

+ 

6V 2k!l 

Figure P3. 64 

3.65 Find V0 in the circuit in Fig. P3.65 using mesh analysis . 
... 

Figure P3.65 

6V 

4k!l 

+ 

2 k!l 



110 I CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES 

3.66 Use both nodal analysis and mesh analysis to find V 0 in 
the circuit in Fig. P3.66. 

12mA 

+ 

8kfl v,, 

Figure P3.66 

3.67 Using mesh analysis, find V 0 in the circuit in Fig. P3.67. 

+ 
~ 

2000 2kfl 

4kfl 
6kfl i,;, 

+ 

~ 6 kfl 

Figure P3.67 

3.68 Find V O in the network in Fig. P3.68. 

- \I, + 

+ 

Figure P3.68 

3.69 Use MATLAB to find the mesh currents in the net-
~ work in Fig. P3.69. 

2kfl 

1 kfl 

0) Gt 12 V 

Gt ) lkfl 

6V 

Gt 

Figure P3.69 

SECTION 3.3 -----------------------------

Assume that all op-amps in this section are ideal. 

3.70 Find V O in the circuit in Fig. P3.70. 

lV 

Figure P3. 70 

+ 

v,, 

3. 71 Find V O in the network in Fig. P3.71 and explain what ef­
fect R I has on the output. 

+ 

2V 

Figure P3.71 



3.72 Find V O in the network in Fig. P3 .72. 

+ 

5V v,, 

Figure P3. 72 

3.73 The network in Fig. P3.73 is a current-to-voltage con­
verter or transresistance amplifier. Find vo/is for this 
network. 

+ 

Vo 

Figure P3. 73 

PROBLEMS 111 

3.74 Find V O in the circuit in Fig. P3.74. 

+ 

SY 

Figure P3.74 

3.75 Find V O in the circuit in Fig. P3.75. 

80 kO 
40k0 

SY + 

Vo 40 kO 

Figure P3. 75 

Typical Problems Found on the FE Exam 

3FE-l Find V0 in the circuit in Fig. 3PFE-l. 
~ 

6 Y 

Figure 3PFE-1 

3FE-2 Determine the power dissipated in the 6-ohm resistor 
in the network in Fig. 3PFE-2. 

40 

12Y 60 12 0 

Figure 3PFE-2 
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3FE-3 Find the current Ix in the 4-ohm resistor in the 
~ circuit in Fig. 3PFE-3. 

12V 

3il 

6il 2A 4il 

Figure 3PFE-3 

3FE-4 Determine the voltage V O in the circuit in 
Fig. 3PFE-4. 

4il 2n 4il 

Figure 3PFE-4 

+ 

3FE-5 Given the summing amplifier shown in Fig. 3PFE-5, 
select the values of R2 that will produce an output 
voltage of - 3 V. 

+ 

2V 

Figure 3PFE-5 

3FE-6 Determine the output voltage V O of the summing op­
amp circuit shown in Fig. 3PFE-6. 

36 kil 

+ 
2V 

Figure 3PFE-6 



Additional Analysis 
Techniques 

At this point, we have mastered the ability to solve networks containing 
both independent and dependent sources using either nodal or loop analy­
sis. In this chapter we introduce several new analysis techniques that bol­
ster our arsenal of circuit analysis tools. We will find that in some situations 
these techniques lead to a quick solution and in other cases they do not. 
However, these new techniques in many cases do provide an insight into the 
circuit's operation that cannot be gained from a nodal or loop analysis. 

In many practical situations we are interested in the analysis of some 
portion of a much larger network. If we can model the remainder of the 
network with a simple equivalent circuit, then our task will be much sim­
pler. For example, consider the problem of analyzing some simple elec­
tronic device that is connected to the ac wall plug in our house. In this case 
the complete circuit includes not only the electronic device but the utility's 
power grid, which is connected to the device through the circuit breakers 
in the home. However, if we can accurately model everything outside the 
device with a simple equivalent circuit, then our analysis will be tractable. 
Two of the theorems that we present in this chapter will permit us to do 
just that. 

4.1 Introduction The linearity associated 
with a linear circuit implies two properties: 
additivity and homogeneity .. .Page 114 

4.2 Superposition In a linear circuit 
containing multiple sources, the current or 
voltage at any point in the network may be 
calculated as the algebraic sum of the 
individual contributions of each source 
acting alone .. .Page 116 

4.3 Thevenin's and Norton's 
Theorems Thevenin's (Norton's) theorem 
can be used to replace an entire network, 
exclusive of a load, by an equivalent circuit 
that contains only an independent voltage 
(current) source in series (parallel) with a 
resistor in such a way that the 
current-voltage relationship at the load is 
unchanged ... Page 120 

4.4 Maximum Power Transfer When a 
circuit has been reduced using either 
Thevenin's or Norton's theorem, a load 
resistance can be matched to the source 
resistance to deliver maximum power to the 
load .. .Page 131 

4.5 de SPICE Analysis Using 
Schematic Capture .. .Page 133 

Leaming by Application .. .Page 144 

Leaming by Design .. .Page 145 

Learning Check .. .Page 146 

Summary .. .Page 146 

Problems .. .Page 147 

113 
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4.1 Introduction 

Before introducing additional analysis techniques, let us review some of the topics we have used 
either explicitly or implicitly in our analyses thus far. 

EQUIVALENCE Table 4.1 is a short compendium of some of the equivalent circuits that 
have been employed in our analyses. This listing serves as a quick review as we begin to look 
at other techniques that can be used to find a specific voltage or current somewhere in a net­
work and provide additional insight into the network's operation. In addition to the forms list­
ed in the table, it is important to note that a series connection of current sources or a parallel 

Table 4.1 Equivalent circuit forms 

E 

- E 

R 



SECTION 4 . 1 INTRODUCTION 

connection of voltage sources is forbidden unless the sources are pointing in the same direc­
tion and have exactly the same values. 

LINEARITY All the circuits we have analyzed thus far have been linear circuits. Most of 
the circuits we will analyze in the remainder of the book will also be linear circuits, and any 
deviation from this type of network will be specifically identified as such. 

Linearity requires both additivity and homogeneity (scaling). It can be shown [see the pre­
vious edition of this book] that the circuits that we are examining satisfy this important prop­
erty. The following example illustrates one way in which this property can be used. 

LEARNING Example 4.1 

For the circuit shown in Fig. 4.1, we wish to determine the out­
put voltage Vout· However, rather than approach the problem in 
a straightforward manner and calculate / 0 , then / 1, then / 2 , and 
so on, we will use linearity and simply assume that the output 
voltage is V out = 1 V. This assumption will yield a value for the 
source voltage. We will then use the actual value of the source 
voltage and linearity to compute the actual value of V out· 

2k0 

12V 

4 kf1 

3 kfl 

Figure 4. 1 Circuit used in Example 4. 1. 

+ 

2 kfl 

VI can then be calculated as 

Hence, 

Now, applying KCL, 

V 1 = 4k/2 + V 2 

=3V 

Vi 
11 = - = 1 mA 

3k 

I a = I I + I 2 = 1.5 mA 

Then 

=6V 

115 

SOLUTION Ifwe assume that Vout = V2 = 1 V, then 

V2 
12 = - = 0.5 mA 

2k 

Therefore, the assumption that V out = 1 V produced a source 
voltage of 6 V. However, since the actual source voltage is 12 V, 
the actual output voltage is 1 V(12/6) = 2 V. 

E4.1 Use linearity and the assumption that / 0 = 1 mA to compute the correct current Ia in the ANSWER Ia = 3 mA. 
circuit in Fig. E4.1 if/ = 6 mA. 

6 kfl 3 kfl 

Figure E4.1 
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4.2 Superposition 

To provide motivation for this subject, let us examine a simple circuit in which two sources con­
tribute to the current in the network. 

LEARNING Example 4.2 

Consider the circuit in Fig. 4-_2a in which the actual values of the 
voltage sources are left unspecified. Let us use this network to ex­
amine the concept of superposition. 

SOLUTION The mesh equations for this network are 

6ki I ( t) - 3kii( t) = VI ( t) 

-3ki1(t) + 9kiz(t) = -v2(t) 

Solving these equations for i 1 ( t) yields 

. v1(t) v2(t) 
i,(t) = 5k - 15k 

In other words, the current i1 ( t) has a component due to v, ( t) and a 
component due to v2 ( t). In view of the fact that i 1 ( t) has two com­
ponents, one due to each independent source, it would be interesting 
to examine what each source acting alone would contribute to i 1 ( t). 
Forv, (t) to act alone, v2(t) must be zero. As we pointed out in Chap­
ter 2, v2 ( t) = 0 means that the source v2 ( t) is replaced with a short 
circuit. Therefore, to determine the value of i1 ( t) due to v, ( t) only, we 
employ the circuit in Fig. 4.2b and refer to this value of i 1 ( t) as ii ( t) . 

Figure 4.2 Circuits used 
to illustrate superposition. (a) 

6 k!l 

3 k!l 

@ 

., v, (t) 
11 (t) = (3k) ( 6k) 

3k +----
3k + 6k 

5k 

Let us now determine the value of i 1 ( t) due to v2 ( t) acting alone 
and refer to this value as ii'(t). Using the network in Fig. 4.2c, 

'"( ) Vz(t) 
12 t = - (3k)(3k) 

6k+ ---
3k + 3k 

Then, using current division, we obtain 

-2vz(t) ( 3k ) 
i;'(t) = 15k 3k + 3k 

-2vz(t) 

15k 

Now, if we add the values of ii ( t) and ii' ( t), we obtain the value 
computed directly; that is, 

. ( ) _ ., ( ) + .,, ( ) _ V l ( t) _ Vz ( t) 
1, t - 1, t 1, t - 5k 15k 

Note that we have superposed the value of ii ( t) on i;' ( t ), or vice 
versa, to determine the unknown current. 

6 k!l 

3 k!l 

(b) 

i'{(t) 

3 k!l 6 k!l 

3 k!l 

(c) 

What we have demonstrated in Example 4.2 is true in general for linear circuits and is a di­
rect result of the property of linearity. The principle of superposition, which provides us with 
this ability to reduce a complicated problem to several easier problems-each containing only 
a single independent source-states that 

In any linear circuit containing multiple independent sources, the current or voltage at any point in the net­
work may be calculated as the algebraic sum of the individual contributions of each source acting alone. 

When determining the coHtribution due to an independent source, any remaining voltage sources 
are made zero by replacing them with short circuits, and any remaining current sources are 
made zero by replacing them with open circuits. 

Although superposition can be used in linear networks containing dependent sources, it is 
not useful in this case since the dependent source is never made zero. 

It is interesting to note that, as the previous example indicates, superposition provides some 
insight in determining the contribution of each source to the variable under investigation. 
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We will now demonstrate superposition with two examples and then provide a problem­
solving strategy for the use of this technique. For purposes of comparison, we will also solve 
the networks using both node and loop analyses. Furthermore, we will employ these same net­
works when demonstrating subsequent techniques, if applicable. 

LEARNING Example 4.3 

Let us use superposition to find VO in the circuit in Fig. 4.3a. 

lkf1 

2kf1 

1 kf1 

lkf1 

(a) 

2mA 

(b) 

(c) 

(d) 

Figure 4.3 Circuits used in Example 4.3. 

LEARNING by Doing 

6kf1 

6kf1 

6kf1 

6kf1 

+ 

v;, 

+ 

+ 

V" () 

+ 

v,, 

D 4.1 Use superposition to find VO in the following 
network. 

ANSWER V = V' + V" = (9 - 3) = 6 V 0 0 0 

SOLUTION The contribution of the 2-mA source to the output 
voltage is found from the network in Fig. 4.3b, using current 
division 

l = 2 X 10- 3 = - mA ( lk + 2k ) 2 
0 ( ) lk + 2k + 6k 3 

and 

The contribution of the 3-V source to the output voltage is found 
from the circuit in Fig. 4.3c. Using voltage division, 

( 6k ) V" - 3 
0 - lk + 2k + 6k 

=2V 

Therefore, 

V 0 = V~ + V~ = 6 V 

Although we used two separate circuits to solve the problem, 
both were very simple. 

If we use nodal analysis and Fig. 4.3a to find VO and recog­
nize that the 3-V source and its connecting nodes form a su­
pernode, V O can be found from the node equation 

V - 3 V 
0 

- 2 X 10-3 + ----'?. = 0 
lk + 2k 6k 

which yields V 0 = 6 V. In addition, loop analysis applied as 
shown in Fig. 4.3d produces the equations 

11 = -2 X 10- 3 

and 
3k(/1 + 12) - 3 + 6kl2 = 0 

which yield 12 = 1 mA and hence V 0 = 6 V. 

+ 

\:., 
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D 4.2 Use superposition to find / 0 in the following network. 

ANSWER 
I = I' + I" = (8 - 2) = 6 mA 0 0 0 

6 kfl 3 kfl 

LEARNING Example 4.4 

Consider now the network in Fig. 4.4a. Let us use superposition 
to find V 0 • 

SOLUTION The contribution of the 6-V source to V0 is found 
from the network in Fig. 4.4b, which is redrawn in Fig. 4.4c. 

+ + 

4 kfl 6V 4 kfl 

2 kfl 2 kfl 
6 kfl 6 kfl 

2 kfl 2 kfl 

(a) (b) 

+ + 

+ 6 kfl v(; 4 kfl 

2 kfl 
+ 6V V1 4 kfl 6 kfl V" 0 

2 kfl 2 kfl 

2 kfl 

(c) (d) 

+ + 

t kfl 4 kfl 

2mA t 6 kfl V" V1 (£ 6 kfl Vo () 

2 kfl 

2k!l 2mA (£ 2 kfl 

Figure 4.4 
Circuits used in 
Example 4.4. ( e) (f) 
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The 2 kO + 6 kO = 8-kO resistor and 4-kO resistor are in par­
allel, and their combination is an 8 /3-kO resistor. Then, using volt­
age division, 

A nodal analysis of the network can be performed using 
Fig. 4.4f. The equation for the supemode is 

v1 = 6( ~k ) 
ik + 2k 

24 
=-V 

7 

Applying voltage division again, 

V' _ V ( 6k ) _ 18 
0 - I 6k + 2k - 7 V 

The contribution of the 2-mA source is found from Fig. 4.4d, 
which is redrawn in Fig. 4.4e. V~ is simply equal to the product 
of the current source and the parallel combination of the resistors; 
that is, 

V~ = (2 X 10-1)(1~k//6k) = 3~ V 

Then 
48 

V = V' + V" = - V 
0 0 0 7 

Problem-Solving Strategy 
Applying Superposition 

(V - 6) - V V - V V 
-2 X 10-3 + o l + o I + ----':. = 0 

2k 4k 6k 

The equation for the node labeled V I is 

V 1 - V 0 V1 - (Vo - 6) V 1 ---+ +-=O 
4k 2k 2k 

Solving these two equations, which already contain the constraint 
equation for the supemode, yields V0 = 48/7 V. 

Once again, referring to the network in Fig. 4.4f, the mesh 
equations for the network are 

-6 + 4k(I1 - 13) + 2k(I 1 - 12) = 0 

12 = 2 X 10-3 

2k(I3 - Iz) + 4k(I3 - 11) + 6k/3 = 0 

Solving these equations, we obtain / 3 = 8/ 7 mA and, hence, 
V0 = 48/7 V. 

t In a network containing multiple independent sources, each source can be applied inde­
pendently with the remaining sources turned off. 

t To turn off a voltage source, replace it with a short circuit, and to turn off a current 
source, replace it with an open circuit. 

t When the individual sources are applied to the circuit, all the circuit laws and techniques 
we have learned, or will soon learn, can be applied to obtain a solution. 

t The results obtained by applying each source independently are then added together al­
gebraically to obtain a solution. 

Superposition can be applied to a circuit with any number of dependent and independent 
sources. In fact, superposition can be applied to such a network in a variety of ways. For ex­
ample, a circuit with three independent sources can be solved using each source acting alone, 
as we have just demonstrated, or we could use two at a time and sum the result with that ob­
tained from the third acting alone. In addition, the independent sources do not have to assume 
their actual value or zero. However, it is mandatory that the sum of the different values chosen 
add to the total value of the source. 

Superposition is a fundamental property of linear equations and, therefore, can be applied 
to any effect that is linearly related to its cause. In this regard it is important to point out that 
although superposition applies to the current and voltage in a linear circuit, it cannot be used 
to determine power because power is a nonlinear function. 
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E4.2 Compute VO in the circuit in Fig. E4.2 using superposition. ANSWER 

+ 

12V 2k!l 
~ ) 

Figure E4.2 

4.3 Thevenin's and Norton's Theorems 

Original 
circuit 

(a) 

Figure 4.5 

Thus far we have presented a number of techniques for circuit analysis. At this point we will 
add two theorems to our collection of tools that will prove to be extremely useful. The theo­
rems are named after their authors , M. L. Thevenin, a French engineer, and E. L. Norton, a sci­
entist formerly with Bell Telephone Laboratories. 

Suppose that we are given a circuit and that we wish to find the current, voltage, or power 
that is delivered to some resistor of the network, which we will call the load. Thevenin 's theorem 
tells us that we can replace the entire network, exclusive of the load, by an equivalent circuit 
that contains only an independent voltage source in series with a resistor in such a way that the 
current-voltage relationship at the load is unchanged. Norton 's theorem is identical to the pre­
ceding statement except that the equivalent circuit is an independent current source in parallel 
with a resistor. 

Note that this is a very important result. It tells us that if we examine any network from a 
pair of terminals, we know that with respect to those terminals, the entire network is equiva­
lent to a simple circuit consisting of an independent voltage source in series with a resistor or 
an independent current source in parallel with a resistor. 

In developing the theorems, we will assume that the circuit shown in Fig. 4.5a can be split 
into two parts, as shown in Fig. 4.5b. In general, circuit B is the load and may be linear or non­
linear. Circuit A is the balance of the original network exclusive of the load and must be lin­
ear. As such, circuit A may contain independent sources, dependent sources and resistors, or 
any other linear element. We require, however, that a dependent source and its control variable 
appear in the same circuit. 

Circuit A delivers a current i to circuit Band produces a voltage v0 across the input terminals 
of circuit B. From the standpoint of the terminal relations of circuit A, we can replace circuit B 
by a voltage source of v0 volts (with the proper polarity), as shown in Fig. 4.5c. Since the termi­
nal voltage is unchanged and circuit A is unchanged, the terminal current i is unchanged. 

Circuit 
A 

(linear) 

A 

+ 

v,, 

B 

(b) 

Circuit Circuit 
A B 

(linear) 

A 

B 

( c) 

vo 

Concepts used to develop Thevenin 's theorem. 
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Now, applying the principle of superposition to the network shown in Fig. 4.5c, the total cur­
rent i shown in the figure is the sum of the currents caused by all the sources in circuit A and the 
source v0 that we have just added. Therefore, via superposition the current i can be written 

4.1 

where i0 is the current due to v0 with all independent sources in circuit A made zero (i.e., volt­
age sources replaced by short circuits and current sources replaced by open circuits), and isc is 
the short-circuit current due to all sources in circuit A with v0 replaced by a short circuit. 

The terms i 0 and v0 are related by the equation 

. -vo 
l =-

0 RTh 
4.2 

where RTh is the equivalent resistance looking back into circuit A from terminals A-B with all 
independent sources in circuit A made zero. 

Substituting Eq. (4.2) into Eq. (4.1) yields 

. Vo . 
z=--+z 

RTh SC 

4.3 

This is a general relationship and, therefore, must hold for any specific condition at terminals 
A-B. As a specific case, suppose that the terminals are open circuited. For this condition, i = 0 
and v0 is equal to the open-circuit voltage voe· Thus, Eq. (4.3) becomes 

Hence, 

-v 
i=O=~+i 

RTh SC 
4.4 

4.5 

This equation states that the open-circuit voltage is equal to the short-circuit current times the 
equivalent resistance looking back into circuit A with all independent sources made zero. We 
refer to RTh as the Thevenin equivalent resistance. 

Substituting Eq. (4.5) into Eq. (4.3) yields 

or 

4.6 

Let us now examine the circuits that are described by these equations. The circuit represented 
by Eq. (4.6) is shown in Fig. 4.6a. The fact that this circuit is equivalent at terminals A-B to 
circuit A in Fig. 4.5 is a statement of Thevenin 's theorem. The circuit represented by Eq. (4.3) 
is shown in Fig. 4.6b. The fact that this circuit is equivalent at terminals A-B to circuit A in 
Fig. 4.5 is a statement of Norton 's theorem. 

A A 

RTh + + 

voe Vo isc RTh Vo 
Circuit 

B 

B B Figure 4.6 

121 

Thevenin and Norton equivalent 
(a) (b) circuits. 
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LEARNING Example 4.5 

The relationships specified in Fig. 4.6 and Eq. (4.5) have added significance because they 
represent what is called a source transformation or source exchange. What these relationships 
tell us is that if we have embedded within a network a current source i in parallel with a resis­
tor R, we can replace this combination with a voltage source of value v = iR in series with the 
resistor R. The reverse is also true; that is, a voltage source v in series with a resistor R can be 
replaced with a current source of value i = v /R in parallel with the resistor R. Parameters 
within the circuit (e.g., an output voltage) are unchanged under these transformations. 

We must emphasize that the two equivalent circuits in Fig. 4.6 are equivalent only at the 
two external nodes. For example, if we disconnect circuit B from both networks in Fig. 4.6, the 
equivalent circuit in Fig. 4.6b dissipates power, but the one in Fig. 4.6a does not. 

We will now demonstrate how to find VO in the circuit in Fig. 4.7a 
using the repeated application of source transformation. 

and 4-kfl resistor into a 2-mA source in parallel with the 4-kfl 
resistor and combine the resulting current source with the other 
2-mA source, we arrive at the circuit shown in Fig. 4.7d. At this 
point, we can simply apply current division to the two parallel re­
sistance paths and obtain 

SOLUTION If we begin at the left end of the network in 
Fig. 4.7a, the series combination of the 12-V source and 3-kfl re­
sistor is converted to a 4-mA current source in parallel with the 
3-kfl resistor. If we combine this 3-kfl resistor with the 6-kfl ( 4k ) I = 4 X 10-3 

0 ( ) 4k + 4k + 8k 
lmA I 

resistor, we obtain the circuit in Fig. 4.7b. Note that at this point 
we have eliminated one circuit element. Continuing the reduction, 
we convert the 4-mA source and 2-kfl resistor into an 8-V source 
in series with this same 2-kfl resistor. The two 2-kfl resistors 
that are in series are now combined to produce the network in 
Fig. 4. 7 c. If we now convert the combination of the 8-V source 

and hence, 

V0 = (1 X 10-3)(8k) = 8 V 

The reader is encouraged to consider the ramifications of working 
this problem using any of the other techniques we have presented. 

Figure 4. 7 
Circuits used in 
Example 4.5. 

SY 

+ + 

Sk!l Ya 4mA Sk!l v,, 

(a) (b) 

lo 

+ 4k!l + 

Sk!l Ya 4mA 4k!l Sk!l v,, 

(c) (d) 

Note that this systematic, sometimes tedious, transformation allows us to reduce the net­
work methodically to a simpler equivalent form with respect to some other circuit element. 
However, we should also realize that this technique is worthless for circuits of the form shown 
in Fig. 4.4. Furthermore, although applicable to networks containing dependent sources, it is 
not as useful as other techniques, and care must be taken not to transform the part of the cir­
cuit that contains the control variable. 

Having demonstrated that there is an inherent relationship between the Thevenin equiva­
lent circuit and the Norton equivalent circuit, we now proceed to apply these two important and 
useful theorems. The manner in which these theorems are applied depends on the structure of 
the original network under investigation. For example, if only independent sources are pre­
sent, we can calculate the open-circuit voltage or short-circuit current and the Thevenin equiv-
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alent resistance. However, if dependent sources are also present, the Thevenin equivalent will 
be determined by calculating voe and isc, since this is normally the best approach for determin­
ing RTh in a network containing dependent sources . Finally, if circuit A contains no indepen­
dent sources, then both voe and isc will necessarily be zero. (Why?) Thus, we cannot determine 
RTh by voefisc, since the ratio is indeterminate. We must look for another approach. Notice that 
if voe = 0, then the equivalent circuit is merely the unknown resistance RTh. If we apply an ex­
ternal source to circuit A-a test source v1-and determine the current, i1 , which flows into 
circuit A from v,, then RTh can be determined from RTh = vrfi1• Although the numerical value 
of v1 need not be specified, we could let v, = 1 V and then RTh = I / i1• Alternatively, we could 
use a current source as a test source and let i, = I A; then v, = (l)RTu . 

Before we begin our analysis of several examples that will demonstrate the utility of these the­
orems, remember that these theorems, in addition to an alternate method of attack, often permit 
us to solve several small problems rather than one large one. They allow us to replace a network, 
no matter how large, at a pair of terminals with a Thevenin or Norton equivalent circuit. In fact, 
we could represent the entire U .S. power grid at a pair of terminals with one of the equivalent cir­
cuits. Once this is done we can quickly analyze the effect of different loads on a network. Thus, 
these theorems provide us with additional insight into the operation of a specific network. 

CIRCUITS CONTAINING ONLY INDEPENDENT SOURCES 

LEARNING Example 4.8 

123 

Let us use Thevenin's and Norton's theorems to find VO in the net­
work in Example 4.3 . 

Now our Thevenin equivalent circuit, consisting of V oc and RTh , is 
connected back to the original terminals of the load, as shown in 
Fig. 4.8d. Using a simple voltage divider, we find that V O = 6 V. 

SOLUTION The circuit is redrawn in Fig. 4.8a. To determine the 
Thevenin equivalent, we break the network at the 6-kfl load as 
shown in Fig. 4.8b. KVL indicates that the open-circuit voltage, 
V oc , is equal to 3 V plus the voltage V 1 , which is the voltage across 
the current source. The 2 mA from the current source flows through 
the two resistors (where else could it possibly go!) and, therefore, 
V1 = (2 X 10-3)(1k + 2k) = 6 V. Therefore, V oc = 9 V. By 
making both sources zero, we can find the Thevenin equivalent re­
sistance, RTh, using the circuit in Fig. 4.8c. Obviously, RTh = 3 kfl. 

3k!1 

9V 

(d) 

6k!1 

(a) 

+ 

Figure 4.8 Circuits used in Example 4.6. 

+ 

V,, 

(e) 

To determine the Norton equivalent circuit at the terminals 
of the load, we must find the short-circuit current as shown in 
Fig. 4 .8e. Note that the short circuit causes the 3-V source to be 
directly across (i.e., in parallel with) the resistors and the cur­
rent source. Therefore, / 1 = 3 / ( lk + 2k) = 1 mA. Then, using 
KCL, l sc = 3 mA. We have already determined RTh and, there­
fore, connecting the Norton equivalent to the load results in the 
circuit in Fig. 4.8f. Hence, VO is equal to the source current mul­
tiplied by the parallel resistor combination, which is 6 V. 

(b) 

I,c 

~ 
~-RTh 

( c) 

3k!1 6k!1 

(f) 

+ 

V,, 
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Consider for a moment some salient features of this example. Note that in applying the the­
orems there is no point in breaking the network to the left of the 3-V source, since the resistors 
in parallel with the current source are already a Norton equivalent, which can be immediately 
changed to a Thevenin equivalent using source transformation! Furthermore, once the network 
has been simplified using a Thevenin or Norton equivalent, we simply have a new network with 
which we can apply the theorems again. The following example illustrates this approach. 

LEARNING Example 4.7 

Let us use Thevenin's theorem to find V0 in the network in 
Fig. 4.7a, which is redrawn in Fig. 4.9a. 

SOLUTION If we break the network to the left of the current 
source, the open-circuit voltage V oc, is as shown in Fig. 4.9b. 
Since there is no current in the 2-kfl resistor and therefore no 
voltage across it, V oc, is equal to the voltage across the 6-kfl re­
sistor, which can be determined by voltage division as 

V = 12( 6k ) = 8 V 
oc, 6k + 3k 

The Thevenin equivalent resistance, RTh,, is found from Fig. 4.9c as 

(3k)(6k) 
RTh, = 2k + 3k + 6k = 4 kfl 

3 ki1 

(c) 

(a) 

2 ki1 

6 ki1 

Connecting this Thevenin equivalent back to the original net­
work produces the circuit shown in Fig. 4.9d. We can now apply 
Thevenin's theorem again, and this time we break the network 
to the right of the current source as shown in Fig. 4.9e. In this 
case V oc2 is 

VOC 2 = (2 X 10- 3)(4k) + 8 = 16V 

and RTh2 obtained from Fig. 4.9f is 4 kfl. Connecting this 
Thevenin equivalent to the remainder of the network produces the 
circuit shown in Fig. 4.9g. Simple voltage division applied to 
this final network yields VO = 8 V. Norton's theorem can be ap­
plied in a similar manner to solve this network; however, we save 
that solution as an exercise. 

+ 3 ki1 

12V 

(d) 

2 ki1 

6 ki1 

(b) 

+ 

+ 

4 ki1 

8V 

+ ~ L:RTh, 4 ki1 

16V 

4 ki1 + 

8 ki1 

(e) (f) (g) 

Figure 4.9 Circuits used in Example 4. 7. 
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LEARNING by Doing 

D 4.3 Find VO in the following network using Thevenin 's theorem. 

ANSWER 

6 kfl 2 kfl 6 kfl 2 kfl 6 kfl 2 kfl 5 kfl 

+ 

12 V 

+ 

6 kfl 1 kfl V0 12 V 6 kfl V0e = 6 V 6 kfl - RTh=5kfl LI-lkfl +V0 =1 V 
6V 

LEARNING Example 4.8 

It is instructive to examine the use of Thevenin's and Norton's 
theorems in the solution of the network in Fig. 4.4a, which is re­
drawn in Fig. 4.10a. 

SOLUTION Ifwe break the network at the 6-kf! load, the open­
circuit voltage is found from Fig. 4.10b. The equations for the 
mesh currents are 

and 

+ 

6V 4 kfl 6V 

6 kfl v,, 
2 kfl 

2mA 2 kfl 

(a) 

6V (£ 
1i kfl 2 kfl 

+ 

6 kfl v,, 2mA (£ 

(d) 

Figure 4.10 Circuits used in Example 4.8. 

( e) 

'-----------0 

from which we easily obtain / 1 = 5/3 mA. Then, using KVL, 
V oc is 

voe = 4k/1 + 2k/2 

= 4k(% X 10- 3 ) + 2k(2 X 10- 3) 

32 
=-V 

3 

RTh is derived from Fig. 4.1 Oc and is 
10 

RTh = (2k// 4k) + 2k = 3 kf! 

+ 

(!; 4 kfl 4 kfl 

2 kfl 

voe -2 kfl 

(£ 2 kfl 2 kfl 

(b) ( c) 

4 kfl 

(!; 
2 kfl 1i kfl 6 kfl 

156 mA 

(f) 

RTI, 

+ 

v,, 

( continued) 
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Attaching the Thevenin equivalent to the load produces the 
network in Fig. 4.10d. Then using voltage division, we obtain 

32 ( 6k ) V= -
0 3 10 

6k + - k 
3 

48 
= - V 

7 

In applying Norton's theorem to this problem, we must find the 
short-circuit current shown in Fig. 4. lOe. At this point the quick­
thinking reader stops immediately! Three mesh equations applied 
to the original circuit will immediately lead to the solution, but 
the three mesh equations in the circuit in Fig. 4.lOe will provide 
only part of the.answer, specifically the short-circuit current. Some-

times the use of the theorems is more complicated than a straight­
forward attack using node or loop analysis. This would appear to 
be one of those situations. Interestingly, it is not. We can find 1sc 
from the network in Fig. 4.1 Oe without using the mesh equations. 
The technique is simple, but a little tricky, and so we ignore it at 
this time. Having said all these things, let us now finish what we 
have started. The mesh equations for the network in Fig. 4.lOe are 

-6 + 4 k(11 - 1,c) + 2k(/1 - 2 X 10- 3) = 0 

2k(1,c - 2 X 10- 3) + 4k(I,c - 11) = 0 

where we have incorporated the fact that 12 = 2 X 10-3 A. Solv­
ing these equations yields 1,c = 16/ 5 mA. R Th has already been 
determined in the Thevenin analysis. Connecting the Norton 
equivalent to the load results in the circuit in Fig. 4. lOf. Apply­
ing Ohm's law to this circuit yields V O = 48/ 7 V. 

E4.3 Use Thevenin 's theorem to find V0 in the network in Fig. E4.3 . ANSWER V O = - 3V. 

+ 

6V + 4 kfl v,, 

Figure E4.3 

E4.4 Find V 0 in the circuit in Fig. E4.2 using (a) source exchange and (b) both Thevenin 's and 
Norton 's theorems. When deriving the Norton equivalent circuit, break the network to the left of the 
4-kfl resistor. Why? 

ANSWER 

CIRCUITS CONTAINING ONLY DEPENDENT SOURCES As we have stated ear­
lier, the Thevenin or Norton equivalent of a network containing only dependent sources is RTh . The 
following examples will serve to illustrate how to determine this Thevenin equivalent resistance. 

LEARNING Example 4.9 

We wish to determine the Thevenin equivalent of the network in Fig. 4 .1 la at the terminals A-B. 

- Yx + Yx + 

1 kfl 1 kfl 
Iz I1 A A 

vi 
lo 

2 kfl 2 kfl lV 

13 

Figure 4.11 
B B Networks employed in -:-

Example 4.9. (a) (b) 
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SOLUTION Our approach to this problem will be to apply a 
1-V source at the terminals as shown in Fig. 4.llb and then com­
pute the current / 0 and RTh = l / / 0 • 

The equations for the network in Fig. 4.11 b are as follows. 
KVL around the outer loop specifies that 

V 1 + V x = 1 

The KCL equation at the node labeled V I is 

V 1 V 1 - 2Vx V 1 - 1 
lk+ 2k +~=O 

Solving the equations for V x yields Vx = 3/ 1 V. Knowing 
V x, we can compute the currents / 1 , I 2 , and / 3. Their values are 

vx 3 
11 = - = -mA 

lk 7 

LEARNING Example 4.10 

Let us determine RTh at the terminals A-B for the network in 
Fig. 4.12a. 

A 

2k!l 3k!l 
+ 2000 Ix 1 k!l 2k!l 

Ix 

B 
(a) 

Vz A 

2k!l 3k!l 

+ 2000 Ix 1 k!l 2k!l 

Ix 

..,. B 

(b) 

Figure 4.12 Networks used in Example 4.10. 
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1 - 2Vx 1 
12= =-mA 

lk 7 

1 1 
/ 3=-= - mA 

2k 2 

Therefore, 

and 

l o = 11 + 12 + / 3 

15 
=-mA 

14 

=~kn 
15 

SOLUTION Our approach to this problem will be to apply a 
1-mA current source at the terminals A-Band compute the ter­
minal voltage V2 as shown in Fig. 4.12b. Then RTh = V2/0.001. 

and 

The node equations for the network are 

V 1 - 2000/x V 1 V 1 - V2 -----+ - + =0 
2k Ik 3k 

V2 - V1 + V2 = 1 X 10-3 
3k 2k 

V1 
I= -

x lk 

Solving these equations yields 

and hence, 

10 
V2 = - V 

7 

= 10 kD 
7 

CIRCUITS CONTAINING BOTH INDEPENDENT AND DEPENDENT 
SOURCES In these types of circuits we must calculate both the open-circuit voltage and 
short-circuit current to calculate the Thevenin equivalent resistance. Furthermore, we must re­
member that we cannot split the dependent source and its controlling variable when we break 
the network to find the Thevenin or Norton equivalent. 

We now illustrate this techniqud with a circuit containing a current-controlled voltage 
source. 
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LEARNING Example 4.11 

Let us use Thevenin's theorem to find V O in the network in Fig. 4.13a. 

SOLUTION To begin, we break the network at points A-B. 
Could we break it just to the right of the 12-V source? No! Why? 
The open-circuit voltage is calculated from the network in 
Fig. 4.13b. Note that we now use the source 2000/: because this 
circuit is different from that in Fig. 4.13a. KCL for the super­
node around the 12-V source is 

where 

(voe+ 12) - (-20001~) v oe + 12 v oe --------- + + - = 0 
lk 2k 2k 

I' = voe 
X 2k 

yielding V oc = -6 V. 
I sc can be calculated from the circuit in Fig. 4.13c. Note that 

the presence of the short circuit forces /~ to zero and, therefore, 
the network is reduced to that shown in Fig. 4.13d. 

B 

(a) 

A 

+ 

Therefore, 

Then 

-12 
I = - = -18mA 

SC 2 
- k 
3 

V oc 1 
RTh = - = - kfl 

f ,c 3 

Connecting the Thevenin equivalent circuit to the remainder of 
the network at terminals A-B produces the circuit in Fig. 4.13e. 
At this point, simple voltage division yields 

V0 = (- 6) ( lk ) 

lk + lk + .!.k 
3 

-18 
= - V 

7 

12 V 
2kfl 2kfl 

I' 
X 

(b) 

A 

A 

+ 

voe 

B 

+ 
12 V 

2kfl 2kfl I,c 
12V 

1 kfl 2 kfl l ,c 

t kfl lkfl 

6V lkfl v,, 
2000 I" 

X I" 
X 

B B B 
( c) (d) ( e) 

Figure 4. 13 Circuits used in Example 4. 11. 

Problem-Solving Strategy 
Applying Thevenin's Theorem 

t Remove the load and find the voltage across the open-circuit terminals, Voe · All the cir­
cuit analysis techniques presented here can be used to compute this voltage. 

t Determine the Thevenin equivalent resistance of the network at the open terminals with 
the load removed. Three different types of circuits may be encountered in determining 
the resistance, Rn, . 

t If the circuit contains only independent sources, they are made zero by replacing the 
voltage sources with short circuits and the current sources with open circuits. RTh is then 
found by computing the resistance of the purely resistive network at the open terminals. 
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• If the circuit contains only dependent sources, an independent voltage or current 
source is applied at the open terminals and the corresponding current or voltage at 
these terminals is measured. The voltage/ current ratio at the terminals is the Thevenin 
equivalent resistance. Since there is no energy source, the open-circuit voltage is zero 
in this case. 

• If the circuit contains both independent and dependent sources, the open-circuit termi­
nals are shorted and the short-circuit current between these terminals is determined. 
The ratio of the open-circuit voltage to the short-circuit current is the resistance RTh. 

t If the load is now connected to the Thevenin equivalent circuit, consisting of V oc in series 
with RTo, the desired solution can be obtained. 

The problem-solving strategy for Norton's theorem is essentially the same as that for 
Thevenin's theorem with the exception that we are dealing with the short-circuit current instead 
of the open-circuit voltage. 

"'~!/ . LEARNING EXTENSION ";\' 

E4.5 Find VO in the circuit in Fig. E4.5 using Thevenin's theorem. 

V -+ X 

4k!1 + 

12V + 
6k!1 

Figure E4.5 

At this point it is worthwhile to pause for a moment and reflect about what we have learned; 
that is, let us compare the use of node or loop analysis with that of the theorems discussed in 
this chapter. When we examine a network for analysis, one of the first things we should do is 
count the number of nodes and loops. Next we consider the number of sources. For example, 
are there a number of voltage sources or current sources present in the network? All these data, 
together with the information that we expect to glean from the network, give a basis for selecting 
the simplest approach. With the current level of computational power available to us, we can 
solve the node or loop equations that define the network in a flash. 

With regard to the theorems, we have found that in some cases the theorems do not nec­
essarily simplify the problem and a straightforward attack using node or loop analysis is as 
good an approach as any. This is a valid point provided that we are "Simply looking for some 
particular voltage or current. However, the real value of the theorems is the insight and un­
derstanding that they provide about the physical nature of the network. For example, super­
position tells us what each source contributes to the quantity under investigation. However, 
a computer solution of the node or loop equations does not tell us the effect of changing cer­
tain parameter values in the circuit. It does not help us understand the concept of loading a 
network or the ramifications of interconnecting networks or the idea of matching a network 
for maximum power transfer. The theorems help us to understand the effect of using a trans­
ducer at the input of an amplifier with a given input resistance. They help us explain the 

ANSWER 

129 
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effect of a load, such as a speaker, at the output of an amplifier. We derive none of this in­
formation from a node or loop analysis . In fact, as a simple example, suppose that a network 
at a specific pair of terminals has a Thevenin equivalent circuit consisting of a voltage source 
in series with a 2-kO resistor. If we connect a 2-0 resistor to the network at these terminals , 
the voltage across the 2-0 resistor will be essentially nothing. This result is fairly obvious 
using the Thevenin theorem approach; however, a node or loop analysis gives us no clue as 
to why we have obtained this result. 

We have studied networks containing only dependent sources. This is a very important 
topic because all electronic devices, such as transistors, are modeled in this fashion . Motors in 
power systems are also modeled in this way. We use these amplification devices for many dif­
ferent purposes, such as speed control for automobiles. 

In addition, it is interesting to note that when we employ source transformation as we did 
in Example 4.5, we are simply converting back and forth between a Thevenin equivalent cir­
cuit and a Norton equivalent circuit. 

Finally, we have a powerful tool at our disposal that can be used to provide additional in­
sight and understanding for both circuit analysis and design. That tool is Microsoft EXCEL, 
and it permits us to study the effects, on a network, of varying specific parameters. The following 
example will illustrate the simplicity of this approach. 

LEARNING Example 4.12 

We wish to use Microsoft EXCEL to plot the Thevenin equiva­
lent parameters V oc and RTh for the circuit in Fig. 4.14 over the 
Rx range O to 10 kO. 

Figure 4.14 
Circuit used in 
Example 4. 12. 

4k!l 

6V 12V RTh 

SOLUTION The Thevenin resistance is easily found by re­
placing the voltage sources with short circuits. The result is 

4Rx 
RTh = 4/ / Rx = 4 + R 

X 

4.7 

where Rx and RTh are in kO. Superposition can be used effec­
tively to find V oc. If the 12-V source is replaced by a short circuit 

[ Rx J V --6 --
oc1 - Rx+ 4 

Applying this same procedure for the 6-V source yields 

voe, = 12 

and the total open-circuit voltage is 

voe= 12 - 6[~] 4.8 
Rx+ 4 

In EXCEL we wish to (1) vary Rx between O and 10 kO, 
(2) calculate RTh and V oc at each Rx value, and (3) plot V oc and 
RTh versus Rx. We begin by opening EXCEL and entering col­
umn headings as shown in Fig. 4.15a. Next, we enter a zero in 
the first cell of the Rx column at column-row location A4. To auto­
matically fill the column with values, go to the Edit menu and se­
lect Fill/Series to open the window shown in Fig. 4.15b, which 
has already been edited appropriately for 101 data points. The re­
sult is a series of Rx values from Oto 10 kO in 100 0 steps. To 
enter Eq. ( 4.8), go to location B4 (right under the V oc heading). 
Enter the following text and do not forget the equal sign: 

=12-6*A4/(A4+4) 

This is Eq. (4.8) with Rx replaced by the first value for Rx, which 
is at column-row location A4. Similarly for RTh, enter the fol­
lowing expression at C4. 

=4*A4/(A4+4) 

To replicate the expression in cell B4 for all Rx values, select cell 
B4, grab the lower right comer of the cell, hold and drag down to 
cell Bl04, and release. Repeat for RTh by replicating cell C4. 

To plot the data, first drag the cursor across all cells between 
A4 and Cl04. Next, from the Insert menu, select Chart. We rec­
ommend strongly that you choose the XY (Scatter) chart type. 
EXCEL will take you step by step through the basic formatting 
of your chart, which, after some manipulations, might look sim­
ilar to the chart in Fig. 4.15c. 
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Series IDD 

!--·· -··-··-····-!·------···-·--·· 

(a) 

Figure 4.15 
(a) The EXCEL spreadsheet for Example 4. 12 showing the desired 
column headings. (b) The Fill/Series window edited for varying Rx and 
(c) the final plot of V0 e and RTh· 

4.4 Maximum Power Transfer 

S.tep yatue: 

15 

12.5 

10 

::,.. 
7.5 

::,..g 

5 

2.5 

0 
0 2.5 

In circuit analysis we are sometimes interested in determining the maximum power that can be de­
livered to a load. By employing Thevenin's theorem, we can determine the maximum power that 
a circuit can supply and the manner in which to adjust the load to effect maximum power transfer. 

Suppose that we are given the circuit shown in Fig. 4.16. The power that is delivered to the 
load is given by the expression 

Pload = i2RL = ( V )
2
RL 

R + RL 

We want to determine the value of RL that maximizes this quantity. Hence, we differentiate 
this expression with respect to RL and equate the derivative to zero. 

dPioad (R + RSv2 - 2v2R/ R + RL) 
~- = =O 
dRL (R + RJ4 

which yields 
RL = R 

In other words, maximum power transfer takes place when the load resistance RL = R. 
Although this is a very important result, we have derived it using the simple network in Fig. 4.16. 
However, we should recall that v and R in Fig. 4.16 could represent the Thevenin equivalent 
circuit for any linear network. 

(b) 

3 

2.5 

2 
2 

1.5 2':, 
..c 
f-< 

.:.::: 
- voe 1 

RTh 0.5 

0 
7.5 5 10 

R (kil) 

(c) 

Figure 4.16 
Equivalent circuit for examining 
maximum power transfer. 
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LEARNING Example 4.13 

Let us find the value of RL for maximum power transfer in the 
network in Fig. 4.17a and the maximum power that can be trans­
ferred to this load. 

SOLUTION To begin, we derive the Thevenin equivalent circuit 
for the network exclusive of the load. Voe can be calculated from 
the circuit in Fig. 4.17b. The mesh equations for the network are 

11 = 2 X 10-3 

3k( l 2 - I I) + 6k/ 2 + 3 = 0 

Solving these equations yields I 2 = 1 /3 mA and, hence, 

voe = 4kl, + 6kl2 

= lOV 

4k!1 6 kil 

(a) (b) 

Figure 4. 17 Circuits used in Example 4. 13. 

LEARNING Example 4.14 

Let us find RL for maximum power transfer and the maximum 
power transferred to this load in the circuit in Fig. 4.18a. 

SOLUTION We wish to reduce the network to the form shown 
in Fig. 4.16. We could form the Thevenin equivalent circuit by 
breaking the network at the load. However, a close examination 
of the network indicates that our analysis will be simpler if we 
break the network to the left of the 4-kO resistor. When we do 
this, however, we must realize that for maximum power transfer 
RL = RTh + 4 kO. Voe can be calculated from the network in 
Fig. 4.18b. Forming a supernode around the dependent source 
and its connecting nodes, the KCL equation for this super­
node is 

voe - 2000/: 3 voe ---- + (-4 X 10- ) + - = 0 
lk + 3k 2k 

where 

RTh, shown in Fig. 4.17c, is 6 kO; therefore, RL = RTh = 6 kO 
for maximum power transfer. The maximum power transferred 
to the load is 

( 10 ) 2 25 p L = - ( 6k) = - mW 
12k 6 

LEARNING by Doing 

D 4.4 In the network in Fig. 4.16, v = 12 V and 

R = 2 kO. Determine the RL for maximum power transfer 
and the maximum power transferred. 

ANSWER RL = 2 kO 

Pmax = 18 mW 

(c) 

3k!1 

V 
I'=~ 

X 2k 

6k!1 

(d) 

These equations yield V oc = 8 V. The short-circuit current can be 
found from the network in Fig. 4.18c. It is here that we find the ad­
vantage of breaking the network to the left of the 4-kO resistor. The 
short circuit shorts the 2-kO resistor and, therefore,/~ = 0. Hence, 
the circuit is reduced to that in Fig. 4.18d, where clearly 
I,e = 4 mA. Then 

Connecting the Thevenin equivalent to the remainder of the origi­
nal circuit produces the network in Fig. 4.18e. For maximum power 
transfer RL = RTh + 4 kO = 6 kO, and the maximum power 
transferred is 

PL= ( l~kr(6k) =!mW 
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r--vvv~---<·- +·>-------o 

(a) 

2 kil 

I" 
X 

(c) 

Figure 4.18 Circuit used in Example 4.14. 

1 kil 

3 kil 

(d) 

1 k!1 

3 kil 
2000 I~ 

(b) 

2 k,O, 

I' 
X 

2 kil 

8V 

E4.6 Given the circuit in Fig. E4.6, find RL for maximum power transfer and the maximum power 
transferred. 

6 kil 12 k,O, 

Figure E4.6 

4.5 de Spice Analysis Using Schematic Capture 

INTRODUCTION The original version of SPICE (Simulation Erogram with Integrated 
Circuit Emphasis) was developed at the University of California at Berkeley. It quickly be­
came an industry standard for simulating integrated circuits. With the advent and development 
of the PC industry, several companies began selling PC- and Macintosh-compatible versions 
of SPICE. One company, OrCAD Corporation, a division of Cadence Design Systems, Inc., 
produces a PC-compatible version called PSPICE, which we will discuss in some detail in this text. 

In SPICE, circuit information such as the names and values of resistors and sources as well 
as how they are interconnected is input using data statements with a specific format. The par­
ticulars for every element must be typed in a precise order. This makes debugging difficult 
since you must know the proper format to recognize formatting errors. 

PSPICE, as well as other SPICE-based simulators, now employs a feature known as 
schematic capture. Using an editor, we bypass the cryptic formatting, and simply draw the cir­
cuit diagram, assigning element values via dialog boxes. The editor then converts the circuit 
diagram to an original SPICE format for actual simulation. In the student version of Release 
9.1, the most current software available from ORCAD, there are two editors, CAPTURE and 
Schematics. CAPTURE is intended for printed circuit board (PCB) design, while Schematics 
is more generic. When installing PSPICE, the window in Fig. 4.19 will appear, giving you the 
option of choosing either or both editors. In this text, we will use Schematics exclusively. 

+ 

4 kil 

(e) 

ANSWER RL = 6 kO, 
PL= 2/3 mW. 
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Figure 4.19 
In the student version of Release 
9.1, you can choose to install 
either or both schematic capture 
editors. 

Figure 4.20 

'Select Schematic Editors · - l!I 

Choose the Schematic Editor(s) you would like to install. 

!Captur~ 

"' Schematics 

Once you have selected the appropriete 1ns1e.llation option(s). 
click Next1o continue. Click Cancel to exit 

Cancel 

When elements such as resistors and voltage sources are given values, it is convenient to 
use scale factors. PSPICE supports the following list. 

T 

G 

MEG 

tera 10 12 

giga 10 9 

mega 10 6 

K kilo 10 3 

M mi L Li 1 0- 3 

U micro 10- 6 

N nano 10-9 

P pico 10-12 

F femto 10-15 

Component values must be immediately followed by a character-spaces are not allowed. 
Any text can follow the scale factor. Finally, PSPICE is case insensitive, so there is no differ­
ence between 1 Mohm and 1 mohm in PSPICE. Figure 4.20 shows the five-step procedure for 
simulating circuits using Schematics and PSPICE. We will demonstrate this procedure in the 
following example. 

STEP 1 Draw the Circuit 

(a) Get parts 
(b) Arrange parts 
(c) Wire parts 
(d) Auxiliary parts such as 

VIEWPOINT 

STEP 5 Output the Results 

(a) View, edit, and print 
the output file 

STEP 2 Change Names and Values 

(a) Name parts 
(b) Set parts values 
(c) Name nodes 

STEP 3 Save the File 

The five-step procedure for 
PSPIC_E simulations. 

(b) Print the schematic 
(c) Copy the schematic to 

other programs 

STEP 4 Simulate the Circuit 

(a) Set the analysis type 
(b) Simulate the circuit 
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A de SIMULATION EXAMPLE The following font conventions will be used through­
out this tutorial. Uppercase text refers to PSPICE programs, menus, dialog boxes, and utilities. 
All boldface text denotes keyboard or mouse inputs. In each instance, the case in boldface text 
matches that in PSPICE. Let us simulate the circuit in Fig. 4.21 using PSPICE. Following the 
flowchart procedure in Fig. 4.20, the first step is to open Schematics using the Start/Pro­
grams/Pspice Student/Schematics sequence of pop-up menus. When Schematics opens, our 
screen will change to the Schematics editor window shown in Fig. 4.22. 

Vz 6V 
~----<+ -1----~ 

Figure 4.21 
A de circuit used for simulation. 

Figure 4.22 The Schematics editor window. 

Step 1: Drawing the Schematic 

Next, we obtain and place the required parts: three resistors, two de voltage sources, and a de cur­
rent source. To get the voltage sources, left-click on the )2raw menu and select Get New Part as 
shown in Fig. 4.23. The Part Browser in Fig. 4.24 appears, listing all the parts available in 
PSPICE. Since we do not know the Schematics name for a de voltage source, select Libraries, 
and the Library Browser in Fig. 4.25 appears. This browser lists all the parts libraries available 
to us. The de voltage source is called VDC and is located in the SOURCE.slb library, as seen in 
Fig. 4.25. Thus, we select the part VDC and click OK. The box in Fig. 4.24 reappears. 

If we now select Place & Close we revert back to the Schematics editor in Fig. 4.22 with one 
difference: the mouse pointer has become a de voltage source symbol. The source can be posi­
tioned within the drawing area by moving the mouse and then placed by left-clicking once. To 
place the second source, move the mouse some distance, and left-click again to place V2. To stop 
adding sources, we right-click once. Moving the mouse between part placements keeps the parts 
from stacking atop one another in the diagram. In Fig. 4.21, V2 is oriented horizontally. To rotate 
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Wire 

flus Ctrl+B 
Block 

ere 
,gi1cle 
Boi 
P.Qlyline 
lext.,. Ctrl+T 
Text BoJi 
1nsert Picture ... 

Figure 4.23 Getting a new part in Schematics. 

Pait Brnwse, Basic 

Part Name: 

ion: 

+5V 
-5V 
2N1595 
2N5444 
54152.6. 
555D 
7400 
7401 
7402 
7403 
7404 
7405 
7406 
7407 
7408 
7409 
7410 

Full List 

1,ibraries .. , 

e,dvanced >> 

Figure 4.24 The Part Browser window. 

y Brnws:er 13 

E:artName: voe 
~~======:====::=::l 

Description: Simple DC voltage source 

Ps1rt 1.ibrary 
.. l~Pv,/-.,,..L......_ ...... --.. ............. '"=,....!!il ABM. slb 

ISFFM ANALOG.slb 
ISIN BREAKOUT.slb 
ISRC CONNECT.slb 
STIM1 EVAL.slb 
STIM4 PORT.slb 
STIMB 
STIM16 
VE><P 
VPULSE 
VNL_ENH 
VNL_FILE 
VNL 
VSFFM 
VSIN 
VSRC 
VAC 

SOURCE.slb 
SOURCSTM.slb 
SPECIAL.slb 

OK 

Cancel 

Figure 4.25 The Library Browser window. 
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_LV1 
ov -

T 

ov 

Figure 4.26 
The Schematics editor after 
placing the de voltage sources. 

V2 in your schematic, select it by clicking on it once. The part should turn red. In the Edit menu, 
choose Rotate. This causes V2 to spin 90° counterclockwise. Next, we click on V2 and drag it 
to the desired location. A diagram similar to that shown in Fig. 4.26 should result. 

Next, we place the resistors. Repeat the process of I!raw/Get New Part, except this time, 
when the Part Browser Basic dialog box appears, we type in Rand select Place & {:;lose. The 
mouse pointer then becomes a resistor. Place each resistor and right-click when done. Note 
that the resistors are automatically assigned default values of 1 kfl. Current sources are in the 
SOURCE.slb library and are called IDC. Get one, place it, and rotate it twice. The resulting 
schematic is shown in Fig. 4.27. 

The parts can now be interconnected. Go to the I!raw menu and select Wire. The mouse 
pointer will turn into a symbolic pencil. To connect the top ofVl to Rl, point the pencil at the 
end of the wire stub protruding from V 1, click once and release. Next, we move the mouse up 
and over to the left end of Rl. A line is drawn up and over a 90° angle, appearing dashed as 

R1 
___/\,M,­

_LV1 1k 
ov -

T 

IDC 
I 

r:::-'·) 
1(t) OA 

11 I 
Figure 4.27 
The schematic after part 
placement and ready for wiring. 
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R1 
~ - - ---'\/Vy-

_L v1 1k 
ov -

Figure 4.28 T 

ov 
R3 

----vvv-
1k 

R2 

IDC 
I 

©a.A 
11 I 

Caught in the act of connecting 
V1 to R1. 

...J... 

Figure 4.29 

shown in Fig. 4.28. Dashed lines are not yet wires! We must left-click again to complete and 
"cut" the connection. The dashed lines become solid and the wiring connection is made. Ex­
cess wire fragments (extended dashed lines) can be removed by selecting Redraw from the 
Yiew menu. The remaining wires can be drawn using a Schematics shortcut. To reactivate the 
wiring pencil, double right-click. This shortcut reactivates the most recent mouse use. We sim­
ply repeat the steps listed above to complete the wiring. 

PSPICE requires that all schematics have a ground or reference terminal. The ground node 
voltage will be zero and all other node voltages are referenced to it. We can use either the ana­
log ground (AGND) or the earth ground (EGND) part from the PORT.slb library shown in 
Fig. 4.25. Get this part and place it at the bottom of the schematic as shown in Fig. 4.29. Make 
sure that the part touches the bottom wire in the diagram so that the node dot appears in your 
schematic. The wiring is now completed. 

11 

R1 ov R3 

~ IDC 
1k \/1 1k 

1k R2 G)oA 
11 I 

ov 

T 
Schematic with all parts and 
wiring completed. 

1l 
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Step 2: Changing Component Names and Values 

To change the name of Rl to Ra, double-click on the text "Rl." The Edit Reference Designator 
dialog box appears as shown in Fig. 4.30. Simply type in the new name for the resistor, Ra, and 
select OK. Next we will change the resistor's value by double-clicking on the value, "lk." Now 
the Attributes dialog box in Fig. 4.31 appears. Type in 2k and select OK. In a similar manner, 
edit the names and values of the other parts. The circuit shown in Fig. 4.32 is now ready to be saved. 

e Designator 1£.l 

Package 
Reference Designator: Ra 

li!===;;;;;:;;:;;;.;:;;;;;....;;;;;i,I 

Gate: 

Package Type: 
{Footprint) 

RC05 

Cancel 

Set Attribute Value lt3 
VALUE 

2k 

_!;ancel 

Ra 6V Re 

V1 2k 2k 

12V Rb 

T 

Figure 4.30 
Changing the name of R1 to Ra. 

Figure 4.31 
Changing the value of Ra from 
1k to 2k. 

Figure 4.32 
The finished schematic, ready 
for simulation. 
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Step 3: Saving the Schematic 

To save the schematic, simply go to the Eile menu and select Save. All Schematics files are au­
tomatically given the extension .sch. 

The Netlist The netlist is the old-fashioned SPICE code listing for circuit diagrams drawn in 
Schematics. A netlist can be created directly or as part of the simulation process. To create the netlist 
directly, go to the Analysis menu in Fig. 4.22 and select !,;.reate Netlist. You should receive ei­
ther the message Netlist Created or a dialog box informing you of netlist errors. To view the 
netlist, return to the Analysis menu and select Examine Netlist, which opens the file shown in 
Fig. 4.33. All six elements appear along with their proper values. The text $N_001 $N_002 and 
so on are the node numbers that Schematics created when it converted the diagram to a netlist. 

Figure 4.33 
The netlist for our circuit. 

R_Ra 
R_Rc 
V V2 
V=V1 
I_I1 
R_Rb 

SN 0002 SN_0001 
SN=0001 SN_0003 
SN_0002 $N_0003 
SN 0002 0 12V 
0 SN_0003 DC 4mA 
0 SN_0001 3k 

Inserts: Clipboard contents: Ln 1, Col 23 

2k 
2k 

6V 

By tracing through the node numbers we can be assured that our circuit is properly con­
nected. The source Vl is 12 volts positive at node 2 with respect to node 0. EGND is always 
node number zero. Ra connects node 2 to node 1 and so forth . 

How did PSPICE generate these node numbers in this particular order? In PSPICE, the ter­
minals of a part symbol are called pins and are numbered. For example, the pin numbers for 
resistor, de voltage, and current source symbols are shown in Fig. 4.34. None of the parts in Fig. 
4.34 have been rotated. When the Get New Part sequence generates a part with a horizontal 
orientation, like the resistor, pin 1 is on the left. All vertically oriented parts (the sources) have 
pin 1 at the top. In the netlist, the order of the node numbers is always pin 1 then pin 2 for each 
component. Furthermore, when a part is rotated, the pin numbers also rotate. The most critical 
consequence of the pin numbers is current direction. PSPICE simulations always report the 
current flowing into pin 1 and out of pin 2. 

To change the node number order of a part in the netlist, we must rotate that part 180°. 
Note that the order of node numbers for Rb in Fig. 4.33 is node O (EGND) then node 1. 
Accordingly, simulation results for the current in Rb will be the negative of Io as defined in 
Fig. 4.21. To force the netlist to agree with Fig. 4.21, we must rotate Rb twice. To do this, 

pin 1 pin 1 

R1 

Figure 4.34 
pin 1 --''V\/'v- pin 2 

1k 

+ I V1 
-- ov 
-T 4 6~ 

A selection of parts showing 
the pin-numbering format used 
in Schematics. pin 2 

I 
pin 2 
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remove the wiring, click on Rb and select Rotate in the Edit menu twice, rewire and resave 
the file. 

Step 4: Simulating the Circuit 

The node voltages in the circuit are typically of interest to us, and Schematics permits us to iden­
tify each node with a unique name. For example, if we wish to call the node at Rb, Vo, we sim­
ply double-click on the wiring at the output node and the dialog box in Fig. 4.35 will appear. 
Then type Vo in the space shown and select OK. 

, Set Attribute Value l£i 

LABEL 

Vo 

QK ~ancel Figure 4.35 
Creating a custom node name. 

Simulation results for de node voltages and branch currents can be displayed directly on 
the schematic. In the Analysis/Display Results on Schematic menu, choose Enable Voltage 
Display and Enable Current Display. This will display all voltages and currents. Unwanted 
voltage and current displays can be deleted by selecting the data and pressing the DELETE key. 

Individual node voltages can also be displayed using the VIEWPOINT (de voltmeter) from 
the SPECIAL library. VIEWPOINT parts are placed at nodes and display de node voltages with 
respect to ground. We will use a VIEWPOINT part to display Vo and Analysis/D.isplay/Enable 
Current Display for the current, Io. The completed diagram will appear as shown in Fig. 4.36. 

Simulation begins by choosing the type of analysis we wish to perform. This is done by se­
lecting Setup from the Analysis menu. The SETUP dialog box is shown in Fig. 4.37. A Schemat­
ics de analysis is requested by selecting Bias Point Detail then Close. The simulation results 
will include all node voltages, the currents through all voltage sources, and the total power dis­
sipation. These data will be found in the output text file, accessible at Analysis/Examine Out­
put. All VIEWPOINT voltages and currents will also be displayed on the schematic page. 

Figure 4.36 
The finalized circuit, ready for 
simulation. 
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Figure 4.37 

Analysis Setup D 
Enabled 

.2 ave Bias Point... 

QC Sweep ... 

Monte Carlo/worst Case ... 

ftias Point Detail 

Enabled = 
Q.ptions ... 

:=.;.,::,,:::;=.---c"n 

farametric ... 
C 

Sensitivity ... 

T ~mperature ... 

Transfer function ... 

Iransient ... 
The ANALYSIS SETUP window 
showing the kinds of simulation 
we can request. 

Digital Setup ... 

Clearly, a number of different analyses could be requested-for example, a DC Sweep. In 
this case, Schematics will ask for the de source's value you wish to sweep, the start and stop 
values, and the increment. The simulation results will contain all de node voltages and branch 
currents as a function of the varying source value. Two additional analyses, Transient and AC 
Sweep, will be discussed in subsequent chapters. 

After exiting the SETUP dialog box, select Simulate from the Analysis menu. When the 
simulation is finished, your schematic should look much like that shown in Fig. 4.38, where 
Vo and Io are displayed automatically. 

Figure 4.38 
The simulation results: 
Vo = 6.75 V and 
lo= 2.25 mA. 

2k 
V1 ' .. :--- 11 
12V T 3K . :i(2.25mA]! (!) 4mA 

L-----± ...... l.....;__ __J 

Step 5: Viewing and Printing the Results 
All node voltages, voltage source currents, and total power dissipation are contained in the 
output file. To view these data, select Examine Output from the Analysis menu. Within the 
output file is a section containing the node voltages, voltage source currents, and total power 
dissipation as shown in Fig. 4.39. Indeed, Vo is 6.75 V and the total power dissipation is 
5.25 mW. The current bears closer inspection. PSPICE says the currents through Vl and V2 
are 1.75 mA and -4.375 mA, respectively. Recall from the netlist discussion that in PSPICE, 
current flows from a part's pin number 1 to pin 2. As seen in Fig. 4.34, pin 1 is at the positive 
end of the voltage source. PSPICE is telling us that the current flowing top-down through Vl 
in Fig. 4.21 is 1.75 mA, while 4.375 mA flows through V2 left-to-right. Based on the passive 
sign convention, Vl is consuming power while V2 generates power! Since the output file is sim­
ply a text editor, the file can be edited, saved, printed, or copied and pasted to other programs. 
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NODE 
(Vo) 

NODE 
( $N_0002) 

VOLTAGE 
6.7500 

VOLTAGE 
12 . 0000 

NODE 
($N_0001) 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

V V2 
V=Vl 

For Help, press F1 

-4.375E-03 
1.750E-03 

VOLTAGE 
6.0000 

Figure 4.39 
The output file simulation 
results. 

To print the circuit diagram, point the mouse pointer above and left of the upper left hand cor­
ner of the diagram, click left, hold, and drag the mouse beyond the lower right edge of the draw­
ing. A box will grow as you drag, eventually surrounding the circuit. Go to the File menu and select 
Print. The dialog box in Fig. 4.40 will appear. Select the options Only Print Selected Area and 
User Definable Zoom Factor. For most of the small schematics you will create, a scale of 125% 
to 200% will do fine. Other options are self-explanatory. Finally, select OK to print. 

If you prefer that the grid dots not appear in the printout, go to the Options/Display Op­
tions menu and de-select the GRID ON option. To change the grid color, go to the Op­
tions/Display Preferences menu, select Grid and select a color from the drop-down edit box. 

To incorporate your schematic into other applications such as text processors, draw a box 
around the diagram as described above, then under the Edit menu, select .Copy to Clipboard. 
You can now paste the circuit into other programs. 

EPSON Stvlus COLOR 600 on LPTl: 

Scaling~::;::::~==:::=:::::::::::::::::::::::::::::::==:=:::::::::::==:::11 

Auto-fit: one schematic page per printer page 

• 1 User-definable zoom factor: 125 

lan;dscape 

! ~.Qrtrai~ 

% 

Select al 

Page~etup ... 

Ptjnter Select ... 

OK 

Cancel 
Figure 4.40 
The Schematics Print window. 
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LEARNING Example 4.15 

Let us use PSPICE to find the voltage VO and the current / x in the 
circuit in Fig. 4.41. 

