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v

Only a few scientific-technical developments from the last century have affected 
our lives in such a powerful way as the spectacular advances in our knowledge 
of the electronic properties of solids. Many of the present achievements are inti-
mately connected with these advances. To name only a few: the transistor and its 
extreme miniaturization in microelectronics, the electronic processing of data and 
highly developed and powerful computers, the mobile telephone and satellite com-
munication, television and entertainment electronics, as well as numerous instru-
ments and systems of medical technology.

In the final analysis, the theater of all these events of dramatic progress is the 
world of electrons in crystals, where the (quantized) vibrations of the crystal lattice 
continuously demonstrate their influence. The revolutionary advances in knowl-
edge are due to many individual people. Frequently, a true paradigm change has 
been necessary in order to arrange and order the new perceptions properly. Hence, 
it is not surprising, that, as a rule, the pioneers of these new ideas initially had to 
overcome great difficulties and rejection, before the new concepts slowly gained 
acceptance. Also, in certain cases, highly focused research in large industrial labo-
ratories turned out to be the key to success. This is impressively illustrated in par-
ticular by the invention of the transistor in the American Bell Laboratories.

This book represents an updated and strongly extended edition of the book pub-
lished by the same author nearly 10 years ago with the title Electrons in Action. In 
particular, the physical contents were pointed out more clearly by mathematically 
formulating the fundamentals. The book aims at students of the natural sciences, 
and in particular of physics and materials science, as well as at engineers, as an 
introduction to solid state physics. It may serve as a motivating pre-stage and com-
panion of the established and very detailed textbooks.

In addition to the physical contents, the book treats the important role played 
by many well known and often still very young scientists. The fundamental devel-
opments are supplemented by describing their scientific and historic environment.

Marius Orlowski from Virginia Polytechnic Institute provided important advice.

Tübingen	 Rudolf P. Huebener

Preface
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Abstract  During the second half of the last century solid state physics and materi-
als science experienced a great advance and established itself as an important and 
independent new field. In addition to X-ray diffraction, new analytical tools such 
as neutron diffraction, electron microscopy, different versions of mechanical scan-
ning techniques, and scanning electron and laser microscopy became available. 
Material fatigue, radiation damage, and the preparation of single crystals devel-
oped into important subjects. The invention of the transistor represented perhaps 
the ultimate highlight.

During the second half of the last century the physics of solids has experienced 
a tremendous growth, for which many important basic steps had already been 
prepared during the first half of the century. An early decisive impulse for these 
developments came from the discovery of X-rays in 1895 in Würzburg, Germany, 
by Wilhelm Conrad Röntgen. Soon afterwards, this discovery lead to the first 
observation of X-ray diffraction in crystals by Max von Laue in 1912 in Munich. 
William Henry Bragg, Professor in Leeds, England, together with his son William 
Lawrence Bragg at the early age of only 22 years, then started the systematic anal-
ysis of crystal structures by means of X-ray diffraction.

Today, research dealing with the physics of solids has an impressively wide 
scope, if for no other reason than the fact that solids are always needed to fabri-
cate useful or nice things, in contrast to the totally different role of liquids and 
gases. The exact knowledge of the physical properties of the materials that we use 
today becomes more and more important the further we advance in the field of 
high technology. The large effort of research and development within the area of 
solid state physics becomes obvious if one looks at the program books for the rele-
vant annual meetings of, say, the German Physical Society (DPG) or the American 
Physical Society (APS) which recently contained up to more than 2,000 pages. 
(Today, these programs of the meetings are distributed mostly electronically).

Often, the technological applications provide the key motivation for strong 
basic research in solid state physics. We illustrate this by the following two exam-
ples. On January 10, 1954, an English passenger airplane of the Comet type broke 
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apart at 8,200 m altitude in the Mediterranean near the isle of Elba without any 
prior warning and crashed into the sea. With only 3,681 flight hours, the plane was 
relatively new. The search for the cause of the accident turned out to be extremely 
difficult, even though people worked feverishly to clarify the cause of the terrible 
crash. Since the cause of the accident continued to remain unknown, it was finally 
concluded that the crash must have been the result of an unfortunate combination 
of several bad effects. Hence, on March 23, 1954, the grounding order for all air-
planes of the same type, immediately issued on the day of the accident, was lifted 
again. Prior to this, a total of 62 modifications had been introduced in all Comet 
airplanes in operation or under construction. In this way it was hoped to exclude 
any possible cause of the accident (Fig. 1.1). Then a completely unexpected dra-
matic event happened. On April 8, i.e., only 16 days following the resumption of 
the regular flight operation, another Comet airplane with only 2,704  h of flight 
operation crashed into the Mediterranean near Naples. Again, at a high altitude 
of 10,000 m this time, the plane suddenly apparently broke apart. Now the situ-
ation became extremely serious. The causes had to be found at the highest level, 
and all available means had to be utilized. After analysis of the many different 
possibilities, problems related to what is now called material fatigue, in particu-
lar associated with the wings, came to the center of attention. As a consequence, 
the complete fuselage of an airplane was dumped into a huge tank filled with 
water in order to expose it to changing, and in particular to cyclical, mechanical 
loads. In this way, it was found that, after some time, fatigue effects appeared on 
the wings. However, the fatigue problems on the fuselage itself were much more 
severe. Finally, the evidence became clear that the mechanical load during testing 
caused cracks in the fuselage, and that all the cracks originated at the rectangular 
corners of the cabin windows. The causes of both plane crashes had been found. 
However, this event also put to an abrupt end the British leading role in air traffic. 
(Today a large piece of a side of one of the two crashed aircrafts, recovered from 
the Mediterranean, is on display in the Science Museum in London).

Because of these dramatic developments, intensive research activities were 
begun at the same time at many places. Until then only little was known about the 
phenomenon of material fatigue, its effect on the mechanical properties of materi-
als, and the mechanisms leading to the development of microcracks.

In this context of the material fatigue experienced 60 years ago with the Comet 
passenger airplane, it is interesting to note that the recent development of the 

Fig. 1.1   Comet jet-aircraft 
beginning a test flight after 
the crash of a plane in the 
Mediterranean near the isle of 
Elba (photo ullstein bild)
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largest passenger airplane, which has ever been constructed, the Airbus A 380, 
included an extensive and careful mechanical material fatigue testing procedure 
by means of hydraulic systems, as a critical step. Starting in 2005 the complete  
A 380 airplane, consisting of the whole fuselage and the wings, has been exposed 
for 26 months to mechanical loads varying with time and simulating a total num-
ber of 47,500 flight cycles (take-off and landing). This testing load program corre-
sponds to the 25 year lifetime of the A 380 airplane.

As a second example, we recall the possible difficulties expected more than 
60 years ago during the operation of the inner components of the first nuclear reac-
tors. At that time hardly anything was known about the behavior of, say, graph-
ite when it is utilized for slowing down the neutrons which are emitted during 
nuclear fission within the reactor. Would it be possible that during their irradiation 
with the highly energetic neutrons the carbon atoms of the graphite lattice could 
be ejected out of their regular lattice sites, eventually leading to an energetically 
highly excited material, releasing abruptly its stored excess energy in an explo-
sion like dynamite? Such problems concerned the scientists involved in the early 
reactor experiments. The American scientist Eugene Paul Wigner, originally from 
Hungary (later a Nobel laureate and famous for his theoretical work on mathe-
matical group theory and symmetry principles and their role in atomic, nuclear, 
and elementary particle physics) was one of the first who theoretically analyzed 
the physical properties of lattice defects and radiation damage in crystals. At that 
time, a young co-worker of Wigner, Frederick Seitz, performed the first theoreti-
cal calculations on this subject (Fig. 1.2). Both scientists introduced the concept 
of the “Wigner-Seitz cell” into solid state physics. Following these initial steps, 
the field of structural lattice defects in crystals has developed into an important 
subfield of solid state physics, being investigated today in many laboratories. In 
1940 Frederick Seitz also published the first general textbook on solid state phys-
ics: “The Modern Theory of Solids”.

An enormously important development took place with respect to microelec-
tronics. Here the physics of solids has resulted in a total paradigm change in 
electronic technology. It was Mervin Kelly, one of the top-level managers of the 

Fig. 1.2   Eugene P. Wigner 
(left photo Deutsches 
Museum) and Frederick Seitz 
(right private photo)
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famous American Bell Laboratories in Murray Hill in the Federal State of New 
Jersey, who realized at the end of the Second World War that the old mechani-
cal relays and the evacuated amplifying tube made from glass had to be replaced 
by something better. To Kelly a highly promising candidate appeared to be the 
crystal, if it had suitable electric conduction properties. Therefore, at the Bell 
Laboratories a special group of scientists was organized, which was supposed to 
explore the electric conduction properties of solids. At the center of everyone’s 
attention then stood the semiconductor crystals of germanium and silicon. Already, 
relatively soon afterwards, an extremely momentous event had been the inven-
tion of the transistor by John Bardeen, Walter Brattain, and William Shockley. 
On December 23, 1947, they demonstrated the transistor for the first time to the 
directors of their company. Subsequently, as a new electronic device, the transistor 
underwent intensive further development and improvement. Without a doubt, this 
invention represented the start of the modern age of digital electronics.

These big advances in the field of solid state physics, of course, were accompa-
nied by similar advances in instrumental techniques and methods. Here we must 
mention the exploration of the regime of very low temperatures. In 1908 the Dutch 
scientist Heike Kamerlingh Onnes in Leiden achieved for the first time the lique-
faction of the noble gas helium. With this success the low-temperature range down 
to 4 K (−269  °C) became accessible. In this context the most spectacular event 
was the subsequent discovery of superconductivity by Kamerlingh Onnes in 1911. 
Until the 1930s, the number of laboratories equipped to perform experiments with 
liquid helium worldwide could be counted on the fingers of one hand. In contrast, 
today about 1,000 helium liquefiers are operating worldwide (Fig. 1.3). Today the 
largest liquefaction facility is operated at the particle accelerator Large Hadron 
Collider (LHC) in Geneva. There exist eight liquefiers each having a liquefaction 
rate of 3,600 l/h, i.e., with a total rate of 28,800 l/h. Worldwide this corresponds to 
about 40% of the inventory of large liquefaction facilities for helium.

Eventually, the available experimental regime was extended to lower and lower 
temperatures. In particular, we mention a technique relying on the elementary 
atomic magnets of a paramagnetic substance. This technique consists of the fol-
lowing sequence of steps. Initially, a paramagnetic salt pill is precooled to about 
1 K, in order to reduce considerably its content of thermal energy. Subsequently, 
the elementary magnets in the salt pill are all oriented in one direction by a strong 
magnetic field, and simultaneously the heat of magnetization is removed, being 
deposited in the environment. In the next step, the salt pill is thermally decoupled 
from its environment. Then the magnetic field is turned off. Now the pill is ther-
mally isolated, and the directional disorder of the elementary magnets gradually 
reappears. As a necessary consequence, the temperature of the salt pill drops at 
the same time. In this way low temperatures of only a few thousandth Kelvin can 
be reached. This method of “adiabatic demagnetization” was proposed in 1926 
by the Dutch scientist Peter Debye and in 1927 by the American William Francis 
Giauque. In 1933 the method was demonstrated experimentally for the first time. 
The extended application of this principle to the elementary magnets of the atomic 
nuclei had already been proposed in 1934 by the Dutch scientist Cornelis Jacobus 
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Gorter and in 1935 by Nicholas Kurti and Franz Eugen Simon from Oxford. The 
cooling effect due to this nuclear demagnetization was experimentally realized for 
the first time in 1956. Using this technique, extremely low temperatures down to 
one millionth Kelvin or lower could be reached. However, at such low tempera-
tures it becomes more and more difficult to establish thermal equilibrium between 
the different components of the solid, namely the electrons and their elementary 
magnets, the lattice vibrations, and the elementary magnets of the atomic nuclei.

Because of their Jewish origin, Nicholas Kurti and Franz Eugen Simon had to leave 
Germany in 1933 when Hitler took over the government. Earlier, both had worked first in 
Berlin and then at the Technical University in Breslau (today Wroclaw), and the English sci-
entist Frederick Alexander Lindemann (later Viscount Cherwell) had arranged for a posi-
tion for both of them at the Clarendon Laboratory in Oxford, England. As director of the 
Clarendon Laboratory Lindemann has done exactly the same at the time also for the two 
brothers Fritz and Heinz London, and for Kurt Mendelssohn. After they had left Germany, 
during subsequent years, all these people distinguished themselves by outstanding contribu-
tions to physics at low temperatures, and Oxford gained a top position in this field.

An apparatus often used today for reaching temperatures much below 1  K is 
the mixing cryostat (Fig. 1.4). In this cryostat the two isotopes of the noble gas 
helium, which differ only by the number of neutrons in their atomic nuclei (3He 
with a single neutron and 4He with two neutrons), are pumped through several 
stages of heat exchangers, such that within the mixing chamber located at the 
coldest end of the instrument an almost pure liquid 3He phase is collected directly 
above a liquid mixed phase of 3He and 4He. For this technique to operate, the 

Fig. 1.3   Modern plant for liquefying the noble gas helium. On the left we see the controls and 
the cold box of the liquefier, on the right the storage vessel for liquid helium (photo Linde AG)
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starting temperature must already have been lowered to 1 K by precooling. During 
operation, 3He atoms from the upper concentrated phase are dissolved continu-
ously in the lower, much more diluted phase. In many ways this scheme resembles 
a regular evaporation process, in which the upper phase corresponds to the liquid 
and the lower phase to the vapor. As the final result, a continuous cooling of liquid 
helium is achieved.

With this apparatus the attached sample to be studied can also be cooled con-
tinuously. The lowest temperatures which can be reached are a few thousandth 
Kelvin. The principle of the mixing cryostat was proposed for the first time in 
1951 by Heinz London. The first prototype was operated in 1965. Together with 
his brother Fritz London, Heinz London also had proposed an early theory of 
superconductivity.

In addition to the continuing improvements in experimental instruments and to 
the refinements of measuring techniques, sample preparation and the development 
of materials also saw much progress. Here an important step was the production 
of single crystals with extremely high purity. It was such ultra-pure single crystals 
which allowed the exact determination of many physical properties of materials 
and the achievement of a theoretical understanding based on these data (Fig. 1.5). 
The growing of large single crystals starts by dipping a little seed crystal under 
an inert gas atmosphere into the melt of the same material and then pulling it 
out again at a slow and well regulated speed. In this way, during solidification of 
the melt, the exact atomic order of the seed crystal will be reproduced. Record 
sizes of such cylindrical single crystals up to more than one meter in height and 
nearly half a meter in diameter have been achieved. The concentration of atomic 

Fig. 1.4   Mixing cryostat for 
cooling down to temperatures 
well below 1 K. The coldest 
end with the mixing chamber 
is located at the bottom. 
On the top one can see the 
flange for mounting into the 
cryogenic container, which 
can also be evacuated (photo 
Oxford)
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impurities in such a crystal can be reduced further by means of the “zone melting 
process”. During this process the total cross-section of a short length of the crystal 
is heated up to the melting temperature by means of, say, eddy current heating, 
while this heating zone is slowly moved from one end of the crystal to the other. 
In the resulting temperature gradient the atomic impurities are carried along to one 
end of the crystal. If necessary, this process can be repeated several times. The 
impurity concentration of silicon single crystals, routinely achieved today in the 
semiconductor industry, amounts to only about a single impurity atom within one 
billion silicon atoms.

The spectacular advances in our physical understanding of the microscopic 
properties of solids were closely coupled to the progress of the instruments and 
methods available for the analysis of materials. In addition to the investigation of 
the structure of crystals by means of X-ray diffraction already mentioned, starting 
in the 1950s the diffraction of neutrons was also utilized more and more for clar-
ifying crystal structures. For this purpose, special nuclear reactors built only for 
research purposes served as neutron sources. As an example we mention the egg-
shaped research reactor (“Atomei”) built in the 1960s at the Technical University of 
Munich in Garching, Germany (Fig. 1.6). In some sense as a training ground, this 
reactor then turned out to become the point of origin for the much larger research 
reactor of the German-French Laue-Langevin Institute in Grenoble. In 2004 
the “Atomei” was replaced by the new Research Reactor FRM II (research neu-
tron source Heinz Maier-Leibnitz) in Garching. Similar construction projects for 
research reactors existed also in other countries with a highly developed industry.

Fig. 1.5   Silicon single 
crystal (photo Wacker 
Chemie AG)
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In the same way as often happens with new ideas, the invention of the elec-
tron microscope initially had to withstand great difficulties and rejection. It all 
began with two Ph.D. students, namely Ernst Ruska and Bodo von Borries, who 
had joined the group of Max Knoll at the Chair of High-Voltage Engineering 
and Electric Plants at the Technical University of Berlin during December 1928 
and April 1929, respectively. Here, at first both worked on the improvement of 
the cathode ray oscilloscope. Because of the experience gained, before long they 
developed the idea that beams of fast electrons can be used for generating a mag-
nified image in a new type of microscope. On March 17, 1932 Ernst Ruska and 
Bodo von Borries submitted their first and basic patents on the future electron 
microscope. However, a few large hurdles still remained to be overcome. “Why do 
we need electron microscopes, since we have light microscopes?” was the ques-
tion that people were asking. However, soon both young scientists had a break-
through. The Company Siemens and Halske in Berlin agreed to pick up the idea 
and prepared employment contracts for Bodo von Borries and Ernst Ruska. On 
December 7, 1937 the first electron microscope built by Siemens was demon-
strated to the Company directors (Fig. 1.7).

After only 3 years of development, in terms of its spatial resolution the electron 
microscope had outpaced the light microscope. Starting in 1939, an initial series of 
the Supermicroscope (“Übermikroskop”), as it was called at the time, was offered 
for sale by Siemens.

Again, the underlying basic concept of this microscope is the quantum-
mechanical wave character of elementary particles, which had been proposed for 
the first time by the French Louis de Broglie in his dissertation in 1924. The direct 

Fig.  1.6   Egg-shaped research reactor (“Atomei”) in Garching near Munich. In the build-
ing on the left the new research reactor FRM II, completed in 2004, is located (photo Albert 
Scharger/TU Munich)
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experimental proof of the wave nature of electrons was provided subsequently in 
1927 by the two Americans Clinton Joseph Davisson and Lester Germer of the 
Bell Telephone Laboratories who showed that electrons are diffracted by the 
atomic lattice of crystals. During imaging based on the diffraction of waves, the 
spatial resolution is always limited by the wavelength. The shorter the wavelength, 
the correspondingly smaller are the structures that can be spatially resolved. The 
wavelength of the beam electrons is inversely proportional to the square-root of 
the accelerating voltage. At an electric voltage of 10,000 V we have a wave length 
of λ = 1.2 × 10−2 nm (nm = nanometer = 10−9 m). On the other hand, the wave 
length of visible light is much larger, λ = 400–800 nm, and the achieved spatial 
resolution is correspondingly much weaker.

Already in the 1950s, electron microscopy had celebrated a big success, along 
with many other successes, by imaging the structural defects in the crystal lat-
tice, as discussed above, and by clarifying the phenomenon of material fatigue. In 
the latter case the “crystal dislocations” play a central role. They were observed 
directly for the first time in 1956 at the Batelle Institute in Geneva in stainless steel 
and at the Cavendish Laboratory in Cambridge in aluminum. Eventually, electron 
microscopes were built for ever increasing accelerating voltages. Today we have 
instruments with an accelerating voltage of one million volts (Fig. 1.8).

For the analysis of materials, beams of fast electrons have also been uti-
lized in another important instrument: the scanning electron microscope. For 
this, pioneering research was done again in the 1930s by Max Knoll at the 

Fig. 1.7   Siemens electron 
microscope, a precursor of 
the Siemens Elmiskop 1, 
marketed in the 1950s (photo 
TU Berlin)
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Technical University in Berlin, mentioned before, and by Manfred von Ardenne 
in his Laboratory in Berlin-Lichterfelde. An electron beam collimated down to 
an extremely small diameter of only 1–10 nm is scanned over the surface of the 
object to be investigated. Simultaneously, a suitable signal induced by the electron 
beam in the sample is recorded as a function of the spatial beam coordinates on 
the sample surface within the scanning window. Correct electronic signal process-
ing then yields a two-dimensional image of the object. To generate the response 
signal one can use several effects. For example, the emission of secondary elec-
trons due to the beam irradiation is quite often used. However, the beam-induced 
local change of a sample property such as the electric resistivity can also provide 
the signal for the image. Today, the signal based on the change in electric resis-
tivity is often utilized for imaging structures in thin layers of semiconductors or 
superconductors. In the case of superconductors, spatially resolved images relating 
to their superconductivity can be obtained if the sample is cooled to sufficiently 
low temperatures during scanning with the electron beam.

Recently, the scanning principle for imaging was extended also to light beams. 
However, a necessary prerequisite for this was the availability of laser beams with 
their extremely narrow collimation. Today, laser scanning microscopes are widely 
used in many fields.

An important milestone during the advances of the methods for the analysis of 
materials has been the construction of the first scanning tunneling microscope by 

Fig. 1.8   Modern electron 
microscope with an 
accelerating voltage of one 
million volts (photo  
A. Tonomura)
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Gerd Binnig and Heinrich Rohrer of the IBM Research Laboratory in Rüschlikon 
near Zürich, Switzerland. Their first patent application dealing with the scanning 
tunneling microscope was submitted in January 1979. In their instrument the sur-
face to be investigated is mechanically scanned with a tiny metal tip. Using piezo-
electric actuators, the metal tip can be moved in three dimensions with extremely 
high sensitivity. During the scanning process the sample surface is approached by 
the tip as close as about 1 nm. Simultaneously, the quantum-mechanical electric 
tunneling current is measured running between the tip and the sample surface, if 
an electric voltage is applied, even though a metallic contact between both does 
not exist. (The explanation of the effect of quantum mechanical tunneling had 
been one of the early major successes of the new theory of quantum mechanics). 
Because of the strong exponential dependence of the tunneling current on the dis-
tance between the tip and the sample surface, one can achieve that the tunneling 
current is limited only by a few or even the last single atom sticking out of the 
tip. In this way, today one routinely obtains atomic resolution in the lateral direc-
tion with this technique (Fig. 1.9). Very recently, even subatomic structures of sili-
con atoms due to the different electron orbitals, have been observed in the images 
(Fig. 1.10).

Soon after the invention of the scanning tunneling microscope, the mechanical 
scanning principle was extended to several other types of interaction between the 
probing tip and the sample surface. In particular, we mention the atomic force and 
the magnetic force microscopes. In the first case, the mechanical force between the 
probing tip and the sample surface is utilized. The second case is based on a mag-
netic tip probing the magnetic sample properties. In recent years special research 
effort has been concentrated on the extension of the techniques we have discussed 
to very low temperatures and to the presence of high magnetic fields. Today, ease 
of operation is emphasized by the construction of the instruments.

Fig. 1.9   Scanning tunneling 
microscope. The instrument 
is mounted on a flange 
for operation in ultra-high 
vacuum (photo Omicron 
nanoTechnology)
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Finally, we point out that most of the techniques for material analysis dis-
cussed above are restricted to the sample surface and its immediate neighborhood 
(Fig. 1.11).

In many cases the developments we have outlined were accompanied by the 
award of the Nobel Prize for Physics and in some cases for Chemistry to the peo-
ple involved. In order to illustrate this, in the Appendix we have listed all Nobel 
Laureates who have a close relationship with the physics of solids.

Fig. 1.10   Image of the 
individual atoms of a section 
of 5 nm × 5 nm area on the 
surface of a silicon crystal, 
generated by means of atomic 
force microscopy. On the 
silicon atoms we can see a 
subatomic structure resulting 
from the electron orbitals 
(photo F. J. Giessibl)

Fig. 1.11   The picture shows 
a ring of iron atoms placed 
on a copper surface. In this 
way an artificial coral reef 
consisting of 48 iron atoms 
has been created on an 
atomic scale. The circular 
lines appearing within the 
ring are due the density of 
the electrons existing within 
the ring (photo Almaden 
Research Center 2000)
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Abstract  The lattice structure of crystals is characterized by specific symmetry 
properties. Translation symmetry yields the 14 Bravais lattices. Rotation, reflec-
tion at a mirror plane, and inversion at a point result in the 32 crystallographic 
point groups. The diffraction of X-rays by a crystal, initiated in 1912 by Max 
von Laue, represented the first experimental proof of the regular lattice structure 
of a crystal. The elements of diffraction theory, including the reciprocal lattice 
and Brillouin zones, are explained. The chapter ends with a discussion of quasi-
crystals and the different types of bonding.

Crystals have always generated a particular fascination, because of the rich variety of 
their colors and shapes. While the systematic exploration of nature became increas-
ingly important ever since the 17th century, at the same time the science of rocks and 
minerals developed into an independent branch and a collecting point for the many 
different individual observations. The amateur rock collectors and the mineralogists 
hiking with their tools through the mountains and hills in the early days must be 
looked upon as important forerunners of the modern scientific exploration into the 
properties of solids. The basic geometric crystallographic concepts for describing the 
large variety of observations also originated within this field of mineralogy.

In terms of physics, the most important property of crystals is their perfect lat-
tice structure with the regular periodic repetition of exactly the same elementary 
building blocks in all three spatial dimensions. The elementary building blocks can 
be atoms or molecules, the latter consisting either of only a few or very many indi-
vidual atoms. For example, the elementary building blocks of protein crystals con-
tain up to 100,000 atoms. Because of their highly regular periodic lattice structure, 
crystals always possess a number of prominent symmetry properties. Of particular 
importance is the “translation symmetry” resulting from the regular periodic lat-
tice configuration of the building blocks in all three spatial dimensions.

In a crystal the location of the building blocks of the lattice is described math-
ematically by the lattice vectors

(2.1)r = n1a + n2b+ n3c

Chapter 2
Well Ordered Lattice Structures in Crystals
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Here, n1, n2, and n3 are integers. a, b, and c are the three fundamental translation 
vectors. Here and in the following we denote vectors by bold symbols. The integer 
numbers n1, n2, n3 yield the lattice points of the crystal. (In (2.1) we assume, that 
the origin is located at a lattice point). The translation vectors a, b, c generate the 
elementary cell (Fig. 2.1), which in turn builds up the crystal lattice by its spatially 
periodic repetition. Because of this condition of translation symmetry, the pos-
sible configurations of all three-dimensional crystal lattices are highly restricted. 
As was shown already in 1850 by the Frenchman Auguste Bravais, there are only 
a total of 14 fundamental types of crystal lattices, which are now referred to as 
“Bravais lattices” (Fig. 2.2). By selecting the lengths of the three vectors a, b, c 
of the elementary cell (lattice constants) and the three angles between them, at 
first one obtains seven fundamental types of crystal lattices. If additional lattice 
points exist at special locations within the elementary cell (in the center of the 
elementary cell or in the middle of the external surfaces), one obtains a total of 14 
translation lattices.

In general, the crystal structure is more complex than that of one of the 14 
Bravais lattices. However, the crystal lattice is exactly replicated by means of a 
specific symmetry operation. In addition to translation, the following fundamen-
tal symmetry operations are important: rotation, reflection at a mirror plane, and 
inversion at a point. In the case of rotation one distinguishes how often the crys-
tal lattice is exactly reproduced during a complete rotation by 2π. Hence, there 
exist single-, two-, three-, four-, and sixfold rotational axes, corresponding to a 
rotation by 2π, 2π/2, 2π/3, 2π/4, and 2π/6, respectively. The combination of 
rotation, reflection at a mirror plane, and inversion specifies one of the 32 crystal-
lographic point groups. By addition of the translation, one of the 230 space groups 
is obtained, characterizing the crystal structure. Here, mathematical group theory 
has provided an important input.

Johannes Kepler, who was born in 1571 in the Swabian Free City Weil der Stadt near 
Stuttgart in Württemberg and who later studied at the University of Tübingen, is generally 
known because of his three famous Kepler’s laws of astronomy. However, among many 
things he also was concerned with the question, how can space be regularly and com-
pletely filled with the same objects as building elements. So in the early 17th century, i.e., 
more than 200 years before the considerations of Auguste Bravais, he speculated on the 
question of why snowflakes always have six corners, but never five or seven. He showed 
how the close packing of spheres generates a six-corner pattern. This work of Kepler 
clearly represents an early significant contribution to geometrical crystallography.

Within the crystal lattice, there always exist specific planes along certain direc-
tions, which are closely and perfect periodically packed with atoms or with the 

Fig. 2.1   Elementary cell 
defined by the translation 
vectors a, b, and c
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elementary building blocks. On the outside of the crystal these planes then rep-
resent the extremely smooth and flat surface planes. This fact, together with 
the existing symmetry properties, is utilized extensively by the jewelry indus-
try during the polishing of precious stones. In snow crystals the large vari-
ety of shapes is particularly impressive. Thomas Mann has well described this 

Fig.  2.2   The fourteen Bravais lattices representing all possibilities for the construction of a 
three-dimensional crystal lattice

2  Well Ordered Lattice Structures in Crystals
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magnificent appearance of the snowflakes in his novel “The Magic Mountain” 
(“Der Zauberberg”, here in an English translation):

Brilliant clips, medals of decoration, jewelry stars, such as the most accurate jeweler can-
not produce in a richer way and with more minute precision …, and among the myriads 
of magic little stars in their hardly visible, secret little splendor, not meant for the human 
eye, not a single one was equal to another.

The first rigorous experimental proof of the regular lattice structure of crys-
tals was given in 1912 at the University of Munich. Soon after his great discov-
ery of X-rays in Würzburg, Röntgen (Fig. 2.3) had left this location, since he had 
accepted an offer from the University of Munich. In Munich his group, together 
with the theoretical physicists at the Chair of Arnold Sommerfeld, concentrated on 
the problem of clarifying the nature of X-rays. The major question was whether 
X-rays are just electromagnetic waves such as visible light, but with a much 
shorter wavelength, or whether they are a new kind of particle radiation. Max 
von Laue (Fig. 2.4), a young member at the Chair of Sommerfeld, was thinking 
about diffraction experiments with X-rays. During the time when he was theoreti-
cally analyzing the diffraction of X-rays on lattices of points or of bars, he learned 
from a discussion with Paul Peter Ewald, a Ph.D. student of Sommerfeld, that 
crystals are likely to consist of a regular lattice arrangement of atoms. Von Laue 
noted immediately that crystals would be well suited for the diffraction of X-rays, 
as long as the distance between the atoms in the crystal and the wavelength of 
the X-rays had a similar magnitude. An initial estimate was encouraging. For the 
first experiments von Laue enlisted the help of Walter Friedrich, who had just been 
employed by Sommerfeld, and of Paul Knipping, a PhD student of Röntgen, and 

Fig. 2.3   Wilhelm Conrad 
Röntgen (Photo Deutsches 
Museum)
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success did not elude them. On June 8 and July 6, 1912 Sommerfeld was able to 
present the first X-ray diffraction images of a crystal to the Bavarian Academy of 
Science. This pioneering discovery meant the recognition of two important facts: 
X-rays are electromagnetic waves, and crystals consist of a three-dimensional reg-
ular lattice of atoms (or molecules).

For his discovery of X-rays, in 1901 Röntgen had received the first Nobel Prize 
in Physics. His letter to the Royal Bavarian State Ministry for Church and School 
Matters, in which Röntgen had asked for leave of absence in order to attend the 
award ceremony in Stockholm, is a highly interesting contemporary document, 
which we wish to quote at this point. On December 6, 1901 Röntgen wrote (here 
in English translation):

According to a confidential information of the R. Swedish Academy of Science the 
most respectful and devoted undersigned has been awarded the first Nobel Prize for the 
year 1901. The R. Swedish Academy is particularly keen that the Laureates personally 
receive the prize in Stockholm on the day of the award (Dec. 10). Since these prizes are 
of an exceptionally high value and are also highly honourable, the most respectful and 
devoted undersigned feels that he must follow, though not lightheartedly, the desire of 
the R. Swedish Academy and, therefore, he is asking for leave of absence for the coming 
week. Dr. W.C. Röntgen

2.1 � Diffraction Theory

According to the theory of the diffraction of waves at a point lattice, during wave 
irradiation, from each lattice point there originates a wave which spherically prop-
agates in all spatial directions (Fig. 2.5). We all know the similar wave propaga-
tion which takes place on the surface of water after we have thrown a stone into 
it. The spherical waves originating from the different lattice points of the crystal 

Fig. 2.4   Left Max von Laue. Right set-up of the Laue experiment. On the left we note the X-ray 
tube and on the right the stage for mounting the crystal (Photos Deutsches Museum)

2  Well Ordered Lattice Structures in Crystals
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superimpose and become enhanced or extinguished. This is referred to as interfer-
ence. We consider the (elastic) reflection of a wave at a series of parallel lattice 
planes (Fig. 2.6). We denote the distance between two neighboring lattice planes 
by a, and the angle between the planes and the direction of the incoming or the 
outgoing wave by θ. The difference of the distance covered by the wave upon the 
reflection at the two neighboring planes amounts to 2 a sinθ. In the case of con-
structive interference, at which the amplitudes of both waves exactly add to each 
other, this difference of the distance must be an integer multiple of the wavelength 
λ. Hence, we obtain the famous Bragg reflection law

where n is an integer.
So far, we have restricted our discussion to a series of parallel lattice 

planes, which all have the same normal vector. However, in the case of a 

(2.2)2a sin θ = n�

Fig. 2.5   a Propagation of a spherical wave originating from a point. The dark rings illustrate 
the peaks of the wave which follow each other within the spatial distance of one wavelength. The 
picture corresponds to a snapshot and shows the wave propagation within a plane as, for exam-
ple, on a water surface. b Interference between two waves such as shown in (a), originating from 
two different centers. From b to d the distance between the two centers increases. In specific 
directions the peaks and the valleys of the waves coincide, such that both waves annihilate each 
other. The positions at which the annihilation takes place, appear closer and closer as the distance 
between the two centers increase
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three-dimensional crystal we have to deal with two additional orientations of 
the lattice planes with the corresponding two directions of the normal vectors. 
For this, it is convenient, to start with a straight periodic arrangement of points 
forming a chain (Fig.  2.7). The spherical waves originating from all points are 

Fig. 2.6   Reflection of a wave at two neighboring lattice planes placed at the distance a. The differ-
ence of the distance covered by the wave upon the reflection at the two planes amounts to 2 a sin θ. 
θ is the angle between the lattice planes and the incoming and the outgoing wave, respectively
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Fig.  2.7   Generation of the Laue diagram as the interference pattern due to the diffraction of 
X-rays at a three-dimensional point lattice. a For a one-dimensional chain of points, the direc-
tions of maximum or minimum intensity lie on cones arranged around the one-dimensional 
chain. On the surface of an imagined sphere, having its center at the common tip of this family 
of cones, the directions of maximum or minimum intensity yield a series of circles. b For a two-
dimensional planar lattice of points we must add a second family of cones which is arranged 
around the direction of the second, newly-added straight line of points. Now a second series of 
circles appears on the surface of the imagined sphere. The points of intersection of these circles 
then yield the directions of maximum or minimum intensity. c Finally, for a three-dimensional 
point lattice we deal correspondingly with three families of cones. However, in general the result-
ing three series of circles on the surface of the imagined sphere no longer have common points of 
intersection, which mark the directions of maximum or minimum intensity. Now such common 
points of intersection only exist for special values of the wavelength or frequency of the X-rays

2.1  Diffraction Theory
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amplified, reaching a maximum intensity, if the propagation distance starting from 
two neighboring points differs exactly by one wavelength or by a multiple of one 
wavelength. On the other hand, if the difference amounts to half a wavelength or 
an uneven multiple of half a wavelength, complete extinction occurs. In this way 
we find that propagation directions for maximum or minimum intensity exist, and 
these are conically arranged around the straight line of points. The smaller the dis-
tance between the points, the larger is the opening angle of these cones. On the 
surface of an imagined sphere, having its center at the common tip of this family 
of cones, the propagation directions with maximum or minimum intensity form 
a series of circles. Next we extend our one-dimensional arrangements of points 
to a two-dimensional planar lattice. Now we must add a second family of cones 
which is arranged around the second newly-added straight line of points. On the 
surface of the imagined sphere, the propagation directions with maximum or mini-
mum intensity yield a second series of circles. As a result, in this case the direc-
tions with maximum intensity are expected only for intersections between the 
corresponding circles originating from the two families of cones. However, such 
intersections always occur. Finally, extending our discussion to a three-dimen-
sional lattice of points, we have to deal with three families of cones. Again, it is 
the intersections between all three families of cones on the surface of the imag-
ined sphere, which determine the propagation directions with maximum diffrac-
tion intensity. However, now the three series of circles on the imagined sphere 
do not in general have any common intersections (Fig. 2.7). In this case common 
intersections, marking the directions of high intensity of the diffracted waves, only 
exist as exceptions, i.e., only for specially selected values of the wavelength or fre-
quency of the X-rays. For these selected wavelengths we have special distinct dif-
fraction directions with high intensity, generating a characteristic pattern of points 
on the photographic film used for X-ray detection. This characteristic pattern is 
referred to as the “Laue diagram” (Fig. 2.8). However, this procedure only works 
if a whole frequency band of X-rays is available, from which the appropriate fre-
quencies for the directions with high intensity are then automatically selected by 
the diffraction process.

The Bragg diffraction law expressed in (2.2) is named after the two English sci-
entists William Henry Bragg and his son William Lawrence Bragg, whom we have 
previously mentioned. Immediately following the publication of the first Laue dia-
grams they have theoretically analyzed the underlying interference phenomena. 
The pattern of points on the Laue diagram is particularly useful for determining 
crystal symmetries.

2.2 � Reciprocal Lattice, Brillouin Zones

Mathematically, the diffraction of a wave at a spatially periodic crystal lattice 
(periodic potential) can be treated conveniently by means of the concept of the 
reciprocal lattice. This concept is based on the abstract mathematical wave vector 
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space or momentum space (Fourier space). It has been proposed by the American 
Josiah Willard Gibbs. A wave propagating along x-direction can be written as a 
complex function

Here t denotes the time and ω the angular frequency. The wave number k is con-
nected with the wavelength λ via the relation k = 2π/λ. In the three-dimensional 
case the function (2.3) can be generalized, and we obtain

where r = x + y + z and k = kx + ky + kz. Now the wave number k of the one-
dimensional case is replaced by the wave vector k and its three components kx, ky, kz.

The reciprocal lattice is defined as follows:

where h1, h2, h3 are integers. The fundamental vectors A, B, C are connected with 
the translation vectors a, b, c of the elementary cell (Fig. 2.1) and are defined as 
follows:

We see that the vectors A, B, C of the reciprocal lattice are oriented perpendicu-
larly to two fundamental axes of the crystal lattice, respectively. The convenience 

(2.3)F(x, t) = Foe
i(kx−ωt)

(2.4)F(r, t) = Foe
i(kr−ωt)

(2.5)G = h1A+ h2B+ h3C

(2.6)A = 2π
b× c

ab× c
; B = 2π

c × a

ab× c
; C = 2π

a × b

ab× c

Fig. 2.8   Laue diagram of 
a cubic K2SnCl6 crystal 
obtained by X-ray diffraction 
(Photo J. Ihringer)

2.2   Reciprocal Lattice, Brillouin Zones
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of the introduction of the reciprocal lattice becomes obvious, if one wants to 
express mathematically a function having exactly the periodicity of the crystal 
lattice (for example, the scattering potential of the electrons). Such a function is 
obtained in the form

where the summation extends over all vectors G of the reciprocal lattice. This 
function satisfies the periodicity condition

Here ρ is a lattice vector in the form of (2.1). The Bragg condition of construc-
tive interference between two waves, which are scattered by the crystal from the 
incoming wave vector k into the outgoing wave vector k′, is simply given as

From the simple form of (2.7) and (2.9) we see again the advantage gained by the 
concept of the reciprocal lattice.

The abstract momentum space (k-space) with the reciprocal lattice is divided 
into Brillouin zones. The boundaries of the Brillouin zones are found by erecting a 
plane in perpendicular direction at exactly the middle of a connecting straight line 
to a point of the reciprocal lattice. If one uses larger and larger reciprocal lattice 
vectors in this construction, one obtains the first, second, third, etc. Brillouin zone. 
In Fig. 2.9 we show as an example the first Brillouin zone in the two-dimensional 
case of the two fundamental vectors A and B oriented perpendicular to each other. 
As we will see in Chap. 4, in the case of the electronic band structure of materials 
the Brillouin zones play an important role.

Following the initial success of X-ray diffraction experiments, the method was 
quickly developed further along different directions. In the “rotating-crystal tech-
nique” a well-focused monochromatic X-ray beam is directed upon the crystal 
and, simultaneously, the crystal is rotated around a fixed axis. The high intensity 
of the diffracted radiation is observed only for distinct angle orientations of the 
crystal relative to the incoming X-ray beam, for which the Bragg interference con-
dition is satisfied.

(2.7)U(r) =
∑

G

uGe
iGr

(2.8)U(r+ρ) = U(r)

(2.9)k′ − k = G

Fig. 2.9   Construction of the 
first Brillouin-zone in the 
(two-dimensional) case of the 
two fundamental vectors A 
and B of the reciprocal lattice 
oriented perpendicular to 
each other

http://dx.doi.org/10.1007/978-3-319-09141-9_4
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The two X-ray diffraction techniques that we have discussed so far require suf-
ficiently large single crystals. As proposed for the first time by Peter Debye and 
Paul Scherrer, even crystal powder can be used. The powder may be compressed 
into the form of a little cylinder. For this powder technique one again uses mono-
chromatic X-rays. Among the many randomly arranged little crystals in the pow-
der there always exist a sufficiently large number for which the Bragg diffraction 
condition is well satisfied by their orientation. Here the sample rotation of the 
rotating-crystal technique is done quasi-automatically. As an important result we 
note that all three methods serve well for exactly determining the atomic or molec-
ular distances between nearest neighbors in the crystal lattice, if the wave length 
of the X-rays is known.

During his experiments in Würzburg, Röntgen discovered the new radiation when he was 
investigating the physical behavior of gas discharges within an evacuated cathode ray 
tube. After only a few weeks of intensive experimentation he found that the new radia-
tion always appeared if the fast electrons were abruptly decelerated by a solid obstacle 
in the glass tube. Here objects made from heavy elements such as tungsten or platinum 
were particularly effective. The principle of the generation of “bremsstrahlung”, as it 
was subsequently called, had been found, and it continues to be used today in the con-
struction of X-ray sources. Röntgen had received one of his first glass tubes, especially 
designed for the generation of X-rays with fused cathode and anode, from the glassworks 
of the Company “Greiner and Friedrichs” in the small town of Stützerbach near Ilmeau in 
Thuringia. Eventually, the large companies of the electronics industry took up the manu-
facture of X-ray equipment, and this field developed into an important business sector. 
Right up until today, the degree of automatization and standard of operation of the equip-
ment has continuously improved.

The generation of X-rays within large rings-shaped electron accelerators, referred 
to as electron synchrotrons, is the latest development. An impressive example is the 
large European Synchrotron Radiation Facility (ESRF) in Grenoble with its ring 
diameter of 270 m (Fig. 2.10). Along the circular structure there is room for about 60 
different measuring stations (beam-ports). The accelerated electrons move along a 
circular trajectory at a high energy of 6 GeV. This trajectory results from the balance 
between a force directed towards the center of the ring (due to deflecting magnets) 
and the centrifugal force directed outwards. Because of this constant acceleration 
of the electrons in order to keep their circular trajectory, “synchrotron radiation” is 
emitted, the frequency of which depends upon the kinetic energy of the electrons. By 
means of special deflection elements inserted into the ring, the so-called wigglers or 
undulators, individual beams with special properties can be supplied to the different 
beam-ports. Today, large intensive radiation sources similar to that in Grenoble are 
in operation worldwide at several locations. These radiation sources mainly serve to 
generate electromagnetic radiation of high intensity in the far ultraviolet and in the 
near X-ray spectral range.

Today, X-ray diffraction represents one of the most important tools for the anal-
ysis of materials. As outstanding indications of the importance of X-rays in deter-
mining the structure of materials, in addition to the first experimental proof of the 
lattice structure of crystals discussed before, we mention, for example, the X-ray 
analysis of Max Perutz of the hemoglobin in red blood cells which provides human 

2.2   Reciprocal Lattice, Brillouin Zones
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oxygen transport, and the famous proposal for the structure of the DNA double 
helix by Francis Harry Compton Crick and James D. Watson, which during winter 
1952/1953 was confirmed for the first time by Rosalind Franklin with her X-ray 
images. At this point we must also mention the work by Robert Huber, Johann 
Deisenhofer, and Hartmut Michel, clarifying the three-dimensional structure 
of the reaction center of photosynthesis by means of X-ray diffraction. The last 
three examples emphasize the great importance of X-rays in analyzing the struc-
ture of complex organic materials such as proteins and nucleic acids. Therefore, 
these concepts dating back to Max von Laue, W.H. Bragg, and W.L. Bragg, have 
been increasingly refined. In this way it has became possible that, from the patterns 
of X-ray diffraction, both the periodic spatial lattice arrangement of the molecu-
lar crystal and the inner atomic structural detail of the protein molecules, can be 
reconstructed. However, in this case the relevant organic crystals must be prepared, 
which can often prove difficult and can require special attention.

In addition to the diffraction of X-rays, we again mention the (elastic) scatter-
ing of neutrons and its increasing importance for the analysis of the structure of 
crystals. In recent years in several research centers, the facilities for neutron dif-
fraction have been strongly expanded.

Fig.  2.10   Photograph of the large European synchrotron radiation source in Grenoble (bright 
ring in the foreground). The round tower-like container next to the ring is the external envelope 
of the German-French Research Reactor of the Laue-Langevin Institute (Studio de la Révirée, 
Grenoble)
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Finally, we wish to discuss a phenomenon, the discoverer of which at first 
experienced rejection and mockery, until, after the gradual acceptance of his ideas, 
in 2011 he became honored by the award of the Nobel Prize in Chemistry: Daniel 
Shechtman and his discovery of quasi-crystals. On April 8, 1982 at the Johns 
Hopkins University in Baltimore, USA, with his electron microscope he obtained 
a diffraction image of an alloy of aluminum and manganese showing a tenfold 
symmetry. Hence, during a complete rotation an identical image was reproduced 
ten times, i.e., after each additional 36°. The further research indicated, that the 
crystal itself exhibited a fivefold symmetry, which should be impossible according 
to the state of knowledge at the time. In such a crystal showing fivefold symme-
try the atoms are arranged regularly, but not exactly periodically any more. How 
could Shechtman obtain the sharp diffraction pattern?

For his results Shechtman was strongly criticized from all directions. Even he 
had to leave his research group in Baltimore, and went back to Israel. He could 
publish his results only two and a half years later. However, subsequently, sup-
port for Shechtman started gradually. Five weeks after his paper there appeared 
a publication discussing this new type of crystals, and the name “quasi-crystals” 
was proposed. Already in the middle 1970s the mathematician Roger Penrose 
had demonstrated, that, by using only two building blocks, a slender and a com-
pressed, skewed rectangle, one can generate a pattern completely covering a plain 
surface, but never exactly repeating itself. In the meantime, quasi-crystals have 
been found in many materials systems and also in nature.

In its communication regarding Shechtman, the Nobel Committee emphasized 
especially the “important lesson for science”:

Apparently, the achievement by Dan Shechtman not only consists of the discovery of the 
quasi-crystals, but also of the fact, that he recognized the importance of this discovery and 
resolutely conveyed it to a skeptical scientific community.

2.3 � Types of Bonding

In the last part of this chapter we want to discuss the types of bonding between the 
(atomic or molecular) constituents of a solid. In principle, in this case we always 
deal with some kind of an attractive (electrostatic) interaction between electrons 
and the positively charged atomic nuclei (gravity and nuclear forces do not play 
any role in this discussion). There are special cases possible, resulting in the dif-
ferent types of bonding. In the form of a solid (or of condensed matter) the total 
energy of all constituents is always lower than in the case when it is completely 
disassembled into its atoms or molecules without any mutual interactions any 
more. The corresponding energy gain represents the binding energy.

One distinguishes between the following main types of bonding: van-der-Waals 
bond, ionic bond, covalent bond, metallic bond, and hydrogen bond.

Starting with the van-der-Waals bond, we consider atoms with completed 
electron shells (for example noble gases), which are difficult to ionize. On time 

2.2   Reciprocal Lattice, Brillouin Zones
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average, at each atom we find a spherically symmetric charge distribution of the 
negative electron shells around the positive atomic nucleus. Whereas in the sta-
tionary state the electric field in the external space vanishes, the motion of the 
outer electrons (fluctuations) results in a temporally varying dipole moment (the 
time-averaged value of which remains zero). Considering two atoms (1) and (2) at 
distance R, the instantaneous dipole moment p1 of (1) generates the electric field

at the location of (2). The result is the induced dipole moment

of (2). Here α denotes the polarizability. The attractive interaction between p1 
and p2 can be seen from the two cases shown in Fig. 2.11. In case 1, because of 
the decrease of the electric field E with increasing distance of p1, there results a 
force on p2 directed to the left. In case 2 we have an attraction again, since the dis-
tances between the opposite charges (attracting each other) are smaller than those 
between the same charges (repelling each other).

As we know from electrostatics, the potential energy U(R) between two dipoles 
p1 and p2 at mutual distance R is

In case 1 of Fig. 2.11 one obtains

Here we note, that the temporal average p21 > 0, even though p1 = 0.