Ix 400 200 

Vin 
R1 + R3 

100V Rz Vo 
400 

Figure 4.41 Circuit used in Example 4.15. 

Learning by Application 

LEARNING Example 4.16 

On Monday afternoon, Connie suddenly remembers that she has 
a term paper due Tuesday morning. When she sits at her com­
puter to start typing, she discovers that the computer mouse 
doesn't work. After disassembly and some inspection, she finds 
that the mouse contains a printed circuit board that is powered by 
a 5-V supply contained inside the computer case. Furthermore, 
the board is found to contain several resistors, some op-amps, 
and one unidentifiable device, which is connected directly to the 
computer's 5-V supply as shown in Fig. 4.43a. Using a voltmeter 
to measure the node voltages, Connie confirms that all resistors 
and op-amps are functioning properly and the power supply volt­
age reaches the mouse board. However, without knowing the 
mystery device's function within the circuit, she cannot deter­
mine its condition. A phone call to the manufacturer reveals that 
the device is indeed linear but is also proprietary. With some per­
suasion, the manufacturer's representative agrees that if Connie 
can find the Thevenin equivalent circuit for the element at nodes 
A-B with the computer on, he will tell her if it is functioning 
properly. Armed with a single 1-kO resistor and a voltmeter, 
Connie attacks the problem. 

Unknown 
A 

element 
V=SV 

Figure 4.43 B 
Networks used in 
Example 4.16. (a) 

SOLUTION The PSPICE Schematics diagram is shown in Fig. 4.42. 
From the diagram, we find that VO = 150 V and/ x = - l.25 A. 

1150.00 V I 
400 200 

100V-=- Rz 400 

Figure 4.42 The Schematics diagram for the network in Figure 4.41. 

SOLUTION To find the Thevenin equivalent for the unknown 
device, together with the 5-V source, Connie first isolates nodes 
A and B from the rest of the devices on the board to measure the 
open-circuit voltage. The resulting voltmeter reading is 
V AB = 2.4 V. Thus, the Thevenin equivalent voltage is 2.4 V. 

Then she connects the 1-kO resistor at nodes A-Bas shown in 
Fig. 4.43b. The voltmeter reading is now V AB = 0.8 V. Using 
voltage division to express V AB in terms of V Th, RTh, and R,est in 
Fig. 4.43b yields the expression 

0.8 = VTh( lk ) 
lk + RTh 

Solving the equations for RTh, we obtain 

RTh = 2.0 kO 

Therefore, the unknown device and the 5-V source can be rep­
resented at the terminals A-B by the Thevenin equivalent circuit 
shown in Fig. 4.43c. When Connie phones the manufacturer with 
the data, the representative informs her that the device has in­
deed failed. 

RTh A R111 = 2 kO 

E 
A 

Rtest = 1 kO VAB =0.SV 

B 

(b) 
B 

(c) 
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Learning by Design 

LEARNING Example 4.17 

If the battery current in a laptop computer becomes too large, 
damage may occur to the system components. We wish to de­
sign an overcurrent sensor to protect a laptop from this condition. 

SOLUTION We propose the circuit, shown in Fig. 4.44, to mon­
itor the battery current and output a control signal, OVER, that 
can be used to disconnect the battery. The major components 
employed are a differential amplifier, a comparator, and a resis­
tor used to sense the battery current that supplies the laptop com­
ponents. Under normal operating conditions, the control signal 
voltage is low, typically zero, but if the battery current exceeds 
a predetermined trip point, this voltage becomes high, near V bau. 

The comparator circuit will compare the sensed voltage to a de 
reference, V,,ip, to generate the overcurrent signal. Since the 
power lost in R ,ense is not available to the computer components, 
V sense must be small. However, to provide a reasonably sized volt­
age to the comparator, we will amplify V sense before comparing 
it to V,,ip· A differential amplifier is employed because V sense is 
not referenced to ground. When this amplifier output, V A, ex­
ceeds V,,ip, the comparator output will be approximately equal to 
the de supply voltage, Vbau· 

Using a typical laptop battery voltage of 12 Vanda maxi­
mum power consumption of about 54 W yields a corresponding 

+ 
Vbart-=-

I- - - - - - - - - - - - - - - - - ~ - - -

Differential 
..,. amplifier 

' 
' 

vsense 
+ 

Rsense 

Comparator 

' ' I _________ ___ _ _ _ __ , _ __ _ __ _____ _ __ _ I 

Figure 4.44 A simple overcurrent sensor circuit. 

LEARNING Example 4.18 

LOAD 
( Consists of all 

battery-powered 
components) 

A chemical sensor outputs a voltage proportional to carbon 
monoxide concentration. The defining equation is 

Vs= C/ 250 

where C is carbon monoxide in ppm. In a particular application, 

battery current of 4 .5 A. If we select the current value for the trip 
point to be 9 A, and further select the reference voltage to be 
halfway between the battery voltage and ground, that is, 
Virip = 6 V, then the resistors RA and R8 form a voltage divider 
and each is chosen to be 10 kO. Next, if we choose R sense such 
that the power it consumes during normal operation is 0.5% of 
the total power, then 

(O.OOS)P (0.005) ( 54) 
R ,ense = 2 = 2 = 13.3 mil 

/batt 4.5 

Ohm's law relates V,ense at the trip point to the trip point current, 
and thus 

V ,ense = (It,ip)(Rsense) = (9)(0.0133) = 0.12 V 

Since, at the trip point, VA = vtrip = 6 V, v ,ense must be ampli­
fied by 6/ 0.12 = 50. As indicated earlier, the gain of a differen­
tial amplifier is R2/R1• Ifwe select R1 = 1 kO, then R2 = SO kO 

will produce the proper gain. A PSPICE plot of simulated over­
voltage versus battery current is shown in Fig. 4.45. Note that 
OVER is low until I batt = 9 A, at which point OVER goes high. 
Clearly, other circuitry is needed to interpret the OVER output 
signal, but the design of the sensing circuitry has been completed. 

lOV -

5V 

OV+--_,__--'-- -'--~1- ___.'---'- -'---1 

4A 

D V (OVER) 

8A 

ULOAD 

12A 

Figure 4.45 Simulation results of the overcurrent sensor circuit 
in Figure 4.44. 

the concentration range of interest is 125 to 250 ppm, which cor­
responds to a sensor voltage of 0.5 to 1 V. We want to expand this 
range to produce a new voltage, V0 , between O and 5 V. Let us 
design a circuit that performs this conversion. 
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+ + + 
+ .,. + .,. + .,. 

Vs Sensor Vs Sensor Vs 
Rz Vo Rz vo l Rz 

R1 R1 
V,,2 

+ + + vref -=- vref vref -=-
.,. -J % .,. .,. % .,. -J 

(a) (b) (c) 

Figure 4.46 
(a) The general level shifter. Superposition subcircuits for contributions of (b) V5 and (c) V,et· 

SOLUTION The linear relationship between V O and V s is of 
the form 

V 0 = mV5 + b 

the parameters are set such that a concentration of 125 ppm pro­
duces V s = 0.5 V and V O = 0 V, while 250 ppm yields 
V 5 = 1 V and V 0 = 5 V, then 

0 = m(0.5) + b and 5 = m(l.O) + b 

Solving for m and b, we find m = 10 and b = -5. Therefore, 

4.9 

Now consider the op-amp circuit in Fig. 4.46a, called a level 
shifter. Using superposition, the output voltage can be easily de­
termined. First, we find the contribution of V s to V O by setting V ref 
to zero as shown in Fig. 4.46b. This is the classic noninverting 
gain stage, where 

V 01 = [ 1 + ~:]Vs 
Next, we find the affect of V ref by setting V s to zero. This yields 
the classic inverting gain stage, shown in Fig. 4.46c, where 

Vaz= -[~:Jvref 

Summary 
t Linearity: This property requires both additivity and ho­

mogeneity. Using this property, the voltage or current 
somewhere in a network can be determined by assuming 
a specific value for the variable and then determining 

The output voltage is the sum of these contributions 

V O = [ 1 + ~:]Vs - [ ~:] V ref 
Comparing Eqs. (4.9) and (4.10), we see that 

5 
vref = 9v 

4.10 

Arbitrarily choosing R1 = 10 kO yields R2 = 90 kO. Voltage 
division can produce V ref from a 5-V supply voltage. The final 
circuit is shown in Fig. 4.47, where the unity gain buffer isolates 
the voltage division resistor string from the level shifter. 

+ 

Vs Sensor 

lOkil 

Figure 4.47 The final level shifter circuit. 

what source value is required to produce it. The ratio of 
the specified source value to that computed from the as­
sumed value of the variable, together with the assumed 
value of the variable, can be used to obtain a solution. 



t In a linear network containing multiple independent 
sources, the principle of superposition allows us to compute 
any current or voltage in the network as the algebraic sum 
of the individual contributions of each source acting alone. 

t Superposition is a linear property and does not apply to 
nonlinear functions such as power. 

t Using Thevenin's theorem, we can replace some portion 
of a network at a pair of terminals with a voltage source 
V oc in series with a resistor RTh. V oc is the open-circuit 
voltage at the terminals, and RTh is the Thevenin equiva­
lent resistance obtained by looking into the terminals 
with all independent sources made zero. 

t Using Norton's theorem, we can replace some portion of a 
network at a pair of terminals with a current source I sc in 
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parallel with a resistor RTh. I ,c is the short-circuit current at 
the terminals and RTh is the Thevenin equivalent resistance. 

t Source transformation permits us to replace a voltage 
source V in series with a resistance R by a current source 
I = V /R in parallel with the resistance R. The reverse is 
also true. 

This is an interchange relationship between Thevenin 
and Norton equivalent circuits. 

t Maximum power transfer can be achieved by selecting 
the load RL to be equal to RTh found by looking into the 
network from the load terminals. 

t de PSPICE with Schematic Capture is an effective tool 
in analyzing de circuits. 

Problems 
SECTION 4.1 

For solutions and additional help on problems marked with ~ go to www.wiley.com/college/irwin 

4.1 Find 10 in the circuit in Fig. P4.1 using linearity and 
~ the assumption that / 0 = 1 mA. 

12kil 

Figure P4.1 

4.2 Find / 0 in the network in Fig. P4.2 using linearity and the 
assumption that / 0 = 1 rnA. 

64 V 

Figure P4.2 

2kil 

6kil 

3kil 

2kil 

4.3 Find VO in the network in Fig. P4.3 using linearity and 
the assumption that V0 = 1 mV. 

6V 

2kil 

2kil 

Figure P4.3 

2kil 

2 kil 2kil 

+ 

4.4 Find VO in the circuit in Fig. P4.4 using linearity and the 
assumption that V0 = 1 V. 

4kil + 

Skil 2kil 
~) 

Figure P4.4 
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SECTION 4. 2 -------------------------------

4.5 In the network in Fig. P4.5, find I 0 using superposition. ( 4.9 Find I 0 in the network in Fig. P4.9 using superposition. 
~ ~ 

12V 

6 kD. 

6k0 

Figure P4.5 

6 kD. 

6mA 6 kn 

4.6 Find IO in the circuit in Fig. P4.6 using superposition. 

30V 2 kD. 

Figure P4.6 

4.7 In the network in Fig. P4.7, find VO using superposition. 

+ 

1 kD. 

Figure P4.7 

4.8 Find V O in the network in Fig. P4.8 using superposition. 

Figure P4.8 

6 kD. 

6V 

Figure P4.9 

3 kD. 

2 kD. 2mA 3 kD. 

4.10 Find IO in the network in Fig. P4. l O using superposition. 

6V 

1 kD. 2 kD. 2 kD. 

Figure P4. 10 

4.11 Find I O in the network in Fig. P4. l l using superposition. 

2 kD. 

12V 4 kD. 

Figure P4. 11 

4.12 Find I O in the network in Fig. P4.12 using superposition. 

12 kD. 

Figure P4. 12 
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4.13 Find 10 in the circuit in Fig. P4.13 using superposition. 4.16 Find 10 in the network in Fig. P4.16 using superposition . 

• 

4 kil 
6 kil 

I,, 

Figure P4. 13 

4.14 Use superposition to find 10 in the circuit in Fig. P4.14. 

2kfl 2kfl 

Figure P4. 14 

4.15 Find l O in the network in Fig. P4.15 using superposition. 

6kfl 

6kfl 6kfl 

6kfl 

c__ ___ _ ,__ ___ _, 

lo 

Figure P4. 15 

4mA 

~----l--+f----~ 

2kfl 

Figure P4. 16 

4.17 Find 10 in the network in Fig. P4.17 using super-
• position. 

~-----~+->-------~ 

4kfl 6V 

3kfl 2mA 

+ 9V 4 kil 

2kfl ! () 

Figure P4. 17 

(4.18 Find V0 in the network in Fig. P4.18 using superposition. 
- .---,' 

12V 

~-----~-+~------, 

2mA 

-~·""'~---,.--------0>---~--+-1-----o 

6kfl 

6kfl 

6kfl 

Figure P4. 18 

6 kfl 

+ 

6 kfl v,, 
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SECTION 4. 3 -------------------------------

4.19 Use source transformation to find / 0 in the circuit in 
Fig. P4.19. 

6kil 3kil 

6V 2kil 3kil 

Io 

Figure P4. 19 

4.20 Find VO in the network in Fig. P4.20 using source trans­
formation. 

Figure P4.20 

4.21 Use source transformation to find V0 in the network 
.,. in Fig. P4.21. 

6kil 24V 

Figure P4.21 

4.22 Find V O in the network in Fig. P4.22 using source trans­
formation. 

3kil lkil 

5V 

+ 6V 2 k!l t 1 k!l 

2mA 

Figure P4.22 

4.23 Find / 0 in the circuit in Fig. P4.23 using source 
transformation. 

12kil 

Figure P4.23 

4.24 Find / 0 in the network in Fig. P4.24 using source 
transformation. 

,--------i->----~ 

2mA 

3 k!l 

6k!l 

Figure P4.24 

6mA 

18k!l 

4k!l 

lmA 

+ 

Vo 

12V 



4.25 Use source transformation to find I0 in the circuit in 
._ Fig. P4.25. 

6kfl 3kfl 

12 V 6kfl 

Figure P4.25 3kfl 

4.26 Find VO in the network in Fig. P4.26 using source trans­
formation. 

4kfl 

2kfl 2mA 

Figure P4.26 

+ ~ 

12V 

4.27 Find I 0 in the circuit in Fig. P4.27 using source transfor­
mation. 

9V 

4kfl i 2mA 3kfl 3kfl 

12V 

Figure P4.27 
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4.28 Find / 0 in the network in Fig. P4.28 using source trans­
formation . 

3kfl 4kfl 

Figure P4.28 

4.29 Find I 0 in the network in Fig. P4.29 using source 
._ transformation. 

3 kfl 

6V 3 kfl 

Figure P4.29 

4.30 Find / 0 in the network in Fig. P4.30 using source trans­
formation. 

12 kfl 

6V 

Skfl 2mA 

I,, 

Figure P4.30 
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4.31 Find I O in the network in Fig. P4.31 using source trans­
formation. 

6V 

12kfl 

Figure P4.31 

4.32 Use Thevenin's theorem to find V0 in the network in 
Fig. P4.32. 

12V 2kfl 

Figure P4.32 

4.33 Use Thevenin's theorem to find V0 in the network in 
.,._ Fig. P4.33. 

6V 12V 

+ 

2kfl 4kfl 2kfl v,, 

Figure P4.33 

4.34 Use Thevenin's theorem to find / 0 in the network in 
Fig. P4.34. 

2mA 

.----;-1------, 

6 kfl 2 kfl 

12 V lkfl 

Figure P4.34 

4.35 Find 10 in the network in Fig. P4.35 using Thevenin's 
theorem. 

4kfl 

2kfl 

Figure P4.35 

4.36 Find VO in the circuit in Fig. P4.36 using Thevenin's 
theorem. 

1 kfl 

12 V 1 kfl 

Figure P4.36 



4.37 Find(, in the circuit in Fig. P4.37 using Thevenin's 
~ theorem. 

4 kfl 
6 kfl 

Jo 

Figure P4.37 

4.38 Find / 0 in the network in Fig. P4.38 using Thevenin's 
theorem. 

2 kfl 

2mA 4mA 

12V 2 kfl 

Figure P4.38 

4.39 Find V0 in the circuit in Fig. P4.39 using Thevenin's 
theorem. 

+ 

v;, 

Figure P4.39 
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4.40 Find V0 in the circuit in Fig. P4.40 using Thevenin's 
theorem. 

+ 

6V 4 kfl 

2 kfl 
6 kfl v;, 

2 kfl 

Figure P4.40 

4.41 Find 10 in the network in Fig. P4.41 using Thevenin's 
~ theorem. 

1 kfl 

l mA 2mA 

1 kfl 

Figure P4.41 

4.42 Find IO in the network in Fig. P4.42 using Thevenin's 
theorem. 

2 kfl 

4 kfl 

Figure P4.42 
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4.43 Find/ 0 in the network in Fig. P4.43 using Thevenin's 
theorem. 

2kfl 

12V 4kfl 

Figure P4.43 

4.44 Find / 0 in the network in Fig. P4.44 using Thevenin's 
theorem. 

2kfl 

12V 2mA 

4kfl 2kfl 

Figure P4.44 

4.45 Find V0 in the network in Fig. P4.45 using Thevenin's 
~ theorem. 

Figure P4.45 

4.46 Find V 0 in the network in Fig. P4.46 using Thevenin's 
theorem. 

+ 

6mA 

12 V 

Figure P4.46 

4.47 Use a combination ofThevenin's theorem and superposi­
tion to find V 0 in the circuit in Fig. P4.47. 

4kfl 

+ 

12V 

Figure P4.47 

4.48 In the network in Fig. P4.48, find VO using Thevenin' s 
theorem. 

+ 
12V 

2kfl 1 kfl 

Figure P4.48 



4.49 Find the Thevenin equivalent of the network in 
.,.. Fig. P4.49 at the terminals A-B. 

1000/x 

·>--+--<1 A 

1 k!l 2k!l 2k!l 

~-----------o B 

Figure P4.49 

4.50 Find the Thevenin equivalent of the network in 
Fig. P4.50 at the terminals A-B. 

1 kfl 2 kfl 

+ 

1 kfl 

~-----<11>---------u B 

Figure P4.50 

4.51 Find V0 in the network in Fig. P4.51 using Thevenin's 
theorem. 

lk!l 

6V 

Figure P4.51 

4.52 Find V O in the network in Fig. P4.52 using Thevenin 's 
theorem. 

+ 

12 V 2kfl 4kfl 

Figure P4.52 
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4.53 Find V0 in the circuit in Fig. P4.53 using Thevenin 's 
.,.. theorem. 

6V 12 V 

Figure P4.53 

4.54 Use Thevenin's theorem to find VO in the circuit in 
Fig. P4.54. 

6V 

+ 

1 kfl 1 kfl 

Figure P4.54 

4.55 Use Thevenin's theorem to find / 0 in the circuit in 
Fig. P4.55. 

20V 

Figure P4.55 

2kfl 4k!l 

2 kfl 

4.56 Find V 0 in the network in Fig. P4.56 using Thevenin's 
theorem. 

+ 
12V + 

2 v,. + 1 kfl V,. 2 k!l 2 kfl 

Figure P4.56 
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4.57 Use Thevenin's theorem to find V0 in the network in 
.,. Fig. P4.57. 

2kfl 

Figure P4.57 

12V 
lkfl 1 k!l 

+ 

4.58 Find V0 in the network in Fig. P4.58 using Thevenin' s 
theorem. 

3V 

Figure P4.58 

4.59 Use Thevenin's theorem to find V 0 in the circuit in 
Fig. P4.59. 

12V 

1 k!l 1 k!l 1 k!l 

Figure P4.59 

+ 

+ 

4.60 Find V0 in the network in Fig. P4.60 using Thevenin's 
theorem. 

2 v.: 
1000 

Figure P4.60 

1 k!l 1 k!l 

4.61 Use Norton's theorem to find V0 in the network in 
.,. Fig. P4.61. 

+ 

6V v,, 

Figure P4.61 

4.62 Find 10 in the network in Fig. P4.62 using Norton's 
theorem. 

Figure P4.62 

4.63 Use Norton's theorem to find l O in the circuit in 
Fig. P4.63. 

3k!l 1 k!l 

Figure P4.63 

4.64 Find 10 in the network in Fig. P4.64 using Norton's 
theorem. 

6V 

6k!l 

2k!l 

Figure P4.64 

3k!l 

3k!l 



4.65 Find 10 in the network in Fig. P4.65 using Norton's 
.,. theorem. 

2k0 

12V 4k0 

Figure P4.65 

4.66 Use Norton's theorem to find V0 in the network in 
Fig. P4.66. 

1 kO 

12 V lkO 

Figure P4.66 

4.67 Find V0 in the network in Fig. P4.67 using Norton's 
theorem. 

4k0 

+ 

6V v,, 

Figure P4.67 
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4.68 Given the linear circuit in Fig. P4.68, it is known that 
when a 2-kO load is connected to the terminals A-B, the 
load current is 10 mA. If a 10-kO load is connected to 
the terminals, the load current is 6 mA. Find the current 
in a 20-kO load. 

Figure P4.68 

4.69 If an 8-kfi load is connected to the terminals of the 
.,. network in Fig. P4.69, VA 8 = 16 V. If a 2-kfi load is 

connected to the terminals, VA 8 = 8 V. Find VA8 if a 
20-kfi load is connected to the terminals. 

Figure P4.69 
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SE CT ION 4. 4 ------------------------------

4.70 Find RL for maximum power transfer and the maximum 
power that can be transferred in the network in Fig. P4.70. 

12V 

3V 

Figure P4. 70 

4.71 Find RL for maximum power transfer and the maximum 
power that can be transferred in the network in 
Fig. P4.71. 

3k!1 

Figure P4.71 

4.72 In the network in Fig. P4.72, find RL for maximum 
power transfer and the maximum power that can be 
transferred to this load. 

2mA 3V 

Figure P4. 72 

4.73 Find RL for maximum power transfer and the maximum 
power that can be transferred in the network in Fig. P4.73. 

Figure P4. 73 

II, 
2000 t 

2k!1 

+ 

SECTION 4. 5 ------------------------------

4.74 Solve problem 4.5 using PSPICE. 

4.75 Solve problem 4.21 using PSPICE. 

4. 76 Solve problem 4.32 using PSPICE. 

4.77 Solve problem 4.36 using PSPICE. 

Typical Problems Found on the FE Exam 

4FE-1 Determine the maximum power that can be delivered 
~ to the load RL in the network in Fig. 4PFE-1. 

Fig. 4PFE-1 

4FE-2 Find the value of the load RL in the network in 
Fig. 4PFE-2 that will achieve maximum power transfer, 
and determine the value of the maximum power. 

+ II, -

2 k!1 1 kD 

12V 

Fig. 4PFE-2 

4FE-3 Find the value of RL in the network in Fig. 4PFE-3 for 
maximum power transfer to this load. 

3!1 

12 V 12 !1 

Fig. 4PFE-3 



Capacitance 
and Inductance 

Have you ever wondered how a tiny camera battery is able to produce a 
blinding flash or how a hand-held "stun gun" can deliver 50,000 V? The an­
swer is energy storage, and in this chapter we introduce two elements that 
possess this property: the capacitor and the inductor. Both capacitors and 
inductors are linear elements; however, unlike the resistor, their terminal 
characteristics are described by linear differential equations. Another dis­
tinctive feature of these elements is their ability to absorb energy from the 
circuit, store it temporarily, and later return it. Elements that possess this en­
ergy storage capability are referred to simply as storage elements. 

Capacitors are capable of storing energy when a voltage is present across 
the element. The energy is actually stored in an electric field not unlike that 
produced by sliding across a car seat on a dry winter day. Conversely, in­
ductors are capable of storing energy when a current is passing through 
them, causing a magnetic field to form. This phenomenon can be demon­
strated by placing a needle compass in the vicinity of a current. The cur­
rent causes a magnetic field whose energy deflects the compass needle. 

A very important circuit, which employs a capacitor in a vital role, is 
also introduced. This circuit, known as an op-amp integrator, produces an 
output voltage that is proportional to the integral of the input voltage. The 
significance of this circuit is that any system (for example, electrical, me­
chanical, hydraulic, biological, social, economic, and so on) that can be 
described by a set of linear differential equations with constant coefficients 
can be modeled by a network consisting of op-amp integrators. Thus, very 
complex and costly systems can be tested safely and inexpensively prior to 
construction and implementation. 

Finally, we examine some practical circuits where capacitors and in­
ductors are normally found or can be effectively used in circuit design. 

5. 1 Capacitors The capacitor is a linear 
circuit element that is capable of storing 
energy in its electric field .. .Page 160 

5.2 Inductors The inductor is a linear 
circuit element that is capable of storing 
energy in its magnetic field .. .Page 165 

5.3 Capacitor and Inductor 
Combinations Capacitors in series 
combine like resistors in parallel, and 
capacitors in parallel combine like resistors 
in series. Inductors combine just like 
resistors .. .Page 172 

5.4 RC Operational Amplifier 
Circuits RC op-amp circuits can be used to 
differentiate or integrate a signal. . .Page 177 

Learning by Application .. .Page 179 

Learning Check .. .Page 182 

Summary .. .Page 182 

Problems .. .Page 182 

159 
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5.1 Capacitors 

LEARNING Hint 
Note the use of the passive 
sign convention. 

Figure 5.1 

A capacitor is a circuit element that consists of two conducting surfaces separated by a non­
conducting, or dielectric, material. A simplified capacitor and its electrical symbol are shown 
in Fig. 5.1. 

A 

Dielectric 

+ 

i = dq 
c/1 

v(t) C 

Capacitor and its electrical 
symbol. (a) (b) 

Figure 5.2 

There are many different kinds of capacitors, and they are categorized by the type of di­
electric material that is used between the conducting plates. Although any good insulator can 
serve as a dielectric, each type has characteristics that make it more suitable for particular 
applications. 

For general applications in electronic circuits (e.g., coupling between stages of amplifica­
tion) the dielectric material may be paper impregnated with oil or wax, mylar, polystyrene, 
mica, glass, or ceramic. 

Ceramic dielectric capacitors constructed of barium titanates have a large capacitance-to­
volume ratio because of their high dielectric constant. Mica, glass, and ceramic dielectric ca­
pacitors will operate satisfactorily at high frequencies. 

Aluminum electrolytic capacitors, which consist of a pair of aluminum plates separated by 
a moistened borax paste electrolyte, can provide high values of capacitance in small volumes. They 
are typically used for filtering, bypassing, and coupling, and in power supplies and motor-start­
ing applications. Tantalum electrolytic capacitors have lower losses and more stable character­
istics than those of aluminum electrolytic capacitors. Figure 5 .2 shows a variety of typical discrete 
capacitors. 

Some typical capacitors 
(courtesy of Cornell Dubilier). 
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In addition to these capacitors, which we deliberately insert in a network for specific ap­
plications, stray capacitance is present any time there is a difference in potential between two 
conducting materials separated by a dielectric. Because this stray capacitance can cause un­
wanted coupling between circuits, extreme care must be exercised in the layout of electronic 
systems on printed circuit boards. 

Capacitance is measured in coulombs per volt or farads. The unit farad (F) is named after 
Michael Faraday, a famous English physicist. Capacitors may be fixed or variable and typically 
range from thousands of microfarads (µF) to a few picofarads (pF). 

However, capacitor technology, initially driven by the modem interest in electric vehicles, 
is rapidly changing. For example, the capacitor in the photograph in Fig. 5.3 was designed and 
built at the Space Power Institute at Auburn University to achieve high energy and high power 
density capacitors for application in electric vehicles and space. This capacitor, which is spe­
cially constructed, is rated at 55 F, 500 joules (J). It is interesting to calculate the dimensions 
of a simple equivalent capacitor consisting of two parallel plates each of area A, separated by 
a distanced as shown in Fig. 5.1. We learned in basic physics that the capacitance of two par­
allel plates of area A, separated by distance d, is 

s0 A 
C=-

d 

where s0 , the permitivity of free space, is 8.85 X 10-12 F /m. If we assume the plates are sep­
arated by a distance in air of the thickness of one sheet of oil-impregnated paper, which is 
about 1.016 X 10-4 m, then 

( 8.85 X 10- 12)A 
55F=----­

l.016 X 10-4 

A = 6.3141 X 108 m2 

and since 1 square mile is equal to 2.59 X 106 square meters, the area is 

A ~ 244 square miles 

which is the area of a medium-sized city! It would now seem that the capacitor in the photo­
graph is much more impressive than it originally appeared. This capacitor is actually con­
structed using multiple layers of a combination of pressed carbon and metal fibers, which are 
heat-treated to adhere to metal foil. The metal foils are connected to form a stack of 18 cells, 
within this geometry. There are literally millions of pieces of carbon and metal fibers employed 
to obtain the required surface area. 

Suppose now that a source is connected to the capacitor shown in Fig. 5.1; then positive 
charges will be transferred to one plate and negative charges to the other. The charge on the ca­
pacitor is proportional to the voltage across it such that 

q = Cv 5.1 

where C is the proportionality factor known as the capacitance of the element in farads. 
The charge differential between the plates creates an electric field that stores energy. Be­

cause of the presence of the dielectric, the conduction current that flows in the wires that con­
nect the capacitor to the remainder of the circuit cannot flow internally between the plates. 
However, via electromagnetic field theory it can be shown that this conduction current is equal 
to the displacement current that flows between the plates of the capacitor and is present any time 
that an electric field or voltage varies with time. 

Our primary interest is in the current-voltage terminal characteristics of the capacitor. Since 
the current is 

. dq 
1=-

dt 

Figure 5.3 
A 55-F, 500-J capacitor and a 
10-in ruler for comparison. 

' 
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LEARNING by Doing 

D 5.1 Write the i-v 
relationship for the 
following capacitors. 

0 .. 
l e + i(t) 

v(t) 

I 0 

(a) 

0 .. 
l e i(t) 

v(t) 

+ I 0 

(b) 

ANSWER 
dv(t) 

(a) i(t) = -C-­
dt 

dv(t) 
(b) i(t) = -c-­

dt 

CAPACITANCE AND INDUCTANCE 

then for a capacitor 

which for constant capacitance is 

Equation (5.2) can be rewritten as 

d 
i = -Cv 

dt 

dv 
i=C ­

dt 

1 
dv = cidt 

5.2 

Now integrating this expression from t = -oo to some time t and assuming v( -oo) = 0 yields 

111 v(t) = - i(x) dx 
C -oo 

5.3 

where v( t) indicates the time dependence of the voltage. Equation (5.3) can be expressed as 
two integrals, so that 

l lto l 1t v(t)=- i(x)dx+- i(x)dx 
C -oo C to 5.4 

I 1t = v(t0 ) + - i(x) dx 
C to 

where v(t0) is the voltage due to the charge that accumulates on the capacitor from time t = -oo 
to time t = t0 . 

The energy stored in the capacitor can be derived from the power that is delivered to the 
element. This power is given by the expression 

dv(t) 
p(t) = v(t)i(t) = Cv(t) -­

dt 

and hence the energy stored in the electric field is 

11 dv(x) 1t dv(x) 
wc(t) = Cv(x)--dx = C v(x) --dx 

-00 dx -00 dx 

1v(1) lv(t ) 
= C v(x)dv(x) = !Cv2(x) 

(-oo) v(-oo) 

= !cv2(t) J 

5.5 

5.6 

since v(t = -oo) = 0. The expression for the energy can also be written using Eq. (5.1) as 

1 q2( t) 
Wc(t) = lC 5.7 

Equations (5.6) and (5.7) represent the energy stored by the capacitor, which, in turn, is equal 
to the work done by the source to charge the capacitor. 

The polarity of the voltage across a capacitor being charged is shown in Fig. 5 .1 b. In the 
ideal case the capacitor will hold the charge for an indefinite period of time if the source is re­
moved. If at some later time an energy-absorbing device (e.g., a flashbulb) is connected across 
the capacitor, a discharge current will flow from the capacitor and, therefore, the capacitor will 
supply its stored energy to the device. 



LEARNING Example 5.1 

If the charge accumulated on two parallel conductors charged 
to 12 V is 600 pC, what is the capacitance of the parallel 
conductors? 

LEARNING Example 5.2 

The voltage across a 5-µF capacitor has the waveform shown in 
Fig. 5.4a. Determine the current waveform. 

SOLUTION Note that 

24 
v(t) = t 

6 X 10- 3 

-24 

0 :St :S 6 m s 

= t + 96 
2 X 10- 3 

6 :St < 8 ms 

= 0 

Using Eq. (5.2), we find that 

Figure 5.4 
Voltage and current waveforms 
for a 5-µF capacitor. 

LEARNING Example 5.3 

8 ms :St 

v(t) (V) 

24V -----

0 6 8 

(a) 

Determine the energy stored in the electric field of the capacitor 
in Example 5.2 at t = 6 ms. 

SOLUTION Using Eq. (5.6), we have 

w(t) = !Cv2(t) 

SECTION 5.1 CAPACITORS 

SOLUTION Using Eq. (5.1), we find that 

and 

Q (600)(10- 12) 
C = - = = 50pF 

V 12 

dv (t) 
i(t) = c-­

dt 

= 5 X 10- 6(4 X 103) 

= 20mA 

i(t) = 5 X 10- 6(-12 X 103) 

= -60 mA 

i( t) = 0 

0 :St :S 6 ms 

0 :S t :S 6 ms 

6 :St :S 8 ms 

6 :St < 8 ms 

8 ms :St 

163 

Therefore, the current waveform is as shown in Fig. 5.4b and 
i(t) = Ofort > 8ms. 

i(t) (mA) '"' 

t (ms) 

At t = 6 ms, 

20..-~~~ ... 

0 6 8 

-60 -
(b) 

w(6 ms) = H5 x 10- 6)(24) 2 

= 1440 µJ 

. 
t (ms( 

E5.1 A 10-µF capacitor has an accumulated charge of 500 nC. Determine the voltage across the ANSWER 0.05 V. 
capacitor. 
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LEARNING Example 5.4 

The current in an initially uncharged 4-µF capacitor is shown in 
Fig. 5.5a. Let us derive the waveforms for the voltage, power, 

Current (µA) 

15 

10 

5 

2 4 o-..-~--~-- ---~------
0.5 1 1.5 2.5 3 3.5 Time (ms) 

-5 

-10-

(a) 

Power (nW) 

60 
50 

40 

30 

20 

10 
0 

2 3.5 

-10 0.5 1 1.5 2.5 4 Time (ms) 

-20 

-30 

(c) 

Figure 5.5 Waveforms used in Example 5.4. 

SOLUTION The equations for the current waveform in the spe­
cific time intervals are 

16 X 10-6t 
i(t) = 2 X 10-3 

= -8 X 10-6 

=0 

0 :5 t :5 2 ms 

2 ms :5 t :5 4 ms 

4 ms< t 

Since v(O) = 0, the equation for v(t) in the time interval 
0 :5 t :5 2 ms is 

and energy and compute the energy stored in the electric field of 
the capacitor at t = 2 ms. 

Voltage (mV) 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0-,::'------------~----'~-· 
0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 

(b) 

Energy (pJ) 

35 

30 

25 

20 

15 

10 

5 

0 
0.5 1 1.5 2 2.5 3 3.5 4 Time (ms) 

(d) 

v(t) = 8(10-3)xdx = 103t2 1 1' (4)(10-6) 0 

and hence, 

v(2 ms) = 103(2 X 10-3)2 = 4 mV 

In the time interval 2 ms :5 t :5 4 ms, 

v(t) = / _6) {' - (8)(10-6)dx + (4)(10-3) 
(4) 10 12(10-3) 

= -2t + 8 X 10-3 



The waveform for the voltage is shown in Fig. 5.5b. 
Since the power is p(t) = v(t)i(t), the expression for 

the power in the time interval O s t s 2 ms is p( t) = 8t3• 

In the time interval 2 ms s t s 4 ms, the equation for the 
power is 

SECTION 5.2 INDUCTORS 

In the time interval O s t s 2 ms, 

w(t) = l 1
8x3 dx = 2t4 

Hence, 

w(2ms) = 32pJ 

In the time interval 2 s t s 4 ms, 
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p( t) = -(8)( 10-6)(-2t + 8 X 10-3) 

= I6(10-6)t - 64(10- 9) 

The power waveform is shown in Fig. 5.5c. Note that during the 
time interval O s t s 2 ms, the capacitor is absorbing energy 
and during the interval 2 ms s t s 4 ms, it is delivering energy. 

The energy is given by the expression 

w(t) = 1~IOJ(I6 X 10--6)x - (64 X 10-9)]dx + 32 X 10- 12 

= [(8 X 10-6)x2 - (64 X 10-9)x];xl0-, + 32 X 10- 12 

= ( 8 X 10-6)t2 - ( 64 X 10-9)t + 128 X 10- 12 

w(t) = l 1
p(x)dx + w(t0 ) 

to 

From this expression we find that w( 2 ms) = 32 pJ and 
w( 4 ms) = 0. The energy waveform is shown in Fig. 5.5d. 

E5.2 The voltage across a 2-µF capacitor is shown in Fig. E5.2. 
Determine the waveform for the capacitor current. 

v(t) (V) 

0 1 2 3 4 5 

ANSWER 

A i(t) (mA) 12------
6 ~ 

0 1 2 3 4 5 
Figure E5.2 

6 t (ms) -6 
I t (ms) 

________ __. 

E5.3 Compute the energy stored in the electric field of the capacitor in Ex- ANSWER w = 144 µJ. 
tension Exercise E5.2 at t = 2 ms. 

5.2 Inductors 

An inductor is a circuit element that consists of a conducting wire usually in the form of a 
coil. Two typical inductors and their electrical symbols are shown in Fig. 5.6. Inductors are 
typically categorized by the type of core on which they are wound. For example, the core 
material may be air or any nonmagnetic material, iron, or ferrite. Inductors made with air 
or nonmagnetic materials are widely used in radio, television, and filter circuits. Iron-core 
inductors are used in electrical power supplies and filters. Ferrite-core inductors are wide­
ly used in high-frequency applications. Note that in contrast to the magnetic core that con­
fines the flux, as shown in Fig. 5.6b, the flux lines for nonmagnetic inductors extend beyond 
the inductor itself, as illustrated in Fig. 5.6a. Like stray capacitance, stray inductance can 
result from any element carrying current surrounded by flux linkages. Figure 5.7 shows a 
variety of typical inductors. 
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i(t) 

+ 

v(t) 

(a) 
Figure 5.6 

/Flux lines 

i(t) 

i(t) 

+ 

v(r) L 

(b) (c) 

Two inductors and their electrical symbol. 

LEARNING Hint 
Note the use of the passive 
sign convention , as illustrated 
in Fig. 5.6. 

LEARNING by Doing 

D 5.2 Write the i-v re­
lationship for the follow­
ing inductors. 

~ v:_JL 
(a) 

ANSWER 
di(t) 

(a) v(t) = -L -
dt 

di(t) 
(b)v(t) = L-

.. dt 

Figure 5.7 
Some typical inductors 
(courtesy of Coilcraft). 

From a historical standpoint, developments that led to the mathematical model we employ to rep­
resent the inductor are as follows. It was fust shown that a current-carrying conductor would pro­
duce a magnetic field. It was later found that the magnetic field and the current that produced it were 
linearly related. Finally, it was shown that a changing magnetic field produced a voltage that was 
proportional to the time rate of change of the current that produced the magnetic field; that is, 

di(t) 
v(t)=L- 5.8 

dt 

The constant of proportionality L is called the inductance and is measured in the unit henry, 
named after the American inventor Joseph Henry, who discovered the relationship. As seen in 
Eq. (5.8), 1 henry (H) is dimensionally equal to 1 volt-second per ampere. 

Following the development of the mathematical equations for the capacitor, we find that the 
expression for the current in an inductor is 

1 11 i(t) = - v(x) dx 
L --oo 

5.9 

which can also be written as 

111 i(t) = i(t0) + - v(x)dx 
L to 

5.10 

The power delivered to the inductor can be used to derive the energy stored in the element. This 
power is equal to 

p(t) = v(t)i(t) 

= [ L d~:) }(t) 5.11 



Therefore, the energy stored in the magnetic field is 

wL(t) = j~[ L d~:)}(x)dx 

Following the development of Eq. (5.6), we obtain 

wL(t) = ! Li2(t) J 

SECTION 5.2 INDUCTORS 

5.12 

The inductor, like the resistor and capacitor, is a passive element. The polarity of the volt­
age across the inductor is shown in Fig. 5.6. 

Practical inductors typically range from a few microhenrys to tens of henrys. From a cir­
cuit design standpoint it is important to note that inductors cannot be easily fabricated on an 
integrated circuit chip, and therefore chip designs typically employ only active electronic de­
vices, resistors, and capacitors that can be easily fabricated in microcircuit form. 

LEARNING Example 5.5 

The current in a 10-mH inductor has the waveform shown in 
Fig. 5.8a. Determine the voltage waveform. 

SOLUTION Using Eq. (5.8) and noting that 

20 X 10-3t 
i(t) = 2 X 10-3 0 ::; t :;; 2 ms 

we find that 

20 X 10-3 
v(t) = (10 X 10- 3) 3 2 X 10-

= 100 mV 

and 
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-20 X 10- 3t 

-20 X 10- 3 
v(t) = (10 X 10-3) 3 2 ::; t :;; 4 ms 

i( t) 

and 

----- + 40 X 10- 3 
2 X 10- 3 

i(t) = 0 

i(t) (mA) 

20 

4ms < t 

2 

(a) 

2::;r::;4ms 

4 t (ms) 

Figure 5.8 Current and voltage waveforms for a 10-mH inductor. 

LEARNING Example 5.6 

The current in a 2-mH inductor is 

i(t) = 2 sin377t A 

Determine the voltage across the inductor and the energy stored 
in the inductor. 

SOLUTION From Eq. (5.8), we have 

di(t) 
v(t) = Ldt 

2 X 10-

= -lOOmV 

and v( t) = 0 fort > 4 ms. Therefore, the voltage waveform is 
shown in Fig. 5.8b. 

v(t) (mV) 

100~~~~~ ... 

-100 

2 4 
t (ms) 

(b) 

d = (2 X 10-3)- (2 sin377t) 
dt 

= 1.508 cos 377t V 

and from Eq. (5.12), 

wL(t) = tLi2(t ) 

= H2 X 10-3)(2 sin377t)2 

= 0.004 sin2 377t J 
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LEARNING Example 5.7 

The voltage across a 200-mH inductor is given by the expression 

v(t) = (1 - 3t)e- 3'mV t?: 0 

= 0 t < 0 

Let us derive the waveforms for the current, energy, and power. 

SOLUTION The waveform for the voltage is shown in Fig. 5.9a. 
The current is derived from Eq. (5.10) as 

1031, i(t) = - (1 - 3x)e-3x dx 
200 0 

= s{ l'e-3x dx - 31 1xe-3x dx} 

{ -3x l, [ -3x ]'} = 5 ~ 3 0 
- 3 - ~ (3x + 1) 

0 

Figure 5.9 
Waveforms used in 
Example 5. 7. 

Voltage (mV) 

1.0 

0.8 

0.6 

0.4 

0.2 

-0.2 

Power (µW) 

0.2 

0.15 

0.1 

0.05 

-0.1 

1.5 2 2.5 3 3.5 

(a) 

(c) 

= 5te-3' mA t ?: 0 

= 0 t < 0 

A plot of the current waveform is shown in Fig. 5.9b. 
The power is given by the expression 

p(t) = v(t)i(t) 

= 5t(l - 3t)e-6' µW 

= 0 

t ?: 0 

t < 0 

The equation for the power is plotted in Fig. 5.9c. 
The expression for the energy is 

w(t) = !Li2(t) 

= 2.5t2e-6' µJ t ?: 0 

=O t < 0 

This equation is plotted in Fig. 5.9d. 

Current (mA) 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Time (s) 0 

0.5 1 1.5 2 2.5 3 3.5 

(b) 

Energy (nJ) 

40 

35 

30 

25 

20 

15 

10 
Time (s) 

5 

0 0.5 1 1.5 2 2.5 

(d) 

Time (s) 

Time (s) 
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LEARNING EXTENSIONS ---... - ~-. 

E5.4 The current in a 5-mH inductor has the waveform shown in Fig. E5.4. 
Compute the waveform for the inductor voltage. 

i(t) (mA) 

Figure E5.4 
0 2 3 4 t (ms) 

ANSWER 

v(t) (mV) 

lOO po--.. 

0 

-50 

1 2 3 

E5.5 Compute the energy stored in the magnetic field of the inductor in ANSWER W = 562.5 nJ. 
Extension Exercise E5.4 at t = 1.5 ms. 

CAPACITOR AND INDUCTOR SPECIFICATIONS There are a couple of im-
portant parameters that are used to specify capacitors and inductors. In the case of capacitors, 
the capacitance value, working voltage, and tolerance are issues that must be considered in 
their application. Standard capacitor values range from a few pF to about 50 mF. Capacitors 
larger than 1 Fare available, but will not be discussed here. Table 5.1 is a list of standard ca-
pacitor values, which are typically given in picofarads or microfarads. Although both smaller 
and larger ratings are available, the standard working voltage, or de voltage rating, is typical-
ly between 6.3 V and 500 V. Manufacturers specify this working voltage since it is critical to 
keep the applied voltage below the breakdown point of the dielectric. Tolerance is an adjunct 
to the capacitance value and is usually listed as a percentage of the nominal value. Standard tol-
erance values are ±5%, ± 10%, and ±20%. Occasionally, tolerances for single-digit pF ca-
pacitors are listed in pF. For example, 5 pF ±0.25 pF. 

Table 5.1 Standard capacitor values 

pF pF pF pF µF µF µF µF µF µF µF 

10 100 1000 0.010 0.10 1.0 10 100 1000 10,000 
12 120 1200 0.012 0.12 1.2 12 120 1200 12,000 

1.5 15 150 1500 O.Q15 0.15 1.5 15 150 1500 15,000 
18 180 1800 O.Q18 0.18 1.8 18 180 1800 18,000 

2 20 200 2000 0.020 0.20 2.0 20 200 2000 20,000 
22 220 2200 0.022 0.20 2.2 22 220 2200 22,000 
27 270 2700 0.027 0.27 2.7 27 270 2700 27,000 

3 33 330 3300 0.033 0.33 3.3 33 330 3300 33,000 
4 39 390 3900 0.039 0.39 3.9 39 390 3900 39,000 
5 47 470 4700 0.047 0.47 4.7 47 470 4700 47,000 
6 51 510 5100 0.051 0.51 5.1 51 510 5100 51,000 
7 56 560 5600 0.056 0.56 5.6 56 560 5600 56,000 
8 68 680 6800 0.068 0.68 6.8 68 680 6800 68,000 
9 82 820 8200 0.082 0.82 8.2 82 820 8200 82,000 

4 
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t (ms) 
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Table 5.2 Standard inductor values 

nH nH nH µH µH µH mH mH mH 

1 10 100 1.0 10 100 1.0 10 100 
1.2 12 120 1.2 12 120 1.2 12 
1.5 15 150 1.5 15 150 1.5 15 
1.8 18 180 1.8 18 180 1.8 18 
2 20 200 2.0 20 200 2.0 20 

2.2 22 220 2.2 22 200 2.2 22 
2.7 27 270 2.7 27 270 2.7 27 
3 33 330 3.3 33 330 3.3 33 
4 39 390 3.9 39 390 3.9 39 
5 47 470 4.7 47 470 4.7 47 
6 51 510 5.1 51 510 5.1 51 
7 56 560 5.6 56 560 5.6 56 
8 68 680 6.8 68 680 6.8 68 
9 82 820 8.2 82 820 8.2 82 

There are two principle inductor specifications, inductance and resistance. Standard com­
mercial inductances range from about 1 nH to around 100 mH. Larger inductances can, of 
course, be custom built for a price. Table 5.2 lists the standard inductor values. The current 
rating for inductors typically extends from a few dozen mA's to about 1 A. Tolerances are typ­
ically 5% or 10% of the specified value. 

As indicated in Chapter 2, wire-wound resistors are simply coils of wire, and therefore it 
is only logical that inductors will have some resistance. The major difference between wire­
wound resistors and inductors is the wire material. High-resistance materials such as Nichrome 
are used in resistors and low-resistance copper is used in inductors. The resistance of the cop­
per wire is dependent on the length and diameter of the wire. Table 5.3 lists the American Wire 
Gauge (A WG) standard wire diameters and the resulting resistance per foot for copper wire. 

Table 5.3 Resistance per foot of solid 
copper wire 

AWG No. Diameter (in.) mil/ft 

12 0.0808 1.59 
14 0.0641 2.54 
16 0.0508 4.06 
18 0.0400 6.50 
20 0.0320 10.4 
22 0.0253 16.5 
24 0.0201 26.2 
26 0.0159 41.6 
28 0.0126 66.2 

30 0.0100 105 
32 0.0080 167 
34 0.0063 267 

36 0.0049 428 
38 0.0039 684 
40 0.0031 1094 
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LEARNING Example 5.8 

We wish to find the possible range of capacitance values for a 
51-mF capacitor that has a tolerance of 20%. 

SOLUTION The minimum capacitor value is 0.8C = 40.8 mF, 
and the maximum capacitor value is l.2C = 61.2 rnF. 

LEARNING Example 5.9 

The capacitor in Fig. 5.10a is a 100-nF capacitor with a toler­
ance of20%. If the voltage waveform is as shown in Fig. 5.10b, 
let us graph the current waveform for the minimum and maxi­
mum capacitor values. 

and the minimum capacitor value is 0.8C = 80 nF. The maximum 
and minimum capacitor currents, obtained from the equation 

SOLUTION The maximum capacitor value is 1.2C = 120 nF, are shown in Fig. 5.10c. 
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Figure 5.10 
Circuit and graphs used in Example 5.9. 

dv(t) 
i(t) = c--

dt 

7 

LEARNING by Doing 

D 5.3 Find the possible 
range of capacitance 
values for the following 
capacitors: 

(a) 100 pF with a toler­
ance of 10% 

(b) 8.2 nF with a tolerance 
of5% 

ANSWER (a) 90 pF 
to 110 pF, (b) 7.79 nF 
to 8.61 nF 
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LEARNING Example 5.10 

The inductor in Fig. 5.1 la is a 100-µH inductor with a tolerance 
of 10%. If the current waveform is as shown in Fig. 5 .11 b, let us 
graph the voltage waveform for the minimum and maximum in­
ductor values. 

imum and minimum inductor voltages, obtained from the 
equation 

di(t) 
v(t) = L ­

dt 

SOLUTION The maximum inductor value isl. lL = 110 µH, 
and the minimum inductor value is 0.9L = 90 µH. The max-

are shown in Fig. 5 .11 c. 

-150 L..L..C...L..L.L..L..C...L..L.LL.C...L..L.~...L..L.~...L..L.~...L..L. 

(a) 

Figure 5.11 

0 

Circuit and graphs used in Example 5.10. 
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Time (µ,s) 
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0 

5.3 Capacitor and Inductor Combinations 

10 

- i(t) 

2 

1 

0 
> 1~ - ~ 

;, 
-2 

-3 

-4 
20 30 40 50 60 

Time (µ,s) 

(c) 

SERIES CAPACITORS If a number of capacitors are connected in series, their equivalent 
capacitance can be calculated using KVL. Consider the circuit shown in Fig. 5.12a. For this circuit 

v(t) = v1(t) + v2(t) + vJ(t) + ··· + vN(t) 5.13 

'(t) Vt (t) vz(t) v/t) i(t) 
/~ (- +IC +1c l + le, + I 

C1 Cz C3 I 
I 

v(t) I v (t) 

VN(t) 
I 
I 
I ____________ _J 

Figure 5.12 + 
Equivalent circuit for N series- CN 

connected capacitors. (a) (b) 
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but 

1 11 v;(t) = - i(t) dt + v;(t0) 
C; to 

5.14 

Therefore, Eq. (5.13) can be written as follows using Eq. (5 .14): 

( 
N 1) 11 N 

v(t) = ~ C; 
10 

i(t) dt + ~ v;(t0) 5.15 

1 11 
=- i(t)dt+ v(t0) 

Cs 10 

5.16 

where 
N 

v(to) = L v;(to) 
i= l 

and 
N 1 l 1 1 

5.17 LEARNING Hint 2: - = - + -+ ···+­
i= l C; C1 C2 CN 

Thus, the circuit in Fig. 5.12b is equivalent to that in Fig. 5.12a under the conditions stated 
previously. 

Capacitors in series combine 
like resistors in parallel. 

It is also important to note that since the same current flows in each of the series capaci­
tors, each capacitor gains the same charge in the same time period. The voltage across each ca­
pacitor will depend on this charge and the capacitance of the element. 

LEARNING Example 5.11 

Determine the equivalent capacitance and the initial voltage for 
the circuit shown in Fig. 5.13. 

Figure 5.13 
Circuit containing multiple 
capacitors with initial voltages. 

2V 

+ +2~; 1 
0~µ,F 4V 

6 1-L 

1---i:r---i 
+ 

v(t) 

JV 

SOLUTION Note that these capacitors must have been charged 
before they were connected in series or else the charge of each 
would be equal and the voltages would be in the same direction. 

LEARNING Example 5.12 

Two previously uncharged capacitors are connected in series and 
then charged with a 12-V source. One capacitor is 30 µ,F and 
the other is unknown. If the voltage across the 30-µ,F capacitor 
is 8 V, find the capacitance of the unknown capacitor. 

SOLUTION The charge on the 30-µ,F capacitor is 

The equivalent capacitance is 

1 1 1 1 - = - + - + ­
Cs 2 3 6 

where all capacitance values are in microfarads. 
Therefore, Cs = 1 µ,F and, as seen from the figure, 

v(t0) = -3 V. Note that the total energy stored in the circuit is 

w(to) = ! [2 X 10-6(2)2 + 3 X 10-6(-4)2 + 6 X 10-6(-1)2] 

= 31 µ,J 

However, the energy recoverable at the terminals is 

w c(t0 ) = ! C sV2( t) 

= ![ 1 X 10-6(- 3)2] 

= 4.5 µ,J 

Q = CV = (30 µ,F )(8 V) = 240 µ,C 

Since the same current flows in each of the series capacitors, 
each capacitor gains the same charge in the same time period. 

Q 240 µ,C 
C = - = = 60 µ,F 

V 4V 
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PARALLEL CAPACITORS To determine the equivalent capacitance of N capacitors 
connected in parallel, we employ KCL. As can be seen from Fig. 5.14a, 

i(t) = i1(t) + ii(t) + i3(t) + ... + iN(t) 5.18 

LEARNING Hint 
Capacitors in parallel combine 
like resistors in series. 

where 

i (t) 

+ 

dv(t) dv(t) dv(t) dv(t) 
= C1dt + C2dt + C3dt + ... + CNdt 

= ( f ci) dv(t) 
i= l dt 
dv(t) 

=C-­
P dt 

+ 

i(r) 

----lN(t) 

v(t) C1 C2 C CN 

f-fl>--~~~---~~~---~~~-----~~
3 

----~ 

v(t) 

Figure 5.14 
Equivalent circuit for N 
capacitors connected in 
parallel. 

LEARNING Example 5.13 

Determine the equivalent capacitance at terminals A-B of the 
circuit shown in Fig. 5.15. 

Figure 5.15 
Circuit containing multiple 
capacitors in parallel. 

A 

+ 

v(t) 4µF 

B 

(a) (b) 

SOLUTION cp = 15 µF 

6 µF 2µF 3 µF 

5.19 

5.20 

E5.6 Two initially uncharged capacitors are connected as shown in Fig. E5.6. After a period of ANSWER C1 = 4 µF. 
time, the voltage reaches the value shown. Determine the value of C1• 

+ 

24V 

I C, 
6V + 12 µF 

Figure E5.6 
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.. }t. LEARNING EXTENSION · ;i·:. 
ES. 7 Compute the equivalent capacitance of the network in Fig. ES.7. 

3 µF 
~~µFYILµF 1 

Ceq __. T 2µF 
~( T3µF 

Figure E5. 7 12 µF 

ANSWER Ceq = 1.5 µF. 

SERIES INDUCTORS If N inductors are connected in series, the equivalent inductance of 
the combination can be determined as follows. Referring to Fig. 5.16a and using KVL, we see that 

v(t) = v1(t) + v2(t) + v3(t) + .. · + vN(t) 5.21 

and therefore, 

where 

di(t) di(t) di(t) di(t) 
v(t) = L1 dt + L2dt + ~dt + ··· + LNdt 

= ( ± L;) di(t) 
i = I dt 
di(t) 

= Ls-­
dt 

N 

Ls = LL; = L1 + ~ + · · · + LN 
i = I 

5.22 

5.23 

5.24 

Therefore, under this condition the network in Fig. 5.16b is equivalent to that in Fig. 5.16a. 

i(t) 

+ 

v(t) 

---i 
Lz L 3 J 

I 
I 
I 
I 
I 

t-O---~J..r--------------- I 

(a) 

LEARNING Example 5.14 

i(t) 

+ 

v(t) 

(b) 

LEARNING Hint 
Inductors in series combine like 
resistors in series. 

Figure 5.16 
Equivalent circuit for N series­
connected inductors. 

Find the equivalent inductance of the circuit shown in Fig. 5.17. 

lH 2H 

SOLUTION The equivalent inductance of the circuit shown in 
Fig. 5.17 is 

Figure 5.17 
Circuit containing multiple 
inductors. 

+ 

v(t) 

Ls = lH + 2H + 4H 

= 7H 
4H 
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LEARNING Hint 
Inductors in parallel combine 
like resistors in parallel. 

Figure 5. 18 
Equivalent circuits for N 
inductors connected in parallel. 

LEARNING Example 5.15 

PARALLEL INDUCTORS Consider the circuit shown in Fig. 5.18a, which contains N 
parallel inductors. Using KCL, we can write 

However, 

I 11 iit) = - v(x)dx + ih0) 
L j to 

Substituting this expression into Eq. (5 .25) yields 

where 

( 
N 1) 11 N 

i(t) = ft1 L j 
10 

v(x) dx + ft1 iho) 

I 11 = - v(x)dx + i(t0) 

LP to 

1 1 1 1 1 
- = - + - +-+ ···+­
LP L1 Li L3 LN 

5.25 

5.26 

5.27 

5.28 

5.29 

and i(t0) is equal to the current in LP at t = t0. Thus, the circuit in Fig. 5.18b is equivalent to 
that in Fig. 5.18a under the conditions stated previously. 

i(t) i(t) 

+ 
----; iN(t) 

LN 

J..--0---------------

+ 

v(t) v(t) 

(a) (b) 

Detennine the equivalent inductance and the initial current for the 
circuit shown in Fig. 5.19. 

SOLUTION The equivalent inductance is 

1 1 1 1 
i(t) 

+ 3A 

v(t) 12mH 

Figure 5 . 19 

6A 

6mH 

2A 

4mH 

-= -+- + -
LP 12 6 4 

where all inductance values are in millihenrys 

LP = 2 mH 

and the initial current is i(t0) = -1 A. 

Circuit containing multiple inductors with initial currents. 

The previous material indicates that capacitors combine like conductances, whereas in­
ductances combine like resistances. 
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a,"f!t· LEARNING EXTENSION'.:-;!,.,, 

E5.8 Determine the equivalent inductance of the network in Fig. E5.8 if all inductors are 6 mH. ANSWER 9.429 mH. 

L eq 

Figure E5.8 

5.4 RC Operational Amplifier Circuits 

Two very important RC op-amp circuits are the differentiator and the integrator. These circuits are 
derived from the circuit for an inverting op-amp by replacing the resistors RI and R2 , respective­
ly, by a capacitor. Consider, for example, the circuit shown in Fig. 5.20a. The circuit equations are 

d ( ) V0 - v_ . 
C, - V1 - V_ + = L 

dt R2 

However, v_ = 0 and i_ = 0. Therefore, 

dv1(t) 
V0 (t) = -R2C1 -dt-

Thus, the output of the op-amp circuit is proportional to the derivative of the input. 
The circuit equations for the op-amp configuration in Fig. 5.20b are 

V1 - V_ d ( ) . --- + C2 - Vo - v_ = L 
R1 dt 

but since v_ = 0 and i_ = 0, the equation reduces to 

V1 dV0 
- =-C, -
R1 - dt 

Rz 

C1 
v_ 1 i_ 

V i+ 
+ r-- + 

v1 (t) Vo 

.,,. 

(a) 

Figure 5.20 Differentiator and integrator operational amplifier circuits. 

5.30 

Cz 

(b) 

LEARNING Hint 
The properties of the ideal 
op-amp are 
v. = v_andi. = i_ = 0. 

+ 

Vo 
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or 

1 [' = - v1(x)dx + vo(O) 
R,C2 o 

5.31 

If the capacitor is initially discharged, then v0 ( 0) = O; hence, 

1 11 v0 (t) = - - v,(x)dx 
R,C2 o 

5.32 

Thus, the output voltage of the op-amp circuit is proportional to the integral of the input voltage. 

LEARNING Example 5.16 

The waveform in Fig. 5.21a is applied at the input of the differ­
entiator circuit shown in Fig. 5.20a. If R2 = 1 kfl and 
C 1 = 2 µ,F, determine the waveform at the output of the op-amp. 

SOLUTION Using Eq. (5 .30), we find that the op-amp output is 

Figure 5.21 

dv 1 (t) 
v0 (t) = -R2C1 -­

dt 

= -(Z)l0_3 dv 1(t) 
dt 

v1(t) (V) 

Input and output waveforms 
for a differentiator circuit. 

LEARNING Example 5.17 

If the integrator shown in Fig. 5.20b has the parameters 
R 1 = 5 kfl and C2 = 0.2 µ,F, determine the waveform at the 

vi(t)(mV) r 
20 -

dv1(t) /dt = (2)103 for O ::::; t < 5 ms, and therefore, 

v0 (t) = - 4 V Q::::;r<5ms 

dv 1(t) /dt = -(2)103 for 5 ::::; t < 10 ms, and therefore, 

Hence, the output waveform of the differentiator is shown in 
Fig. 5.21b. 

v)t)(V) 

+4 

t (ms) 0 5 -4----- 10 t (ms) 

op-amp output if the input waveform is given as in Fig. 5.22a 
and the capacitor is initially discharged. 

... 

v/t)(V) jo 
I 0.1 0.2 0.3 0.4 

0 0.1 0.2 0.3 0.4 t (s)~ t (s) 
... 

- 20 I 

(a) (b) 

Figure 5.22 Input and output waveforms for an integrator circuit. 
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SOLUTION The integrator output is given by the expression 

which with the given circuit parameters is 
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In the interval O :s t < 0.1 s, v1(t) = 20 mV. Hence, 

v0 (t) = -103(20)10-3t O :'.St< 0.1 s 

= -20t 

At t = 0.1 s, v0 (t) = -2 V. In the interval from 0.1 to 0.2 s, the 
integrator produces a positive slope output of 20t from 
v0 (0.l) = -2Vtov0 (0.2) = OV.Thiswaveformfromt = Oto 
t = 0.2 s is repeated in the interval t = 0.2 to t = 0.4 s, and 
therefore, the output waveform is shown in Fig. 5.22b. 

E5.9 The waveform in Fig. E5.9 is applied to the input terminals of the 
op-amp differentiator circuit. Determine the differentiator output wave­
form if the op-amp circuit parameters are C1 = 2 F and R2 = 2 fl. 

ANSWER 

v)t) (V) 

24 

vi(t) (V) 

2 
Figure E5.9 

Learning by Application 

LEARNING Example 5.18 

An excellent example of capacitor operation is the memory in­
side a personal computer. This memory, called dynamic random 
access memory (DRAM) contains as many as half a billion data 
storage sites called cells (circa 2000). Expect this number to 
roughly double every two years for the next decade or two. Let 
us examine in some detail the operation of a single DRAM cell. 

D~ 

s:nse 1 Cout I1eak 

amps I 450 fF 50 pA 

0 

(a) 

2 

t (s) 

t (s) 

SOLUTION Figure 5.23a shows a simple model for a DRAM 
cell. Data are stored on the cell capacitor in true/false ( or l /0) 
format, where a large capacitor voltage represents a true con­
dition and a low voltage represents a false condition. The 
switch closes to allow access from the processor to the DRAM 
cell. Current source l,eak is an unintentional, or parasitic, current 

+C::i + 
1.5V I 450 IF 50 fF I 3V 

+ 
Ccell 

50 IF I v,.,, (,) 

(b) ( c) 

Figure 5.23 A simple circuit model showing (a) the DRAM memory cell, (b) the effect of charge 
leakage from the cell capacitor, and (c) cell conditions at the beginning of a read operation. 

( continued) 
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that models charge leakage from the capacitor. Another parasitic 
model element is the capacitance, C0 ut , the capacitance of the 
wiring connected to the output side of the cell. Both /1eak and C 0 u, 

have enormous impacts on DRAM performance and design. 
Consider storing a true condition in the cell. A high voltage of 

3.0 Vis applied at node l/0 and the switch is closed, causing the volt­
age on Ccell to quickly rise to 3.0 V. We open the switch and the data 
are stored. During the store operation the charge, energy and num­
ber of electrons, n, used are 

Q = CV = (so X 10- 15)(3) = 150 fC 

w = !cv2 = (O.s)(so x 10- 15)(32) = 22s n 

n = Q/q = 150 X 10- 15/ (1.6 X 10- 19) = 937,500electrons 

Once data are written, the switch opens and the capacitor be­
gins to discharge through /1eak . A measure of DRAM quality is 
the time required for the data voltage to drop by half, from 3.0 V 
to 1.5 V. Let us call this time t H. For the capacitor, we know 

Vce11(t) = _ l_ f icell dt V 
c cell 

where, from Fig. 5.23b, iceu( t) = -/1eak. Performing the integral 
yields 

1 j( ) /leak 
Vce11(t) = -- -/leak dt = - -- t + K 

C ceu Cce11 

We know that at t = 0, Vcell = 3 V. Thus, K = 3 and the cell 
voltage is 

_ 3 /leak V 
VcelJ(t) - - - t 5.33 

c cell 

Substituting t = tH and Vcen(tH) = 1.5 V into Eq. 5.33 and solving 
fort H yields t H = 15 ms. Thus, the cell data are gone in only a few 
milliseconds! The solution is rewriting the data before it can dis­
appear. This technique, called refresh, is a must for all DRAM using 
this one-transistor cell. 

To see the affect of C0 ut, consider reading a fully charged 
( Veen = 3.0 V) true condition. The l/0 line is usually precharged 

LEARNING Example 5.19 

Traditionally, integrated circuits, or ICs, are built on silicon die 
and packaged by gluing the die to a mechanical base and con­
necting small wires called wirebonds (1 µ,m diameter) from the 
die to the package's external leads as seen in Fig. 5.24a. The 
wirebond, like any piece of wire, has inductance (about 2 nH), 
which can affect circuit performance. Since 

dil(t) 
vL(t) = L----;;, 5.34 

any IC that has large current transients has undesirable volt­
age transients across its wirebonds. This is particularly trou-

to half the data voltage. In this example, that would be 1.5 V as 
seen in Fig. 5.23c. ( To isolate the effect of C0 ut, we have removed 
/leak·) Next, the switch is closed. What happens next is best 
viewed as a conservation of charge. Just before the switch clos­
es, the total stored charge in the circuit is 

QT = Qout + Q cell = V1; 0Caut + v cellccell = 
(1.5)(450 X 10- 15) + (3)(50 X 10- 15 ) = 825 fC 

When the switch closes, the capacitor voltages are the same (let 
us call it V 0 ) and the total charge is unchanged. 

QT= 825 fC = v ocout + v oc cell = 
Va( 450 X 10-15 + 50 X 10- 15) 

and 
V0 = 1.65 V 

Thus, the change in voltage at Vl/0 during the read opera­
tion is only 0.15 V. A very sensitive amplifier is required to quick­
ly detect such a small change. In DRAMs, these amplifiers are 
called sense amps. How can Veen change instantaneously when the 
switch closes? It cannot. In an actual DRAM cell, a transistor, 
which has a small equivalent resistance, acts as the switch. The 
resulting RC time constant is very small, indicating a very fast cir­
cuit. Recall that we are not analyzing the cell's speed-only the 
final voltage value, V 0 • As long as the power lost in the switch 
is small compared to the capacitor energy, we can be comfortable 
in neglecting the switch resistance. By the way, if a false condi­
tion (zero volts) were read from the cell, then V0 would drop 
from its precharged value of 1.5 V to 1.35 V-a negative change 
of 0.15 V. This symmetric voltage change is the reason for 
precharging the l/0 node to half the data voltage. Review the ef­
fects of /leak and C 0 u,· You will find that eliminating them would 
greatly simplify the refresh requirement and improve the voltage 
swing at node l/0 when reading data. DRAM designers earn a 
very good living trying to do just that. 

blesome in the ground wirebond of digital switching ICs 
since the current there can be large. The voltage transient on 
the ground connection is called ground bounce. From 
(Eq. 5 .34), there are three ways to decrease ground bounce: 
lower the inductance, decrease the current level, or operate at 
slower speeds. The last solution is no solution at all since we 
all want faster and faster electronics. However, the first two 
ideas have merit. In fact, manufacturers of very-high-speed 
ICs are presently (circa 2000) changing from wirebond to 
flip-chip connections where small solder balls provide elec­
trical contact and the die is mounted upside down as seen in 
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Figs. 5.24b and c. This decreases the parasitic inductance to around 
0.1 nH. Let us investigate the effects of flip-chip ball inductance 
on ground bounce. 

SOLUTION Consider the circuit in Fig. 5.25a where ic(t) and 
Lball model the current required by a single digital gate (smallest 
subcircuit)and the flip-chip ball inductance, respectively. The re­
sulting ground bounce, Vc8(t), shown in Fig. 5.25b, is ±0.1 mV, 
only 0.004% of a typical 2.5-V supply voltage. Now consider a 
more realistic scenario where the IC contains 100,000 gates with 
10% of them switching at the same time, 10,000 switching gates. 

(a) 

Figure 5.24 

(b) 

The current through Lball increases 10,000 times and, from Eq. 
(5.34), ground bounce increases by the same factor to± 1 V, an 
unacceptable level. Thus, we resort to the second solution: 
less current. Instead of having all the logic gates connected to 
the same ground connection, we use many ground connections 
(balls) and divide the gates among them. For example, if we di­
vide our 100,000 gates equally between 100 ground balls, then 
there are only 1000 gates/ball. If only 10% of those switch at the 
same time (100 gates), then the ground bounce, shown in 
Fig. 5.25b, is only 10 mV, 0.4% of the supply voltage, which can 
be tolerated. 

» 1 ( l ( 1 ( 1 ( 1 ( I 

55 
(c) 

In wirebonded packages, (a) small wirebonds connect the die to the package. In flip-chip attachment, 
small solder balls are placed on the die 's contact points (b), then the die is flipped onto the package (c). 
Under heat, the solder flows, forming the electrical contacts. 

50 

40 

30 
Vee ~ 

~ 20 

i0 (t) .:} 10 
+ 

VGB(t) 
0 

- 10 
.,. 0 25 50 75 100 

Time (µs) 

(a) (b) 

Figure 5.25 
(a) An equivalent circuit for a single logic gate and (b) the resulting 
ground bounce. 
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Summary 
t The important (dual) relationships for capacitors and 

inductors are as follows: 

q = Cv 

dv(t) 
i(t) = c-­

dt 

1 1' v(t) = - i(x) dx 
C -oo 

dv(t) 
p(t) = Cv(t) -­

dt 

di( t) 
v(t) = L­

dt 

1 1' i(t) = - v(x)dx 
L -oo 

di(t) 
p(t) = Li(t) -

dt 

t The passive sign convention is used with capacitors and 
inductors. 

t In de steady state a capacitor looks like an open circuit and 

an inductor looks like a short circuit. 

t Leakage resistance is present in practical capacitors and 
inductors. 

t When capacitors are interconnected, their equivalent capac­
itance is determined as follows : Capacitors in series com­
bine like resistors in parallel and capacitors in parallel 
combine like resistors in series. 

t When inductors are interconnected, their equivalent induc­
tance is determined as follows: Inductors in series combine 
like resistors in series, and inductors in parallel combine 
like resistors in parallel. 

t RC operational amplifier circuits can be used to differenti­
ate or integrate an electrical signal. 

Problems For solutions and additional help on problems marked with .,. go to www.wiley.com/ college/irwin 

SECTION 5 .1 ------- - - - --------- - ------- ----

5.1 An uncharged 100-µF capacitor is charged by a 
• constant current of 1 mA. Find the voltage across the 

capacitor after 4 s. 

5.2 A 12-µF capacitor has an accumulated charge of 
480 µC. Determine the voltage across the capacitor. 

5.3 A capacitor has an accumulated charge of 600 µC with 
5 V across it. What is the value of capacitance? 

5.4 A 25-µF capacitor initially charged to -10 V is charged 
by a constant current of 2.5 µA. Find the voltage across 
the capacitor after 2 ! min. 

5.5 The energy that is stored in a 25-µF capacitor is 
..,. w(t) = 12 sin2 377t J. Find the current in the capacitor. 

5.6 An uncharged 10-mF capacitor is charged by the current 
i(t) = 10 cos 377t mA. Find (a) the expression for the 
voltage across the capacitor and (b) the expression for the 
power. 

5.7 The voltage across a 100-µF capacitor is given by the 
expression v( t) = 120 sin 377t V. Find (a) the current in 
the capacitor and (b) the expression for the energy stored 
in the element. 

5.8 A capacitor is charged by a constant current of 2 mA and 
results in a voltage increase of 12 Vin a 10-s interval. 
What is the value of the capacitance? 

5.9 The current in a 100-µF capacitor is shown in 
• Fig. PS.9. Determine the waveform for the voltage 

across the capacitor if it is initially uncharged. 

10
1 i(<) (mA) 

Io 1 2 t (ms) 

Figure P5.9 

5.10 The voltage across a 100-µF capacitor is shown in 
Fig. PS.10. Compute the waveform for the current in the 
capacitor. 

v(t) (V) 

0 1 2 3 t (ms) 

Figure P5. 10 



5.11 The voltage across a 6-µF capacitor is shown in Fig. P5.1 l. 
Compute the waveform for the current in the capacitor. 

v(t) (V) 

2 

0 1 2 3 4 t (ms) 

Figure P5. 11 

5.12 The voltage across a 50-µF capacitor is shown in 
Fig. P5.12. Determine the current waveform. 

v(t) (V) 

Figure P5. 12 

5.13 The voltage across a 2-µF capacitor is given by the 
• waveform in Fig. PS.13. Compute the current waveform. 

v(t) (V) 

2 3 6 

t (ms) 

-12 

Figure P5. 13 
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5.14 The voltage across a 0.1-F capacitor is given by the 
waveform in Fig. P5.14. Find the waveform for the cur­
rent in the capacitor. 

+12 

t (s) 

-12 

Figure P5. 14 

5.15 The waveform for the current in a 200-µF capacitor is 
shown in Fig. P5.15. Determine the waveform for the 
capacitor voltage. 

i(t) (mA) 

5 

0 1 2 3 4 t (ms) 

Figure P5. 15 

5.16 Draw the waveform for the current in a 12-µF capacitor 
when the capacitor voltage is as described in Fig. P5.16. 

v(t) (V) 

12 

16 
I 

t (µ,s) 
-8 

Figure P5. 16 
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5.17 Draw the waveform for the current in a 3-µF capaci-
~ tor when the voltage across the capacitor is given in 

Fig. PS.17. 

v(t) (V) 

4 

2 

-1 
0 

Figure P5. 17 

2 4 

5.18 The waveform for the current in a 100-µF initially un­
charged capacitor is shown in Fig. PS .18. Determine the 
waveform for the capacitor's voltage. 

i(t) (mA) 

5 

0 
--+-0--1-1- +--2 --11-3--1-4- -1-5- - t (ms) 

-5 

Figure P5. 18 

5.19 The voltage across a 6-µF capacitor is given by the 
waveform in Fig. P5 .19. Plot the waveform for the capac­
itor current. 

v(t) (V) 

10 

1 ~ 
t (ms) 

Figure P5. 19 

SECTION 5. 2 ------------------------------

5.20 The current in an inductor changes from O to 200 rnA in 
4 ms and induces a voltage of 100 m V. What is the value 
of the inductor? 

5.21 The current in a 100-mH inductor is i(t) = 2 sin 377t A. 
~ Find (a) the voltage across the inductor and (b) the 

expression for the energy stored in the element. 

5.22 A 10-mH inductor has a sudden current change from 
200 rnA to 100 rnA in 1 ms. Find the induced voltage. 

5.23 The induced voltage across a 10-mH inductor is 
v( t) = 120 cos 377t V. Find (a) the expression for the 
inductor current and (b) the expression for the power. 

5.24 The current in a 25-mH inductor is given by the expressions 

i(t)=O t<O 

i(t) = 10(1 - e-')mA t > 0 

Find (a) the voltage across the inductor and (b) the 
expression for the energy stored in it. 

5.25 Given the data in the previous problem, find the voltage 
~ across the inductor and the energy stored in it after 1 s. 

5.26 The current in a 50-µH inductor is specified as follows: 

i(t)=O t<O 

t > 0 

Find (a) the voltage across the inductor, (b) the time at 
which the current is a maximum, and (c) the time at 
which the voltage is a minimum. 

5.27 The current 

i(t) = 0 

i(t) = lOOe-,ftoA 
t < 0 

t > 0 

is present in a 150-mH inductor. Find both the voltage 
across the inductor and the energy stored in it after 5 sec. 

5.28 The current in a 10-mH inductor is shown in Fig. P5.28. 
Find the voltage across the inductor. 

i(t)(mA) 

+5 

8 t (ms) 

Figure P5.28 



5.29 The current in a 50-mH inductor is given in 
~ Fig. PS.29. Sketch the inductor voltage. 

i(t) (mA) 

100 - - - - - - - - - - - -

0 

- 100 - - - - -

Figure P5.29 

5.30 The current in a 16-mH inductor is given by the wave­
form in Fig. P5.30. Find the waveform for the voltage 
across the inductor. 

i(t) (A) 

- 12 t (ms) 

- 24 

Figure P5.30 

5.31 Draw the waveform for the voltage across a 10-mH in­
ductor when the inductor current is given by the wave­
form shown in Fig. P5.31. 

t (s) 

Figure P5.31 
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5.32 The voltage across a 10-mH inductor is shown in Fig. P5.32. 
Determine the waveform for the inductor current. v( t) = 0, 
t < 0. 

v(t) (mV) 

10 

t (ms) 

Figure P5.32 

5.33 The waveform for the voltage across a 20-mH induc-
~ tor is shown in Fig. PS.33. Compute the waveform for 

the inductor current. v(t) = 0, t < 0. 

v(t) (mV) 

10--.-~~~ ...... 

0 1 t (ms) 

- 20 

Figure P5.33 

5.34 The voltage across a 2-H inductor is given by the wave­
form shown in Fig. P5.34. Find the waveform for the cur­
rent in the inductor. v(t) = 0, t < 0. 

v(t) (mV) 

1 

Figure P5.34 
0 1 3 t (ms) 4 5 2 

5.35 Find the possible capacitance range of the following 
capacitors. 

(a) 0.068 µ,F with a- tolerance of 10% 

(b) 120 pF with a tolerance of 20% 

(c) 39 µ,F with a tolerance of 20% 
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5.36 The capacitor in Fig. P5.36a is 51 nF with a tolerance of 
10%. Given the voltage waveform in Fig. P5.36b, graph 
the current i(t) for the minimum and maximum capaci­
tor values. 

i(t) ,C,)B 
(a) 

Figure P5.36 

> 

60 

40 

20 

0 

~ -20 

-40 

-60 

-

-

-
f--

f--

f--

0 

/\ 
I \ 

\ I 
' I 

1 2 3 4 5 6 

Time (ms) 

(b) 

5.37 Find the possible inductance range of the following 
~ capacitors. 

(a) 10 mH with a tolerance of 10% 

(b) 2.0 nH with a tolerance of S % 

(c) 68 µH with a tolerance of 10% 

7 

5.38 The inductor in Fig. P5.38a is 330 µ,H with a tolerance 
of 5%. Given the current waveform in Fig. 5.38b, graph 
the voltage v( t) for the minimum and maximum induc­
tor values. 

(a) 

Figure P5.38 

0.5 

0 

-0.5 

-1 

- 1.5 
0 1 2 3 4 

Time (ms) 

(b) 

5 6 

5.39 The inductor in Fig. P5.39a is 4.7 µ,H with a tolerance 
of 20%. Given the current waveform in Fig. 5.39b, 
graph the voltage v(t) for the minimum and maximum 
inductor values. 

15 

10 

5 
<: 
~ 0 

~ -5 

- 15 L....J_L____j____l__-'-----L--l---'---'--'-----J__j_-------'-------'-------'--------

0 10 20 30 40 50 60 70 80 

Time (ms) 

(a) (b) 

Figure P5.39 
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SE CT ION 5. 3 ------------------------------

5.40 What values of capacitance can be obtained by inter­
connecting a 4-µF capacitor, a 6-µF capacitor, and a 
12-µF capacitor? 

5.41 Given a 1-, 3-, and 4-µF capacitor, can they be inter-
.,.. connected to obtain an equivalent 2-µF capacitor? 

5.42 Given four 2-µF capacitors, find the maximum value and 
minimum value that can be obtained by interconnecting 
the capacitors in series/parallel combinations. 

5.43 The two capacitors in Fig. PS.43 were charged and then 
connected as shown. Determine the equivalent 
capacitance, the initial voltage at the terminals, and the 
total energy stored in the network. 

0 

l 
4V r~ 
lV J 3fLF 

Figure P5.43 0 

5.44 The two capacitors shown in Fig. PS.44 have been 
connected for some time and have reached their present 
values. Find V0 • 

0---~1 
~r2µF 

24V J 6 fLF 

Figure P5.44 01-------' 

5.45 The three capacitors shown in Fig. PS.45 have been 
.,.. connected for some time and have reached their pre­

sent values. Find V1 and V2. 

0>------1--+-----~ 
+ 1 

>-----~-2_J ..... _4_fL_F __ ~ 
Figure P5.45 O ~ 

5.46 Select the value of C to produce the desired total capaci­
tance of Cr = 2 µFin the circuit in Fig. PS.46. 

01----------, 

l e 

0>----2-fL_F_J ______ ~T 4 fLF 

Figure P5.46 

5.47 Select the value of C to produce the desired total capaci­
tance of Cr = 1 µFin the circuit in Fig. PS.47. 

Figure P5.47 
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5.48 Find the equivalent capacitance at terminals A-Bin 
Fig. PS.48. 

Figure P5.48 

5.49 Determine the total capacitance of the network in 
~ Fig. PS.49. 

Figure P5.49 

5.50 Find CT in the network in Fig. PS.SO if (a) the switch is 
open and (b) the switch is closed. 

l 

Figure P5.50 

5.51 Find the total capacitance CT of the network in Fig. PS .SI. 

CT -+-

Figure P5.51 

5.52 Compute the equivalent capacitance of the network in 
Fig. PS.S2 if all the capacitors are 4 µF. 

01------..--1 ---1--1 

~ 
Figure P5.52 

5.53 If all the capacitors in Fig. PS.53 are 6 µF, find Ceq. 
~ 

Figure P5.53 



5.54 Given the capacitors in Fig. P5 .54 are C 1 = 2.0 µF with 
a tolerance of 2% and C2 = 2.0 µF with a tolerance of 
20%, find the following. 

(a) The nominal value of Ceq. 

(b) The minimum and maximum possible values of 
C eq· 

( c) The percent errors of the minimum and maximum 
values. 

Figure P5.54 

5.55 The capacitor values for the network in Fig. P5.55 are 
C1 = 0.1 µF with a tolerance of 10%, C2 = 0.33 µF 
with a tolerance of 20%, and C3 = 1 µF with a toler­
ance of 10%. Find the following. 

(a) The nominal value of C eq. 

(b) The minimum and maximum possible values of 

C eq· 

(c) The percent errors of the minimum and maximum 
values. 

0 

I I 1 ceq -+- C1I C2I C3T 
Figure P5.55 0 

5.56 Select the value of L that produces a total inductance of 
Lr = 10 mH in the circuit in Fig. P5.56. 

12mH 

L 7 = lOmH L 

8mH 

Figure P5.56 
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5.57 Find the value of L in the network in Fig. PS.57 so 
... that the total inductance L7 will be 2 mH. 

2mH 

6mH 

Figure P5.57 

5.58 Find the value of Lin the network in Fig. P5.58 so that 
the value of Lr will be 2 mH. 

2mH 

lmH 

6mH 

4mH 

Figure P5.58 

5.59 Determine the inductance at terminals A-Bin the net­
work in Fig. PS.59. 

l mH 

Figure P5.59 
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5.60 Compute the equivalent inductance of the network in 
Fig. P5.60 if all inductors are 4 mH. 

Figure P5.60 

5.61 Determine the inductance at terminals A-B in the 
• network in Fig PS.61. 

lmH 

Figure P5.61 

5.62 Find the total inductance at the terminals of the network 
in Fig. P5.62. 

6mH 3mH 

6mH 

lOmH 

Figure P5.62 

5.63 Given the network shown in Fig. P5.63, find (a) the 
equivalent inductance at terminals A-B with terminals 
C-D short circuited, and (b) the equivalent inductance at 
terminals C-D with terminals A-B open circuited. 

12H 
A o----.._-~ '----~---o C 

B u----.--~AAAJ~-_.,.---o D 
2H 

Figure P5.63 

SECTION 5. 4 ------------------------------

5.64 For the network in Fig. P5.64, choose C such that 

V 0 = -10 j v5 dt 

Source model 

Figure P5.64 

C 

+ 



PROBLEMS l 1e1 

5.65 For the network in Fig. P5.65, Vs(t) = 120 cos 377t V. 5.66 For the network in Fig. P5.66, Vs(t) = 115 sin377tV. 
Find v0 (t). Find v0 (t). 

lk!1 5 J.LF 

+ + 

Vs(t) 

Figure P5.65 Figure P5.66 

Typical Problems Found on the FE Exam 

SFE-1 

• 
SFE-2 

Given three capacitors with values 2 µF, 4 µF, and 
6 µF, can the capacitors be interconnected so that 
the combination is an equivalent 3 µF? 

The current pulse shown in Fig. 5PFE-2 is applied to a 
1-µF capacitor. Determine the charge on the capacitor 
and the energy stored. 

i(t) (A) 

-+--0--~l - - --• t (µs) 

Figure 5PFE-2 

SFE-3 The two capacitors shown in Fig. SPFE-3 have been 
• connected for some time and have reached their 

present values. Determine the energy stored in the 
unknown capacitor Cx. 

24V 

Figure 5PFE-3 
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First- and Second-Order 
Transient Circuits 

We now consider circuits that are in transition from one state to another; 
that is, a circuit may have no forcing function and we suddenly apply one, 
or we instantly remove from a circuit the source of energy. The study of the 
circuit behavior in this transition phase we call a transient analysis. This 
transition is affected by the presence of a capacitor or an inductor, or both, 
since these two elements are capable of storing energy and releasing it over 
some interval of time. Our analysis includes both first-order circuits, those 
containing a single capacitor or inductor, and second-order circuits, those in 
which both a capacitor and inductor are present. 
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6.1 Introduction 

In this chapter we perform what is normally referred to as a transient analysis. We begin our 
analysis with first-order circuits-that is, those that contain only a single storage element. 
When only a single storage element is present in the network, the network can be described by 
a first-order differential equation. 

Our analysis involves an examination and description of the behavior of a circuit as a func­
tion of time after a sudden change in the network occurs due to switches opening or closing. 
Because of the presence of one or more storage elements, the circuit response to a sudden 
change will go through a transition period prior to settling down to a steady-state value. It is 
this transition period that we will examine carefully in our transient analysis. 

One of the important parameters that we will examine in our transient analysis is the cir­
cuit's time constant. This is a very important network parameter because it tells us how fast the 
circuit will respond to changes. We can contrast two very different systems to obtain a feel for 
the parameter. For example, consider the model for a room air-conditioning system and the 
model for a single-transistor stage of amplification in a computer chip. If we change the set­
ting for the air conditioner from 70 degrees to 60 degrees, the unit will come on and the room 
will begin to cool. However, the temperature measured by a thermometer in the room will fall 
very slowly and, thus, the time required to reach the desired temperature is long. However, if 
we send a trigger signal to a transistor to change state, the action may take only a few nanosec­
onds. These two systems will have vastly different time constants. 

Our analysis of first-order circuits begins with the presentation of two techniques for per­
forming a transient analysis: the differential equation approach, in which a differential equa­
tion is written and solved for each network, and a step-by-step approach, which takes advantage 
of the known form of the solution in every case. In the second-order case, both an inductor 
and capacitor are present simultaneously and the network is described by a second-order dif­
ferential equation. Although the RLC circuits are more complicated than the first-order single 
storage circuits, we will follow a development similar to that used in the first-order case. 

Our presentation will deal only with very simple circuits, since the analysis can quickly be­
come complicated for networks that contain more than one loop or one nonreference node. 
Furthermore, we will demonstrate a much simpler method for handling these circuits when we 
cover the Laplace transform later in this book. We will analyze several networks in which the 
parameters have been chosen to illustrate the different types of circuit response. In addition, we 
will extend our PSPICE analysis techniques to the analysis of transient circuits. Finally, a num­
ber of application-oriented examples are presented and discussed. 

We begin our discussion by recalling that in Chapter 5 we found that capacitors and in­
ductors were capable of storing electric energy. In the case of a charged capacitor, the ener­
gy is stored in the electric field that exists between the positively and negatively charged 
plates. This stored energy can be released if a circuit is somehow connected across the ca­
pacitor that provides a path through which the negative charges move to the positive charges. 
As we know, this movement of charge constitutes a current. The rate at which the energy is 
discharged is a direct function of the parameters in the circuit that is connected across the ca­
pacitor's plates. 

As an example, consider the flash circuit in a camera. Recall that the operation of the flash 
circuit, from a user standpoint, involves depressing the push button on the camera that triggers 
both the shutter and the flash and then waiting a few seconds before repeating the process to 
take the next picture. This operation can be modeled using the circuit in Fig. 6.1 a. The voltage 
source and resistor Rs model the batteries that power the camera and flash. The capacitor mod­
els the energy storage, the switch models the push button, and finally the resistor R models the 
xenon flash lamp. Thus, if the capacitor is charged, when the switch is closed, the capacitor volt­
age drops and energy is released through the xenon lamp, producing the flash. In practice this 
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Discharge 
time 

______ Charge ____ _. 

time 

[(R) Xenon lamp] 

w ~ 

(c) 

Figure 6.1 
Diagrams used to describe a camera's flash circuit. 

energy release takes about a millisecond and the discharge time is a function of the elements 
in the circuit. When the push button is released and the switch is then opened, the battery be­
gins to recharge the capacitor. Once again, the time required to charge the capacitor is a func­
tion of the circuit elements. The discharge and charge cycles are graphically illustrated in 
Fig. 6.1 b. Although the discharge time is very fast, it is not instantaneous. To provide further 
insight into this phenomenon, consider what we might call a free-body diagram of the right half 
of the network in Fig. 6. la as shown in Fig. 6. lc (that is, a charged capacitor that is discharged 
through a resistor). When the switch is closed, KCL for the circuit is 

dvc( t) Ve( t) 
C -- + -- =O 

dt R 

or 

dvc(t) 1 
--+-v (t) = 0 

dt RC C 

We will demonstrate in the next section that the solution of this equation is 

Note that this function is a decaying exponential and the rate at which it decays is a function 
of the values of Rand C. The product RC is a very important parameter, and we will give it a 
special name in the following discussions. 
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6.2 First-Order Circuits 

GENERAL FORM OF THE RESPONSE EQUATIONS In our study of first-order 
transient circuits we will show that the solution of these circuits (i.e., finding a voltage or cur­
rent) requires us to solve a first-order differential equation of the form 

dx(t) 
-- + ax(t) = f(t) 

dt . 
6.1 

Although there are a number of techniques for solving an equation of this type, we will obtain 
a general solution that we will then employ in two different approaches to transient analysis. 

A fundamental theorem of differential equations states that if x(t) = xP(t) is any solution 
to Eq. (6.1), and x(t) = xc(t) is any solution to the homogeneous equation 

then 

dx(t) 
-- + ax(t) = 0 

dt 

x(t) = xp(t) + xc(t) 

6.2 

6.3 

is a solution to the original Eq. (6.1). The term x p( t) is called the particular integral solution, 
or forced response, and xc( t) is called the complementary solution, or natural response. 

At the present time we confine ourselves to the situation in which f ( t) = A (i.e., some 
constant). The general solution of the differential equation then consists of two parts that are 
obtained by solving the two equations 

dxp( t) 
-- + axp(t) = A 

dt 

dxc(t) + ax (t) = 0 
dt C 

6.4 

6.5 

Since the right-hand side of Eq. (6.4) is a constant, it is reasonable to assume that the solution 
x p( t) must also be a constant. Therefore, we assume that 

6.6 

Substituting this constant into Eq. (6.4) yields 

6.7 

Examining Eq. (6.5), we note that 

dxc( t )I dt 
= -a 

xc(t) 
6.8 
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This equation is equivalent to 

Hence, 

and therefore, 

Thus, a solution ofEq. (6.1) is 

Inxc(t) = -at + c 

x(t) = xp(t) + xc(t) 

A = - + K2e-a1 
a 

6.9 

6.10 

The constant K 2 can be found if the value of the independent variable x( t) is known at one 
instant of time. 

Equation (6.10) can be expressed in general in the form 

6.11 

Once the solution in Eq. (6.11) is obtained, certain elements of the equation are given names 
that are commonly employed in electrical engineering. For example, the term K1 is referred to 
as the steady-state solution: the value of the variable x( t) as t ~ oo when the second term be­
comes negligible. The constant 'T is called the time constant of the circuit. Note that the sec­
ond term in Eq. ( 6.11) is a decaying exponential that has a value, if 'T > 0, of K 2 for t = 0 and 
a value of O for t = oo. The rate at which this exponential decays is determined by the time 
constant 'T. A graphical picture of this effect is shown in Fig. 6.2a. As can be seen from the fig­
ure, the value of xc(t) has fallen from K2 to a value of 0.368K2 in one time constant, a drop of 
63.2%. In two time constants the value of xc(t) has fallen to 0.135K2 , a drop of 63.2% from 
the value at time t = 'T. This means that the gap between a point on the curve and the final 
value of the curve is closed by 63.2% each time constant. Finally, after five time constants, 
xc(t) = 0.0067 K 2 , which is less than 1 %. 

xc(t) = K 2e-tlT 

K 2 

0.368K2 

0 T 

_______________ t_i _ 

2-r 
I I 

•••---.<·I 
T 

_ _ _ _ _ _ .9§12 Q G 

3-r 

(a) 

Figure 6.2 Time-constant illustrations. 
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Figure 6.2 Continued 

(b) 
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4 

An interesting property of the exponential function shown in Fig. 6.2a is that the initial 
slope of the curve intersects the time axis at a value oft = T. In fact, we can take any point on 
the curve, not just the initial value, and find the time constant by finding the time required to 
close the gap by 63.2%. Finally, the difference between a small time constant (i.e., fast re­
sponse) and a large time constant (i.e., slow response) is shown in Fig. 6.2b. These curves in­
dicate that if the circuit has a small time constant, it settles down quickly to a stei:tdy-state 
value. Conversely, if the time constant is large, more time is required for the circuit to settle down 
or reach steady state. In any case, note that the circuit response essentially reaches steady state 
within five time constants (i.e., 5T). 

Note that the previous discussion has been very general in that no particular form of the cir­
cuit has been assumed-except that it results in a first-order differential equation. 

ANALYSIS TECHNIQUES 
The Differential Equation Approach Equation ( 6.11) defines the general form of the 
solution of first-order transient circuits; that is, it represents the solution of the differential 
equation that describes an unknown current or voltage anywhere in the network. One of the 
ways that we can arrive at this solution is to solve the equations that describe the network 
behavior using what is often called the state-variable approach. In this technique we write 
the equation for the voltage across the capacitor and/or the equation for the current through 
the inductor. Recall from Chapter 5 that these quantities cannot change instantaneously. 
Let us first illustrate this technique in the general sense and then examine two specific 
examples. 

Consider the circuit shown in Fig. 6.3a. At time t = 0, the switch closes. The KCL equa­
tion that describes the capacitor voltage for time t > 0 is 

dv(t) v(t) - V5 c-- + = 0 
dt R 

t = 0 t = 0 

v(t) 

~ C 

(a) (b) 

L 

i(t) 

Figure 6.3 
RC and RL circuits. 
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LEARNING by Doing 

D 6.1 If the capacitor in 
the network in Fig. 6.3a is 
initially charged to Vs/2, 
find the complete solu­
tions for v( t). 

ANSWER 

v(t) - V Vs - r/RC - s - 2 e 

D 6.2 Find i(t) for 
t > 0 in the following 
network: 

ANSWER 
R 

i(t) = Is(l - e-I') 

FIRST- AND SECOND-ORDER TRANSIENT CIRCUITS 

or 

dv(t) v(t) Vs 
--+-=-

dt RC RC 

From our previous development, we assume that the solution of this first-order differential 
equation is of the form 

Substituting this solution into the differential equation yields 

K K K V. _ --3. e- 1/T + _, + _2 e-t/T = _s 
T RC RC RC 

Equating the constant and exponential terms, we obtain 

T = RC 

Therefore, 

where Vs is the steady-state value and RC is the network's time constant. K 2 is determined by 
the initial condition of the capacitor. For example, if the capacitor is initially uncharged (that 
is, the voltage across the capacitor is zero at t = 0), then 

or 

Hence, the complete solution for the voltage v( t) is 

v(t) = Vs - Vse-r/Rc 

The circuit in Fig. 6.3b can be examined in a similar manner. The KVL equation that de­
scribes the inductor current for t > 0 is 

di(t) 
L-- + Ri(t) = Vs 

dt 

A development identical to that just used yields 

Vs -(B.), 
i(t) = - + K2e L 

R 
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where V5/R is the steady-state value and L/R is the circuit's time constant. If there is no ini­
tial current in the inductor, then at t = 0 

and 
\ 

Hence, 

i(t) 

is the complete solution. Note that if we wish to calculate the voltage across the resistor, then 

LEARNING Example 8.1 

Consider the circuit shown in Fig. 6.4a. Assuming that the 
switch has been in position 1 for a long time, at time t = 0 

the switch is moved to position 2. We wish to calculate the 
current i( t) fort > 0. 

v(t) i(t) 

12V C 100 µF 

-:-
(a) 

R1 v(t) i(t) 

(c) 

Figure 6.4 Analysis of RC circuits. 

Rz 
3 kD. 12 V 

i(t) (mA) 

6 kD. 

vc(O-) + 

-:-
(b) t=O-

(d) 

3 kD. 

(continued) 
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SOLUTION At t = 0- the capacitor is fully charged and con­
ducts no current since the capacitor acts like an open circuit to 
de. The initial voltage across the capacitor can be found using 
voltage division. As shown in Fig. 6.4b, 

Vc (O-) = 12( 3k ) = 4 V 
6k + 3k 

The network fort > 0 is shown in Fig. 6.4c. The KCL equation 
for the voltage across the capacitor is 

v(t) dv(t) v(t) 
--+C-- +-=0 

R 1 dt R2 

Using the component values, the equation becomes 

dv (t) 
-- + Sv(t) = 0 

dt 

LEARNING Example 8.2 

The switch in the network in Fig. 6.5a opens at t = 0. Let us 
find the output voltage v 0 (t) fort > 0. 

SOLUTION At t = 0- the circuit is in steady state and the 
inductor acts like a short circuit. The initial current through 
the inductor can be found in many ways; however, we will form 
a Thevenin equivalent for the part of the network to the left of the 
inductor, as shown in Fig. 6.5b. From this network we find that 
I, = 4 A and voe = 4 V. In addition, RTh = 1 n. Hence, 
iL(O-) obtained from Fig. 6.5c is iL(O-) = 4/ 3 A. 

The network for t > 0 is shown in Fig. 6.5d. Note that the 
4-V independent source and the 2-ohm resistor in series with it 
no longer have any impact on the resulting circuit. The KVL 
equation for the circuit is 

di(t) 
-V5 + R1i(t) + L - - + RAt) = 0 

' dt 

which with the component values reduces to 

di(t) 
-- + 2i(t) = 6 

dt 

The solution to this equation is of the form 

The form of the solution to this homogeneous equation is 

If we substitute this solution into the differential equation, we 
find that T = 0.2 s. Thus, 

Using the initial condition vc(O- ) = vc(O+) = 4 V, we find 
that the complete solution is 

Then i(t) is simply 

or 

v(t) = 4e-,;o 2 V 

i(t) = v (t) 
R2 

4 
i(t) = - e-11° 2 mA 

3 

which when substituted into the differential equation yields 

K 1 = 3 

T = 1/ 2 

Therefore, 

Evaluating this function at the initial condition, which is 

we find that 

Hence, 

and then 

i(t) 

- 5 
K2 = -

3 

A plot of the voltage v0 ( t) is shown in Fig. 6.5e. 



SECTION 6.2 FIR ST-ORDER CIRCUITS I 201 

R1 L 

2n 2H + 

11 

2n + 

12V + 
Vs1 R3 2n vo(t) 

12V + 

4V Vs2 

(a) (b) 

1n + 

4V + 2n v/0-) 

(c) 

2n 2H + 

6 ·-· ------· --· -:.:.:· -.. -----------------·------

(d) (e) 

Figure 6.5 Analysis of an RL circuit. 
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Dr/,...,.~. •1.>.~ 

LE AR I\IJ.~ G EK TEN,~ ID NS 

E6.1 Find vc( t) fort > 0 in the circuit shown in Fig. E6. l. ANSWER 
vc(t) = 8e- ,fo 6 V. 

+ 

12V 2k!1 

Figure E6.1 

E6.2 In the circuit shown in Fig. E6.2, the switch opens at t = 0. Find i 1(t) fort > 0. ANSWER i 1(t) = le- 9' A. 

Figure E6.2 

t = 0 

60. 120. 

12V + 

2H 

The Step-by-Step Approach In the previous analysis technique we derived the differen­
tial equation for the capacitor voltage or inductor current, solved the differential equation, and 
used the solution to find the unknown variable in the network. In the very methodical technique 
that we will now describe we will use the fact that Eq. (6.11) is the form of the solution and 
employ circuit analysis to determine the constants K 1, K 2 , and T. 

FromEq.(6.ll)wenotethatast ~ oo,e-a' ~ Oandx(t) = K1.Therefore,ifthecircuit 
is solved for the variable x(t) in steady state (i.e., t ~ oo) with the capacitor replaced by an 
open circuit [ v is constant and therefore i = C ( dv / dt) = O] or the inductor replaced by a short 
circuit [i is constant and therefore v = L( di/ dt) = 0], then the variable x( t) = K 1• Note that 
since the capacitor or inductor has been removed, the circuit is a de circuit with constant sources 
and resistors, and therefore only de analysis is required in the steady-state solution. 

The constant K 2 in Eq. (6.11) can also be obtained via the solution of a de circuit in which 
a capacitor is replaced by a voltage source or an inductor is replaced by a current source. The 
value of the voltage source for the capacitor or the current source for the inductor is a known value 
at one instant of time. In general, we will use the initial condition value since it is generally the 
one known, but the value at any instant could be used. This value can be obtained in numerous 
ways and is often specified as input data in a statement of the problem. However, a more like­
ly situation is one in which a switch is thrown in the circuit and the initial value of the capac-
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itor voltage or inductor current is determined from the previous circuit (i.e., the circuit before 
the switch is thrown). It is normally assumed that the previous circuit has reached steady state, 
and therefore the voltage across the capacitor or the current through the inductor can be found 
in exactly the same manner as was used to find K1• 

Finally, the value of the time constant can be found by determining the Thevenin equiva­
lent resistance at the terminals of the storage element. Then T = RTuC for an RC circuit, and 
T = L/RTh for an RL circuit. 

Let us now reiterate this procedure in a step-by-step fashion. 

Problem-Solving Strategy 
Using the Step-by-Step Approach 

Step 1. We assume a solution for the variable x(t) of the form x(t) = K1 + K 2 e-t/T. 

Step 2. Assuming that the original circuit has reached steady state before a switch 
was thrown (thereby producing a new circuit), draw this previous circuit with the ca­
pacitor replaced by an open circuit or the inductor replaced by a short circuit. Solve for 
the voltage across the capacitor, vc(O-), or the current through the inductor, iL(O-), 
prior to switch action. 

Step 3. Assuming that the energy in the storage element cannot change in zero time, 
draw the circuit, valid only at t = O+. The switches are in their new positions and the ca­
pacitor is replaced by a voltage source with a value of Vc(O+) = Vc(O-) or the inductor 
is replaced by a current source with value iL(o+) = iL(O-) . Solve for the initial value of 
the variable x(O+ ). 

Step 4. Assuming that steady state has been reached after the switches are thrown, 
draw the equivalent circuit, valid fort > 5T, by replacing the capacitor by an open cir­
cuit or the inductor by a short circuit. Solve for the steady-state value of the variable 

x(t)l1>5T ='= x(oo) 

Step 5. Since the time constant for all voltages and currents in the circuit will be the 
same, it can be obtained by reducing the entire circuit to a simple series circuit contain­
ing a voltage source, resistor, and a storage element (i.e., capacitor or inductor) by form­
ing a simple Thevenin equivalent circuit at the terminals of the storage element. This 
Thevenin equivalent circuit is obtained by looking into the circuit from the terminals of 
the storage element. The time constant for a circuit containing a capacitor is T = RTh C, 
and for a circuit containing an inductor it is T = L/ RTu· 

Step 6. Using the results of steps 3, 4, and 5, we can evaluate the constants in step 1 as 

x(O+) = K 1 + K2 

x(oo) = K , 

and therefore, K, = x ( oo), K 2 = x ( O+) - x ( oo), and hence the solution is 

x(t) = x(oo) + [x(O+) - x (oo)V1/T 
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Keep in mind that this solution form applies only to a first-order circuit having con­
stant, de sources. If the sources are not de, the forced response will be different. 
Generally, the forced response is of the same form as the forcing functions (sources) 
and their derivatives. 

LEARNING Example 8.3 

Consider the circuit shown in Fig. 6.6a. The circuit is in steady 
state prior to time t = 0, when the switch is closed. Let us cal-

culate the current i(t) fort > 0. 

2k!1 6k0 i(t) 4k0 36Vr I ,W1_~ L TOO~F 1-03 
(a) 

(c) t = O+ 

i(t) (mA) 

1.§_ 
3 

2k0 

9 ------------------------------------ -- ----- -- - - - ---

2 

I 
0.1 

I 
0.2 

(e) 

I 
0.3 

I 
0.4 

Figure 6.6 Analysis of an RC transient circuit with a constant forcing function. 

6 kO i(O- ) 4 kO 

(b) t = 0-

(d)t= oo 

t(s) 



SOLUTION 
Step 1. i(t)isoftheformK 1 + K 2 e-1I". 

Step 2. The initial voltage across the capacitor is calculated 
from Fig. 6.6b as 

Vc(O-) = 36 - (2)(2) 

= 32 V 

Step 3. The new circuit, valid only fort = O+, is shown in 
Fig. 6.6c. The value of the voltage source that replaces the ca­
pacitor is vc(O-) = vc(O+) = 32 V. Hence, 

32 
i(O+) = 6k 

16 
=-mA 

3 

Step 4. The equivalent circuit, valid fort > 5,-, is shown 
in Fig. 6.6d. The current i( oo) caused by the 36-V source is 

36 
i(oo) - 2k + 6k 

9 = -mA 
2 

Step 5. The Thevenin equivalent resistance, obtained by 
looking into the open-circuit terminals of the capacitor in 
Fig. 6.6d, is 

(2k)(6k) 3 
R = = - kfl 

Th 2k + 6k 2 

Therefore, the circuit time constant is 

Step 6. 

= 0.15 s 

9 
K 1 =i(oo)= 2mA 

K2 = i(O+) - i(oo) = i(O+) - K 1 
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16 9 

3 2 

5 = - mA 
6 

Therefore, 

36 5 i(t) = - + - e-,;o.1 s mA 
8 6 

Let us now employ MATLAB to plot the function . First, an in­
terval for the variable t must be specified. The beginning of the 
interval will be chosen to bet = 0. The end of the interval will 
be chosen to be 10 times the time constant. This is realized in 
MATLAB as follows : 

>>tau= 0.15 

>>tend= 10*tau 

Once the time interval has been specified, we can use MAT­
LAB's linspace function to generate an array of evenly spaced 
points in the interval. The linspace command has the following 
syntax: l i n spa c e ( x 1 , x 2 , N ) where x 1 and x 2 de­
note the beginning and ending points in the interval and N rep­
resents the number of points . Thus, to generate an array 
containing 150 points in the interval [O, tend], we execute the 
following command: 

>>t = Linspace(O, tend, 150) 

The MATLAB program for generating a plot of the function is 

>>tau= 0.15; 

>>tend = 10*tau; 

>>t = Linspace(O, tend, 150); 

>>i = 9/2 + (5/6)*exp(-t/tau); 

>>plot(t,i) 

>>xlabel('Time Cs)') 

>>ylabel('Current (mA)') 

The MATLAB plot is shown in Fig. 6.7 and can be compared 
to the sketch in Fig. 6.6(e). Examination of Fig. 6.6(e) indi­
cates once again that although the voltage across the capac­
itor is continuous at t = 0, the current i(t) in the 6-kfl 
resistor jumps at t = 0 from 2 mA to 5 ! mA, and finally 
decays to 4 i mA. 

( continued) 
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J <Student Version> Figure No. 1 l!l!ffil 13 
file E_dit Iools Window !:!.elp 

[j ~I.I~ " A /4 / ~;9 ·2: 

5.5 

5.4 

5.3 

5.2 

~5.1 
g - 5 C: 

~ 
'-
::J 

(_) 4.9 

4.8 

4.7 

4.6 

4.5 
0 0.5 

Time (s) 

Figure 6.7 MATLAB plot for Example 6.3. 

LEARNING Example 6.4 

The circuit shown in Fig. 6.8a is assumed to have been in a 
steady-state condition prior to switch closure at t = 0. We wish 
to calculate the voltage v(t) fort > 0. 

SOLUTION 
Step 1. v(t)isoftheformK 1 + K 2 e- ,h _ 

Step 2. In Fig. 6.8b we see that 

24 ( 6 ) 
ii(O-) = (6)(3) 6 + 3 

4 + --
6 + 3 

8 
=-A 

3 

1.5 

Step 3. The new circuit, valid only fort = O+, is shown in 
Fig. 6.8c, which is equivalent to the circuit shown in Fig. 6.8d. 
The value of the current source that replaces the inductor is 
iL(O-) = iL(O+) = JA. The node voltage v1(0+) can be 
determined from the circuit in Fig. 6.8d using a single-node 
equation, and v( O+) is equal to the difference between the 
source voltage and v1(0+ ). The equation for v1 (O+) is 

or 

V1(0+) - 24 V1(0+) 8 V1(0+) 
----- + --- + - + --- =0 

4 6 3 12 

20 
V1(0+) = - V 

3 



12 fl 

+ v(t)- 4H 1 fl 

4 fl 

24V 6 fl t = 0 2 fl 

(a) 

12 fl 

24V 6 fl 
fA 

2 fl 

(c)t=O+ 

12 fl 

+ v(=) - 1 fl 

4 fl 

24 V 6 fl 2 fl 

(e) t = = 

v(t) (V) 

24 ....................... ...... . 

Figure 6.8 
Analysis of an RL transient circuit 
with a constant forcing function. 

Then 
v(O+) = 24 - v1(0+) 

52 
=-V 

3 

0 1 2 3 
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12 fl 

4 fl 1 fl 

24V 6 fl 2 fl 

(b) t = 0-

+ v(O+) - vi(O+) 

4 fl 

24V 6 fl 2 fl 

4 

(g) 

• 
-:-

(d) t=O+ 

12 fl 

4 fl 1 fl 

6 fl 1 2 fl 

R111 

(f) 

t (s) 

Step 4. The equivalent circuit for the steady-state condi­
tion after switch closure is given in Fig. 6.8e. Note that the 
6-, 12-, 1, and 2-D resistors are shorted, and therefore 
v(oo) = 24 V. 

( continued) 
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Step 5. The Thevenin equivalent resistance is found by 
looking into the circuit from the inductor terminals. This cir­
cuit is shown in Fig. 6.8f. Note carefully that RTh is equal to 
the 4-, 6-, and 12-fl resistors in parallel. Therefore, 
Rrh = 2 h, and the circuit time constant is 

L 4 
T=-=-=2s 

RTh 2 
Step 6. From the previous analysis we find that 

K 1 = v(oo) = 24 
20 

K2 = v(O+) - v(oo) = - 3 
and hence that 

v(t) = 24 - 20 e-,/l V 
3 

From Fig. 6.8b we see that the value of v(t) before switch clo­
sure is 16 V. This value jumps to 17.33 Vat t = 0. The MATLAB 
program for generating the plot (shown in Fig. 6.9) of this func­
tion fort > 0, is listed next. 

>>tau= 2; 

>>tend= 10*tau; 

>>t = Linspace(O, tend, 150); 

>>v = 24 - (20/3)*exp(-t/tau); 

>>plot (t,v) 

>>xlabel('Time (s)') 

>>ylabel('Voltage (V)') 

This plot can be compared to the sketch shown in Fig. 6.8g. 

·; <Student Version> Figure No. 1 l!l!llil El 
Iools window !:!elp 

[j ~ liil ~ ~ A ~ / j£J j2J () 
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-~~ 

23 
/'/// 

II 
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~21 
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OJ 
,15 -0 20 > 

19 

18 

17 
0 2 4 6 8 10 12 14 16 18 20 
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Figure 6.9 MATLAB plot for Example 6.4. 
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E6.3 Consider the network in Fig. E6.3. The switch opens at t = 0. Find v0 ( t) fort > 0. ANSWER 

V (t) = 24 + _!__ e -(5/8), V 
0 5 5 . 

lf! 2f! + 

t = 0 

12V + 2F 2f! v0 (r) 

8 V 

Figure E6.3 

E6.4 Consider the network in Fig. E6.4. If the switch opens at t = 0, find the output 
voltage v0 (t) fort > 0. 

ANSWER 
10 

V (t) = 6 - - e-z, V 

2f! 2H 

12V + 2 f! 

Figure E6.4 

LEARNING Example 8.5 

The circuit shown in Fig. 6.1 Oa has reached steady state with the 
switch in position l . At time t = 0 the switch moves from posi­
tion l to position 2. We want to calculate v0 ( t) fort > 0. 

SOLUTION 
Step 1. v0 (t)isof theformK 1 + K 2 e- ,/T. 

Step 2. Using the circuit in Fig. 6.10b, we can calculate 
iL(O-) 

12 
iA = - = 3 A 

4 

+ 

0 3 . 

Then 
, 12 + 2iA 18 
zL(O-) = = - = 3 A 

6 6 

Step 3. The new circuit, valid only fort = O+, is shown in 
Fig. 6.1 Oc. The value of the current source that replaces the 
inductor is i L ( 0- ) = i L ( O+) = 3 A. Because of the current 
source 

v 0 (0+) = (3 ) (6) = 18 V 

Step 4. The equivalent circuit, for the steady-state condition 
after switch closure, is given in Fig. 6.10d. Using the voltages 

( continued) 
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2 fl t = 0 3H 

+ + 

4 fl 4 fl 

36V + 
12V + 

(a) (b) t = 0-

3A 
2 fl VB 

+ + 

4 fl 4 fl 

36V + 36V + ~ iz iA 
iA 

2iA 

-:-

(c) t=O+ ( d) ( = 00 

2 fl voe 2 fl isc 
+-

4 fl 4 fl 

36V + 36V + 3 iA isc 

t;,, 
2(4 

(e) (f) 

Figure 6.10 Analysis of an RL transient circuit containing a dependent source. 



and currents defined in the figure, we can compute v0 ( oo) in 
a variety of ways. For example, using node equations we can 
find v0 (00) from 

VB - 36 VB VB + 2i~ 
--- +-+ =O 

2 4 6 

., Vs 
IA = 4 

or, using loop equations, 

36 = 2(i 1 + i2) + 4i 1 

36 = 2(i, + i2) + 6i2 - 2i, 

v0 (00) = 6i2 

Using either approach, we find that v0 (00) = 27 V. 

Step 5. The Thevenin equivalent resistance can be obtained 
via v0 c and i,c because of the presence of the dependent 
source. From Fig. 6.1 Oe we note that 

Therefore, 

36 
i" = -- = 6A 
A 2 + 4 

V 0 c = (4)(6) + 2(6) 

= 36V 
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From Fig. 6.1 Of we can write the following loop equations: 

36 = 2(i"' + i ) + 4 .,,, A SC I A 

36 = 2( .,,, + . ) + 6 . - 2 .,,, IA l sc 1,c I A 

Solving these equations for i,c yields 

. 9 
i ,c = 2A 

Therefore, 

Voe 36 
RTh = - = - = 80 

i,c 9 / 2 

Hence, the circuit time constant is 

L 3 
T = - = - s 

RTh 8 

Step 6. Using the information just computed, we can derive 
the final equation for v0 ( t) : 

K 1 = v0 (00) = 27 

K2 = v0 (0+) - v0 (00) = 18 - 27 = - 9 

Therefore, 

v 0 (t) = 27 - 9e- ,f( 3/s) V 

·-/ LEARNING EXTENSION --::;;~-, 

E6.5 If the switch in the network in Fig. E6.5 closes at t = 0, find v0 (t) fort > 0. ANSWER 
v0 (t) = 24 + 36e-<1l12 l V. 

24V 

+ 

3A 

Figure E6.5 
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At this point it is appropriate to state that not all switch action will always occur at time 
t = 0. It may occur at any time t0 . In this case the results of the step-by-step analysis yield the 
following equations: 

and 

x(t0) = K1 + K2 

x(oo) = K 1 

x(t) = x( oo) + [ x(t0) - x( oo) Je-(1- 10)/7 

The function is essentially time-shifted by t0 seconds. 

t > t0 

• 

Finally, note that if more than one independent source is present in the network, we can sim­
ply employ superposition to obtain the total response. 

PULSE RESPONSE Thus far we have examined networks in which a voltage or current 
source is suddenly applied. As a result of this sudden application of a source, voltages or cur­
rents in the circuit are forced to change abruptly. A forcing function whose value changes in a 
discontinuous manner or has a discontinuous derivative is called a singular function. Two such 
singular functions that are very important in circuit analysis are the unit impulse function and 
the unit step function. We will defer a discussion of the former until a later chapter and con­
centrate on the latter. 

The unit step function is defined by the following mathematical relationship: 

u(t) {~ t < 0 

t > 0 

In other words, this function, which is dimensionless, is equal to zero for negative values of the 
argument and equal to 1 for positive values of the argument. It is undefined for a zero argument 
where the function is discontinuous. A graph of the unit step is shown in Fig. 6.1 la. The unit 
step is dimensionless, and therefore a voltage step of V O volts or a current step of I O amperes 
is written as V,, u( t) and I0 u( t), respectively. Equivalent circuits for a voltage step are shown in 
Figs. 6.1 lb and c. Equivalent circuits for a current step are shown in Figs. 6.1 ld and e. If we 
use the definition of the unit step, it is easy to generalize this function by replacing the argu­
ment t by t - t0 • In this case 

u(t - t0) = { ~ t < t0 

t > t0 

A graph of this function is shown in Fig. 6.1 lf. Note that u(t - t0 ) is equivalent to delaying 
u( t) by t0 seconds, so that the abrupt change occurs at time t = t0 • 
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1 

0 

Va u(t) 

10 u(t) 

(a) 

(c) 

Va 

lo 

u(t- t0) 

1 

2 

1>C: 

(b) 

t=O 

(d) 

o t0 

( e) (f) 

Figure 6. 11 Graphs and models of the unit step function. 

Step functions can be used to construct one or more pulses. For example, the voltage pulse 
shown in Fig. 6.12a can be formulated by initiating a unit step at t = 0 and subtracting one that 
starts at t = T, as shown in Fig. 6.12b. The equation for the pulse is 

v(t) = A[ u(t) - u(t - T)] 

If the pulse is to start at t = t0 and have width T, the equation would be 

v(t) = A{u(t - t0) - u[t - (t0 + r)]} 

Using this approach, we can write the equation for a pulse starting at any time and ending at any 
time. Similarly, using this approach, we could write the equation for a series of pulses, called a pulse 

train, by simply forming a summation of pulses constructed in the manner illustrated previously. 
The following example will serve to illustrate many of the concepts we have just presented. 

v(t) 

A 

T 
I 
I 
I 
I 
I 

(a) I 
I 
I 
I 
I 

v(t) I 
I Au(t) I 

A 

-A -Au(t-T) 

(b) 

Figure 6.12 
Construction of a pulse via two 
step functions. 
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LEARNING Example 6.6 

Consider the circuit shown in Fig. 6.13a. The input fu~ction is 
the voltage pulse shown in Fig. 6.13b. Since the source is zero 
for all negative time, the initial conditions for the network are 
zero [ i.e. , vc(O-) = 0 ]. The response vo(t) for O < t < 0.3 s 
is due to the application of the constant source at t = 0 and is 
not influenced by any source changes that will occur later. 
At t = 0.3 s the forcing function becomes zero and therefore 
v0 ( t) fort > 0.3 sis the source-free or natural response of the 
network. 

Let us determine the expression for the voltage v0 (t). 

6k 

v(t) 

L 
I 

0.3 

v0 (t) (V) 

4k 

(a) 

(b) 

+ 

• t(s) 

4 ·-·-·-·-·--·-·- ·· -·-·-·· -·· ·-·-·-·-··-·-··-·-·· ·- ·-·-·· 

2.11 

0 0.3 

( c) 

Figure 6.13 Pulse response of a network. 

t(s) 

SOLUTION Since the output voltage vo(t) is a voltage divi­
sion of the capacitor voltage, and the initial voltage across the ca­
pacitor is zero, we know that v0 ( 0+) = 0. 

If no changes were made in the source after t = 0, the 
steady-state value of v0 ( t) [ i.~., vu( oo) ] due to the application of 
the unit step at t = 0 would be 

9 
vo(oo) = 6k + 4k + 8k (Sk) 

=4V 

The Thevenin equivalent resistance is 

( 6k) ( 12k) 
R - - - -­

Th - 6k + 12k 

= 4kfl 

Therefore, the circuit time constant T is 

= 0.4 s 

Therefore, the response v0 ( t) for the period O < t < 0.3 s is 

v 0 (t) = 4 - 4e-'104 V O < t < 0.3s 

The capacitor voltage can be calculated by realizing that 
using voltage division, v 0 (t) = ~vc(t). Therefore, 

Since the capacitor voltage is continuous, 

Vc (0.3-) = Vc(0.3+) 

and therefore, 

v0 ( 0.3+) = ~ Ve( 0.3-) 

= 4(1 - e-03/0.4) 

= 2.11 V 

Since the source is zero fort > 0.3 s, the final value for v 0 ( t) 
as t -+ oo is zero. Therefore, the expression for v 0 ( t) for 
t > 0.3 s is 

v0 (t) = 2.1 le-c,- oJJ/o.4 V t > 0.3 s 

The term e-c,- o.3)/04 indicates that the exponential decay starts 
at t = 0.3 s. The complete solution can be written by means of 
superposition as 

v 0 (t) = 4(1 - e- ,fOA)u(t) - 4(1 - e-(r- OJ )/OA)u(t - 0.3) V 
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LEARNING by Doing 

D 6.3 Plot the following functions: 

(a) i(t) = lO[u(t) - u(t - 0.01)] mA 

(b) v(t) = -IO[u(t - 1) - u(t - 2)]v 

ANSWER 

i(t) (mA) 

10 

(a) 

v(t) (Y) 

(b) 
1 2 

-10 

or, equivalently, the complete solution is v0 (t) = 4(1 - e-r/OA) [u(t) - u(t - 0.3)] + 
2.lle-(r- 03 )/0A u(t - 0.3) V 

v0 (t) = {~(1 - e-r/0.4) V 
2.lle-<r- o.3)/o4 V 

which in mathematical form is 

t < 0 } 
0 < t < 0.3 s 
0.3 s < t 

Note that the term [ u( t) - u( t - 0.3)] acts like a gating func­
tion that captures only the part of the step response that exists in 
the time interval O < t < 0.3 s. The output as a function of time 
is shown in Fig. 6.13c. 

1~ L E A R N I N G E KT E N S 10 _NJ;;,;~· 
E6.6 The voltage source in the network in Fig. E6.6a is shown in Fig. E6.6b. The initial current 
in the inductor must be zero. (Why?) Determine the output voltage vo(t) fort > 0. 

v(t) 

+ v(t) (V) r 
2 fl v 0 (t) 

~ o 
I I 
1 t(s) 

2!1 

(a) (b) 

Figure E6.6 

6.3 Second-Order Circuits 

THE BASIC CIRCUIT EQUATION To begin our development, let us consider the 
two basic RLC circuits shown in Fig. 6.14. We assume that energy may be initially stored in 
both the inductor and capacitor. The node equation for the parallel RLC circuit is 

- + - v(x) dx + iL(t0) + C - = i5(t) V l 1' dv 
R L 10 dt 

ANSWER v 0 (t) = 0 
fort < 0,4( 1 - e-<3!2l1) V 
for O ;£ t ;£ l, and 
3.lle-(3/ z)( r - I ) V for 1 < t. 
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v(t) 

R C 

(a) 

i(<) ~1t~ L 

vs{<)~ ' 

~--------~ 

(b) 

Figure 6.14 Parallel and series RLC circuits. 

Similarly, the loop equation for the series RLC circuit is 

1 1' di Ri + - i(x) dx + vc(t0) + L - = v5 (t) 
C 10 dt 

Note that the equation for the node voltage in the parallel circuit is of the same form as that for the 
loop current in the series circuit. Therefore, the solution of these two circuits is dependent on solv­
ing one equation. If the two preceding equations are differentiated with respect to time, we obtain 

d2v 1 dv v dis 
c - + -- +-=-

dt2 R dt L dt 

and 
d2i di i dv5 

L - +R - + - = -
dt2 dt C dt 

Since both circuits lead to a second-order differential equation with constant coefficients, we 
will concentrate our analysis on this type of equation. 

LEARNING by Doing 

D 6.4 Write the differential equation that describes the node voltage in (a) and the loop 
current in (b). 

I,~ <cQI :(+ Ll tc 
(a) 

t= 0 R C 

"·fl 
#I 11L 

i(t) 

-
(b) 

ANSWER 
d 2v 1 dv v d 2i R di i . 

(a)- + - - + - = 0 (b)-+--+-=O 
dt2 RC dt LC dt 2 L dt LC 
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THE RESPONSE EQUATIONS In concert with our development of the solution of a 
first-order differential equation that results from the analysis of either an RL or an RC circuit 
as outlined earlier, we will now employ the same approach here to obtain the solution of a 
second-order differential equation that results from the analysis of RLC circuits. As a general 
rule, for this case we are confronted with an equation of the form 

d2x(t) dx(t) 
--2- + a, -- + a2 x(t) = f(t) 

dt dt 
6.12 

Once again we use the fact that if x(t) = xp(t) is a solution to Eq. (6.12), and if x(t) = xc(t) 
is a solution to the homogeneous equation 

d2x(t) dx(t) 
--2- + a, -- + a2 x(t) = 0 

dt dt 

then 

is a solution to the original Eq. (6.12). If we again confine ourselves to a constant forcing func­
tion [ i.e., f ( t) = A], the development at the beginning of this chapter shows that the solution 
of Eq. (6.12) will be of the form 

A 
x(t) = - + xc(t) 

a2 
6.13 

Let us now turn our attention to the solution of the homogeneous equation 

d2x(t) dx(t) 
--2- + a, -- + a2 x(t) = 0 

dt dt 

where a 1 and a2 are constants. For simplicity we will rewrite the equation in the form 

d2x(t) dx(t) 2 
--2- + 2{w0 -- + w0 x(t) = 0 

dt dt 
6.14 

where we have made the following simple substitutions for the constants a, = 2(w0 and 
a2 = w5. 

Following the development of a solution for the first-order homogeneous differential equa­
tion earlier in this chapter, the solution of Eq. (6.14) must be a function whose first- and second­
order derivatives have the same form, so that the left-hand side of Eq. (6.14) will become 
identically zero for all t. Again we assume that 

x(t) = Ke51 

Substituting this expression into Eq. (6.14) yields 

LEARNING by Doing 

D 6.5 Given the homo­
geneous differential 
equation 

d2x(t) dx(t) 
4--+8--

dt2 dt 

+ 16x(t) = 0 

determine the characteris­
tic equation, the damping 
ratio, and the undamped 
natural frequency. 

ANSWER Characteristic 
equation: s2 + 2s + 4 = 0 

~ = ! 
Wo = 2 
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Dividing both sides of the equation by K est yields 

6.15 

This equation is commonly called the characteristic equation; s is called the exponential damp­
ing ratio, and w0 is referred to as the undamped natural frequency. The importance of this ter­
minology will become clear as we proceed with the development. If this equation is satisfied, our 
assumed solution x(t) = Kes1 is correct. Employing the quadratic formula, we find that Eq. 
(6.15) is satisfied if 

-2swo ± V 4s2w5 - 4w5 
s= 

2 

= -swo ± Wo~ 

Therefore, there are two values of s, s1 and s2 that satisfy Eq. (6.15): 

S1 = -swo + Wo ~ 

Sz = -swo - Wo~ 

Therefore, in general, the complementary solution of Eq. (6.14) is of the form 

6.16 

6.17 

6.18 

K1 and K2 are constants that can be evaluated via the initial conditions x( 0) and dx( 0) / dt. For 
example, since 

then 

and 

Hence, x(O) and dx(O)/dt produce two simultaneous equations, which when solved yield the 
constants K1 and K2 . 

Close examination ofEqs. (6.17) and (6.18) indicates that the form of the solution of the homo­
geneous equation is dependent on the value S· For example, if!; > 1, the roots of the charac­
teristic equation, s1 and s2 , also called the natural frequencies because they determine the 
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natural (unforced) response of the network, are real and unequal; if, < 1, the roots are complex 
numbers; and finally, if t = 1, the roots are real and equal. 

Let us now consider the three distinct forms of the unforced response-that is, the response 
due to an initial capacitor voltage or initial inductor current. 

Case 1, t > 1 This case is commonly called overdamped. The natural frequencies s1 and s2 

are real and unequal, and therefore the natural response of the network described by the sec­
ond-order differential equation is of the form 

6.19 

where K1 and K2 are found from the initial conditions. This indicates that the natural response 
is the sum of two decaying exponentials. 

Case 2, t < 1 This case is called underdamped. Since, < 1, the roots of the characteris­
tic equation given in Eq. ( 6.17) can be written as 

s1 = -two + jw0 ~ = -er + jwd 

s2 = -,w0 - jw0 ~ = -er - jwd 

where j = v-I, er = ,w0 and wd = w0 ~ . Thus, the natural frequencies are complex 
numbers (briefly discussed in the Appendix). The natural response is then of the form 

where A1 and A2 , like K 1 and K2 , are constants, which are evaluated using the initial conditions 
x( 0) and dx( 0) / dt. This illustrates that the natural response is an exponentially damped os­
cillatory response. 

Case 3, t = 1 This case, called critically damped, results in 

In the case where the characteristic equation has repeated roots, the general solution is of 
the form 

6.21 

where B 1 and B2 are constants derived from the initial conditions. 

LEARNING by Doing 

D 6.6 Determine the gen­
eral form of the solution of 
the equation in Learning by 
Doing 6.5. 

ANSWER xc(t) = 
e-'(A 1cosv'3t+ A2 sin v'3t). 

LEARNING by Doing 

D 6. 7 Determine the 
general form of the solu­
tion of the equation 

d 2x(t) 4 dx(t) 
dt2+-d-t-

+4x(t) = 0 

ANSWER 
Xc(t) = B1e-2' + B2te-21 
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It is informative to sketch the natural response for the three cases we have discussed: over­
damped, Eq. (6.19); underdamped, Eq. (6.20); and critically damped, Eq. (6.21). Figure 6.15 
graphically illustrates the three cases for the situations in which xc(O) = 0. Note that the crit­
ically damped response peaks and decays faster than the overdamped response. The under­
damped response is an exponentially damped sinusoid whose rate of decay is dependent on the 
factor t. Actually, the terms ± e- ,wot define what is called the envelope of the response, and 
the damped oscillations (i.e., the oscillations of decreasing amplitude) exhibited by the wave­
form in Fig. 6.15b are called ringing. 

xJt) 
Critically Underdamped 

/ damped Overdamped 
- --/---

(a) (b) 

Figure 6. 15 Comparison of overdamped, critically damped, and underdamped responses . 

• o;-, ,.,._ 
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E6. 7 A parallel RLC circuit has the following circuit parameters: R = 1 0, L = 2 H, and C = 2 F. 

Compute the damping ratio and the undamped natural frequency of this network. 
ANSWER 
~ = 0.5, w 0 = 0.5 rad/s. 

E6.8 A series RLC circuit consists of R = 2 0, L = l H, and a capacitor. Determine the type of 
response exhibited by the network if (a) C = i F, (b) C = 1 F, and (c) C = 2 F. 

ANSWER (a) underdamped, 
(b) critically damped, (c) over­
damped. 

THE NETWORK RESPONSE We will now analyze a number of simple RLC net­
works that contain both nonzero initial conditions and constant forcing functions. Cir­
cuits that exhibit overdamped, underdamped, and critically damped responses will be 
considered. 