(2.10)|E| = 2 p1/ R
3

(2.11)p2 = α|E| = 2αp1/ R
3

(2.12)U(R) =
(p1p2)

R3
−

3(p1R)(p2R)

R5
.

(2.13)U(R) = −2p1p2/R
3
= −4αp21/R

6.

Fig. 2.11   Attractive 
interaction between the 
dipoles p1 and p2 of the two 
atoms (1) and (2) in the case 
of the van-der-Waals bond. 
Further details in the text
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The weak van-der-Waals bond is undirected. It is found in noble gases and 
in crystals of many organic molecules. The value of the bond energy is about 
U ≈ 10−21 J ≈ 10−2 eV with R ≈ 0.4 nm.

At this point we include a remark about energy units: We have: 1 eV (electron 
volt) =  1.6 ×  10−19  J (Joule) and—with Boltzmann’s constant kB—the thermal 
energy kB T ≈  10−23  J

K
T. Hence, the value of U given above is obtained in the 

case T =  100  K. Therefore, the melting temperature of these materials is about 
100 K.

From (2.12) and (2.13) one finds that the bond energy U(R) decreases rapidly 
with increasing distance R, proportional to R−6. However, because of the over-
lapping of the electron shells, at sufficiently small distance one finds repulsion. 
Assuming the empirical repulsion law proportional to R−12 one obtains

The model potential (2.14) fixed by means of the two parameters ε and σ is 
referred to as the Lennard-Jones potential. It is shown in Fig. 2.12. This potential 
and other similar model potentials having two or more parameters adjusted to the 
experimental data serve for calculating physical quantities.

Turning now to a crystal consisting of N atoms, with (2.14) one finds the total 
energy Utot by summation over all pairs:

(2.14)U(R) = 4ε

[
(
σ

R
)
12

− (
σ

R
)
6

]
.

(2.15)Utot =
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N4ε


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Fig. 2.12   Schematic of the 
Lennard-Jones potential U(R) 
according to (2.14)
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The i-th atom is arbitrarily selected, and the sum 
∑

j
(−) runs over all j ≠ i. For 

all possible values of i one obtains the factor N. Since in this way every 
atom is counted twice, the factor 1/2 must be applied. (The numbers 
ρij = 1, 2, 3, . . . ,

√

2,
√

3, . . . , etc. are introduced in order to make the final result 
independent of the special substance).
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In the case of a cubic face-centered crystal one obtains

In the cubic face-centered lattice there are twelve nearest neighbors. This fact 
together with (2.16) indicates to us the rapid convergence of the sums. From 
the condition ∂Utot/∂R =  0 one obtains the equilibrium distance Ro =  1.09 σ, 
in good agreement with the values of the noble gases. Furthermore, one finds 
Utot(Ro) = −2.15(4Nε) = −8.6Nε. Based only on the twelve nearest neighbors, 
we expect Utot = −6Nε.

Next we turn to the ionic bond. The ionic crystals are composed of positive and 
negative ions with completed electron shells. In the crystal lattice the charges of oppo-
site sign are alternately arranged next to each other, such that the attractive Coulomb 
force between opposite charges predominates the repulsion between equal charges. 
As an example we mention table salt (NaCl) with the positive Na+- and the negative 
Cl−-ions. In the case of the distance Ro ≈ 0.3 nm between the charges, the electro-
static interaction energy amounts to e2/Ro ≈ 5 eV (e = elementary charge). As we can 
see, the bond energy is distinctly higher than in the case of the van-der-Waals bond.

The R−1-dependence of the bond energy results in a long range of the interac-
tion and, hence, in an interaction between charges of the opposite as well as of the 
same sign. Again, in the limit of small distances one expects repulsion. The repul-
sion law can be chosen in the form λ e−rij/ρ, where rij is the distance between ions 
i and j, and where ρ determines the drop of the potential.

Again, we find the total energy of a crystal consisting of N ions by selecting an 
ion i and by summing over all j ≠ i:

The first part in the bracket contains the repulsion and the second part the 
Coulomb interaction between the ions. With R denoting the distance between 
neighbors, and writing rij = Rρij, from (2.17) we obtain:

In (2.18) in the contribution of the repulsion we have included only the number z 
of the nearest neighbors. The sum in the bracket

(2.16)
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∑
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is referred to as the Madelung constant, which depends on the crystal structure. 
Hence, we obtain:

In the case of table salt one finds α ≈ 1.7. In the calculation of α, sometimes the 
convergence is slow, and summation tricks can be helpful.

Again, the equilibrium distance Ro is found from the condition ∂Utot/∂R = 0, 
finally yielding the energy

One finds ρ/Ro ≈ 0.1, which indicates the small range of the repulsive force. The 
expression in front of the bracket is referred to as Madelung energy.

Erwin Rudolf Madelung has been the first publishing such calculations in 1918. From 
1921 until his retirement in 1949 he was the Director of the Institute of Theoretical 
Physics at the University of Frankfurt.

The covalent bond represents the main type of bond in chemistry and in particu-
lar in organic chemistry. A very strong covalent bond is found between two car-
bon atoms in diamond with its bond energy of 7.3 eV. The pronounced directional 
dependence is characteristic, for example, in the case of the tetrahedral diamond 
structure of carbon, silicon, and germanium.

The covalent bond between two atoms occurs by means of a common pair of 
electrons having opposite spin. A simple example is the hydrogen molecule (H2). 
The theoretical understanding had to wait for quantum mechanics created in the 
1920s. In their famous paper from 1927, Walter Heinrich Heitler and Fritz London 
have applied quantum mechanics in the case of the covalent bond of the hydrogen 
molecule. Here the central point is the symmetry property of the wave function 
regarding the exchange of both particles and their exchange interaction, resulting 
from the indistinguishability (identity) of both electrons. Their paper is fundamen-
tal for the valence-structure theory of quantum chemistry. Subsequently, in par-
ticular Linus Carl Pauling has strongly shaped the field of quantum chemistry.

The metallic bond can be understood in terms of a continuing development of 
the covalent bond, where a “free bond electron” is distributed over many atoms. 
The high electric conductivity of metals represents an important indication of the 
relatively free motion of the conduction electrons (one to two electrons per atom) 
within the lattice of the positive ions. In the quantum-mechanical theory the differ-
ent contributions to the energy are taken into account:
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From left to right the following contributions are listed in (2.22): (1) the kinetic 
energy of all conduction electrons, (2) the electrostatic interaction between the 
ions, (3) the electrostatic electron-electron interaction, and (4) the electron energy 
in the potential V of the ions. Here the theory has to deal with a “many-body prob-
lem”, where great advances have been achieved during the last decades.

The hydrogen bond plays a role in certain chemical environments of hydrogen 
atoms, where the latter have transferred their electron to strongly electronegative 
neighboring atoms, such as, for example, fluorine, oxygen, or nitrogen. In this way 
an ionic-like bond appears. Because of the small diameter of a proton, this bond 
is only possible between two neighbors. It appears between the H2O-molecules 
in the case of ice crystals, as well as in a large number of organic compounds. 
The bond between the two chains of the DNA double-helix represents a prominent 
example.

Regarding the increasing strength of the types of bonding we note the following 
sequence:

van-der-Waals bond < hydrogen bond < metallic bond < ionic bond < covalent 
bond.
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Abstract  The quantized energy of the vibrations of the atoms in the crystal lat-
tice contributes to the specific heat and the thermal conductivity. As noted first by 
Albert Einstein, the energy spectrum of the phonons is given by Planck’s radia-
tion law, resulting in a distinct deviation from the classic law of Dulong and Petit. 
Subsequently, the Einstein model, based on a single phonon frequency, was 
extended by Peter Debye by including the complete phonon spectrum.

On close inspection, the structure of a crystal does not represent a mathematically 
ideal point lattice. Instead, the atomic or molecular building blocks are perma-
nently in motion. In some sense the crystal behaves more like a humming swarm 
of bees, where all bees still occupy spatially well ordered lattice sites. In a crystal 
each atom or molecule oscillates around a temporally average value of its spatial 
coordinates. In a popular model one imagines the crystal in the form of a three-
dimensional lattice of point-like masses, where two neighboring points are con-
nected with each other by little spiral springs. The total vibrational behavior of 
this three-dimensional arrangement of point-like masses and spiral springs can be 
separated into the complete set of elementary oscillations, referred to as “the nor-
mal modes”, which are very useful in describing the dynamic state of the crys-
tal. Each individual normal mode represents a “degree of freedom” of the crystal. 
At a temperature T, each degree of freedom carries the energy kBT, where kB 
denotes Boltzmann’s constant. A crystal consisting of N atoms has 3 N vibrational 
degrees of freedom. Hence, the total vibrational energy U of the crystal amounts 
to U =  3NkBT. This relation is also referred to as the law of Dulong and Petit. 
The prefactor 3NkB indicates the heat capacity arising from the lattice vibrations, 
which is independent of temperature, according to this law. Already in 1819 the 
two Frenchmen Pierre Louis Dulong and Alexis Thérèse Petit had noted, that the 
specific heat of solids is nearly independent of temperature and connected with 
their molar mass.

Chapter 3
Permanent Movement in the Crystal Lattice

© Springer International Publishing Switzerland 2015 
R.P. Huebener, Conductors, Semiconductors, Superconductors,  
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9_3



32 3  Permanent Movement in the Crystal Lattice

3.1 � Quantum Theory: Max Planck and Albert Einstein

So far we have restricted the discussion to the classical limit, and we have ignored 
quantum theory. Next we will address quantum theory. As was shown for the first 
time by Max Planck, the energy of light and heat radiation is quantized, each energy 
quantum having the energy E = hν, which is proportional to the frequency ν of the 
radiation. Here we have introduced Planck’s constant h, which is a fundamental 
constant in physics. In his theoretical considerations, achieving a first result during 
December 1900, Planck just took the consequent conclusions from very precise opti-
cal measurements published shortly before. As a final result of these efforts Planck 
was able to formulate his famous radiation law. In this way he succeeded in unifying 
the two theoretical laws which were already known but valid only in certain limit-
ing cases: namely Wien’s radiation law in the limit of small wavelengths and the 
Rayleigh-Jeans radiation law in the limit of large wavelengths (Fig. 3.1).

The optical measurements had been carried out by a group of physicists (Ludwig 
Holborn, Otto Lummer, Ernst Pringsheim, Heinrich Rubens, Wilhelm Wien, and others) 
at the Physikalisch-Technische Reichsanstalt (German Bureau of Standards) in Berlin 
Charlottenburg (Fig. 3.2). At that time, in the Reichsanstalt, which was founded in 1887 
mainly at the initiative of Werner Siemens and Hermann von Helmholtz, a reliable stand-
ard for the light intensity of the radiation emitted by hot and glowing pieces of metal was 
intended to be developed in a basic research program. This subject had become important 
because of the rapid spreading of the artificial lighting technology.

It was Albert Einstein, who in 1905 for the first time strictly applied the concept of 
the energy quantum to the propagation of electromagnetic waves and who introduced 
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Fig. 3.1   The radiation laws of the black body according to Planck, Wien, as well as Rayleigh 
and Jeans. Spectral radiation intensity plotted versus the frequency
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Fig. 3.2   Radiation test laboratory in the Physikalisch-Technische Reichsanstalt in Berlin around 
1900. (Photo Physikalisch-Technische Bundesanstalt Braunschweig and Berlin)

Fig. 3.3   Max Planck (left) and Albert Einstein (right). (Photos Deutsches Museum, München)
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the idea of light quanta or photons, as they are called also (Fig. 3.3). Based on these 
concepts he could convincingly explain the photoelectric effect. Due to this effect, 
during irradiation with light of a frequency above a certain limiting value, electrons 
are emitted from the surface of metals. The energy of the emitted electrons only 
depends on the light frequency, whereas the light intensity only affects the number 
of the emitted electrons. In 1921 Einstein was awarded the Nobel Prize in Physics for 
his theory of the photoelectric effect. Subsequently, Einstein’s hypothesis of the light 
quanta has been confirmed impressively by many experiments.

How strongly Einstein’s ideas have revolutionized the physical thinking at the 
beginning of the last century, is well illustrated by the following quotation from 
the document written by Max Planck on June 12, 1913, proposing Albert Einstein 
to become an Ordinary Member of the Prussian Academy of Science:

… In summary one can say, that among the great problems, of which modern physics 
is so rich, there is hardly one, about which Einstein had not expressed an opinion in an 
important way. That in his speculations occasionally he may have gone too far, as for 
example in his hypothesis of the light quanta, one must not blame on him too heavily; 
since without daring to take a risk once in a while, a true advancement cannot be intro-
duced also in the exact sciences. …

This document carries the signatures of Planck, Nernst, Rubens, and Emil Warburg.

3.2 � Specific Heat of the Crystal Lattice, Phonon Spectrum

Following these remarks on quantum theory, we return to the crystal lat-
tice. The energy quantization of the electromagnetic waves should apply sim-
ilarly also to vibrations in the crystal lattice. Again, it was Albert Einstein who 
took up this idea for the first time in 1906. He proposed that the elements at 
each site of the crystal lattice oscillate with a single frequency, the Einstein fre-
quency νE = ωE/2π, and that the vibrational energy is quantized again in units 
E = hνE = �ωE (with � = h/2π). The quanta of the vibrational energy in crystals 
are referred to as phonons. According to the Einstein model, the crystal energy U 
due to the lattice vibrations is given by

Here we assume, that the crystal consists of N atoms. Hence, there are 3N vibra-
tional degrees of freedom. 〈nω〉 is the probability, that a vibrational state with the 
angular frequency ω and the quantized energie �ω is occupied. This probability is 
given by the Bose-Einstein distribution

to which we will return below again. The distribution (3.2) had been proposed by 
Planck for the first time in his famous law of electromagnetic radiation.

In his model of the quantized energy of the lattice vibrations, in (3.1) and (3.2) 
Einstein at first had assumed only a single frequency ω = ωE. Only a few years 

(3.1)U = 3N �nω� �ω

(3.2)�nω� =
1

e�ω/kBT − 1
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later, this Einstein model has been extended by Peter Debye, who assumed a con-
tinuous frequency spectrum of the vibrations, ranging between zero and a charac-
teristic maximum frequency, the Debye-frequency ωD. Now the vibrational energy 
of the crystal is given as an integral over all phonon frequencies

Here D(ω) is the number of vibrations per frequency interval, also referred to as 
density of states. (In Chap. 6 we will return to the calculation of the density of 
states D(ω)). As an example, in Fig. 3.4 we show the spectral energy density of the 
phonons of a germanium crystal.

In this way Debye was able for the first time to explain the temperature dependence 
of the total energy of the lattice vibrations in crystals and in particular the famous T 3 
behavior of the specific heat at low temperatures, in excellent agreement with experi-
ment. Again, Planck’s energy quantization, now applied to the lattice vibrations, has 
played a central role, and the classical law of Dulong and Petit has been eliminated.

The measurements of the specific heat of crystals, together with the Debye model, 
had created a significant advance of the general acceptance of quantum theory. For 
example, it was only after these measurements that the later Nobel Laureate Walther 
Nernst became convinced that Planck’s quantum theory was more than just an interpo-
lation formula and that it represented new fundamental physics. The fact, that Planck 
had based his revolutionary new idea on the physics of heat radiation, had resulted from 
the relatively high level of experimental optics already reached at that time.

In the years 1910–1916 in Berlin, in an extensive research program together with many 
collaborators, Walther Nernst systematically investigated the specific heat of many solid 
materials at low temperatures, confirming the quantum theory. In the meantime, Nernst 

(3.3)U =

ωD∫

0

dωD(ω)�nω��ω

Fig. 3.4   Spectral energy 
density of the phonons in 
a germanium crystal at 
the temperature of 10 K 
according to the Planck 
radiation law, plotted versus 
the phonon frequency ν
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had recognized clearly the fundamental importance of quantum theory. Therefore, he also 
organized the first large conference dealing with this subject, the famous First Solvay-
Conference on “The Theory of radiation and the quanta” held in Brussels from October 
30 until November 3, 1911. For this conference Nernst had been able to enlist the finan-
cial support of the Belgian industrialist Ernest Solvay.

The important central idea during the development of quantum mechanics in the 
1920s was the strict limitation of all statements about the atomic world to observ-
able facts. The fact that the elementary particles such as electrons, protons, neu-
trons, etc., are exactly identical, must be centrally incorporated into the theory. 
If the same two elementary particles are exchanged, the result must remain unaf-
fected. Hence, the theoretical qualities must have certain symmetry properties. 
This requirement has severe consequences for the probability distribution of the 
different states of the systems, and new concepts for quantum statistics are needed. 
The first steps in this direction originated from the Indian physicist Satyendra Nath 
Bose. In 1924 he had derived Planck’s radiation law in a new way. Since he ran 
into difficulties during the publication of his results, he approached Einstein ask-
ing him for support. Einstein felt enthusiastic about Bose’s paper and arranged 
for its publication in the Zeitschrift für Physik. Subsequently, starting from Bose’s 
results, in some additional papers Einstein pointed out the formal similarity 
between radiation and an ideal gas. Today, the resulting concept of quantum statis-
tics is referred to as Bose-Einstein statistics.

Bose-Einstein statistics apply to exactly identical elementary particles with zero 
or integer angular momentum. Hence, these particles are also called bosons. A sin-
gle quantum state can be occupied by an arbitrarily large number of bosons. Since 
phonons have zero angular momentum, they belong to this kind of particles. Light 
quanta or photons are bosons also, since their angular momentum is equal to one. 
However, electrons require a different kind of quantum statistics, as we will dis-
cuss in Chap. 5.

The energy spectrum of phonons is described also by Planck’s radiation law, 
similar to the photon spectrum of a heat radiator (Fig. 3.4). However, compared 
with the spectrum of electromagnetic radiation, the phonon spectrum displays an 
important difference, since its frequencies are restricted to the range below a char-
acteristic maximum frequency, the “Debye frequency” ωD. This maximum fre-
quency ωD simply results from the discrete lattice structure of the crystals. Below 
the nearest-neighbor distance of the crystal lattice, length scales for the lattice 
vibrations are meaningless, resulting in the definition of a minimum value of the 
wavelength and a corresponding maximum value of the vibration frequency. The 
resulting maximum value ħ ωD of the phonon energy is referred to as the Debye 
energy. Since, on the other hand, the electromagnetic waves propagate in a contin-
uous medium without any lattice structure, in this case we are not confronted with 
corresponding minimum or maximum values of the wavelength and the frequency, 
respectively.

One finds the density of states D(ω) from the number of the elastic natural fre-
quencies fitting exactly into the volume of the crystal, say, into a cube with the edge 
length L. Furthermore, in K-space the increment of the volume due to the frequency 

http://dx.doi.org/10.1007/978-3-319-09141-9_5
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increment dω must be considered. (Here and in the following, K denotes the pho-
non wave vector). In this way one finds D(ω) ∼ ω2. By inserting 〈nω〉 from (3.2) 
into (3.3), finally we obtain the vibrational energy of the crystal. The specific heat 
(at constant volume) of the lattice vibrations derived from this energy is given by

Here, θ = �ωD/kB denotes the Debye-temperature. In this context, introducing the 
quantity z = �ω/kBT is convenient (zD = �ωD/kBT = θ/T). At low tempera-
tures (T ≪ θ) the expression in (3.4) yields CV ∼ T

3, in good agreement with the 
experimental data. On the other hand, at high temperatures (T ≫ θ) from (3.4) one 
obtains the constant result CV = const, i.e., the classic law of Dulong and Petit.

The dependence of the phonon frequency ω on the wave vector K of the pho-
nons is obtained from a theoretical model, in which the crystal lattice is approxi-
mated by point-like masses connected with each other by elastic spiral springs. In 
the simplest case of a linear chain with the lattice constant a and the same point-
like masses m, connected with each other by means of the same spring constant f, 
one finds the dispersion relation

In the case of a discrete lattice with the distance a between neighbors, the wave 
vector K is confined to the range of the first Brillouin zone, i.e., in the case of the 
one-dimensional chain to the range −π

a
≤ K ≤

π

a
. In the limit of small values of 

the wave vector, one obtains from (3.5):

The factor 
(
a2f
m

)1
/2 represents the sound velocity. Equation (3.6) indicates the

 acoustic limit, and (3.5) characterizes an acoustic mode.
In the simplest case we only have to deal with a single atom per elementary cell 

of the crystal lattice. The vibration of the atom can occur within all three spatial 
dimensions. Hence, the phonons propagating through the crystal are also character-
ized by different spatial directions of the lattice vibrations. In the case of “longitu-
dinal phonons” the atoms of the crystal lattice vibrate parallel to the propagation 
direction of the wave. On the other hand, for the “transverse phonons” the vibration 
occurs along each of the two principal directions perpendicular to the propagation 
direction, respectively. In this way the three “acoustic phonon modes” must be dis-
tinguished: one longitudinal mode and two transverse modes. They are referred to as 
acoustic modes, since in the limit of large wavelengths the corresponding phonons 
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propagate with the velocity of sound (Fig. 3.5). (Because of the cubic face-centered 
symmetry in the case of the example of copper, the boundary of the first Brillouin 
zone is located at K = 2π/a, in contrast to K = π/a in the case of the linear chain or 
the simple cubic symmetry with the lattice constant a).

If the crystal lattice contains more than a single atom per elementary cell, the 
“optical modes” must be added. In the case of the optical modes, the atoms within 
the elementary cell oscillate in opposite phase relative to each other. If the atoms 
carry opposite electric charge, as in the case of the ionic crystals, due to these 
oscillations electric dipole moments appear, which affect the optical properties. In 
the case of p atoms per elementary cell, there are a total of 3p different phonon 
modes: 3 acoustic modes and 3p – 3 optical modes.

Experimentally, the energy spectra of the phonons are determined mostly by means of 
inelastic neutron scattering in crystals. The pioneering experiments were performed by 
Bertram Neville Brockhouse from McMaster University in Canada. He carried out his 
first measurements in 1955 with aluminum. One needs to measure the change in energy 
and momentum of the neutrons as they emit or absorb a phonon within the crystal. The 
impressive advances in the field of neutron spectroscopy, which to a large extent were 
due to Heinz Maier-Leibnitz and his group first at the Technical University of Munich 
in Garching and later at the Laue-Langevin Institute in Grenoble, have turned out to be 
extremely fruitful.

Max von Laue and his colleagues in Munich, prior to their famous X-ray diffrac-
tion experiment, were very concerned at the time by the following obvious ques-
tion: Is it not likely that the perturbation of perfect order in the crystal lattice due 
to the permanent lattice vibrations really ruins the observation of X-ray diffrac-
tion? However, the clear and positive experimental result gave a decisive answer 
to this question. In 1913 Peter Debye wrote a series of papers theoretically treat-
ing the role of the thermally excited vibrations of the crystal lattice as it affects 
the diffraction of X-rays. During the 1920s this subject was taken up again by the 
Swedish theorist Ivar Waller. Both scientists have shown that the thermal lattice 
vibrations only effect a reduction of the maximum intensity of the diffracted beam, 

Fig. 3.5   Phonon angular frequency ω = 2πν plotted as a function of the wave number K of the 
phonons (“dispersion curves”) of a copper crystal. The wave vector is oriented along the direc-
tion of the cube edges of the cubic unit cell of the crystal. L denotes the longitudinal and T the 
transverse phonon branch. a = 0.361 nm is the distance between neighbors in the cubic crystal 
lattice of copper (B.N. Brockhouse)
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whereas the linewidth of the diffracted beam remains the same. The reason for this 
is simply that the thermal motion of the many atoms in the lattice is completely 
uncorrelated, leading effectively to a cancellation between the oscillations of the 
different atoms. This reduction of intensity of the diffracted beam is quantified in 
terms of the “Debye-Waller factor”. This factor indicates, furthermore, that the 
intensity of the diffracted beam strongly increases with decreasing temperature.

The Debye-Waller factor factor played a key role later during the discovery of 
the Mössbauer effect. As a young Ph.D. student in Munich Rudolf L. Mössbauer 
has been asked by Heinz Maier-Leibnitz, his thesis advisor, to study the resonance 
absorption of γ-radiation in atomic nuclei. Mössbauer was supposed to find out if 
the γ-radiation emitted by an atomic nucleus of the source is resonantly re-absorbed 
by another atomic nucleus of the same element in the absorber. For the observation 
of this effect it is necessary for there to be sufficient overlap between the spectral 
energy widths of the γ-radiation for the emission and the absorption processes. Here 
the main issue centered around the question of whether this required overlap disap-
pears, perhaps completely, because of the recoil during the emission and absorption 
of the γ-quantum, thereby eliminating the possibility of resonance absorption. It is 
interesting that initially in particular Heinz Maier-Leibnitz had the idea of enhanc-
ing this energetic overlap by increasing the temperature and thereby enlarging the 
thermal linewidth of the γ-radiation. However, this idea was soon discarded, and 
Mössbauer instead cooled the source and the absorber with liquid oxygen. This then 
turned out to be crucial, and Mössbauer could observe for the first time the recoil-
free nuclear resonance fluorescence. He performed his first experiments using the 
129-keV-radiation of the iridium isotope 191Ir, with the iridium atoms implanted 
within a crystal. Again, it was the elimination of the influence of the phonons on 
the linewidth of the Mössbauer line, which had produced the effect he was look-
ing for, exactly as prescribed by the Debye-Waller factor. The question of the recoil 
now became irrelevant, since the iridium atoms were solidly implanted within the 
host crystal. The extremely narrow energy width of the Mössbauer line is finally 
limited only because of the “natural line width”, resulting from the finite lifetime of 
the quantum mechanical state due to the Heisenberg uncertainty relation. Because 
of this extremely narrow linewidth a large number of highly sensitive measure-
ments has become possible in many areas. An early spectacular case is the detection 
of the energy change in the quanta of γ-radiation after they have travelled upwards 
a certain distance in height in the gravitational field of the Earth. In 1960 this was 
detected by the American physicists Robert V. Pound and Glen A. Rebka. In their 
experiment the distance in height travelled was 22.5 m.

3.3 � Thermal Conductivity of the Crystal Lattice

In crystals phonons also contribute to the transport of heat energy. In electrical 
insulators they represent the only mechanism determining the heat conductiv-
ity. The phonon contribution κG to the heat conductivity of a crystal is closely 

3.2  Specific Heat of the Crystal Lattice, Phonon Spectrum
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connected with the lattice component C of the specific heat. This is indicated by 
the simple formula of the kinetic theory of κG:

Here v is the velocity and ℓ the mean free path of the phonons. As a model, we 
can think about phonons in terms of a gas experiencing many collisions between 
its particles. Because of the many collisions, in general the heat transport pro-
vided by the phonons is a diffusive process. With increasing temperature the num-
ber of thermally excited phonons, and hence the collision probability among the 
phonons, increases. As a result, with increasing temperature the heat conductivity 
decreases. However, at very low temperatures we have an exception. In this case, 
the number of phonons is very small, the collisions between them become unim-
portant, and it is only the number of phonons which matters. Now the mean free 
path ℓ is limited by the collisions with the surface of the crystal, and it becomes 
independent of the temperature. In this regime we have C∼T

3 and because of 
(3.7) κG ~ T3.

At higher temperatures, an exact theoretical treatment shows, that a novel pro-
cess must be taken into account, the “umklapp-process” (U-process). It effects, 
that the directed momentum of the phonons is transferred to the crystal and is lost 
for the heat transport. Denoting the wave vectors of the phonons participating in 
the umklapp-process by Ki, we obtain

G is a vector in the reciprocal lattice. Processes with G = 0 are referred to as 
N-processes. The concept of the umklapp-processes has been proposed for the first 
time in 1929 by Rudolf E. Peierls, who was born in Berlin and later emigrated to 
England (In Chap. 2 in the case of (2.9) we have dealt already with a similar case, 
in which during a Bragg reflection the momentum of the photon is transferred to 
the crystal).

The umklapp-processes yield an important contribution only if K1 +K2 ≥
1

2
G.  

However, at low temperatures they are frozen out, since phonons satisfying this 
condition are not thermally excited. On the other hand, at high temperatures 
(T > θ) the U-processes are dominant. Their number increases proportional to the 
number of phonons, which in turn is proportional to temperature. Hence, for the 
mean free path ℓ of the phonons one finds ℓ ∼ T

−1. Because C =  const in this 
case, from (3.7) we obtain: κG ∼ T

−1
. The overall result for the temperature 

dependence of the heat conductivity of the lattice is a curve with a distinct maxi-
mum (Fig. 3.6). For example, in sapphire (Al2O3) this maximum is located near 
30 K.

Diamond is a material with an extremely high heat conductivity. Therefore, a 
special effort has recently been concentrated on the development of thin diamond 
layers, which are highly interesting technologically for cooling purposes because 
of their large heat conductivity.

(3.7)κG =
1

3
v Cℓ .

(3.8)K1 +K2 = K3 ±G.

http://dx.doi.org/10.1007/978-3-319-09141-9_2
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3.4 � Ballistic Phonons

As we have discussed before, the collision processes between phonons become 
more and more rare at sufficiently low temperatures. In this regime phonons can 
propagate freely over distances as large as, say, about mm to cm with sound veloc-
ity. In this case we are dealing with ballistic phonons. The propagation of ballistic 
phonons can be observed easily, if a heat pulse is applied locally to the front sur-
face of a well-cooled crystal. The generated phonon pulse can be detected locally 
at the back of the crystal after the proper time of flight (Fig. 3.7). For generation of 

Fig.  3.6   Temperature dependence of the heat conductivity of an electrical insulator 
(schematically)
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Fig. 3.7   Ballistic propagation of phonons at low temperatures. a Scheme of an experiment to 
measure the propagation time of the phonons. On the left hand side of the crystal the phonons are 
generated by means of a heat pulse applied to the source S, and subsequently they are detected 
on the right hand side of the crystal with the detector D. A thin metal layer deposited on the 
crystal surface can act as a source by means of the application of an electric current pulse. A 
deposited thin layer, the electric resistance of which responds sensitively to pulsed temperature 
changes, can also serve as detector. b A pulsed electron beam or laser beam, directed at the crys-
tal surface at one side of the crystal, can also be used for the generation of a phonon pulse. If 
furthermore the beam is scanned over the crystal surface, while the detector remains locally fixed 
on the opposite side of the crystal, the ballistic propagation of the phonons can be studied as a 
function of the propagation direction in the crystal
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the heat pulse, a pulsed laser beam or electron beam directed on the crystal surface 
can be used. Due to the anisotropy of the elastic crystal properties, the ballistic 
propagation of the phonon energy displays distinct maxima along certain direc-
tions within the crystal. This effect is referred to as phonon focusing, and can be 
easily demonstrated using the method we have just discussed. The only require-
ment is that the beam is scanned laterally over the crystal surface, while the 
detector is fixed locally at the back of the crystal. In Fig. 3.8 we show a typical 
example.

If the crystal is cooled to lower and lower temperatures, eventually only the 
“zero-point motion” of the building blocks of the crystal remains. The zero-point 
motion follows from the quantum mechanical uncertainty relation, which requires 
that a spatially fixed object always displays a finite uncertainty of its momentum. 
The resulting zero-point energy of an oscillator at frequency ν amounts to ½ hν.

Fig. 3.8   Image of the intensity of the ballistic phonons in dependence on the propagation direc-
tion in a silicon single crystal at a temperature of 2.0 K (“phonon imaging”). While the crystal 
surface on one side is scanned with the electron beam, the intensity of the ballistic phonons is 
recorded on the opposite side of the crystal with a locally fixed detector in dependence on the 
coordinate point of the scanned crystal surface. Bright regions correspond to high intensity. The 
spatially diagonal line of the cubic unit cell of the crystal is oriented perpendicular to the scanned 
surface of the crystal
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Abstract  Application of quantum mechanics to the electrons in the periodic 
potential of the crystal lattice yields the energy bands separated from each other 
by forbidden energy gaps. Depending on how the energy states are occupied by 
electrons, we deal with electrical conductors, semiconductors, or insulators.

After the principles of the new quantum mechanics had been established during 
1925 and 1926 mainly by Werner Heisenberg from Germany, Erwin Schrödinger 
from Austria, and Paul Adrien Maurice Dirac from England, there developed a 
strong interest in applying the theory to as many different cases as possible. Only 
by applying the theory to a large number of examples could familiarity with the 
new concepts be achieved. After simple cases such as the hydrogen atom or the 
hydrogen molecule had been treated, more complex problems were tackled. At 
that time important developments began in Leipzig.

In 1927, at the young age of only 26 years, Heisenberg had already accepted 
the offer of a Chair of Theoretical Physics at the University of Leipzig. Here he 
quickly attracted a group of extremely gifted and creative young scientists, who 
subsequently had a dominant impact on further developments in physics. At the 
beginning of 1928 Heisenberg had already recognized that quantum mechanics 
would play an important role for crystals. The Swiss scientist Felix Bloch, born 
in Zürich, had just joined Heisenberg’s group as a Ph.D. student (Fig.  4.1). For 
his thesis Heisenberg proposed two possible subjects: Bloch could take up the 
quantum mechanical theory of ferromagnetism or the electron theory of metals. 
Since Bloch knew that Heisenberg had already worked out the basic parts of the 
first subject, he preferred the second one. Only in this way could he hope to come 
up with a significant contribution of his own. Indeed, soon afterwards Heisenberg 
published his famous theoretical paper which became the starting point of the 
modern theory of ferromagnetism.

The quantum mechanical theory of electrons in crystals requires the solution of 
the Schrödinger equation in the case of the spatially periodic crystal lattice. In this 
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case, the energy spectrum of the electrons is determined by the periodic potential 
U(r) of the crystal atoms. Then the Schrödinger equation is

Here m denotes the mass and ψ(r) the wave function of the electrons. Δ is the 

Laplace operator �ψ =
∂
2ψ

∂x2
+

∂
2ψ

∂y2
+

∂
2ψ

∂z2
 and ε the energy of the electrons. The 

potential energy U(r) must satisfy the periodicity condition (2.8). In the theoreti-
cal treatment we distinguish between two different important approximations: the 
bound-state approximation (after Felix Bloch) and the free-electron approxima-
tion (after Rudolf E. Peierls). In both cases we deal only with the electrons in the 
highest available energy range, and not with the lower levels of the strongly bound 
states at the individual atoms at the sites of the crystal lattice.

4.1 � Approximation with Bound Electrons (Felix Bloch)

In his dissertation, the results of which he published in 1928, Felix Bloch formu-
lated the quantum mechanical foundation of the theory of electrons in crystal lat-
tices. Due to the periodic potential of the crystal lattice in all three dimensions, the 
de Broglie waves of the electrons are spatially modulated following the rhythm of 
the lattice structure. In the approximation with bound electrons one assumes, that 

(4.1)−
�
2

2m
�ψ(r)+ U(r)ψ(r) = εψ(r).

Fig. 4.1   Werner Heisenberg (left), (Photo Deutsches Museum) and Felix Bloch (right), (Photo 
Nobel Museum)

http://dx.doi.org/10.1007/978-3-319-09141-9_2
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the electrons with the highest energy remain located most of the time at a certain 
lattice site, and only occasionally move to a neighboring lattice site, because of the 
small interaction between both locations. Their binding energy at a certain lattice 
site is assumed to be much larger than their kinetic energy. In this case the solution 
of the Schrödinger equation found by Bloch is based on the wave function ϕO(r) 
of the quantum mechanical states of the electrons of the isolated individual atom 
or molecule with their corresponding discrete energy levels. We denote the coor-
dinate of the electron by r and the coordinate of the atom or molecule (i.e., of the 
lattice site) by ρ. The solution proposed by Bloch in form of the superposition of 
the atomic wave functions ϕO(r − ρ) is then given by:

This ansatz leads directly to the extended periodicity condition

with the phase factor eikρ. The function ψk(r) in (4.2) represents the famous Bloch 
ansatz for the quantum mechanical wave function of the electrons, upon which all fur-
ther theoretical developments for crystals have since been built. The fact, that accord-
ing to (4.3) a phase factor eikρ “…can always be separated from the eigenfunctions, 
and where the rest only displays the periodicity of the lattice, can be vividly expressed 
such, that we are dealing with planar de-Broglie waves, which are modulated by 
the rhythm of the lattice structure” (the words of Felix Bloch in his paper About the 
Quantum Mechanics of the Electrons in Crystal Lattices, published in 1928, here in 
English translation). With the wave function (4.2) one finds for the electron energy εk:

Here εO denotes the electron energy in the unperturbed individual atom. The cor-
rection α is

Ua(r) is the potential energy in the unperturbed individual atom. As we see from 
Fig. 4.2, due to the presence of the atoms at the neighboring lattice sites, we have 
Ua(r) > U(r), and therefore α > 0. The contribution α represents an energy correction 

(4.2)ψk(r) =

∑
ρ
e(ikρ)ϕO(r − ρ)

(4.3)ψk(r + ρ) = eikρψk(r)

(4.4)εk = εO − α− 2β
(
cos kxa+ cos kya+ cos kza

)
.

(4.5)−α =

∫
dτϕ∗

O(r)[U(r)− Ua(r)]ϕO(r).

Fig. 4.2   Comparison of the 
energy of an electron, Ua(r), 
in the case of an isolated 
individual atom (solid line), 
and the case of the presence 
of atoms at the neighboring 
lattice sites, U(r) (dashed 
curve)

4.1  Approximation with Bound Electrons (Felix Bloch)
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due to the neighboring atoms. In the case of the second correction in (4.4) we have 
assumed simple cubic symmetry of the lattice, and have combined the contributions 
of the nearest neighbors at the distances ±a in x-, y-, and z-direction, respectively. 
The factor β contains the interaction between the nearest neighbors, and is given by

In general we have again β > 0.
Because of the interaction between each atom or molecule and its neighbors 

within the crystal lattice, the discrete energy levels split up and broaden into 
energy bands. From (4.4) we see, that the lowest energy value is ε = εO − α − 6β. 
From the highest energy value ε =  εO − α +  6β we see, that the width Δε of 
the energy band amounts to Δε = 12 β. Since the overlap between ϕ∗

O(r − a) and 
ϕO(r) increases with decreasing lattice constant a, then also the quantity β and, 
hence, the bandwidth Δε increases. In Fig. 4.3 we show this behavior schemati-
cally in the case of a one-dimensional chain.

So far we have considered only the interaction of an atom or molecule at a cer-
tain lattice site with its nearest neighbors. In order to achieve a higher accuracy 
of the approximation, one can include also the interaction with the next-nearest 
neighbors (and perhaps beyond those).

(4.6)−β =

∫
dτϕ∗

O(r − a)[U(r)− Ua(r)]ϕO(r).

Fig. 4.3   Electronic 
band structure of a one-
dimensional straight chain 
of hydrogen atoms with a 
distance between neighbors 
of 0.3, 0.2, and 0.1 nm, 
respectively. The electron 
energy ε is plotted as a 
function of the wave vector 
k. For a single isolated 
hydrogen atom the electron 
energy is −13.6 eV. The 
broadening of this energy 
level results in the energy 
bands. The energy width 
of these bands increases 
strongly with decreasing 
distance between neighboring 
atoms (R. Hoffmann)
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At the end of our discussion of the bound-state approximation we note, that the 
interaction with the atoms or molecules at the neighboring lattice sites results in 
a broadening of the discrete energy values, associated with an isolated atom at a 
lattice site, into energy bands, the bandwidth of which increases with decreasing 
distance between the nearest neighbors.

4.2 � Nearly-Free Electron Approximation (Rudolf Peierls)

In the other important limiting case, the approximation with free electrons, dis-
cussed for the first time by Rudolf E. Peierls also in Leipzig, nearly-free electrons 
are assumed, and the perturbation by the periodic potential of the crystal lattice is 
considered to be small. In this case the electrons can propagate freely through the 
crystal in the form of matter waves. However, this free propagation is interrupted 
if the matter waves undergo Bragg reflection at the crystal lattice.

If we completely ignore the potential energy U(r) in the Schrödinger equation 
(4.1), we obtain as solution the wave function of free electrons:

By inserting (4.7) into (4.1), in the case U = 0 one finds the electron energy

The wave function (4.7) represents a plane wave with the wave vector k. 
However, a small periodic potential U(r) in (4.1) causes a strong effect, if the 
wave vector k lies close to the boundary of a Brillouin zone. At the zone bound-
ary, the wave vector k exactly satisfies the Bragg condition (2.9), such that the 
wave experiences Bragg reflection. As an example, schematically indicated in 
Fig. 4.4, we take the point G1 of the reciprocal lattice and the zone boundary at 
G1/2. Due to the Bragg reflection, the wave vector k = G1/2 changes from k to 
k′ = k – G1 = −G1/2.

In the presence of the periodic potential U(r), the solution of the Schrödinger 
equation can be written as superposition of plane waves:

(4.7)ψ(r) = eikr.

(4.8)ε = �
2
k
2

/
2m.

Fig. 4.4   Bragg reflection 
from k = G1/2 to 
k′ = k − G1 = −G1/2

4.1  Approximation with Bound Electrons (Felix Bloch)

http://dx.doi.org/10.1007/978-3-319-09141-9_2
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If we express the small periodic potential U(r) of the crystal lattice in the form of 
(2.7), then in the case k = G1/2 one obtains the electron energy

Between the energies εk + uG1
 and εk − uG1

 there appears a forbidden energy 
gap, in which the solution (4.9) of a propagating wave does not exist. The spec-
tral energy curve ε(k) always approaches the boundaries of the Brillouin zones 
with zero slope. The magnitude of the energy gap increases with increasing coef-
ficient uG1

in (2.7), i.e., with increasing potential energy U(r) of the crystal lattice. 
In Fig. 4.5 we show the appearance of the forbidden energy gaps due to the Bragg 
reflection at the periodic potential of the crystal and the comparison with the case 
of the perfectly free electrons.

(4.9)ψ(r) =
∑

k

cke
ikr.

(4.10)ε = εk ± uG1
.

Fig. 4.5   Energy bands in crystals. In the crystal lattice the continuous energy spectrum of free 
electrons (a) is divided into different energy bands, which are separated from each other by for-
bidden energy gaps (b). E energy; k wave vector; a distance between neighbors in the crystal 
lattice

Fig. 4.6   Energy-band model of the electric conductivity of crystals. a A completely filled energy 
band having a large energy distance to the next higher, but still completely empty energy band, 
yields an electric insulator. b A completely filled energy band with only a small energy distance 
to the next higher, but still nearly empty energy band, results in a semiconductor. c A well, but 
not yet completely filled energy band yields the electric conductance of a metal

http://dx.doi.org/10.1007/978-3-319-09141-9_2
http://dx.doi.org/10.1007/978-3-319-09141-9_2
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In 1931 Allan H. Wilson from England had joined Heisenberg’s group in 
Leipzig, and finally it was he who provided the definite answer to the question, 
of whether a crystal is an electrical conductor, a semiconductor, or an insulator 
(Fig.  4.6). According to his proposal, which then turned out to be correct, the 
energy bands of the electrons in a crystal are responsible for the differences in the 
electrical conductivity. Here the decisive argument is based on the fact, that the 
preferential motion of the electrons along a certain direction (of an applied elec-
tric field) is only possible, if the electronic states of the energy spectrum relevant 
under the non-equilibrium exist and can be occupied. If a band is only partly filled 
with electrons we have metallic electrical conductivity. On the other hand, one 
obtains an electrical insulator, if all energy bands are completely filled with elec-
trons, and if at the same time no empty band exists nearby along the energy axis. 
Any band which is completely filled cannot contribute to the electrical conductiv-
ity, since the distribution of the velocities of all electrons in the band cannot be 
changed. However, in order to conduct an electrical current, the velocities of the 
electrons must be redistributed in favor of the flow of current, which is impos-
sible for a completely filled band, since unoccupied energy values are not avail-
able. There then remains as an interesting situation, the case where an empty 
band exists energetically close on top of a filled band, such that electrons can be 
transferred from the lower to the upper band by means of their thermal excitation 
energy. Hence, the energy gap between both bands must be sufficiently small. In 
this case we deal with a semiconductor, a subject we will discuss in Chap. 6.

For the theoretical physicists in Leipzig it has taken only 3 years to solve the 
problem of the electrical conductivity of crystals in terms of the energy bands of 
the electrons.

4.2   Nearly-Free Electron Approximation (Rudolf Peierls)

http://dx.doi.org/10.1007/978-3-319-09141-9_6
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Abstract  The classical Drude-Lorentz model could explain some aspects of the 
electronic properties of metals such as the Wiedemann-Franz law. However, quan-
tum statistics and the Fermi distribution of the electron energies turned into the 
key for the electronic theory of metals, including the important concept of the 
Fermi surface in momentum space. Over a wide temperature range the electronic 
transport properties of metals are dominated by the interaction between electrons 
and phonons (Bloch-Grüneisen law). Thermoelectricity (Peltier and Seebeck 
effect) is discussed briefly.

5.1 � Drude-Lorentz Model

Before the quantum mechanical foundations discussed in Chap. 4 were developed, 
there already existed classical models for describing the behavior of electrons in 
metals. Here the dominating model was due to Paul Drude and Hendrik Antoon 
Lorentz. The electrons in a metal were assumed to represent an ideal gas which 
can move freely within the crystal lattice. Further, only one kind of mobile carriers 
of negative electric charge was assumed to exist. In some way, the presence of the 
atoms of the crystal lattice was ignored. However, they should occasionally result 
in collisions with the mobile electrons. In this way one could arrive at a finite 
value of the “electron mean free path” and, hence, a finite electrical conductivity.

In an electric field E the electrons in a crystal experience the force

Here k denotes the wave vector and e the charge of the electrons. The quantity ħk 
is the mechanical momentum of the electrons. According to (5.1), after the time 
Δt the wave vector increases by the amount Δk. In the absence of any scatter-
ing processes, the increment Δk will grow further and further. However, since 
electrons always experience scattering processes (due to phonons or defects in the 

(5.1)F = �
dk

dt
= −eE.
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crystal lattice), (5.1) is valid only during a limited time interval. This time interval 
is the average time τ between two scattering events, and one finds

Here m denotes the mass and Δv the drift velocity of the electrons. Together with 
(5.1) one obtains for the electric current density j:

where n denotes the density of the electrons. With the electrical conductivity σ 
from the relation j = σ E one finds:

As the result we obtain Ohm’s law, based on the average “relaxation time” τ, 
assumed to be independent of the electric field E.

Since electrons also carry heat energy in addition to their electric charge, they 
also contribute to the heat conductivity of metals. This contribution of the elec-
trons represents a second important mechanism of heat conduction, which must 
be taken into account in metals, in addition to the heat transport by the phonons, 
which we have discussed in Chap.  3. Often the contributions from both mecha-
nisms are of similar magnitude. Since the transport of heat energy and of electric 
charge is due to the same electrons, one expects that the electronic part of the heat 
conductivity and the electrical conductivity will be proportional to each other, in 
agreement with experiment. This can be demonstrated using the following argu-
ment. In a temperature gradient dT/dx an energy current of density w flows from 
the hot to the cold side, given by 

Here, ε denotes the particle energy. In Fig. (5.1) we illustrate the argument leading 
to (5.5a).

The mean free path ℓ = vτ of the electrons represents the relevant length scale, 
at which the average motion of the electrons is affected along the temperature gra-
dient. Based on the average energy ½kBT per degree of freedom of a free particle, 
in the case of three degrees of freedom the energy ε is given by

and using

(5.2)��k = Fτ = m�v.

(5.3)j = n (−e)�v = n e2
τ

m
E,

(5.4)σ = ne2τ/m.

(5.5a)w =

(
1
/
2

)
nv{ε(T[x−vτ ])− ε(T[x+ vτ ])}

(5.5b)w = nv2τ
dε

dT

(
−
dT

dx

)

(5.6)ε =
1

2
mv2 =

3

2
kBT

(5.7)
dε

dT
= CV =

3

2
kB
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we obtain the energy current density

In (5.8) we have introduced the heat conductivity κe of the electrons. Together 
with (5.4) we find

The ratio L is referred to as the Lorenz number, named after Ludwig Lorenz. (A 
more accurate averaging yields the prefactor π2/3 instead of 9/4). The result in 
(5.9) is the famous Wiedemann-Franz law. Often this law is very useful for esti-
mating the heat conductivity of the electrons in a metal, if the electrical conductiv-
ity, which can be measured relatively easily, is known.

The explanation of the experimentally observed Wiedemann-Franz law was one 
of the successes of the Drude-Lorentz model. However, the model failed to predict 
the electrical and the thermal conductivity of the electrons separately, i.e., not just 
the ratio between both conductivities. But further and much more fundamental dif-
ficulties appeared with respect to the specific heat of the electrons. Their contribu-
tion to the specific heat was found to be much smaller than expected from classical 
concepts. Again, the solution of this problem was provided by the new quantum 
mechanics and in particular by the application of the “Pauli principle”.

5.2 � Quantum Statistics, Fermi Distribution

Again, it is the exact identity of the electrons as elementary particles, which makes 
them indistinguishable and which requires a new form of quantum statistics in order 
to obtain the probability distribution of the states. We have noted this already for 

(5.8)w = − n (
3

2
kB)

2 τT

m

dT

dx
= −κe

dT

dx

(5.9)L ≡
κe

σT
=

9

4
(kB/e)

2.