Problem-Solving Strategy 
Second-Order Transient Circuits 

t Write the differential equation that describes the circuit. 

t Derive the characteristic equation, which can be written in the form s2 + 2tw0s + w5 = 0, 
where t is the damping ratio and w0 is the undamped natural frequency. 
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t The two roots of the characteristic equation will determine the type of response. If the 
roots are real and unequal (i .e., s > 1), the network response is overdamped. If the roots 
are real and equal (i.e., s = 1), the network response is critically damped. If the roots are 
complex (i.e., s < 1 ), the network response is underdamped. 

t The damping condition and corresponding response for the aforementioned three cases 
outlined are as follows: 

Overdamped: x(t) = K 1e-((wo-wovE~ )1 + K2e-(,wo+wo~)1 

Critically damped: x(t) = B1e- {Wot + B2 te-(wot 

Underdamped: x(t) = e-o-1(A 1 cos wdt + A2 sin wdt), where u = sw0 , and 

wd=wo~ 

t Two initial conditions, either given or derived, are required to obtain the two unknown 
coefficients in the response equation. 

The following examples will serve to demonstrate the analysis techniques. 

LEARNING Example 6.7 

Consider the parallel RLC circuit shown in Fig. 6.16. The second­
order differential equation that describes the voltage v(t) is 

d2v 1 dv v 
- +--+-=O 
dt 2 RC dt LC 

v(t) 

R 

Figure 6.16 Parallel RLC circuit. 

A comparison of this equation with Eqs. (6.14) and (6.15) indi­
cates that for the parallel RLC circuit the damping term is 1 /2 RC 
and the undamped natural frequency is 1/VLC . If the circuit 
parameters are R = 2 D , C = t F, and L = 5 H, the equation 
becomes 

d2v dv - + 2.5 - + V = 0 
dt2 dt 

Let us assume that the initial conditions on the storage elements 
are iL(O) = -1 A and Vc(O) = 4 V. Let us find the node 
voltage v( t) and the inductor current. 

SOLUTION The characteristic equation for the network is 

s2 + 2.5s + 1 = 0 

and the roots are 

S1 = - 2 

Sz = - 0.5 

Since the roots are real and unequal, the circuit is overdamped, 
and v( t) is of the form 

v(t) = K1e-21 + K 2e-05r 

The initial conditions are now employed to determine the con­
stants K 1 and K 2 . Since v(t) = vc(t), 

Vc(O) = v(O) = 4 = K 1 + K 2 

The second equation needed to determine K 1 and K 2 is normal­
ly obtained from the expression 

dv(t) 
-- = -2K e- lr - 0.5K e-o.sr 

dt I 2 

However, the second initial condition is not dv(O) / dt. If this 
were the case, we would simply evaluate the equation at t = 0. 
This would produce a second equation in the unknowns K 1 and 
K2 • We can, however, circumvent this problem by noting that 
the node equation for the circuit can be written as 

dv(t) v(t) 
C -- + - + i (t) = 0 

dt R L 

( continued) 

y..~ 
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or 

At t = 0, 

However, since 

dv(t) -1 
-- = - v(t) 

dt RC 

dv(O) -1 1 
--:it = RC v(O) - C iL(O) 

= -2.5(4) - 5(-1) 

= -5 

dv(t) 
-- = -2K e- 2, - 0.5K e-o.s, 

dt I 2 

then when t = 0 

-5 = -2K1 - 0.5K2 

This equation, together with the equation 

produces the constants K 1 = 2 and K2 = 2 . Therefore, the final 
equation for the voltage is 

v(t) = 2e- 2' + 2e-051 V 

Note that the voltage equation satisfies the initial condition 
v( 0) = 4 V. The response curve for this voltage v( t) is shown 
in Fig. 6.17. 

The inductor current is related to v ( t) by the equation 

iL(t) = ± J v(t) dt 

LEARNING Example 6.8 

The series RLC circuit shown in Fig. 6.18 has the following pa­
rameters: C = 0.04 F, L = 1 H, R = 6 n, iL(O) = 4 A, and 
vc( 0) = -4 V. The equation for the current in the circuit is given 
by the expression 

d 2 i R di i 
-+--+-=0 
dt2 L dt LC 

A comparison of this equation with Eqs. (6.14) and (6.15) illus­
trates that for a series RLC circuit the damping term is R /2L and 
the undamped natural frequency is 1/ VLC. Substituting the 
circuit element values into the preceding equation yields 

Substituting our expression for v( t) yields 

or 

Note that in comparison with the RL and RC circuits, the re­
sponse of this RLC circuit is controlled by two time constants. 
The first term has a time constant of i , and the second term has 
a time constant of 2. 

v(t)(V) 

4.8 

4.2 

3.6 

3.0 

2.4 

1.8 

1.2 

0.6 

M tN 
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

Figure 6. 17 Overdamped response. 

d 2i di - + 6 - + 25i = 0 
dt2 dt 

Let us determine the expression for both the current and the ca­
pacitor voltage. 

Figure 6.18 Series RLC circuit. 



SOLUTION The characteristic equation is then 

S2 + 6s + 25 = 0 

and the roots are 

S1 = -3 + j4 

S2 = -3 - j4 

Since the roots are complex, the circuit is underdamped, and the 
expression for i ( t) is 

Using the initial conditions, we find that 

i(O) = 4 = K1 

and 

di - = -4K e-3, sin4t - 3K e-3, cos4t 
dt I I 

and thus 

di(O) 
----:it = - 3K1 + 4K2 

Although we do not know di(O)/dt, we can find it via KVL. 
From the circuit we note that 

or 

Therefore, 

di(O) 
Ri(O) + L -- + vc(O) = 0 

dt 

di(O) R . 
----:it= - Li(O) 

6 
=-1(4) 

= -20 

vc(O) 

L 

4 
+-

1 

- 3K1 + 4K2 = - 20 

and since K 1 = 4, K2 = -2, the expression then for i(t) is 

i( t) = 4e-3' cos 4t - 2e-3' sin 4t A 

Note that this expression satisfies the initial condition i(O) = 4. 
The voltage across the capacitor could be determined via KVL 
using this current: 

di( t) 
Ri(t) + L -- + vc(t) = 0 

dt 
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or 

. di(t) 
vc(t) = -Ri(t) - L dt 

Substituting the preceding expression for i(t) into this equation 
yields 

Vc(t) = - 4e-3'cos4t + 22e-3'sin4tV 

Note that this expression satisfies the initial condition 
Vc(O) = -4 V. 

The MATLAB program for plotting this function in the 
time interval t > 0 is listed as follows: 

>>tau= 1/3; 

>>tend= 10*tau; 

>>t = Linspace(O, tend, 150); 

>>v1 = -4*exp(-3*t).*cos(4*t); 

>>v2 = 22*exp(-3*t).*sin(4*t); 

>>v = v1+v2; 

>>plot (t,v) 

>>xlabel('Time (s)') 

>>ylabel('Voltage (V)') 

Note that the functions exp ( - 3 * t ) and cos ( 4 * t ) 
produce arrays the same size as t . Hence, when we multiply 
these functions together, we need to specify that we want the 
arrays to be multiplied element by element. Element-by-ele­
ment multiplication of an array is denoted in MATLAB by the . * 
notation. Multiplying an array by a scalar ( - 4 *exp ( - 3 * t ) , 
for example, can be performed by using the * by itself. 

The plot generated by this program is shown in Fig. 6.19. 

v(t)(V) 
10.0 

8.0 

6.0 

4.0 

2.0 

0 

- 2.0 

- 4.0 t(s) 
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

Figure 6.19 Underdamped response. 
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LEARNING Example 8.9 

Let us examine the circuit in Fig. 6.20, which is slightly more 
complicated than the two we have considered earlier. The two 
equations that describe the network are 

di(n 
L - + R1i(t) + v(t) = 0 

dt 
. dv(t) v(t) 
z(t) = C-- + -

dt R2 

i(t) 

+ 

C v(t) 

Figure 6.20 Series-parallel RLC circuit. 

Substituting the second equation into the first yields 

If the circuit parameters and initial conditions are 

C = ~F 

L=2H 

the differential equation becomes 

vc(O) 

d2 v dv - + 6- + 9v = 0 
dt 2 dt 

lV 

We wish to find expressions for the current i( t) and the volt­
age v(t). 

SOLUTION The characteristic equation is then 

s2 + 6s + 9 = 0 

and hence the roots are 

Since the roots are real and equal, the circuit is critically damped. 
The term v( t) is then given by the expression 

Since v(t) = Vc(t), 

v(O) = vc(O) = 1 = K 1 

In addition, 

However, 

dv(t) i(t) v(t) 
--=----

dt C 

Setting these two expressions equal to one another and evaluat­
ing the resultant equation at t = 0 yields 

1/2 1 
l/S - l = -3K1 + K2 

3 = -3K1 + K2 

Since K 1 = l, K 2 = 6 and the expression for v(t) is 

v( t) = e-3, + 6te-3' V 

Note that the expression satisfies the initial condition v(O) = 1. 
The current i( t) can be determined from the nodal analysis 

equation at v( t). 

dv( t) v( t) 
i(t) = c--+-

dt R2 

Substituting v( t) from the preceding equation, we find 

1 1 
i(t) = -[-3e-3' + 6e-3' -18te-3'] +-[e-3' + 6te-3'] 

8 8 



or 

If Lhis expression for the current is employed in the circuit 
equation, 

we obtain 

di(t) . 
v(t) = -L-- - R1z(t) 

dt 

v(t) = e-3, + 6te-3' V 

which is identical to the expression derived earlier. 

v(t)(V) 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
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The MATLAB program for generating a plot of this func­
tion, shown in Fig. 6.21, is listed here. 

>>tau= 1/3; 

>>tend = 10*tau; 

>>t = Linspace(O, tend, 150); 

>>v = exp(-3*t) + 6*t.*exp(-3*t); 

>>plot(t,v) 

>>xlabel('Time (s)') 

>>ylabel('Voltage (V)') 

Figure 6.21 
- 0.2 t(s) 

Critically damped response. 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

E6.9 The switch in the network in Fig. E6.9 opens at t = 0. Find i(t) fort > 0. ANSWER 
i(t) = -2e-,12 + 4e-, A. 

6il 

t =O 2H 

lF 

12V 

i(t) 
Figure E6.9 
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E6.10 The switch in the network in Fig. E6.10 moves from position 1 to position 2 at t = O. 
Find v0 (t) fort > 0. 

ANSWER 
vo(t) = 2(e--:' - 3e-3') V. 

1 2 

+ 

Figure E6. 10 

LEARNING Example 6.10 

Consider the circuit shown in Fig. 6.22. This circuit is the same 
as that analyzed in Example 6.8, except that a constant forcing 
function is present. The circuit parameters are the same as those 
used in Example 6.8: 

C = 0.04 F 

L = lH 

R = 60 

iL(O) = 4 A 

vc(O) = -4 V 

We want to find an expression for Vc(t) fort > 0. 

SOLUTION From our earlier mathematical development 
we know that the general solution of this problem will consist 
of a particular solution plus a complementary solution. From 

Figure 6.22 
Series RLC circuit with a step 
function input. 

2A 

Example 6.8 we know that the complementary solution is of 
the form K 3e-3' cos 4t + K 4 e-3' sin 4t. The particular solution 
is a constant, since the input is a constant and therefore the gen­
eral solution is 

An examination of the circuit shows that in the steady state the 
final value of vc(t) is 12 V, since in the steady-state condition, 
the inductor is a short circuit and the capacitor is an open cir­
cuit. Thus, K5 = 12. The steady-state value could also be im­
mediately calculated from the differential equation. The form of 
the general solution is then 
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The initial conditions can now be used to evaluate the constants 
K3 and K4 . 

and since K3 = - 16, K4 = 13. Therefore, the general solution 
for vc(t) is 

vc(O) = -4 = K3 + 12 

-16 = K3 

Vc(t) = 12 -16e-3'cos4t + 13e- 3' sin4tV 

Since the derivative of a constant is zero, the results of Example 
6.8 show that 

Note that this equation satisfies the initial condition vc(O) = -4 
and the final condition vc( oo) = 12 V. 

dvc(O) i(O) 
- - = - = 100 = -3K + 4K 

dt C 3 4 

E6.11 The switch in the network in Fig. E6. l l moves from position 1 to position 2 at t = 0. 
Compute i0 ( t) fort > 0 and use this current to determine vo( t) fort > 0. 

1 i0 (t) 

60 

I 2r = 0 

2H 

+ 
36 F 

24V 

+ 

4V 

Figure E6. 11 

6.4 Transient PSPICE Analysis Using Schematic 
Capture 

INTRODUCTION In transient analyses, we determine voltages and currents as functions 
of time. Typically, the time dependence is demonstrated by plotting the waveforms using time 
as the independent variable. PSPICE can perform this kind of analysis, called a Transient sim­
ulation, in which all voltages and currents are determined over a specified time duration. To fa­
cilitate plotting, PSPICE uses what is known as the PROBE utility, which will be described later. 
As an introduction to transient analysis, let us simulate the circuit in Fig. 6.23, plot the volt­
age vc( t) and the current i ( t), and extract the time constant. Although we will introduce some 
new PSPICE topics in this section, Schematics fundamentals such as getting parts, wiring, and 

ANSWER 
i 0 (t) = - ¥e-3' + 1; e-6' A, 

v0 (t) = 12 + l8i0 (t ) V. 
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Figure 6.25 
The switch's ATTRIBUTES box. 

editing part names and values have already been covered in Chapter 4. Also, uppercase text refers 
to PSPICE utilities and dialog boxes whereas boldface denotes keyboard or mouse inputs. 

Figure 6.23 A circuit used for Transient simulation. 

THE SWITCH PARTS The inductor and capacitor parts are called Land C, respective­
ly, and are in the ANALOG library. The switch, called SW _TCLOSE, is in the EVAL library. 
There is also a SW _TOPEN part that models an opening switch. After placing and wiring the 
switch along with the other parts, the Schematics circuit appears as that shown in Fig. 6.24. 

To edit the switch's attributes, double-click on the switch symbol and the ATTRIBUTES box 
in Fig. 6.25 will appear. Deselecting the Include Non-changeable Attributes and Include System­
defined Attributes fields limits the attribute list to those we can edit and is highly recommended. 

tClo·,e=O 
ltran=1u 
Rclosed=0.01 
Ropen=1 Meg 

tClose = 0 

Rl Ve 

1~ 
Vl - -- _l_ Cl 

lOV-=- Tl µF 1 o 
1 

Figure 6.24 The Schematics circuit. 

Include NQn-changeable Attributes 

!Include_ S~stem-defined Attribute~ 

.QK 

Cancel 
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The attribute tClose is the time at which the switch begins to close, and ttran is the time 
required to complete the closure. Switch attributes Rclosed and Ropen are the switch's resis­
tance in the closed and open positions, respectively. During simulations, the resistance of the 
switch changes linearly from Ropen at t = tClose to Rclosed at t = tClose + ttran. 

When using the SW _TCLOSE and SW _TOPEN parts to simulate ideal switches, care 
should be taken to ensure that the values for ttran, Rclosed, and Ropen are appropriate for 
valid simulation results. In our present example, we see that the switch and R1 are in series, 
thus, their resistances add. Using the default values listed in Fig. 6.25 , we find that when the 
switch is closed, the switch resistance, Rclosed, is 0.01 fl, 100,000 times smaller than that 
of the resistor. The resulting series-equivalent resistance is essentially that of the resistor. 
Alternatively, when the switch is open, the switch resistance is 1 MD, 1,000 times larger 
than that of the resistor. Now, the equivalent resistance is much larger than that of the resis­
tor. Both are desirable scenarios. 

To determine a reasonable value for ttran, we first estimate the duration of the transient re­
sponse. The component values yield a time constant of 1 ms, and thus all voltages and currents 
will reach steady state in about 5 ms. For accurate simulations, ttran should be much less than 
5 ms. Therefore, the default value of 1 µs, is viable in this case. 

THE IMPORTANCE OF PIN NUMBERS As mentioned in Chapter 4, each com­
ponent within the various Parts libraries has two or more terminals. Within PSPICE, these 
terminals are called pins and are numbered sequentially starting with pin 1, as shown in 
Fig. 6.26 for several two-terminal parts. The significance of the pin numbers is their effect 
on currents plotted using the PROBE utility. PROBE always plots the current entering pin 
1 and exiting pin 2. Thus, if the current through an element is to be plotted, the part should 
be oriented in the Schematics diagram such that the defined current direction enters the part 
at pin 1. This can be done by using the ROTATE command in the EDIT menu. ROTATE 
causes the part to spin 90° counterclockwise. In our example, we will plot the current i(t) 
by plotting the current through the capacitor, I(Cl). Therefore, when the Schematics cir­
cuit in Fig. 6.24 was created, the capacitor was rotated 270°. As a result, pin 1 is at the top 
of the diagram and the assigned current direction in Fig. 6.23 matches the direction pre­
sumed by PROBE. If a component's current direction in PROBE is opposite the desired di­
rection, simply go to the Schematics circuit, rotate the part in question 180°, and 
re-simulate. 

R 

pin 1 -VVv- pin 2 pin 1 pin 1 

L 

pin 1~- pin 2 

_j__ cb IOC -=-VOC 

-1 I 
C pin 2 pin 2 

pin 1 ~~- pin 2 

Figure 6.26 
Pin numbers for common PSPICE parts. 
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SETTING INITIAL CONDITIONS To set the initial condition of the capacitor voltage, 
double-click on the capacitor symbol in Fig. 6.24 to open its ATTRIBUTE box, as shown in 
Fig. 6.27. Click on the IC field and set the value to the desired voltage, 0 Vin this example. 
Setting the initial condition on an inductor current is done in a similar fashion. Be forewarned 
that the initial condition for a capacitor voltage is positive at pin 1 versus pin 2. Similarly, the 
initial condition for an inductor's current will flow into pin 1 and out of pin 2. 

-------- - ---- --
Cl PartName: C £1 
tiame Y'.alue 

=I 

, TOLERANCE= 

C Include N_gn·changeable Attributes 

n Include S,l!stem-defined Attributes 

Figure 6.27 
Setting the capacitor initial condition. 

2 ave Attr I 
I Cbange Display l 

.Q:e!~te 

SETTING UP A TRANSIENT ANALYSIS The simulation duration is selected using 
SETUP from the ANALYSIS menu. When the SETUP window shown in Fig. 6.28 appears, 
double-click on the text TRANSIENT and the TRANSIENT window in Fig. 6.29 will ap­
pear. The simulation period described by Final time is selected as 6 milliseconds. All sim­
ulations start at t = 0. The No-Print Delay field sets the time the simulation runs before 
data collection begins. Print Step is the interval used for printing data to the output file. 
Print Step has no effect on the data used to create PROBE plots. The Detailed Bias Pt. op­
tion is useful when simulating circuits containing transistors and diodes, and thus will not 
be used here. When Skip initial transient solution is enabled, all capacitors and inductors 
that do not have specific initial condition values in their ATTRIBUTES boxes will use zero 
initial conditions. 

Sometimes, plots created in PROBE are not smooth. This is caused by an insufficient num­
ber of data points. More data points can be requested by inputting a Step Ceiling value. Area­
sonable first guess would be a hundredth of the Final Time. If the resulting PROBE plots are 
still unsatisfactory, reduce the Step Ceiling further. As soon as the TRANSIENT window is 
complete, simulate the circuit by selecting Simulate from the Analysis menu. 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

SECTION 6.4 TRANSIENT PSPICE ANALYSIS USING SCHEMATIC CAPTURE 

Analysis Setup Ef 
Enabled 

Qptions ... 

I r 
~-~~] r 

-
farametric ... 

c I .r 
II Mo~t~Ca;i~,'w'o;st Case ... J [i 

~ [ .EliaS Point Detail "'" ] ~ 
Digital SetLip... j 

Ir,:insient ... 

Figure 6.28 
The ANALYSIS SETUP window. 

l~·F\,Gi§,i-r · T r,:insient Anal_ysis--~~= ......... ~-""""~ ........... , 

· i Erint Step: 20ns J 
Einal Time: jsm J 
No-Print Dela}1: II 
-~tep Ceiling: I 

I Q.etailed Bias Pt. 

n _E.nable Fourier 

,Center FreqLienc_y: 1 
Number of barmonic,s: I 
Q,.itputVars.: l 

Figure 6.29 
The TRANSIENT window. 

Ir· £lose· ·11 
~ ................... .. 
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PLOTTING IN PROBE When the PSPICE simulation is finished, the PROBE window 
shown in Fig. 6.30 will open. If not, select Run Probe from the Analysis menu. In Fig. 6.30, 
we see three subwindows: the main display window, the output window, and the simulation sta­
tus window. The waveforms we choose to plot appear in the main display window. The output 
window shows messages from PSPICE about the success or failure of the simulation. Run-time 
information about the simulation appears in the simulation status window. Here we will focus 
on the main display window. 

Os 

& Transient ... 

Output 
Window 

I 

2.0ms 

Main 
Display 
Window 

Time 

I 

'-I.ems 

Simulation Status Window 

6.0ms 

Figure 6.30 
The PROBE window. 

To plot the voltage, Ve( t), select Add Trace from the Trace menu. The ADD TRACES win­
dow is shown in Fig. 6.31. Note that the options Alias Names and Subcircuit Nodes have 
been deselected, which greatly simplifies the ADD TRACES window. The capacitor voltage 
is obtained by clicking on V(Vc) in the left column. The PROBE window should look like that 
shown in Fig. 6.32. 

Before adding the current i ( t) to the plot, we note that the de source is 10 V and the resis­
tance is 1 kfl, which results in a loop current of a few milliamps. Since the capacitor voltage 
span is much greater, we will plot the current on a second y axis. From the Plot menu, select 
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Figure 6.31 
The Add Traces window. 

es 
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o U(Uc) 

Figure 6.32 
The capacitor voltage. 
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eu 
es 2.ems 
OJ D U(Uc) rn <> I(Cl) 

Time 

'f.ems 6.ems 

Figure 6.33 
The capacitor voltage and the clockwise loop current. 

Add Y Axis. To add the current to the plot, select Add Trace from the Trace menu, then se­
lect I(Cl). Figure 6.33 shows the PROBE plot for Vc(t) and i(t). 

FINDING THE TIME CONSTANT Given that the final value of vc( t) is 10 V, we can 
write 

When t = T, 

Vc(T) = 10(1 - e- 1) V = 6.32 V 

To determine the time at which the capacitor voltage is 6.32 V, we activate the cursors by 
selecting Cursor/Display in the Trace menu. There are two cursors that can be used to ex­
tract x-y data from the plots. Use the ~ and~ arrow keys to move the first cursor. By 
holding the SHIFT key down, the arrow keys move the second cursor. Moving the first cur­
sor along the voltage plot, as shown in Fig. 6.34, we find that 6.32 V occurs at a time of 1 ms. 
Therefore, the time constant is 1 ms-exactly the RC product. 
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Figure 6.34 
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PROBE plot for Vc(t) and time constant extraction. 

SAVING AND PRINTING PROBE PLOTS Saving plots within PROBE requires the 
use of the Display Control command in the Windows menu. Using the SAVE/RESTORE 
DISPLAY window shown in Fig. 6.35, we simply name the plot and click on Save. Figure 6.35 
shows that one plot has already been saved, TranExample. This procedure saves the plot attrib­
utes such as axes settings, additional text, and cursor settings in a file with a .prb extension. Ad­
ditionally, the .prb file contains a reference to the appropriate data file, which has a .dat extension, 
and contains the actual simulation results. Therefore, in using Display Control to save a plot, 
we do not save the plot itself, only the plot settings and the .dat file's name. To access an old 
PROBE plot, enter PROBE, and from the File menu, open the appropriate .dat file. Next, access 
the DISPLAY CONTROL window, select the file of interest and click on RESTORE. Use the 
Save As option in Fig. 6.35 to save the .prb file to any directory on any disk, hard or floppy. 

To copy the PROBE plot to other documents such as word processors, select the Copy to 
Clipboard command in the Window menu. The window in Fig. 6.36 will appear showing sev­
eral options. If your PROBE display screen background is black, it is recommended that you 
choose the make window and plot backgrounds transparent and change white to black 
options. When the plot is pasted, it will have a white background with black text-a better sce­
nario for printing. To print a PROBE plot, select Print from the File menu and the PRINT 
window in Fig. 6.37 will open. The options in this window are self-explanatory. Note that print­
ed plots have white backgrounds with black text. 

6.C:lms 
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----~----- - - - --- -- - ~- - -- --- ------ - -- -
ave/R estme D i:s:play 

NewN.ame:·0 
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LAST SESSION(TRAN) 
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Figure 6.35 
The SAVE/RESTORE DISPLAY window used in PROBE to save plots. 

B.estore 

1=,oad ... 

- - - - -- -

Copy to Clipboard - Color Filter 

Background~~=~~=~~~~=~~==~ 

" ·· make window and plot backgrounds transparent 

use screen colors 

• · change white to black 

change all colors to black 

[ ........ __ ot< ........... i 

Figure 6.36 

Cancel 

The SAVE/RESTORE DISPLAY window used in PROBE to save plots. 
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Print El 
Current Printer: 
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fAl TRANSIENT EXt..MPLE 1.dat 

Selecte,11 

Page g_etup ... 

Printer Setup .. 

Prjnter Select.. .. 

.Copies: 

Figure 6.37 
The PRINT window used in PROBE. 

OTHER PROBE FEATURES There are several features within PROBE for plot ma­
nipulation and data extraction. Within the Plot menu resides commands for editing the plot it­
self. These include altering the axes, adding axes, and adding additional plots to the page. Also 
in the Tools menu is the Label command, which allows one to add marks (data point values), 
explanatory text, lines, and shapes to the plot. 

LEARNING Example 6.11 

Using the PSPICE Schematics editor, draw the circuit in Fig. 6.38 
and use the PROBE utility to find the time at which the capaci­
tor and inductor current are equal. 

SOLUTION Figure 6.39a shows the Schematics circuit, and the 
simulation results are shown in Fig. 6.39b. Based on the PROBE 
plot, the currents are equal at 561 .8 ns. 

t= 0 

1 
100!1 

L 
sv-=- 100 µ,H 

C 

Figure 6.38 
100 µ,H 

Circuit used in Example 6. 11. 

( continued) 
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Figure 6.39 
(a) PSPICE network and (b) simulation results for ic(t) and idt) in Example 6. 11 . 

14.27111 
0.00 

14.27111 

8us 

---L------

1 Ous 



I 
I 
I 

I 
I 
I 

I 
I 

I 

I 

SECTION 6.4 TRANSIENT PSPICE ANALYSIS USING SCHEMATIC CAPTURE 

Learning by Application 

There are a wide variety of applications for transient circuits. The following examples will 
serve to demonstrate some of them. 

LEARNING Example 6.12 

239 

A heart pacemaker circuit is shown in Fig. 6.40. The SCR (sili­
con-controlled rectifier) is a solid-state device that has two dis­
tinct modes of operation. When the voltage across the SCR is 
increasing but less than 5 V, the SCR behaves like an open cir­
cuit, as shown in Fig. 6.41a. Once the voltage across the SCR 
reaches 5 V, the device functions like a current source, as shown in 
Fig. 6.41b. This behavior will continue as long as the SCR voltage 
remains above 0.2 V. At this voltage, the SCR shuts off and again be­
comes an open circuit. 

itor. Find the time required for Ve( t) to drop from 5 V to 0.2 V. 
Finally, plot Ve( t) for the three cycles. 

SOLUTION Fort < 1 s, the equivalent circuit for the pace­
maker is shown in Fig. 6.42. As indicated earlier, the capacitor 
voltage has the form 

Ve(t) = 6 - 6e-t/Re 

Assume that at t = 0, vc( t) is O V and the 1-µF capacitor be­
gins to charge toward the 6-V source voltage. Find the resistor 
value such that ve(t) will equal 5 V (the SCR firing voltage) at 
l s. At t = 1 s, the SCR fires and begins discharging the capac-

A voltage of 0.2 V occurs at 

R 

V=6V-=-

Figure 6.40 

C + 
Vc(t) 

1 µF 

Heart pacemaker equivalent circuit. 

SCR SCR .. 
(a) (b) 

Figure 6.41 
Equivalent circuits for silicon-controlled rectifer. 

t 1 = 0.034RC 

SCR 

l= 50 µA 

(continued) 
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R 

~ V=6V -- I ,,(,) T 1 µ.F - J 
Figure 6.42 
Pacemaker equivalent network during capacitor charge cycle. 

whereas a voltage of 5 V occurs at 

t2 = l.792RC 

We desire that t 2 . - t 1 = 1 s. Therefore, 

t2 - t 1 = l.758RC = 1 s 

and 

RC = 0.569 s and R = 569 kO 

At t = I s the SCR fires and the pacemaker is modeled by 
the circuit in Fig. 6.43. The form of the discharge waveform is 

R 

V=6V C + 

Vc(t) 

Figure 6.43 
Pacemaker equivalent network during capacitor discharge cycle. 

LEARNING Example 8.13 

One of the most common and necessary subcircuits that appears 
in a wide variety of electronic systems-for .example, stereos, 
TVs, radios, and computers-is a quality de voltage source or 
power supply. The standard wall socket supplies an alternating 
current (ac) voltage waveform shown in Fig. 6.45a, and the con­
version of this voltage to a desired de level is done as illustrat­
ed in Fig. 6.45b. The ac waveform is converted to a quasi-d~ 

The term ( t - I) appears in the exponential to shift the func­
tion 1 s, since during that time the capacitor was charging. Just 
after the SCR fires at t = I+ s, Ve( t) is still 5 V, whereas at 
t = oo, vc(t) = 6 - IR. Therefore, 

Our solution, then, is of the form 

Vc( t) = 6 - IR+ (JR - I)e- (r-l) / RC 

Let T be the time beyond 1 s necessary for v( t) to drop to 0.2 V. 
We write 

vc(T + I) = 6 - IR+ (IR - l)e-T/RC = 0.2 

Substituting for/, R, and C, we find 

T = O.ll s 

The output waveform is shown in Fig. 6.44. 

v(t) (V) . 
6 

4 

2 

1 2 3 4 0 

Figure 6.44 Heart pacemaker output voltage waveform. 

voltage by an inexpensive ac-dc converter whose output con­
tains r~mnants of the ac input and is unregulated. A higher qual­
ity de output is cret1ted by a switching de-de converter. Of the 
several versions of de- de converters, we will focus on a topol­
ogy called the boost converter, shown in Fig. 6.46. Let us de­
velop an equation relating the output voltage to the switching 
characteristics. 
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+ DC-DC + 
AC-DC 

Vin 
switching 

converter power Vo 

supply 

Time 

(a) (b) 

Figure 6.45 
(a) The ac voltage waveform at a standard wall outlet and (b) a block diagram of a modern de power supply. 

S2 
+ VL(t) _ 

-iL(t) + 

Vin-=- C R Vo 

Sl 

(a) 

C 

(b) 

Figure 6.46 
The boost converter with switch settings for time intervals 
(a) ton and (b) toff· 

SOLUTION Consider the boost converter in Fig. 6.46a, where 
switch 1 (S 1) is closed and S2 is open for ; time interval t0 n. 

This isolates the inductor from the capacitor, creating two sub­
circuits that can be analyzed independently. Note that during 
t0 n the inductor current and stored energy are increasing while 

at the output node, the capacitor voltage discharges exponen­
tially into the load. If the capacitor's time constant ( T = RC) 
is large·, then the output voltage will decrease slowly. Thus, 
during t00 energy is stored in the inductor and the capacitor 
provides energy to the load. · 

( continued) 
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Next, we change both switch positions so that S 1 is open and S2 
is closed for a time interval t0 ff , as seen in Fig. 6.46b. Since the inductor 
current cannot change instantaneously, current flows into the capaci­
tor and the load, recharging the capacitor. During t0 ff the energy that 
was added to the inductor during t0 n is used to recharge the capacitor 
and drive the load. When t0 ff has elapsed, the cycle is repeated. 

Note that the energy added to the inductor during t0 n must go 
to the capacitor and load during t0 ff, otherwise, the inductor en­
ergy would increase to the point that the inductor would fail. 
This requires that the energy stored in the inductor must be the 
same at the end of each switching cycle. Recalling that the in­
ductor energy is related to the current by 

1 
w(t) = 2 Li2(t) 

we can state that the inductor current must also be the same at the 
end of each switching cycle, as shown in Fig. 6.47. The induc­
tor current during t0 n and t0 ff can be written as 

0 < t < t on 

Vin ..-----

0 

ton < t < t off 6.22 

where / 0 is the initial current at the beginning of each switching 
cycle. If the inductor current is the same at the beginning and end 
of each switching cycle, then the integrals in Eq. (6.22) must sum 
to zero. Or, 

where Tis the period (T = t0 n + t0 ff). Solving for V0 yields 

Vo = V;n[ T ~ t0J = V;n[ (T -
1
t0n)/T] = 

v;n[(l _ :on/T)] = v;n[l ~ DJ 

where Dis the duty cycle (D = t 0 n/T). Thus, by controlling the 
duty cycle, we control the output voltage. Since D is always a 
positive fraction, V0 is always bigger than V;n-thus the name, 
boost converter. A plot of V0 /v;n versus duty cycle is shown in 
Fig. 6.48. 

Vin - Vo t-------'------------i1------ --1----

T 2T 3T 

Figure 6.47 
Waveform sketches for the inductor voltage and current. 



SECTION 6.4 TRANSIENT PSPICE ANALYSIS USING SCHEMATIC CAPTURE 

30 

25 

20 

't__ 15 
';;,."' 

10 

5 

0 
0 

I 

20 40 

I 
I 

J 
7 

I I 

60 80 100 
Duty cycle (percent) 

Figure 6.48 
Effect of duty cycle on boost converter gain. 

Learning by Design 

The following example provides an introduction to some typical strategies for transient cir­
cuits. In this example the problem involves the selection of the proper circuit parameters to 
achieve a specified transient response. 

LEARNING Example 8.1 4 

The network in Fig. 6.49 models an automobile ignition system. 
The voltage source represents the standard 12-V battery. The in­
ductor is the ignition coil, which is magnetically coupled to the 
starter (not shown). The inductor's internal resistance is mod­
eled by the resistor, and the switch is the keyed ignition switch. 
Initially the switch connects the ignition circuitry to the battery, 
and thus the capacitor is charged to 12 V. To start the motor, we 
close the switch, thereby discharging the capacitor through the 

inductor. Assuming that optimum starter operation requires an 
overdamped response for iL(t) that reaches at least 1 A within 
100 ms after switching and remains above 1 A for between 1 and 
1.5 s, let us find a value for the capacitor that will produce such 
a current waveform. In addition, let us plot the response includ­
ing the time interval just prior to moving the switch and verify 
our design. 

,~-~-~r) ,,(,) 
Figure 6.49 
Circuit model for ignition 
system. 

1 I 1 
= u L = 200 mH 

Vs= 12 V-=-

( continued) 
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SOLUTION Before the switch is moved at t = 0, the capaci­
tor looks like an open circuit and the inductor acts like a short cir­
cuit. Thus, 

and 

After switching, the circuit is a series RLC unforced network de­
scribed by the characteristic equation 

R 1 
s2 + -s + - = 0 

L LC 

with roots at s = -s1 and -s2. The characteristic equation is of 
the form 

Comparing the two expressions, we see that 

and 

Since the network must be overdamped, the inductor current is 
of the form 

Just after switching, 

or 

Also, at t = O+, the inductor voltage equals the capacitor voltage 
because iL = 0 and therefore iLR = 0. Thus, we can write 

or 

60 

12 

L 

At this point, let us arbitrarily choose s1 = 3 and s2 = 17, which 
satisfies the condition s1 + s2 = 20, and furthermore, 

60 60 
K 1 = -- = - = 4.29 

S2 - SJ 14 

1 1 
C = -- = = 98mF 

Ls1s2 (0.2)(3)(17) 

Hence, iL(t) is 

Figure 6.50a shows a plot of iL(t). At 100 ms the current has 
increased to 2.39 A, which meets the initial magnitude spec­
ifications. However, one second later at t = 1.1 s, iL(t) has 
fallen to only 0.16 A-well below the magnitude-over-time 
requirement. Simply put, the current falls too quickly. To 
make an informed estimate for s I and s2 , let us investigate 
the effect the roots exhibit on the current waveform when 
S2 > S1 . 

Since s2 > s1, the exponential associated with s2 will 
decay to zero faster than that associated with s1. This caus­
es iL(t) to rise-the larger the value of s2, the faster the rise. 
After 5(1/s2) seconds have elapsed, the exponential associ­
ated with s2 is approximately zero and iL(t) decreases ex­
ponentially with a time constant of T = 1/s1. Thus, to slow 
the fall of iL(t) we should reduce s1. Hence, let us choose 
s1 = 1. Since s1 + s2 must equal 20, s2 = 19. Under these 
conditions 

1 1 
C = -- = = 263 mF 

Ls1s2 (0.2)(1)(19) 

and 

60 60 
K 1 = -- = - = 3.33 

Sz - Si 18 

Thus, the current is 

which is shown in Fig. 6.50b. At 100 ms the current is 2.52 A. 
Also, at t = 1.1 s, the current is 1.11 A-above the 1-A 
requirement. Therefore, the choice of C = 263 mF meets all 
starter specifications. 
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Figure 6.50 Ignition current as a function of time. 

Summary 

First-Order Circuits 

t An RC or RL transient circuit is said to be first order if it 
contains only a single capacitor or single inductor. The 
voltage or current anywhere in the network can be obtained 
by solving a first-order differential equation. 

t The form of a first-order differential equation with a con­
stant forcing function is 

t 

t 

dx(t) x(t) 
--+--=A 

dt T 

and the solution is 

x(t) = AT + K2e-117 

where AT is referred to as the steady-state solution and T is 
called the time constant. 

The function e- t/T decays to a value that is less than 1 % of 
its initial value after a period of 5T. Therefore, the time con­
stant, T, determines the time required for the circuit to reach 
steady state. 

The time constant for an RC circuit is RThC and for an RL 

circuit is L/ RTh, where RTh is the Thevenin equivalent resis­
tance looking into the circuit at the terminals of the storage 
element (i.e., capacitor or inductor). 

iL (t) 

3.0A 

2.0A 

LOA 

O.OA 

SUMMARY 

~----------------_. 
- 0.0s 0.5 s LO s L5 s 2.0 s 2.5 s 3.0 s 3.5 s 4.0 s 

Time 

(b) 
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t The two approaches proposed for solving first-order tran­
sient circuits are the differential equation approach and 
the step-by-step method. In the former case, the differen­
tial equation that describes the dynamic behavior of the 
circuit is solved to determine the desired solution. In the 
latter case, the initial conditions and the steady-state 
value of the voltage across the capacitor or current in the 
inductor are used in conjunction with the circuit's time 
constant and the known form of the desired variable to 
obtain a solution. 

t The response of a first-order transient circuit to an input 
pulse can be obtained by treating the pulse as a combina­
tion of two step-function inputs. 

Second-Order Circuits 

t The voltage or current in an RLC transient circuit can be 
described by a constant coefficient differential equation 
of the form 

d2x(t) dx(t ) 
- -2- + 2swo -- + w5x(t) = f(t) 

dt dt 

where f(t) is the network forcing function. 
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t The characteristic equation for a second-order circuit is 
s2 + 2{w0 s + w5 = 0, where { is the damping ratio and 
w0 is the undamped natural frequency. 

t If the two roots of the characteristic equation are 

t real and unequal, then { > 1 and the network response is 
overdamped 

t real and equal, then { = 1 and the network response is 
critically damped 

t complex conjugates, then { < 1 and the network re­
sponse is underdamped 

t The three types of damping together with the corresponding 
network response are as follows: 

1. Overdamped: 
x(t) = K1e-(swo- wov?=I), + K2e-(,w, +wov?=I), 

2. Critically damped: x(t) = B1e- (wot + B2 te- (wot 

3. Underdamped: x(t) = e- cr1(A 1 coswdt + A2 sinwdt), 

where a = {w0 and wd = w 0 ~ 

t Two initial conditions are required to derive the two un­
known coefficients in the network response equations. 

Problems For solutions and additional help on problems marked with ~ go to www.wiley.com/college/irwin 

SE CTI ON 6. 2 --------------- - - --------------

6.1 Use the differential equation approach to find Vc(t) for 
~ t > 0 in the circuit in Fig. P6.1. 

t = 0 

3k0 

Figure P6.1 

+ 

vc (t) 

12V 

100 µF 

6.2 Use the differential equation approach to find i(t) for 
t > 0 in the network in Fig. P6.2. 

t = 0 

12 V + 

2H 

Figure P6.2 

60 

i(t) 

60 

6.3 Use the differential equation approach to find vc(t) for 
t > 0 in the circuit in Fig. P6.3. 

lkO 

3k0 100 µF 

Figure P6.3 

6.4 Use the differential equation approach to find i0 ( t) for 
t > 0 in the network in Fig. P6.4. 

2 kfl 

Figure P6.4 



6.5 In the network in Fig. P6.5, find i0 (t) for t > 0 using 
~ the differential equation approach. 

I= 0 

i0 (1) 

2H 4!1 2A 12!1 

Figure P6.5 

6.6 In the circuit in Fig. P6.6, find io( t) for t > 0 using the 
differential equation approach. 

Figure P6.6 

6.7 Use the differential equation approach to find v0 (t ) for 
t > 0 in the circuit in Fig. P6.7 and plot the response in­
cluding the time interval just prior to switch action. 

Figure P6.7 

6.8 Use the differential equation approach to find i ( t) for 
t > 0 in the circuit in Fig. P6.8 and plot the response 
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including the time interval just prior to opening 
the switch. 

t = 0 
i (t) 

6!1 

+ 
s n 36V 

Figure P6.8 

6.9 Use the differential equation approach to find vc(t) 
~ for t > 0 in the circuit in Fig. P6.9 and plot the re­

sponse including the time interval just prior to open­
ing the switch. 

12 kD 

12 V 

12 kn 

Figure P6.9 

6k!l 200 µ,F 

t = 0 

6.10 Use the differential equation approach to find i L( t) for 
t > 0 in the circuit in Fig. P6.10 and plot the response 
including the time interval just prior to opening the 
switch. 

6!1 

12V 

3 !1 

Figure P6. 10 

12 !1 6!1 
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6.11 Use the differential equation approach to find i ( t) for 
t > 0 in the circuit in Fig. P6. l l and plot the response 
including the time interval just prior to switch movement. 

Figure P6. 11 

6.12 Use the differential equation approach to find Ve ( t) for 
t > 0 in the circuit in Fig. P6.12 and plot the response 
including the time interval just prior to closing the 
switch. 

+ 
12V vc(t) 100 µF 4k!1 

Figure P6. 12 

6.13 Use the differential equation approach to find v 0 (t) for 
.,. t > 0 in the circuit in Fig. P6.13 and plot the response 

including the time interval just prior to opening the 
switch. 

100 µ.F 

t = 0 

+ 

12V 6k!1 v0 (1) 

Figure PG. 13 

6.14 Use the differential equation approach to find i0 ( t) for 
t > 0 in the circuit in Fig. P6.14 and plot the response 
including the time interval just prior to closing the 
switch. 

100 µF 

12V 6k!1 

Figure P6. 14 

6.15 Use the differential equation approach to find i( t) 
fort > 0 in the circuit in Fig. P6.15 and plot the 
response including the time interval just prior to switch 
movement. 

Figure PG. 15 

6.16 Use the differential equation approach to find vo(t) for 
t > 0 in the circuit in Fig. P6. l 6 and plot the response 
including the time interval just prior to switch action. 

10 kD 6k!1 t=O 6k!1 10k!1 

12 V 8k!1 8k!1 6V 

Figure PG. 16 



6.17 Use the differential equation approach to find v0 (t) for 
~ t > 0 in the circuit in Fig. P6.17 and plot the response 

including the time interval just prior to closing the 
switch. 

100 µ,F 

6V 

Figure P6. 17 

6.18 Use the differential equation approach to find v0 (t) for 
t > 0 in the circuit in Fig. P6.18 and plot the response 
including the time interval just prior to opening the 
switch. 

sn v,.(!) 

Figure P6. 18 

6.19 Use the differential equation approach to find v0 (t) for 
t > 0 in the circuit in Fig. P6. l 9 and plot the response 
including the time interval just prior to opening the 
switch. 

t = 0 

3kil 1·,,(1) 

Figure P6. 19 
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6.20 Use the differential equation approach to find i0 (t) for 
t > 0 in the circuit in Fig. P6.20 and plot the response in­
cluding the time interval just prior to opening the switch. 

24V t=O 

4!1 2n 
I ,(t) 

Figure P6.20 

6.21 Use the differential equation approach to find i,,(t) for 
~ t > 0 in the circuit in Fig. P6.21 and plot the re,;ponse 

including the time interval just prior to opening the 
switch. 

t=O 12V 

3kil 

i,,(1) 

Figure P6.21 

6.22 Use the differential equation approach to find i0 (t) for 
t > 0 in the circuit in Fig. P6.22 and plot the response 
including the time interval just prior to opening the 
switch. 

Skil 4k!1 1,,r) 4kil 

4k!1 4kil 

Figure P6.22 
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6.23 Using the differential equation approach, find i0 (t) for 
t > 0 in the circuit in Fig. P6.23 and plot the response in­
cluding the time interval just prior to opening the switch. 

12V 

24 V + 2!1 

Figure P6.23 

6.24 Use the differential equation approach to find v0 (t) for 
t > 0 in the circuit in Fig. P6.24 and plot the response 
including the time interval just prior to opening the 
switch. 

100 µ,F 

12V 

+ 

t = 0 12 kil v/t) 

Figure P6.24 

6.25 Find vc(t) fort > 0 in the network in Fig. P6.25 using 
~ the step-by-step method. 

2k!1 2k!1 

+ 
2k!1 vc(1) 100 µ,F 

12V 

Figure P6.25 

6.26 Use the step-by-step method to find i0 ( t) fort > 0 in the 
circuit in Fig. P6.26. 

2!1 

2H 12V 

t = 0 

Figure P6.26 

6.27 Find i0 ( t) fort > 0 in the network in Fig. P6.27 using 
the step-by-step method. 

t= 0 

12!1 

Figure P6.27 

6!1 

iv(t) 

lH 

6.28 Use the step-by-step method to find i0 (t) fort > 0 in the 
circuit in Fig. P6.28. 

t=O 

6k!1 4mA 6k!1 

Figure P6.28 



6.29 Use the step-by-step technique to find i0 (t) fort > 0 in 
~ the network in Fig. P6.29. 

Figure P6.29 

6.30 Use the step-by-step method to find v0 (t) fort > 0 in 
the network in Fig. P6.30. 

t=O 

+ 
6 kfl va(1) 

Figure P6.30 

6.31 Use the step-by-step method to find i0 (t) fort > 0 in the 
circuit in Fig. P6.3 l. 

3k!1 3k!1 

+ 

12V 2kll 

Figure P6.31 
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6.32 Find v0 (t) fort > 0 in the network in Fig. P6.31 using 
the step-by-step technique. 

6.33 Find i.(t) for t > 0 in the network in Fig. P6.33 using 
~ the step-by-step method. 

t= 0 

12 V 

Figure P6.33 

6.34 Find v0 (t) fort > 0 in the network in Fig. P6.34 using 
the step-by-step method. 

4!1 

+ 

3!1 6!1 v)t) 

Figure P6.34 

6.35 Use the step-by-step method to find v0 (t) fort > 0 in 
the network in Fig. P6.35. 

2!1 4!1 + 

t = 0 

2H 2!1 v)t) 

6V 

Figure P6.35 



252 CHAPTER 6 FIRST - AND SECOND-ORDER TRANSIENT CIRCUITS 

6.36 Use the step-by-step technique to find i0 (t) fort > 0 in 
the network in Fig. P6.36. 

6V 

2k0 

Figure P6.36 

2k0 

i,,(1) 

200 µF 

6.37 Find i0 (t) for t > 0 in the network in Fig. P6.37 using 
.,. the step-by-step method. 

12V 

2k0 2k0 

Figure P6.37 

6.38 Use the step-by-step method to find i0 (t) fort > 0 in the 
network in Fig. P6.38. 

3k0 12V 

Figure P6.38 

6.39 Find v0 (t) fort > 0 in the circuit in Fig. P6.38 using the 
step-by-step method. 

6.40 Find i0 (t) fort > 0 in the network in Fig. P6.40 using 
the step-by-step method. 

5k0 2k0 t=O 

4k0 4k0 lOmH 2k0 

1,,( ) 

Figure P6.40 

6.41 Find v0 (t) fort > 0 in the network in Fig. P6.41 using 
.,. the step-by-step method. 

Figure P6.41 

6.42 Find v0 ( t) fort > 0 in the network in Fig. P6.42 using 
the step-by-step method. 

v)t) 

Figure P6.42 



6.43 Find i0 ( t) fort > 0 in the circuit in Fig. P6.43 using the 
step-by-step technique. 

4k!l 

2k!l lOk!l 

Figure P6.43 · 

6.44 Find v0 (t) fort > 0 in the network in Fig. P6.44 using 
the step-by-step method. 

t=O 

Figure P6.44 

4k!l 

100 µ,F 

+ 

6.45 Use the step-by-step method to find Vt) fort > 0 in 
.... the network in Fig. P6.45. 

12 V + 

50 µ,F 

Figure P6.45 
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6.46 Find v0 (t) fort > 0 in the circuit in Fig. P6.46 using the 
step-by-step method. 

4k!l v) t) 

+ 

8k!l 50 µ,F 

Figure P6.46 

6.47 Use the step-by-step technique to find v0 (t) fort > 0 in 
the circuit in Fig. P6.47. 

12V 
6!l 

12n 
t=O 

+ 

2H 4!l v0 (1) 

2n 

Figure P6.47 

6.48 Find v0 (t) fort > 0 in the circuit in Fig. P6.48 using the 
step-by-step method. 

SH 

24V + 6!l 12V + 3!l 

1n 

Figure P6.48 
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6.49 Use the step-by-step method to find v0 (t) fort > 0 in 
~ the network in Fig. P6.49. 

Figure P6.49 

T6µ,F 

c--i 4k0 

6 µ,F 6 µ,F 

+ 

6.50 Find v0 (t) fort > 0 in the network in Fig. P6.50 using 
the step-by-step method. 

+ 

t = 0 
6k0 6k0 

Figure P6.50 

6.51 Use the step-by-step technique to find i0 (t) fort > 0 in 
the network in Fig. P6.5 l . 

12V 

~-------4-+f--------~ 

t= 0 

4k0 t lmA 

Figure P6.51 

2k0 

I600 µ,F 

200 µ,F 

300 µ,F 

6.52 Use the step-by-step method to find iv( t) fort > 0 in the 
network in Fig. P6.52. 

40 t = 0 

12fl 

12V + 

Figure P6.52 

6.53 Find i.(t) for t > 0 i.n the circuit in Fig. P6.53 using 
~ the step-by-step method. 

Figure P6.53 

6.54 Find i0 ( t) fort > 0 in the circuit in Fig. P6.54 using the 
step-by-step technique. 

3k0 

6k0 

50 µ,F 150 µ,F 

Figure P6.54 

lkO 

2k0 

t= 0 

1 kO 

+ 6V 
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SECTION 6. 3 -----------------------------

6.55 The differential equation that describes the current i 0 ( t) 
in a network is 

d 2i (t) [ di (t) J 
-

0
- + 6 - 0 

- + Si (t) = 0 
dt2 dt o 

Find 

(a) the characteristic equation of the network. 

(b) the network's natural frequencies. 

(c) the expression for i0 (t). 

6.56 The terminal current in a network is described by the 
equation 

d 2i (t) [ di (t)] 
-

0
- + 10 - 0 

--- + 25i ( t) = 0 
dt2 dt o 

Find 

(a) the characteristic equation of the network. 

(b) the network's natural frequencies. 

(c) the equation for i0 (t). 

6.57 The voltage v 1(t) in a network is defined by the 
~ equation 

0 

Find 

(a) the characteristic equation of the network. 

(b) the circuit's natural frequencies. 

(c) the expression for v 1(t). 

6.58 The output voltage of a circuit is described by the differ­
ential equation 

d 2v (t) [ dv (t)] 
-

0
- + 6 - 0 

- + 10v (t) = 0 
dt2 dt o 

Find 

(a) the characteristic equation of the circuit. 

(b) the network's natural frequencies. 

(c) the equation for v0 (t). 

6.59 The parameters for a parallel RLC circuit are R = l n, 
L = ! H, and C = i F. Determine the type of damping 
exhibited by the circuit. 

6.60 A series RLC circuit contains a resistor R = 2 D, and a 
capacitor C = ! F. Select the value of the inductor so 
that the circuit is critically damped. 

6.61 For the underdamped circuit shown in Fig. 6.61, de-
~ termine the voltage v(t) if the initial conditions on the 

storage elements are ii(O) = 1 A and vc(O) = 10 V. 

Figure P6.61 

v(t ) 

+ 
v(t) 1 sn 40 F 

6.62 Given the circuit and the initial conditions of Problem 
6.61, determine the current through the inductor. 

6.63 Find vc( t) fort > 0 in the circuit in Fig. P6.63 if 
vc(O) = 0. 

1 kfl 100 mH 

t=O~ 
+ 12 V 1 µF :c(t) 

Figure P6.63 

6.64 Find vu(t) fort > 0 in the circuit in Fig. P6.64 and plot 
the response including the time interval just prior to 
moving the switch. 

4ki1 lmH 

Figure P6.64 
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6.65 Find vc(t) fort > 0 in the circuit in Fig. P6.65. 
... 

8D 0.04F 

Figure P6.65 

6.66 Find iL(t) fort > 0 in the circuit in Fig. P6.65. 

6.67 Given the circuit in Fig. P6.67 , find the equation for i(t), 
t > 0. 

t=O i(t) 

L. 3D 

+ 12V 
8 

Figure P6.67 

6.68 In the circuit shown in Fig. P6.68, find v(t), t > 0. 

Figure P6.68 

_l_p 
12 

+ 

v(t) 

6.69 Find i0 ( t) fort > 0 in the circuit in Fig. P6.69 and plot 
the response including the time interval just prior to 
opening the switch. 

i,,(t) 

t= 0 SD 

Figure P6.69 

6. 70 Find vo( t) fort > 0 in the circuit in Fig. P6.70 and plot 
the response including the time interval just prior to clos­
ing the switch. 

t = 0 1 zs F t H 
C>----i c____ryyy'---

+ 
4D 6D 1 D V0 (t) 

Figure P6. 70 

6.71 Find v0 (t) fort > 0 in the circuit in Fig. P6.71 and plot 
the response including the time interval just prior to mov­
ing the switch. 

t = 0 2.SmH 8kD 

t 
3 mA 

Figure P6.71 
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SECTION 6. 4 ------------------------------

6.72 Using the PSPICE Schematics editor, draw the circuit in 
Fig. P6.72, and use the PROBE utility to plot vc(t) and 
determine the time constants for O < t < 1 ms and 
1 ms < t < oo. Also, find the maximum voltage on the 
capacitor. 

t=O 

Rz 
1 k!l 

C R1 

t 
11 

0.33 µ.F ''c (t) lk!l 50mA 

R3 
lk!l 

Figure P6. 72 

6." Using the PSPICE Schematics editor, draw the circuit in 
Fig. P6.73, and use the PROBE utility to find the maxi­
mum values of vL(t), ic( t ), and i(t ). 

{' L \ 
0.5mH 

'\ ) ic(t) 
t = l µ.s 

R1 t /1 C 
700!1 6A 0.1 µ.F 

Figure P6. 73 

SEC Tl ON 6. 6 -----------------------------

6.74 Design a series RCL circuit with R ~ 1 kD that has the 
characteristic equation 

s2 + 4 X 107s + 4 X 1014 = 0 

6. r Design a parallel RLC circuit with R ~ I kD that has 
the characteristic equation 

s2 + 4 X 107 s + 3 X 1014 = 0 

Typical Problems Found on the FE Exam 

6FE-l In the circuit in Fig. 6PFE-l, the switch, which has 
.,._ been closed for a long time, opens at t -· 0. Find the 

value of the capacitor voltagt Vc(tl at t - 2 s. 

6 k!1 

t=O 

12V 6k!1 100 µ.F 6k!1 

Figure 6PFE-1 

6FE-2 In the network in Fig. 6PFE-2, the switch closes at 
t = O.Findv0 (t)att = ls. 

4k!l 

12V 

t=O~ 

12 k!l 100 µ.F ,. ,(1, 

Figure 6PFE-2 

6F F.-3 \,;sume that the <;witch in the network in 
.,. Fig. 6PF L-3 has been closed for some time. At t = 0 

the <,witch opens. DC'termine the time required for 
the cap.icitor voltage to decay to one-half of its 
initiallv rharged value. 

Figure 6PFE 3 
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258 

AC Steady-State 
Analysis 

In the preceding chapters we have considered in some detail both the nat­
ural and forced response of a network. We found that the natural response 
was a characteristic of the network and was independent of the forcing 
function. The forced response, however, depends directly on the type of 
forcing function, which until now has generally been a constant. At this 
point we will diverge from this tack to consider an extremely important ex­
citation: the sinusoidal forcing function . Nature is replete with examples of 
sinusoidal phenomena, and although this is important to us as we examine 
many different types of physical systems, one reason that we can appreci­
ate at this point for studying this forcing function is that it is the dominant 
waveform in the electric power industry. The signal present at the ac out­
lets in our home, office, laboratory, and so on is sinusoidal. In addition, it 
can be shown that via Fourier analysis we can represent any periodic elec­
trical signal by a sum of sinusoids. 

In this chapter we concentrate on the steady-state forced response of net­
works with sinusoidal driving functions. We will ignore the initial condi­
tions and the transient or natural response, which will eventually vanish 
for the type of circuits with which we will be dealing. We refer to this as 
an ac steady-state analysis. 

Our approach will be to begin by first studying the characteristics of a 
sinusoidal function as a prelude to using it as a forcing function for a cir­
cuit. We will mathematically relate this sinusoidal forcing function to a 
complex forcing function, which will lead us to define a phasor. By em­
ploying phasors we effectively transform a set of differential equations with 
sinusoidal forcing functions in the time domain into a set of algebraic equa­
tions containing complex numbers in the frequency domain. We will show 
that in this frequency domain Kirchhoff's laws are valid and, thus, all the 
analysis techniques that we have learned for de analysis are applicable in 
ac steady-state analysis. Finally, we demonstrate the power of PSPICE in 
the solution of ac steady-state circuits. 
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7 .1 Sinusoids 

Let us begin our discussion of sinusoidal functions by considering the sine wave 

x(wt) = XM sinwt 7.1 

where x( t) could represent either v( t) or i( t ). XM is the amplitude or maximum value, w is the 
radian or angular frequency, and wt is the argument of the sine function. A plot of the function 
in Eq. (7.1) as a function of its argument is shown in Fig. 7.la. Obviously, the function repeats 
itself every 21T radians. This condition is described mathematically as x( wt + 21T) = x( wt) or 
in general for period T as 

x[w(t + T)] = x(wt) 7.2 

meaning that the function has the same value at time t + T as it does at time t . 

(a) 

x(t) 

(b) 

Figure 7.1 
Plots of a sine wave as a function of both wt and t. 

The waveform can also be plotted as a function of time, as shown in Fig. 7 .1 b. Note 
that this function goes through one period every T seconds, or in other words, in 1 second 
it goes through 1 /T periods or cycles. The number of cycles per second, called Hertz, is the 
frequency f, where 

1 J=­
T 

7.3 

LEARNING Hint 
The relationship between 
frequency and period 
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LEARNING Hint 
The relationship between 
frequency, period, and radian 
frequency 

LEARNING Hint 
Phase lag defined 

LEARNING Hint 
Phase lead graphically 
illustrated 

LEARNING Hint 
In phase and out of phase 
defined 

Now since wT = 21r, as shown in Fig. 7 .1 a, we find that 

21T 
w = - = 21rf 

T 
7.4 

which is, of course, the general relationship among period in seconds, frequency in Hertz, and 
radian frequency. 

Now that we have discussed some of the basic properties of a sine wave, let us consider the 
following general expression for a sinusoidal function: 

x(t) = XM sin(wt + 0) 7.5 

In this case ( wt + 0) is the argument of the sine function, and 0 is called the phase angle. A 
plot of this function is shown in Fig. 7 .2, together with the original function in Eq. (7 .1) for com­
parison. Because of the presence of the phase angle, any point on the waveform XM sin ( wt + 0) 
occurs 0 radians earlier in time than the corresponding point on the waveform XM sin wt. There­
fore, we say that XM sin wt lags XM sin ( wt + 0) by 0 radians. In the more general situation, if 

and 

x1(t) = XM, sin(wt + 0) 

x(wt) 

Figure 7.2 
Graphical illustration of XM sin ( wt + e) 
leading XM sin wt by e radians. 

x2(t) = XM, sin(wt + <I>) 

wt 

then x 1 ( t) leads x2( t) by 0 - <I> radians and xz( t) lags x 1 ( t) by 0 - <I> radians. If 0 = <j>, the wave­
forms are identical and the functions are said to be in phase. If 0 *- <I>, the functions are out of phase. 

The phase angle is normally expressed in degrees rather than radians, and therefore we 
will simply state at this point that we will use the two forms interchangeably; that is, 

x(t) = XMsin( wt+ f) = XMsin(wt + 90°) 7.6 



SECTION 7.1 SINUSOIDS I 261 

Rigorously speaking, since wt is in radians, the phase angle should be also. However, it is common LE ARN ING Hint 
practice and convenient to use degrees for phase, and therefore, that will be our practice in this text. A very important point 

In addition, it should be noted that adding to the argument integer multiples of either 21r 
radians or 360° does not change the original function. This can easily be shown mathematically 
but is visibly evident when examining the waveform, as shown in Fig. 7.2. 

Although our discussion has centered on the sine function, we could just as easily have 
used the cosine function, since the two waveforms differ only by a phase angle; that is, 

cos wt = sin ( wt + f) 
sin wt = cos ( wt - f) 

7.7 

7.8 

It should be noted that when comparing one sinusoidal function with another of the same fre­
quency to determine the phase difference, it is necessary to express both functions as either sines 
or cosines with positive amplitudes. Once in this format, the phase angle between the functions 
can be computed as outlined previously. Two other trigonometric identities that normally prove 
useful in phase angle determination are 

-cos(wt) = cos(wt ± 180°) 

-sin (wt) = sin ( wt ± 180°) 

7.9 

7.10 

Finally, the angle-sum and angle-difference relationships for sines and cosines may be use­
ful in the manipulation of sinusoidal functions. These relations are 

sin ( a + 13) = sin a cos 13 + cos a sin 13 

cos ( a + 13) = cosa cos 13 - sin a sin 13 

sin ( a - 13) = sin a cos 13 - cosa sin 13 

cos ( a - 13) = cos a cos 13 + sin a sin 13 

LEARNING Example 7.1 

7.11 

LEARNING Hint 
Some trigonometric identities 
that are useful in phase angle 
calculations 

We wish to plot the waveforms for the following functions: 

(a) v(t) = 1 cos(wt + 45°), 

v(t) = 1 cos(wt + 225°) = 1 cos(wt + 45° + 180°) 

(b)v(t) = lcos(wt + 225°),and 

(c) v(t) = 1 cos(wt - 315°). 

SOLUTION Figure 7.3a shows a plot of the function v(t) = 
1 cos wt. Figure 7.3b is a plot of the function v(t) = 1 cos (wt+ 45°). 
Figure 7.3c is a plot of the function v(t) = 1 cos (wt+ 225°). Note 
that since 

this waveform is 180° out of phase with the waveform in Fig. 7.3b; 
that is, cos ( wt + 225°) = -cos ( wt + 45°), and Fig. 7.3c is the 
negative of Fig. 7 .3b. Finally, since the function 

v(t) = 1 cos(wt - 315°) = 

1 cos(wt - 315° + 360°) = 1 cos(wt + 45°) 

this function is identical to that shown in Fig. 7.3b. 

( continued) 
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v(wt) 

1 

(a) 

v(wt) 

wt 

Figure 7.3 Cosine waveforms with various phase angles. 

LEARNING Example 7.2 

Determine the frequency and the phase angle between the 
two voltages v 1(t) = 12sin(1000t + 60°) V and v 2(t) = 

-6 cos ( lOOOt + 30°) V. 

SOLUTION The frequency in Hertz (Hz) is given by the 
expression 

w 1000 
f = - = -- = 159.2 Hz 

2'1T 2'1T 

Using Eq. (7.9), v2(t) can be written as 

vi(t) = -6cos(wt + 30°) = 6cos(wt + 210°) V 

Then employing Eq. (7 .7) , we obtain 

6 sin(wt + 300° ) V = 6 sin(wt - 60° ) V 

(b) 

v(wt) 

wt wt 

( c) 

Now that both voltages of the same frequency are expressed as 
sine waves with positive amplitudes, the phase angle between 
v 1(t) and v2(t) is 60° - (-60°) = 120°; that is, v1(t) leads 
v2(t) by 120° or v2(t) lags v 1(t) by 120°. 

LEARNING by Doing 

D 7 .1 The local power company supplies voltage to the 
home at a radian frequency of w = 377 r/s. What is the fre­
quency in Hertz, or equivalently, cycles per second? 

ANSWER 60 Hz 

L:tif LEARNING EXT EN s Hi NS 
~;,..'I,, 

E7 .1 Given the voltage v( t) = 120 cos ( 3 l 4t + '1T / 4) V, determine the frequency of the volt­
age in Hertz and the phase angle in degrees. 

E7 .2 Three branch currents in a network are known to be 

i 1(t) = 2 sin(377t + 45°) A 

i2(t) = 0.5 cos(377t + 10° ) A 

i3(t) = -0.25 sin(377t + 60°) A 

Determine the phase angles by which i1(t) leads i2(t) and i1(t) leads iJ(t). 

ANSWER f = 50 Hz, 
e = 45°. 

ANSWER i1 leads i2 by -55°, 
i1 leads i3 by 165°. 
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7 .2 Sinusoidal and Complex Forcing Functions 

In the preceding chapters we applied a constant forcing function to a network and found that 
the steady-state response was also constant. 

Figure 7.4 

Linear 
electrical 
network 

In a similar manner, if we apply a sinusoidal forcing function to a linear network, the steady­
state voltages and currents in the network will also be sinusoidal. This should also be clear 
from the KVL and KCL equations. For example, if one branch voltage is a sinusoid of some 
frequency, the other branch voltages must be sinusoids of the same frequency if KVL is to 
apply around any closed path. This means, of course, that the forced solutions of the differen­
tial equations that describe a network with a sinusoidal forcing function are sinusoidal func­
tions of time. For example, if we assume that our input function is a voltage v( t) and our output 
response is a current i ( t) as shown in Fig. 7.4, then if v( t) = A sin ( wt + 8), i ( t) will be of the 
form i ( t) = B sin ( wt + <p). The critical point here is that we know the form of the output re­
sponse, and therefore the solution involves simply determining the values of the two para­
meters B and <p . 

Current response to an applied 
voltage in an electrical network. 

LEARNING Example 7.3 

Consider the circuit in Fig. 7.5. Let us derive the expression for 
the current. 