Fig. 5.1   Illustration regarding the heat current density of (5.5). The arrows near Thigh and Tlow 
indicate the average electron energy

5.1  Drude-Lorentz Model
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the quantized lattice vibrations in terms of bosons. The quantum statistics deviate 
strongly from the classical (Maxwell-Boltzmann-) statistics, as we have discussed in 
Chap. 3 in the case of the Bose-Einstein distribution (3.2) of particles having vanish-
ing or integer angular momentum (phonons and photons). However, now we deal 
with the electrons as elementary particles, having a half-integer angular momentum. 
In 1925 Wolfgang Pauli had formulated his famous exclusion principle, which states 
that each quantum mechanical state of a system can at most be occupied by a single 
electron. Here the important point is that an electron carries a half-integer angular 
momentum. In this way Pauli was able to explain the closure of the electron shells of 
the atoms. In 1926 Enrico Fermi from Italy and Paul Adrien Maurice Dirac showed 
independently from each other, that the application of the Pauli principle also leads 
to a new form of quantum statistics which today are referred to as Fermi-Dirac sta-
tistics. In general, Fermi-Dirac statistics are valid for elementary particles with a 
half-integer angular momentum, as is the case for the electrons. Such particles are 
referred to as fermions. Their angular momentum is also called spin. Because of the 
quantization of the direction of the angular momentum, the half-integer spin of the 
electrons can be oriented along only two possible directions. According to the Pauli 
principle, each state can be occupied for each of the two spin directions at most only 
by a single electron. Therefore, the many electrons in a metal must distribute them-
selves over many states with different energies within an energy band. In this way 
the electrons in an energy band must occupy sequentially the different “seats” with 
increasing energy. The last electron then must take the highest energy level. This 
highest energy level of the occupied states is referred to as the Fermi energy and 
the corresponding energy distribution of the electrons as the Fermi distribution (or 
Fermi-Dirac distribution). In the following we denote the Fermi energy by εF.

The Fermi-Dirac distribution function f(ε) is given by

ε is the particle energy and εF the Fermi energy (or the chemical potential). The 
function f(ε) is shown in Fig. 5.2.

Mathematically the Fermi distribution f(ε) is a simple function of the electron 
energy. Between zero energy and the Fermi energy this function has a value of one, 
since in this energy interval the states can be occupied only by a single electron. 
At the Fermi energy the function abruptly drops from one to zero, having approxi-
mately the shape of a rectangle. However, this rectangular shape is exactly valid only 
at zero temperature. At a temperature T, different from zero, the drop of the Fermi 
function from one to zero is smeared out along the energy axis and happens within 
an energy interval of about kBT at the Fermi energy (Fig. 5.2). This energy width 
kBT has already appeared in our discussion of the thermal energy associated with the 
individual degrees of freedom of the normal modes of the crystal lattice.

Now we return again to the specific heat of the electrons. Since the electrons 
in a metal must obey a highly restrictive prescription in the form of the Fermi dis-
tribution, nearly all electrons in the relevant energy band are energetically fixed 
and cannot change their energetic state. If we arbitrarily pick out an electron, 
we see that all energetically neighboring states are already occupied. Hence, this 

(5.10)f(ε) =
1

e(ε−εF)/kBT + 1
.
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electron can reach an unoccupied state only by means of a very large jump in 
energy, effecting a physical change in this way. However, in general such a large 
energy jump is impossible. Only for the few electrons near the Fermi energy is 
this possible, since they are energetically sufficiently close to states which are still 
unoccupied and which they can reach by thermal excitation. The fraction of the 
electrons in this exceptional energy interval is approximately given by kBT/εF. It 
is also exactly this fraction, which contributes to the specific heat of the electrons. 
We see that the specific heat in a metal must be reduced by this factor kBT/εF com-
pared with the value expected from the classical theory and that, furthermore, it 
becomes proportional to the absolute temperature. Both results agree well with 
experiment. In this way it was quantum statistics which again removed the diffi-
culties of the classical theories with the specific heat, in this case for the electrons. 
Using the relevant numbers for the monovalent metals, one finds for room tem-
perature approximately the value kBT/εF = 0.01. Compared with the Fermi energy, 
the transition from the occupied to the unoccupied states happens within a rela-
tively narrow energy interval. Hence, the rectangular shape of the Fermi function 
mentioned above is still reasonably well preserved.

Exactly the same argument as we have used above for the specific heat of the 
electrons also applies to the paramagnetism of the electrons in metals. This was 
pointed out for the first time by Wolfgang Pauli, who explained in this way the 
relatively small value of the “paramagnetic susceptibility” in metals and its inde-
pendence of the temperature. We will return to this subject in Chap. 10.

5.3 � Fermi Surface

At this stage we recall that the states of the electrons in a crystal represent planar 
waves, as formulated for the first time by Felix Bloch and Rudolf E. Peierls in their 
quantum mechanical theory. The planar waves are characterized by their wavelength 

Fig.  5.2   Fermi distribution function: because of the Pauli exclusion principle each quantum 
mechanical state in a crystal can be occupied at most by only one electron. At the temperature 
of zero Kelvin, for all energies up to the Fermi energy εF the Fermi distribution function has 
the value of one, and at εF it drops abruptly from one to zero. At a finite temperature T, the drop 
of the Fermi distribution function from one to zero is smeared out along the energy axis, and it 
occurs at the Fermi energy within an energy width of about kBT

5.2  Quantum Statistics, Fermi Distribution
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and their propagation direction. Both qualities are combined in the “wave vector” 
k. Its direction indicates the propagation direction of the wave. Its absolute value k, 
referred to as the wave number, is equal to the inverse of the wavelength λ except 
for the factor 2π: k = 2π/λ. The state of the electrons in the crystal is not unequivo-
cally identified by the energy alone. For the same electron energy the wave vectors 
of the matter waves can still point in all different directions in the crystal, in this 
way defining different states in view of the Pauli principle. Hence, the Fermi distri-
bution of the electrons must apply to all directions of the wave vectors separately. 
With increasing energy of the electrons, the magnitude of their wave vectors also 
increases. Hence, the Fermi energy as the maximum energy of the occupied states 
also corresponds to a maximum value of the wave vector. This maximum value is 
referred to as the Fermi wave vector kF, and all states up to kF are occupied by elec-
trons. All states above kF remain unoccupied. From this discussion we see that our 
treatment of the quantum mechanical electron states in a crystal must be extended 
to a three-dimensional space of the wave vectors, the so-called k-space. Since the 
wave vector is proportional to the particle momentum, this space is also referred to 
as the momentum space. In this momentum space the Fermi wave vectors kF with 
their magnitudes and their directions represent a surface, the “Fermi surface”, for the 
particular material. The Fermi surface is one of the most important concepts for the 
discussion of the electronic crystal properties (Fig. 5.3). The Fermi energy εF and the 
Fermi wave vector kF are connected by the relation

This relation is shown in Fig. 5.4.

(5.11)εF = �
2k2F/2 m

Fig. 5.3   Fermi surface of 
copper—The Fermi surface 
exists in momentum space, 
and it indicates up to which 
value all wave vectors 
are used up in order to 
accommodate the available 
electrons. In the simplest case 
the Fermi surface is a sphere, 
the radius of which is given 
by the Fermi wave vector kF. 
The picture shows the Fermi 
surface of copper for which, 
historically, deviations from 
the spherical shape were 
detected for the first time. 
The short “necks” visible in 
eight different directions are 
a characteristic feature of the 
Fermi surface of copper
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In the simplest case, if the influence of the crystal lattice on the de Broglie 
waves associated with the electrons is negligible, the Fermi surface has a spheri-
cal shape. We deal with this case to a good approximation in the monovalent met-
als, as for example in the alkali metals. As we have discussed already in Chap. 4, 
the perturbation arising from the crystal lattice becomes stronger as the electron 
energy approaches the values which satisfy the condition of Bragg reflection (at 
the boundary of a Brillouin zone). If the Fermi energy gets close to these values, 
the Fermi surface deviates appreciably from the spherical shape and displays a 
characteristic anisotropy in momentum space. We encounter such a case in par-
ticular in the multivalent metals, as for example in aluminum.

A distinct anisotropy of the Fermi surface was experimentally observed for 
the first time by the Englishman Alfred Brian Pippard in measurements of the 
microwave surface resistance of copper (Fig. 5.3). During the Second World War, 
Pippard had participated in England in the development of radar technology, 
which turned out to become the key defense determining the outcome of the Battle 
of Britain. (It is also said, that radar technology had won the Second World War). 
For the young Pippard his experience with the new microwave technique had been 
the reason for taking up a thesis subject dealing with microwaves. Pippard per-
formed his crucial measurements during the academic year 1955/1956 as a guest 
scientist at the Institute for the Study of Metals in Chicago, since in this Institute 
single crystals of copper with highly polished surfaces could be prepared better 
than anywhere else. This first experimental observation of the anisotropy of the 
Fermi surface in a metal by Pippard immediately triggered considerable research 
activities on the subject of the Fermi surface in many laboratories, which subse-
quently lasted for many years. Within this context experiments in high magnetic 
fields quickly gained much importance. This will be discussed in Chap. 7.

An extremely fruitful comment starting the application of the geometric con-
cept of the Fermi surface in momentum space originated from the Norwegian 
Lars Onsager, during a visit to Cambridge, England in the early 1950s. The pio-
neering research in the field of Fermi surfaces in metals by David Shoenberg and  
his co-workers in the Royal Society Mond Laboratory greatly benefitted from 
Onsager’s remark. Only this concept gradually made it possible to interpret cor-
rectly the many experimental data for metals. As a main result, it had become 

Fig. 5.4   The energy 
spectrum ε(k) of the electrons 
is occupied up to the Fermi 
energy εF and up to the Fermi 
wave vector kF (it is assumed 
that kBT ≪ εF)
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clear that many properties of metals are determined only by a small fraction of 
the electrons residing in close proximity to the Fermi surface. Here the key role of 
two-dimensional interfaces, this time in momentum space, is impressively dem-
onstrated again, in some way similar to the appearance of all life on the surface of 
the earth in biology.

5.4 � Bloch-Grüneisen Law

In his dissertation Bloch had also developed a theory of the electrical resistance 
of metals. As the key point he treated the collision processes of the electrons with 
the vibrational quanta of the crystal lattice. Here he took into account that, during 
such a collision process, the electrons can exchange energy with the crystal lat-
tice in the form of individual phonons. As a final result, Bloch found the famous 
Bloch-Grüneisen law for the temperature dependence of the electrical resistance 
in metals. In this law the “Debye temperature” θ plays a role. At the tempera-
ture θ the thermal energy kBθ is equal to the Debye energy ħωD, which we have 
discussed before as the maximum value in the energy spectrum of the phonons: 
kBθ = ħωD. At temperatures above the Debye temperature θ (T ≫ θ) all phonon 
states up to the Debye frequency ωD are occupied, and the number of phonons 
per state is proportional to T [as we see from the distribution (3.2)]. Therefore, in 
this temperature range we expect for the electrical resistivity ρ that ρ ~ T. On the 
other hand, at temperatures much smaller than the Debye temperature θ (T ≪ θ) 
the number of occupied phonon states (which contribute to the scattering rate 
τ−1) increases proportional to T3, as we have seen in connection with (3.4). An 
additional factor proportional to T2 results from the temperature dependent mag-
nitude of the scattering angle δ. In the case T ≪ θ the scattering angle δ shows 
the proportionality δ ~ phonon wave vector K ~ T. The loss of drift velocity of the 
electrons along the preferential direction increases proportional to δ2 and, hence, 
proportional to T2. Therefore, in this temperature range we finally obtain ρ ~ T5. 
This overall behavior, ρ ~ T5 at T ≪ θ and ρ ~ T at T ≫ θ, represents the famous 
Bloch-Grüneisen law of the electric resistance. This law has been well confirmed 
experimentally (Fig. 5.5).

The Bloch-Grüneisen law for the temperature dependence of the electrical 
resistance only takes into account the collisions between the electrons and the 
quantized vibrations of the crystal lattice. The variation in the resistance with tem-
perature expressed by this law is mainly due to the decreasing number of phonons 
with decreasing temperature. However, in the crystal the electrons also experi-
ence other collision processes limiting the electrical conductivity. In this context 
structural lattice defects or chemical impurities, perturbing the perfectly regular 
periodic lattice structure of the crystal, play a major role. Alloys also represent 
an important example, where collision processes other than those with phonons 
are important. These defects in the crystal lattice likewise contribute to the elec-
trical resistance. In general, the scattering rates τ−1

i  of different mechanisms, for 
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example, the collisions of the electrons with the phonons and with the defects in 
the crystal lattice, can simply be added, and we obtain for the total scattering 
rate τ−1:

This quality of the additivity of the different mechanisms contributing to the resist-
ance is referred to as Mathiessen’s law. Since the contribution of the phonons 
strongly decreases with decreasing temperature, at sufficiently low temperatures 
only the contribution of the lattice defects, the “residual resistance”, remains. The 
magnitude of this residual resistance provides an easily accessible indication of 
the purity level of the metal. In highly pure metals this residual resistance is a few 
hundred up to a few thousand times smaller than the resistance at room tempera-
ture, the latter being dominated by the contribution of the phonons.

5.5 � Thermoelectricity

In our discussion of the electrical conductivity and of the thermal conductivity of 
metals we had to deal only with a single external influence acting on the metal. In 
the former case we are concerned with a gradient in the electrical potential due to 
an electric field and in the latter case with a gradient in the temperature. However, 

(5.12)
1

τ
=

∑

i

1

τi

Fig. 5.5   Bloch-Grüneisen 
law for the temperature 
dependence of the electrical 
resistance of different metals, 
the Debye temperature (here 
denoted by TD) of which 
is indicated in Kelvin. The 
temperature is given in units 
of the Debye temperature TD 
and the electric resistance in 
units of its value R(TD) at the 
Debye temperature. For the 
different metals one obtains a 
universal curve (W. Meissner)

5.4  Bloch-Grüneisen Law



60 5  Metals Obey the Rules of Quantum Statistics

it is also possible that both external influences act simultaneously. In this case we 
deal with the thermoelectric phenomena, which we will discuss next.

We start with the Peltier effect. It results from the fact that an electric current 
always transports the heat energy of the moving charge carriers along with their 
electric charge. If two electrical conductors from different materials are connected 
in series, the heat current can pile up at the location of the joint, if the heat current 
carried by the same electric current is different in the two materials. Depending 
upon the direction of the current, a heating effect or a cooling effect appears at the 
joint (Fig. 5.6a). This effect is named after the Frenchman Jean Charles Athanase 
Peltier, who discovered it in 1834. The Peltier coefficient П is defined as follows:

At the location of the joint between conductors A and B, the delivered or absorbed 
Peltier heat per unit time and cross-sectional area amounts to (�A −�B)jx. This 
leads to heating or cooling at the joint, depending upon the current direction. 
However, in metals, the Peltier effect is relatively small and, hence, it is not interest-
ing for applications in cryogenics. Again, the small value of the Peltier effect in metals 
results from the severe restriction imposed by quantum statistics, which allows only 
the small fraction kBT/εF of all electrons to participate in the transport phenomena, in 
close similarity to what we have seen before, for the specific heat of the electrons.

(5.13)� ≡
heat current density wx

electric current density jx

Fig. 5.6   a Peltier effect: if the electric current I passes through the contact zone between two 
different metals A and B, having a different value of the heat current carried by the same elec-
tric current, heating or cooling of the contact zone results, depending upon the current direction. 
b Seebeck effect: in the temperature gradient between the higher temperature T1 (upper side) and 
the lower temperature T2 (lower side) in an electrical conductor the mobile electrons are trans-
ported from the hot to the cold end of the conductor by means of thermal diffusion. Therefore, at 
both ends of the conductor, electric charges of opposite sign, respectively, accumulate. The direc-
tion of this thermal diffusion process is determined by the details of the Fermi surface and of the 
collision processes of the electrons. The figure shows two different metals A and B, which are 
soldered together at the end with the higher temperature. The difference in the thermal diffusion 
between the two metals results in an electric voltage, the “thermoelectric voltage”, between the 
lower ends of the two metals
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Next we turn to the Seebeck effect as the second thermoelectric phenomenon 
(Fig.  5.6b). It was observed for the first time by the German Thomas Johann 
Seebeck in 1821. Seebeck was born in Reval (today Tallinn). After he had studied 
medicine in Berlin and Göttingen, he practiced as a medical doctor in Göttingen. 
However, subsequently he turned to physical research and worked as a private 
scholar in Jena, Bayreuth, and Nuremberg. The Seebeck effect represents a special 
case of the “thermal diffusion” of particles in a temperature gradient dT/dx. We 
are well familiar with this phenomenon: the deposition of the relatively heavy dust 
particles from the air on the bright wall paper of a cold wall immediately behind 
a heating pipeline is caused by thermal diffusion. This same phenomenon is the 
underlying principle of the Clusius separation column utilized for isotope separa-
tion. The German physico-chemist Klaus Clusius invented the separation column 
process in 1938. Subsequently this process has played a highly prominent role in 
the American Manhattan Project during the Second World War for the enrichment 
of the Uranium isotope 235U. At the time in Oak Ridge in the Federal State of 
Tennessee, a huge plant had been constructed consisting of 2,142 separation col-
umns, each of 16 m in height. Along the axis of each tube a thin nickel tube was 
placed, which was heated and surrounded by a larger copper tube. The Uranium 
was fed into the plant in the form of gaseous UF6 (Fig. 5.7).

Thermal diffusion is caused by the thermal force − Str dT/dx acting on the par-
ticles in a temperature gradient dT/dx. The quantity Str is the “transport entropy” 
per particle. In the case of the Seebeck effect, thermal diffusion leads to the accu-
mulation of electric charges of opposite sign at the two ends of the conductor, 
respectively. As a result, an electric field Ex is generated. Under equilibrium, the 
thermal force is compensated by the electrostatic force − e Ex (we use − e for the 
charge), and we obtain the following equation for the forces:

Here U denotes the electric potential. From (5.14) one obtains the Seebeck coef-
ficient (thermopower) S:

The thermoelectric voltage is always measured between two materials relative to 
each other (Fig. 5.6b). In the case of two electric conductors A and B, which are 
soldered together at one end, the temperature difference ΔT between the two ends 
yields the electric potential difference ΔU =  (SA − SB) ΔT. The thermoelectric 
voltage ΔU is proportional to the temperature difference ΔT between both ends of 
the electric conductors. Therefore, it is well suited for measurements of the tem-
perature, if the temperature of one end is exactly known. In the form of the “ther-
moelements” consisting of electrically conducting wires of two different metals or 
alloys, the Seebeck effect is often used for thermometry.

From transport theory one can derive mathematical formulas for the thermo-
electric coefficients, which incorporate details of the scattering processes of the 

(5.14)−Str
dT

dx
= − eEx = e

dU

dx
.

(5.15)S ≡
�U

�T
= −

Str

e
.
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electrons and of the geometry of the Fermi surface. Here we do not want to pursue 
this any further. However, one should point out, that in metals the reduction factor 
kBT/εF applies again because of the Fermi distribution, similar to the case of the 
specific heat of the electrons.

At the end of this section on thermoelectricity we briefly address a subject 
referred to as “phonon drag”. We explain this phenomenon in the case of the 

Fig.  5.7   Thermal diffusion: a small part of the thermal-diffusion plant constructed during the 
Manhattan Project in Oak Ridge in the American Federal State of Tennessee. We can see the sep-
aration columns for the enrichment of the uranium isotope 235U based on the principle invented 
by Klaus Clusius (photo AEC photo of Ed Westcott)
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Seebeck effect. In a temperature gradient, a phonon current transporting heat is 
generated, in addition to the thermal diffusion of the electrons, as we have dis-
cussed above in the context of the heat conductivity of metals. Due to the electron-
phonon interaction, this phonon current drags the electrons along, thereby causing 
the “phonon-drag component” of the Seebeck coefficient. The other component, 
remaining if this phonon current would be absent, is referred to as the “electron 
diffusion component”. The phonon-drag component of the Seebeck coefficient 
varies with temperature similarly as the heat conductivity of the crystal lattice 
shown in Fig. 3.6. With increasing temperature it passes through a distinct maxi-
mum, and it vanishes generally above room temperature. (In the case of the elec-
trical conductivity, the phonon-drag effect is negligible, since the electron-phonon 
interaction enters twice: first, the electrical current sets up a phonon current, which 
then acts back on the electrons. This represents an effect of second order).

The Peltier coefficient П and the Seebeck coefficient S of a material are con-
nected with each other through the Thomson relation

This relation between both coefficients represents a prominent example of the 
famous reciprocity scheme of Lars Onsager for transport coefficients.

The rapid development of the theory of metals, which we have briefly sum-
marized above, is also clearly apparent from the much more detailed treatments 
published soon after the foundations of the new quantum mechanics were estab-
lished. Here we mention in particular the book “The Theory of the Properties of 
Metals and Alloys” by Nevill Francis Mott and H. Jones, as well as the book “The 
Theory of Metals” by Allan H. Wilson, both books dating from the year 1936. 
An impressive milestone is a large review article “Electron Theory of Metals” 
(German title: “Elektronentheorie der Metalle”) by Arnold Sommerfeld and Hans 
Bethe for the German Handbook of Physics from 1933. By far the largest part of 
this review article had been written by Bethe at the young age of only 27 years. 
Even today this book-sized article continues to be relevant and highly useful. 
Already in 1931 the French Léon Brillouin had summarized the status of the 
field in his book “Quantum Statistics and its Application to the Electron Theory 
of Metals” (German title: “Die Quantenstatistik und ihre Anwendung auf die 
Elektronentheorie der Metalle”).

The severe restriction imposed upon the electrons as fermions by quantum sta-
tistics is the main idea in this chapter about the properties of metals. However, it 
can also happen that two electrons combine forming a pair, but no longer having 
the half-integer angular momentum of a fermion as a pair. Instead, for example, 
the pair may have zero total angular momentum. A total spin with the value of 
zero results, if the individual spins of both partners are oriented in opposite direc-
tions to each other. In this case the Pauli Principle is no longer valid, and many 
electron pairs can occupy the same quantum mechanical state. In Chap. 8 we will 
discuss exactly how this happens in the phenomenon of superconductivity.

(5.16)� = T S
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Abstract  If the electronic band structure allows the thermal excitation of electrons 
from the top of a completely filled valence band to the bottom of an empty conduc-
tion band, we deal with a semiconductor, such as germanium or silicon, or the com-
pound semiconductors consisting of elements of the third and the fifth column of 
the Periodic Table (or of the second and the sixth column). The carefully controlled 
doping with donors and acceptors yields materials, which are extremely useful for 
many electronic applications. After its invention in 1947, the transistor underwent 
many evolutionary stages during its miniaturization. Our discussion includes photo-
voltaics, the light emitting diode (LED), and the semiconductor laser.

Michael Faraday from England had already found in 1833, that the electrical 
resistance of silver-sulfide (Ag2S) decreases with increasing temperature, whereas 
metals display the opposite temperature dependence. He observed a similar tem-
perature dependence as in silver-sulfide also in a number of other substances, for 
which the electrical conductivity was always much smaller than for the typical 
metals. About 40  years later the German Ferdinand Braun was interested in the 
electrical conductance of galena (lead-sulfide) crystals and of other metal sulfides. 
He discovered that the electrical resistance in these materials depends even on the 
current direction. Such an effect had never been observed in metals. This effect 
was particularly clear if the electric current was injected into or extracted out of 
the substance on one side using a metallic needle. Braun had discovered the recti-
fying effect of a contact. Many years later this arrangement played a famous role 
for some time as a detector for radio waves. With his studies Braun widely opened 
the door for the subsequent investigation and utilization of a new class of electrical 
conductors: the “semiconductors”. However, his most important studies, which he 
had carried out since 1895 as Professor of Physics at the University of Strassburg 
and for which he received the Nobel Prize for Physics in 1909 together with 
Guglielmo Marconi, were concerned with something else. In Strassburg, Braun 
developed the cathode ray tube, which became famous later on as Braun’s tube. 
Among other things, it allows one to record high frequency alternating currents 
with high time resolution, and it is the central component of almost all television 
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receivers until recently. (Presently, these apparatuses are replaced by flat screens). 
Hence, it is not at all surprising, that under the direction of Ferdinand Braun the 
first lectures worldwide on high-frequency physics were given at the University of 
Strassburg in 1899.

In Chap. 4 we noted that the electrical conductance behavior of crystals is 
determined by the allowed energy bands and by the energy gaps between the 
bands of the energy spectrum of the electrons (Fig. 4.6). A conduction band only 
partly filled with electrons is the cause of the high electrical conductivity of met-
als, whereas a completely filled band does not contribute to the electrical conduc-
tivity. However, if an empty band is energetically located closely above a filled 
band, there exists an interesting new possibility. It is exactly this case which we 
have in semiconductors, and which already confronted Michael Faraday and 
Ferdinand Braun. If the energetic distance between the, at first empty, conduction 
band and the completely filled “valence band” located energetically underneath 
is sufficiently small, the electrons can jump across the small energy gap between 
both bands because of their thermal energy kBT. In this way the conduction band 
can be populated with a relatively small number of electrons. These electrons in 
the conduction band then cause the electrical conductivity of the semiconductor. 
The number of electrons which can perform the energy jump from the valence 
band into the conduction band increases strongly with increasing temperature. 
Hence, the electrical conductivity of semiconductors also increases strongly with 
increasing temperature. Here semiconductors show exactly the opposite behavior 
to metals. As we have discussed in the Chap. 5, the electrical resistance of met-
als grows with increasing temperature, whereas the electrical conductance, as the 
inverse of the resistance, decreases. The electron concentration populating the con-
duction band in semiconductors because of the supply of the thermal energy kBT 
is smaller by many orders of magnitude compared with a typical metal. Therefore, 
the electrical conductivity in semiconductors is also much smaller than in metals. 
In Fig. 6.1 we show the position of the valence band and of the conduction band 
along the vertical energy axis in the case of an intrinsic (undoped) semiconductor.

Fig. 6.1   Position of the 
valence band and of the 
conduction band along 
the energy axis in the case 
of an intrinsic (undoped) 
semiconductor
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6.1 � Intrinsic Semiconductors

The thermal excitation of electrons out of the valence band into the conduction 
band not only populates the conduction band from the bottom upwards with 
electrons, but in addition, because of the removal of electrons, the valence band 
becomes depopulated from the top downwards. Since electrons are now missing 
from near the upper edge of the valence band, one speaks about holes, (which are 
sometimes also referred to as defect electrons). Because of the existence of these 
holes, the electrons near the upper edge of the valence band can also participate 
in the electrical conduction mechanism, since the unoccupied states in this energy 
regime allow a change in the velocity distribution of the electrons required for 
the current flow. Now it is much more appropriate to describe the motion of the 
charge carriers near the upper edge of the valence band in terms of the dynam-
ics of holes. A hole in the energy band of the negatively charged electrons cor-
responds exactly to a particle with the opposite, i.e., positive charge. The motion 
of a negatively charged electron, say, from left to right is completely equivalent to 
the motion of a positively charged hole from right to left. The useful and profound 
idea of the hole has been proposed for the first time for the physics of crystals by 
Werner Heisenberg. In a paper from 1931 dealing with the Pauli exclusion prin-
ciple, Heisenberg first discusses the use of the wave equation of the holes in the 
context of the closed electron shells of an atom:

If N denotes the number of electrons within the closed shell, … it is shown that a 
Schrödinger equation for n electrons can be replaced also by a highly similar, equivalent 
Schrödinger equation for N−n holes (here in the English translation).

Heisenberg then discusses the use of the wave equation for the holes to explain 
the “anomalous Hall effect“ in crystals. We will come back to the Hall effect in 
Chap. 7. From the Hall effect one can determine the sign of the moving charge 
carriers transporting the electric current. Many times the Hall effect had indicated 
a positive sign for the moving charge carriers, although it is the negatively charged 
electrons which make up the electric current flow in a conductor. Therefore, this 
lead to the notion of the anomalous Hall effect. In 1929, in Leipzig, Rudolf E. 
Peierls had proposed for the first time the correct interpretation of the anomalous 
Hall effect in terms of the appearance of holes in the occupation of the bands in 
the energy spectrum of the electrons.

In the case of the electrons, which are thermally excited from the valence band 
into the conduction band, we have ε − εF ≫ kBT, and the Fermi distribution (5.10) 
can be replaced by the Boltzmann distribution

Using the energy scale shown in Fig. 6.1, one obtains for the electron concentra-
tion in the conduction band per volume:

(6.1)f (ε) = e−( ε−εF )/ kBT

(6.2)n =

∞

∫
εC

De(ε)f(ε)dε.
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Here

is the density of states of the electrons per volume; me is the electron mass. With 
(6.3) one obtains from (6.2):

At this point, we want to indicate the derivation of the density of states De(ε) (6.3). 
We start with the number w(k) of the vibrations of the de-Broglie-waves of the 
electrons per k-interval (density of states) in k-space and, in this context, use peri-
odic boundary conditions of the crystal (k = wave number of the electrons). We 
consider a crystal of length L along one coordinate axis. The periodic boundary 
condition requires, that the wave eikx has the same value at x = 0 and x = L, i.e., 
eikL = 1 or kL = n 2π, where n is an integer. The distance Δk between two sub-
sequent k-values amounts to Δk = 2π/L. In the one-dimensional case we obtain 
w1(k)  =  1/Δk  =  L/2π. In the case of the three-dimensional k-space we have 
w3(k) = (L/2π)3. One finds the density of states per energy interval (by consider-
ing a spherical shell of infinitesimal thickness ∂k in k-space)

With the electron energy ε from (4.8), after a few steps one finally obtains

Comparing (6.7) with expression (6.3), we note, that the latter is given per crystal 
volume, and that the conduction band is located above the energy εC.

The electrons transferred into the conduction band are now missing in the valence 
band, where they represent holes with the distribution function fh(ε) =  1 – f(ε).  
Analog to (6.5), the hole concentration per volume in the valence band is:

Here, mh is the mass of the holes. The product n p is independent of the Fermi 
energy εF

So far, we have considered only “intrinsic semiconductors”. Therefore, we have:

From (6.5) and (6.8) one finds

(6.3)De(ε) =

√

2

π2

(me

�2

)3/2
(ε − εC)

1/2

(6.4)n =

√

2

π2

(me

�2

)3/2
eεF/kB T

∞

∫
εC

(ε− εC)
1/2e−ε/kB T dε

(6.5)= 2(2πmekBT/ h
2)3/2e−(εC−εF )/kBT.

(6.6)D(ε) = w3(k)
∂(k-space-volume)
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= w3(k)4πk
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(6.8)p = 2(2πmhkBT/ h
2
)
3/2e−εF/kBT

(6.9)n p = 4(2πkBT/ h
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and from (6.11)

In the case mh = me we find εF = εC/2, and the Fermi energy is located exactly in 
the middle of the energy gap.

The population of the conduction band with electrons by thermal activa-
tion and the simultaneous generation of holes near the upper edge of the valence 
band is a characteristic property of intrinsic semiconductors. Since the 1930s the 
study of these materials has grown steadily, a strong driving force being the pos-
sible technical applications. Initially the interest concentrated on copper-oxide and 
selenium. As we have mentioned before in Chap. 1, after the Second World War, 
germanium and silicon crystals became the center of attention, in particular due 
to the research effort at the American Bell Laboratories. Both substances consist 
of only a single element. Their crystalline structure is the same as that for dia-
mond, being much simpler than that for copper-oxide and selenium. As a new 
chemical element, germanium had been discovered in 1886 by the German chem-
ist Clemens Winkler working at the Mining Academy in the Saxonian town of 
Freiberg. Germanium and silicon are located in the fourth group of the Periodic 
Table with carbon at the top and silicon directly below. Carbon and silicon are 
among the most abundant elements on the earth. Directly below silicon in the 
Periodic Table one finds germanium, which is much more rare and which until its 
discovery only existed in the form of an unoccupied spot in the Periodic Table.

At room temperature the concentration of the thermally activated charge car-
riers in the conduction band and in the valence band of germanium is about one 
billion times smaller than in a good electrical conductor such as, say, copper. 
However, not far above room temperature so many additional charge carriers are 
thermally activated in germanium, that its electronic properties change too much 
for many electronic applications. Even hot summer temperatures can no longer be 
tolerated. In silicon the energy gap between the valence band and the conduction 
band is nearly twice as large as in germanium. Therefore, the corresponding con-
centration of the thermally activated charge carriers in silicon is about ten thou-
sand times smaller than in germanium. Hence, silicon reacts much less sensitively 
to summer temperatures. Because of this fact and in particular also because of 
the spontaneous growth of a thin and stable layer of silicon-oxide, acting as an 
excellent electrical insulator on its surface, silicon is far superior as semiconduc-
tor material for most electronic applications compared with germanium and today 
dominates the semiconductor industry.

In Chap. 1 we mentioned the invention of the transistor by John Bardeen, Walter Brattain, 
and William Shockley in the year 1947. At this time a completely new and unknown terri-
tory had been entered, and many important new experiences had to be gained for the first 
time. Also at the beginning, the extreme requirements regarding the purity of the semi-
conductor materials were by no means clear. The recognition that chemical impurities and 
grain boundaries in the crystals strongly affect the electrical properties was only gradually 
accepted. It was Gordon Kidd Teal in the American Bell Laboratories who was convinced 
very early on, that only a large effort in the preparation and purification of single crystals 
could lead to success. However, at first nobody wanted to listen to him. Therefore, only as 
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an outsider and after many difficulties was he able to push forward his ideas for growing 
ultra-pure single crystals. Today the fabrication of large, ultra-pure single crystals of sili-
con as the raw material for the semiconductor industry is performed worldwide on a large 
technical scale and represents an important business (for example, by the Wacker Chemie 
AG in Burghauen, Bavaria; Fig. 1.5). In the early days Gordon Teal was soon hired away 
from the Bell Laboratories, and since January 1953 he pursued his ideas in the American 
company Texas Instruments. This Company then developed into the largest semiconductor 
manufacturer of the world.

In addition to semiconductors such as germanium and silicon which consist only 
of a single element from the fourth group of the Periodic Table, there also exist 
other substances which are composed from several elements and which are highly 
interesting for technical applications because of their semiconductor properties. 
The pioneering ideas about these “compound semiconductors” were developed by 
the German Heinrich Welker, in the early 1950s. At the time Welker worked at the 
Siemens Research Laboratory in Erlangen. Later he became the director of this 
Laboratory. Previously, Welker had been an assistant of Arnold Sommerfeld at the 
University of Munich, where he had worked among other things on the theory of 
superconductivity. In Erlangen he wanted to develop a better understanding of the 
semiconductor physics of germanium, and within this context he considered the 
following question. In the germanium atom there are four electrons in the outer 
shell. Is it perhaps possible, that a compound of an atom with five electrons from 
the fifth group of the Periodic Table and an atom with three electrons from the 
third group will also show semiconductor properties very similar to those of ger-
manium, since on the average we have again four electrons per atom as in germa-
nium? On the left side of germanium in the Periodic Table we find gallium and 
on the right side, arsenic. The experiments then confirmed indeed, that the com-
pound gallium-arsenide (GaAs) is a semiconductor. Indium-antimonide (InSb) is 
similarly another member of the group of the “III-V semiconductors”. The III-V 
semiconductors displayed interesting electronic properties. The mobility of the 
electrons and the holes was much larger than in germanium and silicon. Therefore, 
technical applications became possible which required a faster response of the 
charge carriers. Furthermore, in the III-V semiconductors, the energy gap between 
the valence band and the conduction band is relatively large. This is highly inter-
esting for applications in optoelectronics, as will be discussed further below. The 
principle of the compound semiconductors has subsequently also been extended to 
compounds of elements from the second and the sixth group of the Periodic Table. 
The latter compounds are referred to as “II-VI semiconductors”.

6.2 � Doped Semiconductors

So far we have restricted our discussion to semiconductors consisting of only a 
single element or being a compound of exactly two elements. Other substances 
acting as additives have been excluded. In this way we were dealing only with 
the case of intrinsic semiconductors. However, the case where a semiconductor 
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is doped with foreign atoms is much more important. Next we turn to this case 
of the “extrinsic semiconductors”. It was noted already in the early days that the 
electrical properties of nominally the same semiconductor material fluctuated 
within wide limits, such that an exact reproducibility was impossible. Because 
of the extremely low concentration of mobile charge carriers in the intrinsic 
semiconductors compared with metals, the electrical properties of the former are 
extremely sensitive against chemical impurities or defects in the crystal lattice. As 
we have discussed before, silicon and germanium belong to the fourth group of 
the Periodic Table and, hence, possess four electrons in their outer atomic shell. 
However, if we incorporate atoms from the fifth group of the Periodic Table, hav-
ing five electrons in the outer shell, as, for example, phosphorus or arsenic into 
the silicon or the germanium lattice, the fifth electron represents a surplus. This 
excess electron can easily be transferred by means of thermal excitation from the 
phosphorus or the arsenic atom into the conduction band of silicon or germanium. 
The phosphorus or the arsenic atom then remains in the host lattice of silicon or 
germanium as a singly and positively ionized atom. Because of the donation of 
their excess electrons to the conduction band of the host lattice, these incorporated 
atoms from the fifth group are denoted as “donors”. Doping of the semiconductor 
with these donors allows the concentration of the charge carriers in the conduc-
tion band to be changed by many orders of magnitude, compared with the intrinsic 
semiconductors such as silicon and germanium (Fig. 6.2).

The basic idea underlying the concept of donors can be extended further. 
Therefore, next we consider the doping of the host lattice of silicon or germanium 
with atoms from the third group of the Periodic Table, having only three electrons 
in their outer shell, such as, for example, aluminum or gallium. Now the incorpo-
rated atom possesses one electron less than the atoms of the host lattice. The miss-
ing fourth electron can be captured by the incorporated atom by means of thermal 
excitation from the valence band of silicon or germanium. At the same time a hole 
appears near the upper edge of the valence band of the latter. The aluminum or 

conduction band

valence band

n-doping p-doping

Fig. 6.2   Doped semiconductors. The conduction band is separated from the valence band by a 
relatively large energy gap. With n-doping, electrons are thermally excited from the donors up 
to the lower edge of the conduction band. With p-doping, the thermal excitation of the electrons 
occurs from the upper edge of the valence band up to the energy levels of the acceptors, such that 
holes remain in the valence band

6.2  Doped Semiconductors
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gallium atom then remains in the host lattice of silicon or germanium as a singly 
and negatively ionized atom. Because of this acceptance of their missing fourth 
electrons from the valence band of the host lattice, these incorporated atoms from 
the third group are denoted as “acceptors”. As we have discussed above, the holes 
near the upper edge of the valence band also participate in the electrical conduc-
tion mechanism in the same way as the electrons in the conduction band. Again, 
the doping of the semiconductor with the acceptors allows one to change, in a con-
trolled way, the concentration of the mobile holes, acting as charge carriers in the 
valence band, by many orders of magnitude compared with the intrinsic semicon-
ductors (Fig. 6.2).

These concepts of the donors and acceptors were already developed in the early 
1930s, and they are still valid today. Important early contributions came from 
Rudolf E. Peierls and Allan H. Wilson, mentioned before in Chap. 4. At the time, 
the German theoretical physicist Walter Schottky also helped to clarify the under-
lying physics. It is possible to vary the concentration of the mobile charge carriers 
over many orders of magnitude by means of doping, which makes the semicon-
ductors so interesting for electronic applications. In contrast to the intrinsic semi-
conductors, the doped semiconductors are referred to as extrinsic semiconductors. 
Furthermore, the extrinsic semiconductors are denoted according to their kind 
of doping: Semiconductors doped with (negative) electrons from the donors are 
referred to as n-doped, and those doped with (positive) holes from the acceptors 
are referred to as p-doped.

6.3 � Excitons and Electron-Hole Droplets

The population of the conduction band at its lower edge with electrons and of the 
valence band at its upper edge with holes cannot only be accomplished by means 
of the thermal excitation of electrons. This can also be achieved under light irra-
diation due to the absorption of light quanta. Because of the irradiation with light, 
the electrical conductivity can be significantly increased, a phenomenon referred 
to as photoconductivity. This effect is technically utilized in light meters in the 
form of photo cells. This optical excitation is particularly interesting in intrinsic 
semiconductors. If an electron is energetically raised from the valence band into 
the conduction band due to the absorption of a light quantum, an electron-hole 
pair is generated. Both particles possess opposite electric charges and can form a 
bound state, similar to the electron and proton of the hydrogen atom. In the bound 
state both particles move around their common center of gravity. This bound con-
figuration of an electron-hole pair is denoted as an exciton. The excitons can move 
around within the crystal and transport excitation energy in doing so. However, 
they do not transport electric charge, since they are electrically neutral, their total 
charge being zero. By recombination, both particles of the exciton can annihilate 
each other. The energy which is set free during this process mostly appears again 
in the form of an emitted light quantum.

http://dx.doi.org/10.1007/978-3-319-09141-9_4
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The generation of excitons under light irradiation is strongly enhanced if the 
crystal is cooled to low temperatures. Within the crystal the excitons behave like 
a gas, which condenses and forms a liquid at sufficiently low temperature and suf-
ficiently high density. The electron-hole droplets or the electron-hole liquid have 
been studied, in particular in germanium, at low temperatures where the traces of 
the emitted light have been utilized in impressive experiments (Fig. 6.3).

6.4 � Metal-Semiconductor Contact, p-n Junction

The fact, that the concentration of mobile charge carriers in semiconductors is 
smaller by many orders of magnitude compared with metals, leads to novel phe-
nomena and to the dependence of the electric current flow upon the current direc-
tion already observed by Ferdinand Braun. At the location of the junction between 
a metal wire and the semiconductor crystal there occurs a depletion of the mobile 
electrons and holes, and an electrically insulating boundary layer is generated in 
the semiconductor. The underlying theoretical model concepts were developed 
by Walter Schottky, employed by the Siemens Company in Germany (Fig.  6.4). 
Therefore, one also speaks of the Schottky diode and of the Schottky boundary layer.

In order to establish equilibrium between both sides of the contact, electrons 
flow from the semiconductor (we assume an n-doped semiconductor) into the 
metal. As a result, there develops a positive space charge, which extends in the 
semiconductor over a finite distance. At the junction, this leads to an increase of 
the potential, which must be overcome by the electrons during the flow of electric 
current, and which depends on the voltage V applied to the contact. Hence, the 
contact acts as a rectifier, where the current I is given by

Here IS is the saturation current.

(6.13)I = IS(e
eV/kBT − 1)

(a)

Light

(b)

electron

hole

Fig. 6.3   Energetic excitation of an electron from the upper edge of the valence band into the 
conduction band by means of the absorption of a photon. a An electron-hole pair generated in 
this way can assume the bound state of an “exciton”. b In a semiconductor crystal, at low tem-
peratures and sufficiently high concentration, the excitons condense into droplets of the electron-
hole liquid

6.3  Excitons and Electron-Hole Droplets
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The electric current can flow across this metal-semiconductor contact only 
when, for an n-doped semiconductor, the free electrons, or for a p-doped semi-
conductor, the free holes, are moving from the semiconductor into its depletion 
zone, thus filling up the depletion zone. In the opposite current direction the elec-
trically insulating boundary layer remains unchanged, and the current flow is 
interrupted. In this way the rectifying effect of the metal-semiconductor contact 
is accomplished. Schottky’s first paper on this subject appeared in 1923. He pub-
lished his complete theory about the barrier layer and the point-contact rectifier 
during the years 1939–1942, partly in collaboration with Eberhard Spenke, who 
was also working for the Siemens Company. Because of the rectifying properties 
of the metal-semiconductor contact we have discussed, special procedures are nec-
essary for supplying semiconductor circuits with electric current. For this purpose 
ohmic contacts consisting of heavily doped semiconductor regions, referred to as 
n+ or p+ regions, proved to be quite satisfactory.

In addition to the metal-semiconductor contact, the junction between an 
n-doped and a p-doped semiconductor, the p-n junction, had also received much 
attention (Fig.  6.5). On the n-doped side of the junction there exist many elec-
trons in the conduction band, whereas on the p-doped side many holes populate 
the valence band. However, the large difference in concentration of the particular 
charge carriers, respectively, between both sides must be balanced, since at equi-
librium the strong concentration gradient of the electrons and of the holes down 
to the opposite side of the junction cannot be maintained. Therefore, the electrons 
diffuse from the n-doped into the p-doped region, and the holes diffuse in the 
opposite direction. As a result, in the n-doped region, positively ionized donors 
and in the p-doped region negatively ionized acceptors, remain in the form of 
space charges. In this way a local electric field is generated, exercising a force on 

n-doped
semiconductor metal

Fig. 6.4   Walter Schottky (photo Deutsches Museum). Metal-semiconductor contact, also called 
Schottky contact (right). At the junction between an n-doped semiconductor and a metal, within 
the semiconductor a depletion zone of the mobile electrons is generated, in which the positively 
ionized donors remain behind. At the adjoining metal surface, negative charges accumulate. In 
the case of a p-doped semiconductor, negatively ionized acceptors remain behind in the depletion 
zone
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the charge carriers in the opposite direction to the driving force of the two dif-
fusion processes, respectively. Eventually, because of the local electric field, the 
diffusion processes come to a complete stop. However, at the location of the junc-
tion there remains now an electrical potential gradient. Depending upon the direc-
tion of the electric current, the potential gradient at the p-n junction increases or 
decreases because of the current. Therefore, a rectification effect is achieved again, 
similar to the metal-semiconductor contact.

The American Russell Shoemaker Ohl working at the Bell Radio Laboratories 
in Holmdel in the Federal State of New Jersey had already been concerned in the 
1940s with p-n junctions in silicon. He was interested in the application of these 
junctions as possible crystal detectors for radio- and microwaves. Incidentally,  
he also discovered their interesting photovoltaic properties, as we will discuss 
below. At the time in many companies within the electronics industry people 
started to investigate the rectifying properties of p-n junctions. For example, soon 
after the Second World War the Siemens Company started a laboratory for this 
purpose in the small town of Pretzfeld near Erlangen in Frankonia. Under the 
management by Eberhard Spenke rectifiers based on selenium were investigated 
at first and then fabricated in a pilot plant. Eventually, the optimizing process 
resulted in a contact between p-doped selenium and n-doped cadmium-selenide 
(CdSe). The old-fashioned rectifiers, operating with mercury vapor and installed 
for the high-current applications of power electronics, were now replaced by the 
selenium rectifiers. Furthermore, there existed a multitude of technical applica-
tions of the selenium rectifiers in the low-current technology in the field of radio 
and of electronic communication. During 1952 these developments in Pretzfeld, 

n-semic. n-semic.p-semic. p-semic.

(a) (b)

ε

Fig.  6.5   p-n junction. a As long as there exists no connection between the n-doped and the 
p-doped semiconductor, the energy diagram displays clearly different values of the Fermi 
energy εF in the two semiconductors. b With an electric contact between the n-doped and the 
p-doped semiconductor, the concentration gradient of the electrons and of the holes between 
both sides of the junction is equalized by means of diffusion of both kinds of charge carriers to 
the opposite side, respectively. During this process, positive or negative space-charge regions 
are generated on both sides of the junction, resulting in a local electric field between both sides. 
The diffusion process ends when the Fermi energy εF has reached the same value on both sides 
of the junction

6.4  Metal-Semiconductor Contact, p-n Junction
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based on selenium, were stopped, since germanium and silicon moved to the fore-
front. Subsequently, rectifier development for power electronics concentrated on 
germanium and silicon.

6.5 � Transistor

P-n junctions are also the basis of the “bipolar transistor”. A transistor operates like a 
valve, by which the electric current flow is electronically controlled from the outside. 
Hence, it has three connections to the outside: input, control, and output. Originally, 
in their invention John Bardeen and Walter Brattain had used an arrangement, which 
later became known as point-contact transistor (Fig. 6.6a). Two gold contacts were 
pressed upon an n-doped germanium crystal within a mutual distance of only 50 µm. 
A third metal contact, the “base”, was attached to the back of the germanium crystal. 
One gold contact acted as the “emitter” and served for injecting holes into the ger-
manium crystal. The other gold contact collected the holes again and is referred to 
as the “collector”. The electric current flow between the emitter and the collector can 
be modulated by changing the electric potential at the emitter versus the potential at 
the base and at the collector. The first experiments with this arrangement had already 
yielded a current amplification of about 40 and a voltage amplification of about 100. 
This success clearly opened the way to replace the evacuated glass tube by a solid-
state device to be used for electronic amplification (Fig. 6.7).

Soon after the first demonstration of the transistor principle based on the 
point-contact transistor William Shockley proposed another version of the bipo-
lar transistor, which is based on two p-n junctions. One p-n junction operates as 
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Fig. 6.6   Transistor principle: a Point-contact transistor as it was used originally by Bardeen and 
Brattain. Two gold contacts are pressed upon an n-doped germanium crystal within a distance 
from each other of only about 50  µm. On the opposite side of the germanium crystal a third 
metal contact, the “base”, is attached. One gold contact acts as emitter and injects holes into the 
germanium crystal. The holes are collected again by the other gold contact, acting as the collec-
tor. b Junction transistor according to Shockley. A p-doped semiconductor is placed between two 
n-doped semiconductors in such a way, that two p-n junctions are formed mirror-symmetrically. 
Whereas one n-doped semiconductor serves as the emitter, the other n-doped semiconductor acts 
as the collector. The p-doped region in the center functions as the base
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an emitter, whereas the other p-n junction is electrically connected in the oppo-
site direction and serves as the collector. This “junction transistor” of Shockley 
consists of three regions: an n-doped or a p-doped central region, which is acting 
as the base and which on both sides is joined to a region with the opposite dop-
ing, respectively. In this way a p-n junction is formed on both sides of the central 
region (Fig. 6.6b). The operating principle is similar to that of the bipolar point-
contact transistor.