R 

"(,)~ VMcosw, ,Fi L 

Figure 7.5 L__J 
A simple RL circuit. i(t) 

SOLUTION The KVL equation for this circuit is 

di(t) 
L-- + Ri(t) = VM cos wt 

dt 

Since the input forcing function is VM cos wt, we assume that 
the forced response component of the current i ( t) is of the form 

i(t) = Acos(wt + <I>) 

which can be written using Eq. (7 .11) as 

i(t) = A cos<!> cos wt - A sin<!> sin wt 

= A I cos wt + A 2 sin wt 

Note that this is, as we observed in Chapter 6, of the form of the 
forcing function cos wt and its derivative sin wt. Substituting this 
form for i(t) into the preceding differential equation yields 

d . 
L - (A I cos wt + A2 sm wt) 

dt 
+ R(A 1 cos wt + A2 sin wt) = VM cos wt 

Evaluating the indicated derivative produces 

-A 1wLsinwt + A2 wLcoswt + RA 1 coswt 

+ RA 2 sinwt = VMcoswt 

By equating coefficients of the sine and cosine functions, we 
obtain 

-A 1wL + A 2 R = 0 

A 1R + A 2 wL = VM 

that is, two simultaneous equations in the unknowns A 1 and A2• 

Solving these two equations for A 1 and A2 yields 

Therefore, 

i(t) 
RVM wLVM . 

? 2 2 cos wt + 2 2 2 sm wt 
R- + w L R + w L 

which, using the last identity in Eq. (7.11), can be written as 

i(t) = Acos(wt + <I>) 

( continued) 
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where A and cl> are determined as follows: R2V 2 (wL) 2VL 
A2= M +-----

Hence, 

and therefore, 

and since 

RVM 
A cos<!>=---­

R2 + w2L2 

-wLv'. 
A sine!> = 2 ~ 2 

R + w L 

A sine!> wL 
tan<!>= --- = --

A cos<!> R 

wL 
cl>= -tan- 1 -

R 

(R2 + w2L2)2 (R2 + w2L2)2 

vi 

Hence, the final expression for i(t) is 

i(t) = V VM cos (wt - tan- 1 wRL) 
R2 + w2L2 

(A cos<!>)2 + (A sin<!>)2 = A2(cos2 <!> + sin2 <!>) = A2 

The preceding analysis indicates that cl> is zero if L = 0 
and hence i( t ) is in phase with v( t). If R = 0, <I> = -90°, 
and the current lags the voltage by 90°. If L and R are both 
present, the current lags the voltage by some angle between 
0° and 90°. 

This example illustrates an important point-solving even a simple one-loop circuit 
containing one resistor and one inductor is very complicated when compared to the solu­
tion of a single-loop circuit containing only two resistors. Imagine for a moment how la­
borious it would be to solve a more complicated circuit using the procedure we have 
employed in Example 7.3. To circumvent this approach, we will establish a correspondence 
between sinusoidal time functions and complex numbers. We will then show that this rela­
tionship leads to a set of algebraic equations for currents and voltages in a network (e.g., 
loop currents or node voltages) in which the coefficients of the variables are complex num­
bers. Hence, once again we will find that determining the currents or voltages in a circuit 
can be accomplished by solving a set of algebraic equations; however, in this case, their so­
lution is complicated by the fact that variables in the equations have complex, rather than 
real, coefficients. 

The vehicle we will employ to establish a relationship between time-varying sinusoidal 
functions and complex numbers is Euler's equation, which for our purposes is written as 

Jwt = cos wt + j sin wt 

This complex function has a real part and an imaginary part: 

Re(dw1) = coswt 

Im( Jw1) = sin wt 

7.12 

7.13 

where Re(·) and Im(·) represent the real part and the imaginary part, respectively, of the func­
tion in the parentheses. 
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Now suppose that we select as our forcing function in Fig. 7.4 the nonrealizable voltage 

7.14 

which because of Euler's identity can be written as 

7.15 

The real and imaginary parts of this function are each realizable. We think of this complex 
forcing function as two forcing functions , a real one and an imaginary one, and as a 
consequence of linearity, the principle of superposition applies and thus the current response 
can be written as 

i ( t) = IM cos ( wt + <I>) + j IM sin ( wt + <I>) 7.16 

where IM cos ( wt + <I>) is the response due to VM cos wt and j!M sin ( wt + <I>) is the response due 
to JVM sin wt. This expression for the current containing both a real and an imaginary term can 
be written via Euler's equation as 

7.17 

Because of the preceding relationships we find that rather than applying the forcing function 
VM cos wt and calculating the response IM cos ( wt + <I>), we can apply the complex forcing func­
tion VMei"'' and calculate the response IMej(wr+,t,), the real part of which is the desired response 
IM cos ( wt + <I>) . Although this procedure may initially appear to be more complicated, it is 
not. It is via this technique that we will convert the differential equation to an algebraic equa­
tion that is much easier to solve. 

LEARNING Example 7.4 

265 

Once again, let us determine the current in the RL circuit exam­
ined in Example 7 .3. However, rather than applying VM cos wt 
we will apply VMej"''. 

Dividing each term of the equation by the common factor ejw, 

yields 

SOLUTION The forced response will be of the form 

where only IM and<!> are unknown. Substituting v(t) and i(t) 
into the differential equation for the circuit, we obtain 

RI ej(wt +¢ ) + L !!:_ (I e j(wt +<t>) ) = V: e jwt 
M dt M M 

Taking the indicated derivative, we obtain 

which is an algebraic equation with complex coefficients. This 
equation can be written as 

Converting the right-hand side of the equation to exponential or 
polar form produces the equation 

(A quick refresher on complex numbers is given in the Appendix 
for readers who need to sharpen their skills in this area.) The 

( continued) 
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preceding form clearly indicates that the magnitude and phase of 
the resulting current are 

Note that this is identical to the response obtained in the previous 
example by solving the differential equation for the current i(t ). 

and 
LEARNING Hint 

wL 
q:> = -tan-1 -

R 

Summary of complex number relationships: 

x + jy = re1" 

However, since our actual forcing function was VM cos wt rather 
than VMejwt, our actual response is the real part of the complex 
response: 

r = Vx2 + y2 

0 = tan- I 2'_ 
X 

i ( t) = IM cos ( wt + q>) X = r COS 0 

= V R2 V: w2L2 cos ( wt - tan- , wRL) 

y = r sine 

J_ = e- Je 
eJa 

7.3 Phasors 

LEARNING Hint 
If v(t ) = VM cos (wt + e) and 
i(t) = /Mcos (wt + cp), then in 
phasor notation 

and 

Once again let us assume that the forcing function for a linear network is of the form 

Then every steady-state voltage or current in the network will have the same form and the same 
frequency w; for example, a current i(t) will be of the form i(t) = JMJ(wt+<t,)_ 

As we proceed in our subsequent circuit analyses, we will simply note the frequency and 
then drop the factor Jwt since it is common to every term in the describing equations. Drop­
ping the term ejwt indicates that every voltage or current can be fully described by a magnitude 
and phase. For example, a voltage v( t) can be written in exponential form as 

7.18 

or as a complex number 

7.19 

Since we are working with a complex forcing function, the real part of which is the desired an­
swer, and each term in the equation will contain ejwt, we can drop Re(·) and Jwt and work only 
with the complex number VM f.!. This complex representation is commonly called a phasor. As 
a distinguishing feature, phasors will be written in boldface type. In a completely identical man­
ner a voltage v( t) = VMcos(wt + 0) = Re[VMej(wi+e)] andacurrenti(t) = !Mcos(wt + <1:>) 

= Re[ !Mej(wt+<t>)] are written in phasor notation as V = VM /.! and I = IM Li, respectively. 
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LEARNING Example 7.5 

Again, we consider the RL circuit in Example 7.3. Let us use 
phasors to determine the expression for the current. 

Note that eiwr is a common factor and, as we have already indi­
cated, can be eliminated, leaving the phasors; that is, 

SOLUTION The differential equation is 

di(t) 

jwll +RI= V 

Therefore, 
L-- + Ri(t) = VM cos wt 

dt 

The forcing function can be replaced by a complex forcing func­
tion that is written as Vejwr with phasor V = VM f!t.... Similarly, 
the forced response component of the current i ( t) can be replaced 
by a complex function that is written as Iejwr with phasor 
I = IM~. From our previous discussions we recall that the so­
lution of the differential equation is the real part of this current. 

i(t) = V VM cos(wt - tan- 1 wl ) 
Rz + w2L2 R 

which once again is the function we obtained earlier. 
Using the complex forcing function, we find that the differ­

ential equation becomes 

L !!:_ (Ieiwt) + Rlejwr = VeJwr 
dt LEARNING Hint 

jwLieiwr + Rlejwr = V ejwr The differential equation is reduced to a 
phasor equation. 

We define relations between phasors after the eiw' term has been eliminated as "phasor, 
or frequency domain, analysis." Thus we have transformed a set of differential equations 
with sinusoidal forcing functions in the time domain into a set of algebraic equations con­
taining complex numbers in the frequency domain. In effect, we are now faced with solving 
a set of algebraic equations for the unknown phasors. The phasors are then simply trans­
formed back to the time domain to yield the solution of the original set of differential equa­
tions . In addition, we note that the solution of sinusoidal steady-state circuits would be 
relatively simple if we could write the phasor equation directly from the circuit description. 
In Section 7.4 we will lay the groundwork for doing just that. 

Note that in our discussions we have tacitly assumed that sinusoidal functions would be rep­
resented as phasors with a phase angle based on a cosine function. Therefore, if sine functions 
are used, we will simply employ the relationship in Eq. (7.7) to obtain the proper phase angle. 

In summary, while v(t) represents a voltage in the time domain, the phasor V represents 
the voltage in the frequency domain. The phasor contains only magnitude and phase informa­
tion, and the frequency is implicit in this representation. The transformation from the time do­
main to the frequency domain, as well as the reverse transformation, is shown in Table 7 .1. 

Table 7 .1 Phasor representation 

Time Domain 

A cos(wt ± 0) 

A sin(wt ± 0) 

Frequency Domain 

A~ 

A / ±0 - 90° 

LEARNING Hint 
Phasor analysis 

1. Using phasors, transform a 
set of differential equations 
in the time domain into a set 
of algebraic equations in the 
frequency domain. 

2. Solve the algebraic 
equations for the unknown 
phasors. 

3. Transform the now-known 
phasors back to the time 
domain. 
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Recall that the phase angle is based on a cosine function and, therefore, if a sine function is in­
volved, a 90° shift factor must be employed, as shown in the table. 

The following examples illustrate the use of the phasor transformation. 
It is important to note, however, that if a network contains only sine sources, there is no need 

to perform the 90° shift. We simply perform the normal phasor analysis and then the imaginary 
part of the time-varying complex solution is the desired response. Simply put, cosine sources 
generate a cosine response and sine sources generate a sine response. 

E7 .3 Convert the following voltage functions to phasors. 

v1(t) = 12 cos(377t - 425°) V 

v2(t) = 18 sin(2513t + 4.2°) V 

ANSWER V1 = 12/-425° V, 

V2 = 18 / -85.8° V. 

E7.4 Convert the following phasors to the time domain if the frequency is 400 Hz. ANSWER 

V 1 = 10 / 20° V 

V2 = 12 / -60° V 

v 1(t) = 10 cos(800'TI"t + 20°) V, 
v2(t) = 12cos(800'iTt - 60°) V. 

--- --------------

7 .4 Phasor Relationships for Circuit Elements 

LEARNING Hint 
Current and voltage are in 
phase. 

As we proceed in our development of the techniques required to analyze circuits in the sinu­
soidal steady-state, we are now in a position to establish the phasor relationships between volt­
age and current for the three passive elements R, L, and C. 

In the case of a resistor as shown in Fig. 7.6a, the voltage-current relationship is known to be 

v (t) = Ri(t) 7.20 

Applying the complex voltage VMej(wi+ev) results in the complex current JM£!(wt +e,), and therefore 
Eq. (7.20) becomes 

which reduces to 

7.21 

Equation (7.21) can be written in phasor form as 

V = RI 7.22 

where 

From Eq. (7.21) we see that 8v = 8; and thus the current and voltage for this circuit are in phase. 
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i(t) 

+ + 

v(r) = i(r) R R V = RI R 

(c) 

Figure 7.6 

(a) 

V 
V, i 

Re 

Voltage-current relationships for a resistor. 

(b) 

wt 

(d) 

Historically, complex numbers have been represented as points on a graph in which the 
x-axis represents the real axis and the y-axis the imaginary axis. The line segment connecting 
the origin with the point provides a convenient representation of the magnitude and angle when 
the complex number is written in a polar form. A review of the Appendix will indicate how these 
complex numbers or line segments can be added, subtracted, and so on. Since phasors are com­
plex numbers, it is convenient to represent the phasor voltage and current graphically as line 
segments. A plot of the line segments representing the phasors is called a phasor diagram. 
This pictorial representation of phasors provides immediate information on the relative mag­
nitude of one phasor with another, the angle between two phasors, and the relative position of 
one phasor with respect to another (i.e., leading or lagging). A phasor diagram and the sinu­
soidal waveforms for the resistor are shown in Figs. 7.6c and d, respectively. A phasor dia­
gram will be drawn for each of the other circuit elements in the remainder of this section. 

LEARNING Example 7.8 

Ifthevoltagev(t) = 24cos(377t + 75°)Visappliedtoa6-D 
resistor as shown in Fig. 7.6a, we wish to determine the resultant 
current. 

SOLUTION Since the phasor voltage is 

V = 24 /75° V 

the phasor current from Eq. (7.22) is 

24 /75° 
I = -- = 4 / 75° A 

6 

which in the time domain is 

i(t) = 4cos(377t + 75°)A 

269 
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E7 .5 The current in a 4-0 resistor is known to be I = 12 /60° A. Express the voltage across ANSWER 
the resistor as a time function if the frequency of the current is 4 kHz. v( t) = 48 cos (8000Tit + 60°) V. 

LEARNING Hint 
The derivative process yields a 
frequency-dependent 
impedance. 

The voltage-current relationship for an inductor, as shown in Fig. 7.7a, is 

di(t) 
v(t) = L ­

dt 

Substituting the complex voltage and current into this equation yields 

V e-i(w1 +e,) = L !}_ I ej(w1+e;) 
M dt M 

which reduces to 

Equation (7 .24) in phasor notation is 

V = jwLI 

i(t) 

+ + 

v(t) = L '~\t) L V =jwLI 

(a) (b) 

Im 

V 
I 

Re 

(c) (d) 

Figure 7.7 
Voltage-current relationships for an inductor. 

7.23 

7.24 

7.25 

L 

wt 
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Note that the differential equation in the time domain (7.23) has been converted to an algebraic 
equation with complex coefficients in the frequency domain. This relationship is shown in Fig. 7.7b. 
Since the imaginary operator j = le1900 = 1 /90° = v=I, Eq. (7.24) can be written as 

7.26 

Therefore, the voltage and current are 90° out of phase, and in particular the voltage leads the 
current by 90° or the current lags the voltage by 90°. The phasor diagram and the sinusoidal 
waveforms for the inductor circuit are shown in Figs. 7.7c and d, respectively. 

LEARNING Example 7.7 

LEARNING Hint 
The voltage leads the current or 
the current lags the voltage. 

Thevoltagev(t) = 12cos(377t + 20°) Visappliedtoa20-mH 
inductor as shown in Fig. 7.7a. Find the resultant current. 

= 1.59 /-70° A 

or 
SOLUTION The phasor current is i(t) = l.59cos(377t - 70°) A 

V 12 / 20° 
I= --=---

jwL wL / 90° 
LEARNING Hint 
Applying V = jwLI 

12 / 20° 

(377)(20 X 10-3) / 90° 

E7.6 The current in a 0.05-H inductor is I = 4 / -30° A. If the frequency of the current is ANSWER 
60 Hz, determine the voltage across the inductor. vL(t) = 75.4 cos (377t + 60°) V. 

The voltage-current relationship for our last passive element, the capacitor, as shown in 
Fig. 7.8a, is 

+ 

v(t) 

Figure 7.8 

i(t) = cdv(t) 
tit 

C 

(a) 

dv(t) 
i(t) = c-­

dt 

I= jwCV 

+ 

V 

(b) 

Voltage-current relationships for a capacitor. 

7.27 

Im 

V 
C 

Re 
(c) 

LEARNING Hint 
The current leads the voltage or 
the voltage lags the current. 

wt 

(d) 
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LEARNING Hint 
The derivative process yields a 
frequency-dependent 
impedance. 

Once again employing the complex voltage and current, we obtain 

J ej(wt+a;) = C !!_ V, e,i(wr+0v) 
M dt M 

which reduces to 

In phasor notation this equation becomes 

I= jwCV 

7.28 

7.29 

Equation (7.27), a differential equation in the time domain, has been transformed into Eq. 
(7.29), an algebraic equation with complex coefficients in the frequency domain. The phasor 
relationship is shown in Fig. 7.8b. Substituting j = Iei900 into Eq. (7.28) yields 

7.30 

Note that the voltage and current are 90° out of phase. Equation (7.30) states that the current 
leads the voltage by1,90° or the voltage lags the current by 90°. The phasor diagram and the si­
nusoidal waveforms for the capacitor circuit are shown in Figs. 7.8c and d, respectively. 

LEARNING Example 7.8 

The voltage v(t) = 100 cos(314t + 15°) V is applied to a 
100-µ,F capacitor as shown in Fig. 7.8a. Find the current. 

SOLUTION The resultant phasor current is 

I= jwC(l00/15°) 

= (314)(100 X 10-6/90°)(100/15°) 

= 3.14 /105° A 

Therefore, the current written as a time function is 

i(t) = 3.14cos(314t + 105°)A 

LEARNING Hint 
Applying I = jwCV 

•:,y; ''> -.ll!'c,o•·~'W1 

LEARNING EXTENSION _.,<;,,.. <;.,iM 

E7. 7 The current in a 150-µ,F capacitor is I = 3.6 /-145° A. If the frequency of the current ANSWER 
is 60 Hz, determine the voltage across the capacitor. Vc(t) = 63.66 cos(377t - 235°) V 
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7 .5 Impedance and Admittance 

We have examined each of the circuit elements in the frequency domain on an individual basis. 
We now wish to treat these passive circuit elements in a more general fashion. We now define 
the two-terminal input impedance Z, also referred to as the driving point impedance, in exact­
ly the same manner in which we defined resistance earlier. Later we will examine another type 
of impedance, called transfer impedance. 

Impedance is defined as the ratio of the phasor voltage V to the phasor current I: 

V 
Z=-

1 
7.31 

at the two terminals of the element related to one another by the passive sign convention, as il­
lustrated in Fig. 7.9. Since V and I are complex, the impedance Z is complex and 

z &__--

Figure 7.9 
General impedance relationship. 

ac 
circuit 

7.32 

Since Z is the ratio of V to I, the units of Z are ohms. Thus, impedance in an ac circuit is anal­
ogous to resistance in a de circuit. In rectangular form, impedance is expressed as 

Z(w) = R(w) + JX(w) 7.33 

where R( w) is the real, or resistive, component and X( w) is the imaginary, or reactive, com­
ponent. In general, we simply refer to R as the resistance and X as the reactance. It is impor­
tant to note that R and X are real functions of w and therefore Z( w )is frequency dependent. 
Equation (7 .33) clearly indicates that Z is a complex number; however, it is not a phasor, since 
phasors denote sinusoidal functions. 

Equations (7.32) and (7.33) indicate that 

Z/_!; = R + JX 7.34 
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LEARNING Example 7.9 

Therefore, 

where 

z = YR2 + x2 

X 
0 = tan-1 -

z R 

R = Zcos0z 

X = Z sin0z 

7.35 

For the individual passive elements the impedance is as shown in Table 7 .2. However, just 
as it was advantageous to know how to determine the equivalent resistance in de circuits, we 
want to learn how to determine the equivalent impedance in ac circuits. 

Table 7 .2 Passive element impedance 

Passive element 

R 
L 

C 

Impedance 

Z=R 
Z = jwL = jXL = wL / 90° , XL= wL 

1 1 1 
Z = -. - = jXc = - - /90°, Xe = - -

]WC wC wC 

KCL and KVL are both valid in the frequency domain and we can use this fact, as was 
done in Chapter 2 for resistors, to show that impedances can be combined using the same rules 
that we established for resistor combinations. That is, if Zi, Z2 , Z3 , ... , Zn are connected in 
series, the equivalent impedance Zs is 

7.36 

and if Z1, Z2 , Z3, ... , Zn are connected in parallel, the equivalent impedance is given by 

7.37 

Determine the equivalent impedance of the network shown in 
Fig. 7 .10 if the frequency is f = 60 Hz. Then compute the current 

i ( t) if the voltage source is v( t) = 50 cos ( wt + 30°) V. Finally, 
calculate the equivalent impedance if the frequency is f = 400 Hz. 
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SOLUTION The impedances of the individual elements at 
60 Hz are 

zR = 25 n 
ZL = jwL = j(21r X 60)(20 X 10-3) = j?.54 fl 

Zc = :~ = (27T X 60 ~!so X 10-6) = - j53.05 D, 

Since the elements are in series, 

Z =ZR+ ZL + Zc 

= 25 - j45.5I n 

The current in the circuit is given by 

V 50 /30° 
l=-=----z 25 - j45.51 

50 /30° 
51.93 / -61.220 = 0.96 / 91.220 A 

or in the time domain, i(t) = 0.96 cos (377t + 91.22°) A. 
If the frequency is 400 Hz, the impedance of each element is 

Figure 7.10 
Series ac circuit. 

v(t) + 

E7.8 Find the current i( t) in the network in Fig. E7.8. 

i(t) 

Figure E7.8 

v(t) = 120 sin + 
(377t + 60°) V _ 50 µ,F 

zR = 25 n 
ZL = jwL = j50.27 fl 

-j . 
Zc = - = -17.960 

wC 

The total impedance is then 

z = 25 + j42.3I = 49.14 /59.42° n 

It is important to note that at the frequency f = 60 Hz, the 
reactance of the circuit is capacitive; that is, if the impedance is 
written as R + jX, X < O; however, at f = 400 Hz the reac­
tance is inductive since X > 0. 

LEARNING Hint 
Technique 

1. Express v( t) as a phaser and determine the impedance of each 
passive element. 

2. Combine impedances and solve for the phaser I. 

3. Convert the phaser I to i(t). 

i(t) 

R=25!l 

C = 50 µ,F 

ANSWER 
i(t ) = 3.88cos(377t - 39.2°) A. 
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LEARNING Hint 
Technique for taking the 
reciprocal: 

R - )X 

R + JX (R + JX)(R - JX) 

R - )X 

R' + X' 

LEARNING by Doing 

D 7.2 Find YP 

E~!O 
ANSWER 
Y P = 0.l + jl s. 

D 7.3 Find Ys 

10 fl 

jlO fl 

ANSWER 
Y s = 0.05 - j0.05 s. 

Another quantity that is very useful in the analysis of ac circuits is the two-terminal input 
admittance, which is the reciprocal of impedance; that is, 

1 I 
Y=-=-

z V 
7.38 

The units of Y are siemens, and this quantity is analogous to conductance in resistive de circuits. 
Since Z is a complex number, Y is also a complex number. 

7.39 

which is written in rectangular form as 

Y = G + jB 7.40 

where G and B are called conductance and susceptance, respectively. Because of the relation­
ship between Y and Z, we can express the components of one quantity as a function of the com­
ponents of the other. From the expression 

we can show that 

1 
G+1B=--­

R + jX 

R 
G=--­R2 + xz, 

-x 
B=--­

R2 + xz 
and in a similar manner, we can show that 

G 
R=--­

G2 + B2' 
-B 

X=--­
G2 + B2 

7.41 

7.42 

7.43 

It is very important to note that in general R and G are not reciprocals of one another. The 
same is true for X and B. The purely resistive case is an exception. In the purely reactive case 
the quantities are negative reciprocals of one another. 

The admittance of the individual passive elements are 

1 
YR= - = G 

R 

1 1 
y L = - = - - /900 

jwL wL 

Ye= jwC = wC /90° 

7.44 

Once again, since KCL and KVL are valid in the frequency domain, we can show, using 
the same approach outlined in Chapter 2 for conductance in resistive circuits, that the rules for 
combining admittances are the same as those for combining conductances; that is, if 
Y 1, Y2 , Y 3, ... , Y 11 are connected in parallel, the equivalent admittance is 

YP = Y 1 + Y2 + ... + Yn 

and if Y 1 , Y 2 , ••• , Y n are connected in series, the equivalent admittance is 

1 1 1 1 -=-+-+--·+­
Ys Y, Y2 yn 

7.45 

7.46 
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LEARNING Example 7.10 

Calculate the equivalent admittance Y P for the network in 
Fig. 7 .11 and use it to determine the current I if Vs = 60 / 45° V. 

Figure 7.11 
An example parallel 
circuit. 

SOLUTION From Fig. 7.11 we note that 

1 1 
YR=-=-S 

ZR 2 

Therefore, 

and hence, 

;..:~ • • • ' ~ ,; ! 

LEA li_NI_N G EX I ~.N}l ON 

I= YP Vs 

= ( ~ - J ±) ( 60 I 45°) 

= 33.5 /18.43° A 

LEARNING Hint 
Admittances add in 
parallel. 

E7 .9 Find the current I in the network in Fig. E7.9. ANSWER I= 9.01 / 53.7° A. 

I 

V = 10 L2Q'.' V 

Figure E7.9 

As a prelude to our analysis of more general ac circuits, let us examine the techniques for 
computing the impedance or admittance of circuits in which numerous passive elements are in­
terconnected. The following example illustrates that our technique is analogous to our earlier 
computations of equivalent resistance. 

LEARNING Example 7.11 

Consider the network shown in Fig. 7.12a. The impedance of 
each element is given in the figure. We wish to calculate the 
equivalent impedance of the network Z eq at terminals A-B. 

LEARNING Hint 
Technique: 

1. Add the admittances of elements in parallel. 

2. Add the impedances of elements in series. 

3. Convert back and forth between admittance SOLUTION The equivalent impedance Zeq could be calculat­
ed in a variety of ways; we could use only impedances, or only and impedance in order to combine neighboring elements. 

( continued) 
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admittances, or a combination of the two. We will use the latter. 
We begin by noting that the circuit in Fig. 7.12a can be repre­
sented by the circuit in Fig. 7.12b. 

Note that 

Therefore, 

Now 

and hence, 

1 1 =-+-
j4 -j2 

1 
=j -S 

4 

= (4 + j2) + (-j4) 

= 4 - j2 n 

1 
Y34 = -

Z34 

1 
4 - j2 

= 0.20 + j0.10 S 

1 D, 

A 

-j2 D, 

4!1 j2!l 

2 D, 

j6 D, j4 D, 

- j2 D, 

Since 

then 

Z2 = 2 + j6 - j2 

= 2 + j4 n 

1 y ---
2 - 2 + j4 

= 0.10 - j0.20 S 

= 0.30 - j0.10 S 

The reader should note carefully our approach-we are adding 
impedances in series and adding admittances in parallel. 

From Y 234 we can compute Z 234 as 

Now 

-j2 D, 

1 
Z 234 = ~­

Y234 

0.30 - j0.10 
= 3 + jl n 

Y1 =YR+ Ye 
1 1 =-+-
1 -j2 

1 
=l+j 2 S 

BD-----------<._ ______ ____J 

(a) (b) 

Figure 7.12 
Example circuit for determining equivalent impedance in two steps. 



and then 

1 
l+j2 

= 0.8 - j0.4 D, 

E7 .10 Compute the impedance Zr in the network in Fig. E7 .10. 

- j4il 

Z r __. 

Figure E7.10 

7 .6 Phasor Diagrams 
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Therefore, 

4il 

j6il 

= 0.8 - j0.4 + 3 + jl 

= 3.8 + j0 .6 D, 

ANSWER 
Zr = 3.38 + jl.08 fl. 

Impedance and admittance are functions of frequency, and therefore their values change as the 
frequency changes. These changes in Z and Y have a resultant effect on the current-voltage 
relationships in a network. This impact of changes in frequency on circuit parameters can be 
easily seen via a phasor diagram. The following examples will serve to illustrate these points. 

LEARNING Example 7.12 

Let us sketch the phasor diagram for the network shown in Fig. 7 .13. 

V 

R jwL 1 

TjwC 

l e 

Figure 7.13 Example parallel circuit. 

SOLUTION The pertinent variables are labeled on the figure . 
For convenience in forming a phasor diagram, we select V as a 
reference phasor and arbitrarily assign it a 0° phase angle. We 
will, therefore, measure all currents with respect to this phasor. 
We suffer no loss of generality by assigning V a 0° phase angle, 
since if it is actually 30°, for example, we will simply rotate the 
entire phasor diagram by 30° because all the currents are mea­
sured with respect to this phasor. 

At the upper node in the circuit KCL is 

V V V 
Is= IR+ IL+ le= - + -.- + _/ __ _ 

R JWL l JWC 

( continued) 
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Since V = VM !.S!._, then 

VM!.S!._ VM/-90° 
Is = -R- + wL + VMwC /90° 

The phasor diagram that illustrates the phase relationship between 
V, IR, Ii, and le is shown in Fig. 7.14a. For small values of w 

such that the magnitude of IL is greater than that of le , the pha­
sor diagram for the currents is shown in Fig. 7. l 4b. In the case of 

l e 

le 

IR 

IR V V 
I L+ l e 

I L 
Is 

I L 

(a) (b) 

Is,, 

l sr 

l e+ I L 
Is 

IR V 

IL 

( c) (d) 

Figure 7. 14 Phasor diagrams for the circuit in Fig. 7. 13. 

LEARNING Example 7.13 

Let us determine the phaser diagram for the series circuit shown 
in Fig. 7.15a. 

SOLUTION KVL for this circuit is of the form 

I 
=IR+ wLl / 90° + - / -90° 

wC 

If we select I as a reference phasor so that I = IM !.S!._, then if 
wLIM > IM/ wC, the phaser diagram will be of the form shown 
in Fig. 7.15b. Specifically, if w = 377 rad/s (i.e., f = 60 Hz), 
then wL = 6 and 1 /wC = 2. Under these conditions the phaser 

large values of w-that is, those for which l e is greater than IL­
the phasor diagram for the currents is shown in Fig. 7.14c. Note 
that as w increases, the phasor I s moves from Is, to I s,, along a 
locus of points specified by the dashed line shown in Fig. 7. l 4d. 

Note that I s is in phase with V when le = IL or, in other words, 
when wL = I /wC. Hence, the node voltage V is in phase with the 
current source Is when 

1 
w= - -

YLC 
This can also be seen from the KCL equation 

LEARNING by Doing 

D 7.4 Find the frequency at which v(t) and i(t) are in 
phase. 

lmH 

1!1 

ANSWER f = 5.03 x 103 Hz. 

LEARNING Hint 
From a graphical standpoint, phasers can be manipulated like 
vectors. 

diagram is as shown in Fig. 7.15c. If, however, we select Vs as 
reference with, for example, 

then 

Vs(t) = 12 V2 cos(377t + 90°) V 

V 12V2 /90° 
I= - = - ----

z 4 + )6 - )2 

12V2 /.2!!:_ 

4V2/45° 

= 3 / 45° A 

and the entire phasor diagram, as shown in Figs. 7 .15b and c, is 
rotated 45°, as shown in Fig. 7.15d. 
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V L 

VL- V c Vs 
VL- V c. 

Vn I 

V e 

(b) 

Figure 7.15 

R=4il 

+ 

C= 1326 µF 

(a) 

t:,:6/:~ 
Vn=4/M /sr_ 

V c = 2/M /-90° 

(c) 

L = 15.92mH 

V L V .1· 

V e 

(d) 

Series circuit and certain specific phasor diagrams (plots are not drawn to scale). 

E7. 11 Draw a phasor diagram illustrating all currents and 
voltages for the network in Fig. E7 .11. 

+ 

1=4~A 2n -j4il V 

Figure E7. 11 

ANSWER 

1=4A 

12 = 1.79 A 

11 = 3.58A 

V = 7.16V 
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7. 7 Basic Analysis Using 
Kirchhoff's Laws 

We have shown that Kirchhoff's laws apply in the frequency domain, and therefore they 
can be used to compute steady-state voltages and currents in ac circuits. This approach in­
volves expressing these voltages and currents as phasors, and once this is done, the ac 
steady-state analysis employing phasor equations is performed in an identical fashion to 
that used in the de analysis of resistive circuits. Complex number algebra is the tool that 
is used for the mathematical manipulation of the phasor equations, which, of course, have 
complex coefficients. We will begin by illustrating that the techniques we have applied in 
the solution of de resistive circuits are valid in ac circuit analysis also-the only difference 
being that in steady-state ac circuit analysis the algebraic phasor equations have complex 
coefficients. 

Problem-Solving Strategy 
AC Steady-State Analysis 

t For relatively simple circuits (e.g., those with a single source), use 

t Ohm's law for ac analysis, i.e., V = IZ 

t The rules for combining Zs and Y P 

t KCL and KVL 

t Current and voltage division 

t For more complicated circuits with multiple sources, use 

t Nodal analysis 

t Loop or mesh analysis 

t Superposition 

t Source exchange 

t Thevenin's and Norton's theorems 

t MATLAB 

t PSPICE 

At this point, it is important for the reader to understand that in our manipulation of 
algebraic phasor equations with complex coefficients we will, for the sake of simplicity, 
normally carry only two digits to the right of the decimal point. In doing so, we will 
introduce round-off errors in our calculations. Nowhere are these errors more evident than 
when two or more approaches are used to solve the same problem, as is done in the 
following example. 
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LEARNING Example 7.14 

We wish to calculate all the voltages and currents in the circuit 
shown in Fig. 7. l 6a. 

SOLUTION Our approach will be as follows. We will calcu­
late the total impedance seen by the source Vs· Then we will use 
this to determine I 1 • Knowing I 1 , we can compute V I using KVL. 
Knowing V 1, we can compute 12 and 13, and so on. 

LEARNING Hint 
Technique 

1. Compute 11• 

2. Determine V 1 = V5 - I1Z1-
V1 V1 

Then I,= - and I,= -
- Z2 . Z3 

Current and voltage division are also applicable. 

The total impedance seen by the source Vs is 

(j6)(8 - j4) 
Z =4+-----

eq j6 + 8 - j4 

Vs=24~V 

Figure 7.16 

(a) 

Then 

24 + j48 
=4+---

8 + j2 

= 4 + 4.24 + j4.94 

= 9.61 / 30.94° n 

Vs 24/60° 
I-------

' - Z eq - 9.61 /30.94° 

= 2.5 / 29.06° A 

V 1 can be determined using KVL: 

V 1 = Vs - 411 

= 24 / 60° - 10 /29.06° 

= 3.26 + jl5.93 

= 16.26 / 78.43° V 

Note that V I could also be computed via voltage division: 

(j6)(8 - j4) 

Vs j6 + 8 - j4 
VI = --(-j6-)-(8---j4-) V 

4+ 
j6 + 8 - 4 

which from our previous calculation is 

( 24 / 60° )( 6.s1 ; 49 .36°) 
V =--------

' 9.61 / 30.94 ° 

= 16.26 / 78.42° V 

-j4D. 

Iz 

(b) 

(a) Example ac circuit, (b) phasor diagram for the currents (plots are not drawn to scale). 

( continued) 
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Knowing V 1, we can calculate both 12 and 13: 

and 

V1 16.26 /78.43° 
I--------

2 - j6 - 6 / 90° 

= 2.71/-11.58° A 

V1 I - - -
3 - 8 - j4 

= 1.82 /105° A 

Note that 12 and 13 could have been calculated by current 
division. For example, 12 could be determined by 

11(8 - j4) 
I ------

2 - 8 - j4 + j6 

(2.5 ~)(8.94 /-26.57°) 

8 + j2 

= 2.71 / -11.55° A 

Finally, V 2 can be computed as 

V2 = IJ(-j4) 

= 7.28 / 15° V 

This value could also have been computed by voltage division. 
The phasor diagram for the currents 11, 12 , and 13 is shown in 
Fig. 7.16b and is an illustration ofKCL. 

Finally, the reader is encouraged to work the problem in 
reverse; that is, given V 2 , find V 5 . Note that if V 2 is known, 
13 can be computed immediately using the capacitor imped­
ance. Then V 2 + 13(8) yields V 1. Knowing V 1 we can find 
12 . Then 12 + 13 = 11, and so on. Note that this analysis , 
which is the subject of Learning Extensions Exercise E7 .12, 
involves simply a repeated application of Ohm's law, KCL, 
and KVL. 

E7 .12 In the network in Fig. E7 .12, V O is known to be 8 / 45° V. Compute V 5 • ANSWER 
V5 = 17.89 / -18.43° V. 

+ 

Figure E7. 12 

7 .8 Analysis Techniques 

In this section we revisit the circuit analysis methods that were successfully applied earlier to 
de circuits and illustrate their applicability to ac steady-state analysis. The vehicle we employ 
to present these techniques is examples in which all the theorems, together with nodal analy­
sis and loop analysis, are used to obtain a solution. 



LEARNING Example 7.15 

Let us determine the current 10 in the network in Fig. 7. l 7a using 
nodal analysis, loop analysis, superposition, source exchange, 

(a) 

Figure 7.17 

SECTION 7.8 AN AL y s Is r E c H N I au Es I 285 

Thevenin's theorem, and Norton's theorem. 

-Jl a 

(b) 

Circuits used in Example 7. 15 for node and loop analysis. 

SOLUTION 

LEARNING Hint 
Summing the current, leaving the supernode. Outbound currents 
have a positive sign. 

(1) Nodal Analysis We begin with a nodal analysis of the net­
work. The KCL equation for the supemode that includes the volt­
age source is 

V V V 
_I_ - 2i!r_ + ~ + _2_ = Q 
1 + j I 1 - j 

and the associated KVL constraint equation is 

Solving for V 1 in the second equation and using this value in the 
first equation yields 

or 

V2 - 6i!r_ - 2 Joo + V + ~ = 0 
l+j C!._ 2 1-j 

V [ - 1- + 1 + _l _] 
2 l+j 1-j 

6 + 2 + 2) 

1 + j 

Solving for V2 , we obtain 

(~)v 
1 + j 

Therefore, 

LEARNING Hint 
Just as in a de analysis, the loop equations assume that a 
decrease in potential level is + and an increase is - . 

(2) Loop Analysis The network in Fig. 7. l 7b is used to per­
form a loop analysis. Note that one loop current is selected that 
passes through the independent current source. The three loop 
equations are 

I1 =-2i!r_ 

1(11 + 12) + )1(11 + 12)- 6 i!r_ + 1(12 + 13) - )1(12 + 13) = 0 

113 + 1(12 + 13) - )1(12 + 13) = 0 

Combining the first two equations yields 

The third loop equation can be simplified to the form 

Ii(l - j) + IJ(2 - j) = 0 

Solving this last equation for 12 and substituting the value into the 
previous equation yields 

[ 4+2· ] I - 1 +1- · =8+2 · 
3 1 . J J -1 

( continued) 
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jl n 1!1 

1!1 
2~A 

1!1 

Figure 7.18 
Circuits used in Example 
7. 15 for a superposition 
analysis. 

or 

and finally 

LEARNING Hint 

-10 + 6j 
13 = ----

4 

(a) 

1!1 

In applying superposition in this case, each source is applied 
independently and the results are added to obtain the solution. 

(3) Superposition In using superposition, we apply one inde­
pendent source at a time. The network in which the current source 
acts alone is shown in Fig. 7.18a. By combining the two paral­
lel impedances on each end of the network, we obtain the circuit 
in Fig. 7.18b, where 

(1 + j)(l - j) 
Z' = --------

( 1 + j) + ( 1 - j) 
10 

Therefore, using current division 

The circuit in which the voltage source acts alone is shown in 
Fig. 7. l 8c. The voltage V;' obtained using voltage division is 

(6~)[ 1(1 - j) .] 
v;' = ____ 1_+_1_-_1_ 

I + . + [ 1(1 - j) ] 
J 1+1-j 

6(1 - j) 
= V 

4 

( c) 

+ 
Vf 1!1 

1;; 

and hence, 

Then 

(b) 

1!1 

10=~(1-j)A 
4 

6 
Ia = I~ + I~ = 1 + - ( 1 - j) 

4 

LEARNING Hint 
In source exchange, a voltage source in series with an impedance 
can be exchanged for a current source in parallel with the 
impedance, and vice versa. Repeated application systematically 
reduces the number of circuit elements. 

(4) Source Exchange As a first step in the source exchange 
approach, we exchange the current source and parallel impedance 
for a voltage source in series with the impedance, as shown in 
Fig. 7.19a. 

Adding the two voltage sources and transforming them and 
the series impedance into a current source in parallel with that 
impedance are shown in Fig. 7.19b. Combining the two imped­
ances that are in parallel with the 1-0 resistor produces the net­
work in Fig. 7. l 9c, where 

(I + j)(l - j) z = ...:..__....:....:._:__ _ __:_:__ 
l+j+l-j 

Therefore, using current division, 

la = (81 : ; ) ( ±) 
(%-%j)A 

10 

4+j 

1 + j 



16 + 2 (1 + j~ A t 
l 1 + J J 

Figure 7. 19 

1 fl 

jl fl 

1 fl 

I,, 

(b) 

Circuits used in Example 7. 15 for a sourrce exchange analysis. 

LEARNING Hint 
In this Thevenin analysis, 

1. Remove the 1-fl load and find the 
voltage across the open terminals, 

V oc · 

2. Determine the impedance Z1 " at 
the open terminals with all sources 
made zero. 

3. Construct the following circuit and 
determine I,, . 

(5) Thevenin Analysis In applying Thevenin's theorem to the 
circuit in Fig. 7.17a, we first find the open-circuit voltage, V oc, as 
shown in Fig. 7.20a. To simplify the analysis, we perform a source 
exchange on the left end of the network, which results in the cir­
cuit in Fig. 7.20b. Now using voltage division, 

voc=[6+2(l+J)l[ 1. -j .] 
l - .J +I+ .J 

or 
Voe = (5- 3j)Y 

The Thevenin equivalent impedance, ZTh, obtained at the open­
circuit terminals when the current source is replaced with an 
open circuit and the voltage source is replaced with a short cir­
cuit is shown in Fig. 7.20c and calculated to be 

( 1 + j) ( 1 - j) 
z = -JD, 

Th J+j+l-j-
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-jl fl 

(a) 

1 fl 

- j1 fl 

( c) 

Connecting the Thevenin equivalent circuit to the 1-0 resistor con­
taining 10 in the miginal network yields the circuit in Fig. 7.20d. The 
current I,; is then 

LEARNING Hint 
In this Norton analysis, 

1. Remove the 1-!l load and find the current I" through the short­
circuited terminals. 

2. Determine the impedance Z1 h at the open load terminals with all 
sources made zero. 

3. Construct the following circuit and determine J,,. 

(6) Norton Analysis Finally, in applying Norton's theorem to the 
circuit in Fig. 7.17a, we calculate the short-circuit current, Isc• using 
the network in Fig. 7.21a. Note that because of the short circuit, the 
voltage source is directly across the impedance in the left-most 
branch. Therefore, 

6 /!!_ 
l + j 

( continued) 
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Then using KCL, 

6 
I = I + 2 10° = 2 + --

sc I C!.__ l + j 

= (8 + 2j) A 
1 + . .I 

The Thevenin equivalent impedance, ZTh, is known to be l D, and, 

therefore, connecting the Norton equivalent to the l-0 resistor con-

taining 10 yields the network in Fig. 7 .21 b. Using current division, 
we find that 

6/fl°_ V 

lfl 

2(1 + j) V 

1 !1 

(c) 

Figure 7.20 

(a) 

6/fl°_ V 

(b) 

Circuits used in Example 7. 15 for a Thevenin analysis. 

1 !1 

(a) 

Figure 7.21 
Circuits used in Example 7. 15 for a Norton analysis. 

-jl !1 

- j] fl 

- jl !1 

(d) 

(b) 
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Let us now consider an example containing a dependent source. 

LEARNING Example 7.18 

Let us determine the voltage V O in the circuit in Fig. 7 .22a. In this 
example we will use node equations, loop equations, Thevenin's 
theorem, and Norton's theorem. We will omit the techniques of 
superposition and source transformation. Why? 

SOLUTION 

LEARNING Hint 
How does the presence of a dependent source affect 
superposition and source exchange? 

(1) Nodal Analysis To perform a nodal analysis, we label the 
node voltages and identify the supemode as shown in Fig. 7.22b. 
The constraint equation for the supemode is 

and the KCL equations for the nodes of the network are 

V, - V2 V3 - V2 /(lo V3 - V0 V3 
---+ -4L2."._+ +-=O 

- jl 1 I jl 

V2 - V, V2 - V3 (V3 - Vo) ---+ -2 =O 
-jl 1 1 

V - V V 
4/!!_+ 0 3+____!!.=0 

1 l 

At this point we can solve the foregoing equations using a matrix 
analysis or, for example, substitute the first and last equations 
into the remaining two equations, which yields 

(a) (b) 

3V0 - (1 + j)V2 = -(4 + j12) 

-(4 + j2)V0 + (1 + j)V2 = 12 + jl6 

Solving these equations for V0 yields 

-(8 + j4) 
Vo= 1 + j2 

= +4 /143.13° V 

(2) Loop Analysis The mesh currents for the network are de­
fined in Fig. 7 .22c. The constraint equations for the circuit are 

12 = -4 /!!__ 

Ix = l4 - 12 = 14 + 4 /!!__ 

13 = 2Ix = 214 + 8 /!!__ 

The KVL equations for mesh 1 and mesh 4 are 

- jll, + l(I, - 13) = -12 /!!__ 

jl(I4 - 13) + 1(14 - 12) + 114 = 0 

Note that if the constraint equations are substituted into the sec­
ond KVL equation, the only unknown in the equation is 14 . This 
substitution yields 

14 = +4 /143.13° A 

and hence, 

V0 = +4/143.13°V 

(c) 

Figure 7.22 Circuits used in Example 7. 16 for nodal and loop analysis. 

( continued) 
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(3) Thevenin's Theorem In applying Thevenin's theorem, we 
will find the open-circuit voltage and then determine the 
Thevenin equivalent impedance using a test source at the open­
circuit terminals. We could determine the Thevenin equivalent 
impedance by calculating the short-circuit current; however, we 
will determine this current when we apply Norton's theorem. 

The open-circuit voltage is determined from the network in 
Fig. 7.23a. Note that I~ = 4 /.!!__ A and since 21~ flows through 
the inductor, the open-circuit voltage V oc is 

voe = -1( 4 /.!!__) + jl(21J 

= -4 + j8 V 

To determine the Thevenin equivalent impedance, we tum off 
the independent sources, apply a test voltage source to the out­
put terminals, and compute the current leaving the test source. As 
shown in Fig. 7.23b, since 1; flows in the test source, KCL 
requires that the current in the inductor be 1; also. KVL around 
the mesh containing the test source indicates that 

Therefore, 

Then 

jll; - 11; - v,est = 0 

-v 
I''=~ 

X 1 - j 

Z - V,est 
Th - -I; 

=1-jD 

(a) 

If the Thevenin equivalent network is now connected to the load, 
as shown in Fig. 7 .23c, the output voltage VO is found to be 

-4 + 8j 
V - (1) 

0 - 2 - jl 

= +4 /143.13° V 

(4) Norton's Theorem In using Norton's theorem, we will find 
the short-circuit current from the network in Fig. 7 .24a. Once again, 
using the supemode, the constraint and KCL equations are 

V3 +12/.!!__=V1 

V2 - V1 V2 - V3 ---- + - 21"' = 0 
-jl 1 X 

V-V V-V V 
I 2 + 3 2 _ 4 / Qo + _2 + I'" = Q 
- jl 1 C::__ jl X 

V 
I"'= -2 

X l 

Substituting the first and last equations into the remaining equa­
tions yields 

(1 + j)V2 - (3 + j)I;' = jl2 

-(1 + j)V2 + (2)1;' = 4 - jl2 

Solving these equations for 1;' yields 

-4 
I"'= --A 

X 1 + j 

lil 1 n 1~ 

jl n 
I" X 

(b) 

(c) 

Figure 7.23 
Circuits used in Example 7. 16 when applying Thevenin 's theorem. 
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The KCL equation at the right-most node in the network in 
Fig. 7.24a is 

Using the Norton equivalent network, the original network is re­
duced to that shown in Fig. 7 .24b. The voltage VO is then 

I"' = 4 10°0 + I 
X f...::!__ SC 

Solving for I,c , we obtain 

-(8 + )4) 
I = A 

SC 1 + j 
The Thevenin equivalent impedance was found earlier to be 

zTh = 1 - J n 

Figure 7.24 
Circuits used in Example 7.16 
when applying Norton's 
theorem. 

21'~' 

(a) 

V = -(8+)4)[(1)(1-j)J 
0 l+j 1+1-j 

- [3- j ] --4 --
3 + j 

= +4 / -143.13° V 

- (8 + j4) A t 
1 + j 

(b) 

1!1 

. .j{~· LEARNING EXTENSIONS' · ~} 

E7.13 Use nodal analysis to find VO in the network in Fig. E7 .13 . ANSWER 
V O = 2.12 / 75° V. 

Figure E7.13 

E7.14 Use (a) mesh equations and (b) Thevenin's theorem to find V O in the network in Fig. E7.14. ANSWER 
V O = 10.88 / 36° V. 

- j20, + 

24/sr V + 

Figure E7. 14 

+ 
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E7.15 Use (a) superposition, (b) source transformation, and (c) Norton 's theorem to find V 0 in ANSWER V 0 = 12/90° V. 
the network in Fig. E7.15. 

Figure E7. 15 

- j2fl 

+ 

24&_V + 

MATLAB Analysis 

When dealing with large networks it is impractical to determine the currents and voltages with­
in the network without the help of a mathematical software or CAD package. Thus, we will once 
again demonstrate how to bring this computing power to bear when solving more complicat­
ed ac networks. 

Earlier we used MATLAB to solve a set of simultaneous equations, which yielded the 
node voltages or loop currents in de circuits. We now apply this technique to ac circuits. 
In the ac case where the number-crunching involves complex numbers, we use j to repre­
sent the imaginary part of a complex number (unless it has been previously defined as some­
thing else), and the complex number x + jy is expressed in MATLAB as x + j * y. 
Although we use j in defining a complex number, MATLAB will list the complex number 
using i. 

Complex sources are expressed in rectangular form, and we use the fact that 360° equals 
2 pi radians. For example, a source V = 1 0 ~ will be entered into MATLAB data as 

V = 10 / 45 ° = x+j*y 

where the real and imaginary components are 

and 

X = 10*C0S(45*pi/18Q) 

= 7.07 

y = 10*sin(45*pi/180) 

= 7. 07 

When using MATLAB to determine the node voltages in ac circuits, we enter the Y matrix, the 
I vector, and then the solution equation 

V = inv(Y)*I 
as was done in the de case. The following example will serve to illustrate the use of MATLAB 
in the solution of ac circuits. 



LEARNING Example 7.17 

Consider the network in Fig. 7.25. We wish to find all the node 
voltages in this network. The five simultaneous equations 
describing the node voltages are 

Vi = 12 / 30° 

V2 -Vi V2 -Vs Vi-Vi - --+---+---=O 
1 )2 -jl 

V4-\7i V4-"5 V4 ---+---+-=O 
2 1 -jl 

v. - v v.-v V. v.-v: 
_5 __ 2 + _5 __ 3 + _5 + _5 __ 4 = 2 / 450 

)2 2 - JI 1 

- j1 n 

12[]{)0 V + 1 !1 

Figure 7.25 Circuit used in Example 7. 17. 

Expressing the equations in matrix form, we obtain 

0 0 0 0 V 1 

-1 1 + j0.5 -jl 0 j0.5 V2 

0 -jl 1.5 + jl 0 -0.5 V3 
-0.5 0 0 1.5 + jl -1 V4 

0 j0.5 - 0.S -1 1.5 + j 0.5 Vs 

12 / 30° 
0 

0 

0 

2 / 45° 

The following MATLAB data consist of the conversion of the 
sources to rectangular form, the coefficient matrix Y, the vector I, 
the solution equation V = inv(Y)*I, and the solution vector V. 

SECTION 7 . 8 ANALYSIS TECHNIQUES 

>> x = 12*cos(30*pi/180) 

X = 

10.3923 
>> y = 12*sin(30*pi/180) 
y = 

6.0000 
>> v1 = x+j*y 
v1 = 

10.3923 + 6.0000i 
>> 12 = 2*cos(45*pi/180) 
+ j*2*sin(45*pi/180) 
12 = 

1.4142 + 1.4142i 

293 

» Y = [1 0 0 0 O; -1 1+j*0.5 -j*1 0 
j*0.5; 0 -j*1 1.5+j*1 0 -0.5; -0.5 0 0 
1.5+j*1 - 1; 0 j*0.5 -0.5 -1 1.5+j*0.5] 
y = 

Columns 1 through 4 

1 . 0000 0 0 0 
-1.0000 1.0000 +0.5000i O -1.0000i 0 

0 0-1.0000; 1.5000 +1.0000i 0 
-0. 5000 0 0 1. 5000 +1. 0000; 

0 0 +O. 5000i -0. 5000 -1. 0000 

Column 5 

0 
0 +0.5000i 

-0.5000 
-1 .0000 

1.5000 +0.5000i 

>> l = [v1 ; O; O; O; I2J 
l = 

10.3923 +6.0000i 
0 

0 
0 

1.4142 +1.4142i 

>> V = inv(Y) *l 

V = 
10.3923 +6.0000i 

7.0766 +2.1580i 
1. 4038 +2.5561i 
3.7661 -2.9621i 
3.4151 -3.6771i 
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7 .9 AC PSPICE Analysis Using Schematic 
Capture 

INTRODUCTION In this chapter we found that an ac steady-state analysis is facilitated 
by the use of phasors. PSPICE can perform ac steady-state simulations, outputting magnitude 
and phase data for any voltage or current phasors of interest. Additionally, PSPICE can perform 
an AC SWEEP in which the frequency of the sinusoidal sources is varied over a user-defined 
range. In this case, the simulation results are the magnitude and phase of every node voltage 
and branch current as a function of frequency. 

We will introduce five new Schematics/PSPICE topics in this section : defining AC 
sources, simulating at a single frequency, simulating over a frequency range, using the 
PROBE feature to create plots and, finally, saving and printing these plots. Schematics fun­
damentals such as getting parts, wiring, and changing part names and values were already 
discussed in Chapter 4. As in Chapter 4, we will use the following font conventions. Up­
percase text refers to programs and utilities within PSPICE such as the AC SWEEP feature 
and PROBE graphing utility. All boldface text, whether upper or lowercase, denotes key­
board or mouse entries. For example, when placing a resistor into a circuit schematic, one 
must specify the resistor VALUE using the keyboard. The case of the boldface text match­
es that used in PSPICE. 

DEFINING AC SOURCES Figure 7.26 shows the circuit we will simulate at a fre­
quency of 60 Hz. We will continue to follow the flowchart shown in Fig. 4.20 in performing 
this simulation. Inductor and capacitor parts are in the ANALOG library and are called L and 
C, respectively. The AC source, VAC, is in the SOURCE library. Figure 7.27 shows the re­
sulting Schematics diagram after wiring and editing the part 's names and values. 

V;n(t) 

4 cos ( wt + 10°) V 

Figure 7.26 

i(t ) R L 

Circuit for ac simulation. 

R1 L 1 2 rnH 

~~~____m-y, 

I 

Figure 7.27 

C1 

3uF 

The Schematics diagram for the circuit in Figure 7.26. 

+ 

J 
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To set up the AC source for simulation, double-click on the source symbol to open its 
ATTRIBUTES box, which is shown, after editing, in Fig. 7.28. As discussed in Chapter 6, we 
deselect the fields Include Non-changeable Attributes and Include System-defined Attributes. 
Each line in the ATTRIBUTES box is called an attribute of the ac source. Each attribute has a 
name and a value. The DC attribute is the de value of the source for de analyses. The ACMAG 
and ACPHASE attributes set the magnitude and phase of the phasor representing Vin for ac 
analyses. Each of these attributes defaults to zero. The value of the ACMAG attribute was set to 
4 V when we created the schematic in Fig. 7 .27. To set the ACPHASE attribute to 10°, click on 
the ACPHASE attribute line, enter 10 in the Value field, press Save Attr and OK. When the 
ATTRIBUTE box looks like that shown in Fig. 7.28, the source is ready for simulation. 

Vin PartName: VAC 13 
Name Y:alue 

DC ____ ~,= jcrv 
DC=[li./ 
ACMAG=4V 
ACPHASE=10 

Include Ngr1-changeable Attributes 

tlnclude_ S l!Stem-defined Attribute~ 

.QK 

Cancel 

SINGLE FREQUENCY AC SIMULATIONS Next, we must specify the frequency 
for simulation. This is done by selecting Setup from the Analysis menu. The SETUP box in 
Fig. 7.29 should appear. If we double-click on the text AC Sweep, the AC SWEEP AND NOISE 
ANALYSIS window in Fig. 7.30 will open. All of the fields in Fig. 7.30 have been set for our 
60-Hz simulation. 

Analysis Setup 13 
Enabled 

e,C Sweep ... 

!..oad Bias Point... J .0 

Save Bias Point... I (' 
QC Sweep. .. . I 

Sensitivity ... 

Figure 7.28 
Setting the ac source phase 
angle. 

Figure 7.29 
The ANALYSIS SETUP window. 
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AC Sweep and Noise Analysis 131 
AC SJNeep Type 

1 .Qctave 

.Qecade 

Noise Enabled 

Figure 7.30 

SweepP&ameters·i::::::::===::::::;11 

T ot9' Pt;.: 1 
·;=====l 

~ tart Freq.: 

,E.nd Freq.: 

.Qutpul Voltage: 

IN 

!nterval: 

Cancel 

60 

60 

Setting the frequency range for a single frequency simulation. 

Since the simulation will be performed at only one frequency, 60 Hz, graphing the simu­
lation results is not an attractive option. Instead, we will write the magnitude and phase of the 
phasors Vout and I to the output file using the VPRINTl and !PRINT parts, from the SPECIAL 
library, which have been added to the circuit diagram as shown in Fig. 7 .31. The VPRINTl part 
acts as a voltmeter, measuring the voltage at any single node with respect to the ground node. 
There is also a VPRINT2 part, which measures the voltage between any two nonreference 
nodes. Similarly, the !PRINT part acts as an ammeter and must be placed in series with the 
branch current of interest. By convention, current in the !PRINT part is assumed to exit from 
its negatively marked terminal. To find the clockwise loop current, as defined in Fig. 7 .26, the 
!PRINT part has been flipped. The FLIP command is in the EDIT menu. 

Figure 7.31 
A Schematics diagram ready for single-frequency ac simulation. 
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After placing the VPRINTl part, double-click on it to open its ATIRIBUTES box, shown in 
Fig. 7 .32. The VPRINTl part can be configured to meter the node voltage in any kind of simulation: 
de, ac, or transient. Since an ac analysis was specified in the SETUP window in Fig. 7 .29, the val­
ues of the AC, MAG, and PHASE attributes are set to Y, where Y stands for YES. This process 
is repeated for the !PRINT part. When we return to Schematics, the simulation is ready to run. 

- - -

INTl f3 
Name Y'.alue 

.. DC 
; .. .. tit'.,:, .. ······ ········ ······ ·· ·· ········ ········· ········· ····· ··································· ··············· 

AC=y 
TRAN= 
MAG=y 
PHASE=.1.1 
REAL= 
IMAG= 

[j Include N.Qn·changeable Attributes 

Include Sl!stem-defined Attributes 

___ El 

.QK 

Cancel 

When an AC SWEEP is performed, PSPICE, unless instructed otherwise, will attempt to 
plot the results using the PROBE plotting program. To tum off this feature, select Probe Setup 
in the Analysis menu. When the PROBE SETUP window shown in Fig. 7.33 appears, select 
Do Not Auto-Run Probe and OK. 

P;ob~ Setup Options - - a 
Probe Startup Data Collection 

Auto-Run Option=~==~~~==::::::::::=:::!:::::=::::::::::=1'1 
Automatically run Erobe alter simulation 

Monitor waveforms (auto-_ypdate) 

• po not auto-run.Probe. 

B.estore last Probe session 

• Sbow all markers 

Show §elected markers 

Ngne 

Figure 7.32 
Setting the VPRINT1 
measurements for ac 
magnitude and phase. 

I Cancel ---------OK Figure 7.33 
The PROBE SETUP window. 
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The circuit is simulated by selecting Simulate from the Analysis menu. Since the results are in 
the output file, select Examine Output from the Analysis menu to view the data. At the bottom of 
the file, we find the results as seen in Fig. 7.34: Vout = 2.651 / -38.54° V and I = 2.998 / 51.46° mA. 

FREQ 

6 . 000E+Ol 

FREQ 

6.000E+Ol 

For Help, press F1 

VM ( Vout) 

2 . 651E+OO 

IM(V_PRINT6) 

2 . 998E-03 

VP(Vout) 

-3 . 854E+Ol 

IP ( V _PRINT6) 

5.146E+Ol 

Figure 7.34 Magnitude and phase data for Vout and I are at the bottom of the output file. 

VARIABLE FREQUENCY AC SIMULATIONS To sweep the frequency over a 
range, 1 Hz to 10 MHz, for example, return to the AC SWEEP AND NOISE ANALYSIS box 
shown in Fig. 7.30. Change the fields to those shown in Fig. 7.35 . Since the frequency range 
is so large, we have chosen a log axis for frequency with 50 data points in each decade. We can 
now plot the data using the PROBE utility. This procedure requires two steps. First, we re­
move the VPRINTl and !PRINT parts in Fig. 7.31. Second, we return to the PROBE SETUP 
window shown in Fig. 7.33, and select Automatically Run Probe After Simulation and OK. 

nd Noise Analysis [t3 

Noise Enabled 

Sweep Parameters·~~~;=l'I 

Pts/Decade 

~tart Freq.: 

fnd Freq.: 

Qutput Voltage: 

IN 

!nterval: 

Figure 7.35 
OK Cancel Setting the frequency range for 

a swept frequency simulation. 
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CREATING PLOTS IN PROBE When the PSPICE simulation is finished, the PROBE 
window shown in Fig. 7.36 will open. Actually, there are three windows here: the main dis­
play window, the output window, and the simulation status window. The latter two can be tog­
gled off and on in the View menu. We will focus on the main display window, where the 
frequency is displayed on a log axis, as requested. To plot the magnitude and phase of Vout , 
select Add from the Trace menu. The ADD TRACES window shown in Fig. 7 .37 will appear. 
To display the magnitude of Vout, we select V(Vout) from the left column. When a voltage 
or current is selected, the magnitude of the phasor will be plotted. Now the PROBE window 
should look like that shown in Fig. 7.38. 

Before adding the phase to the plot, we note that Vout spans a small range-that is, 0 
to 4 V. Since the phase change could span a much greater range, we will plot the phase on 
a second y-axis. From the Plot menu, select Add Y Axis . To add the phase to the plot, 
select Add from the Trace menu. On the right side of the ADD TRACES window in 
Fig. 7.37, scroll down to the entry, P(). Click on that, and then click on V(Vout) in the left 
column. The TRACE EXPRESSION line at the bottom of the window will contain the ex­
pression P(V(Vout))-the phase of Vout. Figure 7.39 shows the PROBE plot for both 
magnitude and phase of Vout. 

To plot the current, I, on a new plot, we select New from the Window menu. Then, add the 
traces for the magnitude and phase of the current through Rl (PSPICE calls it l(Rl)) using the 
process described above for plotting the magnitude and phase of Vout . The results are shown 
in Fig. 7.40. 

The procedures for saving and printing PROBE plots, as well as the techniques for plot 
manipulation and data extraction, are described in Chapter 6. 

1 .OHz 10GHz 

Output 
Window 

Figure 7.36 The PROBE window. 

Main 
Display 
Window 

I 

lOKHz 

__ Frequenc~ 

I 

1 .0MHz 100MHz 
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f-M .. Fi 4¥ i Node names- - Functions or Macros===== -= 

I' ___ _ --· _ _ _ _ _ J Analog Operators and Functions "' 

I l(ClJ 'P' analog ·-

::~vl ... l Q.gital 
lf\finl 
V(OJ 
V{Cl:l) 
V(Cl:2) 
V{Ll:1) 
V(L1:2) 
V(R1:1} 
V(Rl:2} 
V[Vin:+} 
V[Vin:-} 
V[Vout) 

i V($N_0001) 
,j V($N_0002) 

Vl(Ll) 
Vl(Rl} 
Vl[Vin) 
V2(C1} 
V2(L1) 
V2(Rl) 

Figure 7.37 The Add Traces window. 

P' Yoltages 

M Currents 
I 

I M Alas Names 

1 ,P' S,ubcircuit Nodes 

23 names listed 

I 
@ 
ABS() 
ARCTAN(} 
ATAN() 
AVG(} 
AVGX[,} 
COS[) 
D() 
DB(} 
ENVMA'><(, J 
ENVMIN(,) 
EXP() 
G() 
IMG() 
LOG() 
LOG10() 
M(J 
MA'><() ................................................ 

eu-1-~~~'---~~-+~~~-'--::::::c:==~+-~~---'~~~-1-~~~-'--~~--1 
1. 0Hz 100Hz 10KHz 1 .eMHz 100MHz 

o U(Uout) 
Fr-equency __ 

Figure 7.38 The magnitude ofVout. 



2.eu 

eu 

ACCircu~ ... 
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Magnitude 

)) 

-2eed-i=-~~---'-~~---l-~~--'c__::===~-1--~~--'-~~-1-~~--'-~~--=i 

1 . 0Hz 1 00Hz 1 eKHz 
[I] ~ U(Uout) (]] v P(U(Uout)) 

Fr-equency 

req = 1 O.OOE +06 

1.eHHz 100MHz 

Figure 7.39 The magnitude and phase of Vout. 

2.emA 

0A 

0d 

» 
-1eed-+=-~~--'--~~--1-~~----'-~~--+-~~-'-~~-+~--===-~~--1 

1. 0Hz 
OJ o I(R1) 

1eeHz 1eKHz 
[I] " P( I(R1)) 

Fr-equency 

1. eMHz 1eeMHz 

Figure 7.40 The magnitude and phase of the current, I. 

301 



302 1 CH APTER 7 AC STEADY-STATE ANALYSIS 

LEARNING Example 7.18 

Using the PSPICE Schematics editor, draw the circuit in Fig. 7.41, 
and use the PROBE utility to create plots for the magnitude and 

phase of V out and I. At what frequency does maximum III occur? 
What are the phasors V out and I at that frequency? 

i(t) 0.SmH 

L + 
R1 i; 11 (1) Rz C 

Voui(t) 
7000 6 cos ( wt + 20°) A soon O. l µ,F 

Figure 7.41 Circuit for Example 7.18. 

SOLUTION The Schematics diagram for the simulation is shown 
in Fig. 7.42, where an AC SWEEP has been set up for the frequen­
cy range l O Hz to 10 MHz at 100 data points per decade. Plots for 
V out and I magnitudes and phases are given in Figs. 7.43a and b, re­
spectively. From Fig. 7.43b we see that the maximum inductor cur­
rent magnitude occurs at 3 l .42 kHz. At that frequency, the phasors 
of interest are I = 5.94 /16.06° A and V out = 299.5 /-68.15° V. 

Figure 7.42 
PSPICE Schematics diagram 
for Example 7. 18. 

700_0hms 

R1 
6A 

L1 
Vout 

0.5mH 
R2 

C1 

500_0hms 0.1uF...,... 

~~ Example 7.18 - OrCAD Pspice PJD Demo - [(B) Example 7.18 (active)] l!lliJEI 

1. 0KU 

eu 

Magnitude 

10(:)d 

Phase 

-lat~ 
:fil.:l~l·F-l~lt-~!:t.!<JAl~l~I;! 

Probe Cursor 
Bl = 31.417K. 
B2 = 31 . 41 7K , 

299.517 
-68. 154 
367. 671 -----._ \ ~= e. eee, 

ed ~ ··-~h 

:::;; ...... f_····~~--1--~~---'-~---------_······_ .. -
4
.I-~--~~~-~~~· ._~~-=······=·· ~ :::,,,,,.._-.--+-~~-· ~-~-----: 

1 OHz 1 SOHz 1 OKHz 1 . 0MHz 
[I] o U(Uout) [I] :: P(U(Uout)) 

Frequency 

iJ (A) Exem. f!I (8) Examp .. 

C:\Professional\lrwin\BECA7\ Tutorials 9.1 \ACTutorial 9.1 \Example Freq: 1 O.OOE+06- - - 100%- 111111111 1111 ~ 

(a) 

Figure 7.43 Simulation results for Example 7. 18, (a) Vout and (b) I. 
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::~-. -. - ' - .. -~~ 
71 5A 

~~ ::!:~: ~6~~~! I:: 

>> 0.000, -10.113 

-50d 

0A -100d-+-~~~-+-~~~---'-~~~~l---~...___~-'-~~~-+-~~-=="' 
10Hz 100Hz 10KHz 1 . 0MHz rn D rcu) rn ,, P(I(L1)) 

II (A) Exe.mp.. II {B) Exam ... 

Figure 7.43 (continued) 

Summary 
t The sinusoidal function definition The 

sinusoidal function x( t) = XM sin ( wt + 0) has an 
amplitude of XM, a radian frequency of w, a period of 
2TI / w, and a phase angle of 0. 

t The phase lead and phase lag definitions If 
x 1(t) = XM,sin(wt + 0)andx2(t) = XM2 sin(wt + cp), 
x 1(t) leads x2(t) by 0 - cp radians and x2(t) lags x 1(t) by 
0 - cp radians. 

t The phasor definition The sinusoidal voltage 
v( t) = VM cos ( wt + 0) can be written in exponential 
form as v(t) = Re[VMei(wr+e)] and in phasor form as 

V = VM~· 

(b) 

Frequency 

t The phase relationship in Ov and O; for 
elements R, L, and C If 0v and 0; represent the phase 
angles of the voltage across and the current through a 
circuit element, then 0; = 0v if the element is a resistor, 0; 
lags 0v by 90° if the element is an inductor, 0; leads 0v by 
90° if the element is a capacitor. 

t The impedances of R, L, and C Impedance, Z, is 
defined as the ratio of the phasor voltage, V, to the phasor 
current, I, where Z = R for a resistor, Z = jwL for an 
inductor, and Z = 1/ jwC for a capacitor. 

t The phasor diagrams Phasor diagrams can be used 
to display the magnitude and phase relationships of various 
voltages and currents in a network. 
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t Frequency domain analysis: 

1. Represent all voltages, V;( t) , and all currents, ii t) , as 
phasors and represent all passive elements by their im­
pedance or admittance. 

2. Solve for the unknown phasors in the frequency (w) 

domain. 

3. Transform the now-known phasors back to the time 
domain . 

t Solution techniques for ac steady-state 
problems: 
Ohm's law 
KCLand KVL 
PSPICE 
MATLAB 
Nodal and loop analysis 
Superposition and source exchange 
Thevenin's Theorem 
Norton 's Theorem 

Problems For solutions and additional help on problems marked with .,. go to www.wiley.com/college/irwin 

SE CTI ON 7 . 1 -----------------------------

7 .1 Given i(t) = 5 cos ( 400t - 120°) A, determine the 
.,. period of the current and the frequency in hertz. 

7 .2 Determine the relative position of the two sine waves. 

v 1(t) = 12 sin(377t - 45°) 

vi(t) = 6 sin(377t + 675°) 

7 .3 Given the following currents 

i 1(t) = 4 sin(377t - 10°) A 

ii(t) = -2 cos(377t - 195°) A 

i3(t) = -1 sin(377t - 250°) A 

SECTIONS 7.2, 7.3, 7.4, 7.5 

7 .5 Calculate the current in the resistor in Fig. P7 .S if the 
.,. voltage input is 

(a) v 1(t) = 10cos(377t + 180°) V. 

(b) V2 (t) = 12sin(377t + 45°)V. 

Give the answers in both the time and frequency 
domains. 

i(t) 

+ 

v(t) 2n 

Figure P7.5 

compute the phase angle between each pair of currents . 

7.4 Determine the phase angles by which v 1 ( t) leads i1 ( t) 
and v, ( t) leads ii(t), where 

v1(t) = 4 sin(377t + 25°) V 

i 1(t) = 0.05cos(377t - 10°) A 

i2(t) = -0.1 sin(377t - 75°) A 

7.6 Calculate the current in the capacitor shown in Fig. P7.6 
if the voltage input is 
(a) v1(t) = 16cos(377t - 22°)V. 

(b) vi(t) = 8sin(377t + 64°)V. 

Give the answers in both the time and frequency 
domains. 

i(t) 

+ 

v(t) C = 1326 µ,F 

Figure P7.6 



7. 7 Calculate the current in the inductor shown in Fig. P7. 7 if 
the voltage input is 

(a) v1(t) = 24cos(377t + 12°) V. 

(b) vi(t) = 18sin(377t + 48°)V. 

Give the answers in both the time and frequency 
domains. 

i(t) 

+ 

v(t) L = 10.61 mH 

Figure P7.5 

7.8 Find the frequency-domain impedance, Z, for the 
network in Fig. P7.8. 

Figure P7.8 

7.9 Find the frequency-domain impedance, Z, as shown 
~ in Fig. P7.9. 

z- 3!1 j40 

Figure P7.9 
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7.10 Find the frequency-domain impedance, Z, for the circuit 
in Fig. P7.10. 

Figure P7. 1 O 

7 .11 Find the frequency-domain impedance, Z, as shown in 
Fig. P7.ll. 

Figure P7. 11 

7.12 Find the frequency-domain impedance, Z , as shown in 
Fig. P7.12. 

Figure P7. 12 
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7 .13 In the network in Fig. P7 .13, find Z (jw) at a frequency 7 .16 Find Z in the network in Fig. P7 .16. 
~ of60Hz. 

z -

Figure P7. 13 

2n 
lOmH 

40, 

500 µ,F 

7 .14 Calculate the equivalent impedance at terminals A-B in 
the circuit shown in Fig. P7.14. 

2n 
A o--vVV'----e----~ 

6f! 

j4f! 

Bo---------~ 

Figure P7. 14 

7 .15 Find Z in the network in Fig. P7 .15 . 

z 2n - jl n 40, j40, 40, 

Figure P7. 15 

- j2f! 

j2f! 

Figure P7. 16 

7.17 Find Zin the network in Fig. P7.17. 
~ 

Figure P7. 17 



7 .18 The impedance of the network in Fig. P7 .18 is found to 
be purely real at f = 60 Hz. What is the value of C? 

3!1 

z- C 

lOmH 

Figure P7.18 

7.19 In the circuit shown in Fig. P7.19, determine the value of 
the inductance such that the current is in phase with the 
source voltage. 

2n 

24 oos (377< + 60") V cQL 
1326 µ,F 

Figure P7.19 
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7.20 Draw the frequency-domain circuit and calculate i(t) for 
the circuit shown in Fig. P7 .20 if 
vs(t) = 10cos(377t + 30°)V. 

2n 

lOmH 

lmF 

Figure P7.20 

7 .21 Draw the frequency-domain circuit and calculate v(t) 
.... for the circuit shown in Fig. P7.21 if 

i,(t) = 20cos(377t+l20°)A. 

+ 

v(t) lil lOOmH 

Figure P7.21 

lOmF 

SECTION 7. 6 ------------------------------

7.22 The voltages vR(t), vL(t), and vc(t) in the circuit shown 
in Fig. P7.20 can be drawn as phasors in a phasor 
diagram. Show that vR(t) + vL(t) + vc(t) = v5(t). 

7.23 The currents iR(t), ii(t), and ic(t) in the circuit shown in 
Fig. P7 .21 can be drawn as phasors in a phasor diagram. 
Show that iR(t) + iL(t) + ic(t) = i5(t). 

7.24 The voltages vR(t) and vL(t) in the circuit shown in 
Fig. P7.24 can be drawn as phasors in a phasor diagram. 
Use a phasor diagram to show that vR(t) + vL(t) = v5(t). 

v,(t) = 2 cos (377t) V 

Figure P7.24 
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7.25 The currents iR(t) and ic(t) in the circuit shown in 
... Fig. P7.25 can be drawn as phasors in a phasor diagram. 

Use the diagram to show that iR (t) + ic (t) = is (t). 

i,(t) 
10 cos (377t + 30°) A 

Figure P7.25 

+ 

v(t) 

7 .26 The currents i L ( t) and ic( t) of the inductor and capacitor 
in the circuit shown in Fig. P7 .26 can be drawn as pha­
sors in a phasor diagram. Show that 
i L ( f) + ic( t) = i ( f) . 

1 n 

vs(t) + z-
10 cos (103t + 30°) V 

Figure P7.26 

7 .27 In the circuit shown in Fig. P7 .27, determine the 
frequency at which i ( t) is in phase with vs( t) . 

1 n 
i(t) 

20 

vs(t) + 10 µ,F 

lOmH 

Figure P7.27 

SE CTI ON 7. 7 -----------------------------

7 .28 Find the frequency-domain voltage V 0 , as shown in 
Fig. P7.28. 

Figure P7.28 

7 .29 Find the frequency-domain voltage VO , as shown in 
... Fig. P7.29. 

1!1 

+ 

1s n -j12.!1 

Figure P7.29 



7.30 Find the frequency-domain current, I0 , as shown in 
Fig. P7.30. 

Figure P7.30 

7.31 Find the frequency-domain voltage V 0 , as shown in 
Fig. P7.31. 

Figure P7.31 

7.32 Draw the frequency-domain network and calculate v0 (t) 
in the circuit shown in Fig. P7.32 if is( t) is 
100 cos(5000t + 8.13°) mA. Also, using a phasor 
diagram, show that iL(t) + iR(t) = i5(t). 

8mH i5(t) 

Figure P7.32 
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7.33 Draw the frequency-domain network and calculate 
~ v0 (t) in the circuit shown in Fig. P7.33 if i5(t) is 

300 sin(104t - 45°) mA. Also, using a phasor 
diagram, show that i 1(t) + ii(t) = i s(t ). 

i1(t) 

20 n + 
3.33 µ,F 

i5(t) t vo(t) 

6mH 10 n 

Figure P7.33 

7.34 Find I0 in the network in Fig. P7.34. 

12 /_Q"_ V 

1 n - j20 

Figure P7.34 

7.35 Find 10 in the network in Fig. P7.35. 

12/_Q"_V 

~---;- + I------, 

2n 

Figure P7.35 j2D 
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7.36 In the circuit in Fig. P7.36, if V O = 4 /45° V, find 11• 

+ 

Figure P7.36 

7 .37 Find Vs in the network in Fig. P7 .37, if V 1 = 4 /.!!: V. 
~ 

2a 

Figure P7.37 

7.38 Find Vs in the network in Fig. P7.38 ifl1 = 2 I!!_ A. 

Figure P7.38 

7 .39 Find Vs in the network in Fig. P7 .39 ifl0 = 2 I!!_ A. 

___ _,_ + I-----, 

60, il a 

- jl a 

Figure P7.39 

7.40 Find Is in the network in Fig. P7.40 ifV1 = 8/.!!_ V. 

-----l-1-----, 

40, j l a 

2a 
-il a 

Figure P7.40 

7.41 IfV1 = 4/.!!: V, find 10 in Fig. P7.41. 
~ 

-j2il 

2a 

jl a lil 

Figure P7.41 
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7.42 In the network in Fig. P7.42, VO is known to be 4 / 45° V. 7.44 Determine I 0 in the network in Fig. P7.44 ifls = 12 ~ A. 
FindZ. 

+ 

12/SE V 

Is t 2!1 

Figure P7.42 

lo 

Figure P7.44 

7.43 In the network in Fig. P7.43, V1 = 2 / 45° V. Find Z. 

1!1 

-jl D, 

Figure P7.43 

SECTION 7.8 

7.45 Using nodal analysis, find I 0 in the circuit in Fig. P7.45. 7.46 Use nodal analysis to find VO in the circuit in Fig. P7.46 . ... 

2/sr.A 

Figure P7.45 

1!1 

2!1 

lv 
- jl D, 

+ 

Figure P7.46 
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7.47 Find VO in the network in Fig. P7.47 using nodal 
analysis. 

V 

1!1 

+ + 

+ 

Figure P7.47 

7.48 Use nodal analysis to determine I0 in the network in 
Fig. P7.48. In addition, solve the problem using MATLAB. 

+ 

Figure P7.48 

7.49 Find V0 in the network in Fig. P7.49. 
~ 

jl n 

Figure P7.49 

+ 

7.50 Find the voltage across the inductor in the circuit shown 
in Fig. P7.50 using nodal analysis. 

-j4!1 

4!1 

Figure P7.50 

7.51 Use mesh analysis to find V O in the circuit shown in 
Fig. P7.51. 

6~oy 

+ 

Figure P7.51 

7.52 Use mesh analysis to find V O in the circuit shown in 
Fig. P7.52. 

4!1 j2!1 

12~V 
+ 

+ 
t 4/.2Qo A 

Figure P7.52 



7 .53 Using both loop analysis and MATLAB, find I 0 in the 
.,.. network in Fig. P7 .53. 

12.{Q_0 V 

-j2 fl 2 fl 

I" 

Figure P7.53 

7 .54 Find V O in the network in Fig. P7 .54. 

4~ A 

~---<--+-I-----~ 

+ 

Figure P7.54 

7.55 Find V 0 in the network in Fig. P7.55 . 

1 fl 

1 fl 

Figure P7.55 

PROBLEMS 

7.56 Use superposition to find V O in the network in 
Fig. P7.56 . 

2~ A 

+ 

1 fl Vo 

Figure P7.56 
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7.57 Find V0 in the network in Fig. P7.57 using superposition . ... 

2 fl 

2~ A 

Figure P7.57 

12~ V 

+ 

2 fl v0 

7.58 Using superposition, find V O in the circuit in Fig. P7.58. 

+ 

+ 

vo 

Figure P7.58 
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7 .59 Use both superposition and MATLAB to determine V O in 
the circuit in Fig. P7 .59. 

1 fl 

+ 

Figure P7.59 

7 .60 Use source exchange to determine V O in the network in 
Fig. P7.60. 

---------~+-l----a 
+ 

12~V 

2 fl 

Figure P7.60 

7 .61 Use source exchange to find the current I0 in the net-
~ work in Fig. P7.61. 

1 fl 

2 fl 

Figure P7.61 

7.62 Use source transformation to determine 10 in the network 
in Fig. P7.45 . 

7.63 Use Thevenin 's theorem to find V0 in the circuit in 
Fig. P7.63. 

2 fl 2 fl 

1 fl 

Figure P7.63 

+ 

7 .64 Using Thevenin' s theorem, find VO in the network in 
Fig. P7 .51. 

7.65 Use Thevenin's theorem to find V0 in the circuit in 
~ Fig. P7.52. 

7.66 Solve Problem 7.49 using Thevenin 's theorem. 

7 .67 Apply Thevenin's theorem twice to find V O in the circuit 
in Fig. P7.67. 

+ 

12 LQ'.' V 

Figure P7.67 

7.68 Find V O in the network in Fig. P7.68 using Thevenin's 
theorem. 

+ 

Figure P7.68 

7.69 Find the Thevenin's equivalent for the network in 
~ Fig. P7.69 at the terminals A-B. 

Figure P7.69 

-jl fl 

1 fl 

A 

B 



7 .70 Find V x in the circuit in Fig. P7.70 using Norton's 
theorem. 

11.3~oy 

~------1+-1---------.>--n 

j4!1 10!1 

Figure P7. 70 

7.71 Find 10 in the network in Fig. P7.71 using Norton's 
theorem. 

-j4!1 

j2!1 2!1 

Figure P7.71 

+ 

7.72 Apply both Norton's theorem and MATLAB to find V 0 

in the network in Fig. P7.72. 

+ 

12/.Q'.'V 

1!1 

Figure P7. 72 
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7.73 Find V0 using Norton's theorem for the circuit in 
... Fig. P7.73. 

s~v 

+ 

Figure P7. 73 

7.74 Use Norton's theorem to find V O in the network in 
Fig. P7.74. 

Figure P7.74 

7.75 Use MATLAB to find the node voltages in the network 
in Fig. P7.75. 

1!1 

1!1 

Figure P7. 75 



316 I CHAPTER 7 AC STEADY-STATE ANALYSIS 

7.76 Using the PSPICE Schematics editor, draw the circuit in 
Fig. P7.76. At what frequency are the magnitudes of 
ic(t) and iL(t) equal? 

R1 

100 fl. 

R2 
150 fl. 

Vin(t) + L 
5 cos (wt) V lOOmH 

C 
100 µF iL(t) 

Figure P7. 76 

7.77 Using the PSPICE Schematics editor, draw the circuit in 
Fig. P7.77. At what frequency are the phases of i1 (t) and 
vx(t) equal? 

R1 L 

2 kfl. lmH + 

C R2 
vx(t) 

10 µF 50kfl. 
14 cos (wt+ 70°) V 

Figure P7. 77 

Typical Problems Found on the FE Exam 

7FE-1 Find V0 in the network in Fig. 7PFE-1. 
~ 

2n 

Figure 7PFE-1 

7FE-2 Find VO in the circuit in Fig. 7PFE-2. 

-----<·-·>-----

1 fl, 2n 

-jl fl, 

Figure 7PFE-2 

+ 

Vo 

+ 

7FE-3 Find V0 in the network in Fig. 7PFE-3. 
~ 

+ 

12L.Q:' V 

Figure 7PFE-3 

+ 

7FE-4 Determine the midband (where the coupling capacitors 
can be ignored) gain of the single-stage transistor 
amplifier shown in Fig. 7PFE-4. 

+ 

12 kfl. 

Figure 7PFE-4 



Variable-Frequency 
Network Performance 

In Chapter 7 we demonstrated that a network containing a capacitor and 
an inductor operated differently if the frequency was changed from the U.S. 
power grid frequency of 60 Hz to the aircraft frequency of 400 Hz. This phe­
nomenon, although not surprising since the impedance of both these circuit 
elements is frequency dependent, indicates that if the frequency of the net­
work sources is varied over some range, we can also expect the network to 
undergo variations in response to these changes in frequency. 

Consider for a moment your stereo amplifier. The input signal contains 
sound waves of frequencies that range from soup to nuts; and yet, the am­
plifier must amplify each frequency component exactly the same amount 
in order to achieve perfect sound reproduction. Achieving perfect sound 
reproduction is a nontrivial task; and when you buy a very good amplifier, 
part of the price reflects the design necessary to achieve constant amplifi­
cation over a wide range of frequencies. 

In this chapter we examine the performance of electrical networks when 
excited from variable-frequency sources. Such effects are important in the 
analysis and design of networks such as filters, tuners, and amplifiers that 
have wide application in communication and control systems. Terminolo­
gy and techniques for frequency-response analysis are introduced includ­
ing standard plots (Bode plots) for describing network performance 
graphically. In particular, Bode plot construction and interpretation are dis­
cussed in detail. 

The concept of resonance is introduced in reference to frequency se­
lectivity and tuning. The various parameters used to define selectivity such 
as bandwidth, cutoff frequency, and quality factor are defined and discussed. 
Network scaling for both magnitude and phase is also presented. 

Networks with special filtering properties are examined. Specifically, 
low-pass, high-pass, band-pass, and band-elimination filters are discussed. 
Techniques for designing active filters (containing op-amps) are presented. 

8.1 Varia6le 
Analysis Network performance as 
of frequency is introduced. The network 
function, most commonly used here as a 
transfer function, with its attendant poles 
and zeros, is also presented .. .Page 318 

8.2 Sinusoidal Frequency Analysis The 
Bode plot is introduced and used to display 
the magnitude and phase of a transfer 
function as a function of frequency. The 
effect that poles and zeros have on the 
frequency response is clearly displayed on 
the Bode plot.. .Page 328 

8.3 Resonant Circuits Resonance is an 
extremely important phenomenon in circuit 
analysis and design. This concept is 
introduced together with other supporting 
factors such as the undamped natural 
frequency, quality factor, half-power 
frequencies, and bandwidth .. .Page 340 

8.4 Scaling The two types of scaling, 
magnitude or impedance scaling and 
frequency scaling, are introduced ... Page 360 

8.5 Filter Networks Filter networks can be 
employed to pass or reject signals in a 
specific frequency band. The most common 
filters are low-pass, high-pass, band-pass, 
and band-rejection .. .Page 362 

Learning by App/ication ... Page 379 

Learning by Design .. .Page 382 

Learning Check .. .Page 386 

Summary .. .Page 386 

Problems .. .Page 387 
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8.1 Variable Frequency-Response Analysis 

In previous chapters we investigated the response of RLC networks to sinusoidal inputs. In 
particular, we considered 60-Hz sinusoidal inputs. In this chapter we allow the frequency of ex­
citation to become a variable and evaluate network performance as a function of frequency. To 
begin, let us consider the effect of varying frequency on elements with which we are already 
quite familiar-the resistor, inductor, and capacitor. The frequency-domain impedance of the 
resistor shown in Fig. 8.la is 

~ 

"' Cl.) 
Cl.) 
I-< 
Of) 
Cl.) 

~ 

"' N -0 
Cl.) 

"' "' ..c 
Cl... 

(a) 

R·..--------------

0 

0 

0 

Frequency 

(b) 

Frequency 

( c) 

Figure 8.1 
Frequency-dependent impedance of a resistor. 
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The magnitude and phase are constant and independent of frequency. Sketches of the magni­
tude and phase of ZR are shown in Figs. 8. lb and c. Obviously, this is a very simple situation. 

For the inductor in Fig. 8.2a, the frequency-domain impedance ZL is 

ZL = jwL = wL /90° 

The phase is constant at 90° but the magnitude of ZL is directly proportional to frequency. 
Figures 8.2b and c show sketches of the magnitude and phase of ZL versus frequency. Note 
that at low frequencies the inductor's impedance is quite small. In fact, at de, ZL is zero and 
the inductor appears as a short circuit. Conversely, as frequency increases, the impedance also 
increases. 

(a) 

Frequency 

(b) 

+90J+---------------

0 

QL-----------------
0 

Figure 8.2 

Frequency 

(c) 

Frequency-dependent impedance of an inductor. 

I a,s 
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Next consider the capacitor of Fig. 8.3a. The impedance is 

1 1 
Zc = - = - /-90° 

jwC wC 

Once again the phase of the impedance is constant but now the magnitude is inversely 
proportional to frequency, as shown in Figs. 8.3b and c. Note that the impedance approach­
es infinity, or an open circuit, as w approaches zero and Zc approaches zero as w approaches 
infinity. 

Z 
o---c~l 

c - T 
0 

(a) 

Frequency 

(b) 

0 
Frequency 

( c) 

Figure 8.3 
Frequency-dependent impedance of a capacitor. 
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Now let us investigate a more complex circuit: the RLC series network in Fig. 8.4a. The 
equivalent impedance is 

or 

1 
Zeq = R + jwL + -.-

1wC 

(jw )2 LC + jwRC + I z = ---------
eq jwC . 

Sketches of the magnitude and phase of this function are shown in Figs. 8.4b and c. 

+90° 

-0 

"' "' "' ..c: 
0... 

-90° 

0 

1 w=--

"/LC 

Figure 8.4 

(a) 

Frequency 

(b) 

Frequency 

(c) 

Frequency-dependent impedance of an RLC series network. 
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Note that at very low frequencies, the capacitor appears as an open circuit and, therefore, the 
impedance is very large in this range. At high frequencies, the capacitor has very little effect and 
the impedance is dominated by the inductor, whose impedance keeps rising with frequency. 

As the circuits become more complicated, the equations become more cumbersome. In an 
attempt to simplify them, let us make the substitution jw = s. With this substitution, the ex­
pression for Zeq becomes 

s2LC + sRC + 1 
Zeq = ~~~~~~~ 

sC 

If we review the four circuits we investigated thus far, we will find that in every case the 
impedance is the ratio of two polynomials in s and is of the general form 

N(s) amsm + am - 1Sm- l + '" + a1s + ao 
Z(s) - - - --------­

- D(s) - bns" + bn _1s"- 1 + .. · + b1s + b0 
8.1 

where N ( s) and D( s) are polynomials of order m and n, respectively. An extremely important 
aspect of Eq. (8.1) is that it holds not only for impedances but also for all voltages, currents, 
admittances, and gains in the network. The only restriction is that the values of all circuit ele­
ments (resistors, capacitors, inductors, and dependent sources) must be real numbers. 

Let us now demonstrate the manner in which the voltage across an element in a series RLC 
network varies with frequency. 

LEARNING Example 8.1 

Consider the network in Fig. 8.5a. We wish to determine the vari­
ation of the output voltage as a function of frequency over the 
range from O to 1 kHz. 

SOLUTION Using voltage division, the output can be ex­
pressed as 

( R ) V = Vs 
0 

R + jwL + -.-1-
JWC 

or, equivalently, 

( jwCR ) V - V 
0 - (jw)2LC + jwCR + 1 s 

Using the element values, the equation becomes 

( 
(jw)(37.95 X 10-3) ) 

V = 10 0° 
0 (jw )2(2.53 X 10- 4 ) + jw(37.95 X 10- 3) + 1 !.!!:._ 

MATLAB can be effectively employed here to determine the 
magnitude and phase of the voltages as a function of frequency. 
The program required to generate the magnitude and phase plots 

consists of three simple statements. If, in general, the function is 
of the form 

then the plots, generated by the statements (in the following exact 
format) 

>>B = [am am-1 

>>A = [bn bn-1 

>>freqs(B,A) 

will produce the magnitude and phase characteristics as a func­
tion of frequency. The resultant characteristics are semilog plots 
in which the frequency is displayed on the log axis. The program 
for the output voltage in this example is 

>>B = [ 37.95e-3 OJ; 
>>A= [ 2.53e-4 37.95e-3 1J; 
>>freqs(B,A) 

and the results are shown in Fig. 8.5b. 
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101 

-

100 

50 
en 

Q} 

~ 
0 Q} 

"' o; 
..c:: 
11.. 

- 50 

- 100 

Figure 8.5 

,,,,,,.~ 

C=2.53 mF L =O.l H 

~,,,,,,.-

(a) 

-

101 

Frequency (rad) 

-"' "'·-'- ........ 

101 

Frequency (rad) 

(b) 

(a) Network and (b) its frequency-response simulation. 

~ 
'i,.., 

"'~ ~, 

We will illustrate in subsequent sections that the use of a semilog plot is a very useful tool 
in deriving frequency-response information. 

As an introductory application of variable frequency-response analysis and characterization, 
let us consider a stereo amplifier. In particular we should consider first the frequency range over 
which the amplifier must perform and then exactly what kind of performance we desire. The 
frequency range of the amplifier must exceed that of the human ear, which is roughly 50 Hz to 
15,000 Hz. Accordingly, typical stereo amplifiers are designed to operate in the frequency 
range from 50 Hz to 20,000 Hz. Furthermore, we want to preserve the fidelity of the signal as 
it passes through the amplifier. Thus, the output signal should be an exact duplicate of the input 

~ 

-i,... .... ~ ... .. 
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1.0 

0.8 

8 
0.6 0 

0 ,.... 
X 
'-" 0.4 = ·; 
0 

0.2 

0 
/LO /HI 

1 10 100 lk 10k 100 k lM 

Frequency (Hz) 

Figure 8.6 Amplifier frequency-response requirements. 

signal times a gain factor. This requires that the gain be independent of frequency over the 
specified frequency range of 50 Hz to 20,000 Hz. An ideal sketch of this requirement for a 
gain of 1000 is shown in Fig. 8.6, where the midband region is defined as that portion of the 
plot where the gain is constant and is bounded by two points, which we will refer to as Ao and 
f HI. Notice once again that the frequency axis is a log axis and, thus, the frequency response 
is displayed on a semilog plot. 

A model for the amplifier described graphically in Fig. 8.6 is shown in Fig. 8.7a with the 
frequency-domain equivalent circuit in Fig. 8.7b. 

If the input is a steady-state sinusoid, we can use frequency-domain analysis to find the gain 

V5(t) 

Rin = 1 Mil 

1/sCin 

~ 
V5(s) Rin 

+ 

Cin = 3.18 nF 

(a) 

+ 

vin(s) 

(b) 

V 0 (jw) 

V sUw) 

R0 = 100!1 

Ro 

+ lOOOVin(s) 

Figure 8. 7 Amplifier equivalent network. 

C0 = 79.58 nF 

+ 

1/sC0 

V)s) 
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which with the substitution s = jw can be expressed as 

Using voltage division, we find that the gain is 

or 

[ sC R ] [ 1 ] Gv(s) = m m (1000) 
1 + sCinRin 1 + sCORO 

Using the element values in Fig. 8.8a, 

[ s ] [ 40,0001T ] 
Gv(s) = s + l001r (lOOO) s + 40,0001T 

where l001r and 40,0001r are the radian equivalents of 50 Hz and 20,000 Hz, respectively. 
Since s = jw, the network function is indeed complex. An exact plot of Gv( s) is shown in 
Fig. 8.8 superimposed over the sketch of Fig. 8.6. The exact plot exhibits smooth transitions 
at fw and fH,; otherwise the plots match fairly well. 

Let us examine our expression for Gv(s) more closely with respect to the plot in Fig. 8.8. 
Assume that f is well within the midband frequency range; that is, 

Ao<< f << ftt, 

1.0 

0.8 

S' 0.6 
0 
0 
rl 

X 
0.4 '--' 

t:1 
"oil 
C,'.) 

0.2 

0 
1 10 100 lk 10k 

Frequency (Hz) 

Figure 8.8 

100 k 

Exact and approximate amplifier gain versus frequency plots. 

lM 
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or 

1001r << Isl << 40,0001r 

Under these conditions, the network function becomes 

or 

Gv(s) = 1000 

Thus, well within midband, the gain is constant. However, if the frequency of excitation de­
creases toward Ao, then Isl is comparable to 1001r and 

Gv(s) ::::: [ s ](1000) 
s + 1001T 

Since Rin Cin = l / 1001r, we see that Cin causes the roll off in gain at low frequencies . Similar­
ly, when the frequency approaches f m, the gain roll off is due to CO • 

Through this amplifier example, we have introduced the concept of frequency-dependent 
networks and have demonstrated that frequency-dependent network performance is caused by 
the reactive elements in a network. 

NETWORK FUNCTIONS In the previous section, we introduced the term voltage gain , 
Gv(s). This term is actually only one of several network functions, designated generally as 
H(s ), which define the ratio ofresponse to input. Since the function describes a reaction due 
to an excitation at some other point in the circuit, network functions are also called transfer func­
tions. Furthermore, transfer functions are not limited to voltage ratios. Since in electrical net­
works inputs and outputs can be either voltages or currents, there are four possible network 
functions, as listed in Table 8.1 . 

There are also driving point fun ctions , which are impedances or admittances defined at 
a single pair of terminals . For example, the input impedance of a network is a driving point 
function . 

Table 8.1 Network transfer functions 

Input Output Transfer Function Symbol 

Voltage Voltage Voltage gain Gv(s) 

Current Voltage Transimpedance Z(s) 

Current Current Current gain G;(s) 

Voltage Current Transadmi ttance Y(s) 
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LEARNING Example 8.2 

We wish to determine the transfer admittance [ I2(s) /V1 (s)] and 
the voltage gain of the network shown in Fig. 8.9. 

SOLUTION The mesh equations for the network are 

(R 1 + sL)I1(s) - sLI2(s) = V1(s) 

-sLI1(s) + ( R2 + sL + s~ )12(s) = 0 
V2(s) = I2(s)R2 

Therefore, the transfer admittance [ Iz( s) /V 1 ( s)] is 

and the voltage gain is 

327 

Solving the equations for Iz( s) yields 

V2(s) LCR2s2 

Gv(s) = V1(s) = (R 1 + R2)LCs2 + (L + R1R2C)s + R1 

Figure 8.9 
Circuit employed in Example 8.2. 

POLES AND ZEROS As we have indicated, the network function can be expressed as 
the ratio of the two polynomials in s. In addition, we note that since the values of our circuit 
elements, or controlled sources, are real numbers, the coefficients of the two polynomials will 
be real. Therefore, we will express a network function in the form 

N(s) amsm + am - Ism-I + ... + a1s + ao 
H(s) - -- - ----------­

- D(s) - bns" + b11-1s" - 1 + ... + bis + ho 
8.2 

where N(s) is the numerator polynomial of degree m and D(s) is the denominator polynomi­
al of degree n. Equation (8.2) can also be written in the form 

K (s - z )(s - z ) · · · (s - z ) H(s) = o I 2 m 

(s - Pi)(s - P2) .. · (s - p,,) 
8.3 

where K 0 is a constant, z 1, ... , Zm are the roots of N ( s), and p1: ... , p,, are the roots of D( s). 
Note that ifs = z1, or z2, ... , Zm, then H(s) becomes zero and hence z1, •• • , Zm are called zeros 
of the transfer function. Similarly, if s = p1, or p2 , ••• , p,,, then H(s) becomes infinite and, 
therefore, p1, ••• , p,, are called poles of the function. The zeros or poles may actually be com­
plex. However, if they are complex, they must occur in conjugate pairs since the coefficients 
of the polynomial are real. The representation of the network function specified in Eq. (8.3) is 
extremely important and is generally employed to represent any linear time-invariant system. 



328 CHAPTER 8 VARIABLE-FREQUENCY NETWORK PERFORMANCE 

The importance of this form stems from the fact that the dynamic properties of a system can 
be gleaned from an examination of the system poles. 

ES.1 Find the driving point impedance at V5(s) in the amplifier shown in Fig. 8.7b. ANSWER 

ES.2 Find the pole and zero locations in hertz and the value of K 0 for the amplifier network in 
Fig. 8.7. 

8.2 Sinusoidal Frequency Analysis 

1 
Z(s) = Rin + -

sCin 

ANSWER z1 = 0 Hz (de), 
p 1 = -50 Hz, 
P2 = - 20,000 Hz, 
K 0 = ( 4 X 107) 'TT. 

Although there are specific cases in which a network operates at only one frequency (e.g., a 
power system network), in general we are interested in the behavior of a network as a function 
of frequency. In a sinusoidal steady-state analysis, the network function can be expressed as 

H(jw) = M(w)ei<l>(w) 8.4 

where M( w) = IH(jw )I and <j>(w) is the phase. A plot of these two functions, which are com­
monly called the magnitude and phase characteristics, displays the manner in which the re­
sponse varies with the input frequency w. We will now illustrate the manner in which to perform 
a frequency-domain analysis by simply evaluating the function at various frequencies within 
the range of interest. 

FREQUENCY RESPONSE USING A BODE PLOT If the network characteris­
tics are plotted on a semilog scale (that is, a linear scale for the ordinate and a logarithmic scale 
for the abscissa), they are known as Bode plots (named after Hendrik W. Bode). This graph is 
a powerful tool in both the analysis and design of frequency-dependent systems and networks 
such as filters, tuners, and amplifiers. In using the graph, we plot 20 log 10 M ( w) versus log 10 ( w) 
instead of M ( w) versus w. The advantage of this technique is that rather than plotting the char­
acteristic point by point, we can employ straight-line approximations to obtain the character­
istic very efficiently. The ordinate for the magnitude plot is the decibel (dB). This unit was 
originally employed to measure the ratio of powers; that is, 

P2 
number of dB = 10 log 10 -

P1 
8.5 



SECTION 8.2 SINUSOIDAL FREQUENCY ANALYSIS 

If the powers are absorbed by two equal resistors, then 

IV zl2; R 1Izl2 R 
number of dB = 10 log10 2 = 10 log10 -

1
-

1
-2 -

IV1 I /R 11 R 

IV2I II2I 
= 20 log10 IV ii = 20 log10 liJ 

8.6 

The term "dB" has become so popular that it now is used for voltage and current ratios, as 
illustrated in Eq. (8.6), without regard to the impedance employed in each case. 

In the sinusoidal steady-state case, H(jw) in Eq. (8.3) can be expressed in general as 

8.7 

Note that this equation contains the following typical factors: 

1. A frequency-independent factor K 0 > 0 

2. Poles or zeros at the origin of the form jw; that is, (jw rN for zeros and (jw rN for poles 

3. Poles or zeros of the form ( 1 + jw-r) 

4. Quadratic poles or zeros of the form 1 + 2s(Jw-r) + (jw-r )2 

Taking the logarithm of the magnitude of the function H(jw) in Eq. (8.7) yields 

20 log10IH(Jw )I = 20 log10K0 ± 20N log10ljwl 

+ 20 log10ll + jw-r1I 

+ 20 log10ll + 2shw-r3) + (jw-rJI 

+ · · · - 20 logwll + jw-ral 

- 20 log10ll + 2shw-rb) + (jw-rb)21 · .. 

8.8 

Note that we have used the fact that the log of the product of two or more terms is equal to the 
sum of the logs of the individual terms, the log of the quotient of two terms is equal to the dif­
ference of the logs of the individual terms, and log 10 An = n log10 A. 

The phase angle for H(jw) is 

-I -I ( 2sbWTb ) + · · · - tan w-r - tan · · · 
a l - W2T~ 

8.9 

As Eqs. (8.8) and (8.9) indicate, we will simply plot each factor individually on a common 
graph and then sum them algebraically to obtain the total characteristic. Let us examine some 
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of the individual terms and illustrate an efficient manner in which to plot them on the Bode 
diagram. 

Constant Term The term 20 log 10 K0 represents a constant magnitude with zero phase shift, 
as shown in Fig. 8.10a. 

Magnitude characteristic 

20 log10K0+----------------+ 

<l) 

'tl 
;::l 

<l) 
'tl 
a 
·a ---
~~ 
8 '-' 
Oil= 

3·~ 

.<::: 0 =~ 
Oil "1 
"' 'tl 8 '-' 
oJJ<= o·-

....:i §i 

Phase 

---~ ~ ~~~!:... -

0.1 1.0 10 

w (rad/s:log scale) 
(a) 

100 

Magnitude characteristic r- with slope of -20N dB /decade 

-N(90°) 

1.0 

w (rad /s:log scale) 
(b) 

' Phase __ _ 
characteristic -------

Magnitude characteristic 
:with slope of 
+20N dB decade 

1.0 

w (rad /s:log scale) 

(c) 

+N(90°) 

Figure 8.10 
Magnitude and phase characteristics for a constant term and 
poles and zeros at the origin. 

Poles or Zeros at the Origin Poles or zeros at the origin are of the form (jw )±N, 
where + is used for a zero and - is used for a pole. The magnitude of this function is 
±20N logIOw, which is a straight line on semilog paper with a slope of ±20N dB/decade; that 
is, the value will change by 20N each time the frequency is multiplied by 10, and the phase of 
this function is a constant± N ( 90°). The magnitude and phase characteristics for poles and zeros 
at the origin are shown in Figs. 8.10b and c, respectively. 
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Simple Pole or Zero Linear approximations can be employed when a simple pole or zero 
of the form (1 + jwT) is present in the network function . For WT << 1, (1 + jwT) ;:::; 1, and 
therefore, 20 log10l(l + jwT)I = 20 log10 1 = 0 dB. Similarly, if WT >> 1, then (1 + jwT) 
;:::; jwT, and hence 20 log10I ( 1 + jwT) I ;:::; 20 log10 wT. Therefore, for WT << 1 the response is 
0 dB and for WT >> 1 the response has a slope that is the same as that of a simple pole or zero 
at the origin. The intersection of these two asymptotes, one for WT << 1 and one for WT >> 1, 
is the point where WT = 1 or w = 1/T, which is called the break frequency . At this break fre­
quency, where w = 1/T, 20 log10l(l + jl)I = 20 log10(2) 112 = 3 dB . Therefore, the actual 
curve deviates from the asymptotes by 3 dB at the break frequency. It can be shown that at one­
half and twice the break frequency, the deviations are 1 dB. The phase angle associated with a 
simple pole or zero is <p = tan_, WT, which is a simple arctangent curve. Therefore, the phase 
shift is 45° at the break frequency and 26.6° and 63.4° at one-half and twice the break fre­
quency, respectively. The actual magnitude curve for a pole of this form is shown in Fig. 8.1 la. 
For a zero the magnitude curve and the asymptote for WT >> 1 have a positive slope, and the 
phase curve extends from 0° to +90°, as shown in Fig. 8 .11 b. If multiple poles or zeros of the 
form (1 + jwTt are present, then the slope of the high-frequency asymptote is multiplied by 

$ 0 
~ 

Q} 

-0 
B - 6 ·a 
OJ) 

"' ::'E 

- 12 

- 18 
-20 

+18 

$ 
-0 
';;" +12 
-0 
B ·a 
OJ) 

~ +6 

1 

0.1 

2 3 4 5 6 7891 2 3 4 5678910 

0.2 

dB = 20 log101(1 + jwTt11 
--------~---------- 0 

1 " cp = tan- lw'T 
qB ''l.,_-20 dB/decad~20 

0.5 1.0 2.0 

wT (rad/s)(Log scale) 

(a) 

4.0 

dB = 20 log101( 1 + jwT)I 

<I>= tan- lwT 

0.2 0.5 1.0 2.0 4.0 

wT (rad /s)(Log scale) 

(b) 

10 

30 

0 

Figure 8.11 
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OJ) 
Q} 

~ 
,1= 
:.a 
"' Q} 

-45° ] 
~ 

-90° 

10 

Magnitude and phase plot (a) for a simple pole, and (b) for a simple zero. 
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N, the deviation between the actual curve and the asymptote at the break frequency is 3N dB, 
and the phase curve extends from Oto N(90°) and is N( 45°) at the break frequency. 

Quadratic Potes or Zeros Quadratic poles or zeros are of the form 1 + 2s(jw'T) + (jw'T )2. 
This term is a function not only of w, but also of the dimensionless term s, which is called the 
damping ratio. Ifs > 1 ors = 1, the roots are real and unequal or real and equal, respectively, 
and these two cases have already been addressed. Ifs < 1, the roots are complex conjugates, and 
it is this case that we will examine now. Following the preceding argument for a simple pole or 
zero, the log magnitude of the quadratic factor is O dB for w'T << 1. For w'T >> 1. 

and therefore, for W'T >> 1, the slope of the log magnitude curve is +40 dB/decade for a qua­
dratic zero and -40 dB/decade for a quadratic pole. Between the two extremes, w'T << 1 and 
w'T >> 1, the behavior of the function is dependent on the damping ratio S· Figure 8.12a 
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Magnitude and phase characteristics for quadratic poles. 
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illustrates the manner in which the log magnitude curve for a quadratic pole changes as a func­
tion of the damping ratio. The phase shift for the quadratic factor is tan-1 2?;u>T /[ 1 - ( uYr )2]. 
The phase plot for quadratic poles is shown in Fig. 8.12b. Note that in this case the phase 
changes from 0° at frequencies for which W'T << 1 to -180° at frequencies for which W'T >> l. 
For quadratic zeros the magnitude and phase curves are inverted; that is, the log magnitude 
curve has a slope of +40 dB/decade for W'T >> 1, and the phase curve is 0° for w'T << 1 and 
+180° for W'T >> 1. 

LEARNING Example 8.3 

We want to generate the magnitude and phase plots for the trans­
fer function 

10( O.ljw + 1) 

(jw + 1)(0.02jw + 1) 

SOLUTION Note that this function is in standard form, since 
every term is of the form (jw'T + 1). To determine the com­
posite magnitude and phase characteristics, we will plot the in­
dividual asymptotic terms and then add them as specified in 
Eqs. (8.8) and (8.9). Let us consider the magnitude plot first. 
Since K 0 = 10, 20log10 10 = 20 dB, which is a constant 
independent of frequency, as shown in Fig. 8.13a. The zero of 

the transfer function contributes a term of the form 
+20 log10ll + O.ljwl, which is O dB for O.lw << 1, has a slope 
of +20 dB /decade for O.lw >> 1, and has a break frequency at 
w = 10 rad/ s. The poles have break frequencies at w = 1 and 
w = 50 rad/ s. The pole with break frequency at w = 1 rad/s 
contributes a term of the form -20 log10ll + jwl, which is O dB 
for w << 1 and has a slope of-20 dB/decade for w >> 1. A 
similar argument can be made for the pole that has a break fre­
quency at w = 50 rad/s. These factors are all plotted individ­
ually in Fig. 8.13a. 

Consider now the individual phase curves. The term K 0 is 
not a function of w and does not contribute to the phase of the 
transfer function. The phase curve for the zero is +tan- 1 O.lw, 

3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 I 

0.1 1.0 10 100 1000 

w (rad/s) 

(a) 

Figure 8.13 
(a) Magnitude and phase components for the poles and zeros of the transfer function in 
Example 8.3; (b) Bode plot for the transfer function in Example 8.3. 
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Figure 8.13 (continued) 
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which is an arctangent curve that extends from 0° for 
0.lw << 1 to +90° for O.lw >> 1 and has a phase of +45° at 
the break frequency. The phase curves for the two poles are 
-tan- 1 w and -tan- 1 0.02w. The term -tan- 1 w is 0° for 
w << 1, -90° for w >> 1, and -45° at the break frequency 
w = 1. The phase curve for the remaining pole is plotted in a 
similar fashion. All the individual phase curves are shown in 
Fig. 8.13a. 

LEARNING Example 8.4 

Let us draw the Bode plot for the following transfer function : 

. 25(jw + 1) 
Gv(Jw) = (jw )2( O.ljw + 1) 

SOLUTION Once again all the individual terms for both mag­
nitude and phase are plotted in Fig. 8.14a. The straight line with 
a slope of - 40 dB /decade is generated by the double pole at the 
origin. This line is a plot of -40 log 10 w versus w and therefore 
passes through O dB at w = 1 rad/s. The phase for the double 
pole is a constant -180° for all frequencies. The remainder of 
the terms are plotted as illustrated in Example 8.3. 

As specified in Eqs. (8.8) and (8.9), the composite magni­
tude and phase of the transfer function are obtained simply by 
adding the individual terms. The composite curves are plotted 
in Fig. 8.13b. Note that the actual magnitude curve (solid line) 
differs from the straight-line approximation (dashed line) by 
3 dB at the break frequencies and 1 dB at one-half and twice the 
break frequencies. 

The composite plots are shown in Fig. 8.14b. Once again 
they are obtained simply by adding the individual terms in 
Fig. 8.14a. Note that for frequencies for which w << 1, the slope 
of the magnitude curve is -40 dB /decade. At w = 1 rad/s, which 
is the break frequency of the zero, the magnitude curve changes 
slope to -20 dB /decade. At w = 10 rad/ s, which is the break 
frequency of the pole, the slope of the magnitude curve changes 
back to -40 dB /decade. 

The composite phase curve starts at -180° due to the double 
pole at the origin. Since the first break frequency encountered is a 
zero, the phase curve shifts toward -90°. However, before the com­
posite phase reaches -90°, the pole with break frequency 
w = lOrad/s begins to shift the composite curve back toward -180°. 
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Figure 8.14 
(a) Magnitude and phase components for the poles and zeros of the transfer function 
in Example 8.4; (b) Bode plot for the transfer function in Example 8.4. 

Example 8.4 illustrates the manner in which to plot directly terms of the form K0/(jw t. 
For terms of this form, the initial slope of -20N dB /decade will intersect the 0-dB axis at a 
frequency of (K0 ) 1I N rad/s; that is, -20 log!OIK0/(jw ti = 0 dB implies that K0/(jw t = 1, and 
therefore, w = (K0 ) 1I N rad/s. Note that the projected slope of the magnitude curve in Example 
8.4 intersects the 0-dB axis at w = (25) 1/ 2 = 5 rad/s. 
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Similarly, it can be shown that for terms of the form K0(jw f, the initial slope of 
+20N dB /decade will intersect the 0-dB axis at a frequency of w = ( 1/ K0)1f N rad/s; that is, 
+20 log10IK0/(jw fl = 0 dB implies that Ko/(jw f = 1, and therefore w = ( 1/ K0) 11N rad/s. 

By applying the concepts we have just demonstrated, we can normally plot the log mag­
nitude characteristic of a transfer function directly in one step. 

_.~:~' · LEARNING EXTENSIONS );: 

ES.3 Sketch the magnitude characteristic of the Bode plot, la- ANSWER 
beling all critical slopes and points for the function 

. 104(jw + 2) IGI (dB) 

G(Jw) = (jw + lO)(jw + 100) 

Figure EB.3 

ES.4 Sketch the magnitude characteristic of the Bode plot, la- ANSWER 
beling all critical slopes and points for the function 

. 100( 0.02jw + 1) IG I (dB) 

G(1w) = (jw )2 

0 

Figure EB.4 

ES.5 Sketch the magnitude characteristic of the Bode plot, la- ANSWER 
beling all critical slopes and points for the function 

. lOjw IGI (dB) 

G(Jw) = (jw + I)(jw + 10) 

0 

Figure EB.5 
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LEARNING Example 8.5 

We wish to generate the Bode plot for the following transfer 
function: 

25jw 

Gv(jw) = (jw + 0.5) [ (jw )2 + 4jw + 100] 

SOLUTION Expressing this function in standard form, we 
obtain 

0.5jw 

Gv(jw) = (2jw + l)[(jw/10) 2 + jw/25 + 1] 

The Bode plot is shown in Fig. 8.15. The initial low-frequency 
slope due to the zero at the origin is + 20 dB /decade, and this slope 
intersects the 0-dB line at w = 1/K0 = 2 rad/s. At w = 0.5 rad/s 
the slope changes from+ 20 dB /decade to O dB /decade due to the 
prtisence of the pole with a break frequency at w = 0.5 rad/s. The 
qufdratic term has a center frequency of w = 10 rad/s (i.e., 
'T = 1/10). Since 

and 

1 
2~'T = 25 

'T = 0.1 

20 

3 5 7 9 1 3 5 7 9 1 

then 
~ = 0.2 

Plotting the curve in Fig. 8.12a with a damping ratio of 
l = 0.2 at the center frequency w = 10 rad / s completes the 
composite magnitude curve for the transfer function . 

The initial low-frequency phase curve is +90°, due to the 
zero at the origin. This curve and the phase curve for the sim­
ple pole and the phase curve for the quadratic term, as de­
fined in Fig. 8.12b, are combined to yield the composite phase 
curve. 

MATLAB could also be used to generate the magnitude and 
phase plots. The transfer function can be expressed in the form 

25jw 
G = -------=------- --

(jw )3 + 4.5(jw )2 + 102jw + 50 

The MATLAB program for plotting the function is 

»B = [25 OJ; 

>>A= [ 1 4.5 102 50]; 

>>freqs(B,A) 

and the results are shown in Fig. 8.16. 
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Figure 8.15 
Bode plot for the transfer function in Example 8.5. ( continued) 



338 CHAPTER 8 VARIABLE-FREQUENCY NETWORK PERFORMANCE 

---- ----- ---
::::c::1::1:J:1:1:1::i1:::::c :c:c:,: 
- - - -r - -,- - ,- , -,-1-1-iT- - - - r - r - r -1-

- -- _1 _ _ I _ _ I_ I _I_I_I 11 __ __ I ::::[::::[ :,: 

I I I I I l I 11 I I I I 
- -- -r- -1- -,-,-,-1-,1,- -- - r--r-r:- -

n - - , - r r r 1 - - - -,- - -, - -, 

0: - 1 -:::'1I[( 
I I 1 I I I 11 ,,----,--1-1 -r r,rr,--

I I I I I I I l I I I I I I I I I I I I t I I I 11 I J I I I I 11 

~ ~ ~ ~~ ~ ~:~ ~:~ ~ ~:~:~:s; ~: ~; ! ~ ~ S ~ ~ ~:~2 E2:~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ! ~ ~:~ ~ ~ ~ ~ ~ S~ ~~ i 3 ~~? 
----r--,--,-,-1- ,----r--r-r~-rrrn----,--,-,-rr1rr,-----1- ~-,-r,,11 - - - - .- - -.- - .- - ,-,-1 T - - - - T - - I - j" -,- ,- , ,- ,-. - - - - 'j - - I - j - .- f I I r,- - - - -1- - - -, - T I -, • T 

, -,-,-1-, T - - - - T - - r - r -1- r r r1, - - - - , - - T - T - r- r T T" r-1- - - - -,- - -, -

I I I I I 11 I I I I I I I 11 I I 1 I I I 11 I I I 

= =: :.:: : ::: ::= ~ ::::::5~:: =: ~:: ~: ~ ::::2 ~:::s::: = 5:: ~: ~ :2 ~ ~ ~ ~:: =:: ::: : s: ~= I :I~~ 
- - - - L - -1- -1- .J -1-1-1.J .1 - - - - J.. - - L - L -1- L L L I..J - - - - .J - - J. - J. - L J. .1 J. LI- - - - -1- - ...J - ..J - J. .J 
- - - - r - -1- -1- , -1-1-1-i T - - - - r - - r - r -1- r- r r 1, - - - - .., - - T - "T - r r T r r .- - - - -1- - -, - -, - r ., , T 
- - - - r - -1- -1-, -1-1-1-i T - - - - r - - r - r -1- r r r1,- - - - , - - T - "T - r r Tr r1- - - - -,- - -, - -,- r.,,, 
- - - - '"- - -1- - ·- ~ -1-1-1-4 ... - - - - • - - 1,- - 1,- -1- '"- ~ '"-1-1 - - - - 4 - - ... - ... - 1- +- ... +- I,- I- - - - -1- - -4 - -I - ,&. ~ -1 ~ ... 

10·3 .__ __ _.__...__,__._,__._....,.,,__ __ __._ _ _.__.---''-'-'-,,._.._.._ __ _._' --'----''--'-'-'-"'1""'..,' ___ ..__..__.__.__._...,.." ..... 

f 
!P1Q 

100 

50 

~ 0 ~ = Ql 
-50 ~ 

Ql 
(I) 

-100 "' ..c 
Q.. 

-150 

-200 

I I I 1 I 11 

I I I I II 

Frequency (radians) 

I I I I I I 11 1 I I I I I 11 II 
I I I I II 
I I I I II 

I I I I I 

1 I I I I 
I I I 11 

- - - - r - -1- -1- , -1-1-1-, "T - - - - r - - r - r -,- r- r r-1, - - - - ., - - -rrTrr1-----,---,-,-r.,,, 
I I I I I I I I I I I I I II I l I It l 11 

I I I I I I 11 I I I I I I I II I 1 I I I I I I I I I I I 1 1 
----, --,---,-,-.-,-11--- - . --. -, -, I 1 11 1 I I I I 11 I I I I I I 11 

I I I I 11 I I I I II I I I I 11 I I I I I 
t I I I 11 I I I I II t I I I I I I I 1 I 

- - - - t- - -1- -1- -1 -1-1-1-1 T - - - - + - - ... - t- -1- t-- t- t-1-1 - - - - -1 - - T - "T - t- t- + t' t-1 - - - -1- - -I - -1- ,- -1 -1 -1 
I I I I 11 I I 11 II t I I I II 
I t I I I I I I I I II I I I I I I 

I t I I I I I 11 I I I I I 11 II I I I I I I I 1 1 
- - - - I - - - - .- I - -1-1 1 I - - - - I - - I - I -, - I I I I I - - - - I - - I - I - I I I I I I- -

I I I I I I I I I I I I II I I I I I 1 
I I I I I II 

10° 
Frequency (radians) 

I I 1 I 

I I I I 

Figure 8.16 MATLAB-generated Bode plot. 

E8.6 Given the following function G(jw ), sketch the magni­
tude characteristic of the Bode plot, labeling all critical slopes 
and points. 

G(jw) 
0.2(jw + 1) 

jw[(jw/12)2 + jw/36 + 1] 

ANSWER 

IG I (dB) 

0 

0.2 1 12 

Figure EB.6 

- 40dB/decade 
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DERIVING THE TRANSFER FUNCTION FROM THE BODE PLOT 

LEARNING Example 8.8 

Given the asymptotic magnitude characteristic shown in 
Fig. 8.17, we wish to determine the transfer function Gv(jw) . 

SOLUTION Since the initial slope is O dB /decade, and the level 
of the characteristic is 20 dB, the factor K 0 can be obtained from 
the expression 

20dB = 20log 10 K0 

and hence 
K 0 = 10 

The -20-dB /decade slope starting at w = 0.1 rad/ s indicates 
that the first pole has a break frequency at w = 0.1 rad/ s, and 
therefore one of the factors in the denominator is ( lOjw + 1 ). 

The slope changes by +20 dB /decade at w = 0.5 rad/s, indi­
cating that there is a zero present with a break frequency at 
w = 0.5 rad / s, and therefore the numerator has a factor of 
( 2jw + 1) . Two additional poles are present with break fre­
quencies at w = 2 rad/ s and w = 20 rad/ s. Therefore, the com­
posite transfer function is 

. 10(2jw + 1) 
Gv(Jw) = (lOjw + l)(0.5jw + 1)(0.05jw + 1) 

Note carefully the ramifications of this example with regard to 
network design. 

3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 

0.01 0.1 1.0 10.0 100.0 

w (rad/s) 

Figure 8.17 
Straight-line magnitude plot employed in Example 8.6. 
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ES. 7 Determine the transfer function G(jw) if the straight-line magnitude character­
istic approximation for this function is as shown in Fig. E8.7. 

IGI (dB) 
- 20dB/decade 

O dB -20dB/decade 

Figure EB.7 5 20 50 100 w (rad/s) 

8.3 Resonant Circuits 

ANSWER 

G(jw) 
s( if+ 1) ( ~ + 1) 

jw(jw + 1)(~ + 1) 
20 100 

Two circuits with extremely important frequency characteristics are shown in Fig. 8.18. The 
input impedance for the series RLC circuit is 

+ 

R 

C 

L 

(a) 

1 
Z(jw) = R + jwL + -

jwC 

+ 

G 

(b) 

Figure 8.18 Series and parallel RLC circuits. 

and the input admittance for the parallel RLC circuit is 

1 
Y(jw) = G + jwC + -. -

JWL 

8.10 

C L 

8.11 
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Note that these two equations have the same general form . The imaginary terms in both of the 
preceding equations will be zero if 

1 
wL = -

wC 

The value of w that satisfied this equation is 

1 
w - - -

0 - v'Lc 

and at this value of w the impedance of the series circuit becomes 

Z(Jw0) = R 

and the admittance of the parallel circuit is 

Y(Jw0) = G 

8.12 

8.13 

8.14 

This frequency w0 , at which the impedance of the series circuit or the admittance of the par­
allel circuit is purely real, is also called the resonant frequency, and the circuits themselves , 
at this frequency, are said to be in resonance. Resonance is a very important consideration 
in engineering design. For example, engineers designing the attitude control system for the 
Saturn vehicles had to ensure that the control system frequency did not excite the body bend­
ing (resonant) frequencies of the vehicle. Excitation of the bending frequencies would cause 
oscillations that, if continued unchecked, would result in a buildup of stress until the vehi­
cle would finally break apart. 

At resonance the voltage and current are in phase and, therefore, the phase angle is zero and 
the power factor is unity. In the series case, at resonance the impedance is a minimum and, 
therefore, the current is maximum for a given voltage. Figure 8.19 illustrates the frequency re­
sponse of both the series and parallel RLC circuits. Note that at low frequencies the impedance 
of the series circuit is dominated by the capacitive term and the admittance of the parallel cir­
cuit is dominated by the inductive term. At high frequencies the impedance of the series cir­
cuit is dominated by the inductive term, and the admittance of the parallel circuit is dominated 
by the capacitive term. 