Again, “minority charge carriers”, having the opposite charge to that corre-
sponding to the doping of the particular region, are injected by the emitter into 
the central region and are then taken up again by the collector. The current of 
these minority charge carriers can be modulated again by means of changes in the 
electric potential. In the junction transistor of Shockley all crucial semiconductor 
functions are now transferred from the surface into the interior of the crystal. The 
highly sensitive crystal surface no longer has the central role. Since in the transis-
tor operation the negative electrons as well as the positive holes are utilized, one 
refers to bipolar transistors.

In addition to the two types of transistor from the early days which we have 
briefly discussed, subsequently many more versions were proposed and studied 
experimentally. In the meantime the transistor has gone through many stages of 
evolution. During this development its rapidly progressing miniaturization has 
always been a strong driving force. Furthermore, the transistor had to operate 
faster and faster, allowing its use at higher and higher frequencies. As an electronic 
device, the transistor has completely replaced the evacuated amplifier tube made 

Fig. 6.7   The first point-
contact transistor constructed 
by Bardeen and Brattain 
in December of 1947. The 
three-cornered part in the 
middle is made from plastic 
material and is covered by a 
gold foil at its two edges. At 
the tip at the bottom the gold 
foil is cut by a razor blade, 
such that two contacts are 
generated in close proximity. 
By means of a metal spring 
the contacts are pressed 
against the semiconductor 
surface located underneath. 
(photo Lucent)

6.5  Transistor
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from glass. Compared with this forerunner of glass, the transfer of the electronic 
functions into the crystal interior achieved by the transistor, yielded important 
advantages: highly increased reliability and robustness, as well as the potential for 
extreme miniaturization and, hence, for fabrication in large quantities and at a very 
low price.

If we look at the commercial use of the invention of the transistor, we can observe a very 
interesting process. Initially, the company, which owned the invention, pursued the fol-
lowing guiding principle: keep it secret and do not divulge any details. However, after 
some time the management noticed that applications of the transistor did not appear, 
and that scepticism still dominated. It became very clear, that the strategy of the com-
pany had to be changed. Therefore, a complete turnaround was adopted, and the attitude 
now became quite open. As a result, during September 1951 the Bell Laboratories organ-
ized a large symposium in Murray Hill, in which the details of transistor technology were 
openly discussed. The event was met with strong interest, and 301 professional people 
participated. The participants came from universities, from other industrial laboratories, 
and from military organizations. The Proceedings Volume with the Conference Reports 
contained 792 pages, and 5,500 copies were distributed. This great success and the rap-
idly increasing general interest were the reason why, during April 1952, a second sym-
posium on transistor technology was organized. This time representatives from a total of 
40 companies participated: 26 companies from the USA, and 14 companies from foreign 
countries. Without doubt, it was this policy of the Bell Laboratories of switching to an 
open attitude which began the decisive change. Now ideas and proposals came from many 
sides, including from outsiders. The first commercial application of the transistor was in 
hearing aids made by American companies. Subsequently, the technical utilization of the 
transistor has grown rapidly.

6.6 � Photovoltaics, LED, Semiconductor Laser

The American Russel S. Ohl had discovered the photovoltaic effect of the p-n 
junction rather by accident (Fig. 6.8). If the p-n junction is irradiated with light, an 
electric voltage appears between both sides, or an electric current flows through a 
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Fig. 6.8   Photovoltaic effect at the p-n junction. a Solar cell: The absorption of photons of suf-
ficiently high energy within the region of a p-n junction results in the generation of electron-hole 
pairs. In the electric potential drop of the p-n junction, the electrons and the holes lead to electric 
current flow through the conductor and around the outside. b Inversion of the solar cell in the light 
emitting diode (LED). An electric current flowing in the forward direction injects electrons into 
the p-doped semiconductor and holes into the n-doped semiconductor. By means of the recombi-
nation of the electrons with the holes energy is released, which is emitted in the form of photons
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wire connecting both sides around the outside. This is exactly the principle of the 
solar cell. The absorption of a light quantum causes the generation of an electron-
hole pair at the p-n junction. Because of the electrical potential gradient at the p-n 
junction, the electrons are accelerated towards the n-doped region and the holes 
towards the p-doped region. As a result, an electric current, flowing through the 
wire around the outside, is generated. For the large-scale technical utilization of 
the solar energy the search for increasing efficiency of the solar cell today is still 
an important subject of research and development. For transportation in space, the 
silicon solar cell represents the major energy source today.

The process we have just discussed can also be inverted. Then we are dealing 
with the light-emitting diode (in short LED), and an additional step in the devel-
opment leads us to the injection laser or the semiconductor laser. Now an electric 
current is passed through the p-n junction in a forward direction. As a result, elec-
trons are injected into the p-doped region and holes into the n-doped region. Being 
minority charge carriers, the electrons recombine with the holes in the p-doped 
region, and the holes do the same with the electrons in the n-doped region. The 
energy, which is set free during the recombination, is emitted in the form of a 
light quantum. In this way the light emitting diode is accomplished. However, 
for the semiconductor laser additional requirements must be fulfilled. As is well 
known, light emission always occurs by means of a quantum mechanical process, 
in which an electron as an atomic elementary particle drops from a higher to a 
lower energy level. However, for the generation of laser light it is necessary that 
the upper energy level is occupied by more electrons than the lower level. We must 
have “population inversion”. As an additional requirement, a standing light wave 
must be built up in the active region of the p-n junction in the form of resonance 
due to the proper geometric dimensions. Finally, all possible competing processes, 
not resulting in the emission of a light quantum and following a different course 
during the electron-hole recombination, must be sufficiently suppressed.

The operation of the first semiconductor laser was in 1962. This new technol-
ogy in the field of optoelectronics benefitted greatly from compound semicon-
ductors, which Heinrich Welker had discovered about a dozen years earlier, and 
which are most suitable for this application. In the III-V semiconductors, as for 
example gallium-arsenide (GaAs), the energy gap between the conduction band 
and the valence band is relatively large. Hence, the energy being set free during 
the electron-hole recombination in the form of a light quantum is also correspond-
ingly large. The spectrum of the visible light extends from red on the end for the 
light quanta with low energy, up to blue and violet on the other end for the light 
quanta with high energy. Gallium-arsenide emits light in the invisible infrared. 
Red and green light is generated by mixed crystals based on gallium-arsenide con-
taining further admixtures. Only recently, it created a small sensation when Shuji 
Nakamura in Japan succeeded for the first time in building a semiconductor laser 
based on gallium-nitride (GaN) emitting even blue light. Meanwhile semicon-
ductor lasers such as the GaAs laser have found wide application in many areas. 
Using the infrared laser made from gallium-arsenide, we operate the remote con-
trol of our television receiver. In many household items we find red and green 

6.6  Photovoltaics, LED, Semiconductor Laser
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little lights fabricated from semiconductor crystals. Over the years, the yield of 
the emitted light could be strongly improved by means of a modification of the 
semiconductor material on both sides of the active p-n junction region, achieving 
an energetic spatial confinement of the electrons and of the holes within a small, 
well defined active volume. In this case one speaks of the double hetero junction 
(in short DH).

As early as in 1963 the German Herbert Kroemer had proposed this advanced 
type of semiconductor laser. However, at that time it had not yet been recognized 
that the optoelectronics eventually would gain that much in importance. Therefore, 
Kroemer’s ideas were ignored for quite a while. The remarks Kroemer made in 
December 2000 in Stockholm during his lecture celebrating his award of the 
Nobel Prize are extremely noteworthy. In this lecture Kroemer said:

It was really a classical case of judging a fundamentally new technology, not by what new 
applications it might create, but merely by what it might do for already existing applica-
tions. This is extraordinarily shortsighted, but the problem is pervasive, as old as technol-
ogy itself. The DH laser was simply another example in a long chain of similar examples. 
Nor will it be the last. Any detailed look at history provides staggering evidence for what 
I have called the Lemma of New Technology: The principal applications of any sufficiently 
new and innovative technology always have been—and will continue to be—applications 
created by that technology.

Very recently, light bulbs are less and less used for general illumination purposes 
and are replaced by “cold light sources”. In the case of these energy saving illumi-
nants, the light emitting diodes (LED) play an important role (Fig. 6.8b). Whereas 
their lifetime is relatively long, their production costs are still high. Compared 
with a traditional light bulb, the energy saving of the LEDs at best amounts to 
89 %. Presently, the optimum color composition of the light is a subject of ongo-
ing research.

6.7 � Miniaturization, Planar Technology

During the past 60 years, semiconductor electronics has reached an impressively 
high level and has become an important economic field. Initially, the methods for 
the preparation of the semiconductor materials looked more like black art, consist-
ing of many special tricks and recipes. However, going through many evolution-
ary stages, eventually they developed into the industrial processes used today in 
semiconductor factories. This development was accompanied by the permanently 
progressing miniaturization, which allowed the placement of an ever increasing 
number of devices and electronic circuits within an area of about 1 cm2 on a chip. 
An important advance has been the introduction of “planar technology”, utilizing 
the silicon surface well protected by its highly stable oxide. A large single crystal 
of silicon is cut into thin slices, the “wafers”. The thickness of the wafers is only 
a few tenth of a mm. All further processing steps are concerned only with the sili-
con surface. The doping with donors and acceptors is accomplished by means of 
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diffusion into the regions near the silicon surface, where the oxide had been etched 
away previously. For this purpose the temperature of the diffusion ovens must 
be exactly controlled within a fraction of one degree, in addition to the temporal 
profile of the heat treatment. Only with such extreme care can the doping profiles 
near the surface of the wafer be exactly reproduced. The many processing steps, 
which today can amount up to more than four hundred, are controlled by comput-
ers. Today, the diameter of the silicon wafers and, hence, the diameter of the sili-
con single crystals used as the raw material has reached a value as large as 30 cm 
(Fig. 6.9). From a single wafer with this diameter a total of about 700 chips each 
with 1 cm2 area can be fabricated. At the end of the fabrication process, in some 
cases a single wafer of this kind can reach a total value of up to 250,000 US $  
(Fig. 6.10).

Due to the permanently progressing miniaturization, the number of transistors 
on a single chip has increased rapidly. During the three decades from 1970 until 
2000 this number increased from about one thousand at the beginning up to about 
256 million at the end. The cost per bit of stored information dropped correspond-
ingly. This highly impressive development has been summarized in the famous 
law of the American Gordon E. Moore, about which he had been contemplat-
ing already in 1965. According to this law, every 5–6 years the price per transis-
tor on a chip drops to about one tenth of its value at the beginning of this period. 
However, the increasing complexity of the semiconductor circuits is accompanied 
by a corresponding increase in the cost of the semiconductor factories. Sometimes, 
this fact is also referred to as the Second Moore’s Law.

Today (2012), the individual “structure size” for the geometric dimensions of 
the devices to be fabricated is reaching about 45 nm. Before long, it is expected 

Fig. 6.9   Processing of the silicon wafers with 30 cm diameter. (photo Wacker Chemie AG)

6.7  Miniaturization, Planar Technology
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to hit a principal limit because of the atomic or molecular quantum conditions. In 
order to extend the miniaturization any further, completely new concepts will then 
become necessary.

During recent years, an unexpected and completely different development took 
place, which started from the technical experience with silicon single crystals, and 
which turned out to be highly interesting. It has nothing to do with the electron-
ics of doped semiconductors. Instead, it is concerned with the technical utiliza-
tion of single-crystalline silicon in the field referred to as micromechanics. By 
now, micromechanics has turned into an important new technical field experienc-
ing rapid development. Extremely miniaturized mechanical systems are fabricated 
by means of different etching techniques and other methods of micro-fabrication. 
For example, such systems are used for measuring pressure or mechanical accel-
eration. Actual applications of these systems can be found, among other areas, in 
the automobile industry. Here, a typical example is the controlled activation of 
the airbag. Again, also in this case, the potential for fabrication of large quantities 
together with a very low price represents an important requirement.

6.8 � Thermoelectricity, Peltier Cooling

At the end of this chapter dealing with the properties of semiconductors we turn 
now to thermoelectric phenomena, namely the Peltier and Seebeck effect. As we 
have discussed in Chap. 5, both effects appear if a temperature gradient and an 

Fig. 6.10   Modern 
microprocessor chip 
with the dimensions 12.6 
mm × 12.6 mm. (Here the 
microprocessor Power 3). 
There are about 15 million 
transistors on this chip. 
(IBM)

http://dx.doi.org/10.1007/978-3-319-09141-9_5
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electric potential gradient act simultaneously. In semiconductors both effects are 
much stronger than in metals, typically by a factor of one hundred or more. This fact 
is due to the particular form of the Fermi distribution of the electric charge carriers 
in semiconductors. As we have pointed out above, in semiconductors the number of 
mobile charge carriers is much smaller than in metals. Therefore, the Fermi energy 
εF is also correspondingly smaller in semiconductors. As we have also discussed in 
Chap. 5, the states are always occupied by electrons according to the Fermi func-
tion. The energy width kBT, within which the Fermi function drops from the value 
of one to zero, in semiconductors is much larger than εF. This is in contrast to met-
als, where this energy width is much smaller than εF. Therefore, in semiconductors 
the Fermi distribution (5.10) changes into the classical Boltzmann distribution 
(6.1). As a consequence, the reduction factor kBT/εF, which is valid for metals and 
which selects only a small fraction of all electrons to participate in many thermal 
and electrical phenomena, disappears in semiconductors. This is the main reason for 
the relatively high values of the Peltier and Seebeck effect in semiconductors.

In particular, the Peltier effect in semiconductors is very appropriate for techni-
cal applications. We recall that the Peltier effect is due to the transport of the heat 
energy of the charge carriers moving through the conductor during electric cur-
rent flow. At the junction between two different electrically conducting materials 
a pile-up of the heat current can develop. Depending upon the current direction, 
the junction region can be heating up or cooling down. This effect is most pro-
nounced, if an n-doped and a p-doped semiconductor join together at the junction. 
In this case the (negative) electrons of the n-doped side and the (positive) holes of 
the p-doped side move in opposite directions. Hence, they move either from both 
sides towards the junction, or away from the junction on both sides. In the second 
case a strong effective cooling of the junction is expected. Therefore, the Peltier 
effect is useful in cryogenics.

The Russian Abram Fedorovich Ioffe has been one of the first who recognized the impor-
tance of semiconductors in cryogenics. Ioffe was born in the county town of Romny, 
at the time belonging to the Russian Empire. During the years 1902–1906 he was pro-
bationer at first and assistant later of Wilhelm Röntgen at the University in Munich. In 
1905 Ioffe finished his Ph.D. thesis, supervised by Röntgen, entitled “Elastic After-effect 
in Crystalline Quartz”. During the Fall of 1906 Ioffe took the position as assistant at the 
Polytechnic Institute in St. Petersburg. This Institute, named after Peter the Great, had 
been founded in 1902. During his exceptional scientific career Ioffe was responsible for 
the establishment of five different Research Institutes in the former Soviet Union. Here 
we want to emphasize in particular the Semiconductor Institute in St. Petersburg, which 
became very famous, and from which many important papers on the physics of semi-
conductors originated. Since 1950 Ioffe strongly increased his research effort in the field 
of thermoelectricity in semiconductors, then still at the Physical-Technical Institute of 
Leningrad. A few years later he wrote a book on semiconductor thermo-elements. At the 
time, his optimistic forecast about the thermoelectric applications of semiconductors, in 
particular for cryogenics due to “Peltier cooling”, has triggered great new efforts in semi-
conductor research worldwide in many laboratories of the electronics industry.

Today, Peltier cooling is carried out primarily based on the n-doped and the 
p-doped semiconductor compound bismuth-telluride, Bi2Te3. The commercially 
available “Peltier modules” consist of an arrangement of up to several hundred 
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n-doped and p-doped Peltier legs, thermally in parallel and electrically in series 
connection. The individual Peltier legs are only a few mm long and have a cross-
section of about 1 mm2. With a single Peltier module, a cooling from room tem-
perature down to 50–60° below room temperature can be achieved. Even lower 
temperatures can be reached using a multi-stage Peltier cascade (Fig.  6.11). For 
example, recently, cooling from room temperature down to 135  K was accom-
plished by means of a seven-stage Peltier cascade.

The operation of a stage for Peltier cooling, schematically shown on the left in 
Fig. 6.11, is governed by the power-balance equation

which describes the heat current density flowing into or out of the cold end of the 
Peltier element. On the left in (6.14) we have the density of the Peltier heat cur-
rent. The first term on the right is the heat current density caused by thermal con-
duction. The second term on the right represents the dissipated electrical power 
per cross-sectional area, half of which is assumed to reach the cold side of the 
Peltier element. Equation (6.14) applies to each of the two legs of the Peltier ele-
ment. T0 and T1 are the temperature on the warm and the cold side, respectively. 
(|S| = absolute value of the Seebeck coefficient, κ = heat conductivity, ρ = elec-
tric resistivity, V =  voltage, L =  length of the Peltier legs. These quantities are 
assumed to be the same in both legs. j = (1/ρ) (V/L) = electric current density). 
In (6.14) any additional thermal load of the cold end is assumed to be zero. From 
(6.14) one finds

(6.14)|S|T1j = κ
T0 − T1

L
+

1

2

V2

ρL

(6.15)(T0 − T1) =
1

κρ

[
|S|T1V −

V2

2

]

cold side

heat removal

p-cond.n-cond.

+ -

Fig. 6.11   Peltier cooling. Left Schematics of a Peltier cooling device consisting of an n-doped 
and a p-doped semiconductor. The electric current flows from the left to the right side. Right 
Commercially available four-stage Peltier cascade. In the individual stages the Peltier legs are 
clearly visible. With the cascade shown, the temperature can be lowered from room temperature 
at the warm end down by about 140 K lower than room temperature at the cold end. The lateral 
dimensions are: lowest stage: 24.0 mm × 20.6 mm; uppermost stage: 4.5 mm × 2.4 mm. Total 
height: 13.6 mm. (photo KRYOTHERM)
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The maximum of (T0 − T1) is obtained from the condition ∂(T0 − T1)/∂V = 0, 
yielding V = |S| T1 and finally

Here

is the “figure of merit”, a most important quantity of thermoelectricity.
As we see from (6.15), it is essentially the combination of the linear current 

dependence of the Peltier heat and the quadratic current dependence of the gener-
ated Joule heat, which limits the cooling effect achieved by the Peltier element, 
and which leads to a maximum temperature drop. If the cold side experiences an 
additional heat load (as, for example, from the higher stages of a Peltier cascade), 
then the maximum temperature drop will be smaller than the value given in (6.16). 
With increasing such heat load, the temperature drop (T0 − T1) decreases linearly, 
reaching zero when the heat load is equal to half of the electric power dissipated in 
the Peltier stage.

Equation (6.16) can be rewritten in the form

Using the typical values near room temperature (applicable to the Bi2Te3 sys-
tem mentioned above), Sn = −200  µV/K, Sp =  200  µV/K, ρ =  1  mΩ cm, and 
κ = 15 × 10−3 W/cm K, one obtains z = 2.7 × 10−3 K−1. This value of z together 
with (6.18) and T0 = 283 K yields (T0 –T1)max = 64 K.

(6.16)(T0 − T1)max =
1

2
zT2

1

(6.17)z =
S2

κρ

(6.18)(T0 − T1)max =
1

2z

[
(2z T0 + 1)1/2 − 1

]2
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Abstract  In a magnetic field the motion of electric charges perpendicular to the 
field direction is deflected into circular orbits because of the Lorentz force. This 
deflection causes an increase in the electric resistance and the generation of the 
Hall voltage transverse to the current flow in the conductor. The orbital motion 
corresponds to a redistribution of the electrons in the conduction band onto 
Landau cylinders in momentum space. At high magnetic fields this leads to a 
periodic oscillation of the electronic crystal properties as a function of the mag-
netic field. Experimental studies of these oscillations yield information about the 
extreme cross-sections of the Fermi surface perpendicular to the magnetic field 
direction. In the restricted geometry of a two-dimensional electron gas, new quan-
tum effects appear, such as the integer and the fractional quantum Hall effect.

The brilliant American physicist Henry A. Rowland is perhaps best known for 
his mechanical fabrication of optical diffraction gratings, which were unique dur-
ing his time and became famous as the “Rowland gratings”. In the year 1870 he 
had completed his education as a civil engineer at the Rensselaer Polytechnic 
Institute (RPI) in Troy in the Federal State of New York. After some time as an 
Assistant Professor for science at the Wooster University in Ohio, he returned in 
1872 to the RPI with an appointment as Instructor of Physics. During the winter 
semester 1875/1876 he visited the Institute directed by Hermann von Helmholtz 
in Berlin. Rowland was particularly interested in the theory of electricity and the 
field of “electrodynamics”, founded by Michael Faraday and James Clerk Maxwell 
in England. During his journey to Berlin, Rowland passed through Cambridge 
in England where he visited Maxwell. As a guest of Helmholtz, in an astonish-
ingly short time Rowland was able to demonstrate experimentally that elec-
trically charged objects are accompanied by a magnetic field, if they move at a 
high velocity. In his report to the Berlin Academy during March 1876, Helmholtz 
himself declared: “Mr. Rowland has just performed a series of direct experi-
ments in the physics laboratory of this university, which present the positive 
proof, that the motion of electrically charged objects [aside from conductors !] is 
also electro-magnetically active.” Such fundamental experiments in the field of 
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electrodynamics were then at the frontiers of physics. Following the Semester in 
Berlin, Rowland went to the American Johns Hopkins University which had just 
been founded in Baltimore in the Federal State of Maryland.

Having returned to the USA and continuing his previous research activities, 
Rowland was interested to find out if an electric current in a metallic conductor is 
deflected sideways by an external magnetic field, thereby causing an additional elec-
tric voltage signal perpendicular to the direction of the electric current. After Rowland 
himself could not detect any effect, he turned this, for the time quite ambitious meas-
urement task, over to his student Edwin Herbert Hall. In the year 1879 Hall observed 
the effect. Subsequently, this phenomenon is referred to as the Hall effect.

7.1 � Hall Effect

The Hall effect represents one of the simplest phenomena caused by moving elec-
tric charge carriers, when an external magnetic field is also present. Electric charge 
carriers moving in a magnetic field experience a force, which is oriented perpen-
dicular to both the direction of their motion and the direction of the magnetic field. 
This force, named after the Dutch theoretical physicist Hendrik Antoon Lorentz, is

It is proportional to the magnetic field B, and also proportional to the moving electric 
charge q and to the component of the velocity v of the charge carriers perpendicular 
to the magnetic field. Reversing the sign of each of these three factors leads to a sign 
reversal of the Lorentz force. The Lorentz force vanishes, if the charge carriers move 
parallel to the direction of the magnetic field such that the velocity component perpen-
dicular to the magnetic field remains zero. As a result of the Lorentz force, the motion 
of the free charge carriers along a straight line is deflected into a helical or circular 
trajectory (Fig. 7.1a). In the case of the electric current density (5.3) j = n(−e)�vx 
along x-direction in a conductor, and in the presence of a magnetic field B along 
z-direction, the Lorentz force is oriented along y-direction: fLy = q �vx × B. Here 
we have inserted the drift velocity �vx into (7.1). Because of the force fLy, the posi-
tive and negative electric charges accumulate at the opposite sides of the conductor, 
respectively, assuming that they move in the same direction (Fig. 7.1b), and thereby 
they generate an electric field Ey along y-direction. In the stationary state, the Lorentz 
force fLy is compensated by the electrostatic force qEy, and one finds

From this follows

Ey denotes the electrical Hall field, characterizing the Hall effect. In (7.3) we have 
used q = −e. The coefficient RH =

1
(−e)n

 is the Hall constant (which is negative 

(7.1)fL = qv × B

(7.2)q �vx × B = qEy.

(7.3)
∣∣Ey

∣∣ = |�vx × B| =
1

(−e)n
j B ≡ RH j B .
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in the case q = −e). We see, that the Hall constant yields information about the 
concentration of the moving charge carriers, and that the sign of the electrical 
Hall field indicates the sign of these charge carriers. However, early on occasion-
ally one had observed also a positive sign of the Hall constant, which remained 
unexplained (anomalous Hall effect) until the concept of the (positive) holes in the 
electronic band structure was established.

At this point it is important to note, that for the same direction of the electric 
current, positive and negative electric charges move in opposite directions. Hence, 
in the case of reversal of the sign of the moving charges, the sign of the Lorentz 
force changes twice, such that in the end it remains the same. Therefore, the simul-
taneously moving positive and negative electric charges are driven toward the same 
side of the current-carrying conductor. As we have discussed in Chap. 6 in the 
context of the hole concept, already early on the Hall effect indicated frequently, 
that the moving charge carriers act like (positive) holes, which originate from the 
region near the upper edge of an almost completely filled energy band. In addition 
to the sign of the moving charges, from the Hall effect one can also determine the 
concentration of the moving charge carriers in the electrically conducting material.

In principle, the behavior we have discussed so far is expected in the same way 
for both metals and for semiconductors, as long as there exists only a single kind 
of charge carrier. However, if the electric current is transported by two or more 
different kinds of charge carriers, the situation can become complicated very rap-
idly. For example, the Hall effect completely disappears, if simultaneously posi-
tive and negative charge carriers are present with exactly equal concentration and 
if they also contribute to the electric current with the same mobility. Since in the 

Fig. 7.1   Lorentz force acting on electric charges moving in a magnetic field. The magnetic field 
is directed perpendicular to the plane of the paper. a Because of the Lorentz force, the motion 
of electric charges perpendicular to the direction of the magnetic field is deflected onto a cir-
cular orbit. b Hall effect: During electric current flow in a conductor, the sideways deflection 
of the current due to the Lorentz force causes the accumulation of charges with opposite sign, 
respectively, on both sides of the conductor (assuming that the opposite charges move in the 
same direction). This results in an electric voltage perpendicular to the main current direction and 
perpendicular to the direction of the magnetic field. c Magneto-resistance: The deflection of the 
electric charges into circular orbits because of the Lorentz force hinders the electric current flow 
along its main direction and causes an increase in the electrical resistance. The crosses mark the 
locations, where the electrons experience a collision process

7.1  Hall Effect
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magnetic field the positive and negative charge carriers are driven to the same side 
of the current-carrying conductor, there the charges with the opposite sign com-
pensate each other exactly in this case, such that no Hall effect remains.

An impressive example of the Lorentz force can be observed in the phenomenon of the 
northern lights. It is caused by the impact of electrically charged particles, particularly of 
protons, originating from the sun. In the earth’s magnetic field the particles are deflected 
to higher latitudes along circular trajectories, where they optically excite the gas mole-
cules at about 100 km altitude. Also in the large accelerators the electrically charged parti-
cles are kept on their proper trajectories by means of magnetic coils and the Lorentz force. 
Furthermore, this force and the effected deflection of the trajectory of electrically charged 
particles represents the principle of the “magnetic bottle”, which is supposed to keep hot 
plasma sufficiently far away from the reactor walls of the long-term-project nuclear fusion 
reactors. Finally, it is also the same force which acts upon an electrical conductor during 
electric current flow and which represents, for example, the principle of the electric motor.

7.2 � Magneto-Resistance

The deflection of the electric charge carriers onto helical or circular orbits in 
a magnetic field by means of the Lorentz force also affects the electric resistivity 
(Fig. 7.1c). This effect is referred to as the magneto-resistance. On general grounds 
we expect an increase in resistance due to the magnetic field, since the electric cur-
rent flow is hindered, if the charges are forced to follow helical or circular orbits, 
instead of moving only in a single direction. At not too high magnetic fields, the 
resistance increases with magnetic field proportional to B2. (This B2 dependence 
is expected, since the increase of resistance must be independent of the sign of the 
magnetic field). The increase of the electrical resistance depends on whether, and 
in which way, both electrons and holes contribute to the electric current. In single 
crystals the resistance increase in a magnetic field can also depend strongly on the 
crystallographic direction. In recent years magneto-resistance effects, in which the 
angular momentum or spin of the electrons plays a central role, have received a large 
amount of attention. We will return to these spectacular developments in Chap. 10 
when we discuss the subject of the “giant magneto-resistance” and spintronics.

7.3 � Landau Theory, Landau Cylinders

The exact quantum mechanical theory of electrons in the conduction band of 
a metal in the presence of a strong magnetic field, is due to the Russian Lew 
Dawidowitsch Landau. In the year 1930 at the age of only 22  years he published 
his famous paper on the diamagnetism of metals. One year earlier, following his 
graduation in Leningrad, Landau had begun a two-year visiting tour to European 
Research Institutes, which brought him among other places to Zurich, Copenhagen, 
Cambridge, Berlin, and Leipzig. In his paper Landau showed that the energy spec-
trum of the electrons is strongly modified by the magnetic field. In Chaps. 4 and 5 we 
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have discussed, how the energy spectrum of the electrons in the conduction band of a 
metal is described in terms of the wave vectors which characterize the electron matter 
waves during their propagation along all three spatial directions. However, because 
of the magnetic field and the Lorentz force, the electron motion perpendicular to 
the direction of the magnetic field is forced into a circular orbit. Assuming that the 
magnetic field is oriented along the direction of the z-coordinate, the circular orbit is 
located within the plane of the x- and y-coordinate. Whereas in the absence of a mag-
netic field (B = 0) the energy spectrum of the electrons is given by

in the presence of a magnetic field B = Bz �= 0 oriented along z-direction it is

Here,  ℓ  is an integer, and mc is the cyclotron mass of the electrons.

is the cyclotron angular frequency of the electrons. We see, that during their circu-
lar orbit in the x-y plane, the energy of the electrons is quantized in the unit of the 
cyclotron energy ħωC. The wave vectors within the x-y plane are no longer rele-
vant, since the corresponding states form new combined states with orbital motion. 
Only the electron motion along the z-direction remains unchanged in the form of 
the corresponding matter wave defined by the wave vector kZ along the z-direction. 
In this context we remember that the Lorentz force vanishes if the electrons move 
parallel to the direction of the magnetic field.

In the absence of a magnetic field, the three-dimensional k-space of the wave 
vectors is evenly filled with states to be occupied. On the other hand, in the case 
of an existing magnetic field, because of the energy quantization (7.5) according to 
Landau, the allowed states are redistributed into a series of coaxial “Landau cylin-
ders”. Now the states which can be occupied are restricted to these cylinders. The 
axis of the cylinders is oriented along the direction of the kZ wave vector, i.e., along 
the same direction as that of the magnetic field. The energetic distance between two 
subsequent Landau cylinders is ħωc, which increases proportional to B. Hence, at 
high magnetic fields, their energetic distance is relatively large. At a magnetic field 
B = 1 T one obtains a typical value �ωc ≈ 10−4 eV. Fig. 7.2 shows an example.

For the manifestation of the energy quantization according to Landau it is nec-
essary, that the circular orbits of the electrons in the magnetic field are not dis-
rupted by collision processes experienced by the electrons. The circular orbits 
should be completely traversed without perturbation at least one time. Since the 
number of the collisions, for example with phonons, strongly decreases with 
decreasing temperature, in addition to high magnetic fields, temperatures as low 
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as possible are required for the experimental observation of the quantum structure 
associated with the Landau cylinders. Furthermore, sufficiently low temperatures 
also ensure, that the thermal energy kBT is distinctly smaller than the energetic 
distance ħωc between two neighboring Landau cylinders, and that the quantum 
structure is not smeared out because of the thermal energy kBT. Finally, single-
crystals with the highest possible purity should be used for the experiments.

Because of these reasons, for the distinct manifestation of the Landau cylinders, 
the following conditions must be satisfied (where τ denotes the scattering time):

and

Already by 1930 Landau had recognized that, because of the energy quantization of 
the conduction electrons in a magnetic field discussed by himself for the first time, 
macroscopic material properties, such as for example diamagnetism, should dis-
play an exactly periodic oscillation as a function of the magnetic field. However, he 
felt that the necessary purity criteria could not be reached for the available sample 
materials, and that, hence, the effect would remain unobservable. Since the energy 
difference ħωc between two neighboring Landau cylinders increases proportional to 
B, the number of the Landau cylinders to be occupied up to the Fermi energy with 
increasing magnetic field becomes smaller and smaller. In the case of a monotonically 
increasing magnetic field, the redistribution of the electrons onto the Landau cylin-
ders according to the energy spectrum (7.5) leads to a periodic oscillation of the total 
energy of the electrons. At ǫF = �ωcℓ the total energy of the electrons passes through 
a minimum, and at ǫF = �ωc

(
ℓ+

1
2

)
 through a maximum. As a consequence, this 

also results in oscillations of the other electronic sample properties as a function of 
the magnetic field, such as, for example, diamagnetism.

(7.7)ωcτ > 1

(7.8)kBT < �ωc

Fig. 7.2   In high magnetic fields the energy quantization according to Landau leads to a redistribution 
of the states, which can be occupied by the electrons in k-space, onto the walls of a family of coaxial 
cylinders. The common axis of the cylinders is oriented along the direction of the magnetic field. The 
distance between the cylinder walls in k-space increases proportionally with the magnetic field
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Contrary to the apprehension by Landau, the oscillations of diamagnetism were 
observed for the first time by the year 1930 in bismuth single crystals by the Dutch 
Wander Johannes de Haas and P. M. van Alphen in Leiden. The effect is now 
referred to as the de Haas-van Alphen effect. At the time Rudolf E. Peierls con-
tributed significantly to its further theoretical clarification. An important theoreti-
cal advance originated from Lars Onsager during a visit to Cambridge, England, 
in the Academic Year 1950/1951. Strongly emphasizing the geometrical interpre-
tation of the Fermi surface in the three-dimensional k-space of wave vectors, he 
showed that only the extreme cross-sections of the Fermi surface taken perpen-
dicular to the direction of B contribute to this effect. The contributions of all other 
parts of the Fermi surface are irrelevant, since they cancel each other. The period 
of the de Haas-van Alphen oscillations is inversely proportional to the extreme 
cross-section of the Fermi surface, i.e., inversely proportional to the largest and 
to the smallest cross-section. (Here the extreme cross-sections are taken perpen-
dicular to the direction of the magnetic field). Subsequently, it transpired that Ilya 
Mikhailovich Lifshitz in Moscow had developed similar ideas independent of 
Onsager. In Cambridge, David Shoenberg, we had mentioned in Chap. 5, and his 
collaborators have utilized these theoretical ideas particularly successfully.

The de Haas-van Alphen effect then has become an important experimental tool, particularly in 
the 1950s and 1960s, for determining the shape of the Fermi surface in many materials, as long 
as the materials could be prepared in the form of sufficiently pure single crystals. Eventually, 
impressively fine details were discovered, and the experimental techniques were continuously 
improved. Large deviations of the Fermi surface from a simple spherical shape were observed. 
In some materials, as for example the multi-valency metals, the Fermi surface often consists of 
half a dozen or more separate parts, which are associated either with electrons or with holes. 
For such parts, notations such as monster, cap, lense, butterfly, needle, or cigar were invented. 
The belly and the necks of the Fermi surface of copper, discovered by Alfred Brian Pippard 
and mentioned above, represent only the first and, still relatively simple, example.

As one would expect, similar oscillations as in the de Haas-van Alphen effect also 
appear in other physical material properties, which are influenced by the mobile 
electric charge carriers. The “Shubnikov—de Haas oscillations” of the electric 
conductivity represent one example. Even in the chemical reaction rate on the sur-
face of metallic catalysts, during the variation of the magnetic field, oscillations 
have been observed which have the same origin.

For our further discussion it is useful to look more closely at the density of 
states which can be occupied by electrons as a function of the electron energy. 
We start with the three-dimensional case. In this case, which is usually applica-
ble, according to (6.3) and (6.7), the density of the possible energy levels increases 
proportionally with the square-root of the electron energy as long as no magnetic 
field is present. However, if a magnetic field exists, the redistribution of the energy 
levels onto the Landau cylinders in k-space causes the curve to be superimposed 
by many sharp peaks following each other within the energetic distance ħωc of the 
cyclotron energy. On the other hand, in the two-dimensional case, in the absence 
of a magnetic field, we find that the density of the energy levels, which can be 
occupied, is independent of the energy, i.e., it is constant.

7.3  Landau Theory, Landau Cylinders
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In Fig. 7.3 we present an overview of the energy dependence of the density of 
states at zero magnetic field in the four cases of a different number of spatial dimen-
sions, from three (top) to zero (bottom). In the one-dimensional case, the density of 
states decreases from one energy level Ein to the next higher one with (1/energy)1/2, 

Fig. 7.3   Dependence of the 
density of states upon the 
energy E at zero magnetic 
field in the four cases of a 
different number of spatial 
dimensions from three (top) 
to zero (bottom). B = 0
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whereas in the zero-dimensional case there only exist the discrete energy levels Einm. 
In the two-dimensional case, the independence of the density of states of the energy, 
at high magnetic fields, leads to novel physical properties such as, for example, the 
quantum Hall effect. Next we wish to address these questions.

7.4 � Integer Quantum Hall Effect

Based on the periodic boundary conditions, in Chap. 6 we have shown, that in the 
one-dimensional case the density of states w(k) in k-space is w1(k) = L/2π, 
where L denotes the physical dimension of the crystal. By extension to two dimen-
sions, one obtains w2(k) = (L/2π)2. In the two-dimensional case, in analogy to 
(6.6), the density of states per energy interval (using (4.8) and ignoring the spin of 
the electrons) is given by

and D2(ǫ) per unit area is

In (7.10) the density of states is independent of the energy. Using the energy interval 
�ωc between two subsequent Landau levels (from (7.5) with kz = 0), we find the 
number N of the states per area and per Landau level:

As discussed above, in order to clearly observe the quantum structure according to 
Landau the conditions (7.7) and (7.8) must be satisfied. This case is shown sche-
matically in Fig. 7.4.

We return to the Hall effect (7.3), and in the two-dimensional case we have:

Here j2 = I/w denotes the current density in a two-dimensional conductor of width 
w carrying the current I. The quantity n2 is the umber of electrons per area. If the 
Fermi energy ǫF is located exactly between two Landau levels, all Landau levels 
below (above) ǫF are occupied (unoccupied). In this case n2 in (7.12) amounts to:

(7.9)

D2(ǫ) = w2(k)
∂(k − space area)
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where z is an integer number. For the Hall resistance Rxy one obtains:

The Hall resistance Rxy only depends upon the fundamental constants h and e, an 
important and surprising result.

In order to discuss the quantum Hall effect, we consider a two-dimensional 
crystal (two-dimensional electron gas) in a high magnetic field, the field being ori-
ented perpendicular to the plane in which the crystal is located. Now the Landau 
cylinders are reduced to Landau circles obtained as a two-dimensional cut through 
the coaxial cylinders perpendicular to the cylinder axis. The sequence of the 
Landau circles, placed within each other around their common center, again cor-
responds exactly to the quantized energy of the electrons in their circular orbits 
within the plane of the crystal, representing multiples of the cyclotron energy �ωc.  
The constant density of the energy levels of the two-dimensional crystal, which 
can be occupied by electrons, according to (7.11) leads to the consequence that 
all energy intervals (of magnitude ħωc) between the subsequent Landau circles 
contain exactly the same number of energy levels to be occupied. Therefore, the 
energy levels corresponding to the individual Landau circles are also occupied by 
exactly the same number of electrons. The energy spectrum of the electrons dis-
plays a sequence of sharp and exactly equal peaks, appearing periodically along 
the energy axis with a distance given by the cyclotron energy �ωc (Fig. 7.4). If it 
is possible to increase continuously the number of the mobile electrons in the two-
dimensional crystal, then the electrical properties should change in a step-wise 
manner each time an additional Landau level just becomes filled up with electrons.

More than 30 years ago the German Klaus von Klitzing was interested in such 
effects in the context of his research at the Physical Institute of the University of 
Würzburg. In the Fall of 1979 he went to the German-French High-Magnetic-
Field Laboratory in Grenoble for a research visit, since in Grenoble magnetic 
coils were available for stronger fields than in Würzburg. At the time, the previ-
ous thesis advisor of Klaus von Klitzing, Gottfried Landwehr, was in charge of the 
Magnet Laboratory in Grenoble. During his experiments in Grenoble von Klitzing 
used a field-effect transistor made from silicon, provided to him by the Siemens 
Company. This device represents one of the many further developments follow-
ing the early transistor types. Near the semiconductor surface the mobile charge 

(7.14)Rxy =
Ey

j2
=

1

z

h

e2
.

Fig. 7.4   Density of states 
per area D2(ε)/L2, plotted 
versus the normalized energy 
ǫ/�ωc
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carriers are confined to a narrow two-dimensional region. The semiconductor sur-
face is covered by a thin, electrically insulating layer of silicon oxide (SiO2), on 
the other side of which a metal electrode is attached. Between the metal electrode 
and the silicon crystal an electric voltage, referred to as the gate voltage, can be 
applied. This gate voltage allows one to vary continuously the concentration of the 
mobile charge carriers within their two-dimensional confined region near the sili-
con surface. With this arrangement the experimental requirements for the observa-
tion of the step structure discussed above appear to be well satisfied.

On the night of 4th of February 1980, von Klitzing discovered that, in a high 
magnetic field and at the low temperature of 1.5 K, the Hall resistivity (meas-
ured perpendicular to the electric current) of his field-effect transistor displayed 
particularly sharp and regular steps as a function of the gate voltage. On the 
other hand, the electrical resistivity measured along the direction of the current 
showed strong oscillations as a function of the gate voltage and dropped down 
to zero at each horizontal step of the Hall resistivity. All steps and the oscilla-
tions disappeared, if the magnetic field was turned off. On the same night, von 
Klitzing had already recognized, that the steps represent something fundamen-
tal which depends only upon two fundamental physical constants, and which is 
exactly quantized (Fig. 7.5). With increasing gate voltage the Landau levels are 
filled sequentially with mobile charge carriers. Simultaneously, the Hall resist-
ance decreases. However, this decrease is always interrupted and an exactly 
constant intermediate resistance value appears, if a Landau level has just been 
filled up, and if the following level cannot yet be reached. In this way the exactly 
quantized values of the Hall resistance (1/z) (h/e2) appear, which von Klitzing 
observed on his measured curve (Fig.  7.6). Here z is an integer number, such 
as 2, 3, 4, etc. The quantity h is Planck’s constant, and e is the charge of an 
electron. For the unit of the quantized Hall resistance, von Klitzing obtained the 
value h/e2 =  25,813 Ω. He had succeeded in the pioneering discovery of the 
quantum Hall effect.

From (7.13) for the number n2 of the electrons per area and per Landau level 
we find an important connection with the number of magnetic flux quanta (h/e), if 
we multiply the number n2 with the sample area F. One obtains

where Φ denotes the magnetic flux (B F) passing through the sample. This means 
that, at the exactly quantized resistance steps, each magnetic flux quantum in the 
sample is connected with the same number z of electrons. Again, we will find a 
similar important relation, between the number of electrons and the number of 
magnetic flux quanta per unit area, in the case of the fractional quantum Hall 
effect, which we will discuss in the following section.

From the very first moment it was clear that the quantized value of the electri-
cal resistance in the quantum Hall effect provided an excellent opportunity for a 
new quantum definition of the unit of the electrical resistance. Soon the German 
Bureau of Standards (Physikalisch-Technische Bundesanstalt) in Braunschweig, as 

(7.15)n2F = z
eB

h
F = z

�

h/e

7.4   Integer Quantum Hall Effect
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well as the National Standards Bureaus in other countries had taken this opportu-
nity. Since January 1, 1990 the “von-Klitzing-constant” h/e2 has represented the 
legal definition of the unit of the electrical resistance based on the quantum Hall 

Fig.  7.5   Entry of Klaus von Klitzing in his work notebook on February 4, 1980, the day on 
which he discovered the quantum Hall effect. (K. von Klitzing)
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effect. Also, the accuracy of the determination of the von-Klitzing-constant was 
improved further, and the official value today is h/e2 = 25,812.807 Ω. In Chap. 11 
we will return to the quantum Hall effect in connection with the discovery of the 
properties of graphene.

However, von Klitzing was not the first to have observed step-like structures in the Hall 
resistance and oscillations of the electrical resistance along the current direction as a 
function of the gate voltage in a field-effect transistor. In Tokyo a few years earlier the 
Japanese group of S. Kawaji had obtained similar, but not so clearly expressed curves as 
von Klitzing. Furthermore, this group did not notice the fundamental importance of their 
results in terms of a quantized electrical resistance value depending only on two funda-
mental physical constants.

Because of the quantum Hall effect, the two-dimensional electron gas on the sur-
face of a semiconductor has become very famous. Even more than 30 years after 
the discovery of the effect the theoretical discussion is by no means closed. Based 
on the idea of the filling of the Landau levels with increasing gate voltage, the 
quantized values of the Hall resistance (1/z) (h/e2) can be quickly derived, but 
all the details of the measured curves are still not yet completely theoretically 
explained.

Fig. 7.6   Integer Quantum Hall effect: electrical resistance and Hall resistance in a high magnetic 
field and at a temperature of 1.5 K, plotted as a function of the gate voltage for the two-dimensional 
electron gas of the field-effect transistor made from silicon shown on the left, in which early on 
February 5, 1980 Klaus von Klitzing discovered the quantum Hall effect. The smooth resistance 
curve without any steps was observed in the absence of a magnetic field. (Klaus von Klitzing)
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7.5 � Fractional Quantum Hall Effect

Because of the permanent progress in the preparation of semiconductor mate-
rials, the physics of the two-dimensional electron gas in high magnetic fields 
also received a strongly increasing amount of attention. Here the search for the 
“Wigner crystal” generated a lot of activity. In 1938 Eugene Paul Wigner had 
already predicted theoretically, that at sufficiently low temperatures electrons 
would arrange themselves in a perfectly ordered crystal lattice, if they are confined 
to a two-dimensional space, as for example on the surface of a semiconductor. The 
field-effect transistor based on silicon still appeared insufficient in its quality for 
an experimental study of this phenomenon of crystallization. However, the situ-
ation improved considerably, when near the end of the 1970s modulation-doped 
single-crystalline layers of semiconductors could be fabricated. Modulation doping 
of semiconductors is based on the obvious idea to spatially separate the mobile 
electrons from the donor atoms from which they originate. In this way one can 
achieve, in particular at low temperatures, that the electrons propagate through 
the semiconductor at high speed and without collisions with the ionized donors. 
Therefore, this type of “hetero-structure” promised to yield particularly fast and 
low-noise transistors, such that many laboratories worldwide then concentrated 
on this development. In this context, mainly single-crystalline layers of the III-V 
semiconductor galliumarsenide (GaAs), in combination with a galliumarsenide 
layer modified by an admixture of aluminum (AlXGa1-XAs), were interesting. For 
example, silicon donor atoms (with four electrons in the outer shell) are implanted 
precisely at the locations of the gallium and aluminum atoms (with only three elec-
trons in the outer shell, respectively) within the AlXGa1-XAs layer. Then the excess 
electrons of the silicon donors are transferred into the energetically lower conduc-
tion band of the adjoining GaAs layer, where they can propagate relatively freely.

Based on these latter materials, in 1978/1979 for the first time the preparation of 
a two-dimensional electron gas at the interface between GaAs and AlXGa1-XAs was 
accomplished. The pioneering work for the preparation of single-crystalline semi-
conductor layers with nearly atomic accuracy was performed by the German Horst 
Ludwig Störmer together with his American colleagues Arthur C. Gossard and 
Raymond Dingle at the Bell Laboratories, and also by Gerhard Abstreiter and Klaus 
Ploog at the Max Planck Institute of Solid State Research in Stuttgart. Daniel Tsui, 
born in China and also working at the Bell Laboratories at the time, soon persuaded 
his colleague Horst Störmer to carry out electrical measurements on the new and 
highly promising semiconductor layers at the highest possible magnetic fields and 
at the lowest possible temperatures. Both felt that the Francis Bitter High-Magnetic-
Field Laboratory at the famous MIT in the Federal State of Massachusetts would be 
particularly suitable for such experiments. At this laboratory, magnetic fields up to 
about one million times higher than the earth’s magnetic field could be generated 
with electric coils. Here Tsui and Störmer performed their experiments, in which 
they varied the magnetic field while the density of the two-dimensional electron 
gas at the interface of their hetero-structure sample was kept constant. After cooling 
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down to about 2 K, as expected, they observed the horizontal steps of the Hall resist-
ance, already well known from the quantum Hall effect. However, after they had 
cooled the sample further down to below 0.5 K, in the highest range of the magnetic 
field they discovered something completely new: now a step appeared at the Hall 
resistance 3(h/e2), i.e., at z = 1/3, if we express the Hall resistance in the form (1/z) 
(h/e2) which we have used above. During the following years additional plateaus of 
the Hall resistance were found, with other fractional values of z, such as 1/3, 2/3, 
2/5, 3/5, 3/7, 4/7, etc. (Fig. 7.7). In each case the Hall resistances (1/z) (h/e2) with 
the fractional values of z appeared with exactly the same precision as in the quantum 
Hall effect with the integer values of z. Similar to the latter effect, Tsui and Störmer 
observed that the electrical resistance (measured along the direction of the current) 
also dropped down to values near zero each time a horizontal plateau of the Hall 
resistance was reached. The discovery of Tsui and Störmer was subsequently referred 
to as the fractional quantum Hall effect. In contrast to this, the effect discovered by 
Klaus von Klitzing is called integral or integer quantum Hall effect.

As we have previously discussed, because of the Lorentz force the electrons are 
moving along circular orbits, if their motion occurs perpendicular to the magnetic 
field. During the experiments mentioned above, the magnetic field was always 
oriented perpendicular to the plane of the two-dimensional electron gas, such that 
the circular orbits were also located within this plane. The diameter of the circular 
orbits is inversely proportional to the magnitude of the magnetic field. Hence, with 
increasing magnetic field the circular orbits contract, and eventually they reach 
a diameter which is smaller than the average distance between two neighboring 
electrons. In this case, at low temperatures, all electrons occupy only the lowest 

Fig. 7.7   Fractional 
quantum Hall effect in the 
two-dimensional electron 
gas of a modulation doped 
GaAs/AlGaAs semiconductor 
hetero-structure at a 
temperature of about 0.1 K. 
The electrical resistance R 
and the Hall Resistance RH 
are plotted as a function of 
the magnetic field. The Hall 
resistance displays many 
plateaus for the indicated 
fractional values of z, if the 
quantized Hall resistance is 
written in the form (1/z) (h/e2). 
(Horst L. Störmer)

7.5  Fractional Quantum Hall Effect
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Landau level, and we are dealing with the “extreme quantum limit”. (In this case 
we must remember, that the Landau level exists within k-space. In position space, 
all individual electrons of the conduction band are spatially separated from each 
other, and are degenerated with respect to their energy). On the other hand, the 
quantum mechanical wave function of the electrons must be single-valued at each 
coordinate point in the semiconductor. This requires, that the magnetic flux pen-
etrating the two-dimensional electron gas is quantized in units of the magnetic flux 
quantum (h/e). The observation of the fractional quantum Hall effect indicates that 
the electrons prefer distinct distances from each other in their two-dimensional 
arrangement. At these distinct distances the ratio z of the number of electrons per 
unit area and the number of magnetic flux quanta per unit area take up exactly 
only rational values such as the fraction of two integer numbers as indicated 
above. Magnetic flux quanta and electrons are then intimately connected with each 
other. Furthermore, the experimental observations suggest the existence of a gap 
in the energy spectrum of the electron system, similar as in the integral quantum 
Hall effect. However, in the present case the interaction between the electrons also 
appears to play an important role. At high magnetic fields the electrons, together 
with the magnetic flux quanta, seem to condense into a novel quantum liquid.

The American Robert Betts Laughlin, presently working at Stanford University 
in California, has proposed an amazingly simple manybody wave function for 
describing this new manybody groundstate, which can explain many aspects 
of the experimental results. In particular, Laughlin could account for the exclu-
sively odd values of the numbers in the denominator of the rational values z for 
the ratio we have discussed above in terms of the required anti-symmetry of the 
total wave function. In the meantime, the experimental and theoretical treatment of 
the fractional quantum Hall effect has lead to new concepts about novel particles 
composed of magnetic flux quanta and electrons, which can appear as collective 
energetic excitations of the two-dimensional electron gas.

7.6 � Generation of High Magnetic Fields

Before we conclude our discussion of the effects in high magnetic fields we wish 
to look a bit closer at the magnetic coils which were used, and at the corresponding 
technical developments. The fabrication of magnetic coils wound out of supercon-
ducting wires began in the early 1960s. At that time an important progressive step 
took place in the production of the technically relevant superconductors. Since then 
one can find superconducting magnets in many laboratories, and the experiments 
at high magnetic fields have become much simpler than before. In order to reach 
the temperature range in which superconductivity occurs, the magnetic coils are 
cooled down to 4 K using liquid helium. The superconducting materials will be dis-
cussed in more detail in Chap. 8. Today, superconducting magnets generating mag-
netic fields up to about one million times higher than the earth’s magnetic field are 
standard equipment for the relevant laboratories. By means of special construction 

http://dx.doi.org/10.1007/978-3-319-09141-9_8
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measures, in the “hybrid magnets” the magnetic field can be increased further up to 
about twice this value. During recent years different centers have been established, 
mostly on a national scale, in which experiments at very high magnetic fields can 
be carried out. We have mentioned before the German-French High-Magnetic-Field 
Laboratory in Grenoble and the American Francis Bitter Laboratory at the MIT 
in Cambridge. As a continuation of the latter Laboratory, since a few years in the 
USA the National High-Magnetic-Field Laboratory at the Florida State University 
in Tallahassee in the Federal State of Florida has been operating. Further special 
facilities for high magnetic fields exist in Nijmegen in Holland as well as in Sendai 
and Tsukuba in Japan. In Hefei, China, a laboratory for static high magnetic fields 
is being built, which is operating from around 2013.

Already in the 1920s and 1930s there were laboratories in which experi-
ments were performed in high magnetic fields. The Frenchman Aimé Cotton had 
constructed a giant electromagnet near Paris, and the American Francis Bitter 
had built large electromagnets at the MIT in Cambridge. The Russian Pjotr 
Leonidovich Kapitza developed pulsed electromagnets in Cambridge, England. In 
all cases, in addition to the electric current, the consumption of cooling water was 
also enormously high, since the magnet coils were not yet fabricated from super-
conductors and generated a large amount of heat during their operation.

The Russian Pjotr Leonidovich Kapitza had studied at the Polytechnique Institute in  
St. Petersburg, where he was tutored by Abram Fedorovich Ioffe. In the year 1921 at the 
age of 27, he went to Ernest Rutherford in Cambridge, England, in order to learn more 
about current developments in physics. His career in Cambridge was highly successful, 
and in 1930 he became director of the newly established Mond Laboratory. At that time 
he was interested in strong magnetic fields, in order to deflect the tracks of alpha particles. 
Therefore, he built a special pulse generator, with which he could generate, in a pulsed 
coil, the largest magnetic fields at that time. He was the first to employ this pulse tech-
nique to obtain high magnetic fields. In the meantime this method has been developed to a 
high level by different groups. Kapitza discovered, among other things, the linear increase 
of electrical resistance at high magnetic fields, a law which is named after him. At an 
early stage he turned to the subject of low temperature physics. When, during the Stalin 
era in 1934, he returned once again to his native Russia to visit his mother in Moscow, the 
authorities prohibited his return to England. Instead, they built a new Institute for him in 
Moscow. Later, his Institute for Physics Problems became highly famous. In 1937 Kapitza 
was able to attract the theoretical physicist Lew Dawidowitsch Landau from Kharkov in 
the Ukraine to his Institute in Moscow. During this time of political prosecutions in the 
then Soviet Union Landau was also arrested in the following year. Because of his personal 
intervention with Stalin, only after a whole year was Kapitza able to release Landau again 
from prison. Subsequently, Landau became the dominant father figure of Russian theo-
retical physics. The Russian experimental physicist Leo Vasilyevich Shubnikov, also from 
Kharkov and a close friend of Landau, was not so lucky as Landau, following his arrest. 
After a three-month detention, while awaiting trial, he received the death penalty and was 
shot on November 10, 1937. In 1931 Shubnikov had initiated the establishment of the 
first Low-Temperature Laboratory in the Soviet Union at the Ukrainian Physico-Technical 
Institute in Kharkov. Then, also at this location, experiments could be performed in the 
temperature range of liquid helium, similar to those in Leiden, Toronto, and Berlin. 
Shubnikov has distinguished himself primarily because of his pioneering research in the 
field of superconductivity. At an early stage, in his experiments he noted hints of a second 
kind of superconductors. This subject will be treated in Chap. 8.

7.6  Generation of High Magnetic Fields
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Today, pulsed high magnetic fields, such as were used for the first time by Kapitza, 
are of extreme interest. Corresponding research facilities are operated in Los 
Alamos, USA, in Toulouse, France, and in Tokyo, Japan. In the German Research 
Center in Rossendorf near Dresden, since 2007 a new high-magnetic-field facil-
ity is in operation, in which pulsed magnetic fields up to 90 T can be generated. 
(One Tesla is about 2 × 104 times the earth’s magnetic field in central Europe). 
For the required electric current source the worldwide largest condenser bank was 
specially developed. In the case of the highest magnetic field, the pulse duration 
amounts to 11 ms. In the case of somewhat lower magnetic fields the pulse dura-
tion is longer. In Wuhan, China, a similarly powerful laboratory for pulsed mag-
netic fields is expected to be completed by 2013.
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Abstract  After Heike Kamerlingh Onnes succeeded in extending the range of 
experiments to much lower temperatures by the liquefaction of the noble gas helium, 
in 1911 he discovered superconductivity, where electric current flows without detect-
able resistance. Superconductivity requires that distinct critical values of the temper-
ature and magnetic field are not exceeded. Eventually it was found that a magnetic 
field is expelled from the interior of a superconductor, referred to as Meissner effect 
and representing a fundamental property of superconductors. In the mixed state, a 
type-II superconductor is intersected by the Abrikosov lattice of magnetic flux 
quanta. The first microscopic theory, the BCS theory, explains superconductivity in 
terms of a macroscopic quantum state formed by pairs of electrons (Cooper pairs) 
attracted to each other because of their interaction with phonons. The motion of the 
magnetic flux quanta, caused by the Lorentz force, represents the mechanism limit-
ing the current flowing without resistance.

Heike Kamerlingh Onnes (Fig. 8.1) had succeeded in liquefying the noble gas helium 
in Leiden and in this way was able to reach the then low-temperature record of 4 K 
(−269 °C). During cooling down to low temperatures, in the year 1911, he made a 
surprising discovery: below a distinct temperature the electrical resistance of metals 
can vanish completely and cannot be detected experimentally. For the first time the 
phenomenon of “superconductivity” as it was afterwards called, had been observed.

After Kamerlingh Onnes had extended his experiments to the newly accessible 
range of distinctly lower temperatures than were possible before, he was also inter-
ested among other things in the question of how the electrical resistance of metals 
changes at these low temperatures. At the time there existed three different predic-
tions about the behavior of the electrical resistance at low temperatures with decreas-
ing temperature: (1) The resistance decreases down to the value zero, (2) it remains 
constant, (3) it increases again. Mercury as a metal appeared to be highly favorable 
for such measurements, since it can be prepared reasonably well with high purity, 
because of its low melting point (at room temperature it is already a liquid). The 
pioneering study had to be carried out with a material containing as few perturbing 
impurities as possible. Therefore, for one of the initial measurements a thin glass 
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capillary filled with mercury was used. On April 8, 1911 Heike Kamerlingh Onnes, 
together with his assistants Cornelis Dorsman, Gerrit Jan Flim, and the student 
Gilles Holst, during cooling of the capillary filled with mercury, observed, how the 
electrical resistance of the sample decreased with decreasing temperature. However, 
when the temperature finally reached 4 K, the curve showed a sharp break, and the 
resistance dropped down abruptly to a small value which remained undetectable 
(Fig. 8.2). At first, there were some irritations, since it was presumed that the electric 
circuit of the measuring arrangement was defective, and that a short-circuit possi-
bly caused the abrupt drop of the electrical resistance. However, after everything had 
been carefully checked, eventually it became clear, that the measuring technique was 
in order, and that a new phenomenon had been discovered. Later, the student Gilles 
Holst was employed by the N.V. Philips’ Gloeilampenfabrieken in Eindhoven, and 
eventually he became the first director of Philips Research Laboratories.

Following this first observation in mercury, superconductivity was also found 
in other metals such as, for example, in aluminum, lead, indium, tin, and zinc, 
as well as eventually also in alloys and metallic compounds. A compilation 
from the year 1969 lists about 350 different superconducting material systems. 
Superconductivity always appears only after cooling down below a characteristic 
temperature, the “critical temperature” TC, having a specific value for each mate-
rial. After the discovery of the high-temperature superconductors, which will be 
discussed in the following Chap. 9, the superconducting materials known up to 
then are referred to as classical superconductors. Of these classical superconduc-
tors the metallic compound Nb3Ge has the highest value of critical temperature 
with TC = 23.2 K.

Fig. 8.1   The Dutch physicist 
Heike Kamerlingh Onnes. In 
1908 in Leiden for the first 
time he liquefied the noble 
gas helium. 3 years later he 
discovered superconductivity 
(photo Kamerlingh Onnes 
Laboratory, University of 
Leiden)

http://dx.doi.org/10.1007/978-3-319-09141-9_9
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Following his discovery that electric current can be transported through a 
superconductor without electrical resistance, Kamerlingh Onnes soon considered 
technical plans to utilize the phenomenon of superconductivity in cables for the 
distribution and delivery of electrical power. However, to his great disappoint-
ment, during his first experiments he found that the superconducting property is 
reduced in a magnetic field, and that it completely disappears above a distinct 
value of the magnetic field, the “critical magnetic field” HC. Here an external mag-
netic field acts in exactly the same way as the “self-field”, which is generated by 
the transported electric current in the superconductor itself. The critical magnetic 
field HC(T) vanishes at the critical temperature TC and increases with decreas-
ing temperature below TC. It reaches its maximum value at a temperature of 0 K 
(Fig. 8.3). In many classical superconductors this maximum value ranges between 
the 100-fold value up to the 5000-fold value of the earth’s magnetic field.

Because of the self-field of the transported electric current, the maximum cur-
rent value, up to which superconductivity is maintained, is limited. This maximum 
current in a superconductor is referred to as the critical current IC. In the simplest 
case the critical current is reached when the magnetic self-field of the current is 
equal to the critical field HC. This relationship is also called Silsbee’s rule. For many 
years, this severe restriction on the possibility of transporting electric currents in 

Fig. 8.2   Discovery of 
superconductivity. Electrical 
resistance in ohms of a 
mercury sample plotted as a 
function of the temperature 
in Kelvin (H. Kamerlingh 
Onnes)
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superconductors has hindered the technical application of superconductivity. This 
only changed in the 1960s, when new superconducting materials were found with 
more favorable properties and relatively high values of the critical magnetic field and 
the critical current. We will come back to this subject at the end of this chapter.

8.1 � Meissner Effect, Magnetic Penetration Depth, London 
Theory

In the year 1933, Walther Meissner (Fig. 8.4) and his collaborator Robert Ochsenfeld 
at the German Bureau of Standards (Physikalisch-Technische Reichsanstalt) in 
Berlin-Charlottenburg made an important discovery, which turned out to affect 
strongly subsequent development. If a superconductor is placed within a magnetic 
field, during the transition to the superconducting state the magnetic field is expelled 
from the superconductor and vanishes in its interior. Now this phenomenon is 
referred to as the Meissner effect (Fig. 8.5). At that time after the pioneering achieve-
ment by Kamerlingh Onnes in Leiden, Walther Meissner was one of the first who 
could also liquefy the noble gas helium and who managed a properly equipped low-
temperature laboratory. After all, it had taken 15 years until outside Leiden at another 
location, namely by John C. McLennan at the University of Toronto, the liquefaction 
of helium had been achieved. Then the Low-Temperature Laboratory of the German 
Bureau of Standards was the third location worldwide.

Soon after the Meissner effect was discovered, 1934 Cornelis Jacobus Gorter 
and Hendrik Brugt Gerhard Casimir in Holland derived from it an important con-
clusion. The magnetic-field expulsion from the interior of the superconductor due 
to the Meissner effect, indicates that the superconducting state represents a ther-
modynamic equilibrium state, which, per definition, is independent of the path 
along which this state has been reached by variation of the magnetic field and the 
temperature. Ultimately it suffices if the temperature T is smaller than the critical 
temperature TC and if the magnetic field is smaller than the critical field HC(T).

In Fig. 8.6 we have marked point c of the superconducting state (below the crit-
ical temperature TC and the critical magnetic field HC). If we assume only infinite 
electrical conductivity without the existence of the Meissner effect, along the path 

Fig. 8.3   Temperature 
dependence of the 
critical magnetic field HC 
(schematically)
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a → b → c the state with B = 0 will be established. On the other hand, the path 
a → d → c results in the state of point d with B ≠ 0. Independent of the previ-
ous path, the state with B = 0 is always established only because of the Meissner 
effect. (Here we have assumed perfect reversibility of the superconductor, and 
have ignored the trapping of magnetic flux due to pinning effects). We recognize 
that superconductors are more than perfect electrical conductors (with infinite 
electrical conductivity). It is the Meissner effect, which uniquely characterizes the 
superconducting state.

Furthermore, Gorter and Casimir have shown that the validity of the Meissner 
effect yields the possibility of calculating exactly the energy difference between 
the normal (nonsuperconducting) and the superconducting state. In their thermo-
dynamic treatment of the superconducting phase transition, following the discov-
ery of the Meissner effect, they consider the density of the Gibbs free energy in the 
normal (Gn) and the superconducting (Gs) state. In the presence of the magnetic 
field H one finds:

(8.1)Gs(T,H) = Gs(T, 0)−

H∫

0

M(H)dH.

Fig. 8.4   Walther Meissner 
(photo Physikalisch-
Technische Bundesanstalt, 
Braunschweig and Berlin)

8.1  Meissner Effect, Magnetic Penetration Depth, London Theory
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M(H) is the magnetization. In the case of the Meissner effect (perfect diamagnet-
ism) we have

The last part in (8.1) represents the work performed during the expulsion of the 
magnetic field. With (8.2) we obtain

At H = HC(T) under equilibrium we have Gn(T, HC) = Gs(T, HC) and on the other 
hand Gn(T, HC) = Gn(T, 0). Hence, in the case H = HC for the difference between 
the energy density in the normal and the superconducting state we find

(8.2)M(H) = −
1

4π
H.

(8.3))Gs(T,H) = Gs(T, 0) +
1

8π
H2.

Fig. 8.6   Independence of the 
superconducting state of the 
path along which this state 
has been reached. Because of 
the Meissner effect, at point 
c the final state with B = 0 
is reached along both paths 
a → d → c and a → b → c

Fig. 8.5   Meissner effect. a In the normal state above its critical temperature, the superconduct-
ing sphere is completely penetrated by the external magnetic field. b Below its critical temper-
ature the superconductor completely expels the magnetic field from its interior as long as the 
critical magnetic field is not exceeded. The field expulsion is accomplished by means of electric 
currents, flowing without losses on the surface around the superconductor and thereby shielding 
the interior of the superconductor against the magnetic field
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In order to maintain the Meissner effect, electric currents must flow along the sur-
face of the superconductor, generating a magnetic field similar to that in an electric 
coil. This generated magnetic field is directed opposite to the external magnetic field 
and compensates the latter field exactly. These “shielding currents” must flow along 
the surface without losses, i.e., without any electrical resistance, since otherwise the 
superconducting state cannot last arbitrarily long in the presence of the magnetic 
field (Fig.  8.7). The case of electric shielding currents experiencing losses can be 
found in each nonsuperconducting electrical conductor such as, for example, copper. 
If such a conductor is placed suddenly in a magnetic field, at the beginning electric 
shielding currents flow again along its surface, which expel the magnetic field from 
the interior of the conductor. However, because of the electric losses appearing in this 
case, the shielding currents decrease as a function of time, and gradually the mag-
netic field completely penetrates into the electrical conductor. The time it takes for 
this decay process of the shielding currents depends on the electrical conductivity of 
the conductor. It becomes longer and longer, as the electrical conductivity increases.

From our discussion it is clearly apparent, that the Meissner effect is based 
on the flow of superconducting shielding currents. Hence, superconductivity is 
the necessary consequence of the existence of the Meissner effect. However, the 
inverse conclusion, i.e., that in a material with vanishing electrical resistance 
the Meissner effect must exist, is not possible. Therefore, the Meissner effect is 
more fundamental for superconductivity than the disappearance of the electrical 

(8.4)Gn(T, 0) − Gs(T, 0) =
1

8π
H2
C(T).

Fig. 8.7   Experimental 
demonstration of the 
Meissner effect. A 
small rectangular piece 
of a high-temperature 
superconductor cooled down 
to the temperature of liquid 
nitrogen is suspended above 
a ferromagnetic disk. A 
repulsive force exists between 
this ferromagnet and the 
shielding currents induced in 
the superconductor because 
of the Meissner effect (photo 
Rainer Straub)

8.1  Meissner Effect, Magnetic Penetration Depth, London Theory
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resistance. However, the notation “superconductivity” puts the latter quality more 
into focus. At the time, Max von Laue looked at the discovery of the Meissner 
effect as a turning point in the history of superconductivity.

The superconducting shielding currents near the surface cannot have an arbi-
trarily high or even infinite density of the electric current flow. Instead, they must 
remain limited to a finite value of the current density. This has the consequence, 
that the shielding currents always need a layer of a specific thickness near the 
surface, and that the magnetic field penetrates a small but finite distance into the 
superconductor, in spite of the existence of the Meissner effect. The thickness of 
this layer is referred to as the “magnetic penetration depth”. In the following we 
denote this thickness with the symbol λm.

The magnetic field of the superconducting shielding current exactly compensates 
the external magnetic field. The density js of the shielding current is approximately

In 1935, a phenomenological theory of the finite magnetic penetration depth λm 
was proposed by the brothers Fritz and Heinz London. For a short description of 
their theory we start with the equation of the forces acting upon an electron, with-
out including a dissipative part:

With the superconducting current density

we obtain

The quantity λm introduced in (8.5) is also referred to as London penetration depth 
(and is often denoted by λL). The length λm is given by

Here ns is the density and vs the velocity of the superconducting electrons. µo is 
the permeability of vacuum. With Maxwell’s equation

from (8.8) we obtain

It was the central idea of Fritz and Heinz London, to extend (8.11) by eliminating 
the time-derivative and thereby to postulate a new equation

(8.5)js = HC/�m.

(8.6)m
∂vs

∂t
= (−e)E

(8.7)js = (−e) nsvs

(8.8)E =

[
m/

(
e2ns

)]
∂js

∂t
= µo�

2
m

∂js

∂t
.

(8.9)�
2
m = m/

(
µonse

2
)
.

(8.10)curl E = −
∂B

∂t

(8.11)µo�
2
mcurl

(
∂js

∂t

)
+

(
∂B

∂t

)
= 0.
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With Maxwell’s equation

we obtain

and from this the solution

This situation is shown in Fig.  8.8, where we have assumed the geometry of 
a superconductor with its (positive) x-coordinate running from the surface at 
x = 0 to the left into the interior of the superconductor, which occupies the half-
space x > 0. The magnetic field H is assumed to be oriented perpendicular to the 
x-direction.

Equations (8.8) and (8.12) are referred to as first and second London equa-
tion, respectively. In addition to Maxwell’s equations, they are valid in the case of 
superconductors and characterize these in contrast to other materials. From (8.15) 
we see, that the magnetic field is shielded exponentially from the interior of the 
superconductor, and that the shielding occurs within a surface layer of thickness 
λm. At T → TC we find ns → 0, and, hence, λm → ∞.

For many superconductors the magnetic penetration depth covers the range 
λm = 40–60 nm. It strongly increases upon approaching the critical temperature 
TC. The magnetic penetration depth represents an important length, which is spe-
cific for each material. It plays an important role in many properties of super-
conductors. For example, because of the finite magnetic penetration depth, an 
accumulation of small superconducting grains, with the diameter of each grain 
being similar to the magnetic penetration depth, altogether only displays a strongly 
reduced Meissner effect, since the magnetically shielded volume fraction remain-
ing in each grain is correspondingly reduced to a relatively small value.

(8.12)µo�
2
mcurl js + B = 0.

(8.13)curl H = j

(8.14)�H =
1

�2m

H

(8.15)H(x) = H(0)exp(−x/�m).

Fig. 8.8   Dependence 
of the density of the 
superconducting electrons, 
ns, and of the magnetic field, 
H, upon the distance from the 
interface between a normal 
(N) and a superconducting 
(S) region

8.1  Meissner Effect, Magnetic Penetration Depth, London Theory
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A superconducting circular current, similar to that flowing as a shielding current 
and causing the Meissner effect, can also serve to find out in a simple experiment, 
if the electrical resistance in a superconductor is exactly zero, or if a finite residual 
resistance still remains. For this purpose the usual resistance measurement, based on 
the electric voltage drop along a current-carrying conductor, is not sufficient, since 
the electric voltage can be too small to be detected by this method. However, instead 
of this conventional resistance measurement, one can also start a circular electric 
current in a superconducting ring by magnetic induction. As in an electric coil, the 
circular current then generates a magnetic field, that only remains to be detected. 
Now the task consists in observation of how long the magnetic field of the circular 
current can be detected. The longer the running time of the current, during which no 
reduction of the magnetic field is observed, the closer the electrical resistance of the 
superconducting ring must approach zero. In 1961 the two Americans D.J. Quinn 
and W.B. Ittner performed an advanced version of such an experiment. By means of 
two sequentially deposited layers of lead they produced a thin superconducting tube 
of lead, and they then investigated the temporal decay of the magnetic flux trapped 
within the tube over a time of 7 h. From their measurements at a temperature of 4 K, 
as the upper limit of the electrical resistivity of superconducting lead, they obtained 
the value 3.6 × 10−23 ohm-cm. This value is about 17 powers of ten smaller than 
the resistivity of one of our best metallic conductors, copper, at room temperature.

In addition to the magnetic penetration depth, a second characteristic length plays 
a fundamental role in superconductors: the “coherence length” ξ. This length indi-
cates the smallest possible spatial distance, within which the property of supercon-
ductivity can vary appreciably. In the year 1950, the Englishman Alfred Brian Pippard 
was the first to point out this spatial rigidity of superconductivity. Also in 1950, the 
two Russians Vitaly Lazarevich Ginzburg and Lew Dawidowitsch Landau developed 
another theoretical approach dealing with the question of the spatial coherence of 
superconductivity. The “Ginzburg-Landau theory” starts from an ansatz for the ther-
modynamic energy, in combination with the general concept of Landau of “higher-
order phase transitions”, which are classified according to a specific mathematical 
scheme. The superconducting property is expressed in terms of a wave function ψ.

Initially, it was felt that between the two characteristic lengths λm and ξ the 
coherence length ξ is always larger than the magnetic penetration depth λm. This 
resulted from the following considerations. Because of the finite extension of the 
coherence length ξ, a superconducting region cannot exist exactly up to the inter-
face, which separates it from a normal region. Instead, it loses its superconduct-
ing property—and, hence, also its superconducting condensation energy—already 
at the distance ξ from this interface. This results in the positive interface energy 
α1 = (HC

2 /8π) ξ. However, from this we have to subtract the amount (HC
2 /8π) λm, 

since within the magnetic penetration depth λm no gain and, hence, no loss of con-
densation energy appears. Therefore, the wall energy α of an interface between a 
normal and a superconducting region is given by

This role of the two lengths ξ and λm is shown in Fig. 8.8.

(8.16)α = (H2
C/8π) (ξ− �m).
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In its simplest form the Meissner effect is observed only if, in the nearest envi-
ronment of the superconductor, the magnetic field practically remains unchanged 
during the field expulsion. We have such a case, if the shape of the superconductor 
is thin and long, and if its longitudinal direction is oriented parallel to the mag-
netic field. In the other case, if, for example, the superconductor is shaped in the 
form of a thin plate which is placed perpendicularly within the magnetic field, near 
the outer border of the plate, the magnetic field is strongly enhanced because of 
the field expulsion, and it can quickly become larger than the critical magnetic 
field HC(T). Now the complete expulsion of the magnetic field cannot be main-
tained, and magnetic flux will penetrate into the superconductor. As Landau pro-
posed for the first time in 1937, as a consequence, a new state is formed in which 
both normal domains carrying the local magnetic field HC and superconducting 
domains with zero local magnetic field, exist next to each other. This new state is 
referred to as the “intermediate state”. Similar to all spatial systems of domains, 
the interface separating a normal from a superconducting domain is associated 
with a specific wall energy. As we see from (8.16), this wall energy is proportional 
to the length difference ξ − λm. Since initially one had expected, that the wall 
energy is always positive, and that the formation of a domain wall always con-
sumes energy, one had concluded that the coherence length ξ must be larger than 
the magnetic penetration depth λm.

8.2 � Type-II Superconductors

However, eventually this picture was shaken. Already in the 1930s the first per-
turbing signals came from the Low Temperature Laboratory of Leo Vasilyevich 
Shubnikov in Kharkov in the Ukraine, where experiments on superconductivity had 
been started at an early stage. Again and again experiments in particular with super-
conducting alloys, yielded results which could be explained only with great difficul-
ties in terms of the existing ideas. In 1953 the decisive breakthrough was achieved 
by the young theoretical physicist Alexei A. Abrikosov in Moscow. At the University 
he was a roommate of Nikolay Zavaritzkii, who performed experiments with super-
conducting thin films at the famous Kapitza Institute for Physics Problems in order 
to check the predictions of the Ginzburg-Landau theory. Up to this time one was 
only interested in the case where the length difference ξ − λm and, hence, the wall 
energy, is positive. Now for the first time Abrikosov and Zavaritzkii seriously dis-
cussed the possibility, that the length difference could also become negative, if the 
coherence length ξ were smaller than the magnetic penetration depth λm. Based on 
the Ginzburg-Landau theory, Abrikosov calculated the critical magnetic field for the 
case, where the difference ξ − λm is negative, and he could demonstrate, that only 
in this case could good agreement with Zavaritzkii’s experimental data, obtained 
with particularly carefully prepared thin films, be achieved. Hence, they were appar-
ently dealing with a still unknown, new kind of superconductor. Abrikosov and 
Zavaritzkii called them the “second group”. Eventually, they were referred to as 
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type-II superconductors (with ξ < λm), whereas the superconductors with positive 
wall energy are now called type-I superconductors (with ξ > λm).

Subsequently, Abrikosov has theoretically analyzed the type-II superconduc-
tors in more detail using the Ginzburg-Landau theory and found that, in a mag-
netic field, they can assume a new state, in which the superconductor is intersected 
by a regular lattice consisting of individual “magnetic flux quanta”. The famous 
Abrikosov flux-line lattice had been discovered. The state of the superconductor 
containing the flux-line lattice is referred to as the mixed state (Fig. 8.9). Associated 
with each magnetic flux line, a spatially confined, local magnetic field passes like 
a thread through the superconductor. This spatially highly confined magnetic field 
is generated, as in a magnetic coil, by superconducting circular currents flowing 
around the thread of the local magnetic field. We will return to this magnetic flux 
line further below. Abrikosov completed this work in the year 1953. However, the 
proposed ideas were so novel that they were not accepted by Lew Dawidowitsch 
Landau, who was Abrikosov’s thesis advisor. However, 2 years later, similar issues 
appeared in the turbulent flow of superfluid helium at low temperatures. In this case 
the circulation of the flow is also subject to quantum conditions similar to those of 
the circular supercurrents associated with the magnetic flux quanta. Only after the 
American Richard Phillips Feynman had theoretically discussed quantized vortex 
lines in rotating superfluid helium in this context, was Landau satisfied. In this way 
it happened that Abrikosov’s paper was published only in 1957.

In his lecture in Stockholm on December 8, 2003, on the occasion of receiving 
the 2003 Nobel Prize in Physics, together with Vitaly L. Ginzburg and Anthony J. 
Leggett, Abrikosov recalled these developments:

Fig. 8.9   Superconducting mixed state characterized by a lattice of quantized magnetic flux lines, 
proposed for the first time by Abrikosov. a Schematics. A total of nine magnetic flux lines are 
shown. Each flux line (like a thread carrying a magnetic field) is surrounded by superconducting 
circular currents. b Experimental demonstration, by means of the Bitter decoration technique, of 
the Abrikosov lattice of magnetic flux lines in a plate of superconducting niobium with 0.5 mm 
thickness. The many dark spots mark the locations at which the individual magnetic flux lines 
reach the surface of the superconducting plate (U. Essmann)
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I made my derivation of the vortex lattice in 1953 but the publication was postponed since 
Landau first disagreed with the whole idea. Only after R. Feynman published his paper on 
vortices in superfluid helium, and Landau accepted the idea of vortices, did he agree with 
my derivation, and I published my paper in 1957. Even then it did not attract attention, in 
spite of an English translation, and only after the discovery in the beginning of the six-
ties of superconducting alloys and compounds with high critical magnetic fields, did there 
appear an interest in my work. Nevertheless, even after that the experimentalists did not 
believe in the possibility of (the) existence of a vortex lattice incommensurable with the 
crystalline lattice. Only after the vortex lattice was observed experimentally, first by neu-
tron diffraction and then by (Bitter) decoration, did they have no more doubts. Now there 
exist many different ways to get images of the vortex lattice.

Being asked why Abrikosov did not push more strongly for his spectacular novel 
results at the time, he gave the following answer:

The true reason why at the time I did not insist more strongly in my theory, arose from 
the fact that then all this did not appear so important. Superconductivity was still being 
considered an exotic phenomenon far from any practical applications. Furthermore, I was 
already occupied with the extension of quantum electrodynamics to high energies, which 
appeared to me much more important.

Magnetic flux quanta only penetrate into the interior of a type-II superconductor, when 
the “lower critical magnetic field” HC1 is reached. Below HC1 the Meissner effect still 
exists, and the magnetic field vanishes within the interior of the superconductor. The 
mixed state is established above HC1 up to the “upper critical magnetic field” HC2. 
A convincing first experimental confirmation of the existence of the Abrikosov flux-
line lattice in the mixed state has been given by Uwe Essmann and Hermann Träuble 
from the Max Planck Institute for Metals Research in Stuttgart in the year 1967. They 
succeeded in the imaging of the flux-line lattice at the surface of the superconductor 
by sprinkling a powder of small ferromagnetic particles onto the surface. Since the 
powder is attracted by the locations where the flux lines reach the surface, the powder 
accumulates at these locations forming small piles which decorate the individual flux 
lines (Fig. 8.9). This decoration method was used for the first time in the year 1931 by 
the American Francis Bitter for imaging the domain structure of ferromagnetic materi-
als, and since that time it has been referred to as the Bitter technique.

8.3 � Magnetic Flux Quantum

Because of the prediction of type-II superconductors and of the magnetic flux-
line lattice by Abrikosov, the Ginzburg-Landau theory has achieved great success. 
By describing the superconducting state of the electrons in terms of a macroscopic 
quantum mechanical wave function, this theory provided a simple explanation of a 
series of fundamental phenomena in the field of superconductivity. The magnetic 
flux quantization is an important example. Within a superconductor magnetic flux 
can exist only in integer multiples of a smallest unit h/2e = 2.068 × 10−15 Vs, rep-
resenting the magnetic flux quantum. The quantity h is Planck’s constant, and e is 
the charge of an electron. This quantum condition immediately results from the 
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fact, that the macroscopic wave function describing the superconducting state must 
reproduce itself exactly, if the spatial coordinate point of the wave function is moved 
once around the enclosed magnetic flux region and is returned exactly to the start-
ing point. As the smallest unit of magnetic flux, the flux quantum is very tiny. For 
example, in the magnetic field of the earth 1 cm2 is intersected by about one mil-
lion flux quanta. In beautiful experiments in the year 1961 the two Germans Robert 
Doll and Martin Näbauer and independently also the Americans Bascom Deaver and 
William Fairbank demonstrated the quantization of the magnetic flux in a supercon-
ductor. By placing a tiny superconducting tube of only about 10 µm in diameter in a 
small magnetic field oriented parallel to the axis of the tube, Doll and Näbauer were 
able to show that the magnetic flux within the small hollow cylinder was either zero 
or amounted to an integer multiple of the flux quantum specified above (Fig. 8.10).

A more detailed explanation of the step structure shown in Fig. 8.10b is illus-
trated in Fig. 8.11. Here in part (a) the superconducting shielding current Is is plot-
ted versus the magnetic flux density Be. Be is oriented parallel to the axis of the 
small superconducting cylinder. The magnetic flux πR2Be (R =  cylinder radius) 
passing through the cross-sectional area of the cylinder is indicated in units of the 
magnetic flux quantum ϕo =  h/2e. (The vector ϕo is oriented parallel to the flux 
density B). Initially, the shielding current Is prevents the entry of magnetic flux into 
the cylinder due to the Meissner effect. When the magnetic flux density has reached 
the value Be = ϕo/(2πR2), the shielding current compensates exactly half a flux 
quantum ϕo/2 within the cylinder (point 1). If Be is increased further, the shield-
ing current Is reverses its sign (instead of increasing further), such that exactly one 
flux quantum ϕo exists within the cylinder (half of which is generated by Is; point 
2). When Be continues to be increased, ∣Is∣ decreases again until (at point 3) the 

Fig.  8.10   Experimental proof of the magnetic flux quantization in a superconductor. a A tiny 
superconducting tube with only about 10 µm diameter is cooled down in the presence of a small 
magnetic field oriented parallel to the axis of the tube. Below the critical temperature TC the 
magnetic field is turned off, and the magnetic flux trapped within the tube is measured. b The 
frozen-in magnetic flux displays a quantized step structure as a function of the magnetic field B, 
since only integer multiples of the magnetic flux quantum (h/2e) are allowed within the tube. The 
Figure shows the observation of 0, 1, and 2 magnetic flux quanta, respectively. Without magnetic 
flux quantization, the data points would fall on the straight dashed line (R. Doll and M. Näbauer)
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state with Is = 0 is reached at Be = ϕo/(πR2). During further increasing Be, this 
process repeats itself. In this way, the steps of the number n of the magnetic flux 
quanta within the cylinder are generated (Figs. 8.10b and 8.11b). In Fig. 8.11c the 
superposition of the applied magnetic field (solid arrows) and of the magnetic field 
generated by Is (dashed arrows) is shown schematically for the three points 1–3 of 
Fig. 8.11a. The entry of the magnetic flux quanta ϕo into the cylinder effects, that 
the shielding current Is and the kinetic energy associated with it remain limited.

Now we will look more closely at a magnetic flux line in a type-II supercon-
ductor, discussed for the first time by Abrikosov (Fig. 8.12). In its center each flux 
line has a normal core, the radius of which is approximately given by the coher-
ence length ξ. The local magnetic field associated with the flux line reaches a max-
imum in the center of the line and decreases toward the outside. This decrease in 
the magnetic field mostly takes place within a radius given by the magnetic pen-
etration depth λm. This spatial confinement of the local magnetic field is accom-
plished by means of circulating superconducting currents flowing around the 
center of the flux line within a radial distance, in the range between the coherence 
length ξ and the magnetic penetration depth λm.

The expression (h/2e), indicated above for the magnetic flux quantum in super-
conductors, is exactly half of the value (h/e) of the magnetic flux quantum, which 
we have dealt with in Chap. 7 in the context of the fractional quantum-Hall-effect. 
The reason for this half-value is the fact that superconductivity is based on the 
Cooper pairs, which consist of two electrons. This subject will be taken up next.

Fig. 8.11   Experimental demonstration of the magnetic flux quantization during entry of mag-
netic flux into a small superconducting cylinder. a Superconducting shielding current Is plotted 
versus the magnetic flux density Be oriented parallel to the cylinder axis. b Number n of the mag-
netic flux quanta within the cylinder plotted versus Be. c Superposition of the applied magnetic 
field (solid arrows) and of the magnetic field generated by Is (dashed arrows) at the three points 
1–3 from (a). Further details are given in the text

8.3  Magnetic Flux Quantum
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8.4 � BCS Theory, Energy Gap

It has taken nearly 50 years since the discovery of superconductivity, until for the 
first time a microscopic theory was proposed which could explain satisfactorily the 
underlying mechanism. In the year 1957 the three Americans John Bardeen, Leon 
Cooper, and Robert Schrieffer achieved the long-expected theoretical breakthrough. 
Their theory, the “BCS theory”, quickly became very famous. The question why 
it took so long to produce a theoretical explanation of superconductivity, can be 
answered relatively simply. The energy difference of the electrons between their nor-
mal and their superconducting state is extremely small and much smaller than the 
Fermi energy. On the other hand, the uncertainty in the calculation of the different 
individual contributions to the energy of the electrons in the crystal is much larger 
than the energy gain during the transition into the superconducting state. Hence, the 
theory had to find the exact point leading to superconductivity. The BCS theory is 
based on the central idea that, at low temperatures, a specific attractive force is act-
ing between two electrons. Because of this attraction, two electrons combine into 
pairs in a distinctive way and experience an energy reduction in the form of bind-
ing energy. Such a formation of pairs accompanied by a reduction in energy had 
been theoretically derived by Leon Cooper in 1956. Therefore, the electron pairs are 
referred to as “Cooper pairs”. According to the BCS theory, the attractive force lead-
ing to the formation of the Cooper pairs is due to the distortions of the crystal lat-
tice near the individual electrons, i.e., due to the phonons. In this way, the otherwise 
expected repulsive force between two electrons is overcompensated. Already by 
the early 1950s strong indications for the important role of the crystal lattice in the 
mechanism of superconductivity were obtained, based on experimental observations 
of the “isotope effect”. One generally speaks of an isotope effect, when the result 
depends on the mass of the atomic nuclei at constant electric charge of the nuclei, 
i.e., on the number of neutrons in the atomic nuclei. By careful study of the different 
and specially prepared pure isotopes of various superconducting materials such as, 
for example, lead, mercury, and tin, it was found, that the critical temperature TC is 
inversely proportional to the square-root of the mass of the lattice atoms:

(8.17)TC ∼ 1/Mα

Fig. 8.12   Structure of a single flux line. Local magnetic field h, density of the superconducting 
electrons ns, and the circulating superconducting current density js as a function of the distance r 
from the axis of the flux line
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with the exponent α  =  0.5. Hence, the crystal lattice must play some role in 
superconductivity.

During pair formation, two electrons with opposite spin always combine with 
each other. Therefore, the total spin of an individual Cooper pair is zero, and the 
Pauli principle does not apply in this case. Hence, all Cooper pairs can occupy 
the same quantum state, which is described in terms of a macroscopic quantum 
mechanical wave function. However, not all electrons participate in the formation 
of Cooper pairs and in the macroscopic quantum state. Instead, only the electrons 
from a distinct small energy interval near the Fermi surface are involved. We see 
again, how the concept of the Fermi surface plays a central role. Mathematically, 
the subject of superconductivity confronts us with a “manybody problem”, requir-
ing special techniques for its theoretical treatment. The development of these nec-
essary new methods started about 60–70 years ago in conjunction with quantum 
field theory. The first steps of this theory can be found in a paper published in the 
year 1928 by the German Pascual Jordan and Eugene Paul Wigner from Hungary.

One main result of the BCS theory was the prediction that, in the supercon-
ducting state, a gap appears in the energy spectrum of the electrons at the Fermi 
energy, in which no energy states exist which can be occupied by electrons. The 
energy gap vanishes above the critical temperature TC. Below TC the energy gap 
increases with decreasing temperature in a distinct way and reaches its maxi-
mum value at a temperature of 0 K. In the year 1960, Ivar Giaever presented an 
impressive proof of this energy gap by means of his famous tunneling experiment 
(Fig. 8.13). Giaever was born in Norway and as a young mechanical engineer was 
employed at General Electric in Schenectady in the American Federal State of New 
York. At the Rensselaer Polytechnic Institute near the location of his employment, 
he had heard in a lecture about the new BCS theory and its prediction of a gap in 
the energy spectrum of the electrons. On his way home after the lecture he had the 
idea that the energy gap must directly affect the electric current flow between a 

Fig. 8.13   Experimental proof of the energy gap in a superconductor by means of the tunneling 
experiment of Giaever. a A superconducting electrode A and a normal electrode B are sepa-
rated from each other by a thin, electrically insulating barrier C, such that the electric current 
flow across the barrier is only possible because of the quantum mechanical tunneling process. 
b Electric current I plotted versus the voltage V in the case when both electrodes are metals in 
the normal state. c Electric current I plotted versus the voltage V in the case when one metal elec-
trode is superconducting. The electric current can start to flow only when the electrical potential 
difference between the two electrodes has reached the value of the energy gap

8.4  BCS Theory, Energy Gap
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superconducting and a normal electrode, if the two electrodes are separated from 
each other by a thin, electrically insulating barrier. Because of this barrier, the elec-
tric current flow is possible only by means of the quantum mechanical tunneling 
process. Hence, this arrangement is referred to as a tunnel junction. During the 
propagation of particles, the tunneling effect is caused by the fact, that the wave 
function of the particle can still seep through a high wall and can reach an appreci-
able value at the other side. However, in our tunnel junction the tunneling current 
cannot flow as long as no allowed energy states in the superconductor are available 
for the electrons coming from the other electrode, because of the energy gap. Only 
when the potential difference between both electrodes has reached the value of the 
energy gap because of the applied electric voltage does the electric current flow 
become possible. We have a similar result, if both electrodes are superconducting. 
Hence, it should be possible to determine the superconducting energy gap just by 
means of a simple measurement of the electric voltage and the electric current in a 
tunnel junction. Giaever’s experiments have impressively confirmed these expecta-
tions. After this pioneering step, tunneling experiments with superconductors have 
become an important source of information about the physics of superconductors. 
The BCS theory has been confirmed by many further experiments and has quickly 
found wide acceptance. There exists a long list of physicists, who had tried before 
without success to construct a microscopic theory of the mechanism of supercon-
ductivity. Among others, this list includes the names Felix Bloch, Niels Bohr, Léon 
Brillouin, Jakov I. Frenkel, Werner Heisenberg, Ralph Kronig, Lew Dawidowitsch 
Landau, and Wolfgang Pauli.

The fact that it is the formation of Cooper pairs occupying a macroscopic quan-
tum state, which leads to superconductivity, is also visible in the magnitude of the 
magnetic flux quantum discussed above. Since the Cooper pairs are composed of 
two elementary charges, the magnetic flux quantum (h/2e) is only half as large as 
would be the case if the underlying elementary particles carried only a single ele-
mentary charge, leading to (h/e).

8.5 � Josephson Effect

Soon after Giaever had published the result of his famous tunneling experiment, a 
student in Cambridge, England was interested in the underlying tunneling process: 
Brian David Josephson. He was tutored by Alfred Brian Pippard, and in 1961/1962 
he attended lectures by the American Philip Warren Anderson about the new devel-
opments in the theory of superconductivity. Josephson was highly impressed by 
the concept of superconductivity in terms of a macroscopic quantum phenomenon, 
which extended far beyond the range of validity in individual atoms or molecules. 
When he theoretically analyzed the details of the electric current flow through the 
barrier of a tunnel junction between two superconductors, as it had been used by 
Giaever, he derived two equations for the electric current and for the electric voltage, 
respectively, which are known since as the Josephson equations:
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In (8.18) the current of Cooper pairs flowing without electrical resistance is 
described. Equation (8.19) indicates that an electric voltage V across the tun-
nel junction is always accompanied by an alternating supercurrent between both 
superconductors oscillating at a high frequency. The frequency of these Josephson 
oscillations increases proportionally with the electric voltage. Equations (8.18) 
and (8.19) are based on the concept that superconductivity represents a macro-
scopic quantum phenomenon, described by a wave function (order parameter)

with an amplitude ∣ψ(r, t)∣ and a phase ϕ(r, t). The current-phase relation (8.18) 
indicates that the supercurrent Is flowing across a weak contact is connected with 
the phase difference χ = ϕ2 − ϕ1 between both sides of the junction. IC is the crit-
ical current of the junction geometry. The Josephson equations (8.18) and (8.19) 
can be derived in different ways. One derivation given by Richard Feynman starts 
with the time-dependent Schrödinger equation for the two wave functions ψ1 and 
ψ2 of the two superconductors, which are still separated initially, and then a cou-
pling between both is added.

Josephson made both predictions in the year 1962. At first, his theory was met 
by scepticism and hardly any understanding, as often happens with completely 
new ideas. As an example, Felix Bloch speaks of a conversation he had with the, 
also highly renowned, American theoretical physicist Chen NingYang:

Yang told me that he could not understand it, and asked whether I could. In all honesty 
I had to confess that I could not either, but we made a deal that whoever of us first under-
stood the effect would explain it to the other.

By 1963 Josephson’s theory had already been confirmed experimentally (Fig. 8.14). 
The second Josephson equation also emphasizes again, that it is the Cooper pairs 
with their two elementary charges, which lead to superconductivity.

In this context of our discussion of the Josephson effect between two supercon-
ductors, only weakly coupled to each other, a brief note in the protocol of the board 
meeting at the German Bureau of Standards (Physikalisch-Technische Reichsanstalt) 
in Berlin-Charlottenburg in March 1926 is interesting historically. At that time, 
Albert Einstein was a member of the board, and during the meeting he made the fol-
lowing remark: “Of particular interest is the question, of whether the location of the 
junction joining two superconductors also becomes superconducting”.

The remark by Einstein at the board meeting of the Reichsanstalt is connected 
with the fact that, at the time, for explaining superconductivity he had proposed 
that it is caused by molecular conducting chains. In his commemorative address 
for Kamerlingh Onnes in 1923, Einstein discussed the state of superconductivity 
as follows:

(8.18)Is = IC sin χ

(8.19)
∂χ

∂t
=

2e

�
V

(8.20)� = | � |e
iϕ

8.5  Josephson Effect
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So it appears unavoidable that the superconducting currents are carried by closed molecu-
lar chains (conducting chains), the electrons of which incessantly experience cyclical 
exchanges. Therefore, Kamerlingh Onnes compares the closed currents in superconduc-
tors with Ampère’s molecular currents. [ … ] It may appear unlikely, that different kinds 
of atoms can combine to form conducting chains. Hence, the transition from one super-
conducting metal to another is perhaps never superconducting.

Motivated by these ideas of Einstein, in 1932 Walther Meissner together with 
Ragnar Holm, working for the Siemens company in Berlin in its research laborato-
ries, carried out experiments concerning the contact between two superconductors. 
They performed the measurements on superconducting tin (Sn) and lead (Pb) and 
investigated Sn-Sn, Pb–Pb, and Sn-Pb contacts. Meissner and Holm reported their 
results in an article in Zeitschrift für Physik and concluded:

Between superconductors from the same or from different materials a superconducting 
contact is possible without welding both materials together. During entry of superconduc-
tivity the resistance of the contact layer also vanishes.

Hence, the model of the molecular conducting channels, proposed by Einstein, had 
been disproved.