Resonance can be viewed from another perspective-that of the phasor diagram. Once 
again we will consider the series and parallel cases together to illustrate the similarities be­
tween them. In the series case the current is common to every element, and in the parallel case 
the voltage is a common variable. Therefore, the current in the series circuit and the voltage in 
the parallel circuit are employed as references . Phasor diagrams for both circuits are shown in 
Fig. 8.20 for the three frequency values w < w0 , w = w0 , w > w0 . 

In the series case when w < w0 , V c > V L , 02 is negative and the voltage V I lags the cur­
rent. If w = w0 , V L = V c, 02 is zero, and the voltage V I is in phase with the current. If 
w > w0 , VL > Ve, 02 is positive, and the voltage V 1 leads the current. Similar statements can 
be made for the parallel case in Fig. 8.20b. Because of the close relationship between series and 
parallel resonance, as illustrated by the preceding material, we will concentrate most of our dis­
cussion on the series case in the following developments. 

LEARNING Hint 
Recall that w0 is the undamped 
natural frequency. 
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LEARNING Hint 
The quality factor is an 
important descriptor for 
resonant circuits. 

VARIABLE-FREQUENCY NETWORK PERFORMANCE 
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Figure 8.19 
Frequency response of (a) a series and (b) a parallel RLC circuit. 
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Figure 8.20 
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Phasor diagrams for (a) a series RLC circuit, and (b) a parallel GLC circuit. 

(b) 

I 

vi 

For the series circuit we define what is commonly called the quality factor Q as 

Q = w~L = w
0
~R = Ti~ 

w 

8.15 

Q is a very important factor in resonant circuits, and its ramifications will be illustrated 
throughout the remainder of this section. 



LEARNING Example 8.7 

Consider the network shown in Fig. 8.21. Let us determine the 
resonant frequency, the voltage across each element at resonance, 
and the value of the quality factor. 

SOLUTION The resonant frequency is obtained from the 
expression 

1 
w = - -

0 \/Le 

V(25)( 10- 3)( 10 )( 10- 6) 

= 2000 rad/ s 

At this resonant frequency 

Therefore, 

V V 
l= - =-=5LQ'.'.A 

Z R 

V R = (5 LQ'.'.)(2) = 10 LQ'.'. V 

V L = jw0 LI = 250 / 90° V 

V c = -. _I - = 250 /-90° V 
1w0 C 

Vs= 10/!tV + 
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Note the magnitude of the voltages across the inductor and ca­
pacitor with respect to the input voltage. Note also that these 
voltages are equal and are 180° out of phase with one anoth­
er. Therefore, the phasor diagram for this condition is shown 
in Fig. 8.20a for w = w0 • The quality factor Q derived from 
Eq. (8 .15) is 

Wol (2 )( 103)(25)( 10- 3) 
Q=-= =25 

R 2 

It is interesting to note that the voltages across the inductor and 
capacitor can be written in terms of Q as 

and 

I I Wol 
VL = w0LII1 = - Vs = QVs 

R 

III 1 
IVcl = - = - -Vs = QVs 

w 0C w0CR 

This analysis indicates that for a given current there is a reso­
nant voltage rise across the inductor and capacitor that is equal 
to the product of Q and the applied voltage. 

2n 

Figure 8.21 Series circuit. 

LEARNING Example 8.8 

In an undergraduate circuits laboratory, students are asked to 
construct an RLC network that will demonstrate resonance at 
f = 1000 Hz given a 0.02 H inductor that has a Q of 200. One 
student produced the circuit shown in Fig. 8.22, where the in­
ductor's internal resistance is represented by R. 

If the capacitor chosen to demonstrate resonance was an 
oil-impregnated paper capacitor rated at 300 V, let us deter­
mine the network parameters and the effect of this choice of 
capacitor. 
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Inductor ~--- R--- ---- ------ ---~ 

v,~1~vf ~:t, 
Figure 8.22 RLC series resonant network. 

SOLUTION For resonance at 1000 Hz, the student found the re­
quired capacitor value using the expression 

which yields 

1 
Wo = 27rfo =-= 

VLC 

C = 1.27 µF 

The student selected an oil-impregnated paper capacitor rated at 
300 V. The resistor value was found using the expression for Q 

or 

w0L 
Q = - = 200 

R 

R = 1.59 0 

At resonance, the current would be 

or 

Vs 
I= ­

R 

I = 6.28 /!!._ A 

When constructed, the current was measured to be only 

I~l/!!._mA 

This measurement clearly indicated that the impedance seen 
by the source was about 10 kO of resistance instead of 1.59 
0-quite a drastic difference. Suspecting that the capacitor that 
was selected was the source of trouble, the student calculated 
what the capacitor voltage should be. If operated as designed, 
then at resonance, 

Vs ( 1 ) 
Ve= R jwC = QVs 

or 

V c = 2000 /-90° V 

which is more than six times the capacitor's rated voltage! This 
overvoltage had damaged the capacitor so that it did not function 
properly. When a new capacitor was selected and the source volt­
age reduced by a factor of 10, the network performed properly 
as a high Q circuit. 

E8.8 Given the network in Fig. E8.8, find the value C that will place the circuit in resonance at ANSWER C = 3.09 µF. 

1800 rad/s. 

30 

lO~V + 

Figure EB.8 

E8.9 Given the network in E8.8, determine the Q of the network and the magnitude of the volt- ANSWER 
age across the capacitor. Q = 60, IV cl = 600 V. 
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The impedance of the circuit in Fig. 8.18a is given by Eq. (8.10), which can be expressed 
as an admittance, 

Y(jw) = R[l + j(l/R)(wL - 1/wC)] 

R[l + j(wL/R - 1/ wCR)] 

1 

R[l + jQ(wL/RQ - 1/wCRQ)] 

Using the fact that Q = w0 L/ R = l/w0CR Eq. (8.16) becomes 

1 
Y(jw) = -------

R[ 1 + JQ( w / w0 - wo/ w)] 

Since I = YV I and the voltage across the resistor is V R = IR, then 

VR 1 
- = G (jw) = -------
V, v 1 + JQ(w/w0 - wo/w) 

and the magnitude and phase are 

1 
M(w) = 2 

[ 1 + Q2( w / w0 - w0/ w) ] 

and 

- I ( W Wo) <!>( w) = -tan Q - - -
Wo W 

8.16 

8.17 

8.18 

8.19 

8.20 

The sketches for these functions are shown in Fig. 8.23. Note that the circuit has the form of a 
band-pass filter. The bandwidth as shown is the difference between the two half-power fre­
quencies. Since power is proportional to the square of the magnitude, these two frequencies may 
be derived by setting the magnitude M( w) = l/V2; that is, 

I 1 + JQ( w/~o - wo/w) I 
Therefore, 

( W Wo) Q -- -
Wo W 

= ±1 

Solving this equation, we obtain four frequencies, 

1 

V2 

8.21 

8.22 
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LEARNING Hint 
Half-power frequencies and 
their dependence on w0 and Q 

LEARNING Hint 
The bandwidth is the difference 
between the half-power 
frequencies and a function of 
w0 and Q. 

w 

+90 

45 
,-.. 
Oil 
<l) 

~ 0 
<l) 

"' "' 
w 

..c:: 
ii. -45 

-90 

Figure 8.23 
Magnitude and phase curves for Eq. (8. 18). 

Taking only the positive values, we obtain 

Ww = Wo[- 2~ + ~ ( ~ r + l J 

WHJ = Wo[ 2~ + ~ ( 2~ r + l J 

Subtracting these two equations yields the bandwidth as shown in Fig. 8.23: 

Wo 
BW = wHI - wLo = -

Q 

and multiplying the two equations yields 

8.23 

8.24 

8.25 

which illustrates that the resonant frequency is the geometric mean of the two half-power fre­
quencies. Recall that the half-power frequencies are the points at which the log-magnitude 
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curve is down 3 dB from its maximum value. Therefore, the difference between the 3-dB fre­
quencies, which is, of course, the bandwidth, is often called the 3-dB bandwidth. 

E8.10 For the network in Fig. E8.8, compu e the two half-power frequencies and the bandwidth 
of the network. 

Equation (8.15) indicates the dependenc of Q on R. A high-Q series circuit has a small value 
of R, and, as we will illustrate later, a high, parallel circuit has a relatively large value of R. 

Equation (8.24) illustrates that the bandwidth is inversely proportional to Q. Therefore, the 
frequency selectivity of the circuit is determined by the value of Q. A high-Q circuit has a small 
bandwidth and, therefore, the circuit is very selective. The manner in which Q affects the fre­
quency selectivity of the network is graphically illustrated in Fig. 8.24. Hence, if we pass a sig­
nal with a wide frequency range through a high-Q circuit, only the frequency components 
within the bandwidth of the network will not be attenuated; that is, the network acts like a 
band-pass filter. 

Q has a more general meaning that we can explore via an energy analysis of the series circuit. 
Recall from Chapter 5 that an inductor stores energy in its magnetic field and a capacitor stores en­
ergy in its electric field. When a network is in resonance, there is a continuous exchange of energy 
between the magnetic field of the inductor and the electric field of the capacitor. During each half­
cycle the energy stored in the inductor's magnetic field will vary from zero to a maximum value and 
back to zero again. The capacitor operates in a similar manner. The energy exchange takes place in 
the following way. During one quarter-cycle the capacitor absorbs energy as quickly as the induc­
tor gives it up, and during the following one quarter-cycle the inductor absorbs energy as fast as it 
is released by the capacitor. Although the energy stored in each element is continuously varying, the 
total energy stored in the resonant circuit is constant and therefore not changing with time. 

w 

Figure 8.24 
Network frequency response as a function of Q. 

ANSWER 
WHI = 1815 rad/s, 
ww = 1785 rad/s, 
BW = 30 rad/s. 
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Q can also be defined as 

8.26 

where W5 is the maximum energy stored at resonance and Wv is the energy dissipated per 
cycle. The importance of this definition of Q stems from the fact that this expression is ap­
plicable to acoustic, electrical, and mechanical systems and therefore is generally considered 
to be the basic definition of Q. 

LEARNING Example 8.9 

Given a series circuit with R = 2 il, L = 2 mH, and 
C = 5 µF, we wish to determine the resonant frequency, the 
quality factor, and the bandwidth for the circuit. Then we will 
determine the change in Q and the BW if R is changed from 
2 to 0.2 n. 

SOLUTION Using Eq. (8.12), we have 

I 1 

Wo = VLC = [(2)(10-3)(5)(10-6)]112 

= 104 rad/s 

and therefore, the resonant frequency is 104/2'1T = 1592 Hz. 

The quality factor is 

w 0 L (104)(2)(10-3) 
Q=--=-----

R 2 

= 10 

and the bandwidth is 

Wo 104 
BW =-=-

Q 10 

= 103 rad/s 

If R is changed to R = 0.2 il, the new value of Q is 100, and 
therefore the new BW is 102 rad/s. 

"~,~t EARNING EXTENSIONS ·\1 
EB.11 A series circuit is composed of R = 2 il, L = 40 mH, and C = 100 µF. Determine the 
bandwidth of this circuit about its resonant frequency. 

ES.12 A series RLC circuit has the following properties: R = 4 il, w0 = 4000 rad/s, and the 
BW = 100 rad/s. Determine the values of Land C. 

LEARNING Example 8.10 

ANSWER BW = 50 rad/s, 
w0 = 500 rad/s. 

ANSWER L = 40 mH, 
C = 1.56 µF. 

We wish to determine the parameters R, L, and C so that the cir­
cuit shown in Fig. 8.25 operates as a band-pass filter with an w0 

of 1000 rad/sand a bandwidth of 100 rad/s. 

SOLUTION The voltage gain for the network is 

(R/L)jw 
G (jw) - --------

v - (jw) 2 + (R/L)jw + I/LC 



R 

Figure 8.25 Series RLC circuit. 

Hence, 

and since w0 = 103, 

The bandwidth is 

Then 

1 
w - --

0 - v'Lc 

1 - = 106 
LC 

BW = Wo 
Q 

Wo 1000 
Q = BW = 100 

= 10 

+ 

SECTION 8.3 

However, 

Therefore, 
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w0 L 
Q= ­

R 

lOOOL 
-- =10 

R 

Note that we have two equations in the three unknown circuit 
parameters R, L, and C. Hence, if we select C = 1 µF, then 

and 

yields 

1 
L= -- =lH 

106C 

1000(1) 

R 
10 

R = 1000 

Therefore, the parameters R = 100 n, L = 1 H, and C = 1 µF 
will produce the proper filter characteristics. 

In Examples 8.7 and 8.8 we found that the voltage across the capacitor or inductor in these­
ries resonant circuit could be quite high. In fact, it was equal to Q times the magnitude of the source 
voltage. With this in mind, let us reexamine this network as shown in Fig. 8.26. The output volt­
age for the network is 

( 1/ jwC ) V - V 
0 - R + jwL + 1/jwC s 

Figure 8.26 
Series resonant circuit. 

which can be written as 
Vs V =--------

0 1 - w2LC + jwCR 
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LEARNING Example 8.11 

The magnitude of this voltage can be expressed as 

8.27 

In view of the previous discussion, we might assume that the maximum value of the output volt­
age would occur at the resonant frequency w0 . Let us see whether this assumption is correct. The 
frequency at which IV0 I is maximum is the nonzero value of w, which satisfies the equation 

dlVal 
--=O 

dw 

If we perform the indicated operation and solve for the nonzero Wmax, we obtain 

8.28 

8.29 

By employing the relationships w5 = 1/LC and Q = w0L/R, the expression for wmax can be 
written as 

8.30 

Clearly, Wmax =ft. w0 ; however, Wo closely approximates wmax if the Q is high. In addition, if we 
substitute Eq. (8.30) into Eq. (8.27) and use the relationships w5 = 1/LC and w5C2R2 = 1/Q2, 
we find that 

V = QIVsl 
I olmax Vl _ l/4Q2 

8.31 

Again, we see that IV0 lmax ::::; QIVsl if the network has a high Q. 

Given the network in Fig. 8.26, we wish to determine w0 and 
Wmax for R = 50 0 and R = 1 !) if L = 50 mH and 
C = 5 µF. 

SOLUTION The network parameters yield 

v ( 5)(10- 2)( 5)( 10- 6) 

= 2000 rad/s 



If R = 50 D, then 

and 

w0 L 
Q= -

R 

(2000)(0.05) 

50 

=2 

Wmax = Wo) 1 - 2~ 2 

=2000R 
= 1871 rad/ s 

If R = 1 n, then Q = 100 and Wmax = 2000 rad /s. 
MATLAB can be used to plot the frequency response of the 

network transfer function for R = 50 n and R = 1 n. The trans­
fer function is 

V 0 1 

Vs 2.5 X 10-7(jw ) 2 + 2.5 X 10- 4(jw) + 1 

SECTION 8.3 RESONANT CIRCUITS I 351 

for R = 50 D and 

Va - --------,,--------::----,---,-
Vs - 2.5 X 10- 7 (jw )2 + 5 X 10-6(jw) + 1 

for R = l n. The corresponding MATLAB programs are 

and 

>>B = [1]; 
>>A= [ 2.Se-7 2.Se-4 1]; 
>>freqs(B, A) 

>>B = [ 1 ]; 
>>A= [2.Se-7 Se-6 1] 
>>freqs(B,A) 

The magnitude and phase characteristics for the network with 
R = 50 D and R = 1 Dare shown in Figs. 8.27a and b, respec­
tively. 

Note that when the Q of the network is small, the frequency 
response is not selective and w 0 cf= wmax. However, if the Q is 
large, the frequency response is very selective and Wo °"' wmax . 

10- 2 L__ ___ __l__ _ __J _ __L_J___.l.._.l__L._L__L__ ___ __,__ ___ ____.__~~~~~ 

1~ 1~ 1~ 

0 

en - 5o 
Q) 

::s 
~ - 100 
"' t; 

- 150 

- 200 
102 

Figure 8.27 

Frequency (rad) 

---~ 

103 

Frequency (rad) 

(a) 

\ .. 
~ ..__ 

Frequency response plots for the network in Fig. 8.26 with (a) R = 50 a and (b) R = 1 a. 

104 
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Figure 8.27 Continued 

LEARNING Example 8.12 

On July 1, 1940, the third longest bridge in the nation, the 
Tacoma Narrows Bridge, was opened to traffic across Puget 
Sound in Washington. On November 7, 1940, the structure 
collapsed in what has become the most celebrated structural 
failure of that century. A photograph of the bridge, taken as it 
swayed back and forth just before breaking apart, is shown in 
Fig. 8.28 . Explaining the disaster in quantitative terms is a 
feat for civil engineers and structures experts, and several 
theories have been presented. However, the one common 
denominator in each explanation is that wind blowing across 
the bridge caused the entire structure to resonate to such an ex­
tent that the bridge tore itself apart. One can theorize that the 
wind, fluctuating at a frequency near the natural frequency of 
the bridge (0.2 Hz), drove the structure into resonance. Thus, 
the bridge can be roughly modeled as a second-order system. 
Let us design an RLC resonance network to demonstrate the 
bridge's vertical movement and investigate the effect of the 
wind 's frequency. 

SOLUTION The RLC network shown in Fig. 8.29 is a second­
order system in which vin(t) is analogous to vertical deflection 
of the bridge's roadway (1 volt = 1 foot). The values of C, L, 
RA , and Ra can be derived from the data taken at the site and 
from scale models, as follows: 

vertical deflection at failure "" 4 feet 

wind speed at failure "" 42 mph 

resonant frequency = Jo "" 0.2 Hz 

The output voltage can be expressed as 

2 . ( RA + Ra) -w +Jw 
L 

1 
+­

LC 
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Figure 8.28 Tacoma Narrows Bridge on the verge of collapse. (Used with permission from Special 
Collection Division, University of Washington Libraries. Photo by Farguharson, negative number 12.) 

Figure 8.29 RLC resonance network for a simple Tacoma 
Narrows Bridge simulation. 

from which we can easily extract the following expressions: 

1 
w0 = • 1,7; = 2'1T(0.2) rad/s 

vLC 

and 
Vo(jw0) 

vin(Jwo) 
Rs 4 feet 

-----=-- "" ---
RA+ Rs 42 mph 

Let us choose Rs = 1 !1 and RA = 9.5 n. Having no data for the 
damping ratio, ~, we will select L = 20 H, which yields ~ = 0.209 
and Q = 2.39, which seem reasonable for such a large structure. 
Given the aforementioned choices, the required capacitor value is 
C = 31.66 mF. Using these circuit values, we now simulate the ef­
fect of 42 mph winds fluctuating at 0.05 Hz, 0.1 Hz, and 0.2 Hz 
using an ac analysis at the three frequencies of interest. 
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The results are shown in Fig. 8.30. Note that at 0.05 Hz the 
vertical deflection ( 1 ft/V) is only 0.44 feet, whereas at 0.1 Hz 
the bridge undulates about 1.07 feet. Finally, at the bridge's 
resonant frequency of 0.2 Hz, the bridge is oscillating 3.77 
feet-catastrophic failure. 

Bridge. A more accurate model is provided by K. Y. Billah and 
R.H. Scalan, "Resonance, Tacoma Narrows Bridge Failure, and 
Undergraduate Physics Textbooks," American Journal of Physics 
vol. 59, no. 2, pp. 118-124. 

Clearly, we have used an extremely simplistic approach to 
modeling something as complicated as the Tacoma Narrows 

Figure 8.30 
Simulated vertical deflection 
(1 volt = 1 foot) for the Tacoma 
Narrows Bridge for wind shift 
frequencies of 0. 05, 0. 1, 
and0.2 Hz. 
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2.0V 

1.066 t--:...--;-;---,-+s--;--;--i-.....,..t,._ 

0.440 H~~ -i+-+-'t--t--ial---t-.\L 
ov 

-2.0V 

-4.0 V t(s) 
0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 s 

In our presentation of resonance thus far, we have focused most of our discussion on the 
series resonant circuit. We should recall, however, that the equations for the impedance of the 
series circuit and the admittance of the parallel circuit are similar. Therefore, the networks pos­
sess similar properties, as we illustrate in the following examples. 

Consider the network shown in Fig. 8.31. The source current Is can be expressed as 

Is = le + le + IL 

. Vs 
= VsG + JWCVs + -.­

JWL 

When the network is in resonance, 

Figure 8.31 
Parallel RLC circuit. 
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that is, all the source current flows through the conductance G. Does this mean that there is no 
current in Lor C? Definitely not! le and IL are equal in magnitude but 180° out of phase with 
one another. Therefore, Ix, as shown in Fig. 8.31, is zero. In addition, if G = 0, the source cur­
rent is zero. What is actually taking place, however, is an energy exchange between the elec­
tric field of the capacitor and the magnetic field of the inductor. As one increases, the other 
decreases, and vice versa. 

LEARNING Example 8.13 

The network in Fig. 8.31 has the following parameters: 

Vs = 120~V, 

C = 600 µF, and 

G = 0.01 S, 

L = 120 mH 

If the source operates at the resonant frequency of the network, 
compute all the branch currents. 

SOLUTION The resonant frequency for the network is 

1 
w =--

0 VLC 

v ( 120)( 10-3)( 600)( 10-6) 

= 117.85 rad/ s 

and 

YL = -j(-1- ) = -j7.07 X 10- 2 S 
w0 L 

The branch currents are then 

and 

Ia = GVs = l.2 ~ A 

l e = Ye Vs = 8.49 /90° A 

IL= YL Vs = 8.49 / -90° A 

Is = Ia + le + IL 

=Ia= l.2~A 

355 

At this frequency 

Ye = jw0 C = j7.07 X 10-:2 S 

As the analysis indicates, the source supplies only the losses in 
the resistive element. In addition, the source voltage and current 
are in phase and, therefore, the power factor is unity. 

LEARNING Example 8.14 

Given the parallel RLC circuit in Fig. 8.32, 

(a) Derive the expression for the resonant frequency, the half­
power frequencies, the bandwidth, and the quality factor 
for the transfer characteristic V out/Jin in terms of the circuit 
parameters R, L, and C. 

Figure 8.32 
Circuit used in Example 8.14. 

(b) Compute the quantities in part (a) if R = I kfl, 
L = 10 mH, and C = 100 µF. 

SOLUTION (a) The output voltage can be written as 

Iin 

v out = YT 

( continued) 



356 I CHAPTER 8 VARIABLE-FREQUENCY NETWORK PERFORMANCE 

and, therefore, the magnitude of the transfer characteristic can be ex­
pressed as 

IVoutl 1 

Ta = V(l/R2) + (we - l / wL) 2 

The transfer characteristic is a maximum at the resonant 
frequency 

1 
w =--

0 VLC 
8.32 

and at this frequency 

IVoutl - =R 
lin max 

8.33 

As demonstrated earlier, at the half-power frequencies the mag­
nitude is equal to l/V2 of its maximum value, and hence the 
half-power frequencies can be obtained from the expression 

V(l/R2) + (we - l/wL)2 

R 

V2 

Solving this equation and taking only the positive values of w 

yields 

8.34 

and 

8.35 

Subtracting these two half-power frequencies yields the band­
width 

Therefore, the quality factor is 

1 

RC 

LEARNING Example 8.15 

8.36 

Two radio stations, WHEW and WHAT, broadcast in the same 
listening area: WHEW broadcasts at 100 MHz and WHAT at 98 
MHz. A single-stage tuned amplifier, such as that shown in 
Fig. 8.33, can be used as a tuner to filter out one of the stations. 
However, single-stage tuned amplifiers have poor selectivity due 
to their wide bandwidths. To reduce the bandwidth (increase the 

Wo 

Q = BW 

RC 

VIT 

= RJt 
8.37 

Using Eqs. (8.32), (8.36), and (8.37), we can write Eqs. (8.34) 
and (8.35) as 

ww = w0[;~ + )~ + 1 J 8.38 

WHJ = Wo[ 2~ + ) (2~)2 + 1 J 8.39 

(b) Using the values given for the circuit components, we 
find that 

103 rad/ s 

The half-power frequencies are 

-1 J 1 w = + +106 
LO (2)(103)(10-4) [(2)(10-1) )2 

= 995 rad/s 

and 

Wm = 1005 rad/ s 

Therefore, the bandwidth is 

BW = Wm = wLO = 10 rad/ s 

and 

quality factor) of single-stage tuned amplifiers, designers em­
ploy a technique called synchronous tuning. In this process, iden­
tical tuned amplifiers are cascaded. To demonstrate this 
phenomenon, let us generate a Bode plot for the amplifier shown 
in Fig. 8.33 when it is tuned to WHEW (100 MHz), using one, 
two, three, and four stages of amplification. 



SOLUTION Using the circuit for a single-stage amplifier 
shown in Fig. 8.33, we can cascade the stages to form a four­
stage synchronously tuned amplifier. If we now plot the fre­
quency response over the range from 90 MHz to 110 MHz, 
which is easily done using PSPICE, we obtain the Bode plot 
shown in Fig. 8.34. 

Q,--------<O 

Figure 8.33 
Single-stage tuned amplifier. 

Transistor model 

4V 
1000 

SECTION 8.3 RESONANT CIRCUITS 

From the Bode plot in Fig. 8.34 we see that increasing the 
number of stages does indeed decrease the bandwidth without 
altering the center frequency. As a result, the quality factor and 
selectivity increase. Accordingly, as we add stages, the gain at 
98 MHz (WHAT's frequency) decreases and that station is 
"tuned out." 

Parallel resonance circuit 

R L + 

250 fl 1 µ.H 

90M 100M 

Frequency (Hz) 

110M 

Figure 8.34 
Bode plots for one-, two-, three-, and four-stage tuned amplifiers. 

ES.13 A parallel RLC circuit has the following parameters: R = 2 kfl, L = 20 mH, and 
C = 150 µF. Determine the resonant frequency, the Q, and the bandwidth of the circuit. 

ES.14 A parallel RLC circuit has the following parameters: R = 6 kfl, BW = 1000 rad/s, and 
Q = 120. Determine the values of L, C, and w0 • 

ANSWER w0 = 577 rad/s, 
Q = 173, and 
BW = 3.33 rad/s. 

ANSWER L = 417.5 µH , 
C = 0.167 µF, and 
w0 = 119,760 rad/s. 
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+ 

L 

V C 

R 

Figure 8.35 
Practical parallel resonant circuit. 

In general, the resistance of the winding of an inductor cannot be neglected, and hence a 
more practical parallel resonant circuit is the one shown in Fig. 8.35 . The input admittance of 
this circuit is 

l 
Y(jw) = jwC + . 

R + JWL 

. R - jwL 
= JWC + 2 2 2 

R + wL 

The frequency at which the admittance is purely real is 

LEARNING Example 8.1 6 

Given the tank circuit in Fig. 8.36, let us determine w0 and wr for 
R = 50 0 and R = 5 0. 

SOLUTION Using the network parameter values, we obtain 

1 
w ---

0 - vrc 
5/Ir_A t 

SOmH 

5 µF 

R 

\/ (o.o5) ( 5)( 10-6) 

= 2000 rad/s Figure 8 .36 Tank circuit used in Example 8.16. 

Jo= 318.3 Hz 

8.40 

+ 



If R = 50 fl, then 

= ~ (0.05)(~)(10- 6) - ( 0~~5 r 
= 1732 rad/s 

f, = 275.7 Hz 

If R = 5 fl, then 

IV0 l(kV) 

1.2 

1 

0.8 

0.6 

0.4 

220 240 260 280 300 320 340 360 380 400 

(a) R = son 

Figure 8.37 Frequency-response curves for Example 8.16. 
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w, = ~(0.05)(~)(10-6) - (o.~5r 

= 1997 rad/s 

f, = 317.9 Hz 

359 

Note that as R ---+ 0, w, ---+ w0 . This fact is also illustrated in 
the frequency-response curves in Figs. 8.37a and b, where we 
have plotted IV 0 1 versus frequency for R = 50 fl and R = 5 fl, 
respectively. 

IV0 l(kV) 

12 

10 

8 

6 

4 

220 240 260 280 300 320 340 360 380 400 

(b) R = 5 fl 

Let us now try to relate some of the things we have learned about resonance to the Bode 
plots we presented earlier. The admittance for the series resonant circuit is 

1 
Y(1'w) - ----- -

R + jwL + 1/ jwC 

jwC 

(jw )2LC + jwCR + 1 
8.41 

The standard form for the quadratic factor is 

where T = 1/w0 , and hence in general the quadratic factor can be written as 

8.42 



360 I CHAPTER 8 

8.4 Scaling 

LEARNING Hint 
Magnitude or impedance 
scaling 

VARIABLE-FREQUENCY NETWORK PERFORMANCE 

If we now compare this form of the quadratic factor with the denominator of Y (jw), we find that 

and therefore, 

However, from Eq. (8.15), 

and hence, 

1 w2 __ 
0 - LC 

2s = CR 
Wo 

1 
Q = 2s 8.43 

To illustrate the significance of this equation, consider the Bode plot for the function Y (jw). 
The plot has an initial slope of +20 dB /decade due to the zero at the origin. Ifs > 1, the poles 
represented by the quadratic factor in the denominator will simply roll off the frequency re­
sponse, as illustrated in Fig. 8.12a, and at high frequencies the slope of the composite charac­
teristic will be -20 dB /decade. Note from Eq. (8.43) that ifs > 1, the Q of the circuit is very 
small. However, if O < s < 1, the frequency response will peak as shown in Fig. 8. l 2a, and 
the sharpness of the peak will be controlled by S· Ifs is very small, the peak of the frequency 
response is very narrow, the Q of the network is very large, and the circuit is very selective in 
filtering the input signal. Equation (8.43) and Fig. 8.24 illustrate the connections among the fre­
quency response, the Q, and the s of a network. 

Throughout this book we have employed a host of examples to illustrate the concepts being dis­
cussed. In many cases the actual values of the parameters were unrealistic in a practical sense, 
even though they may have simplified the presentation. In this section we illustrate how to 
scale the circuits to make them more realistic. 

There are two ways to scale a circuit: magnitude or impedance scaling and frequency scal­
ing. To magnitude scale a circuit, we simply multiply the impedance of each element by a scale 
factor KM. Therefore, a resistor R becomes KMR. Multiplying the impedance of an inductor jwL 
by KM yields a new inductor KM L, and multiplying the impedance of a capacitor 1 /jwC by KM 
yields a new capacitor C /KM. Therefore, in magnitude scaling, 

8.44 
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since 

1 1 
I.J.lo = vf!c = VKMLC/KM = I.J.lo 

and Q' is 

The resonant frequency, the quality factor, and therefore the bandwidth are unaffected by mag­
nitude scaling. 

In frequency scaling the scale factor is denoted as KF. The resistor is frequency indepen­
dent and, therefore, unaffected by this scaling. The new inductor L', which has the same im­
pedance at the scaled frequency w\, must satisfy the equation 

where w\ = kFw 1• Therefore, 

Hence, the new inductor value is 

Using a similar argument, we find that 

L 
L'=­

KF 

C 
C'=-

KF 

Therefore, to frequency scale by a factor KF, 

R'-+ R 

Note that 

and 

and therefore, 

8.45 

LEARNING Hint 
Frequency scaling 

361 
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Hence, the resonant frequency and bandwidth of the circuit are affected by frequency scaling. 

LEARNING Example 8.17 

If the values of the circuit parameters in Fig 8.35 are R = 2 0 , 
L = 1 H, and C = ! F, let us determine the values of the ele­
ments if the circuit is magnitude scaled by a factor KM = 102 

and frequency scaled by a factor K F = 102• 

Applying frequency scaling to these values yields the final 
results: 

SOLUTION The magnitude scaling yields 

R' = 2K M = 200 fl 

L' = (l)KM = 100 H 

C' = _.!:__l_ = _l_F 
2 KM 200 

R" = 2000 

100 
L" = - = lOOµH 

KF 

1 1 
C" = -- = 0.005 µF 

200 KF 

ES.15 At1 RLC network has the following parameter values: R = 10 fl, L = 1 H, and C = 2 F. ANSWER R = 1 kfl, 
Determine the values of the circuit elements if the circuit is magnitude scaled by a factor of 100 and L = 10 mH, C = 2 µF. 
frequency scaled by a factor of 10,000. 

8.5 Filter Networks 

PASSIVE FILTERS A filter network is generally designed to pass signals with a specif­
ic frequency range and reject or attenuate signals whose frequency spectrum is outside this 
passband. The most common filters are low-pass filters, which pass low frequencies and reject 
high frequencies; high-pass filters , which pass high frequencies and block low frequencies; 
band-pass filters, which pass some particular band of frequencies and reject all frequencies 
outside the range; and band-rejection filters, which are specifically designed to reject a particular 
band of frequencies and pass all other frequencies. 

The ideal frequency characteristic for a low-pass filter is shown in Fig. 8.38a. Also shown 
is a typical or physically realizable characteristic. Ideally, we would like the low-pass filter to 
pass all frequencies to some frequency w0 and pass no frequency above that value; however, it 
is not possible to design such a filter with linear circuit elements. Hence, we must be content 
to employ filters that we can actually build in the laboratory, and these filters have frequency 
characteristics that are simply not ideal. 

A simple low-pass filter network is shown in Fig. 8.38b. The voltage gain for the 
network is 

1 
Gv(jw) = - --

1 + jwRC 
8.46 



which can be written as 

1 
Gv(jw) = 1 + jwT 

where T = RC, the time constant. The amplitude characteristic is 

and the phase characteristic is 

l 
M(w)- ----

- [1 + (wT)2] 112 

q>( W) = -tan- I WT 

Note that at the break frequency, w = .!., the amplitude is 
T 

M( w = ~) = ~ 

SECTION 8.5 FILTER NETWORKS 

8.47 

8.48 

8.49 

8.50 

The break frequency is also commonly called the half-power frequency. This name is 
derived from the fact that if the voltage or current is l/ V2 of its maximum value, then the 
power, which is proportional to the square of the voltage or current, is one-half its maxi­
mum value. 

The magnitude, in decibels, and phase curves for this simple low-pass circuit are shown in 
Fig. 8.38c. Note that the magnitude curve is flat for low frequencies and rolls off at high fre­
quencies. The phase shifts from 0° at low frequencies to -90° at high frequencies. 

The ideal frequency characteristic for a high-pass filter is shown in Fig. 8.39a, together 
with a typical characteristic that we could achieve with linear circuit components. Ideally, the 
high-pass filter passes all frequencies above some frequency w0 and no frequencies below that 
value. 

A simple high-pass filter network is shown in Fig. 8.39b. This is the same network as shown 
in Fig. 8.38b, except that the output voltage is taken across the resistor. The voltage gain for this 
network is 

jWT 
Gv(jw) = 1 + jwT 

where once again T = RC. The magnitude of this function is 

WT 

M(w - [l + (wT) ) _ 2]1/2 

and the phase is 

'IT 
<l>(w) = 2 - tan- I WT 

The half-power frequency is w = 1/T, and the phase at this frequency is 45°. 

8.51 

8.52 

8.53 

The magnitude and phase curves for this high-pass filter are shown in Fig. 8.39c. At low 
frequencies the magnitude curve has a slope of +20 dB /decade due to the term WT in the nu­
merator of Eq. (8.52). Then at the break frequency the curve begins to flatten out. The phase 
curve is derived from Eq. (8 .53). 
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0 

63:' 
2, 

Q) 

-0 
B - 20 
·a 
oJ) 

"' :::E 

Ideal characteristic 1~-~--....... -..... 
' ~ Typical characteristic 

' ..... _ 
0 w 

(a) 

(b) 

, !'figh-frequency asymptote , - 20dB /decade 

i-----J ,- _ _!.,~w::_frequency asymptote 

Arctangent curve 
I 

I - 90 
I 1 ,w=-,. 
+ One decade-. 

( c) 

Figure 8.38 
Low-pass filter circuit and its frequency characteristics. 

Ideal and typical amplitude characteristics for simple band-pass and band-rejection filters 
are shown in Figs. 8.40a and b, respectively. Simple networks that are capable of realizing the 
typical characteristics of each filter are shown below the characteristics in Figs. 8.40c and d. 
w0 is the center frequency of the pass or rejection band and the frequency at which the maximum 
or minimum amplitude occurs. ww and wHI are the lower and upper break frequencies or cut­
off frequencies, where the amplitude is 1/V2 of the maximum value. The width of the pass or 
rejection band is called bandwidth, and hence 

8.54 
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characteristic 
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Ideal characteristic 

0 w 

(a) 

C 

(b) 

Low-frequency asymptote 

/ 

1· - - - - - -,,L~------

I Arctangent curve 
I 

I 

+45 

0 
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--+ 
w (log scale) 

(c) 

Figure 8.39 
High-pass filter circuit and frequency characteristics. 

To illustrate these points, let us consider the band-pass filter. The voltage transfer function is 

R 

R + j(wL - 1/wC) 

and, therefore, the amplitude characteristic is 

M(w) 
RCw 

V(RCw)2 + (w2LC - 1)2 

365 
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1 
1 

-fi 

w 

Gv(jw) 

1 
_1_ 
-fi 

(a) (b) 

w 

R + 

+ + 

(c) (d) 

( e) 

Figure 8.40 
Band-pass and band-rejection filters and characteristics. 

At low frequencies 

RCw 
M(w) :=::; - :=::; 0 

1 

At high frequencies 

RCw R 
M(w) "" -- :=::; - :=::; 0 

w2LC wL 

C 

w 

In the midfrequency range (RCw )2 >> ( w2 LC - 1 )2, and thus M ( w) :=:::; 1. Therefore, the 
frequency characteristic for this filter is shown in Fig. 8.40e. The center frequency is 
w0 = 1/VLC. At the lower cutoff frequency 

or 

w2LC - 1 = -RCw 

Rw 
W2 + - - W6 = 0 

L 



Solving this expression for ww, we obtain 

WLO = 

At the upper cutoff frequency 

or 

-(R/L) + Y(R/ L)2 + 4w5 
2 

w2LC - 1 = +RCw 

R 
w2 - -w - w5 = 0 

L 

Solving this expression for wH!, we obtain 

+(R/L) + Y(R/L)2 + 4w5 
WHI = 

2 

Therefore, the bandwidth of the filter is 

R 
BW = wHI - wLo = -

L 

LEARNING Example 8.18 

Consider the frequency-dependent network in Fig. 8.41. Given 
the following circuit parameter values: L = 159 µH, 
C = 159 µF, and R = 10 fl, let us demonstrate that this one 
network can be used to produce a low-pass, high-pass, or band­
pass filter. 

+ 

V L 

+ 
Vs = l~V + 

C V e 

+ 

R VR 

Figure 8.41 Circuit used in Example 8.18. 
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SOLUTION The voltage gain V R/Vs is found by voltage divi­
sion to be 

VR R 

Vs jwL + R + 1/ (jwC) 
(jw)2 + jw(z) + LlC 

( 62.9 X 103)jw 

-w2 + ( 62.9 X 103)jw + 39.6 X 106 

which is the transfer function for a band-pass filter. At resonance, 
w2 = l / LC, and hence 

VR 
- = 1 
V s 

Now consider the gain V jV s : 

VL jwL 

Vs jwL + R + 1/ (jwC) 

-w2 

(jw)2 + jw(z) + L~ 

( continued) 
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-w2 

-w2 + ( 62.9 X 103)jw + 39.6 X 106 

which is a second-order high-pass filter transfer function. Again, 
at resonance, 

VL jwL 
- = - = jQ = j0.1 
Vs R 

Similarly, the gain V c /Vs is 

1/(jwC) 

jwL + R + 1/(jwC) 

39.6 X 106 

1 

LC 

(jw)2 + jw( f) 

-w2 + ( 62.9 X 103)jw + 39.6 X 106 

1 
+­

LC 

which is a second-order low-pass filter transfer function. At 
resonant frequency, 

l!l 0.5V 

~ 

Figure 8.42 1.0 10 100 

Bode plots for network in Fig. 8.41 . 

LEARNING Example 8.19 

A telephone transmission system suffers from 60-Hz interfer­
ence caused by nearby power utility lines. Let us use the net­
work in Fig. 8.43 to design a simple notch filter to eliminate the 
60-Hz interference. 

SOLUTION The resistor Req represents the equivalent resis­
tance of the telephone system to the right of the LC combination. 
The LC parallel combination has an equivalent impedance of 

Ve 1 . . - = -- = -1Q = -10.1 
Vs jwCR 

Thus, one circuit produces three different filters depending on 
where the output is taken. This can be seen in the Bode plot 
for each of the three voltages in Fig. 8.42, where Vs is set to 
1 /!!_ V. 

We know that Kirchhoff's voltage law must be satisfied at all 
times. Note from the Bode plot that the V R + V c + V L also 
equals Vs at all frequencies! Finally, let us demonstrate KVL by 
adding V R, V L, and V c· 

Thus, even though Vs is distributed between the resistor, capac­
itor, and inductor based on frequency, the sum of the three volt­
ages completely reconstructs Vs. 

1.0 k 10 k 100 k l.OM 

Frequency (Hz) 

(L/C) 
Z = (jwL)//(1/jwC) = . /(. ) 

JWL + 1 JWC 

Now the voltage transfer function is 

(L/C) 
R +------

eq jwL + (1/jwC) 



which can be written 

1 
(jw)2 + -

LC 

1 +­
LC 

SECTION 8.5 FILTER NETWORKS 369 

Note that at resonance, the numerator and thus V0 go to zero. 
We want resonance to occur at 60 Hz. Thus, 

1 
Wo = , ~ = 21r(60) = 1201T 

vLC 

If we select C = 100 µF, then the required value for L is 
70.3 mH-both are reasonable values. To demonstrate the 
effectiveness of the filter, let the input voltage consist of a 60-Hz 
sinusoid and a 1000-Hz sinusoid of the form 

Vin(t) = 1 sin[(21r)60t] + 0.2sin[(21r)lOOOt] 

Figure 8.43 Circuit used in Example 8.19. 

The input and output waveforms are both shown in Fig. 8.44. 

Note that the output voltage, as desired, contains none of the 

60-Hz interference. 

1.2V 

0.8V 

0.4 V 

ov 

-0.4 V 

-0.SV 

-1.2 V ~ - -------~~- ----------

20 ms 25 ms 30 ms 

Figure 8.44 
Transient analysis of the network in Fig. 8.43. 

ES.16 Given the filter network shown in Fig. ES.16, sketch the magni­
tude characteristic of the Bode plot for Gv(jw ). 

lOkO 
0 Mt I 

0 
+ + 

Vs(t) vo(t) I 20 µ,F 

0 0 
Figure EB. 16 

35 ms 

ANSWER 

GI (dB) 

40 ms 

o------

5 

-20 dB/decade 

w (rad/s) 
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ES.17 Given the filter network in Fig. E8. l 7, sketch the magnitude char­
acteristic of the Bode plot for Gv(jw ). 

ANSWER 

IGI (dB) 

O>------"----------..ro 
+ 20 µ,F + 

Vs(t) 25 ki1 

Figure ES. 17 

0 
I 

+20 dB/decade 
I 

I 

2 
w (rad/ s) 

ES.18 A band-pass filter network is shown in Fig. E8.18. Sketch the 

magnitude characteristic of the Bode plot for Gv(jw ). 
ANSWER 

IG I (dB) 
1 µ,F 

~-( ------4 

~ ~(t) ___ i 1 k-D, --<:(,) 
Figure EB. 18 

/ I 

~ -20dB/decade 

k o JB/de~ade : " 

618 1000 1618 
w (rad/s) 

ACTIVE FILTERS In the preceding section we saw that the four major classes of filters 
(low pass, high pass, band pass, and band rejection) are realizable with simple, passive 
element circuits. However, passive filters do have some serious drawbacks. One obvious 
problem is the inability to generate a network with a gain > 1 since a purely passive net­
work cannot add energy to a signal. Another serious drawback of passive filters is the need 
in many topologies for inductive elements. Inductors are generally expensive and are not 
usually available in precise values. In addition, inductors usually come in odd shapes (toroids, 
bobbins, E-cores, etc.) and are not easily handled by existing automated printed circuit board 
assembly machines. By applying operational amplifiers in linear feedback circuits, one can 
generate all of the primary filter types using only resistors, capacitors, and the op-amp inte­
grated circuits themselves. 

The equivalent circuits for the operational amplifiers derived in Chapter 3 are valid in the si­
nusoidal steady-state case also, when we replace the attendant resistors with impedances. The 
equivalent circuits for the basic inverting and noninverting op-amp circuits are shown in Figs. 8.45a 
and b, respectively. Particular filter characteristics are obtained by judiciously selecting the im­
pedances Z 1 and Z2 • However, due to the nature of the op-amp's internal circuitry, it has limita­
tions and is not always the best amplifier choice. Two examples are high-frequency active filters 
and low-voltage ( < 3 V) circuitry. Given the evolution of the wireless market (cell phones, pagers, 
etc.) these applications will only grow in prominence. There is, however, an op-amp variant called 
the operational transconductance amplifier, or OTA, that performs excellently in these scenar­
ios, allowing, for example, very advanced filters to be implemented on a single chip. In this text 
we will restrict our treatment of the OTA to this single application. 

Advantages of the OTA over the op-amp can be deduced from the diagrams in Fig. 8.46. 
In the three-stage op-amp model, the input stage provides the large input resistance, converts 
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+ + 

(a) 

+ 0---0 
+ + + 

V1 
Va V1 ~ + ~:)v1 Vo 

.,. 

(b) 

Figure 8.45 
Equivalent circuits for the (a) inverting and (b) noninverting operational 
amplifier circuits. 

+ 
Vin 

R;n 
(large) 

Input 
stage 

Some 
gain 

Input 
stage 

R;n Gain= 1 
(large) 

Figure 8.46 

Gain 
stage 

Large 
gain 

(a) 

Gain 
stage 

Transconductance 
gain 

(b) 

R0 (small) 

Output 
+ 

stage 
Vo 

Gain = 1 i-

Block diagrams depicting the physical construction of the (a) op-amp 
and (b) the OTA. 
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the differential input voltage Vin( t) to a single-ended (referenced to ground) voltage and pro­
duces some voltage gain. The gain stage provides the bulk of the op-amp's voltage gain. Finally, 
the output stage, has little if any voltage gain, but produces a low output resistance. This three­
stage model accurately depicts the physical design of most op-amps. 

Now consider the two-stage OTA model. As in the op-amp, the input stage provides a large 
input resistance, but its voltage gain is minimal. The gain stage is very similar to that of the op­
amp in that the value of R0 is large. Unlike the op-amp, the output signal is a current rather than 
a voltage, yielding an overall transconductance gain in A/V or siemens. With no output stage, 
the OTA is more compact and consumes less power than the op-amp and has an overall output 
resistance of R0-a large value. Having all of the OTA's gain in a single stage further simpli­
fies the internal design, resulting in a simple, fast, compact amplifier that can be efficiently 
replicated many times on a single silicon chip. The schematic symbol for the OTA and a sim­
pler model are shown in Fig. 8.47a and b, respectively. 

The OTA schematic symbol 
(a) and (b) simple model. (a) (b) 

To compare the performance of the op-amp and OTA, consider the circuits in Fig. 8.48. For 
the op-amp, the overall voltage gain is 

(a) 

(b) 

Figure 8.48 
Simple circuits that demonstrate the relative strengths 
of the (a) op-amp and (b) OTA. 
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Ideally, Rin ~ oo, R0 ~ 0, and the output voltage is independent of external components Rs 
and R L. The overall gain of the OTA is 

For an ideal OTA, both Rin and R0 ~ oo, yielding an output current that is independent 
of Rs and RL. Similarities and differences between ideal OTAs and ideal op-amps are listed 
in Table 8.2. 

Table 8.2 A comparison of ideal Op-amps and OTA features 

Amplifier Type 

Op-amp 

OTA 

Ideal Rin 

00 

00 

Ideal R0 

0 

00 

Ideal Gain 

00 

gm 

Input Currents 

0 

0 

Input Voltage 

0 

nonzero 

As with op-amps, OTAs can be used to create mathematical circuits. We will focus on three v1 

OTA circuits used extensively in active filters: the integrator, the simulated resistor, and the sum­
mer. To simplify our analyses, we assume that the OTA is ideal with infinite input and output re­
sistances. The integrator in Fig. 8.49, which forms the heart of our OTA active filters, can be 
analyzed as follows. 

Figure 8.49 

Or, in the frequency domain, 

Io 
V =-

0 jwC 
V = gm V 

o jwC ' 

An interesting aspect of IC fabrication is that resistors (especially large valued ones) are 
physically very large compared to other devices such as transistors. Additionally, producing ac­
curate values is quite difficult. This has motivated designers to use OTAs to simulate resistors. 
One such circuit is the grounded resistor, shown in Fig. 8.50. Applying the ideal OTA condi­
tions in Table 8.2, 

Vin 1 
R =-=-

eq iin gm 
8.55 

The OTA integrator. 

iin 

+ 

Vin 

t ... 
Figure 8.50 

373 

+ 

-

% 

io 

The OTA simulated resistor. 

A simple summer circuit is shown in Fig. 8.5 la, where OTA 3 is a simulated resistor. Based 
on Eq. (8.55), we produce the equivalent circuit in Fig. 8.51b. The analysis is straightforward. 

8.56 
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Figure 8.52 
A modified OTA schematic 
symbol showing the input bias 
current. 

LEARNING Example 8.20 

+ 

(a) 

+ 

(b) 

Figure 8.51 
An OTA voltage summer. 

At this point, we introduce our last important feature of the OTA-programmability. The 
transconductance, gm, is linearly controlled by a current called the amplifier bias current, or /ABC , 

as seen in Fig. 8.52. Unfortunately, the /ABC input is not part of the schematic symbol. The sen­
sitivity of gm to /ABC is typically 20 S/A but the range of gm and its maximum value depend on 
the OTA design. Typical values are 10 mS for the maximum gm and 3 to 7 powers of ten, or 
decades, for the transconductance range. For example, if the maximum gm were 10 mS and the 
range were 4 decades, then the minimum gm is 1 µS and the usable range of /ABC is 0.05 µA 
to 0.5 mA. 

An ideal OTA has a gm - /ABC sensitivity of 20, a maximum gm 
of 4 mS, and a gm range of 4 decades . Using the circuit in 
Fig. 8.50, produce an equivalent resistance of 25 kil, giving both 
gm and /AB C · 

SOLUTION From Eq. (8.55), the equivalent resistance 
is R eq = 1/gm = 25 kil, yielding g,,, = 40 µS. Since gm = 
20/ABC, the required amplifier bias current is /ABC = 2 µA. 



LEARNING Example 8.21 

The circuit in Fig. 8.53 is a floating simulated resistor. For an 
ideal OTA, find an expression for Req = v 1/i 1 • Using the OTA 
described in Example 8.20, produce an 80-kO resistance. Re­
peat for a 10-MO resistor. 

Figure 8.53 
The floating simulated 
resistor. 

+ 

LEARNING Example 8.22 

Using the summer in Fig. 8.51 and the OTAs specified in Ex­
ample 8.20, produce the following function: 

Repeat for the function 

SOLUTION Comparing Eq. (8 .56) to the desired function, we 
see that gm 1/ gm3 = 10 and gm 2/ gm 3 = 2. With only two equa­
tions and three unknowns, we must choose one gm value. Arbi­
trarily selecting gm 3 = 0.1 mS yields gm 1 = 1 mS and 
g1112 = 0.2 mS. The corresponding bias currents are / A BC ! 

= 50 µA , IABC2 = 10 µA and IAB C3 = 5 µA. 
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SOLUTION ForOTAl , wehavei0 1 = g m 1(-v1)andi1 = -i0 1. 

Thus, Req = v1/i 1 = 1/ gm 1• We must also consider the return 
current which is contributed by OTA 2, where i02 = gm/ v1) and 
i02 = i1• Now Req = vJi1 = 1/ gm2 • For proper operation, we 
must ensure that gm I = gm2 · 

For Req = 1/ gm = 80 kD, we have gm 1 = gm2 = g111 = 
12.5 µS. Since gm = 20/ABC, the required bias current for both 
OTAs is ] ABC= 0.625 µA . Changing to Req = 1/ gm = lOMO, 
the transconductance becomes gm = 0.1 µS. However, the mini­
mum gm for these OTAs is specified at 0.4 µS. We must find either 
suitable OTAs or a better circuit. 

For the second case, we simply invert the sign of v2 as shown 
in Fig. 8.54. This is yet another advantage of OTA versus op­
amps. Again choosing g,,, 3 = 0.1 mS yields the same bias current 
as the first case. 

.,. + 

V2 Vo 

.,. l 
Figure 8.54 A slight modification of the adder in Fig. 8.51 yields 
this subtracting circuit. 

Using the subcircuits in Fig. 8.49 and 8.50, one can create active filters called OTA-C 
filters, which contain only OTAs and capacitors. The lack of resistors makes OTA-C filters ideal 
for single-chip, or monolithic, implementations. As an introduction, consider the circuit in 
Fig. 8.55. For ideal OTAs, the transfer function can be determined as follows . 

10 1 + 10 2 _ gml V _ gm2 V 
VO = jwC - jwC i I jwC 0 

Solving the transfer function yields the low-pass function 

gmtf gm2 

jwC 
-+1 
gm 2 

8.57 
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V;J 
iol 

.,. CT 
.,. 

Figure 8.55 
A simple first-order low-pass OTA-C filter. 

From Eq. (8.57), the circuit is a first-order low-pass filter with the asymptotic Bode plot shown 
in Fig. 8.56. Both the corner frequency, fc = gm 2/(2TIC), and de gain, Ade= gm 1/gm 2 , are 
programmable. 

In monolithic OTA-C filters, the capacitors and OTAs are fabricated on a single chip. Typical 
OTA capacitor values range from about 1 pF up to 50 pF. 

Figure 8.56 
Asymptotic Bode plot for a first-order /ow-pass filter. 

LEARNING Example 8.23 

The low-pass filter in Fig. 8.55 is implemented using a 25-pF 
capacitor and OTAs with a gm - /ABC sensitivity of 20, a maxi­
mum gm of 1 mS and 3 decades of range. Find the required bias 
currents for the filter transfer function 

4 

jw 
---+1 
2TI( 105) 

8.58 

SOLUTION Comparing Eq. (8.57) to the desired function, 
gm 2/C = (27r)105. For C = 25 pF, gm 2 = 15.7 µS. Since 
gm = 20/Asc, the bias current for OTA 2 is /A 8 c2 = 0.785 µA. 
Finally gml/gm2 = 4 yields /ABCI = 3.14 µA. 

Of the dozens of OTA filter topologies, a very popular one is the two-integrator biquad filter. 
The term biquad is short for biquadratic, which, in filter terminology, means the filter gain is a 
ratio of two quadratic functions such as 

A(jw) 2 + B(jw) + C 

(jw) 2 + ~o (jw) + W6 
8.59 
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By selecting appropriate values for A, B, and C, low-pass, band-pass, and high-pass functions 
can be created, as listed in Table 8.3. Figure 8.57 shows the most popular two-integrator biquad 
used in practice-the Tow-Thomas filter. Assuming ideal OTAs, we can derive the filter's transfer 
function. For OTA 1, an integrator, 

vol gml 
V; 1 - V02 jwC1 

The output current of OTA 2 is 

102 = gm2[Vol - V;2] 

Applying KCL at the second output node, we find 

lo3 + 102 = (jwC2)V o2 

where 

lo3 = [ V;3 - V 02 ]gm3 

Solving for V0 1 and V02 yields 

[ jwC2 + gm3JV;1 + V;2 - [g'"3]V;3 
V _ gm2 gm2 gm2 

0 1 
- [ CC J [ C J - 1- 2- (jw)2 + ~ (jw) + 1 

gmlgm2 gm2gml 

Table 8.3 Various Tow-Thomas biquad filter possibilities 

Filter Type A B C 

Low-pass 0 0 nonzero 

Band-pass 0 nonzero 0 

High-pass nonzero 0 0 

""' :ls:> '"' ! 
k3 

V;1 o--i.Y '"' I !·' "I 
G: cT ,,, c,T 

V;3 

Figure 8.57 
The Tow-Thomas OTA-C biquad filter. 

0 Vo2 
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LEARNING Example 8.24 

and 

V;1 - [-jw_C_1 Jv;2 + [jwC1g'"3]V;3 
&nl gmlgm2 Vo2 = --------------

[ C1C2 ](jw)2 + [ gm3C1 ](jw) + l 
&n1~2 ~2~1 

8.60 

Note that this single circuit can implement both low-pass and band-pass filters depending on 
where the input is applied! Table 8.4 lists the possibilities. Comparing Eqs. (8.59) and (8.60), 
design equations for w0 , Q, and the bandwidth can be written as 

Wo = BW = gm3 
Q C2 

8.61 

Consider a Tow-Thomas band-pass filter. From Eq. (8.61), if gm 1 = gm 2 = gm and 
C1 = C2 = C, the following relationships are easily derived. 

Wo gm3 k 
- = BW = - = - IABC3 
Q C C 

Q = ~ = /ABC 

gm3 /ABC3 
8.62 

where k is the gm - /ABC sensitivity. Based on Eq. (8.62) we have efficient control over the fil­
ter characteristics. In particular, tuning /ABC with IABc3 fixed scales both the center frequency 
and Q directly without affecting bandwidth. Tuning IABc 3 only changes the bandwidth but not 
the center frequency. Finally, tuning all three bias currents scales both the center frequency 
and bandwidth proportionally, producing a constant Q factor. 

Table 8.4 Low-pass and band-pass combinations for the 
Tow-Thomas biquad filter in Fig. 8.57 

Filter Type Input Output Sign 

Low-pass V;2 vol positive 
V;3 Vol negative 
V;1 Vo2 positive 

Band-pass V;2 Vo2 negative 
V;3 Vo2 positive 

Using the OTAs specified in Example 8.20 and 50-pF capaci­
tors, design a Tow-Thomas band-pass filter with a center fre­
quency of 500 kHz, a bandwidth of 75 kHz, and a center 
frequency gain, Ac, of-5. 

SOLUTION FromEq. (8.61), thefiltercharacteristicsforthev;2 

-v02 input-output pair are 

BW = gm3 
C 



For the specifications given, 

g m3 = (BW)(C) = (2TI)(7 .5 X 104)(50 X 10- 12) = 23.56 µ,S 

(2TI)2(5 X 105)2(50 X 10- 12) 2 

117.8 X 10-6 = 209.5 µS 

20 

0 

~ - 20 
2, 
<= - 40 '@ 

c.:, 
- 60 

-80 
Figure 8.58 1.E + 04 1.E + 05 
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The required bias currents are /AB C I = 10.47 µ,A , !ABC = 

5.89 µ,A, and IAB C3 = 1.18 µA. From the filter's Bode plot in 
Fig. 8.58, we see that the gain, bandwidth, and center frequency 
specifications are met. 

0 

-60 

- 120 oil 
Q) 

2, 
-180 ~ 

"' ..c:: 
-240 

p... 

-300 
1.E + 06 1.E + 07 

Bode plot for the Tow-Thomas 
band-pass filter of Example 8.24. 

Frequency (Hz) 

Learning by Application 

LEARNING Example 8.25 

The ac-dc converter in Fig. 8.59a is designed for use with a hand­
held calculator. We will ignore the output load for now; it is ad­
dressed in Problem 8.70. Ideally, the circuit should convert a 
120-V rms sinusoidal voltage to a 9-V de output. In actuality the 
output is 

v0 (t) = 9 + 0.5 sin377t 

Let us use a low-pass filter to reduce the 60-Hz component of v0 (t). 

SOLUTION The Thevenin equivalent circuit for the converter 
is shown in Fig. 8.59b. By placing a capacitor across the output 
terminals, as shown in Fig. 8.59c, we create a low-pass filter at 
the output. The transfer function of the filtered converter is 

VoF 

which has a pole at a frequency off = 1/2TIRThC. To obtain 
significant attenuation at 60 Hz, we choose to place the pole at 
6 Hz, yielding the equation 

or 

1 
---=6 
2TIRThc 

C = 53.05 µF 

A transient simulation of the converter is used to verify perfor­
mance. 

Figure 8.59d shows the output without filtering v0 (t), and 
with filtering, v0 p( t). The filter has successfully reduced the un­
wanted 60-Hz component by a factor of roughly six. 

( continued) 



380 1· CHAPTER 8 VARIABLE-FREQUENCY NETWORK PERFORMANCE 

Req = 500 n 

+ 
AC/DC 

120V rms Vo converter 

(a) 

9.6V 

9.4 V 

soon 

v,.f>f V:e 

8.4 V 

( c) 

Figure 8.59 Circuits and output plots for ac!dc converter. 

LEARNING Example 8.26 

The antenna of an FM radio picks up stations across the entire FM 
frequency range-approximately 87.5 MHz to 108 MHz. The 
radio's circuitry must have the capability to first reject all of the sta­
tions except the one that the listener wants to hear and then to 
boost the minute antenna signal. A tuned amplifier incorporating 
parallel resonance can perform both tasks simultaneously. 

The network in Fig. 8.60a is a circuit model for a single-stage 
tuned transistor amplifier where the resistor, capacitor, and inductor 
are discrete elements. Let us find the transfer function Vo(s) / V A(s) , 
where VA ( s) is the antenna voltage and the value of C for maxi­
mum gain at 91 .1 MHz. Finally, we will simulate the results. 

Os 

soon 

R11i 
+ 

+ 
0.5 sin 377t 

V11i V 0 (t) 

9V 

(b) 

10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 

(d) 

SOLUTION Since V(s) = V A(s) , the transfer function is 

V0 (s) 4 [ 1 J 
VA(s) =-1000 R//sL//sC 

V0 (s) 4 [ s/C ] 
VA(s)=-1000 2 s 1 

s +-+-
RC LC 

The parallel resonance network is actually a band-pass filter. 
Maximum gain occurs at the center frequency, f 0 • This 



condition corresponds to a minimum value in the denomina­
tor. Isolating the denominator polynomial, D(s), and letting 
s = jw, we have 

R 2 jw 
D(jw) = - - w + -

LC C 

which has a minimum value when the real part goes to zero, or 

1 
- - w 2 = 0 

S E CTION 8.5 FILTER NETWORKS 

1 
w ---

0 - V"Lc 

Thus, for a center frequency of 91.1 MHz, we have 

1 
2-rr(91.1 X 106) = , = 

vLC 

and the required capacitor value is 

C = 3.05 pF 

381 

LC 0 

yielding a center frequency of 

The Bode plot for the tuned amplifier, as shown in Fig. 8.60b, 
confirms the design, since the center frequency is 91 .1 MHz, as 
specified. 

r---------- -- ------, r----------------- - ----------------, 
I I I I 

I I I ! 

100V 

"' SOY 
00 
~ 
°"§ 60V 
; 
a. 
'5 40V 
0 

20V 

V 
4V , 

1000 : , 

R 

: 2s kn 

' 

L 

C 
1 µ,H 

I_ - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -

(a) 

OV L,,......,... ......... ~~"""':::__ _ __::::""."'~~'="~--__. 
30MHz 

Figure 8.60 

100MHz 
Frequency 

(b) 

Circuit and Bode plot for parallel resonance tuned amplifier. 

300MHz 

+ 
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Learning by Design 

Throughout this chapter we have presented a number of design examples. In this section we 
consider some additional ones that also have practical ramifications. 

LEARNING Example 8.27 

Compact disks (CDs) have become a very popular medium for 
recording and playing music. CDs store information in a digital 
manner; that is, the music is sampled at a very high rate, and the 
samples are recorded on the disc. The trick is to sample so quick­
ly that the reproduction sounds continuous. The industry standard 
sampling rate is 44.1 kHz--one sample every 22.7 µ,s . 

One interesting aspect regarding the analog-to-digital con­
version that takes place inside the unit recording a CD is called 
the Nyquist criterion. This criterion states that in the analog con­
version, any signal components at frequencies above half the 
sampling rate (22.05 kHz in this case) cannot be faithfully re­
produced. Therefore, recording technicians filter these frequen­
cies out before any sampling occurs, yielding higher fidelity to 
the listener. 

Let us design a series of low-pass filters to perform this task. 

SOLUTION Suppose, for example, that our specification for 
the filter is unity gain at de and 20 dB of attenuation at 22.05 kHz. 
Let us consider first the simple RC filter in Fig. 8.61. 

10 

0 
i:o' 
2, - 10 
"' -0 

2 - 20 ·= 01) 

"' E -30 
C 

·@ 

0 -40 

-50 

Figure 8.61 
Single-pole low-pass filter. 

The transfer function is easily found to be 

Since a single-pole transfer function attenuates at 20 dB /decade, 
we should place the pole frequency one decade before the 
-20 dB point of 22.05 kHz. 

Thus, 
1 

f" = -- = 2.205 kHz 
2TIRC 

If we arbitrarily choose C = 1 nF, the resulting value for R is 
72.18 kfl, which is reasonable. A Bode plot of the magnitude of 
Gv, ( s) is shown in Fig. 8.62. All specifications are met but at 

Figure 8.62 10 100 1.0 k 10 k 100 k l.OM 

Bode plot for single-pole filter. Frequency (Hz) 
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the cost of severe attenuation in the audible frequency range. 
This is undesirable. 

An improved filter is shown in Fig. 8.63. It is a two-stage 
low-pass filter with identical filter stages separated by a unity­
gain buffer. 

The presence of the op-amp permits us to consider the stages 
independently. Thus, the transfer function becomes 

Vo2 
Gv2(s) = - = ----

Vin [ 1 + sRC]2 

To find the required pole frequencies, let us employ the equa­
tion for Gv2 ( s) at 22.05 kHz, since we know that the gain must 
be 0.1 (attenuated 20 dB) at that frequency. Using the substitu­
tions = jw, we can express the magnitude of Gvi( s) as 

\ 
1 } G 2 = =01 

J v J 1 + (22,050/ Jp)2 . 

R 

V j0 (t) C 

Figure 8.63 
Two-stage buffered filter. 

10 

$' 0 
~ 

"' -10 -0 
3 
·a 
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- 40 
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10 100 1.0 k 10 k 100 k 1.0 M 

Frequency (Hz) 

Figure 8.64 
Bode plot for single- and two-stage filters. 
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and the pole frequency is found to be 7.35 kHz. The corre­
sponding resistor value is 2 l.65 kO. Bode plots for Gv1 and 
Gv2 are shown in Fig. 8.64. Note that the two-stage filter has 
a wider bandwidth, which improves the fidelity of the record­
ing. 

Let us try one more improvement--expanding the two-stage 
filter to a four-stage filter. Again, the gain magnitude is 0.1 at 
22.05 kHz and can be written 

The resulting pole frequencies are at 15 kHz, and the required re­
sistor value is 10.61 kO. Figure 8.65 shows all three Bode plots. 
Obviously, the four-stage filter, having the widest bandwidth, is 
the best option (discounting any extra cost associated with the ad­
ditional active and passive circuit elements). 

+ 

C v0 i(t) 

10 

$' 
0 

~ 
-10 "' -0 

3 ·a -20 
Oil 

"' E 
C -30 

·oi 
0 - 40 

-50 

10 100 1.0 k 10 k 100 k l.OM 

Frequency (Hz) 

Figure 8.65 
Bode plots for single-, two-, and four-stage filters. 
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LEARNING Example 8.28 

The circuit in Fig. 8.66a is called a notch filter. From a sketch of 
its Bode plot in Fig. 8.66b, we see that at the notch frequency, fn, 
the transfer function gain is zero, while at frequencies above and 
below fn the gain is unity. Let us design a notch filter to remove 
an annoying 60-Hz hum from the output voltage of a cassette 
tape player and generate its Bode plot. 

SOLUTION Figure 8.66c shows a block diagram for the filter 
implementation. The tape output contains both the desired music 
and the undesired hum. After filtering, the voltage Vamp will have 
no 60-Hz component as well as some attenuation at frequencies 
around 60 Hz. An equivalent circuit for the block diagram in­
cluding a Thevenin equivalent for the tape deck and an equiva­
lent resistance for the power amp is shown in Fig. 8.66d. 
Applying voltage division, the transfer function is found to be 

vamp 

v,ape 

Ramp 

Ramp + R,ape + ( sL// ;S) 

H(s) 

C 

(a) 

After some manipulation, the transfer function can be written as 

vamp 

Vtape 

Ramp [ s2 LC + 1 ] 

Ramp + Rtape s2LC + s( L ) + 1 

R,ape + Ramp 

We see that the transfer function contains two zeros and two 
poles . Letting s = jw, the zero frequencies, w,, are found to 
be at 

1 
w, =±\/LC 

Obviously, we would like the zero frequencies to be at 60 Hz. If 
we arbitrarily choose C = 10 µ,F, then L = 0.704 mH. 

The Bode plot, shown in Fig. 8.66e, confirms that there is in­
deed zero transmission at 60 Hz. 

+ 

R 

:L__ ___ V __ i.L__ _____ t_"' 

(b) 

Figure 8.66 
Circuits and Bode plots for 60-Hz notch filter. 
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Summary 

t There are four types of network or transfer functions: 

1. Z(jw): the ratio of the output voltage to the input 
current 

2. Y (jw): the ratio of the output current to the input 
voltage 

3. Gv(jw) : the ratio of the output voltage to the input 
voltage 

4. G 1 (jw): the ratio of the output current to the input 
current 

t Driving-point functions are impedances or admittances de­