In this case, motivated by the ideas of Einstein, for the first time the subject of 
thin contacts or micro-bridges between two superconductors, which subsequently 
would gain great significance, was brought up. However, it took another 30 years, 
until Brian David Josephson in 1962 finally answered these questions.

Fig.  8.14   Josephson oscillation of the supercurrent between the superconducting electrodes 
of a tunnel junction in the presence of an electric voltage across the junction. a In a Josephson 
junction, the two superconducting electrodes A and B are only weakly coupled to each other, 
for example, by means of a thin, electrically insulating barrier C, which allows electric cur-
rent to flow only because of the quantum mechanical tunneling process. b The frequency ν of 
the Josephson oscillation of the supercurrent between the two electrodes increases proportion-
ally with the electric voltage V across the junction. At a voltage of 1 V the frequency is about 
483,000 GHz. c Electric current I plotted versus the voltage V of a Josephson junction. The solid 
and the dashed curve show the tunneling current in the case of superconductivity and in the case 
of normal conductance, respectively. At 0 V we see the Josephson pair current flowing without 
resistance up to its maximum value I0. During irradiation of the junction with microwaves the 
current-voltage characteristic displays the “Shapiro steps”, which are caused by the combined 
action of the Josephson oscillation within the junction and the microwaves
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8.6 � Motion of the Magnetic Flux Quanta

Again and again, the scientists were concerned with the question whether, in a 
superconducting ring, the supercurrents really flow forever, or whether they decay 
perhaps extremely slowly. In the beginning of the 1960s, this question became 
very urgent, when at the Bell Laboratories Bernd T. Matthias discovered the new 
superconducting niobium alloys Nb3Sn and NbZr. The tests performed by Gene 
Kunzler indicated promising high values of the critical electric current density 
and of the critical magnetic field in these materials. The further experiments, per-
formed in particular by the Korean Young Kim, showed that there exists a “critical 
state”, above which in a superconducting ring the current always decreases. The 
crucial idea then came from Philip W. Anderson, when he recognized that this pro-
cess does not set in discontinuously, but is caused by the motion of the magnetic 
flux quanta. The concepts of flux creep and flux flow were born.

This highly important consequence of the magnetic flux quanta (in addition to 
their influence on the magnetic properties) is due to the following. If, under the 
influence of a force, the flux quanta move within the superconductor, an electric 
field and, hence, an electric voltage is generated. This “flux-flow voltage” is pro-
portional to the velocity and to the number of the moving flux lines. An electric 
current of density j in the superconductor causes the Lorentz force fL =  j × ϕo 
acting on the flux quanta. It is oriented perpendicular to the direction of the elec-
tric current and to the magnetic field of the flux lines. The Lorentz force can cause 
a motion of the magnetic flux lines which, in turn, generates the electric field E

vϕ is the velocity of the flux lines. This electric field is always oriented perpendicu-
larly to the motional direction and to the magnetic field of the magnetic flux lines. 
Hence, in the case of the Lorentz force the electric field and the electric current have 
the same direction, such that the flux-line motion in the superconductor causes electric 
losses. The process of the flux-line motion follows the (here simplified) force equation

Here η vϕ is the dissipative contribution and η a damping constant. In (8.22) the 
forces are given per unit length of the flux lines. From (8.21) and (8.22) we obtain 
the flux-flow resistivity

It is exactly this mechanism, which always limits the electric current flow with-
out electrical resistance and without losses in a superconductor. Therefore, it is of 
utmost interest, to prevent this process of flux-line motion as much as possible. 
In this last discussion we have simplified the situation by neglecting in (8.22) the 
effects of the pinning forces and a force component which causes the Hall-effect 
during the motion of the flux lines.

(8.21)E = −vϕ × B,

(8.22)j× ϕo − η vϕ = 0.

(8.23)ρf = ϕo B/η.

8.6  Motion of the Magnetic Flux Quanta
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The motion of a magnetic flux quantum in a superconductor resulting in the 
flux-flow resistance and in the destruction of superconductivity is an example of 
a general principle of nature, according to which the generation and the motion 
of a local defect through an otherwise homogeneous system leads to major mac-
roscopic effects. In other words: here a little cause can achieve a major effect. 
In Chap. 12 we will discuss a similar example, in which the generation and the 
motion of individual dislocations through an otherwise homogeneous crystal, 
affects the mechanical properties and results in the deformation of the crystal at 
unexpectedly small values of the mechanical tension.

The motion of local vortices within a supra-fluid also plays a role in the dynamics of 
the neutron stars or pulsars. These stars rotate having a rotational frequency above 1/s. 
However, one observes that for a long time this rotation becomes slower, until abruptly 
the rotational speed jumps to a higher value. Today this behavior is explained by the 
motion and abrupt jumps of local vortices.

Material scientists have been taking great pains to pin the magnetic flux lines at 
specific locations by introducing “pinning centers” into the superconductor. In this 
way, one hopes that the flux lines are not moving any longer under the influence of 
the Lorentz force, or that this motion and the electric losses only start to appear at 
electric currents as high as possible. In recent years great effort has been devoted to 
this subject in material science and metallurgy. These developments were motivated 
by the interest in the possibilities for the technical applications of superconductiv-
ity. Next we will turn to the technical applications and look at a few examples.

8.7 � Technical Applications

For the applications of superconductivity in electronics and microelectronics the 
magnetic flux quantization and the Josephson effect are of central interest. Both 
phenomena are intimately connected with the nature of superconductivity as a 
macroscopic quantum phenomenon and with the description of the state of the 
Cooper pairs in terms of a quantum mechanical wave function. Here the limitation 
of the quantum-theoretical concepts to atomic and subatomic objects, is suspended. 
Instead, these concepts are directly technically utilized in devices and instruments.

An electronic instrument used today in many different ways is the “ SQUID” 
(abbreviated from Superconducting Quantum Interference Device). It is based on 
the magnetic flux quantization and the Josephson effect. A small closed supercon-
ducting loop is interrupted by two Josephson junctions connected in parallel. If the 
loop is penetrated by magnetic flux, within the loop the magnetic flux can exist only 
in units of integer multiples of a magnetic flux quantum. This quantum condition is 
satisfied by means of the induction of a circulating superconducting shielding cur-
rent within the loop, in such a way that the generated additional magnetic flux in the 
loop, in combination with the external magnetic flux, exactly supplement each other 
to yield an integer multiple of a magnetic flux quantum (similar as it is shown in 
Fig. 8.11c). As a result one observes an exactly periodic modulation of the shielding 

http://dx.doi.org/10.1007/978-3-319-09141-9_12
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current within the loop as a function of the external magnetic field, where the length 
of the magnetic period corresponds exactly to one magnetic flux quantum in the 
loop. It is important that the circulating shielding current should always be added 
to an external electric current which is also flowing through the device. As a con-
sequence, the measured electrical resistance of the loop configuration with the two 
parallel Josephson junctions also displays a periodic modulation. Since even a small 
fraction of a single modulation period of the magnetic field can be resolved during 
the measurement of the electrical resistance, an extremely high sensitivity of the 
magnetic field measurement is achieved. Today, the fabrication of SQUIDs is carried 
out usually by means of thin-film and integrated circuit technology.

As sensors for detecting magnetic fields, SQUIDs have the highest sensitivity which 
can be reached today. This fact results in many of the applications of SQUIDs, for 
example, in the field of research or nondestructive material testing. Interesting applica-
tions are also found in medical diagnostics for detecting the magnetic fields generated 
by the electric currents from cardiac activity or in the brain. In this way, the new fields 
of magneto-cardiography and magneto-encephalography developed only because of 
extremely sensitive SQUIDs. For example, today instruments with a total of up to 275 
SQUID channels are available for brain research, where the channels with the individ-
ual sensors are arranged in a three-dimensional way around the head of the test per-
son or of the patient (Fig. 8.15). Very recently, highly miniaturized SQUIDs have been 
used also in SQUID-scanning microscopes. At an extremely high magnetic-field sensi-
tivity, these instruments achieve a spatial resolution as high as only a few µm, such that 
individual magnetic flux quanta in a superconductor can be nicely imaged. (In Fig. 9.8 
of Chap. 9 we present an application of a SQUID-scanning microscope).

Fig. 8.15   Magneto-encephalography. Left Whole system with the test person carrying the helmet con-
taining the SQUID magnetic-field sensors, within a magnetically shielded chamber. Right View into 
the helmet having an arrangement of 151 SQUID sensors (photos MEG International Services Ltd.)

8.7  Technical Applications

http://dx.doi.org/10.1007/978-3-319-09141-9_9


128 8  The Winner: Superconductors

We discussed above, that an electric voltage drop at a Josephson junction is 
always associated with a high-frequency oscillation of the supercurrent flowing 
between the two electrodes of the junction, as predicted by the second Josephson 
equation (8.19). Here an electric voltage of 10−3 volt corresponds to an oscilla-
tion frequency of 483.6  GHz (Gigahertz). Vice versa, distinctly sharp electric 
voltage plateaus result at the current-carrying Josephson junction, if the junction 
is irradiated with a high-frequency electromagnetic wave such as a microwave, 
for example. Then the magnitude of the voltage plateau is unequivocally fixed 
by the frequency of the irradiating electromagnetic wave because of the second 
Josephson equation. This exact quantum condition between a frequency and an 
electric voltage, in combination with the fact that frequencies can be determined 
extremely accurately, was the reason why, since January 1, 1990, the legal defini-
tion of the electric voltage unit established by the National Bureaus of Standards 
is based on the Josephson effect in the form of the “Josephson voltage standard”. 
Officially, a voltage of one volt corresponds to a frequency 483597.9 GHz.

In Chap. 7 we discussed another quantum definition of an electric unit, namely 
the von-Klitzing effect for the definition of the unit of electrical resistance. Together 
with the Josephson oscillation as the combining mechanism between an electric 
voltage and a frequency, two sides of the famous quantum triangle consisting of cur-
rent, voltage, and resistance, for the definition of the electric units, are now com-
pleted. The resistance third side, yielding the connection between an electric current 
and a frequency, is presently the subject of ongoing research in different laborato-
ries. Here the goal is to define the electric current in terms of the frequency of trans-
fer of individual electrons. With the example of the Josephson voltage standard we 
will conclude our discussion of the field of Josephson electronics and Josephson 
technology, which today is already well developed for measuring electronics.

For many years the relatively low values of the critical magnetic fields and of 
the critical currents had prevented the technical high-current applications of super-
conductivity in energy technology and in electric machinery. This changed only 
in the 1960s, when new superconducting materials with higher values of the criti-
cal electric current density and of the upper critical magnetic field HC2 became 
known. Then the compounds NbTi with TC = 9.6 K and Nb3Sn with TC = 18 K 
technically became highly relevant. Among the classical superconductors, thin 
layers of the compound Nb3Ge showed the highest critical temperature with 
TC = 23.2 K. For the fabrication of wires special drawing procedures and differ-
ent mechanical processing stages with an optimized combination of heat treatment 
and cold-work were developed. Particularly successful were the “multifilamentary 
wires”, where many thin filaments of the superconducting material are imbed-
ded within a copper matrix. This technique ensures that, during the breakdown of 
superconductivity, because of overloading, a certain finite electrical conductivity 
still remains, and that on the other hand there exists a sufficiently large number of 
pinning centers in order to pin the magnetic flux quanta in the superconductor.

One of the main applications of technical superconductors can be found in mag-
netic coils. Today, superconducting magnets are used in large numbers in research 
laboratories (Fig. 8.16). Particularly large versions serve as beam-guiding magnets 

http://dx.doi.org/10.1007/978-3-319-09141-9_7
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of particle accelerators and are also important components of the associated particle-
detector systems. Since a few years, the largest superconducting accelerator plant 
worldwide, the Large Hadron Collider (LHC), is operating at the European Nuclear 
Research Center (CERN) in Geneva. It is placed within a circular tunnel of 27 km 
length and, at full operation, accelerates protons up to energies of 7,000 GeV. For 
beam guidance, a total of more than 1,600 superconducting magnets, constructed 
from NbTi, are used. Most magnets weigh more than 27 t. For this more than 
7,000 km of NbTi wire were needed. In addition, more than 3,500 superconducting 
correcting magnets are used. Only the correct adjustment of all magnets allows the 
storage of highly accurate proton beams, as they are required by the LHC. During 
operation, a total of 31,000 t material must be cooled down to 1.9 K. This requires 
12 million liters of liquid nitrogen and 700,000 liters of liquid helium. (In Chap. 1 
we had mentioned the extremely large cryogenic facilities installed at the LHC).

Fig. 8.16   Superconducting magnetic coils. a Commercially available coil for research purposes. 
The coil is wound from niobium-titanium (NbTi) wire and can generate a magnetic field of up 
to 9 Tesla, corresponding to about 1 million times the magnetic field of the earth (Oxford). b 
Superconducting model coil with its test set-up for a toroidal magnetic field during lowering 
into the cryo-container of an experimental plant at the German Research Center Karlsruhe. The 
experimental plant serves to develop the technology of magnetic plasma confinement for the 
nuclear fusion process. The outer dimensions of the oval model coil are 2.55 × 3.60 × 0.58 m. 
During its operation an electric current of 80,000 Ampère is flowing through the coil. The total 
coil set-up weighs 107 tons and must be cooled down to 4.5 K. The available inner diameter and 
height of the cryo-container is 4.3 and 6.6 m, respectively (Research Center Karlsruhe KIT)

8.7  Technical Applications
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During the past 15  years superconducting magnets for medical nuclear spin 
tomography have developed into the most important market of superconductor 
technology. This started in the beginning of the 1980s when the health authorities 
worldwide approved the use of nuclear spin tomography in medical diagnostics. 
Presently, the annual turnover of industry in this field amounts to 2–3 billion €.

Since, in a superconducting coil, direct current can flow without any losses for 
a practically arbitrarily long time, such coils offer an interesting possibility for the 
storage of electrical energy, in particular for the handling of short interruptions of 
the electric power supplied. Therefore, at present the development of supercon-
ducting magnetic energy-storage systems is pursued intensively. Nuclear fusion as 
a long-term option for a source of energy must rely necessarily, for energetic rea-
sons, on superconducting coils to generate the magnetic fields needed for the con-
finement of high-temperature plasma, in which the nuclear fusion process occurs. 
Hence, the largest superconducting magnet systems are developed presently for 
application in nuclear fusion reactors.

Once technical superconductors with their highly improved superconducting 
material properties became available, then in the 1970s the investigation of the 
basic principles of superconducting electric power cables, based on the classi-
cal superconductors and cooled with liquid helium, had already been started. In 
this context several pilot projects were carried out worldwide. Today, about 95 % 
of the electric power is transmitted using alternating current high-voltage open-
air power lines. Because of their relatively low construction and repair costs, 
they have distinct advantages. The possible operation of superconducting elec-
tric power cables is particularly useful at such locations, where open-air power 
lines are ruled out as, for example, in regions with very high population density. 
Because of the discovery of high-temperature superconductivity, which we will 
discuss in the following Chap. 9, this high-current application of superconductiv-
ity has also received a strong impetus.

http://dx.doi.org/10.1007/978-3-319-09141-9_9
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Abstract  The discovery of high-temperature superconductors in 1986 started 
worldwide tremendous research activities which quickly resulted in the prepara-
tion of superconductors with a critical temperature above 130  K. These cuprate 
superconductors are highly anisotropic, with superconductivity residing in the 
copper-oxide planes. Initially, the granular structure of the ceramic materials 
needed to be optimized. Much progress was achieved by fabricating epitaxial 
films. The symmetry of the wave function of the Cooper-pair condensate repre-
sents an important issue. Today, the Josephson effect of a single grain boundary 
is used in SQUIDs. The intrinsic Josephson effect in small multi-layer crystals is 
explored as a source of terahertz radiation.

9.1 � Cuprate Superconductors

In April 1986 the German Johannes Georg Bednorz together with the Swiss Karl 
Alexander Müller submitted a paper for publication in the Zeitschrift für Physik 
with the title “Possible High TC Superconductivity in the Ba-La-Cu-O System”. 
Both worked at the IBM Research Laboratory in Rüschlikon near Zurich. In com-
pounds of barium, lanthanum, copper, and oxygen, with decreasing temperature, 
they had observed an abrupt drop in the electrical resistance by at least three 
orders of magnitude, with the drop starting at about 35 K. The two scientists pre-
sumed that they were dealing with a new kind of superconductivity. Because the 
superconductivity appeared to set in at a temperature, which was up to 12 K higher 
than the highest recorded value of the critical temperature of 23.2 K known at the 
time (since 12 years) for the compound Nb3Ge, caution and scepticism was called 
for. Therefore, the authors arranged with the editor of the Zeitschrift für Physik 
to hold the paper until a clear proof of the superconductivity was provided by an 
experimental demonstration of the Meissner effect. As we saw in Chap. 8, the 
Meissner effect represents the characteristic fingerprint of superconductivity. The 
Meissner effect was then, indeed, confirmed also for the Ba-La-Cu-O system, and 
Bednorz and Müller released their submitted paper for publication.

Chapter 9
The Big Surprise: High-Temperature 
Superconductivity
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Initially, Bednorz and Müller mostly faced scepticism. However, this lasted 
only a short time. Already by the end of 1986 their results had been confirmed at 
the University of Tokyo and only a little later at the University of Houston in the 
American Federal State of Texas. Then in 1987, Paul Ching-Wu Chu, Maw-Kuen 
Wu, and their co-workers in Houston succeeded in another sensational advance. 
In a modification of the original oxides, in which the larger lanthanum atom was 
replaced by the smaller yttrium atom, they observed an enormous increase in the 
critical temperature up to 92 K. Now the investigations into the “high-temperature 
superconductors” developed a breathtaking speed worldwide in many groups. The 
critical temperature of 92  K for the, just-discovered, new material YBa2Cu3O7 
(abbreviated YBCO) is still distinctly higher than the boiling point of 77  K for 
liquid nitrogen. Therefore, the relatively expensive liquid helium as a cooling 
medium can be replaced by the much cheaper liquid nitrogen. In many places the 
increasingly hectic rush was so great, that temporarily new results were reported 
in daily newspapers such as, for example, in The New York Times, with an exact 
indication of the day and the hour they had been achieved. Perhaps the first crucial 
point was the marathon session at the Spring Conference of the American Physical 
Society of March 18, 1987 in the Hilton Hotel in New York City, which lasted 
far beyond midnight and subsequently was accurately called the “Woodstock of 
Physics”.

The discovery of high-temperature superconductivity by Bednorz and Müller 
resulted in an explosive growth worldwide of research and development in the 
field of superconductivity. With respect to the international reaction, this discov-
ery can be compared with the discovery of X-rays in 1895 by Wilhelm Conrad 
Röntgen or with the first observation of nuclear fission in 1938 by Otto Hahn and 
Fritz Strassmann. It is estimated that, until the beginning of the year 2001 a total 
of about 100 000 scientific papers on high-temperature superconductors had been 
published, since their discovery (Fig. 9.1).

In particular the lecture given by Bednorz during the ceremony in which the 
Nobel Prize was awarded to him together with K.A. Müller on December 8, 1987 
in Stockholm, gives a vivid and enlightening description of the path leading to 
their discovery of high-temperature superconductivity. We will quote a few pas-
sages from this lecture:

“….We started the search for high-TC superconductivity in late summer 1983 with the 
La-Ni-O-System.” – Bednorz then talks about various steps, during which the nickel and 
the lanthanum were replaced by other elements, but without success. Then he continues: 
“The resistance behavior changed in a way we had already recorded in the previous case, 
and at that point we started wondering whether the target at which we were aiming really 
did exist. Would the path we decided to embark upon finally lead into a blind alley?”

“It was in 1985 that the project entered this critical phase, and it probably only sur-
vived because the experimental situation, which had generally hampered our efforts, had 
been improved. The period of sharing another group’s equipment for resistivity measure-
ments came to an end. …. Thus the measuring time was transferred from late evening to 
normal working hours.” – After a brief summary of the further experiments Bednorz con-
tinues “ …. But again, we observed no indication of superconductivity. The time to study 
the literature and reflect on the past had arrived.”
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“It was in late 1985 that the turning point was reached. I became aware of an article 
by the French scientists C. Michel, L. Er-Rakho, and B. Raveau, who had investigated 
a Ba-La-Cu oxide with perovskite structure exhibiting metallic conductivity in the tem-
perature range between +300 °C and –100 °C. …. In the Ba-La-Cu oxide with a perovs-
kite-type structure containing Cu in two different valencies, all our concept requirements 
seemed to be fulfilled. I immediately decided to proceed to the ground-floor laboratory 
and start preparations for a series of solid solutions.” –Then there occurred a few inter-
ruptions of the experiments, and Bednorz continues in his lecture “ …. in mid-January 
1986, I recalled that when reading about the Ba-La-Cu oxide it had intuitively attracted 

Fig. 9.1   Critical temperature TC plotted versus the year of discovery of different superconduc-
tors. The steep branch of the curve on the right-hand side shows the different high-temperature 
superconductors. The entries marked with an asterisk indicate where the critical temperature 
could be increased further under high pressure (C.W. Chu)

9.1  Cuprate Superconductors
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my attention. I decided to restart my activities by measuring the new compound. When 
performing the four-point resistivity measurement, the temperature dependence did not 
seem to be anything special when compared with the dozens of samples measured ear-
lier. During cooling, however, a metallic-like decrease was first observed, followed by an 
increase at low temperatures. …. My inner tension, always increasing as the temperature 
approached the 30 Kelvin range, started to be released when a sudden resistivity drop of 
50 % occurred at 11 Kelvin. Was this the first indication of superconductivity?”

“Alex (Müller) and I were really excited, as repeated measurements showed perfect repro-
ducibility and an error could be excluded. Compositions, as well as the thermal treatment, were 
varied and within two weeks we were able to shift the onset of the resistivity drop to 35 Kelvin. 
This was an incredibly high value compared with the highest TC in the Nb3Ge superconductor”.

The substances of the discovered new class of the “cuprate superconductors” 
(Fig. 9.2) are oxides, which crystallographically have perovskite structure. The most 
prominent structural element are copper-oxide (CuO) planes, in which copper and 
oxygen atoms are arranged alternately, in this way forming a two-dimensional lat-
tice. The elementary building blocks, from which the cuprate superconductors are 
assembled periodically in all three spatial directions, (the crystallographic unit cells), 
contain a different number of copper-oxide planes, depending upon the particular 

Fig.  9.2   Crystal structure of different cuprate superconductors. At the six corners of the bright 
octahedrons or at the five corners of the bright pyramids there are oxygen atoms. The centers of the 
octahedrons, or of the basic square areas of the pyramids, are occupied by copper atoms (IBM)
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compound. Based upon the different possible chemical composition, one distin-
guishes between five main families of the cuprate superconductors, the parent com-
pounds of which, together with their critical temperature TC, are listed in Table 9.1.

The electrical and, in particular, the superconducting properties of these 
cuprates are determined by the copper-oxide planes and depend sensitively on 
their doping with electric charge carriers. In their undoped state the cuprates are 
electrical insulators, in which the elementary magnets of the copper atoms in the 
CuO2 planes are alternately oriented opposite to each other. Superconductivity 
is only observed if the electron concentration in the CuO2 planes is reduced by 
means of introducing positive holes into the electronic system (“hole doping”). 
This hole-doping can be achieved, for example, by the extraction of oxygen. 
Since, on the other hand, superconductivity only appears within a relatively nar-
row range of the doping concentration, during material preparation the oxygen 
concentration must be carefully controlled. The values of the critical temperature 
given in Table 9.1 correspond to the case of optimum doping with holes. The com-
pound HgBa2Ca2Cu3O8+x with TC = 133 K shows the highest critical temperature 
observed up to now under normal pressure. Under high pressure the critical tem-
perature of this compound reaches the even higher value of TC = 164 K.

In addition to the cuprates, which become superconducting after hole doping, 
a few compounds have been found, showing superconductivity only after doping 
with additional electrons, i.e., with negative charges. However, in this case the 
doping-concentration range required for superconductivity is narrower, and the 
critical temperature is much lower, compared with the hole-doped compounds.

The layered crystal structure of cuprate superconductors with the dominating 
role of the CuO2 planes (Fig. 9.3), results in an extremely strong dependence of 
all electrical and thermal transport properties upon the direction within the crys-
tal. For example, in the normal state the electrical resistivity perpendicular to the 
CuO2 planes is up to several orders of magnitude larger than it is parallel to these 
planes. In many respects, the materials show quasi two-dimensional behavior. 
In the normal state of the cuprates, the temperature dependence of the physical 
properties such as electrical resistance, the Hall effect, as well as the Seebeck and 
Peltier effects, strongly deviates from the behavior usually observed in metals.

In the high-temperature superconductors, the coherence length ξ, which charac-
terizes the spatial rigidity of the superconducting properties, is much smaller than in 
the classical superconductors and has a similar magnitude to the dimensions of the 
crystallographic unit cell. We are dealing with extreme type-II superconductivity. 
Therefore, these materials are extremely sensitive against atomic defects and grain 

Table 9.1   Critical 
temperatures of different 
high-temperature 
superconductors

Compound TC (K)

La2−xSrxCuO4 38

YBa2Cu3O7−x 92

Bi2Sr2Ca2Cu3O10 110

Tl2Ba2Ca2Cu3O10+x 125

HgBa2Ca2Cu3O8+x 133

9.1  Cuprate Superconductors
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boundaries, both of which act as pinning centers for magnetic flux quanta (Fig. 9.4). 
The upper critical magnetic field HC2 is up to more than 100–200 times larger 
than the highest values for the classical superconductors. One of the first questions 
which had to be answered for the newly discovered materials, concerned the issue 
of whether the formation of Cooper pairs is fundamental to superconductivity, simi-
lar to the classical superconductors. For cuprate superconductors, this question of 
pair formation had received a clear positive answer early on. Here definite indica-
tions for the appearance of the double elementary charge of the Cooper pairs came 
from the magnitude of the magnetic flux quantum and from the quantitative relation 
between the electric voltage and the frequency of the Josephson effect.

Fig. 9.3   High-resolution electron-microscopic image of the cuprate superconductor 
Bi2Sr2CaCu2O8+δ. The two arrows at the upper left show two rows of bismuth atoms. At the 
bottom, the direction of the crystallographic b- and c-axis is indicated. The c-axis is oriented 
perpendicular to the CuO2 planes of the cuprate (O. Eibl)
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9.2 � Symmetry of the Wave Function

The spatial symmetry of the wave function, describing the superconducting 
ground state of the Cooper pairs, represents another important issue with the high-
temperature superconductors. In Chap. 5 we noted, that the states of the electrons 
in the form of waves propagating within the crystal are determined by the wave 
vector k, and saw how these wave vectors build up the three-dimensional k-space 
or momentum space. Since in the cuprates the superconductivity essentially is 
concentrated in the CuO2 planes, we can now practically restrict ourselves to two-
dimensional momentum space within these planes. Then the question remains: 
Does the wave function depend on the direction within this momentum space or 
not? For the classical superconductors, in general there is no such dependence on 
the direction, and one speaks of the “s-wave symmetry”. However, for the cuprate 
superconductors the situation is different. For the hole-doped high-temperature 

(a)

(b)

(c)

(d)

(e)

I e - beam

0.72 mA
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2.2 mA
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Fig. 9.4   Granular structure of one of the first prepared thin layers of the cuprate superconductor 
Y1Ba2Cu3O7. The layer is 30 µm wide and runs horizontally. The arrow-heads on the right-hand side 
mark the upper and the lower edge of the layer, respectively. Bright regions indicate the locations in 
which electrical resistance appears within the layer during electric current flow. The dark regions are 
superconducting. From a to e the electric current was increased successively from 0.7 mA at (a) up 
to 8.7 mA at (e). The images show the pronounced spatial inhomogeneity of the layer, having large 
spatial fluctuations of the local critical electric current density. The images were obtained using the 
method of low-temperature scanning electron microscopy. The temperature was 53 K

9.2  Symmetry of the Wave Function
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superconductors a strong directional dependence of the wave function was 
observed, which is dominated by the atomic d-orbitals.

In order to illustrate this behavior, the wave function is plotted in two-dimen-
sional k-space of the CuO2 planes. Figure  9.5 shows such a polar plot with the 
four lobes of the d-orbitals, which alternately have a positive and a negative sign 
and display nodes and antinodes depending on the polar angle. In the case of 
dx2−y2-symmetry, the nodes and antinodes are arranged along the indicated crys-
tallographic directions. For comparison, the isotropic wave function with s-wave 
symmetry, which usually appears in the classical superconductors, is also shown. 
In order to identify the directions of the nodes and antinodes within the scheme of 
the CuO2 planes, in Fig. 9.6 we show the square CuO2 lattice.

If we start in momentum space with a specific direction of the wave vector 
and perform, in the direction of the wave vector, a complete rotation around the 
center of the system of coordinates, then for d-wave symmetry the wave function 
changes its sign four times until we come back to the starting direction. During 
this rotation the wave function passes four times through the value zero. These 
directions with zero value are called nodes, as is common with vibrating strings. 
At the nodes the energy gap in the superconductor vanishes, and it increases again 
at both sides of the nodes. For hole-doped high-temperature superconductors, the 
d-wave symmetry of the wave function of the Cooper pairs, with its sign changes 
and its nodes, leads to many important consequences in the physical properties of 
the superconducting state of these materials. In this context, we will discuss below 
a beautiful experiment for the detection of half-integer magnetic flux quanta. For 
electron-doped high-temperature superconductors the question of the spatial sym-
metry of the wave function of the Cooper pairs is not yet completely clarified, 
since experimental observations do not yet allow an unequivocal conclusion.

Fig. 9.5   Illustration of the 
wave function with s-wave 
symmetry (left) and with 
dx2−y2-symmetry (right) in 
k-space (kx–ky plane). The 
latter symmetry dominates 
in the CuO2 planes of the 
cuprate superconductors

Fig. 9.6   Scheme of the 
square CuO2 lattice. The unit 
cell is marked by the solid 
line. The lattice constant a is 
indicated
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Whereas the formation of Cooper pairs can be stated definitely as a fundamen-
tal principle also for high-temperature superconductors, the underlying micro-
scopic pairing mechanism still remains unclear for the cuprates and remains a 
theoretical and experimental challenge.

The layered structure of the cuprate superconductors with the CuO2 planes arranged 
on top of each other, also affects the magnetic flux lines, which Abrikosov had predicted 
first for the type-II superconductors, and which in the mixed state intersect the supercon-
ductor like a forest of poles along the direction of the magnetic field. We only consider 
the case where the magnetic field is oriented perpendicular to the CuO2 planes. Since the 
superconducting property is highly concentrated within these planes, the flux lines are 
also generated only along a short distance on the planes and are interrupted between the 
planes. Now the continuous magnetic flux line, according to the theory of Abrikosov, is 
separated into short disks, which are located at the CuO2 planes, and which are stacked 
exactly on top of each other. Often these disks are referred to as “pancakes”. Because 
of this separation of the magnetic flux lines into many small individual disks, the mag-
netic flux-line lattice now displays a large number of new properties, which are absent in 
the original Abrikosov lattice. For example, individual disks can leave the arrangement 
where they are stacked exactly on top of each other, and a process like the melting and 
evaporation of the perfectly-stacked configuration of the disks becomes possible.

In Chap. 8 we discussed that, because of the motion of the magnetic flux lines, 
an electric voltage is generated in the superconductor, and noted that this leads to 
electric losses, if the flux-line motion is caused by the Lorentz force produced by 
an electric current. Because of the decomposition of the flux lines into the indi-
vidual disks (pancakes), in the high-temperature superconductors, this loss mecha-
nism is particularly important, since the motional freedom of the individual small 
disks is much stronger than that of the complete and, more or less rigid, Abrikosov 
flux lines. Therefore, the prevention of the motion of the disks by the introduction 
of pinning centers into the superconductor represents a highly important task. In 
this context we recall that the radius of the normal core in the center of each flux 
line is given by the coherence length ξ, which is much smaller in the cuprates than 
in the classical superconductors. Hence, the minimum size of the pinning cent-
ers only needs to reach about an atomic length scale, in order to be effective. This 
explains why even only local deviations from stoichiometry, such as, for example, 
missing oxygen atoms in the CuO2 planes and grain boundaries on an atomic scale, 
represent highly effective pinning centers in the high-temperature superconductors.

9.3 � Grain Boundaries

Soon after the discovery of the cuprate high-temperature superconductors, a 
severe problem with these materials became apparent. As ceramics, the materi-
als were prepared initially with a granular structure, where the individual grains 
were separated from each other by a dense network of grain boundaries. Since, 
in general, within these grain boundaries the superconductivity is weakened or 

9.2  Symmetry of the Wave Function
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even interrupted, during electrical current flow a finite electrical resistivity was 
observed, and hence no pure superconductivity appeared. An early experiment 
demonstrating the granular structure of the cuprate superconductor Y1Ba2Cu3O7 is 
shown in Fig. 9.4. This problem defined two obvious goals for additional research 
and development. On the one hand, methods had to be found for strongly reducing 
the number of grain boundaries in the material. On the other hand, the physical 
properties of the grain boundaries themselves had to be investigated exactly.

Regarding the first goal, impressive progress could be achieved relatively quickly. 
Here above all it was thin-film technology which allowed the preparation of thin, 
single-crystalline layers of the high-temperature superconductors deposited on suit-
able substrates. These “epitaxial layers” contain hardly any grain boundaries and 
remain clearly superconducting up to critical electric current densities of more than 
one million A/cm2 at the temperature of 77 K, the boiling point of liquid nitrogen.

The pursuit of the second goal, namely the clarification of the physical properties 
of the grain boundaries, resulted then in an unexpected but highly interesting devel-
opment. Here it was mainly scientists at the Thomas J. Watson Research Center of 
IBM in Yorktown Heights in the American Federal State of New York, which domi-
nated this development. In order to study the physical behavior of a single grain 
boundary, in his IBM laboratory Chang C. Tsuei selected a thin layer of the high-
temperature superconductor Y1Ba2Cu3O7 showing relatively large single-crystalline 
areas separated from each other by very long individual grain boundaries. Now only 
a narrow conducting bridge had to be fabricated out of the YBCO layer in such a 
way, that the bridge was running nearly perpendicular across the grain boundary. This 
allowed electrical measurements to be performed on a single grain boundary. During 
the time when Tsuei prepared his experiments using a spontaneously generated single 
grain boundary, his IBM colleague Praveen Chaudhari proposed the idea of generat-
ing the grain boundary in a controlled way by means of a specially prepared substrate 
for depositing the layer of the cuprate superconductor. During the further develop-
ments, also the postdoc Jochen Mannhart was heavily involved. With the method 
used by Tsuei for achieving the epitaxial growth of the single-crystalline layer of the 
high-temperature superconductor, the crystallographic orientation of the single-crys-
talline substrate is reproduced exactly by the superconducting layer deposited on top. 
If for the substrate one uses an artificially prepared so-called bicrystal, in which two 
single-crystalline parts with different crystallographic orientation are separated from 
each other by an atomically sharp grain boundary, the grain boundary of the substrate 
is transferred exactly to the superconducting layer on top. This bicrystal is fabricated 
by cutting up a single-crystal into proper pieces and by fusing two pieces, with a dif-
ferent crystal orientation, together again (Fig.  9.7). The bicrystal technique turned 
out to be highly successful and subsequently permitted many experiments with well-
defined grain boundaries in superconducting thin layers. In particular, the Josephson 
effect at a single grain boundary was observed. This technique then developed into 
an important method for the preparation of Josephson junctions in thin layers of 
high-temperature superconductors. Furthermore, this approach also served extremely 
well for the fabrication of SQUIDs based on high-temperature superconductors.

The different signs of the dx2−y2—wave function appearing at different polar 
angles, respectively, can lead to important consequences, if two crystals with 
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different orientation are connected with each other by means of a well-defined 
grain boundary (bicrystal technique, Fig. 9.7). The case, at which a positive lobe 
of the wave function, at the opposite side of the junction runs into a negative lobe, 
is referred to as π-junction. A closed ring, containing such a π-junction, violates 
the uniqueness of the wave function (frustration), since, during a complete revolu-
tion, a sign change of the wave function remains. In this case, the frustration is 
removed by the spontaneous generation of a half-integer magnetic flux quantum.

Eventually, an extension of this principle was utilized by Chang Tsuei for prov-
ing experimentally the d-wave symmetry of the Cooper pair wave function in 
hole-doped high-temperature superconductors (Fig. 9.8). We discussed above that, 
for d-wave symmetry, the wave function changes its sign four times during a com-
plete rotation of the direction of the wave vector. Therefore, each time after only 
half a full rotation, the same sign of the wave function appears again. By joining 
together three angular sections like the pieces of a round cake in each of which 
the crystallographic orientation of the superconducting layer is different, it can 
be achieved that at one of the three grain boundaries a sign change of the wave 
function between the two sides takes place. If this is the case, after a complete 
rotation of the direction around the common meeting point of the three angular 
sections, the wave function no longer reproduces itself, but instead a sign change 
remains due to the generation of a π-junction. As a necessary consequence, at the 
common meeting point of the three grain boundaries, an exactly half-integer mag-
netic flux quantum is spontaneously generated. Chang C. Tsuei, and collaborators 
have succeeded in detecting this half-integer magnetic flux quantum by means of 
a SQUID-scanning microscope. The fabrication of the three angular sections of 
the superconducting layer, each with a different crystal orientation and separated 
from each other by sharp grain boundaries, could be achieved using a “tricrystal” 
as a substrate, where this tricrystal was composed of three correspondingly ori-
ented angular sections. In the case of the tricrystal, the cutting and fusing process 
for producing the bicrystals had to be extended accordingly. This tricrystal experi-
ment and the detection of the spontaneously generated half-integer magnetic flux 
quantum at the common meeting point of the three grain boundaries, represents 

grain boundary

Fig.  9.7   Bicrystal technique for the controlled preparation of a single grain boundary within 
a superconducting cuprate layer. As the substrate one uses an artificially prepared bicrystal, in 
which two differently oriented single-crystalline parts of the crystal are separated from each 
other by an atomically sharp grain boundary. The grain boundary within the substrate is then 
exactly transferred to the superconducting layer on top. On both sides of the grain boundary there 
now exist single-crystalline superconducting layers with different crystallographic orientation

9.3  Grain Boundaries
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one of the most spectacular demonstrations proving the d-wave symmetry of the 
pair wave function in hole-doped high-temperature superconductors.

9.4 � Intrinsic Josephson Junction

The crystal structure of the cuprate superconductors suggests a Josephson contact, 
in which the superconducting copper-oxide planes are separated from each other 
by intermediate layers, which are only weakly electrically conducting. In a crys-
tal of these materials there are up to many thousand Josephson junctions of this 
type stapled upon each other. In 1992, Reinhold Kleiner and Paul Müller, at the 
time working at the Walther-Meissner Institute for Low Temperature Research of 
the Bavarian Academy of Science in Garching near Munich, have succeeded in 
discovering the “intrinsic Josephson effect” in small single crystals of the cuprate 
superconductor Bi2Sr2CaCu2O8 (BSCCO).

During the initial experiments a small superconducting BSCCO-crystal was 
clamped between two contact pins such that an electric current flow perpendicular 
to the copper-oxide planes occurred. Above a critical value of the current, an elec-
tric voltage appeared along the crystal which, according to the second Josephson 
equation (8.19), was accompanied by high-frequency Josephson alternating current. 

Fig. 9.8   Tricrystal experiment of Tsuei and coworkers for proving the d-wave symmetry of the 
quantum mechanical wave function of Cooper pairs in the cuprate superconductor Y1Ba2Cu3O7. 
The substrate is an artificially prepared tricrystal, in which three differently oriented single-crys-
talline parts of the crystal are separated from each other by atomically sharp grain boundaries. 
This crystalline structure, including its grain boundaries, is exactly transferred to the supercon-
ducting layer prepared on top. The grain boundaries are marked by straight white lines. Within 
the three crystal parts, separated from each other by the grain boundaries, the differently ori-
ented d-wave symmetry pattern of the Cooper pair wave function is indicated by the diagrams 
with the four lobes. At different locations, a total of four superconducting rings are fabricated 
from the YBaCuO layer, whereas the remaining part of the layer is removed. The orientations 
of the three crystal parts are chosen such that, in the presence of d-wave symmetry of the wave 
function, within the ring around the common meeting point of the three crystal parts, an exactly 
half-integer magnetic flux quantum is spontaneously generated, whereas nothing happens at the 
three other rings. The image was obtained by means of a SQUID scanning microscope, and it 
clearly shows the half-integer magnetic flux quantum for the ring in the middle around the com-
mon meeting point of the three crystal parts. The other rings are only weakly visible (C.C. Tsuei)

http://dx.doi.org/10.1007/978-3-319-09141-9_8


143

In particular, the emitted microwaves could be detected. Since the stapled Josephson 
contacts oscillate synchronously, the emitted power of the electromagnetic radiation 
increases quadratically with the number of contacts in the staple. Presently, for the 
study and application of the intrinsic Josephson effect, small “mesas” made of BSCCO 
are prepared on a suitable substrate and are covered by metal layers for electrical con-
tacting (Fig. 9.9). Currently, these developments are highly active aiming at a radiation 
source of microwaves in the frequency range of about 0.5–2 THz (THz = 1012 s−1), 
since up to now this frequency range is hardly accessible (terahertz gap).

9.5 � More New Superconductors

The surprises caused by the discovery of new superconducting materials with rela-
tively high values of the critical temperature were not yet over with the appear-
ance of the cuprate superconductors. In March 2001 the group of Jun Akimitsu 
at the Aoyama-Gakuin University in Tokyo reported in the journal “Nature”, that 
the compound MgB2, consisting only of two elements, is superconducting with the 
critical temperature TC = 39 K. Already by January 2001 Akimitsu had announced 
his discovery at a conference in Japan, and immediately many groups started 
research activities to find out the physical properties of this new superconductor. 
Similar to the cuprates, the crystal structure of the magnesium-diboride (MgB2) 
shows a layered configuration. Planes of hexagonally arranged magnesium 
atoms and planes of boron atoms ordered in a honeycomb pattern, like graphite, 
are placed alternately on top of each other. As expected it was again found, that 
the superconductivity is based on the formation of Cooper pairs. Similar to the 

Fig. 9.9   Intrinsic Josephson contact as a source of microwaves. Left Scheme of a staple of three 
Josephson contacts of a superconducting Bi2Sr2CaCu2O8 (BSCCO) crystal. The copper-oxide 
planes (shown in dark color) run along the base of the CuO-pyramids. Right Emitted microwave 
spectrum of a BSCCO-crystal (R. Kleiner)

9.4  Intrinsic Josephson Junction
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classical superconductors, the wave function of the pairs does not show an appre-
ciable dependence on the direction, apparently displaying s-wave symmetry.

Early in 2008, the group of Hideo Hosono in Japan reported another surprise: 
In the compound LaOFeAs of lanthanum (La), oxygen (O), iron (Fe), and arsenic 
(As), they had discovered superconductivity, following its doping with fluorine (F). 
In the case of the composition LaO1−xFxFeAs at x = 0.07 the critical temperature 
TC = 26 K was found. This new class of superconductors containing iron and arse-
nic belongs to the group of the pniktides. The crystal structure consists of FeAs-
planes, separated by the LaO-planes. The doping with fluorine occurs in the latter.

In the family ReO1−xFxFeAs additional superconductors were found rather quickly, 
after lanthanum was replaced by other elements of the rare earths (RE) such as praseo-
dymium (Pr), neodymium (Nd), or samarium (Sm). In this way, values of the critical 
temperature up to the record value TC = 56 K of Sr0.5Sm0.5FeAsF could be achieved. 
In spite of their pronounced layered structure, in their electronic transport properties 
the pniktides do not show appreciable anisotropy (like the cuprates). In the case of the 
pniktides, many details still remain unclear and are intensively investigated at present.

9.6 � Technical Applications

Because of the relatively high values of their critical temperature, compared with the 
classical superconductors (with the possibility of utilizing superconductivity after 
cooling down to only 77 K with liquid nitrogen) high-temperature superconductors 
quickly became very useful for technical applications. Here the applications in the 
field of electronics and microelectronics, as well as the applications at high electric 
currents and in power electronics appear equally interesting. The following exam-
ples will serve as an illustration. Today, the principle of the bicrystal substrates for 
the fabrication of Josephson grain-boundary junctions and SQUIDs from thin lay-
ers of high-temperature superconductors has already found wide applications in elec-
tronic measuring instruments. High-frequency filters fabricated from thin layers of 
high-temperature superconductors appear very promising. Here it is in particular the 
increased sharpness of the high-frequency channels, achieved with the superconduct-
ing layers, which allows many more channels in the available frequency bands to be 
accommodated than in the past. For example, more than a few hundred base stations 
for mobile telephone communication, based on this technology, are already operat-
ing in the USA. Regarding the applications at high electric currents, the development 
of magnetic coils fabricated from high-temperature superconductors is being inten-
sively investigated. Last but not least, superconducting systems for the limitation of 
electric fault currents in energy technology are in a promising stage of development. 
Such systems are meant to quickly interrupt the electric current under overload con-
ditions, if damages to the electric power lines are expected due to overload.

Presently (2013) an interesting new development based on wind energy 
emerges in the case of generators made of high-temperature superconductors for 
electric currents. Their intended operation would reduce the weight of the genera-
tors located at the upper end of the mast to about half the value of the current tech-
nology, or at the same weight it would double the power.
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Abstract  Electrons represent elementary magnets because of their spin magnetic 
moment, leading to paramagnetism, and their orbital magnetic moment, causing 
diamagnetism. In an external magnetic field the magnetization of a paramagnet 
is described classically by the Langevin function, to be replaced by the Brillouin 
function in the case of quantization effects. In a ferromagnet the elementary 
magnets are spontaneously oriented along a distinct direction. The first quantum 
mechanical explanation was proposed by Heisenberg, based on the exchange inter-
action between the electrons of two atoms. The perfect order of the elementary 
magnets can be perturbed due to the thermal excitation of spin waves, which also 
contribute to the specific heat and affect the electronic transport properties. In 
addition to ferromagnetic order, other forms of the spin magnetic order are pos-
sible, such as antiferromagnetism. The recent advances in the fabrication of well-
controlled multilayer structures lead to important technical applications of giant 
magneto-resistance and to the birth of the new field of spintronics.

In crystals, the role of the electrons as elementary magnets leads to important con-
sequences, which we will discuss in this chapter. This quality of the electrons to 
act as elementary magnets, originates for two reasons: the angular momentum 
or spin possessed by each electron, and the orbital momentum resulting from 
the orbital motion of each electron. The first cause leads to the spin magnetic 
moment, and the second cause to the orbital magnetic moment. The half-integer 
spin and the associated magnetic moment as fundamental properties of the elec-
trons were found theoretically by the Englishman Paul Adrien Maurice Dirac in 
the year 1928, when he applied the physics of the Special Theory of Relativity 
to the quantum mechanical wave equation of the electron. Because of the quan-
tization of the direction of the angular momentum, in a given direction only the 
parallel or the antiparallel orientation of the spins are allowed. With his concept of 
spin, Dirac had found the explanation for many experimental observations, which 
had remained unexplained till then, and which in the words of Wolfgang Pauli 
at that time had indicated in the energy spectra (here in the English translation)  
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“a peculiar ambiguity of the quantum theoretical qualities of the light-emitting 
electron, which cannot be understood classically.”

10.1 � Diamagnetism

The diamagnetism is due to the orbital magnetic moment, and is a magnetic prop-
erty of all substances. However, it can be overlaid by other magnetic phenom-
ena. Diamagnetism appears in its pure form, if the spin magnetic moments of all 
atomic electrons exactly compensate each other, such that only the orbital mag-
netic moments remain. This complete compensation arises in the case of atoms 
with closed inner electronic shells and of atoms with an even number of electrons. 
In an external magnetic field, in diamagnetic materials, circulating currents are 
induced within the atoms, which generate a magnetic field oriented oppositely to 
the external magnetic field. Here the “Lenz rule” is obeyed. This rule requires, that 
the induced electric currents always weaken the magnetic field which is acting as 
their external cause. Therefore, diamagnetic susceptibility is negative. The orbital 
part of the magnetism of the electrons in the conduction band of a metal yields 
a diamagnetic contribution, which Lew Dawidowitsch Landau calculated for the 
first time in the year 1930, using exact quantum mechanical theory. We have dis-
cussed this theory of Landau in Chap. 7. We have already seen an example of per-
fect diamagnetism in the context of the Meissner effect of superconductivity.

The diamagnetism is a result of the change of the orbital motion of the elec-
trons due to an external magnetic field and concerns only the magnetic moments 
caused by the magnetic flux density B.

The magnetic properties of a material are quantified in terms of its magnetiza-
tion M, which is defined as the magnetic moment per volume. In the case of M we 
have the relation

where χ denotes the magnetic susceptibility. In the case of diamagnetism we have 
χ < 0. In a magnetic field, the electron orbits experience a precession motion with 
the Larmor frequency

Here m is the electron mass. The Larmor precession corresponds to a circular cur-
rent proportional to (−e) ωL. This leads to the magnetic moment μ in form of the 
product μ = (circular current × ring area). As shown by Paul Langevin, one finds 
for the (negative) susceptibility

where 
〈
r2
〉
 denotes the average quadratic radial extension of the electron orbit 

within the atom. The diamagnetic contribution of the ions to the susceptibility in 
dielectric solids agrees well with the result (10.3).

(10.1)M = χB

(10.2)ωL = e B/2m.