fined at a single pair of terminals, such as the input imped­
ance of a network. 

t When the network function is expressed in the form 

H(s) 
N(s) 

D(s) 

the roots of N ( s) cause H ( s) to become zero and are called 
zeros of the function , and the roots of D( s) cause H( s) to 
become infinite and are called poles of the function. 

t Bode plots are semilog plots of the magnitude and phase of 
a transfer function as a function of frequency. Straight-line 
approximations can be used to sketch quickly the magni­
tude characteristic. The error between the actual character­
istic and the straight-line approximation can be calculated 
when necessary. 

t The resonant frequency, given by the expression 

1 
Wo = VLC 

is the frequency at which the impedance of a series RLC cir­
cuit or the admittance of a parallel RLC circuit is purely real. 

t The quality factor is a measure of the sharpness of the reso­
nant peak. The higher the Q, the sharper the peak. 

For series RLC circuits, Q = ( 1 / R) v[Jc. For parallel 
RLC circuits, Q = Rvcf[. 

t The half-power, cutoff, or break frequencies are the fre­
quencies at which the magnitude characteristic of the Bode 
plot is 1 / \/2 of its maximum value. 

t The parameter values for passive circuit elements can be 
both magnitude and frequency scaled. 

t The four common types of filters are low pass, high pass, 
band pass, and band rejection. 

t The bandwidth of a band-pass or band-rejection filter is the 
difference in frequency between the half-power points; that is, 

BW = wtt1 - ww 

For a series RLC circuit, BW = R/L. For a parallel RLC 
circuit, BW = 1/RC. 
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Problems 

SECTION 8.1 

For solutions and additional help on problems marked with ~ go to www.wiley.com/college/irwin 

8.1 Determine the driving point impedance at the input 
~ terminals of the network shown in Fig. P8.1 as a 

function of s. 

R 

+ + 

v;(t) C L v0 (t) 

Figure PB.1 

8.2 Determine the voltage transfer function V 0 ( s) / V;( s ) as 
a function of s for the network shown in Fig. P8. l. 

8.3 Determine the voltage transfer function V 0 ( s) / V;( s) as 
a function of s for the network shown in Fig. P8.3. 

+ + 

C 

V;(t) 

Figure PB.3 

SECTION 8.2 

8.6 Draw the Bode plot for the network function 

H(jw) 
jw5 + 1 

jw20 + 1 

8.4 Find the transfer impedance V 0 ( s) / Is( s ) for the 
network shown in Fig. P8.4. 

f is(/) 

Figure PB.4 

2n 

lF 

+ 

vo(t) 

2H 

8.5 Find the driving point impedance at the input 
~ terminals of the circuit in Fig. P8.5 as a function of s. 

lF 3D 
e>-il-----~f\1\---------, 

3D 3D 

Z; 3D 

Figure PB.5 

8. 7 Draw the Bode plot for the network function 

jw2 + 1 
H(jw ) = jwlO + 1 
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8.8 Draw the Bode plot for the network function 

. 10(10jw + 1) 
H(Jw) = (lOOjw + l)(jw + 1) 

8.9 Draw the Bode plot for the network function .. 
H(. ) jw 

JW = (jw + 1)(0.ljw + 1) 

8.10 Draw the Bode plot for the network function 

H(jw) = 
lOjw + 1 

jw(O.ljw + 1) 

8.11 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

10 
H(jw) -

jw(O.ljw + 1) 

8.12 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

20(jw + 1) 
H(jw) = . . . 

1w(O.l1w + 1)(0.0lJw + 1) 

8.13 Sketch the magnitude characteristic of the Bode plot .. for the transfer function 

lOO(jw) 
H(jw) -

(jw + l)(jw + lO)(jw + 50) 

8.14 Draw the Bode plot for the network function 

H(1·w) - ___ 16 __ 
- (jw )2(jw2 + 1) 

8.15 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

640(jw + 1)(0.0ljw + 1) 
H(jw) = (jw )2(jw + 10) 

8.16 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

. 105(5jw + 1)2 

H(Jw) = (jw)2(jw + lO)(jw + 100)2 

8.17 Sketch the magnitude characteristic of the Bode plot .. for the transfer function 

lOjw 
G(jw)-

- (jw + l)(jw + 10)2 

8.18 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

. 102(jw)2 
H(Jw) = (jw + l)(jw + 10)2(jw + 50) 

8.19 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

-w2104 
G(jw) -

- (jw + 1)2(jw + lO)(jw + 100)2 

8.20 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

G(jw) = 
64(jw + 1)2 

- jw3( 0.ljw + 1) 

8.21 Sketch the magnitude characteristic of the Bode plot 
for the transfer function 

-002 
G(1"w)- --­

- (jw + 1)3 

8.22 Draw the Bode plot for the network function 

72(jw + 2) 
H(jw) = --------

jw[ (jw )2 + 2.4jw + 144] 



8.23 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

. 104(jw + l)(-w2 + 6jw + 225) 

G(Jw) = jw(jw + 50) 2(jw + 450) 

8.24 Sketch the magnitude characteristic of the Bode plot for 
the transfer function 

H(jw) 
+81 (jw + 0.1) 

(jw)(-w2 + 3.6jw + 81) 

8.25 Sketch the magnitude characteristic of the Bode plot 
.,. for the transfer function 

. +6.4(jw) 
H(Jw) = (jw + 1)(-w2 + Sjw + 64) 

8.26 Determine H(jw) if the amplitude characteristic for 
H(jw) is shown in Fig. P8.26. 

+20 dB /decade 
-40dB ---1----...r 1 -40 dB /decade 

0.1 0.5 10 w (rad/s) 

Figure PB.26 

8.27 Find H(jw) if its magnitude characteristic is shown in 
Fig. P8.27. 

IHI 

+20 dB /dee 
40 dB-1----.r 

1 

Figure PB.27 

10 80 120 w (rad/s) 
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8.28 Find H(jw) if its magnitude characteristic is shown in 
Fig. P8.28. 

OdB 

-40 dB /decade 

10 20 w (rad/s) 

Figure PB.28 

8.29 Find H(jw) if its amplitude characteristic is shown 
.,. in Fig. PS.29. 

IHI 

40dB 

0.4 50 4001000 w (rad/ s) 

Figure PB.29 

8.30 Find H(jw) if its magnitude characteristic is shown in 
Fig. P8.30. 

IHI 

0.05 0.8 12 100 700 w (rad/s) 

Figure PB.30 
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8.31 Find H(jw) if its amplitude characteristic is shown in 
Fig. P8.31. 

IHI 

I 

I 
+20dB/dee1 

1 

Figure PB.31 

8 30 

1 -40 dB /dee 

lOO w (rad/s) 

8.32 Given the magnitude characteristic in Fig. P8.32, find 
G(jw). 

IGI 

80dB -

1 -40 dB/dee 

0.2 1.5 10 80 200 w (rad/s) 

Figure PB.32 

SECTION 8.3 

8.34 A series RLC circuit resonates at 2000 rad / s. If 
C = 20 µ,F and it is known that the impedance at 
resonance is 2.4 n, compute the value of L, the Q of 
the circuit, and the bandwidth. 

8.35 A series resonant circuit has a Q of 120 and a resonant 
frequency of 60,000 rad/s. Determine the half-power 
frequencies and the bandwidth of the circuit. 

8.36 Given the series RLC circuit in Fig. P8.36, if 
R = 10 n, find the values of L and C such that the 

8.33 Find G(jw) if the amplitude characteristic for this 
..,. function is shown in Fig. PS.33. 

IGI 

20dB 

- 40 dB /dee 

20 100 900 
w (rad/s) 

Figure PB.33 

network will have a resonant frequency of 100 kHz and 
a bandwidth of 1 kHz. 

R 

V; .+ 

C 

Figure PB.36 



8.37 Given the network in Fig. PS.37, find w0, Q, wmax, 
• and IVolmax• 

Figure PB.37 

8.38 Repeat Problem 8.37 if the value of R is changed to 
0.1 n. 

8.39 A series RLC circuit is driven by a signal generator. 
The resonant frequency of the network is known to be 
1600 rad/ s, and at that frequency the impedance seen 
by the signal generator is 5 0. If C = 20 µF, find L, Q, 
and the bandwidth. 

8.40 A variable-frequency voltage source drives the network 
in Fig. P8.40. Determine the resonant frequency, Q, 
BW, and the average power dissipated by the network 
at resonance. 

8.41 

• 

40 

12 cos wtV + 

Figure PB.40 

In the network in Fig. PS.41, the inductor value is 
10 mH, and the circuit is driven by a variable-frequency 
source. If the magnitude of the current at resonance is 
12 A, w0 = 1000 rad/ sec, and L = 10 mH, find C, Q, 
and the bandwidth of the circuit. 

C 

36 cos ( wt +45°) V L 

Figure PB.41 
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8.42 Given the network in Fig. P8.42, find IV0 lmax· 

0.50 4mH 

+ 

12 cos wtV 25 µ,F 

Figure PB.42 

8.43 A parallel RLC resonant circuit with a resonant 
frequency of 20,000 rad/ s has an admittance at 
resonance of 1 mS. If the capacitance of the network is 
5 µF, find the values of R and L. 

8.44 A parallel RLC resonant circuit has a resistance of 
200 0. If it is known that the bandwidth is 80 rad/ s and 
the lower half-power frequency is 800 rad/s, find the 
values of the parameters L and C. 

8.45 A parallel RLC circuit, which is driven by a 
• variable-frequency 2-A current source, has the 

following values: R = 1 kfi, L = 100 mH, and 
C = 10 µF. Find the bandwidth of the network, the 
half-power frequencies, and the voltage across the 
network at the half-power frequencies. 

8.46 A parallel RLC circuit, which is driven by a variable­
frequency 10-A source, has the following parameters: 
R = 500 0, L = 0.5 mH, and C = 20 µF. Find the 
resonant frequency, the Q, the average power dissipated 
at the resonant frequency, the BW, and the average 
power dissipated at the half-power frequencies. 

8.47 Consider the network in Fig. P8.47. If R = 2 kO, 
L = 20 mH, C = 50 µF, and Rs = oo, determine the 
resonant frequency w0 , the Q of the network, and the 
bandwidth of the network. What impact does an Rs of 
10 kO have on the quantities determined? 

Figure PB.47 
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8.48 The source in the network in Fig. P8.48 is 
i5(t) = cos lOOOt + cos 1500t A. R = 200 D, and 
C = 500 µF. If w0 = 1000 rad/ sec, find L , Q, and the 
BW. Compute the output voltage v0 (t) and discuss the 
magnitude of the output voltage at the two input 
frequencies. 

Figure PB.48 

8.49 Determine the parameters of a parallel resonant 
~ circuit that has the following properties: 

w 0 = 2 Mrad/ s, BW = 20 krad/s, and an 
impedance at resonance of 2000 n. 

SECTION 8.4 

8.52 Determine the new parameters of the network shown in 
Fig. P8.52 if Znew = l04Zold • 

Figure PB.52 

8.50 Determine the value of C in the network shown in 
Fig. PS.SO for the circuit to be in resonance. 

C 611 

4 cos 2tV + 

411 4H 

Figure PB.50 

8.51 Determine the equation for the nonzero resonant 
frequency of the impedance shown in Fig. P8.5 l. 

C 

z - L R 

Figure PB.51 

8.53 Determine the new parameters of the network in 
~ Problem 8.52 if Wnew = 104wold· 



SECTION 8.5 

8.54 Given the network in Fig. P8.54, sketch the magnitude 
characteristic of the transfer function 

Identify the type of filter. 

1000 µ,F 

o-----jt------<l>-------<l 
+ + 

V;(t) lOH 100 0 

Figure PB.54 

8.55 Given the network in Fig. P8.55, sketch the magnitude 
characteristic of the transfer function 

Identify the type of filter. 

lOH 

+ + 

V;(t) lmF 100 0 

Figure PB.55 
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8.56 Determine what type of filter the network shown in 
Fig. P8.56 represents by determining the voltage 
transfer function. 

+ + 

V;(t) 

Figure PB.56 

8.57 Determine what type of filter the network shown in 
~ Fig. PS.57 represents by determining the voltage 

transfer function. 

+ + 
L 

V;(t) 

Figure PB.57 

8.58 Given the lattice network shown in Fig. P8.58, 
determine what type of filter this network represents by 
determining the voltage transfer function. 

+ C + 

v;(t) v,it) 

Figure PB.58 
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8.59 Given the network in Fig. PS.59, and employing 
the voltage follower analyzed in Chapter 3, determine the 
voltage transfer function and its magnitude characteristic. 
What type of filter does the network represent? 

1.!1 

+ 
1.!1 

+ 
Vs(I) lFI lFT v0 (1) 

0 

Figure PB.59 

8.60 Determine the voltage transfer function and its 
magnitude characteristic for the network shown in 
Fig. PS.60 and identify the filter properties. 

R2 

+ 

Vo 

Figure PB.60 

8.61 Given the network in Fig. PS.61, find the transfer 
function 

Va 
V, (jw) 

0 

and determine what type of filter the network 
represents. 

+ 

+ 
... 

R2 
V;(t) 

R1 

0 
Tc 
--------0 

Figure PB.61 

8.62 Repeat Problem 8.54 for the network shown in 
Fig. PS.62. 

+ 

+ 

R2 C 

Figure PB.62 

In all OTA problems, the specifications are: gm - /ABC 

sensitivity = 20, maximum gm = l mS with range of 
4 decades . 

8.63 For the circuit in Fig. 8.50, find the gm and /ABC values 
required for a simulated resistance of 10 kfl. 

8.64 For the circuit in Fig. 8.53, find the gm and /ABC values 
required for a simulated resistance of 10 kfl. Repeat for 
750k!1. 



8.65 Use the summing circuit in Fig. 8.51 to design a circuit 
that realizes the following function. 

V 0 = 7V1 + 3V2 

8.66 Prove that the circuit in Fig. P8.66 is a simulated inductor. 
Find the inductance in terms of C, gm 1 and gmz· 

+ 

C 

Figure PB.66 

8.67 In the Tow-Thomas biquad in Fig. 8.57, C1 = 20 pF, 
C2 = 10 pF, gm 1 = 10 µ,S, gm2 = 80 µ,S, and 
g"'3 = 10 µ,S. Find the low-pass filter transfer function 
for the V; 1 - v02 input-output pair. Plot the corresponding 
Bode plot. 

8.68 Find the transfer function of the OTA filter in Fig. P8.68. 
Express w0 and Q in terms of the capacitances and 
transconductances. What kind of filter is it? 

Figure PB.68 

Va 
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8.69 Find the transfer function of the OTA filter in Fig. P8.69. 
Express w 0 and Q in terms of the capacitances and 
transconductances. What kind of filter is it? 

Figure PB.69 

8. 70 Refer to the ac /de converter low-pass filter application of 
Example 8.25. If we put the converter to use powering a 
calculator, the load current can be modeled by a resistor 
as shown in Fig. P8.70. The load resistor will affect both 
the magnitude of the de component of VoF and the pole 
frequency. Plot both the pole frequency and the ratio of 
the 60-Hz component of the output voltage to the de 
component of V0 F versus R L for 100 0 :s RL :s 100 kO. 
Comment on the advisable limitations on R L if (a) the de 
component of VoF is to remain within 20% of its 9-V 
ideal value; (b) the 60-Hz component of VoF remains less 
than 15% of the de component. 

Req = 500 f1 

+ 
AC/DC C 

RL 120V rms VoF converter 
53.05 µF 

Figure PB. 70 

8.71 Referring to Example 8.28, design a notch filter for the 
tape deck for use in Europe, where power utilities 
generate at 50 Hz. 
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Typical Problems Found on the FE Exam 

SFE-1 Determine the resonant frequency of the circuit in 
~ Fig. SPFE-1, and find the voltage V0 at resonance. 

Figure BPFE-1 

SFE-2 Given the series circuit in Fig. 8PFE-2, determine the 
resonant frequency, and find the value of R so that the 
BW of the network about the resonant frequency is 
200 r/s. 

R 20mH 

f JSOµF 
Figure BPFE-2 

SFE-3 Given the low-pass filter circuit shown in Fig. SPFE-3, 
~ find the frequency in Hz at which the output is down 

3 dB from the de, or very low frequency, output. 

Sk!l 

~ 
In~ut I 1 µ,F :utput 

0 0 

Figure BPFE-3 

SFE-4 Given the band-pass filter shown in Fig. 8PFE-4, find 
the components L and R necessary to provide a 
resonant frequency of 1000 r/s and a BW of 100 r/s. 

Figure BPFE-4 

SFE-5 Given the low-pass filter shown in Fig. SPFE-5, 
• find the half-power frequency and the gain of this 

circuit, if the source frequency is 8 Hz. 

Figure BPFE-5 
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Techniques for Solving Linearly Independent Simultaneous 
Equations 

LEARNING Example 1 

INTRODUCTION In our study of both de and ac circuit analysis we encounter a system 
of simultaneous equations of the form 

a,,x, + a,2X2 + ... + a,nxn = b, 

a21X1 + a22X2 + "' + a2nXn = b2 
1 

an1X1 + an2X2 + ... + a,znXn = bn 

where the x's and h's are typically currents and voltages or voltages and currents, respectively. 
As the title of this section implies, we will assume that the equations are linearly indepen­

dent. Before we outline the solution techniques for the equations of this form, it is perhaps 
worthwhile to pause long enough to review the meaning of linear independence. Consider the 
following equations. 

~Vi-!Vz-4=0 

-!Vi+ ~Vi+ 5 = 0 

-Vi - i Vz - 1 = 0 

Linear independence implies that we cannot find constants a 1, a2, and a3 such that 

2 

3 

4 

ai(~Vi - !Vi - 4) + a2(-!Vi +~Vi+ 5) + al-Vi - iVi - 1) = 0 5 

However, in this case if we select a, = a2 = a3 = 1, we obtain 

+~ Vi - 4 Vi - 4 - 4 Vi + ~ Vi + 5 - Vi - ! Vi - 1 = 0 

£= 0 

Said another way, this means, for example, that Eqs. (2) and (3) can e used to obtain Eq. (4), 
and therefore, Eq. (4) is linearly dependent on Eqs. (2) and (3). Fu hermore, any two of the 
equations could be used to obtain the third equation. Therefore, only~ o of the three equations 
are linearly independent. 

We will now describe three techniques for solving linearly independent simultaneous equa­
tions. The techniques are Gaussian elimination, determinants, and matrices. 

GAUSSIAN ELIMINATION The following example will serve to demonstrate the steps 
involved in applying this technique. 

Let us find the solution to the following set of equations: 9 

7X1 - 4X2 - X3 = 4 

-4X1 + 7X2 - 2X3 = 0 

- X, - 2X2 + 3X3 = -1 

6 

7 

8 

SOLUTION The algorithm (i.e., step-by-step procedure) for 
applying the Gaussian elimination method proceeds in the fol­
lowing systematic way. First, we solve Eq. (6) for the variable X1 

in terms of the other variables in X2 and X3. 

We then substitute this result into Eqs. (7) and (8) to obtain 

¥- X2 - f X3 = -'f 
- f X2 + ~ X3 = - ~ 

10 

11 

Continuing the reduction, we now solve Eq. (10) for X2 in terms 
of X3 : 

X2 = ~ + ~X3 12 

Substituting this expression for X2 into Eq. (11) yields 

m x3 = ~~r 
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or 
X3 = 0.563 13 

Now backtracking through the equations, we can determine 
X2 from Eq. (12) as 

X2 = 0.792 

and X1 from Eq. (9) as 

In this simple example we have not addressed such issues as zero 
coefficients or the impact of round-off errors. We have, howev­
er, illustrated the basic procedure. 

Because of the very methodical manner in which the elimination takes place, the algorithm 
is easily adaptable to computer analysis, and efficient computer codes that implement the tech­
nique are available in standard software packages. 

DETERMINANTS A determinant of order n is a square array of elements a;j arranged as 
follows: 

a11 a12 · ··a1,, 

a21 a22 · · ·a2n 

The cofactor cij of the element aij is given by the expression 

( ) ·+ . 
cij = -1 ' 1 Aij 

14 

15 

where Aij is the determinant that remains after the ith row andjth column are deleted. 

LEARNING Example 2 

Given the determinant 

a11 a1 2 a1 3 

a21 a22 a23 

a31 a32 a33 

find the cofactor of the element a21. 

SOLUTION The cofactor c21 for the element a21 is 

Cz1 = (- l )2+1 1a1 2 a1 31 
a32 a33 

The numerical value of the determinant is equal to the sum of products of the elements in 
any row or column and their cofactors. 

LEARNING Example 3 

Let us determine the value of the determinant in Example 2 using 
either the first row or the second column. 

SOLUTION Using the first row 

6_ = a11C11 + a12C12 + a1 3C1 3 

= a11(-l)1 +1A11 + a1 2(-l)1 +2A1 2 + a1 3(- l) 1+3A1 3 

:::I -a1 2\:: : :::I + a1 31:: : :::I 
Although the 2-by-2 determinants can be evaluated in the same 
manner, as illustrated above, the result is simply 

I: !I = ad - cb 16 

Therefore, 6. is 

6. = a11 ( a22 a33 - a32a23) 

- a1z(a21a33 - a31a23) + a1/a21 a32 - a31a22) 

If instead of using the first row we had used the second column, 
we would obtain 

6. = a 12(-l) 1+2A1 2 + a 22(-l)2+2A22 + a32(-l )3+2A32 

= -a12A1 2 + a22 A22 - a 32 A32 

= -a12(a21a33 - a31a23) 

+ a22(a11a33 - a 31a13) - a 32(a11a23 - C121a1 3) 
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We could evaluate the determinant using any row or column. 
The method of solving the set of simultaneous equations of the form shown in Eq. (1) using 

determinants is known as Cramer's rule. Cramer's rule states that if a -cf. 0 (that is, the equations 
are linearly independent), the value of the variable x1 in Eq. (1) is given by the expression 

b1 a1 2 a111 

b2 a22 .. ·a2n 

a1 b/1 a211 ann 
17 X1 = - = a a 

where a1 is the determinant a in which the first column is replaced with the column of coef­
ficients . In the general case, X; is given by an expression similar to Eq. (17) with the ith column 
replaced by the column of coefficients. 

LEARNING Example 4 

Let us solve the following equations using determinants. 

21, - 412 = 8 

-4/1 + 6/2 = -4 

SOLUTION In this case, a defined by Eq. (16) is 

I 2 -41 a= = (2)(6) - (-4)(-4) = -4 
-4 6 

LEARNING Example 5 

Let us determine the solution of the following equations using 
determinants 

2V1 - V2 = 8 

-Vi + 3\li - 2V3 = 3 

-2V2 + 4V3 = -8 

SOLUTION The determinant for this system of equations is 

2 

a= -1 

0 

-1 0 
3 -2 

-2 4 

Evaluating the determinant using the first column, we obtain 

Then 

a = 2(-1) (l+l)1~2 ~ 21- 1(-1) 1+21=~ ~I 
= 2(12 - 4) + 1(-4) = 12 

8 -1 
1 

\t'i = 12 3 3 
-8 -2 

0 
-2 
4 

Then using Eq. (17), 

8 -4 
-4 6 

l1 = 
-4 

and 
2 8 

-4 -4 
12 = -4 

(8)(6) - (-4)(-4) = -8 
-4 

(2)(-4) - (-4)(8) = -6 
-4 

Evaluating the determinant using the first row yields 

V1 = /2 [ 8(-1)1 +11~2 -421- 1(-1) 1+2 1~8 -421] 

= J_ [8(12 - 4) + 1(12 - 16)] = 5 
12 

Similarly, 

2 
1 

V = - -1 
2 12 

8 0 
3 -2 

-8 4 0 

= J_ [2(-1)1 +113 
12 -8 

and 

2 -1 8 
1 

V3 = - - 1 3 3 
12 

0 -2 -8 

= J_ [2(-1)1 +113 
12 -2 

-21 1-1 -21 J 4 + 8(-1)1 +2 0 4 = 2 

31- l(-1)2+11-1 81] = -1 
-8 -2 -8 
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MATRICES A matrix is defined to be a rectangular array of numbers arranged in rows and 
columns and written in the form ' 

This array is called an m-by-n ( m X n) matrix because it has m rows and n columns. A matrix 
is a convenient way of representing arrays of numbers; however, one must remember that the 
matrix itself has no numerical value. In the preceding array the numbers or functions a;1 are 
called the elements of the matrix. Any matrix that has the same number of rows as columns is called 
a square matrix. The sum of the diagonal elements of a square matrix is called the trace of the 
matrix . 

The addition and subtraction of two matrices of the same order (i.e., m X n) is accom­
plished as follows : 

C=A±B 18 

or 
ciJ = aiJ ± biJ for all ; and 1 

That is, the elements of C are the sum or difference of the corresponding elements of A and B. 

LEARNING Example 6 

If SOLUTION 

A= [l 3] B = [-1 
2 4 ' 3 

-2J [l 3] 4 , and C = 4 2 
A + B = [ ~ ~ l A - B = [ !1 ~ l 

[33 82] A-B+C= 
Find A + B, A - B, and A - B + C. 

Consider now the multiplication of two matrices. If we are given an m X n matrix A and 
an n X r matrix B, the product AB is defined to be an m X r matrix C whose elements are given 
by the expression 

n 

cu = ~ a;kbkJ, i = 1, . . . , m, j = I, ... , r 
k=I 

19 

Note that the product AB is defined only when the number of columns of A is equal to the 
number of rows of B. 
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LEARNING Example 7 

Suppose that the matrices A and B are defined as follows: 2 

c11 = ~ a1kbkl = a11b11 + a12h21 
k = I 

Find the product C = AB. 

2 

C12 = ~ a1kbk2 = a11h12 + a12b22 
k = I 

SOLUTION Note that in the preceding formula, m = 3, 
n = 2, r = 2. Using this formula, we can calculate 

A close inspection of the product above illustrates that multiplication is a "row-by-column" 
operation. In other words, each element in a row of the first matrix is multiplied by the corre­
sponding element in a column of the second matrix and then the products are summed. This 
operation is diagrammed as follows: 

[
C11 ... C1p] ~a11 ... a1n][b11 "'~1j· ··b1p] 

: [c:l : = I a1 .. . a I : : : 
-~· l ill ••• 

cml ''' cmp aml ''' amn b,,1 ''' b,,j · · · b,,p 

20 

The following examples will illustrate the computational technique. 

LEARNING Example 8 

If 

A= [~ !] 
C= [~ !] 

Find AB and CD. 

SOLUTION 

and B = [! ~] _ [(1)(2) + (3)(3) (1)(1) + (3)(5) J [ 11 16] 
AB - (2)(2) + (4)(3) (2)(1) + (4)(5) 16 22 

and D = [~] CD= [ (1)(1) + (2)(2) J [ti] (3)(1) + (4)(2) 

As defined for determinants, the cofactor A;j of the element aij of any square matrix A is 
equal to the product (-1y+j and the determinant of the submatrix obtained from A by deleting 
row i and column). 

LEARNING Example 9 

Given the matrix 

[
a11 a12 

A = a21 a22 

a31 a32 

Find the cofactors A 1 1 , A 12 , and A 22 . 

SOLUTION The cofactors A11 , A12 , and A22 are 

A11 = (-l)21a22 
a32 

A12 = (-l)31a21 
a31 

A22 = (-l)21a11 
a31 
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The adjoint of the matrix A (adj A) is the transpose of the matrix obtained from A by 
replacing each element aij by its cofactors Aij. In others words, if 

then 

a12 ··· a1111 a22 . .. . 

. . . . . . a nn 

A21 ··· An1J 
A22 .... 

. .. · ··A,,,, 

If A is a square matrix and if there exists a square matrix A- 1 such that 

21 

then A- 1 is called the inverse of A. It can be shown that the inverse of the matrix A is equal to 
the adjoint divided by the determinant (written here as !Al); that is, 

_ 1 adj A 
A = --

!Al 
22 

LEARNING Example 10 

Given Therefore, 

A= [~ !] A-I= ! [ 4 
-1 

Also 
and 

IBI = 21~ ~I -11~ 

~3] 

~I + 3[~ 
= 2 - 5 + 21 = 18 

Find A- 1 and s-1• and 

SOLUTION 
adj B = [i, 

Therefore, 

B- , = ~[; 
-5 

IAI = (2)(4) - (1)(3) = 5 

and 

[ 4 -3J adj A = 
-1 2 

We now have the tools necessary to solve Eqs. (1) using matrices. The following example 
illustrates the approach. 

- 5 ~,] 1 

7 

~,] -5 

7 

~] 
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LEARNING Example 11 

Consider the following set of linearly independent simultaneous 
equations. 

Multiplying both sides of the preceding equation through by A- 1 

yields 
2\1; + 3V2 + V3 = 9 

Vi + 2V2 + 3V3 = 6 or 

3\1; + V2 + 2V3 = 8 

Let us solve this set of equations using matrix analysis. A- 1 was calculated in Example 10. Employing that inverse here, 
we obtain 

SOLUTION Note that this set of simultaneous equations can 
be written as a single matrix equation in the form V = h[ ~ 

-5 
or 

or 
and hence, 

AV= I 

Basic Calculus 

Figure 1 

FUNCTIONS The variable vis said to be a function of the variable t if the value of vis 
determined by the value oft. We use f ( ) to denote the function, and the dependence of v on 
t is specified by the relationship 

V = f(t) 23 

Since v is dependent upon t, v is the dependent variable and t is the independent variable. In 
general, v could be dependent upon a number of independent variables. 

Linear functions are of special interest, and a linear function oft is simply a polynomial of 
the first degree in t. Such a polynomial can be written as 

V =mt+ b 24 

where m and b are constants. The term linear relates to the fact that the graph of a linear func­
tion is a straight line. Consider, for example, the two straight lines shown in Fig. 1. Recall that 

v(t) i(t) 

Examples of positive and negative 
slope. (a) (b) 
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only two points are required to define a straight line. The points (2, 1) and ( 1, 0) in Fig. la can 
be used to determine the slope of the line-that is, the vertical difference in the points divided 
by the corresponding horizontal difference. We call this slope m and express it in the form 

m= 25 

Performing the same operation for the straight line in Fig. lb yields 

i1 - i2 
m=--- 26 

t1 - t2 

Note that the slope of the line in Fig. la is positive and the slope of the line in Fig. lb is neg­
ative. Furthermore, the slope of a horizontal line is zero. 

Equation (24) is called the slope intercept equation because m is the slope and b is the v 
intercept; that is if t = 0, then v = b, the point at which the straight line crosses the v axis. If 
the line passes through the origin of the graph, then b = 0. 

LEARNING Example 12 

Let us determine the equation of the line in Fig. 2. 

v(t) 

Figure 2 
3 

Graph used in Example 12. 

LEARNING Example 13 

We wish to find the equation of the line in Fig. 3. 

i(t) 

40 

:: .~ 
10 

1 2 3 4 5 
Figure 3 
Graph used in Example 13. 

SOLUTION The equation for the line is 

v(t) =mt+ b 

The slope, m, can be determined from the two points ( 2, 1) and 
(1, 0). Thus, 

2 - 1 
m= - -=l 

1 - 0 

In addition, at t = 0, the point at which the line crosses the v( t) 
axis, v( t) = b = l. Therefore, the equation of the line is 

v( t ) = t + l 

SOLUTION Once again, the equation of the line is 

i(t) = mt + b 

The slope of the line can be determined from the points ( 30, 2) 
and (20, 4 ). Using these points, 

30 - 20 
m = = -5 

2 - 4 

and thus 
i(t) = -St + b 

Substituting the point (30, 2) into the equation for the line yields 
the value of b. 

30 = -5(2) + b 

and bis 40. Hence, the equation of the line is i( t) = -St + 40. 
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LEARNING Example 14 

Let us write the equation for the piecewise linear curve shown in 
Fig. 4. 

v(t) 

10 

0.01 0.02 0.03 

Figure 4 
Graph used in Example 14. 

SOLUTION As Fig. 4 illustrates, there are three intervals of in­
terest. In each interval the equation for the straight line is 
v( t) = mt + b. In the first interval, 0 < t < 0.01, the line 
passes through the origin, and therefore b = 0. The slope of this 
line is 

10 
rn = - = 1000 

O.Ql 

and therefore 

v(t) = lOOOt , 0 < t < 0.01 

In the interval 0.01 < t < 0.02 the curve is horizontal, and 
therefore the slope is zero. Clearly, b = 10 and hence 

v(t) = 10, 0.01 < t < 0.02 

In the interval 0.02 < t < 0.03 the slope of the line is 

10 - 0 
rn = = -1000 

0.02 - 0.03 

and we find that if this line is extended to the left, it moves up a 
value of 10 for every 0.01 interval along the taxis. Thus, if the 
line is extended to the left it will encounter the v( t) axis at 
b = 30. Hence, the equation of the line in this interval is 

v(t) = -lOOOt + 30, 0.02 < t < 0.03 

Therefore, the piecewise linear curve is described by the equations 

v(t) = lOOOt , 0 < t < 0.01 

= 10, 0.01 < t < 0.02 

= - lOOOt + 30, 0.02 < t < 0.03 

Another function , although nonlinear, of special interest is the exponential function 

v(t) = ke-"' 

where k is some constant. A graph of this function is shown in Fig. 5. Note that at 
t = 0, v( t) = k, and as t ---+ oo, v( t) ---+ 0. The rate at which v( t) approaches zero is deter­
mined by the factor a. If a is large, the decay to O is fast, and if a is small, the rate of decay 
is slow. 

Figure 5 
Graph of the exponential 
function ke-•1. 

v(t) 
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DERIVATIVES The derivative of a function v = f(t) at some point t0 is expressed as 

. Liv . J(t0 + Lit) - J(t0) 
hm ~ =hm TI 

!it-+0 Lit !it-+0 Lit 

and is the limit of the average rate of change of the function between t0 and t0 + Lit. The de­
rivative at some arbitrary point tis written as 

dv(t) . Liv . f(t + Lit) - f(t) 
-- = hm - = hm ------- 28 

dt !iI-+0 Lit liI-+0 Lit 

where we tacitly assume that the limit exists . 
A number of derivatives are of particular interest. Assuming bis a constant and x and y are 

functions oft, the following derivatives are very useful. 

!!_(b)=O 
dt 

d 
dt (t) = 1 

d dy 
dt (by ) = b dt 

d dy dx 
-(y ± x) = - ± -
dt dt dt 

d dy dx 
dt ( xy) = X dt + y dt 

d - (l) = bl- I 
dt 

d -(e-b,) = -be-b, 
dt 

d . 
- ( sm bt) = b cos bt 
dt 

!!,__ ( cos bt) = -b sin bt 
dt 

The following example will illustrate the use of these various derivatives. 

LEARNING Example 15 

Let us calculate the derivative of the following functions with 
respect to t. 

(a) v(t) = 4 + lOte- 0 ' 

(b) v(t) = l2e-21 cos4t 

(c) v(t) = t + 6e-, sin 2t 

SOLUTION 
d 

(a) - v(t) = 0 + 10[ e-a, - ate- a1 ] 

dt 
= lOe- a1 - lOate-"1 

d 
(b) -v( t ) = 12[e-21(- 4)sin4t - 2e- 21 cos4t ] 

dt 
= -48e-2' sin 4t - 24e-21 cos 4t 

d 
(c) - v(t) = 1 + 6[e-1(2)cos2t - e- 1 sin2t ] 

dt 
= 1 + 12e- , cos 2t - 6e- 1 sin 2t 
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INTEGRALS If f(t) is some particular function and F(t) is a function whose derivative 
is f( t )-that is, 

dF(t) 
dt = f(t) 29 

then we say that F( t) is an integral off ( t) . 
The most general integral of a function f ( t) is called the indefinite integral and is defined as 

J f(t) dt = F(t) + C 30 

where C is the constant of integration and is determined by additional data other than the value 
of the derivative. Because this function whose derivative is provided is not completely deter­
mined-that is, it contains some arbitrary constant of integration-the general integral 

J f(t) dt is commonly referred to as an indefinite integral. As an example, we note that 

J t2 dt = i t3 + C 

since 

~ (..!. t3) = t2 
dt 3 

Now assume that there is a continuous function f ( t) 2: 0 in the closed interval [ a, b J as shown 
in Fig. 6a. We wish to compute the area under this curve above the taxis and between the ver­
tical lines defined by t = a and t = b. 

Figure 6 
Curves used to define a definite 
integral. 

f(t) 

(a) 

f (t) 

(b) 

~ 
I 

I 

I 

a b 
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Therefore, we divide the interval [ a, b] into n subintervals f:..tk, k = 1, 2, 3, ... , n, and in each 
of the subintervals select a point tl. Then using each subinterval as a base we construct a rectangle 
with altitude f(tl) as shown in Fig. 6b. If we now sum all the rectangles, we obtain 

n 

Sil = L J(t:)t:..tk 31 
k=I 

Note that as we divide the area into more and more rectangles the area is more accurately 

covered. Finally, in the limit as n --+ oo and f:..tk --+ 0, Sil becomes the definite integral 

lb f( t) dt and is the area under the curve. Furthermore, a fundamental theorem of integral 

calculus states that if f ( t) is continuous in the interval [ a, b ], and if 

F(t) = J f(t) dt 32 

is any indefinite integral off ( t), then the value of this definite integral is given by the expression 

ibf(t) dt = F(a) - F(b) 33 

The following examples contain integrals that are typical of those encountered in a study 
of basic circuit analysis. 

LEARNING Example 16 

Let us evaluate the following integrals. 

(a) f(t) = 14
a dt 

(b) f(t) = J\3 dt 

LEARNING Example 17 

We wish to determine the value of the integral 

f(t) = l\e- 2' dt 

SOLUTION We can either look up the form of the integral in 
a table of integrals or evaluate the integral using what is called 
integration by parts; that is, 

1 bu dv = uvl: - 1 b v du 

Using this latter technique, we let 

u = t dv = e -21 dt 

SOLUTION 

(a) f(t) = 14
a dt = atl6 = 4a - a(O) = 4a 

(b) f(t) = t3 dt = - = -((2)4 - (1)4) = -!2 t412 I 15 

4 I 4 4 

Then, 

du= dt 1 -2, 
V = -2e 

te-21 dt = - - e-2• + - e-2• dt 1 2 t 12 1 12 
0 2 0 2 0 

= -e-4 - ± e-2rr 

- 4 1 -4 1 = -e - -e + -
4 4 

409 



410 I APPENDIX 

Differential Equations 

INTRODUCTION In our study of transient analysis we find that it is necessary to solve 
both first- and second-order differential equations. These equations naturally arise as we de­
scribe the behavior of a network as a function of time when a sudden change in the circuit oc­
curs as a result of switches that open or close. Energy storage elements within the network 
cause the circuit to pass through a transition period before settling down to some steady-state 
value. Differential equations are the vehicle needed to study this transition. 

We will confine our discussion to first- and second-order differential equations with both 
constant coefficients and a constant forcing function of the form 

and 

dx(t) 
-- + ax(t) = F 

dt 

d2x( t) dx( t) 
--2- + a1 -- + a2 x(t) = F 

dt dt 

34 

35 

FIRST-ORDER EQUATIONS A fundamental theorem of differential equations states 
that if x( t) = xp( t) is any solution to the equation 

and x( t) = Xe( t) is a solution to the homogeneous equation 

dxc(t) 
-- + axc(t) = 0 

dt 

then 

36 

37 

38 

is a solution to the original equation (34). xp(t) is called the particular integral solution and xc(t) 
is called the complementary solution. Therefore, our task is reduced to finding solutions to the 
two equations (36) and (37). 

A perfectly valid technique for solving these equations is simply to guess the solutions. 
A careful examination of these equations gives us clues that aid us in making these guesses. 
For example, the right side of equation (36) is a constant, and if we assume that xp( t) is a 
constant, then the derivative of a constant is zero and both sides of the equation can be sat­
isfied with this guess. 

An examination of the second equation indicates that the solution must be such that the 
function and its derivative must be of the same form in order for the two terms to add to 
zero. A logical choice for this solution is an exponential, since the derivative of an expo­
nential is also an exponential. Thus, it is reasonable to assume that the solution to the orig­
inal equation is of the form 

39 

This is indeed the general solution to Eq. (34). Hence, given a first-order differential equation 
and some initial condition, our task is simply to find the constants k1, k2 , and T. The following 
example will illustrate the approach. 



LEARNING Example 18 

Let us determine the solution of the following first-order differ­
ential equation with the given initial condition 

dx(t) 
-----;;;- + 4x(t) = 8, x(O) = l 

SOLUTION The general solution to this equation must be of the 
form 

DIFFERENTIAL EQUATIONS 411 

From which we can determine T and k1 as 

-r= -
4 

k1 = 2 

Then 
x(t) = 2 + k2 e-4' 

x(t) = k 1 + k2e-r/T 

Therefore, substituting this general solution into the equation 
yields 

We now use the initial condition, x(O) = 1, to determine the 
constant k2 • 

x(O) = 1 = 2 + k2 

-k 
- 2 e-t/T + 4k + 4k2e- ,/T = 8 

T I 

Thus, 
k2 = -1 

Equating like terms, we obtain and therefore the complete solution to the differential equa­
tion is -k2 

- + 4k2 = 0 
T 

x(t) = 2 - le- 4' 

4k1 - 8 = 0 Note that this equation satisfies the initial condition. 

SECOND-ORDER EQUATIONS In following our development of the solution to the 
first-order equation, we are once again faced with finding a solution to the two equations 

40 

and 

d2xc(t) dxc(t) 
--2 - + a1 -- + a2xc(t) = 0 

dt dt 
41 

The same arguments used in guessing the solution to the first-order equation are valid in this 
case also. Hence, we guess that the solution to Eq. (40) is a constant and the solution to Eq. (41) 
is an exponential. 

We now examine the homogeneous equation in some detail. First, we express this equation 
in a different form by simply making the following substitutions: 

42 

The equation can now be expressed in the form 

d2xc(t) dx c(t) 2 _ 
--2 - + 2,w0--2- + w0xc(t) - 0 

dt dt 
43 

When we employ these results in circuit analysis, the reason for this substitution will become 
obvious. The assumed exponential solution is then 

Xc(t) = kest 44 

Substituting this expression into Eq. (43) yields 

s2kes1 + 2,w0skest + w5kesr 45 

If we now divide both sides of this equation by kes1 we obtain what is called the characteristic 
equation 

46 
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Applying the quadratic formula to this equation yields the two solutions 

s1 = - (w0 + w0 ~ 

s2 = -(wo - Wo~ 

Thus, the general form of the complementary solution is 

and the general form of the original second-order equation is 

x( t) = k0 + k1 e5' 1 + k2e'21 

47 

48 

49 

The roots of the characteristic equation determine the form of the complementary solution, and 
this form is primarily dependent upon the term(. If ( > 1, then the roots are real and unequal; that 
is, s1, s2 = -a, -b, and the solution consists of two decaying exponential terms of the form 

If ( < 1, then the roots are complex conjugates; that is, s1, s2 = -a ± jb, and the solution 
contains two exponential terms with complex exponents that, with the use of Euler's identity, 
can be expressed in the form 

xc(t) = A1e-a'cosbt + A2e-a'sinbt 

If ( = 1, then the roots are real and equal; that is, s1, s2 = -a. Because the roots are identical, 
the form of the solution in this case is 

LEARNING Example 19 

Let us determine the solution of the differential equation 

d2x(t) dx(t) 
-- + 7-- + 12x(t) = 24 

dt 2 dt 
with the initial conditions 

x(O) = 4, 
dx(O) 
--=-2 

dt 

SOLUTION The particular integral solution is assumed to be a 
constant k0 • Substituting this term into the equation yields 

d 2k0 dk 0 - + 7 - + 12k0 = 24 
dt 2 dt 

and 24 
k0 =-=2 

12 
The characteristic equation is 

s2 + 7S + 12 = 0 

7 
and thus w0 = \/I2 and i = VI2 > 1. Hence, the roots 

(2 12) 
are real and unequal. The two roots of the equation can be easily 
obtained by asking what two numbers multiplied together yield 

12 and added together yield 7. The roots are clearly 3 and 4. 
Then, 

and hence, 

The general form of the solution is therefore, 

x(t) = 2 + k,e- 3' + k2 e-4' 

Using the initial conditions, we obtain the two equations 

x(O) = 4 = 2 + k1 + k2 

dx(O) 
-- = -2 = -3k, - 4k2 

dt 

These equations produce the terms k1 = 6 and k2 = -4, and 
hence the general solution is 

x(t) = 2 + 6e-3' - 4e- 4' 

Note that this solution satisfies the initial conditions. 
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We wish to find the solution to the equation 

d2x( t) dx( t) 
-- + 6-- + 13x(t) = 0 

dt 2 dt 

with the initial conditions 

dx(O) 
x(O) = 2, -- = 1 

dt 

SOLUTION The characteristic equation in this case is 

s2 + 6s + 13 

6 
and hence w0 = Vl3 and ( = Vl3 < 1. Thus, the roots 

(2 13) 
are complex conjugates. The factors of the characteristic equa­
tion can be derived using the quadratic formula, or we can sim­
ply recognize that the equation can be written in the form 

s2 + 2(3)s + (3) 2 + (2) 2 

LEARNING Example 21 

Let us determine the solution of the differential equation 

d 2x(t) dx(t) 
-- + 6-- + 9x(t) = 36 

dt 2 dt 
With the initial conditions 

dx(O) 
x(O) = 1, -- = 2 

dt 

SOLUTION The particular integral solution is assumed to be a 
constant. Therefore, 

d 2k dk 
--0 + 6 - 0 + 9k = 36 
dt 2 dt O 

and hence 
k0 = 4 

The characteristic equation is 

s2 + 6s + 9 = 0 

Complex Numbers 

COMPLEX NUMBERS 1413 

and then the factors are 

S1 = -3 + )2 

S2 = -3 - )2 

As a result, the solution is of the form 

Using the initial conditions, we can derive the equations 

x(O) = 2 = k 1 

dx(O) 
-- = 1 = -3k1 + 2k2 

dt 

7 
Then k1 = 2 and k2 = 2, and finally 

7 
x(t) = 2e-3'cos2t + -e- 3'sin2t 

2 

and hence w0 = 3 and ( = 1. The roots of the equation are real 
and equal; that is, 

S1 = -3 

Sz = -3 

Therefore, the solution is of the form 

x( t) = 4 + k1 e-3, + k2 te-3' 

Applying the initial conditions, we obtain 

x(O) = 1 = 4 + k1 

dx(O) 
-- = 2 = -3k, + k2 

dt 

We find that k1 = -3 and k2 = -7, and therefore the complete 
solution is 

x(t) = 4 - 3e-3' - 1te-3' 

REPRESENTATIONS Complex numbers are typically represented in three forms: 
exponential, polar, or rectangular. In the exponential form a complex number A is written as 

A = ze1° 50 

The real quantity z is known as the amplitude or magnitude, the real quantity 8 is called the angle 
as shown in Fig. 7, and} is the imaginary operator j = v-I. 8, which is the angle between 
the real axis and A, may be expressed in either radians or degrees. 
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Figure 7 
The exponential form 
of a complex number. 

Imaginary 
axis 

A A= zeJe 

Real axis 

The polar form of a complex number A, which is symbolically equivalent to the exponen­
tial form, is written as 

A= zl.!?_ 51 

and the rectangular representation of a complex number is written as 

A= x + jy 52 

where xis the real part of A and y is the imaginary part of A. 
The connection between the various representations of A can be seen via Euler's identity, 

which is 

e1° = cos 8 + j sin 8 53 

Figure 8 illustrates that this function in rectangular form is a complex number with a unit amplitude. 
Using this identity, the complex number A can be written as 

A = ze16 = z cos 8 + Jz sin 8 54 

which, as shown in Fig. 9, can be written as 

A= X + jy 

Imaginary 
axis 

Real axis 

Figure 8 
A graphical interpretation of Euler's identity. 

Imaginary 
axis 

Figure 9 

A 

y = z sine 

x = zcose Real axis 

The relationship between the exponential and rectangular 
representation of a complex number. 



Equating the real and imaginary parts of these two equations yields 

X = Z COS0 

y = z sine 

From these equations we obtain 

X2 + y2 = z2 COS2 0 + z2 sin2 0 = z2 

Therefore, 

Additionally, 

and hence 

z = Vx2 + y2 

z sine y 
-- = tane = -
Z COS 0 X 

0 = tan-I 2'._ 
X 

COMPLEX NUMBERS I 415 

55 

56 

57 

58 

The interrelationships among the three representations of a complex number are as follows. 

Exponential Polar Rectangular 

zeie z/.!l__ X + jy 

0=tan- 1y/x e = tan- 1y/x X = Z COS0 

z = Vx2+I z=W+I y = z sine 

We will now show that the operations of addition, subtraction, multiplication, and division 
apply to complex numbers in the same manner that they apply to real numbers. 

ADDITION The sum of two complex numbers A = x 1 + jy1 and B = x2 + jy2 is 

A + B = X1 + )Yi + X2 + )Y2 59 

= (xi + x2) + J(Y1 + Y2) 

That is, we simply add the individual real parts, and we add the individual imaginary parts to 
obtain the components of the resultant complex number. 

LEARNING Example 22 

Suppose we wish to calculate the sum A + B if A = 5 /36.9° 
and B = 5 /53.l 0 • 

SOLUTION We must first convert from polar to rectangular form. 

A = 5 /36.9° = 4 + )3 

B = 5 /53.1 ° = 3 + )4 

Therefore, 

A + B = 4 + j3 + 3 + j4 = 7 + j7 

= 9.9/45° 

SUBTRACTION The difference of two complex numbers A= Xi + )Yi and B = x2 + jy2 is 

A - B = (xi + )Yi) - (x2 + )Y2) 

= (xi - Xz) + J(Y1 - Y2) 
60 
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That is, we simply subtract the individual real parts, and we subtract the individual 
imaginary parts to obtain the components of the resultant complex number. 

LEARNING Example 23 

Let us calculate the difference A - B if A = 5 / 36.9° and 
B =S/53.1°. 

SOLUTION Converting both numbers from polar to rectangu­
lar form, 

A = 5 / 36.9° = 4 + j3 

B = 5 / 53.1 ° = 3 + j4 
Then 

A - B = (4 + j3) - (3 + j4 ) = 1 -jl = Yl / -45° 

MULTIPLICATION The product of two complex numbers A = z1 l.!!...J.. = x1 + j y1 and 
B = z2 l.!!..3_ = x2 + jy2 is 

AB = (z1e101)(z2ei(e,J) = z1 z2/61 + 02 61 

LEARNING Example 24 

Given A = 5 / 36.9°and B = 5 /53.1 °, we wish to calculate the 
product in both polar and rectangular forms. 

LEARNING Example 25 

Given A = 2 + j2 and B = 3 + j4, we wish to calculate the 
product AB. 

SOLUTION 

AB= (5 / 36.9°)(5 / 53.1°) = 25 / 90° = (4 + j3 )( 3 + j4) 

= 12 + jl6 + j9 + /12 = 25j = 25 / 90° 

SOLUTION 

and 

A= 2 + j2 = 2.828/45° 

B = 3 + j4 = 5/53.1° 

AB= (2.828 / 45°)(5 / 53.1°) = 14.14 / 98.1 ° 

DIVISION The quotient of two complex numbers A = z1 ~ = x1 + j y1 and B = z2 1.!!..3_ 
= X2 + jy2 is 

LEARNING Example 26 

Given A = 10 / 30° and B = 5 / 53.l O , we wish to determine the 
quotient A/B in both polar and rectangular forms. SOLUTION 

A 
B 

62 

10 /30° 
= 2 / -23.1° = 1.84 -j0.79 

5/53.1° 



LEARNING Example 27 

Given A = 3 + j4 and B = 1 + j2, we wish to calculate the 
quotient A/ B. 

SOLUTION 
A=3+j4=5/53.l 0 

LEARNING Example 28 

If A = 3 + j4, let us compute 1/ A. 

SOLUTION 

A=3+j4=5/53.1 ° 

and 
l /.!!:_ 

1/A = 5 / 53.1 0 = 0.2/-53.1° 

and 

or 

COMPLEX NUMBERS 417 

B = 1 + j2 = 2.236/63° 

A 5 ml'.'_ 
B = 2.236 / 630 = 2.236 / -9.90 

1 1 3 - j4 
-=--
A 3+j4 (3+j4)(3-j4) 

3 - j4 
= --= 0.12 - j0.16 

25 
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Norton's theorem, 282, 285, 287-88, 290 
PSPICE, 294-303 
source exchange, 282-86, 304 
superposition, 286, 304 
Thevenin analysis, 282, 287, 290 

basic analysis using Kirchhoff's laws, 282- 84 
complex forcing functions, 263 
impedance and admittance, 273-79 

phasor diagrams, 269-71, 279-81, 303 
phasor relationships for circuit elements, 268-72 

phasors, 266 
problem-solving strategies for, 282 
sinusoidal forcing function, 263 
sinusoids, 259 

Active filters, 370-378 
Admittance, 273-79 

equivalent, 276 
Alternating current (ac), 3, 258 

See also Ac steady-state analysis 
Aluminum electrolytic capacitors, 160 
Ammeter 

electronic, 97 
Ampere, 2 
Amplitude, 259 
Analog-to-digital (AID) converters, 65 

Analysis techniques: 
ac steady-state analysis, 258-303 

Index 

loop analysis, 80- 86, 282, 285, 289, 304 
maximum power transfer, 131-33 
nodal analysis, 66-80, 282, 289, 304 
Norton's theorem, 120-31, 282,285, 287-88, 290,304 
PSPICE analysis, 133--44, 294-303 
source exchange (transformation), 122, 282, 286, 304 
superposition, 116-20, 286, 304 
Thevenin's theorem, 120- 31, 147,200,208,214, 

258,287,290,304 
Angular frequency, 259 
Applications, 47--48, 97, 144, 179-181, 221, 353-57, 

368-70,374-85 
capacitor/ inductor, 179-81 
inductor / capacitor, 179-81 
op amps, 93-99 
resistive circuits, 47--48 
transient analysis, 239 
variable-frequency networks, 353-57, 368-69, 374-85 

Automobile ignition system, circuit model 
for, 243 

B 
Band-pass filters, 362, 364--66, 370, 376-78 

bandwidth, 364-65 
cutoff frequencies, 364 
ideal frequency characteristic for, 364 

Band-rejection filters, 362, 364-65, 368, 370, 384-85 
bandwidth, 364 
cutoff frequencies, 364 
ideal frequency characteristic for, 364 

Bandwidth, 346 
Basic quantities, 2-7 

charge, 2 
current, 2-3 
voltage, 3-5 
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Bipolar conjunction transistors (BJTs), 9, 44 
Bode, Hendrik W., 328 
Bode plot, 328-385, 360 
Branch, 19 
Branch currents, 68 
Break frequency, 332 
Buffer amplifier, 93 

C 
Candela, 2 
Capacitor/ inductor applications, 179-81 
Capacitors, 7, 159-65 

aluminum electrolytic capacitors, 160 
applications, 177-80 
capacitor specifications, 169-72 
ceramic dielectric capacitors, 160 
defined, 160-62 
dual relationship with inductors, 182 
energy stored in, 162 
farad (F), 161 
frequency-dependent impedance of, 274 
fundamental characteristics of, 160-62 
polarity of voltage across, 160-62 
tantalum electrolytic capacitors, 160 

Capacitor combinations 
parallel capacitors, 17 4-7 5 
series capacitors, 172-7 4 

Ceramic dielectric capacitors, 160 
Characteristic equation, 217, 246 
Charge, 2, 161 

relationship between current and, 2 
Circuit analysis, 2 
Circuit design, 48-50, 98-99, 145-46, 243-45, 368-70, 

374-85 
first-order transient circuits, 239 
op amps, 98-99, 145-46 
resistive circuits, 48-50 
second-order transient circuits, 243-45 
variable-frequency networks, 368-70, 374-85 

Circuit elements, 7 
defined, 7-11 
dependentsources,9 
independent cun-ent sources, 8 
independent voltage sources, 8 
passive, 7 
phasor relationships for, 268-72 

Circuits with dependent sources, 85-86 
Comparator, 96-97, 145 

Complementary solution, 195 
Complex forcing functions, 263 
Complex-numbers, 266, 269 
Conductance, 16, 72, 276 
Conservation of energy, 7 
Constraint equation, 78 
Conversion: 

analog-to-digital (AID), 65 
digital-to-analog (D/A), 65 

Coulombs (C), 3 
Critically damped case, 219,246 
Critically damped network, 224 
Current, 2 

alternating current (ac), 3 
direct current (de), 3 
relationship among energy and power, 6 
relationship between charge and, 2 
types of, 3 

Current division rule, 30, 34, 50, 282 
Current law, Kirchhoff's, 19-22, 66-82, 282, 304 
Current magnitudes, 3 
Current sources, 8 

D 
Damping ratio, 217, 246, 332, 360 
De analysis 

applications, 144 
design, 48-50, 145-46 
loop analysis, 80-86 
MATLAB, 69-71, 73, 75-76, 83, 86 
nodal analysis, 66-80 
Norton's theorem, 120-31 
PSPICE, 133-144, 145, 147 
source exchange, 122 
superposition, 116-20 
Thevenin's theorem, 120-31 

Decibel, 427 
Delta-wye transformation, 41-43 
Dependent current sources, circuits containing, 44-46, 74-76, 

85-86 
Dependentsources,9-11, 74-76, 79-80,85-86, 126-28,210 

circuits with, 44-46, 74-76, 85-86, 126-28 
problem-solving strategy for, 44 

types of, 8 
Dependent voltage sources, circuits 

containing, 44-45, 79-80, 85-86, 126-28 
Design,48-50,98-99, 145-46,243-45,368-70,374-85 
Dielectric material, 160 



Differential amplifier 
operational amplifier circuit, 145 

Differential equation, reducing to phasor 
equation, 266 

Differential equation, solution, 196 
Digital-to-analog (DIA) converters, 65 

Diodes, 16 
Direct current (de), 3 
Double-subscript notation, 25 

DRAM, 179-80 
Driving point functions, 273, 326 

E 
Electric circuit, 2 
Electric field, 159 
Electromotive Force, See Voltage 
Electronic ammeter, 97 

Electronic instrumentation, 65 
Electrotechnology, 1 
Elements 

active, 7 
passive, 7 

Energy, 3-5 
relationship among power, current, voltage and, 6 

Envelope of a response, 220 
Equivalence, 114 
Euler's identity, 265 

F 
Faraday, Michael, 161 
Farad (F), 161 
Ferrite-core inductors, 165 
Field-effect transistors (FETs), 9, 44 
Filter networks, 

active filters, 370-78 
passive filters, 362-70 

Filters, 362-78 
active, 362-78 
band-pass,362,364-66,370,376-78 
band-rejection, 362, 364-65, 368-70, 384-85 
high-pass, 362, 365, 370, 377 
low-pass,362-63,367,370,375-79,382-83 
passive, 362-70 
Tow-Thomas, 377-78 

First-order transient circuits, 195-215, 245 
analysis techniques, 

differential equation approach, 197-202 
step-by-step approach, 202-11 

applications, 239 
free-body diagram, 194 

IND EX 

general form ofresponse equations, 195-97 
pulse response, 212-15 

Free-body diagram, 194 
Frequency, relationship between period and, 259 

Frequency domain analysis, 267, 304, 317-86 
Frequency-response, 317-86 
Frequency scaling, 361 

G 
Galvanometer, 47 
Gaussian elimination, 69 
Ground, 82 
Ground bounce, 180-81 

H 
Half-power frequency, 346 
Henry, Joseph, 166 
Hertz, 259 
High-pass filters, 362, 367, 370, 377 

half-power frequency, 364 
ideal frequency characteristic for, 364 
magnitude curves, 364 
phase curves, 364 

Ideal op-amp model, 92 
Impedance: 

driving point, 273 
equivalent, 274 
passive element impedance, 274-79, 303 
transfer, 273 

Impedance scaling, 361 
Independent current sources, 8 

circuits containing, 68-7 4, 83-85 
Independent voltage sources, 8 

circuits containing, 76-79, 81-82 
Inductance, 166 

as a passive element, 167 
ferrite-core inductors, 165 
power delivered, 166 

Inductor I capacitor applications, 179-81 
Inductors, 7, 159, 165-69, 181 

and capacitors, dual relationship for, 182 
defined, 166 
frequency-dependent impedance of, 274 
ideal, 165-67 
specification, 169-72 . 
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Inductor combinations: 

parallel, 176-77 

series, 175-76 

In phase functions, 260, 269 

Instrumentation amplifier circuit, 94 
Insulated-gate field-effect transistors 

(IGFETs), 44 
Integrated circuits, 87 
Inverting input, 89 

Iron-core inductors, 165 

J 
Joules (J), 3 

K 
Kelvin, 2 
Kilogram, 2 
Kirchhoff, Gustav Robert, 19 
Kirchhoff's laws, 19-25 

L 

and ac steady-state analysis, 282-84 
Kirchhoff's current law (KCL), 19-22, 33, 38, 41, 44, 50, 

66-82,279,282,304 

Kirchhoff's voltage law (KVL), 22-25, 38, 41, 44, 50, 

80-87,282,304 

Ladder network, 39 
LED, 98 
Linearity, 115, 146 
Loop, i9 
Loop aralysis, 80-86, 282, 285, 289, 304 

for an N-loop circuit, 100 
circu~ts containing dependent sources, 85-86 

circutts containing independent current sources, 83-85 
circuits containing only independent voltage sources, 81-83 

prob~em~solving strategies for, 87 
Loop currents, 81 
Lowapass filters, 362-63, 367,370, 377-79, 382-83 

half-power frequency, 363 

ideal frequency characteristic for, 363 
magnitude curves, 363 
phase curves, 363 

Lumped-parameter circuit, 19 

M 
Magnetic field, 159, 166 
Magnitude, 259 

Magnitude characteristics, 328 

Magnitude scaling, 361 

MATLAB, 69-71, 73, 75-76, 83, 86,205,208,223,225,282, 
292-293,304,322,337,351 

Maximum average power transfer, 131-33 
Maximum power transfer, 131-33, 147 
Maximum value, 259 

Mesh, 81 
Mesh analysis, 81, 282 

Metal-oxide-semiconductor field-effect transistors 
(MOSFETS), 9, 44 

Meter, 2 

Microsoft Excel, 130-31 
Models, 8 
Multiple source/resistor networks, single-node-pair 

circuits, 30-34 
Multiple source/resistor networks, single-loop circuits, 28-30 
Multistage phonograph amplifier, 98 

N 
Natural frequencies, 219 
Negative current flow, 2 

Network function, 326-27 

Network transfer functions, 326 
Nodal analysis, 66-80, 256,261,275 

for an N-node circuit, 100 
circuits containing dependent current sources, 74-76 
circuits containing dependent voltage sources, 79-80 
circuits containing independent voltage sources, 76-79 
circuits containing only independent current sources, 68-74 
ground, 66 
problem-solving strategies, 80 
supernode technique, 76-80 

Node, 19 
Node voltages, 66 
Non-inverting input, 89 
Nonplanar circuit, 80 
Nonreference voltage node, 67 
Norton's theorem, 120-131, 147, 282, 285, 287-88, 290, 304 

circuits containing both independent and dependent sources, 

127-28 

0 

circuits containing only dependent sources, 126-27 
circuits containing only independent sources, 123-26 

Ohm, Georg Simon, 15 
Ohms, symbol for, 15 
Ohm's law, 15, 33, 38, 41, 50, 69, 76, 282, 304 

defined, 15 



mathematical relationship of, 15 
and passive sign convention, 15 
subtleties associated with, 25 

Op-amp configuration, transfer curve for, 90 
Op-amp differentiator, 177 
Op-amp integrator, 177 

Op-amp level shifter, 146 
Open circuit, 17, 84 
Open-circuit voltage, 121 
Operational amplifiers (op amps), 87-99, 370-72 

applications, 97-99, 370-71 
circuit design, 98-99, 145-46 
comparators, 86-99 
de transfer curve, 90 
ideal, 92 

properties of, 92 
model, 88-92 
RC circuits, 177-79 
terminal characteristics of, 88-92 

Operational Transconductance Amplifier (OTA), 372-79 
Out of phase functions , 260, 271- 72 
Overdamped case, 219, 246 
Overdamped network, 221 

p 
Parallel circuits, 30 
Parallel resistance equation, 31 
Parallel resistors, 31 , 34 

current divided between, 31 
Parallel resonant circuits, 354-60 
Particular integral solution, 195 
Passive elements, 7, 27 4 
Passive element impedance, 274 
Passive filters , 362-70 

band-pass filters, 362-66 
band-rejection filters, 362, 364-65, 368-70 
high-pass filters, 362, 364, 370 
low-pass filters, 362-63, 367, 370 

Passive sign convention, 6, 11, 15, 50, 68, 81 , 182, 273 
and Ohm's law, 15 

Period, 237 
Phase angle, 259 
Phase characteristics, 328 
Phaselag, 260, 303 
Phaselead,260, 303 
Phasor analysis, 267 
Phasor diagrams , 269-71, 279-81, 303 
Phasor representation, 267 

Phasors: 
phasor definition, 267, 303 

Planar circuit, 80 
Poles, 327 

Poles-zeros, 329 
Positive current flow, 2 
Power, 6 

IND EX 

relationship among energy current voltage and, 6 
sign convention for, 6 

Prefixes: 
SI, 2, 11 

Principle of superposition, 116, 121, 286, 304 
Printed circuit board (PCB), 87 
Problem-solving strategies: 

dependentsources,44 
loop analysis, 87 
nodal analysis, 80 
Norton's theorem, 129 
one source/resistor combinations, 41 
resistor combinations, 36 
superposition, 119 
Thevenin's theorem, 128-29 

PSPICE, 133,145,282,304 
PSPICE Analysis with Schematic Capture 

ac analysis, 294-303 
de analysis, 133-44 
transient PSPICE analysis, 227-35 

Pulse response, 212-15 
Pulse train, 213 

Q 

Quality factor, resonant circuits, 342, 348, 360 

R 
Radian frequency, 259 

relationship among frequency, period and, 259 
Random access memories (RAMs), 44, 65, 179 
RC operational amplifier circuits, 177-79 
Reactance, 273 
Read only memories (ROMs), 44 
Reference node, 67 
Resistance, 16, 273 
Resistive circuits, 14-158 

applications, 47-48, 97, 144 

circuit design, 48-50, 98-99 
circuits with dependent sources, 44-46 
Kirchhoff's laws, 19-25 
Ohm's law, 15-18 
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Resistive circuits ( continued) 

series-parallel combinations of resistors, 35-36 
circuits with, 38-41 

single-loop circuits, 25-30 
single-node-pair circuits, 30-34 

Resistor combinations, problem-solving strategy 

for simplifying, 36 
Resistors, 7 

parallel, 34, 35 
power rating, 37 
series, 29, 35 

Resistor specifications, 36-38 
Resonant circuits, 340-360 

quality factor, 341 
Resonant frequency, 341 , 346 
Ringing oscillations, 220 

s 
Scaling, 360-62 

frequency scaling, 361 
impedance scaling, 361 
magnitude scaling, 361 

Schematics, 133-44, 227-35 
Schematic capture, 133, 212 
Second, 2 
Second-order transient circuits, 215-27, 245-46 

applications, 239-40 
basic circuit equation, 215 
characteristic equation, 217 
circuit design, 244-45 
critically damped case, 219 
damping ratio, 217-18 
natural frequencies , 218 
network response, 220 
overdamped case, 219 
problem-solving strategy for, 220-21 
transient PSPICE analysis using schematic capture, 227-35 
undamped natural frequency, 218 
underdamped case, 219 

Series capacitors, 172-73 
Series circuits, 25-30 
Series inductors, 175-76 
Series-parallel combinations of resistors, 35-36 

problem-solving strategy for, 36 
Series resistors, 29 

voltage divided between, 29 
Series resonant circuits, 340-54 
Short circuit, 17, 50 

Short-circuit current, 121 
Siemens, 16, 276 
Single-loop circuits, 25-30 

voltage division, 29 
Single-node-pair circuits, 30-34 

current division, 30 
Singular function, 212 
Sinusoidal forcing function, 258, 263 
Sinusoidal frequency analysis, 328-38 

deriving the transfer function from the Bode plot, 339 
frequency response using a Bode plot, 328-38 
magnitude characteristics, 328-39 
phase characteristics, 328-39 

Sinusoidal function definition, 259, 304 
Sinusoids, 259, 323 

amplitude, 259 
radian frequency, 259 

SI prefixes, 2 
Source exchange (transformation), 122, 147, 282, 286, 304 
Standard Prefixes, 2 
State-variable approach, 197 
Steady-state response, 258 
Storage elements, 159, 193 
Stray capacitance, 161 
Stray inductance, 165 
Supermesh approach, 84-85, 100 
Supernode, 78,100 
Supernode technique, 76-80 
Superposition, 116-20, 146, 286, 304 

principle of, 116, 121 
problem-solving strategy for applying, 119 

Susceptance, 276 
Symmetrical matrix, 72 
Systeme International des Unites, 2 
System of units, 2 

T 
Tacoma Narrows Bridge collapse, 352-54 
Tantalum electrolytic capacitors, 160 
Thevenin analysis, 120-29 
Thevenin 's theorem, 120-31, 147,200, 203,208,214,282, 

287, 290,304 
circuits containing both independent and dependent sources, 

127-28 
circuits containing only dependent sources, 126-27 
circuits containing only independent sources, 123-26 
problem-solving strategies for applying, 128 

Time constant, 193, 196 



Tolerance, 36-38, 169-72 
Transfer curves, 90 
Transfer function, 326 
Transfer plots, 90 
Transient Analysis/Design, 243-45 
Transient PSPICE analysis using Schematic Capture, 227-35 
Transistor amplifier circuit model, 47, 49 
Transistors, 16 

u 

bipolar conjunction transistors (BJTs), 44 
field-effect transistors (FETs), 44 
insulated-gate field-effect transistors 
(IGFETs), 44 
metal-oxide-semiconductor field-effect transistors 

(MOSFETS), 44 

Undamped natural frequency, 218-22, 440 
Underdamped case, 219, 246 
Underdamped network, 222 
Unit impulse function, 212 
Unit step function, 212-213 
Unity gain buffer, 91 

V 
Variable-frequency network performance applications, 

353-57,360-69,379-85 
circuit design, 348-49, 368-69, 374-85 
filter networks 

active filters, 370-78 
passive filters, 362-70 

resonant circuits, 340-60 
quality factor, 341 

scaling,360-62 
frequency scaling, 361 
impedance scaling, 361 
magnitude scaling, 361 

sinusoidal frequency analysis, 328-40 

IND EX 

deriving the transfer function from the Bode plot, 339 

frequency response using a Bode plot, 328-38 
magnitude characteristics, 328 
phase characteristics, 328 

variable frequency-response analysis, 318-27 
driving point functions, 326 
network functions, 326 
network transfer functions, 326 
poles and zeros, 327 
voltage gain, 327 

Voltage,3 
range of magnitudes for, 4 
relationship among power and energy, 6 

Voltage divider, 26 
Voltage division rule, 25-29, 32, 49-50, 88-90, 124, 126, 282 
Voltage follower, 91 
Voltage gain, 47 
Voltage law, Kirchhoff's, 22- 30, 80-87, 282, 304 

Voltage sources, 8 

w 
Wheatstone bridge, 47-48 
Wirebonds, 180-81 
Wye-Delta transformation, 41-43 

z 
Zeros, 327 