(10.3)−χ ∼

〈
r2
〉
,

http://dx.doi.org/10.1007/978-3-319-09141-9_7
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10.2 � Paramagnetism

If the electron shells are not closed, or for an odd number of electrons per atom, 
there remain in the crystal spin magnetic moments, which are not completely com-
pensated. In this case we are dealing with paramagnetism. Initially, in paramag-
netic materials, the spin magnetic moments are completely disordered. However, 
as soon as an external magnetic field exists, the spin moments turn into the direc-
tion of this magnetic field. Here the electrons behave similarly to a compass nee-
dle, which turns into the direction of the earth’s magnetic field. However, the 
complete redirection of the spin magnetic moments is prevented because of the 
thermal motion of the elementary magnets. This thermal motion of the elemen-
tary magnets increases with increasing temperature. Hence, the degree of redirec-
tion of the spin magnetic moments decreases correspondingly. This results in the 
famous Curie law, indicating that the magnetic susceptibility, which is positive 
in this case, is inversely proportional to the temperature. The Frenchman Pierre 
Curie was married to Marie Curie, who had discovered the element radium. He 
published his law in the year 1895. This was the first time that a law in the field of 
the magnetism of materials had been formulated. Curie’s publication with more 
than one hundred pages summarized the results of an extensive research program, 
in which many substances had been investigated over a large range of magnetic 
field and temperature. Curie’s name stands at the beginning of a series of French 
scientists, who had made France, at an early stage, an important center of research 
in the field of magnetism. Among others, this series of French scientists prominent 
in the field of magnetism includes Paul Langevin, Pierre Weiss, Léon Brillouin, 
and Louis Eugene Felix Néel.

Paul Langevin, a young co-worker of Pierre Curie, analyzed theoretically para-
magnetic behavior. We will briefly sketch his ideas. Starting from the potential energy

of a magnetic moment μ in the magnetic field B, Langevin calculated the aver-
age value 〈cos θ〉 from the classical Boltzmann distribution in the following way 
(θ is the angle between the vectors μ and B). According to Boltzmann, the prob-
ability of the direction of the magnetic moment μ with the corresponding energy 
U is proportional to exp(−U/kBT). Therefore, (with the solid angle dΩ) we have

(10.4)U = −µ · B = −µB cos θ

(10.5)�cos� =
∫ exp

(
−

U
kBT

)
cos θ d�

∫ exp(− U
kBT

)d�

(10.6)=

∫ π

0 exp(µB cos θ/kBT)2π sin θ cos θ dθ∫ π

0 exp(µBcos θ/kBT)2π sin θ dθ

10.2  Paramagnetism



148 10  Magnetism: Order Among the Elementary Magnets

and after a few steps

L(x) is referred to as Langevin function. For the average magnetization 〈M〉 one 
finds

where N denotes the number of the magnetic moments µ per volume. The function 
L(x) is shown in Fig. 10.1.

In the case x ≪ 1 (high temperatures) we have L(x) ≈ x/3, and we obtain

This is Curie’s law. C = N μ2/3 kB is the Curie-constant. On the other hand, in the 
case x ≫ 1 (low temperatures) we obtain saturation of the magnetization.

From (10.7)–(10.9) we see, that the dependence of the magnetization on 
the temperature and on the magnetic field is determined only by the ratio of 
the magnetic field and the temperature. In the limit of small magnetic fields 
and high temperatures, Langevin obtained again the Curie law, whereas in the 
opposite limit he found that the magnetization approaches a constant value.

Langevin had obtained his result (10.8) still within the context of classical 
physics. If the quantization of the spin direction, required by quantum mechanics, 
is taken into account, the results are qualitatively similar to the classical case. We 
will briefly indicate this. As shown by quantum theory, the magnetic moment of an 
isolated atom is

Here

is Bohr’s magneton. J is the total angular momentum, the sum of the vectors of the 
angular momentum of the electron orbits (L) and of the spins (S):

In (10.10) g denotes the “Landé-g-factor”:

(10.7)�cos θ� = coth x−
1

x
≡ L(x); x = µB/kBT.

(10.8)�M� = Nµ�cos θ� = NµL(x),

(10.9)�M� = Nµ2B/3kBT =
C

T
B.

(10.10)µ = −gµBJ/�

(10.11)µB = e �/2m

(10.12)J = L+ S.

Fig. 10.1   Langevin function 
L(x) according to the 
definition in (10.7)



149

In a magnetic field, the quantized energy levels of an elementary magnetic moment are

In the case of a single spin and L = 0 we obtain mJ = ±½ and g = 2:

In thermal equilibrium, the magnetization of this two-level-system is

In the limit x ≪ 1 (high temperatures) we find

similar to Curie’s law.
In the general case with 2J + 1 energy levels according to (10.14), in thermal 

equilibrium the magnetization is

The function BJ(x) is the Brillouin function (which here we will not discuss 
any further). In the limit x ≪ 1 (high temperatures) we obtain again the form of 
Curie’s law �M� ∼ B/T.

In the year 1905, Langevin had already predicted the magneto-caloric effect 
in paramagnetic substances. This effect is fundamental to the method of adiabatic 
demagnetization we discussed in Chap. 1 as a technique for cooling to low tem-
peratures. Here the heat energy exchanged during the redirection of the magnetic 
moments of the electrons parallel to the external magnetic field, plays a central role.

In the conduction band of a metal, the spin magnetic moment of the electrons 
also generates a contribution to the paramagnetism. Classically, we would again 
expect a behavior according to the Curie law, with the result that the paramagnetic 
susceptibility is inversely proportional to the temperature. However, because of the 
Pauli exclusion principle, the electrons in the conduction band must obey the rules 
of quantum statistics. As we have discussed before in Chap. 5, therefore, only the 
fraction of electrons in the conduction band, given by the reduction factor kBT/εF, 
can contribute to the paramagnetism. By multiplying the Curie law with the factor 
kBT/εF, we obtain

We see that the temperature in the expression of the paramagnetic susceptibility 
is cancelled, and that the latter quantity is independent of the temperature, in good 
agreement with experimental observations. This result is similar to the case of the spe-
cific heat of the conduction electrons, which we discussed in Chap. 5. Wolfgang Pauli 
was the first to propose this theory of the spin paramagnetism of electrons in metals.

(10.13)g = 1+
J(J+ 1)+ S(S+ 1)− L(L+ 1)

2J (J+ 1)
.

(10.14)U = mJgµBB; mJ = J, J− 1, J− 2, . . . ,−J.

(10.15)U = ± µBB.

(10.16)�M� = NµB tanh x; x = µB B/kBT.

(10.17)�M� = Nµ2

B
B/kBT,

(10.18)�M� = NµB BJ(x); x = µBB/kBT.

(10.19)�M� = Nµ2

B
B/εF.
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In a detailed analysis, one finds for the electrons in the conduction band of a 
metal, that the negative contribution to the magnetic susceptibility which is due to 
diamagnetism according to Landau, is three times smaller than the positive con-
tribution which is due to paramagnetism according to Pauli. Hence, in the final 
result, paramagnetism prevails for the electrons of the conduction band in metals.

10.3 � Ferromagnetism

In addition to the phenomena of diamagnetism and paramagnetism, both of which 
are induced by an external magnetic field, there exists still another form of magnet-
ism, in which the elementary magnets in the crystal orient themselves spontaneously 
along a distinct direction. In this case, the command by an external magnetic field to 
order is no longer needed. Now we are dealing with ferromagnetism and its various 
modifications. For example, one of these modifications is antiferromagnetism. The 
ferromagnetism confronts us with the following central question: Why is it that the 
magnetic moments of the electrons of neighboring atoms within the crystal orient 
themselves spontaneously, i.e., without an external magnetic field, exactly along the 
same direction and assume a perfectly ordered state just on their own?

The complete theory of ferromagnetism had to wait for the development of quan-
tum mechanics. The crucial answer, which subsequently also became the guiding prin-
ciple for all further developments, was given by Werner Heisenberg in the year 1928. 
Heisenberg’s answer was preceded by an intensive correspondence with Wolfgang 
Pauli for almost 2  years. The basic idea of Heisenberg again originated from the 
exact identity of the electrons as elementary particles and that the resulting symmetry 
requirement should be satisfied by the quantum mechanical wave function during the 
exchange of two electrons. Taking the crystal as an extended molecule, at the time 
Heisenberg could utilize the concept of the exchange energy, which had just been 
developed, for, say the two electrons of the helium atom or of the hydrogen molecule 
(H2). He introduced the concept of the exchange interaction between two atoms 1 and 
2 with the spins S1 and S2 and obtained the exchange energy (Heisenberg model)

with the exchange integral

In the case of ferromagnetism, we have J  >  0, and the parallel spin orientation 
is energetically favored. The exact theoretical calculation of the exchange integral 
(10.21) requires a detailed discussion (which we do not undertake).

For the first time, in this context, Heisenberg treated the interaction between the 
electrons in a crystal using quantum mechanics. It became clear that the parallel 
orientation of the spin magnetic moments of the electrons from neighboring atoms 
in the crystal, leading to the ferromagnetism, depends on the form of the electron 

(10.20)U = −2JS1 · S2

(10.21)J =

∫∫
dr1dr2ψ

∗

a(r1)ψ
∗

b(r2)V(r1 − r2)ψa(r2)ψb(r1).
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wave function and on the number of nearest neighbors in the crystal lattice. At 
that time the mathematical formalism needed for answering many of the questions, 
was still only in its first stage and had to be developed along with the quantum 
theory of ferromagnetism. For this, Heisenberg had given the initial momentum.

A phenomenological understanding of ferromagnetism had already been reached 
earlier. In the year 1907 the Frenchman Pierre Weiss had proposed the hypothe-
sis of the molecular field or the exchange field, which quickly became highly suc-
cessful. Without explaining its microscopic origin, he had postulated an average 
effective magnetic field within the crystal, producing the exact order among the 
elementary magnets. In this way, the idea of the quantum mechanical exchange 
energy, appearing only about 20 years later, was substituted by the concept of the 
effective “Weiss field”. It is exactly this effective magnetic field, which causes 
the spatial order of the magnetic moments of the individual atoms or molecules. 
Based on the material data, for some substances one can derive values of the Weiss 
field which are distinctly higher than 103 T (about ten  million times higher than 
the earth’s magnetic field). Also in this way the large magnitude of the quantum 
mechanical exchange energy of the magnetism, conceived later, can be illustrated.

During his Ph.D. thesis Weiss concentrated on magnetism, and later always remained close to 
this subject. As a child, together with his family, he had to leave his home land of Alsace, after 
the province had been occupied by Prussia in 1870. In the year 1902 he had accepted an offer 
from the ETH in Zurich. Only in 1919 after the First World War could he return to Strassburg 
in his home country, when he became the director of the Physics Institute of the University.

In the case of the Weiss field BW we assume BW = λM, where λ is a constant, 
which depends on temperature. In a cooperative way, each individual magnetic 
moment feels the average magnetization of all the others (molecular-field approxi-
mation). However, the spontaneous alignment of the elementary magnets along the 
same direction in a ferromagnet cannot be maintained up to arbitrarily high tem-
peratures. Instead, it vanishes abruptly at the “Curie temperature” TCU. Above the 
temperature TCU we only have paramagnetism.

In the paramagnetic state (above TCU), in the presence of an external magnetic 
field Ba, we have

with the paramagnetic susceptibility χp = C/T from (10.9). From (10.22) we obtain

and

A more accurate treatment yields

with the “critical exponent” 1.33, in agreement with experiment. For the tem-
perature dependence of the magnetic susceptibility, instead of the Curie law, the 

(10.22)M = χp(Ba + BW) = χp(Ba + �M)

(10.23)M(1−
C

T
�)=

C

T
Ba

(10.24)χ = M/Ba = C/(T− TCU); TCU ≡ C�; (T → TCU from above)

(10.25)χ = C/(T− TCU)
1.33

; (T → TCU from above)

10.3  Ferromagnetism
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Curie-Weiss law is valid: the magnetic susceptibility is inversely proportional to 
the temperature distance T − TCU from the Curie temperature.

Below the Curie temperature, the spontaneous magnetization is found again 
using the molecular-field approximation BW = λ M. In the case of a two-level sys-
tem (S = ½), by insertion into (10.16), one obtains

After introducing the quantities m ≡ M/(N μB) and t ≡ T/TCU = kBT/(N μB
2 λ) we 

obtain

[Here we have used the notation TCU = C λ, with C = N μB
2 /kB from (10.17)]. 

The transcendental (10.27) can be solved graphically, as it is indicated schemati-
cally in Fig. 10.2.

The graphical solution yields the temperature dependence of the magnetization 
shown in Fig. 10.3. This is the behavior in the case of a phase transition of second 
order, where the magnetization represents the order parameter. From Fig. 10.3 we see, 
that below TCU the spontaneous magnetization steeply increases with decreasing tem-
perature, and at low temperatures it approaches a constant saturation value. Iron (Fe), 
cobalt (Co), and nickel (Ni) are well known ferromagnetic elements. The values of the 
Curie temperature are for iron, 1,043 K; for cobalt, 1,390 K; and for nickel, 630 K.

Eventually, a difficulty in the understanding of the ferromagnetic order of ele-
mentary magnets became more and more apparent: at low temperatures the mag-
netization turned out to be much smaller than expected if all elementary magnets in 
the whole crystal were oriented exactly along the same direction. Again, the solu-
tion of this problem was provided mostly by Pierre Weiss. Due to energetic reasons 

(10.26)M = NµB tanh(µB�M/kBT).

(10.27)m = tanh(m/t).

Fig. 10.2   Schematical 
presentation of the graphical 
solution of the transcendental 
(10.27). At the critical point 
t = 1, the intersection point is 
located at m = 0. In the case 
t → 0, the intersection point 
approaches m = 1

Fig. 10.3   Magnetization of 
a ferromagnet, normalized 
by its saturation value, 
plotted versus the reduced 
temperature T/TCU. The 
magnetization vanishes 
abruptly at the Curie 
temperature TCU
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the crystal is divided into many individual regions, in each of which all elementary 
magnets are still well ordered and point exactly in the same direction. However, 
between the different regions, the magnetization of each shows a different orienta-
tion, such that in their total sum they largely cancel each other. For the individual 
regions Weiss introduced the notation “magnetic domains” (Fig. 10.4). In beautiful 
experiments during the year 1931 the American Francis Bitter observed the bound-
ary regions between the domains by sprinkling a fine magnetic powder onto the 
surface of a magnetized sample. Since the magnetic powder is attracted to these 
boundary regions, the domain structure is marked in this way. Today this method 
is referred to as the Bitter decoration technique. In a different way, about 10 years 
earlier, Heinrich Barkhausen had obtained impressive indications of the existence 
of the magnetic domains in ferromagnetic substances. While increasing the mag-
netic field he observed that the magnetization increased discontinuously, showing 
distinct small jumps when one domain after another reorients its magnetization in 
the external magnetic field. He could detect these “Barkhausen jumps” by means of 
the induced and amplified electric currents in a coil wound around the sample.

Immediately after completion of his Ph.D. thesis, Felix Bloch theoretically ana-
lyzed the physical property of the boundary wall separating two magnetic domains 
with different directions of their magnetization. In this context he had to develop a 
model describing the rotation of the direction of magnetization within the domain wall 
from the direction in one domain to the direction in the other. Based on Heisenberg’s 
concept of the exchange energy of two neighboring spin magnetic moments, Bloch 
calculated the energy needed for rotating the two spin magnetic moments slightly 
away from their exactly parallel orientation. This rotation is then repeated stepwise 
from one magnetic spin pair to the next, such that, after a distinct number of steps, a 
complete rotation of the magnetization from the original direction to the direction in 
the neighboring domain is accomplished. The region within the crystal, in which this 
complete rotation takes place, is referred to as the Bloch wall. The Bloch wall is asso-
ciated with a distinct wall energy. For example, in iron, the thickness of the Bloch wall 
amounts to about 300 atomic distances in the crystal lattice.

Fig. 10.4   Magnetic 
domains according to Weiss 
in non-magnetized iron, 
schematically

10.3  Ferromagnetism
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10.4 � Spin Waves

In the state with the lowest energy, the “ground state”, of a ferromagnet, all spins 
are oriented exactly parallel to each other. However, the ground state is adopted 
only in the limit of vanishing temperature. At finite temperatures, deviations from 
the exactly parallel spin orientation appear in the form of thermally excited “spin 
waves” (Fig. 10.5). Spin waves are oscillations of the spin orientation, which pos-
sess a quantized excitation energy ħ ω. The role of the spin waves is similar to that 
of the phonons, which are the quantized lattice vibrations and cause the deviations 
from the perfectly periodical spatial arrangement of the atomic or molecular build-
ing blocks of the crystal. We have covered phonons in Chap. 3. Spin waves are 
quantized energetic excitations in a magnetic single crystal. The energy quanta of 
the spin waves are called magnons. In their form of energetic excitations, magnons 
are indistinguishable elementary particles, which, similar to the phonons, are ruled 
by Bose-Einstein statistics. Intuitively, magnons represent more or less pronounced 
deviations of the spin magnetic moments from a fixed single preferential direction. 
These deviations propagate like a wave through the crystal. This concept of the spin 
waves in the theory of ferromagnetism also originated from Felix Bloch and can be 
found in his Habilitation Thesis which he published in 1932. Following his disser-
tation dealing with the quantum mechanics of mobile electrons in the crystal lattice, 
Bloch had turned to the theory of ferromagnetism, after Werner Heisenberg, his 
professor, had formulated the fundamental principles of this theory. We will briefly 
discuss the thermal excitation of spin waves or magnons.

We consider a linear chain of N spins, all of which are oriented parallel to each 
other. According to (10.20) the total energy is

From this we obtain the energy of the ground state

(10.28)U = −2J

N∑

p=1

Sp Sp+1.

Fig.  10.5   Elementary magnets in a simple ferromagnet. a In the ground state all elementary 
magnets are oriented in the same direction. b A possible excitation from the ground state: one 
spin is flipped over. c Spin wave in a chain of spins in a perspective presentation

http://dx.doi.org/10.1007/978-3-319-09141-9_3
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As a possible excitation, we look at the case, where a single spin is oriented 
antiparallel to its neighbors (Fig. 10.5b). The energy increase ΔU amounts to

where in the bracket we have separately listed the interaction with the left and the 
right neighbor. However, a much smaller excitation energy is needed, if the change 
in the spin orientation occurs only gradually. Exactly this is accomplished by the 
excitation of spin waves (Fig.  10.5c). In the case of the ferromagnetic magnons 
one obtains the dispersion relation from the equation for the temporal change of 
the angular momenta of the spins. In the limit of small excitation amplitudes, one 
finds the dispersion relation

where a denotes the lattice constant of the chain and k the wave number. In the 
limit of large wave lengths (ka ≪ 1), from (10.31) one obtains

We note, that the dependence ω ~ k2 is different than in the case of phonons with 
ω  ~  K [see (3.5) and (3.6)]. These results can be easily extended to the three-
dimensional crystal lattice.

In the case of the thermally excited magnons the Bose-Einstein distribution 
(3.2) is valid. The energy of the magnons is

analogous to (3.3), where the integral is taken over the first Brillouin zone. In the 
limit of low temperatures (ka ≪ 1), for the density of states one finds D(ω) ~ ω1/2, 
yielding U ~ T5/2. The resulting specific heat of the magnons is

Because of the thermal excitation of magnons, the magnetization is reduced by the 
amount ΔM = M(0) − M(T). The final result is

We see that the thermal excitation of spin waves or magnons affects the specific 
heat and the saturation magnetization of a ferromagnet. In both cases the contribu-
tion of the magnons leads to the famous T3/2 law derived by Felix Bloch for the 
temperature dependence of the quantities.

Magnons contribute also to the heat conductivity in crystals, and they influ-
ence the electrical transport properties such as the electrical conductivity and the 
thermoelectric phenomena. Similar to the case for phonons, the energy spectra of 
the magnons can also be determined experimentally by means of inelastic neutron 
scattering.

(10.29)UO = −2N J S2.

(10.30)�U = 2J(2S2 + 2S2)= 8 J S2,

(10.31)�ω = 4J S(1− cos ka),

(10.32)�ω = 2J Sa2k2.

(10.33)U = ∫ dωD(ω)�nω��ω

(10.34)CV =

(
∂U

∂T

)

v

∼ T
3/2

.

(10.35)�M/M(0) ∼ T3/ 2.
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10.5 � Antiferromagnetism

In addition to the parallel orientation of the spin magnetic moments of ferromag-
netism, there also exists the case where the spins of the neighboring atoms in the 
crystal are oriented exactly antiparallel to each other. This case is referred to as anti-
ferromagnetism. For antiferromagnetism the “quantum mechanical exchange inte-
gral” (10.21) is negative, whereas for ferromagnetism it is positive. Already in the late 
1920s, the Frenchman Louis Eugene Felix Néel had the idea that there must also exist 
another kind of magnetic order in crystals, in which the spin magnetic moments of 
neighboring atoms are oriented exactly antiparallel to each other. After completing his 
studies in Paris, in the year 1928, Néel took the position of assistant of Pierre Weiss 
in Strassburg. Néel devoted his whole career to magnetism, up to 1940 in Strassburg 
and subsequently in Grenoble. Later on, largely due to Néel, has Grenoble developed 
into the important center of Materials Science and Solid State Physics in France, for 
which it is today well known everywhere. In his early idea of antiparallel spin orien-
tation of neighboring atoms in the crystal, Néel had assumed that two lattices were 
penetrating each other, each of these “sublattices” by itself showing ferromagnetic 
order, but both being magnetized exactly in opposite direction to each other. Hence, 
overall the crystal remains magnetically neutral. Therefore, the experimental evidence 
for such a novel possibility of magnetic order contemplated by Néel was difficult to 
obtain. In 1938 measurements with manganese-oxide (MnO) yielded the first posi-
tive results. The final confirmation of the hypothesis of the two sublattices penetrating 
each other, which are magnetized in opposite directions to each other, was achieved 
in the year 1949 by means of elastic neutron diffraction experiments. The antiferro-
magnetic order vanishes above the “Néel temperature”. The notation antiferromag-
netism was proposed in 1938 by the American Francis Bitter in a theoretical paper. A 
famous example, much discussed in recent years, is the antiferromagnetic order of the 
spin magnetic moments of copper atoms in the copper-oxide planes in the undoped 
state of materials showing high-temperature superconductivity after doping.

In an antiferromagnetic material, at finite temperatures, antiferromagnetic spin  
waves are thermally excited. One refers to antiferromagnetic magnons. Antiferro-
magnetic spin waves show the dispersion relation

similar to the case of phonons [see (3.5)]. In the limit ka ≪ 1 we have

Antiferromagnetic spin waves contribute to the specific heat and to the heat con-
ductivity of the crystals, with a temperature dependence proportional to T3 at low 
temperatures, similar to phonons. Again, their energy spectrum can be determined 
experimentally by means of inelastic neutron scattering.

In addition to the two discussed magnetic ordering phenomena of ferromag-
netism and antiferromagnetism, there also exist other forms of ordered magnetic 
structures. However, we will not discuss these in further detail.

(10.36)�ω = 4|J|S|sin ka|

(10.37)�ω = 4|J|S|ka|.

http://dx.doi.org/10.1007/978-3-319-09141-9_3
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In this chapter our whole discussion of magnetism has been limited to the elec-
trons acting as elementary magnets. However, there also exists nuclear magnetism 
associated with the atomic nuclei and their quality as elementary magnets. Since 
the elementary magnets of atomic nuclei are about two thousand times weaker 
than those of electrons, the effects of nuclear magnetism are restricted only to 
very low temperatures. For example, in the paramagnetism of atomic nuclei, the 
ratio between the magnetic field and the temperature must be two thousand times 
larger compared with the paramagnetism of electrons, in order to achieve the same 
degree of alignment of the nuclear spins. Therefore, we will refrain from any fur-
ther discussion of nuclear magnetism.

10.6 � Technical Applications, Giant Magneto-Resistance, 
Spintronics

For a long time ferromagnetic materials have been interesting for their technical 
applications. In many offices and homes we find small sticking magnets. There 
are of course more ambitious applications of permanent magnets in electric and in 
transportation technology.

Often magnetic couplings provide distinct advantages. The magnetic “hard-
ness” of a material for a permanent magnet plays an important role in their appli-
cations. One distinguishes between magnetic soft and magnetic hard materials. 
The magnetic hardness is quantified in terms of the “coercive field” HC. The latter 
indicates the value HC of the magnetic field, at which the unmagnetized state of 
the material is again reestablished, if this magnetic field is applied a second time 
in a direction opposite to that of the original magnetization of the material. This is 
shown schematically in Fig. 10.6, where the magnetic flux density B is plotted ver-
sus the applied magnetic field H in the case of a magnetic soft and of a magnetic 
hard material. A soft material shows a small value of HC and little hysteresis, in 
contrast to a magnetic hard material with a large value of HC and large hysteresis.

Fig. 10.6   Magnetic flux 
density B plotted versus the 
applied magnetic field H in 
the case of a magnetic soft 
(left) and a magnetic hard 
(right) material

soft hard
magnetic

HC = coercive field

Br = remanence

10.5  Antiferromagnetism
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In this context we remember that, in all individual magnetic domains we have 
discussed above, at first the magnetization must be rotated into the same direction 
by means of a suitably applied magnetic field, in order to obtain a strong perma-
nent magnet. Alloys consisting of aluminum, nickel, and cobalt (AlNiCo) belong to 
the oldest and mostly tried materials for permanent magnets. Record values of the 
coercive field are achieved in alloys of samarium and cobalt (SmCo5). Sinter mate-
rials such as, for example, barium- or strontium-ferrite, fabricated from a magnetic 
powder of small single-domain particles, are economically highly attractive. For the 
large-scale technical project of the magnetic suspension train “Transrapid” the lat-
ter sinter materials are particularly suitable as levitation magnets.

In recent years magnetism has increasingly entered the field of microelectronics, 
where it has triggered very interesting developments. In this case, in addition to the 
electric charge, the spin and the associated magnetic moment of the electron play 
a significant role in magneto-electronic devices. The large advances in technology 
for the preparation of thin layers and multi-layer packages have been an important 
prerequisite for this development. Here nearly atomic accuracy in the fabrication of 
the layers has been achieved. Today this field is referred to as magneto-electronics, 
spin-electronics, or spintronics. While usually in electronic circuits the spins of the 
electrons are arbitrarily oriented and do not influence the electric current flow, in 
spintronics “spin-polarized” electric currents are used, where the spin of the mobile 
electrons is oriented in a specific direction. In this case the spin serves to control the 
electric current flow. Important fields for the application of magneto-electronics exist 
in magnetic technology for data handling in computers, for example, in the reading 
heads for hard disks and in the magnetic elements for data storage. In addition, we 
mention the magneto-sensorics in automotive technology, mechanical engineering, 
and in medicine. At present a highly promising goal for the not too distant future is a 
close combination of magneto-electronics with semiconductor technology.

In the previous generation of magnetic sensors, for example, in the reading heads 
for extracting data stored in hard disks, the electrical resistance change of a ferromag-
netic layer due to an external magnetic field, is utilized. The magnetic data storage 
is based on small magnetic domains, which represent the “0” or “1” of the digital 
information by means of their different magnetization. In the reading head the elec-
trical resistance change serves to detect the local magnetic field at the surface of the 
hard disk and thus the digital information. In the year 1988, this technology experi-
enced an important advance, when Peter Grünberg at the German Research Center in 
Jülich and, nearly simultaneously, Albert Fert at the Université Paris Sud discovered 
the “giant magneto-resistance”. Two years prior to this discovery, Peter Grünberg had 
observed an unusual magnetic behavior in a multi-layer package consisting of iron 
and chromium. Apparently, there is a coupling between two ferromagnetic layers of 
iron, which are separated from each other by a thin, nonmagnetic and metallic layer 
of chromium, such that the magnetization of neighboring iron layers is oriented either 
parallel or antiparallel. Which of these two kinds of couplings occurs, depends on the 
thickness of the nonmagnetic layer in-between, and varies between antiparallel and 
parallel with increasing thickness of the layer. Now, during electric current flow along 
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the package of the layers, the electrical resistance depends sensitively on whether two 
neighboring iron layers are magnetized in the same or the opposite direction.

For our further discussion we assume a multi-layer package, consisting of 
several ferromagnetic iron layers, where two neighboring iron layers are sepa-
rated from each other by a thin nonmagnetic chromium layer, respectively. In the 
absence of a magnetic field, two neighboring iron layers are assumed to be mag-
netized in opposite direction with respect to each other. In this case of “antiferro-
magnetic coupling” between the layers the electric current flow along the package 
is hindered because of a relatively large resistance. If an external magnetic field 
is applied parallel to the multi-layer package, in all iron layers the magnetization 
orients itself along the direction of the magnetic field, and the electrical resistance 
shows a strong decrease with increasing magnetic field. This is the basic princi-
ple of giant magneto-resistance (Fig.  10.7). Such a multi-layer arrangement can 
still be generalized by dropping the requirement of the antiferromagnetic coupling 
between the layers. For example, one can imagine magnetic multi-layer systems, in 
which the magnetization in one ferromagnetic layer is fixed, whereas in the other 

Fig. 10.7   Giant magneto-resistance: Electrical resistance (in units of the resistance at zero mag-
netic field) plotted as a function of the external magnetic field B for different iron-chromium 
multi-layers at the temperature of 4.2 K. HS denotes the magnetic field, at which the magnetiza-
tions of the iron layers become oriented in parallel. Identification of the multi-layer structures: 
for example, (Fe 3.0 nm/Cr 1.2 nm)35 denotes a multi-layer package consisting of 35 double lay-
ers of one 3.0 nm layer of iron and one 1.2 nm layer of chromium (M.N. Baibich)

10.6  Technical Applications, Giant Magneto-Resistance, Spintronics
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layer the magnetization can be rotated back and forth. This can be accomplished 
by means of a large difference in the coercive field of the two ferromagnetic layers. 
In this case a relatively thick nonmagnetic layer in between is also possible. Such 
multi-layer systems showing giant magneto-resistance even without antiferromag-
netic coupling between the layers are referred to as spin valves.

The giant magneto-resistance of the spin valves has technically been applied 
for some time in the reading heads for extracting the data stored in computer hard 
drives. Within 10 years of the discovery, this technical application has developed into 
a billion-dollar business. Whereas in one of the two ferromagnetic layers the direc-
tion of the magnetization is fixed, in the other layer the direction is freely adjust-
able. As the reading head glides along the surface of the hard disk, because of the 
small magnetic fields representing the stored digital information in the form of “0” 
or “1”, the magnetization in this other ferromagnetic layer is rotated back and forth. 
Simultaneously, the electric current flow changes correspondingly, in this way yield-
ing the output signal. Since still weaker magnetic fields can be detected by these 
reading heads, compared with their predecessors, the density of the data stored in the 
hard disk can be increased by about a factor of three.

The magnetic tunnel junction, consisting of three layers, represents another mag-
neto-electronic device. In this case, two ferromagnetic metal layers are separated from 
each other by an electrically insulating metal-oxide layer with a thickness of only 
1 nm. Electric current flow across the junction is only possible because of the quantum 
mechanical tunneling process. Similar to the spin valve discussed above, the electric 
tunneling current can flow without additional resistance only if both ferromagnetic lay-
ers are magnetized in the same direction. In the opposite case, the tunneling current 
experiences a high resistance. Again, the direction of the magnetization in one of the 
two ferromagnetic layers is fixed, whereas in the other layer it can be pointed in the 
parallel (“0”) or in the antiparallel (“1”) direction, and in this way it can be used for 
the storage of a unit of digital information. A program for the mass production of these 
magnetic random-access memories (“MRAMs”) for data storage, based on magnetic 
tunnel junctions, has been started jointly by the Companies IBM and Infineon. The 
industrial fabrication of 256-kb MRAM chips has been reported recently.

As the last example of magneto-electronic devices we discuss an interesting 
proposal of a field-effect transistor operating with spin-polarized electric currents 
(Fig. 10.8). In this case the electric current is carried by a two-dimensional elec-
tron gas at the interface of a semiconductor heterostructure of indium-galliumarse-
nide (InGaAs) and indium-aluminumarsenide (InAlAs). The two-dimensional 
electron gas at a semiconductor interface had already appeared in Chap. 7 in our 
discussion of the integral and the fractional quantum Hall effect. In the present 
case, the two-dimensional electron gas represents a current channel with a very 
high mobility of the electrons. Furthermore, the channel is assumed to be free of 
collision processes, which can flip the spin of the moving electrons. At both ends 
of the channel, ferromagnetic metal contacts inject spin-polarized electrons into 
the channel or extract them again. At the top surface of the semiconductor hetero-
structure a metal electrode is attached, with which an electric gate voltage can be 
applied perpendicular to the current channel. The current flow into the magnetized 

http://dx.doi.org/10.1007/978-3-319-09141-9_7


161

metal contact acting as the collector depends sensitively upon the direction of the 
spin polarization of the incoming electrons. The electric current can flow almost 
without any hindrance only if the spins of the electrons are pointing in the same 
direction as the magnetization in the collector. Otherwise, the current experiences 
a relatively high resistance. However, in the electric field generated perpendicular 
to the current channel by means of the gate voltage, the spins of the rapidly tra-
versing electrons are rotated. Hence, the electrical resistance of the transistor can 
be controlled and modulated by means of the gate voltage. Here the rotation of 
the spin orientation in the electric field directed perpendicular to the current chan-
nel, is caused by an effect which is explained only by the theory of relativity and 
which we do not pursue any further here.

The examples discussed clearly demonstrate the high potential of magneto-
electronics for technical development, which is by no means yet exhausted. 
Today the most important memory systems for data storage are based on mag-
netic devices. It is interesting to recall again the impressive development of stor-
age density on hard disks. In a little more than 40 years, from 1956 until 2000, 
storage density increased by a factor of about ten million. In the year 2000 it 
was about 2.6 Gb per cm2, and in the year 2011 it reached about 65 Gb per cm2 
(Gb = 109 bits). Another important advantage of spintronics results from the fact 
that the rotation process of the electron spin consumes only very little energy and 
occurs extremely quickly.

Fig.  10.8   Schematics of a spin-polarized field-effect transistor. The electric current passes 
through the two-dimensional electron gas at the interface of a semiconductor heterostructure of 
InGaAs and InAlAs. The current flow is controlled by the voltage Vg applied to the gate electrode

10.6  Technical Applications, Giant Magneto-Resistance, Spintronics
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Abstract  The advanced microfabrication techniques can produce objects which 
are sufficiently small, that new quantum effects appear. After discussing superlat-
tices and Bloch oscillations, we turn to the Landauer transmission channels and 
the quantized conductance of quantum wires. The fullerenes are carbon molecules 
consisting of different distinct numbers of carbon atoms. Their outgrowth in form 
of carbon nanotubes represents a promising structure for molecular electronics. 
Conducting layers of graphene with a thickness of only a single carbon atom dis-
play a fascinating electronic band structure, where the concentration of charge car-
riers can be varied strongly by means of an attached gate electrode. Topological 
insulators show surprising current-carrying edge or surface states.

In December of 1959 Richard P. Feynman, one of the most brilliant American 
physicists of the last century, presented a visionary and highly acclaimed lecture 
with the title “There is Plenty of Room at the Bottom”. At that time Feynman had 
already foreseen something that would be confirmed impressively during the fol-
lowing decades because of the rapidly advancing miniaturization in the field of 
microelectronics. He derived one of his leading ideas from the perception of molec-
ular biology at that time, that only about 50 atoms within the DNA double helix 
are needed for one bit of biological information. The winter of 1952/1953, when 
Rosalind Franklin of Kings College in London had, with her X-ray images, con-
firmed for the first time the double helix structure of DNA, was still relatively close. 
If, for comparison, we assume a geometric structure size of an electronic device of 
45 nm, the limit which can just be reached by 2012, we find for the total number 
of crystal atoms within a little cube having sides of length 45 nm, the huge number 
of 1 million atoms. Here we have taken an average distance of 0.5 nm between the 
atoms in the crystal. From this comparison we can clearly see, how much room 
there still is today “at the bottom”, compared with the molecular level of biology.

It has been the drive for continuous miniaturization in the field of microelectron-
ics, which has provided the motivation for improvements in the methods of fabri-
cating microstructured solid objects. In this context, great advances were achieved 
in the technique for the preparation of thin layers and of multi-layer packages of the 
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relevant materials. Special tricks employed during the deposition on the substrate 
and during the subsequent etching process, made it possible to fabricate smaller 
and smaller objects from the thin layers. In the meantime lithography methods have 
been extended to ultraviolet light and X-rays, in order to achieve higher spatial 
resolution with much shorter wave lengths. Also, electron beams with high energy 
are utilized for lithography, and, recently, high-energy ion beams of helium and 
hydrogen ions have been tested for their suitability to achieve still smaller structural 
sizes. In many cases these fabrication processes must be carried out in ultra-high 
vacuum, and only ultra-pure materials can be used. The word “ultra” now appears 
more and more often in this field. Together with the technology for the fabrication 
of thin layers, the methods for controlling and analyzing the structure and composi-
tion of the layers have been continuously improved, and today reach nearly atomic 
accuracy, if needed. Layers and multi-layer packages of different materials stacked 
on top of each other can be fabricated, having a microscopically single-crystalline 
structure. Transmission electron microscopy and scanning probe microscopy allow 
the analysis of the materials and in particular of their surfaces with atomic spatial 
resolution. In the meantime, scanning probe microscopy has been applied success-
fully also at low temperatures. Finally, the techniques for micromanipulation have 
been developed further, such that it has become possible to perform electric and 
mechanical measurements even on single atoms and molecules.

During the continuously advancing miniaturization of fabricated objects, one 
finally reaches spatial scales at which new quantum effects appear. These effects 
always result because of the nature of the electrons acting as quantum mechanical 
matter waves. In the following we will illustrate this effect with a few examples.

11.1 � Superlattices, Bloch Oscillations

As we discussed in Chap. 2, in a crystal the elementary cell repeats itself along all 
three spatial directions and in this way generates the three-dimensional periodic struc-
ture. This principle is also found in the case of the superlattices, in which the compo-
sition of a material is periodically modulated along one spatial direction (Fig. 11.1). 
Such multi-layer structures are fabricated by means of modern thin-film technology.

In the year 1970 Leo Esaki and Ray Tsu started to think about and to fabricate 
“superlattices” out of semiconductors. At the time both worked at the American 
Thomas J. Watson Research Center of IBM in Yorktown Heights in the Federal State 
of New York. Already by the late 1950s Esaki had gained much attention because of 
his research dealing with the electrical behavior of the “Esaki diode”. Then he had 
studied the unusual features of the electrical resistance of p-n junctions in semicon-
ductors and had identified the quantum mechanical tunneling process as the crucial 
underlying mechanism. The quantum mechanical tunneling process allows a particle 
to pass through a relatively high energy barrier, which classically would be impossi-
ble. This process would also play a central role in the Esaki superlattices made from 
semiconductors. Such a superlattice is fabricated by alternately placing thin layers 

http://dx.doi.org/10.1007/978-3-319-09141-9_2
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of two different metals or semiconductors on top of each other during the deposition 
process. Here great attention must be paid to the atomic accuracy of each layer and 
to the perfect periodicity of the spatial sequence of the layers. For his experiments 
Esaki utilized superlattices fabricated from the two semiconductors galliumarsenide 
and aluminum-galliumarsenide (GaAs/AlGaAs), since this combination of materials 
yielded samples with the highest quality. As we have discussed in Chap. 7, later on 
the same semiconductor system GaAs/AlGaAs was used for the fabrication of the 
two-dimensional electron gas, in which the fractional quantum Hall effect was dis-
covered. In his superlattices, Esaki has stacked up to 100 double layers of GaAs and 
AlGaAs on top of each other. In such a superlattice the length of a spatial period is 
about 10 nm, and hence this length is 20–40 times larger than the distance between 
the atoms in a typical crystal lattice. Here the superlattice structure only exists along 
one direction, namely perpendicular to the planes of the individual layers.

Whereas the quantum mechanical wave function of the electrons does not 
change very much along the directions parallel to the planes of the layers in the 
superlattice, along the perpendicular direction the periodicity of the superlattice 
has a strong influence. Exactly in the same way as electrons, in the form of mat-
ter waves, experience Bragg reflection at the crystal lattice, leading to the gaps in 
the energy spectrum of the electrons, so Bragg reflection also occurs at the peri-
odic structure of the superlattice, and new energy gaps appear. In Chap. 4 we have 
treated the appearance of Bragg reflection (Fig. 4.4), when the wave vector k of 
the electrons reaches the boundary of a Brillouin zone and the forbidden gaps in 
the energy spectrum (Figs. 4.3 and 4.5).

In the example shown in Fig. 2.9 Bragg reflection occurs at the values kx = π/a 
and ky =  π/b of the wave vector k, where a and b denote the lattice constants 
along the x- and y-direction, respectively. In a superlattice, the (super-) lattice con-
stant along the direction of the modulation (perpendicular to the planes of the lay-
ers) is much larger than the lattice constant of the underlying crystal. The wave 
number, at which the Bragg reflection takes place, is inversely proportional to the 
distance between two neighboring lattice points within the underlying spatially 
periodic lattice structure. Therefore, in superlattices Bragg reflection is expected 
already at correspondingly much smaller values of the wave vector compared with 
the case of the crystal lattice. As a result, along the directions perpendicular to the 
layers of the superlattice, there exist energy bands which are much narrower than 
the usual energy bands, and which are referred to as “minibands”. The existence 

Fig. 11.1   In a superlattice, 
thin layers of two different 
metals or semiconductors 
are alternately stacked on 
top of each other with high 
regularity

11.1  Superlattices, Bloch Oscillations
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of these minibands leads to important changes in the electrical properties of the 
semiconductor superlattice. Ultimately, this was the reason why Esaki studied 
his superlattices at the time. He was hoping that new and particularly fast electric 
oscillators would be discovered.

If an electric voltage is applied to the superlattice parallel to the direction of the 
modulation, in the relevant miniband the electrons are accelerated in the direction 
of the current flow, and they experience a gain in their energy. However, because 
of the very narrow energy width of the miniband, there is the possibility that the 
electrons will reach the upper edge of the miniband without first losing some 
energy in a collision process (Fig. 11.2). At the upper edge of the miniband the 
electrons are reflected, since they cannot traverse the adjoining energy gap in order 
to reach the next higher miniband. This is exactly the process of Bragg reflection 
experienced by the electrons representing quantum mechanical matter waves.

We illustrate this with the example of a one-dimensional periodic chain of 
atoms with the lattice constant a. The energy spectrum between the boundaries of 
the first Brillouin zone, π/a und −π/a, is shown in Fig. 11.3. We start from (5.1) 
for the force acting on the electrons and obtain

In the absence of any scattering processes, in an electric field, an electron (or 
hole) gains momentum and energy until the value k = π/a is reached. By means 
of a Bragg reflection, the electron is reflected from k =  π/a to k = −π/a, and 

(11.1)

∣∣∣∣
�k

�t

∣∣∣∣ = eE/�.

Fig. 11.2   In an electric field, the energy bands are inclined in the field direction because of the 
potential gradient, and during their motion the electrons are brought closer to the upper edge of the 
conduction band. However, in a standard semiconductor (left side) the electrons already experience 
a collision process, during which their energy is lowered because of the emission of a phonon, long 
before they reach the upper edge of the band. On the other hand, in the narrow miniband of a semi-
conductor superlattice (middle) the electrons reach the upper band edge long before a collision pro-
cess takes place. At the upper band edge they undergo a Bragg reflection, and this process repeats 
itself as a “Bloch oscillation”, until it is interrupted by a collision process. The enlarged section of 
a miniband (right side) shows how the electrons move by a distance Δz in the field direction with 
each collision process, at which their energy is lowered by the emission of a phonon

http://dx.doi.org/10.1007/978-3-319-09141-9_5
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subsequently its wave number increases again due to (11.1). This process repeats 
itself and results in a periodic oscillation of the electrons, the “Bloch oscillation”. 
The time needed for increasing the wave number by the amount Δk =  2π/a, we 
denote by τB. From (11.1) we obtain

and

The angular frequency ωB is the Bloch frequency. For the Bloch oscillation to 
occur, the average scattering time τ of the electrons must be sufficiently long and 
must satisfy the condition

Furthermore, for the appearance of the oscillations very pure materials and low 
temperatures are required. An additional important requirement is a large value of 
the lattice constant a, resulting in a small energy width of the miniband and in a 
correspondingly large value of ωB according to (11.3).

Above all, it is the relatively small energy width of the minibands, which 
plays a crucial role in this behavior. Compared with a semiconductor superlattice, 
in a usual semiconductor crystal, the width of the energy bands is much larger. 
Therefore, in this case, during their energy gain in the electric field, the electrons 
already undergo a collision process due to the lattice vibrations long before they 
have reached the upper edge of the band. During such a collision process energy 
is always transferred from the electrons to the crystal lattice, and, hence, the upper 
edge of the energy band remains far away, and the Bloch oscillations cannot occur. 
However, for the minibands of the superlattice this is totally different (Fig. 11.2).

If the electric voltage applied perpendicular to the layers of the superlattice is 
increased more and more, eventually the electric potential difference between two 
neighboring unit cells of the superlattice becomes sufficiently strong that the cells 
are decoupled from each other. Whereas at relatively small electric fields the quan-
tum mechanical wave function of the electrons extends spatially coherently over many 
cells of the superlattice, and the electronic structure of the minibands still remains 
intact, at high electric fields the wave function becomes more and more spatially 

(11.2)2π/a = e EτB/�

(11.3)ωB ≡ 2π/τB = e E a/�.

(11.4)ωBτ ≫ 1.

Fig. 11.3   Energy spectrum 
ε(k) in the first Brillouin 
zone between k = π/a and 
k = −π/a

11.1  Superlattices, Bloch Oscillations
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localized at each individual cell, and decoupling between the cells occurs. Instead of 
a miniband extending over the whole superlattice, now in each cell individual discrete 
energy levels exist, which are adjusted to the electrical potential gradient across the 
superlattice. This splitting of the continuous energy of the miniband into the discrete 
energy levels is known as the “Wannier-Stark ladder”. The name Wannier-Stark ladder 
originates from two distinguished physicists: in the beginning of the last century the 
German Johannes Stark had discovered the splitting of spectral lines due to an electric 
field, referred to since as the Stark effect, while the American Gregory Hugh Wannier 
had contributed significantly to the theoretical foundations of solid state physics.

During Bloch oscillation as well as during the splitting of a miniband into the 
individual energy levels of the Wannier-Stark ladder, the mobile electrons become 
localized within only a few, and eventually only within a single cell, of the super-
lattice, because of the electric field. This effect increases with increasing electric 
field, such that above a specific value of the electric field the flow of the electric 
current decreases with increasing voltage. In this case we have negative differ-
ential resistance. Instead of consuming energy, the superlattice can now return 
energy into an oscillating electrical circuit, in this way acting as an active device 
generating high-frequency electromagnetic waves.

The semiconductor superlattices studied by Esaki represent the case of the 
“heterostructure superlattices” fabricated layer by layer from two different semi-
conductors. Esaki also had the idea that it should be possible to produce semicon-
ductor superlattices simply and with a high degree of flexibility, only with a single 
semiconductor, by means of an alternate spatially periodical n-doping and p-dop-
ing of this semiconductor. At the beginning of the 1970s, the German Gottfried H. 
Döhler, at first as a postdoctoral member of Esaki’s group, took up this idea of the 
doping superlattice. Since the n- and the p-doped layers, respectively, are sepa-
rated from each other by a thin, electrically insulating semiconductor layer, these 
superlattices are also referred to as “n-i-p-i crystals”. The first n-i-p-i structures 
were fabricated in 1980 by Klaus Ploog at the Max Planck Institute for Solid State 
Research in Stuttgart. These experiments were performed with the semiconduc-
tor galliumarsenide (GaAs). Silicon atoms were used for n-doping and beryllium 
atoms for p-doping. Subsequent electrical and optical measurements with these 
doping superlattices have well confirmed their expected physical properties.

The possibility of fabricating superlattices from semiconductors has introduced 
an interesting additional option for the development of new materials in electron-
ics and optoelectronics. In superlattices, the electrical and the optical properties 
can be varied artificially. In the meantime many experiments have been performed 
with semiconductor superlattices. However, at present, the technical applications 
are only in their very early stages. Highly promising developments concentrate 
on the “quantum cascade laser” operating in the infrared spectral range. Here 
transitions between the discrete energy levels are utilized, for which the emitted 
frequency can be tuned by the variation of the material composition and of the 
thickness of the layers. Recently, interesting progress has been reported also for 
the generation of microwaves by means of the Bloch oscillations of the electrons 
in semicondutor superlattices.
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11.2 � Mesoscopic Regime, Ballistic Electron Transport, 
Quantized Conductance Value

Eventually, the use of ultra-pure materials and the ability to fabricate objects with 
smaller and smaller dimensions made it possible, that within the studied sections of 
the electrically conducting materials, the electrons experience almost no collision 
processes, or only very rarely. The probability becomes extremely small that, in these 
experiments dealing with very small spatial dimensions, the measurements are influ-
enced by many structural defects or chemical impurities in the crystal. Furthermore, 
at sufficiently low temperatures most of the lattice vibrations can be frozen out. 
Under these conditions, the spatial dimensions belong to the “mesoscopic regime”, 
located between the single atoms or molecules on the one hand and the macroscopic 
world of events on the other hand. Within this mesoscopic length scale all aspects of 
the electrons as matter waves are fully valid, and the observed physical behavior of 
the electrons can best be understood in terms of a propagating wave (Fig. 11.4). In 
Sect. 5.2 we discussed the Fermi distribution of the energy of the electrons, resulting 
from the exact identity of electrons as elementary particles, and we have pointed out 
that, as a result, most electronic material properties are determined only by the elec-
trons from the immediate proximity of the Fermi energy. Therefore, the unperturbed, 
“ballistic motion” of the electrons within the mesoscopic dimensions happens at the 
Fermi velocity. In the following we denote the Fermi velocity by vF. Similarly to the 
Fermi wave number kF, the Fermi velocity vF is also fixed by the Fermi energy εF.

The unperturbed, ballistic propagation of particles or energy quanta is in contrast 
to the other limit, in which the propagation is always interrupted by collisions and 

Fig. 11.4   Photograph, 
produced by an electron-
transmission microscope, of 
a ring fabricated from a gold 
layer of 38-nm thickness. The 
inner diameter of the ring 
is 784 nm. The width of the 
conducting lines is 41 nm. 
(R. A. Webb)
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deflections (Fig. 11.5). A well known example of the latter case is the propagation of 
light in dense fog, in which all contours disappear, and any orientation becomes impos-
sible. This case is referred to as diffusive propagation, by means of the process of “dif-
fusion”. On the other hand, in the absence of fog we have ballistic and straight arrays 
of light, propagating with light velocity and clearly marking the spatial environment.

The electron transport in the mesoscopic regime in the form of a ballistically 
propagating wave is characterized by the fact that the internal material properties 
of the object are no longer decisive, and that, instead, the shape of the external 
boundary has a much stronger influence. Now the electrons experience collisions 
and deflections predominantly only at the boundary of the object, for example at 
the entry or the exit of a constriction. The behavior is much more similar to that 
in a wave guide. Now the property of the electrons as a quantum mechanical mat-
ter wave dominates. Therefore, in the case of such conductors one also speaks of 
quantum wires. It was the American Rolf Landauer, who considered these ques-
tions for the first time in the year 1957. Landauer, who originally came from 
Germany, worked at the American Thomas J. Watson Research Center of IBM. At 
that time he proposed his famous concept of the transmission channels in meso-
scopic electrical conductors, which subsequently turned out to be extremely pro-
ductive and successful. We will briefly discuss his central idea. The quantum wire 
is assumed to be placed along the x-direction. At both ends it is connected to elec-
trodes with the energy ε + 1/2 and ε – 1/2 eV, respectively. Here V is the electrical 
potential difference between both electrodes. If we treat both spins of the electrons 
separately, we find for the current
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[
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Fig. 11.5   If the dimensions 
of an electrical conductor 
become smaller and smaller 
(in the figure from the top 
to the bottom), the collision 
processes within the interior 
of the conductor become 
less and less important, and 
the shape of the external 
boundary will eventually 
become crucial. In this 
case the electrons move 
ballistically as matter waves
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Here, for the Fermi distribution function (5.10), we have used the abbreviation

and we have taken into account the current flow in both directions (+x and −x). 
The quantity Ttrm is a transmission coefficient describing the scattering processes 
of the electrons, which establish the equilibrium with the local electrochemical 
potential of the electrodes. We assume that no scattering processes occur within 
the quantum wire. In the case of small voltage V and low temperatures we have

δ(x) denotes the Dirac delta funktion. With vX dkX = (1/ħ)dε finally we obtain the 
conductance G:

The quantity G0 = e2/h is the quantized unit of the conductance.
Landauer had found, that the electrical conductance of a one-dimensional chan-

nel connecting two charge reservoirs has to be measured in quantized units of 2e2/h. 
(The conductance is defined as the inverse of the electrical resistance). In this con-
text we remember the unit h/e2 of the quantized Hall resistance, which we discussed 
in Chap. 7. The factor 2 of the quantized conductance, according to Landauer, origi-
nates from the fact, that here we discuss the case without a magnetic field and that, 
therefore, both spin orientations of the electrons contribute in the same way to the 
result. On the other hand, the quantized Hall resistance only appears in high mag-
netic fields, where both spin orientations clearly must be treated separately.

The first experiments dealing with ballistic electron transport across a spatial con-
striction in the mesoscopic regime were carried out in 1965 by the Russian Yurii 
Vasil‘evich Sharvin. He worked in the famous Institute for Physics Problems in 
Moscow, which is also named the Kapitza Institute after its founder. In his experiments 
Sharvin used “point contacts”, prepared by pressing the sharp tip of a metal needle onto 
the surface of a metallic single crystal. During the electric current flow, at low tem-
peratures, he measured the electrical resistance of this arrangement. However, in these 
experiments with metals, the role of the electrons as quantum mechanical matter waves 
is not yet highly pronounced, since, because of the typically relatively large Fermi 
energy of the electrons in metals, the wave length is only about 0.5 nm and, hence, it 
is much smaller than the opening of the point contact. Then in 1988 important progress 
was reported, when almost simultaneously two groups discovered the quantization of 
the electrical conductance of specially structured semiconductor heterostructures fabri-
cated from galliumarsenide (GaAs) and aluminum-galliumarsenide (AlxGa1−xAs). One 
group belonged to the University of Delft and to the Philips Research Laboratories in 
Eindhoven and in Redhill, the other group worked at the Cavendish Laboratory of the 
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University of Cambridge. The semiconductor heterostructure used by both groups was 
very similar to that in which, a few years earlier, Tsui and Störmer had discovered the 
fractional quantum Hall effect. In the two-dimensional electron gas of the semiconduc-
tor heterostructure the Fermi energy is much smaller than in metals, and correspond-
ingly the Fermi wave length of the electrons is about one hundred times larger than in 
metals. This provides an excellent opportunity to observe new quantum effects during 
the passage of electrons through a narrow opening.

The two groups used the following technique for the fabrication of the nar-
row one-dimensional channel between two wide charge reservoirs within the two-
dimensional electron gas of the semiconductor heterostructure. They attached two 
correctly structured metal electrodes, acting as gate electrodes, to the top surface 
of the heterostructure. At the narrowest location the opening between the two gate 
electrodes was only 250 nm or 500 nm wide. By applying a suitably selected gate 
voltage, the sample regions directly below the gate electrodes can be emptied com-
pletely of the charge carriers, such that only a conducting channel with an opening 
width of 250 nm or 500 nm, respectively, remains between both gates. By further 
increasing the gate voltage, the channel can be constricted even more, until even-
tually the two wide charge reservoirs are completely separated from each other. 
During their experiments both groups found that the conductance of their one-
dimensional channel shows a regular step structure as a function of the gate volt-
age, and that the individual plateaus of the steps appeared at integer multiples of the 
quantized unit 2e2/h of the conductance (Fig. 11.6). These measurements were car-
ried out at low temperatures below 1 K. Apparently, the variation of the gate voltage 

Fig. 11.6   Electrical conductance of a narrow one-dimensional channel in a GaAs/AlxGa1−xAs 
—heterostructure in the quantized unit (2e2/h) plotted as a function of the gate voltage at a tem-
perature of about 1 K. Inset on upper left arrangement of the gate electrodes on the surface of 
the heterostructure. Inset on lower right cut through the heterostructure (2DEG two-dimensional 
electron gas; UG gate voltage) (B. J. van Wees)
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causes a continuous change in the channel width, such that the number of the dis-
crete and quantized conductance channels increases with increasing channel width.

The experimental observation of the quantized conductance of a narrow meso-
scopic channel can be looked at as a special case of the concept of transmission 
channels introduced by Landauer. In the meantime, many papers have appeared 
dealing with details of this novel quantization phenomenon. However, here we 
refrain from any further discussion.

As the ultimate reduction in the size of an electrical contact between two charge res-
ervoirs, in recent years even single atoms have been studied experimentally and theo-
retically. These experiments started at the French Commissariat à l′Energie Atomique 
in Saclay in the group of D. Esteve and Michel H. Devoret with the collaboration of 
the German guest scientist Elke Scheer. For measurements with individual atoms the 
technique of piezoelectric actuators, well-known from scanning tunneling microscopy, 
was employed, in addition to a special technique: the break junction method. The lat-
ter method allowed the mechanical control of the contact with an exceptionally high 
sensitivity. A suspended microbridge of about 2 µm length, 200 nm thickness, and with 
a 100 nm × 100 nm constriction in the middle, was mechanically stretched and eventu-
ally broken at the constriction. This was achieved by mounting the microbridge onto 
an elastic substrate, which could be bent mechanically in a highly controlled way. The 
authors studied atoms of different metals, such as lead, aluminum, niobium, gold, and 
sodium. Mostly, the experiments were carried out at temperatures much below 1 K. It 
was found that, with increasing stretching of the microbridges, the electrical conduct-
ance of the samples decreased in steps, until the contact was interrupted. The height 
of the individual steps was about 2e2/h. The quantized unit of the conductance again 
appeared. Landauer’s concept of the transmission channels therefore also appears to be 
confirmed in this case. Furthermore, the experiments performed with the atoms of the 
different metals suggest that the number of conductance channels is equal to or at least 
closely related to the number of orbitals of the valence electrons of the central atom. 
For a quantitative understanding of electrical conductance properties of these contacts, 
a microscopic model must be developed, which takes into account the orbital struc-
ture of the atom as well as the local atomic geometry of the immediate environment. 
Electrical currents up to about 0.1 mA can pass through a contact consisting only of a 
single atom. This corresponds to the giant local electric current density of one hundred 
billion amperes per cm2.

11.3 � Bottom Up, Fullerenes

For the nanostructures we have just discussed, the sample dimensions are reduced 
more and more, until eventually one reaches the mesoscopic regime where novel 
quantum effects in the electron motion can be observed. This method of opera-
tion is generally known as the “top-down” procedure. However, for the develop-
ment of smaller and smaller devices aiming at “nanoelectronics” or eventually 
also at molecular electronics, the inverse procedure referred to as “bottom-up” 
gains much more importance. In this case, above all it is the methods of chem-
istry which are crucial for further advances. From this field of the molecular 
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electronics, which presently shows a dramatic development, we wish to select a 
particular example: the “carbon nanotubes”. However, first we must briefly illus-
trate the preceding history, which has lead to this spectacular development.

The physics and chemistry of the new forms of carbon started in astrophysics 
with the exploration of matter within interstellar space. During their experimental 
attempts to produce interstellar carbon molecules in the laboratory by means of 
laser evaporation of graphite, in 1985, Richard E. Smalley and Robert Floyd Curl 
at the American Rice University in Houston, Texas, and also Harold Walter Kroto 
at the University of Sussex in England, together with their co-workers, discovered 
the two carbon molecules C60 and C70 by means of mass-spectrometric analyses. 
At that time they had already presumed, that the C60 molecule possesses the struc-
ture of a soccer ball (“bucky ball”), in which the 60 carbon atoms are located at 
the corners of the five-cornered and of the six-cornered carbon rings, forming the 
nearly-spherical surface of the molecule. Altogether, the C60 molecule consists of 
12 five-cornered and of 20 six-cornered carbon rings (Fig. 11.7). The discoverers 
called the molecule buckminster-fullerene after the American architect Buckminster 
Fuller, who was famous because of his buildings with a domed structure. Also the 
C70 molecule is composed of 12 five-cornered carbon rings, but 25 six-cornered 
carbon rings. It is stretched slightly and looks similar to an American foot ball. All 
carbon molecules with an all-round completely closed structure are now denoted 
as “fullerenes”. Incidentally, more than 200  years ago the Swiss mathematician 
Leonhard Euler had already proved, that all fullerene structures must have exactly 
12 five-cornered rings, in order to have an all-round completely closed shape.

Smalley and Kroto could only produce their fullerene molecules in such tiny 
amounts, that many supplementary studies and in particular crystallographic struc-
ture analyses were impossible. In the year 1990 this changed abruptly, when Walter 
Krätschmer of the Max Planck Institute for Nuclear Physics in Heidelberg and 
Donald R. Huffman of the American University of Arizona in Tucson succeeded for 

Fig. 11.7   Perspective 
representation of a soccer-
ball-shaped C60 molecule
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the first time in producing fullerene molecules in much larger amounts than was pos-
sible before. Again, both scientists were interested in the preparation of soot particles, 
because they were dealing with questions about interstellar matter. In their preparation 
technique they used two rod-shaped graphite electrodes, between which an electric 
arc is burning with a high current density. During this process the electrode material 
evaporates. The whole preparation is carried out in an evaporation system, its recipi-
ent being filled with a cooling gas (typically helium). Because of the presence of the 
cooling gas, the carbon vapor condenses into a smoke of particles, which are then col-
lected. The soot particles and the fullerene molecules are separated from each other 
by chemical methods. Since May 1990, Krätschmer and also Huffman were able to 
produce about 100 mg fullerene per day. Now the preparation of single crystals, of 
microcrystalline powder, and of thin layers followed quickly, and research activities 
started to grow explosively in many groups. In particular, the initial presumption of 
the soccer-ball structure of the fullerene molecules was exactly confirmed experimen-
tally. The production method was improved by many groups, and it was scaled up 
for larger quantities. Now the experiments were extended also to solids consisting 
of C60 molecules, and electronic properties, as well as the influence of doping with 
admixtures, were investigated. Following the implantation of strong donors into the 
C60 solid (n-doping), even superconductivity was found with maximum values of the 
critical temperature up to Tc = 48 K. Here, the alkali metals potassium, rubidium, and 
cesium, as well as the alkaline earth metals, were mainly used for electron doping.

The C60 and the C70 molecules stand out because of their particularly high sta-
bility. Hence, during production their yield is also very high. However, the series 
of the fullerene molecules still extends much further. For example, there are the 
“magic” higher fullerenes C76, C78, C82, and C84. In the year 1991 Sumio Iijima 
from Japan, made a discovery with important consequences for the technical 
applications, when he observed in the electron microscope for the first time a new 
fullerene type in the shape of thin tubes like a needle. With this discovery of car-
bon nanotubes, a new phase in the fullerene research had begun. Iijima worked 
at the Laboratory for fundamental research of the Japanese NEC Corporation in 
Tsukuba. Since the discovery of carbon nanotubes, the number of publications 
and also the number of issued patents, dealing with the nanotubes, has grown 
from year to year. The number of walls of the tubes can vary. In his first publica-
tion Iijima had already reported tubes with up to seven walls. The tube diameter 
also varies correspondingly and falls into a range of about 4–30 nm. The typical 
tube length is about a few µm. Recently, scientists at the American Rensselaer 
Polytechnic Institute in Troy in the Federal State of New York and at the Chinese 
Tsinghua University in Beijing have prepared bundles of single-wall nanotubes 
even up to a length of 20 cm using a special technique (Fig. 11.8).

The electronic properties of the multi-wall nanotubes show relatively large vari-
ations, which severely hamper their reproducibility. In contrast to this, the single-wall 
nanotubes are very reproducible. Depending upon their diameter and upon the degree of 
angular rotation in their structural detail along the axial direction, referred to as the heli-
city, in terms of their electrical conductivity they behave like a one-dimensional metal 
or a semiconductor. Apparently, they are well suitable for use as molecular wires. In 
addition to the fundamental physical properties of the carbon nanotubes, their potential 
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for application in molecular electronics has been investigated by different groups. Here 
the manipulation of the nanotubes was accomplished using the methods of atomic 
force microscopy which we have mentioned in Chap. 1. Apparently, a sharp bend in 
the single-wall nanotubes acts like a rectifying diode, similarly as a metal-semiconduc-
tor contact. Such a bend can be generated by means of a pair of topological defects in 
the atomic structure of the nanotube, or by a local mechanical deformation. The func-
tion of a field-effect transistor has been demonstrated already by placing a single-wall 
nanotube on top of a gate electrode, electrically insulated from the tube. Last but not 
least, the carbon nanotubes can serve in an excellent way for realizing what are called 
single-electron effects in electrical transport properties. Here we mean that the physi-
cal properties of an object, such as the electrical resistance, for example, are strongly 
affected by the presence or absence of only a single electron, because of the extremely 
small dimensions of the object. Because of these developments, large companies within 
the computer industry presently show a keen interest in the physics and technology of 
carbon nanotubes. One can hear speculations already that, in the medium-range future, 
carbon nanotubes may start to compete with the comparatively expensive silicon as the 
substrate in the semiconductor technology. Carbon nanotubes have an extremely high 
conductivity for electric currents, and they allow densities of the electric current flow, 
at which copper wires would have melted long before. Hence, compared to conducting 
lines made from copper, the carbon nanotubes tolerate much higher electric power lev-
els and operating frequencies. An additional interesting aspect of nanotubes arises due 
to the possibility that the tubes can be opened at both ends, and that molecules of other 
substances can be packed into their interior. In this way the tubes can be utilized as car-
riers of different materials.

11.4 � Graphene

We imagine that the wall of the thinnest carbon nanotube is cut open along the axis, 
spread out and extended in both directions within the plane. Then we deal with gra-
phene, i.e., with a material with a thickness of only a single carbon atom. The carbon 

Fig.  11.8   Single-wall carbon 
nanotube placed between two 
platinum electrodes. The width 
of the electrodes is 100  nm. 
(C. Dekker)

http://dx.doi.org/10.1007/978-3-319-09141-9_1
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atoms are arranged as a network with a honeycomb structure. In the year 2004, Andre 
Geim and Konstantin Novoselov succeeded in preparing a graphene sample by using 
a trick, and subsequently they discovered its fascinating physical properties. By using 
Scotch tape, they achieved to strip off the top atomic layers of a very pure graph-
ite crystal and to transfer them onto a suitable substrate, such that finally individual 
flakes of one-atomic layers became available. Following their initial publications on 
this subject, an international competing research activity sat in. Within 5 years, from 
2005 until 2009, more than 5,000 papers about graphene were published.

Perhaps the most fascinating property of graphene is its electronic band struc-
ture. In the undoped state, it shows a linear increase of the energy E of the electrons 
with their wave number k: E ~ k. Therefore, the charge carriers act like relativistic 
particles without mass. Instead of the Schrödinger equation, they satisfy the Dirac 
equation, and the Fermi velocity vF takes the role of the light velocity. This is in 
contrast to the usual quadratic increase E ~ k2 in the case of a three-dimensional 
crystal (see (4.8) and Fig. 4.5a). In graphene, as the thinnest existing material, the 
concentration of the charge carriers can be varied strongly, by means of an attached 
gate electrode and the electric field effect. In this way the concentration of the elec-
trons can be changed from that of a regular metal with about 1021 cm−3 to that of 
a metal with a similar concentration of holes, passing through the (semiconduct-
ing) state with only very few charge carriers (Fig. 11.9). In a magnetic field, Geim 
and Novoselov have also clearly observed the half-integer quantum-Hall-effect. 
The half-integer value arises from the fact that, because of the energy spectrum, at 
exactly E = 0 there are two energy levels, one with electron character and one with 
hole character. As an interesting exception, in graphene the quantum-Hall-effect 
could be observed even at room temperature.

In addition to its spectacular electronic properties, graphene has also excep-
tional mechanical properties. It is harder than diamond, and can become interest-
ing for applications as composite material.

11.5 � Quantum Dots

Carbon nanotubes have presented us with a highly promising molecular exam-
ple as the smallest possible version of a quantum wire. Now we will also drop 
the last remaining dimension of the spatial extension of these one-dimensional 
quantum wires. This means that we are dealing with the “quantum dots” as 
objects with quasi-zero dimension. Again, it is the shape and dimension of 
the external boundary, which determine the physical behavior of the electrons 
within the quantum dots. On the other hand, the collision and deflection pro-
cesses of the electrons in the interior of these objects are moving far into the 
background. Similar to the situation in an atom, now the quantum mechanical 
wave function of the electrons is determined to a large extent by the spatial size 
of the quantum dot. Hence, the quantum dots are also referred to as “artificial 
atoms”. Energy bands for the electrons, such as those in an extended crystal, 
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Fig.  11.9   In graphene, the concentration of the charge carriers and the electrical conductivity 
can be varied strongly, by means of an attached gate electrode and the electric field effect. The 
figure shows the dependence of the conductivity upon the gate voltage and the linear depend-
ence of the energy E of the electrons upon the wave vector k, E(k), for three values of the Fermi 
energy EF, in the case of negative, vanishing, and positive gate voltage (A. Geim)
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no longer exist. Instead of the energy bands, the electrons can occupy only dis-
crete energy levels, which can be calculated from the geometric dimensions 
of the quantum dots using the quantum mechanical Schrödinger equation. In 
some sense, the Periodic Table of the Elements can be imitated by the occupa-
tion of individual energy levels of the quantum dots with electrons. Here the 
Pauli Principle must be obeyed by the electrons as Fermi particles. Hence, each 
state can be occupied by only two electrons, the spins of which are oriented 
in opposite directions. However, as an important difference between the quan-
tum dots and the individual atoms we must note that the former are micro-crys-
tals, consisting of about one thousand up to one million atoms, in which lattice 
vibrations (phonons) and also lattice defects exist. The energy spectrum of the 
electrons in the quantum dots can be found mainly from their optical properties, 
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for example, from the spectroscopy of the energy transitions. It is also not sur-
prising that, for technical applications of quantum dots, the optical properties 
are particularly interesting, as, for example, in the quantum-dot laser.

Quantum dots have been studied experimentally for about the last 20 years. For 
their fabrication three different general methods are employed. First we mention 
the relatively traditional “top-down” technique, in which the quantum-dot struc-
tures are defined and etched lithographically. However, the necessary processing 
steps are by no means simple. Furthermore, recently semiconductor nanopar-
ticles, which were fabricated by methods from colloid chemistry, gained special 
importance. Above all, the II–VI compound semiconductors from the 2nd and the 
6th group of the Periodic Table as well as the III–V semiconductors from the 3rd 
and the 5th group are interesting in the form of nanoparticles. The methods from 
colloid chemistry yield particles with quasi-spherical shape, the sizes of which 
can be produced reproducibly from only a few molecules up to highly extended 
dimensions. Here particles with a diameter between about 1 and 6  nm are par-
ticularly interesting, since their fabrication with other techniques is very diffi-
cult. This particle size falls into the regime of strong quantization, in which the 
distance between the discrete energy levels of the electrons in the quantum dots 
has the same order of magnitude as the energetic band gap in an extended crys-
tal. As a rule, at the end of particle synthesis, a fractionating step for the sepa-
ration of the particle sizes must be carried out. Based on the colloid chemical 
methods, quantum dots can be fabricated in amounts of grammes like the standard 
fine chemicals. Above all, it is the optical properties of these quantum dots, which 
are interesting for their application, for example, as markers in the fluorescence 
microscopy of biological samples. The emitted light can be tuned throughout the 
whole visible spectral range up to the near-infrared range only by the variation of 
the particle size. Here one utilizes the fact that the distance between the discrete 
energy levels, relevant for optical transitions, increases with decreasing particle 
size. The light with the shortest wave length originates from the smallest particles. 
(Incidentally, a similar connection exists between the resonance of the acoustic 
sound frequency and the spatial size of a musical instrument: the higher the note, 
the smaller the instrument must be).

The third path for the generation of quantum dots becomes possible because 
of the self-organized, spontaneous growth of well-ordered islands of uniform 
size in the nanometer range during the deposition of a few atomic monolay-
ers of a semiconductor onto a substrate, under highly special conditions. These 
self-ordered quantum dots are the first nanostructures in the range of 10  nm, 
which can be produced reproducibly and also in large quantities using the 
standard methods of semiconductor technology. If the islands with a diameter 
of only a few nanometers are fabricated from a semiconductor with a small 
energy gap, and if they are then completely imbedded in a material with a larger 
energy gap, one obtains electronic quantum dots, which are well decoupled 
electronically from their environment. For example, quantum dots from indium-
galliumarsenide (InxGa1−xAs), imbedded into an environment of gallium-arse-
nide (GaAs), were intensively investigated. Also three-dimensional lattices of 
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quantum dots can be fabricated by stacking several such layers of quantum 
dots on top of each other. Again, it is the optical properties and in particular 
the possibility for building a quantum-dot laser, which has stimulated the strong 
interest in self-ordered quantum dots. Based on these concepts, the first quan-
tum-dot laser started to operate in 1994. Since then quantum-dot lasers have 
been improved considerably in terms of their quantum efficiency.

11.6 � Topological Insulators

The integer and the fractional quantum-Hall-effect, which we discussed in Chap. 7,  
can each be understood in terms of new quantum states of the charge carriers in 
the two-dimensional electron gas. These quantum states appear at the edge of the 
two-dimensional electron gas (edge states) in the presence of a perpendicularly 
oriented, high magnetic field. They are robust, i.e., insensitive against geometric 
details and perturbations by impurities. This is the reason for the universality of the 
numerical values (of the electrical resistivity), which depend only on fundamental 
constants.

In recent years one recognized that similar quantum states with electric current 
flow through edge channels are possible also in the absence of magnetic fields. 
In electrical insulators with a suitable electronic band structure, edge states would 
be generated, in which charge carriers with opposite spin at a given edge move in 
opposite directions, different from the quantum-Hall-effect. This phenomenon is 
referred to as quantum-spin-Hall-effect. Presently, its experimental demonstration 
represents an important research subject. We will briefly sketch this development.

During the search for electrically insulating materials with an electronic band 
structure which is suitable for this effect, one encountered successfully the com-
pound mercury-telluride (HgTe), a II–VI semiconductor. In this (or a similar) 
insulator, by means of the spin-orbit coupling, the symmetry of both spin ori-
entations is broken. In the case of the heavy elements, the spin-orbit coupling 
is particularly strong, and it plays the role of an external magnetic field. The 
quantum-spin-Hall-effect appears at low temperatures (below 10  K) in thin lay-
ers (quantum wells), which show a sufficiently high mobility of the charge carri-
ers, and which can be fabricated using the technique of molecular-beam epitaxy. 
In 2012, the three pioneers in this field, Charles L. Kane, Shoucheng Zhang, and 
Laurens W. Molenkamp received the highest award in the USA, for their research 
in the area of the physics of condensed matter, “For the theoretical prediction and 
experimental observation of the quantum-spin-Hall-effect, opening the field of 
topological insulators”. Today, Kane and Zhang work as theoretical physicists at 
the University of Pennsylvania in Philadelphia, Pennsylvania, and at the Stanford 
University in California, respectively, and the experimental physicist Molenkamp 
is heading a group at the University of Würzburg, which concentrates on molec-
ular-beam epitaxy of II–VI semiconductors. A topological insulator is a material, 
which in its interior behaves like an electrical insulator, and which, at its surface 

http://dx.doi.org/10.1007/978-3-319-09141-9_7
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(or at its edge), can transport electric charges. The topological insulators represent 
an advancement in the field of spintronics, which we discussed in Chap. 10 in the 
context with the technical applications of magnetism.

So far we discussed only two-dimensional topological insulators with their 
current-carrying edge states. In 2007 Charles Kane, mentioned above, together 
with Liang Fu, predicted that also three-dimensional forms of topological insula-
tors would be possible, in which conducting quantum states appear at the crys-
tal surface (surface states). A first example is Bi1−x Sbx, a compound of bismuth 
(Bi) and antimony (Sb), in which the spin-orbit coupling is particularly strong. So 
far, the experiments have confirmed this prediction. In Bi1−x Sbx the surface states 
are similar to the two-dimensional states in graphene. As we discussed in Sect. 
11.4, in graphene near the Fermi energy, electrons and holes show a linear rela-
tion between energy and wave number, which is described by the relativistic Dirac 
equation of massless fermions. In two-dimensional k-space, the dispersion relation 
shows the form of two cones stacked on top of each other, the cone ends of which 
coincide at discrete points (Dirac points) at the Fermi energy (see Fig.  11.9). 
Whereas graphene shows an even number of Dirac points (namely two), in the 
case of Bi1−x Sbx there is an odd number. As a result, in graphene the surface 
states are not topologically robust, and the energy gap easily opens up because of 
perturbations (impurities). On the other hand, in Bi1−x Sbx the surface states are 
robust (topologically protected) and insensitive against perturbations. Shortly after 
the discovery of bismuth-antimony as a three-dimensional topological insulator, 
there were indications of topologically protected surface states also in antimony, 
bismuth-selenide, bismuth-telluride, and antimony- telluride.

In 1996, Martin R. Zirnbauer and co-workers had developed a scheme for clas-
sification of symmetries of universal properties, which is fundamental also in 
the case of topological insulators. Today, Zirnbauer is director of the Institute of 
Theoretical Physics at the University of Cologne. In 2012 he received the Max-
Planck-Medal of the German Physical Society for his work.

Topological quantum states of matter are very rare. It is noteworthy, that after 
more than 80 years the electronic band theory of crystals still offers new surprises.

11.7 � Aharonov-Bohm Effect

At the end of this chapter on quantum effects in mesoscopic structures, we wish 
to return to the geometry of a ring in an external magnetic field. This geometry 
occupied us in Chap. 8 in the context of magnetic flux quantization in super-
conductors. Nevertheless, in the superconductor we had to deal with the macro-
scopic wave function of the Cooper pairs with their double elementary charge 2e. 
However, now we are interested in the quantum effects of the ballistic electron 
motion within the ring geometry of a normal conductor with sufficiently small 
dimensions, such that the collision processes of the electrons in the interior of 
the object are negligible and only the external boundary is crucial. The external 

11.6  Topological Insulators
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magnetic field will be oriented perpendicular to the plane occupied by the ring. 
We assume that the diameter of the ring is much larger than the width of the ring-
shaped conducting line. For the electron motion along the ring we must take into 
account the interference during the propagation of the matter wave along the right-
half and along the left-half of the ring. It turns out that the propagation difference 
of the wave between the right and the left path amounts to exactly one wavelength 
or to an integer multiple thereof, if the magnetic field penetrating the ring area cor-
responds to one magnetic flux quantum (h/e) or to an integer number of magnetic 
flux quanta. Here it is assumed that both halves of the ring are exactly symmetri-
cal. As a consequence of this interference between the two propagation paths we 
expect a periodic oscillation of the electrical resistance of the ring configuration 
during the variation of the external magnetic field, with the periodicity (h/e) of 
the enclosed magnetic flux quanta. We have been confronted with the magnetic 
flux quantum (h/e) before in our discussion of the fractional quantum-Hall-effect. 
On the other hand, if we compare the two complete trajectories around the whole 
ring clockwise and anti-clockwise, respectively, leading back to the same starting 
point, then the propagation difference between both waves after a complete revo-
lution is exactly one wavelength, if only half a flux quantum (h/2e) occupies the 
ring area. Correspondingly, this results in a periodic oscillation of the electrical 
resistance of the ring configuration during the variation of the magnetic field with 
periodicity (h/2e) of the enclosed half magnetic flux quanta.

A fundamental difference between the two cases we just have discussed arises 
due to the fact, that the (h/e) oscillations depend sensitively upon the details of 
the sample. For example, the exact symmetry between the two halves of the ring 
becomes extremely important. On the other hand, the (h/2e) oscillations arise only 
from the comparison between the two complete trajectories around the whole ring 
along opposite directions, respectively. These two cases are related to each other 
by the process of time inversion. Hence, they are independent of the microscopic 
details of the sample. This discussed interference behavior of electron matter waves 
was predicted theoretically for the first time in 1959 by Yakir Aharonov and David 
Bohm. Hence, this is referred to as the Aharonov-Bohm effect (Fig. 11.10). At the 
time both scientists worked at the University of Bristol in England. In the early six-
ties the effect was demonstrated in interference experiments performed with elec-
tron beams by Gottfried Möllenstedt and co-workers at the University of Tuebingen.

For the first time the Aharonov-Bohm effect of electrons in a solid has been 
observed experimentally by Yurii Vasil’evich Sharvin and his son D.Yu. Sharvin 
in the year 1981 in Moscow. They used a thin metal cylinder made from magne-
sium with a diameter of 1.5–2 µm and a length of 1 cm. The cylinder was deposited 
as a thin layer onto a thread of quartz. The magnetic field was oriented parallel to 
the cylinder axis. The temperature was 1 K. The cylinder can be looked at as an 
object consisting of many rings stacked on top of each other. Therefore, the (sample 
specific) (h/e) oscillations average out, and only the (h/2e) oscillations of the electri-
cal resistance could be observed at the time. However, the (h/e) oscillations were 
also detected experimentally in 1985 for the first time by the American Richard 
A. Webb and his co-workers at the Thomas J. Watson Research Center of IBM in 
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the USA. They used metallic gold rings fabricated from a thin gold layer of only 
38 nm thickness (Fig. 11.4). The crucial preparation step in the fabrication of the 
extremely small structures was the formation of a suitable mask consisting of a 
protecting contamination layer by means of a computer-controlled high-resolution 
scanning electron transmission microscope. At a temperature of 0.01 K a gold ring 
with 784 nm inner diameter and 41 nm width of the conducting line displayed dis-
tinct (h/e) oscillations of the electrical resistance during variation of the external 
magnetic field.

Fig. 11.10   Aharonov-Bohm effect in ring geometry. The external magnetic field is oriented per-
pendicular to the plane of the ring. a The interference between the trajectories through the right 
and through the left-half of the ring leads to oscillations in the electrical resistance with periodic-
ity (h/e) of the magnetic flux enclosed by the ring. b For a complete revolution of two trajectories 
around the ring in opposite directions, respectively, the interference results in oscillations of the 
resistance with periodicity (h/2e)
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Abstract  At thermodynamic equilibrium crystals display some disorder due 
to the spontaneous generation of lattice defects, as we discuss in the case of lat-
tice vacancies. Other examples of defects are color centers in ionic crystals and 
radiation damage in nuclear reactors. Understanding the role of dislocations in 
the mechanical properties of materials represented a great advance. Today, nonde-
structive materials testing has developed into an important field.

During the course of many hundreds, if not thousands of years, people have 
gained important and useful experience and have learned rules and recipes for 
the manufacture, in particular, of things made from metallic materials. At first, 
mechanical properties and strength under mechanical loads, exclusively domi-
nated people’s interest in materials. For example, it had been discovered early 
on, how long one should hammer a piece of metal in order for it to gain the opti-
mum hardness for its use as a tool, weapon, ornament, or coin. Only in the 19th 
century was the cold straining and cold-work hardening systematically devel-
oped, and at the time it reached an impressively high standard, for example, 
in the large rolling machines of the steel industry. For a long time, this field of 
metallic materials was dominated by pure empiricism. The microscopic structure 
of wrought iron was observed for the first time only in 1863. At the time, these 
experimental studies were performed by Henry Clifton Sorby, who was born in 
a suburb of Sheffield, one of the centers of the English iron and steel industry. 
As an amateur geologist he was interested in the structure of rocks. After he 
had polished and subsequently etched his samples of wrought iron, in his light 
microscope he discovered characteristic structures at the sample surface, which 
are referred to today as the texture of a metallic sample. About 20  years later, 
Adolf Martens carried out pioneering research in this field, and he gained high 
recognition as the founder of texture microscopy and of scientific materials test-
ing in Germany. A prominent milestone in Germany at the time was the estab-
lishment of the Kaiser-Wilhelm-Institute for Metals Research in Neubabelsberg 
near Berlin in the year 1920. During 1934 this Institute was moved to Stuttgart. 
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After the Second World War the latter Institute continued in Stuttgart as the Max 
Planck Institute for Metals Research. Similar Institutes were established also in 
the other industrialized countries. (In 2011 the Institute in Stuttgart was renamed 
Max Planck Institute for Intelligent Systems).

After the many discoveries in the field of electricity and magnetism in the 19th 
century, the electric and the magnetic material properties appeared as important 
new subjects, which had to be investigated. As we have discussed in Chap. 1 in 
conjunction with the crash of the two English Comet passenger airplanes, it is 
always the spectacular events and catastrophes, which impressively demonstrate 
the need for an almost complete understanding of material properties.

12.1 � Disorder at Thermodynamic Equilibrium

Even in the purest crystal, from which all undesired impurities have been 
removed very carefully, there are unavoidable lattice defects for important fun-
damental reasons. This arises from the fact that the stable equilibrium state of 
a substance always requires a distinct amount of disorder. It is the “thermody-
namic potential”, which rules the development of the state of equilibrium in a 
physical system. Only in the presence of some disorder does the thermodynamic 
potential attain its minimum value, which guarantees equilibrium. The only 
exception from this exists at absolute zero temperature. The underlying ideas 
were developed by two physicists in the 19th century: The German Hermann 
von Helmholtz and the American Josiah Willard Gibbs. In this discussion of 
disorder, the concept of “entropy” plays a central role. The amount of disorder 
necessary for establishing the equilibrium can be achieved in crystals by means 
of the fact that, in the otherwise perfect single crystal, individual lattice sites 
remain unoccupied by atoms, and a certain number of lattice vacancies are gen-
erated in this way.

12.2 � Vacancies in the Crystal Lattice

With the example of lattice vacancies in crystals, we will illustrate the thermody-
namic treatment. We start with the free enthalpy of a crystal:

(U = inner energy; p = pressure; V = volume; T = temperature; S = entropy). From 
(12.1) we see that an increase in entropy (due to disorder) reduces free enthalpy. 
Because of the TS-contribution in (12.1), with increasing temperature, this reduction 
of free enthalpy becomes more and more important. This is exactly the reason, why 
in thermodynamic equilibrium there appears disorder in a crystal.

(12.1)G = U+ p V− T S

http://dx.doi.org/10.1007/978-3-319-09141-9_1


187

We consider a crystal consisting of N identical atoms. The presence of n lattice 
vacancies changes the free enthalpy G by the amount

In (12.2) the proportionality with n is valid only for values of n, which are 
small compared with N, n ≪ N. (In (12.2): UA =  activation energy for the for-
mation of a vacancy; VA  =  activation volume for the formation of a vacancy; 
SA

vibr  =  entropy change of the lattice vibrations per vacancy; Sm  =  mixing 
entropy per particle). The mixing entropy per particle is

where xj denotes the atomic fraction of component j. In the case of vacancies, we 
have

(again, within the approximation n << N). In equilibrium we have

and

From (12.6) we see that by plotting log c versus 1/T or versus p, one obtains straight 
lines (Fig.  12.1). From the slope of the plot versus 1/T one obtains UA +  p VA 
(where, in general, the contribution p VA at p = 1 at is negligible). From the slope of 
the plot versus p one obtains VA.

The equilibrium concentration of vacancies strongly increases with increas-
ing temperature. The spontaneous generation of lattice vacancies contributes 
also to the volume expansion of the crystal, in addition to the usual thermal 
expansion. Therefore, the volume expansion turns out to be somewhat larger 
than expected only from the thermal expansion of the characteristic distance 
between neighbors in the crystal lattice. The volume of the vacancies must 
be added also. This effect was detected in a famous experiment by Ralph O. 
Simmons and Robert W. Balluffi. They compared the measured relative length 

(12.2)�G(n, p, T) = n UA + n p VA− n T SvibrA −T (N + n) Sm.

(12.3)
Sm = −kB

∑

j

xj ln xj,

(12.4a)Sm = −kB
n

n + N
ln

n

n + N
− kB

N

n + N
ln

N

n + N

(12.4b)≈ − kB
n

N
ln

n

N
+ kB ln(1+

n

N
)

(12.4c)≈ − kB

( n

N
ln

n

N
−

n

N

)
,

(12.5)

(
∂�G

∂n

)

p,T

= UA + p VA − T SvibrA + kBT ln
n

N
= 0

(12.6)c(p, T) ≡
n(p, T)

N
= exp

(
SvibrA /kB

)
· exp

[
−
(
UA + pVA

)
/kBT

]

12.2   Vacancies in the Crystal Lattice



188 12  Defects in the Crystal Lattice: Useful or Harmful? 

change ΔL/L of a crystal with the relative change Δa/a of the lattice constant, 
obtained from X-ray diffraction. In Fig.  12.2 we show their results obtained 
with an aluminum sample.

Incidentally, the volume of a single vacancy is considerably smaller than the vol-
ume corresponding to a single atom in the unperturbed crystal (the “atomic volume”), 
since the neighboring atoms around the vacancy move a bit closer toward each other, 

Fig. 12.1   Plot of log c versus 1/T (left) and versus p (right), schematically after (12.6)

Fig. 12.2   Influence of the vacancies, existing in equilibrium within the crystal lattice, upon the 
temperature dependence of the crystal volume of aluminum. Because of the thermally gener-
ated vacancies, the temperature dependence of the relative length change, ΔL/L, (upper curve) 
is slightly larger than the temperature dependence of the relative change of the distance between 
neighbors in the crystal lattice, Δa/a (lower curve). The difference between both curves increases 
with increasing temperature. (R.O. Simmons and R.W. Balluffi)
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and the crystal lattice becomes distorted at this location. The formation of the vacan-
cies is accompanied by a distinct increase of the “inner energy” of the crystal. This 
also leads to an additional contribution to the specific heat of the crystal. In the noble 
metals, copper, silver, and gold, not far below their melting temperature, we have 
about one single vacancy per one thousand lattice atoms. In equilibrium at room tem-
perature the vacancy concentration is smaller by many powers of ten.

Furthermore, the vacancies generated in the state of equilibrium can move 
through the crystal by means of diffusion. During an elementary diffusion jump 
from one lattice site to the next, vacancies pass through an activated state, in 
which they are located between two neighboring lattice sites. We denote the num-
ber of vacancies in the activated state by n*. For the ratio n*/n one obtains an 
expression analog to (12.6), in which the following quantities appear: the activa-
tion energy of motion, UB, the activation volume of motion, VB, and the change of 
the entropy of the lattice vibrations, SB

vibr:

If the concentration of vacancies is sufficiently high, they can combine with other 
vacancies forming double vacancies, similar to a molecule consisting of two atoms. 
Still larger complexes of vacancies are also possible. In this way an extensive reac-
tion scheme of the vacancies and their larger “molecular compounds” develops. 
Lattice vacancies and their motion through the crystal also represent an important 
mechanism for atomic materials transport in crystals and for solid state chemistry. 
In a crystal the process of hopping from site to site is only possible, if unoccupied 
lattice sites are available. Therefore, chemical reactions and the diffusion processes 
in a solid are closely related to the dynamics of vacancies (this is highly important, 
for example, for achieving the optimum oxygen concentration in high-temperature 
superconductors). Before the concept of lattice vacancies had been established, one 
assumed that there must exist some kind of “pores in the lattice” or “loosened sites”, 
which allow the transport of matter. In the context of this discussion it is important to 
note that we have only considered the case of single crystals and that, hence, we have 
ignored grain boundaries between single-crystalline grains with different crystallo-
graphic orientation. Very often such grain boundaries do exist, and then they provide 
favored diffusion channels for the transport of matter throughout the whole crystal.

Whereas in the case of the vacancies an atom is missing at its site in the crystal lat-
tice, there is also the possibility, that one atom too much is present, which must then 
push itself between the other atoms and accommodate itself at an “interstitial lat-
tice site”. Again, around the interstitial atom the crystal lattice is distorted. In general, 
the energy gain in the crystal due to the interstitial atom is much larger than that for a 
vacancy, since the regular atoms in the lattice cannot be pushed away so easily, in order 
to make room for the newcomer. For the first time, the Russian Abram Fedorovich Ioffe 
proposed the idea of the interstitial lattice sites in the year 1916. During the irradiation 
of crystals with highly energetic particles, vacancies and interstitial lattice atoms are 
often generated together, if, for example, due to the particles of the radiation one atom 
is shot away from its regular lattice site and then must again find another place for itself 

(12.7)n∗/n = exp
(
SvibrB /kB

)
· exp
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)
/kBT
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within the crystal lattice. The pair of defects consisting of a vacancy and an interstitial 
lattice atom in the crystal is referred to as a Frenkel defect. This name originates from 
the Russian theoretical physicist Jakov Iljitsch Frenkel, who as a collaborator of Ioffe 
belonged to Ioffe’s Institute in Leningrad. In the year 1925 he developed a theory of the 
defect pair, which was later named after him.

In the beginning of the studies of vacancies and interstitial lattice sites in a crystal, 
both of which are also referred to as point defects, attention was concentrated on the 
“ionic crystals”. This type of crystal is composed of positively and negatively charged 
ions. Since the ions have either given up an electron or have taken up one, they pos-
sess the favored closed electron shells. Since the number of ions with the opposite 
electric charge, respectively, is exactly equal, charge neutrality in the crystal is main-
tained. The binding in the ionic crystals arises from the attractive force between ions 
with the opposite electric charge, as we discussed in Sect. 2.3. Ionic crystals cannot 
conduct an electric current and are electrical insulators. A typical example is common 
salt, NaCl, composed of positive sodium ions and negative chlorine ions.

Already in the 1920s, the First Institute of Physics directed by Robert Wichard Pohl at 
the University of Göttingen in Germany was a prominent location for the investigation 
of ionic crystals. In addition to his scientific research, Pohl also became famous because 
of the highly impressive and intuitive style of his main course in Experimental Physics, 
which was known as “Pohl’s circus”. This has also become visible in the many editions 
of his famous textbook on Experimental Physics consisting of three volumes. In Pohl’s 
Institute many physical properties of the ionic crystals were studied. These crystals are 
transparent in a large spectral range. However, their electrical and optical properties are 
extremely sensitive against point defects and other perturbations in the crystal lattice. In 
particular, the point defects became famous, since they act as “color centers” and display 
characteristic optical properties. Actually, they were the first crystal defects, which were 
carefully studied experimentally and theoretically. Eventually, different kinds of color 
centers were discovered in ionic crystals, predominantly due to their optical spectral prop-
erties, and theoretical models were subsequently developed for the interpretation of the 
experimental results. For example, for a specific center one could show that it must corre-
spond to a vacancy, where a negative chlorine ion (Cl−) was missing, and where an elec-
tron was trapped. At the end of the 1930s it was mainly the Englishman Nevill Francis 
Mott, who applied quantum mechanics to lattice defects in crystals, similarly to the 
way in which it had been done before in the physics of atoms. Working in Bristol, Mott 
directed his attention in particular to the results obtained by Pohl’s group in Göttingen. In 
the USA at the time it was mainly Frederick Seitz, who took up theoretical studies in this 
field. The point defects in ionic crystals then appeared to represent a relatively simple, but 
highly promising, field of study, from which valuable knowledge also about the electrical 
properties of semiconductors and the mechanical properties of metals could be gained.

In Göttingen, Pohl had established, perhaps worldwide, the first significant school of 
solid state physics. He came to Göttingen in the year 1918. Prior to that he had worked in 
Berlin, among other things on questions dealing with the emission of electrons from metal 
surfaces under light irradiation (the photo-electric effect), and at the end on problems of 
the radio technique. When he was asked sometime later, why in Göttingen he shifted his 
interest mainly to the interior of crystals, he gave the (not so serious) answer, that in the 
impoverished Göttingen the financial means were not sufficient for experiments carried 
out in high vacuum.

http://dx.doi.org/10.1007/978-3-319-09141-9_2
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12.3 � Materials Science of Radiation Damage

During the Second World War, in the USA new developments started because of 
the operation of the first nuclear reactor. On the afternoon of December 2, 1942 
at about 3:30  p.m. The first nuclear chain reaction was realized in the uranium/
graphite pile, which Fermi and his team had constructed below the west stand of 
the Stagg Field Stadium at the University of Chicago. At the time this achievement 
was immediately forwarded in the famous encoded announcement: “The Italian 
navigator has just landed in the New World. …The natives were very friendly.” 
This event represented the start of the technical use of nuclear reactors for the pro-
duction of energy. Hence, the field of defects and radiation damage in crystals and 
in metallic materials gained an extreme practicality. At the time, the theoretical 
physicist (also trained as a chemical engineer) Eugene Paul Wigner feared that the 
energetic neutrons generated within the reactor would cause a dangerously high 
concentration of lattice defects in the graphite used for slowing down the neutrons 
(resulting in an explosive reaction). A similar fear was expressed by Leo Szilard 
who, like Wigner, also originated from Hungary. The problems were then soon 
referred to as the “Wigner disease” or the “Szilard complication” by participating 
co-workers. At the time, the extreme practicality of the subject of radiation dam-
age in crystals and in metallic materials had caused Frederick Seitz to strongly 
intensify his relevant theoretical calculations. Incidentally, it was Szilard, who 
only a few years earlier, after the discovery of nuclear fission by Otto Hahn and 
Fritz Strassmann in Berlin, had moved Albert Einstein to write his famous letter 
to the American President Franklin Delano Roosevelt, in which Einstein warned 
against the possibility of the Atomic Bomb.

In the years 1949–1951 Frederick Seitz established a center for basic research 
in the field of defects and radiation damage in solids at the University of Illinois 
in Urbana. Later on, from the gained knowledge one could estimate, for example, 
that during an operation time of 10 years of a fast breeder reactor, in its inner com-
ponents each lattice atom is expelled on the average 340 times from its lattice site 
into an interstitial position (and back again). An early estimate for the first wall of 
a fusion reactor yielded a similar number, namely 170.

In the context of the doping of semiconductors we have become acquainted 
already with artificially generated defects or with imperfections caused by chemi-
cal admixtures in the crystal lattice. Another example are the pinning centers in 
superconductors which, as local perturbations of the crystal lattice, hinder the 
motion of the quantized magnetic flux lines, and hence, strongly reduce the heat 
losses during electric current flow. In both cases the defects in the crystal exer-
cise highly useful functions. Next we will look more closely at the role of lattice 
defects in the mechanical strength of materials.

12.3   Materials Science of Radiation Damage
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12.4 � Mechanical Strength of Materials

In the year 1660, the Englishman Robert Hooke studied experimentally the elastic 
strain of metals under mechanical load, and in doing so he discovered the famous 
Hooke’s law named after him. Later on, for a few years he was Secretary of the 
Royal Society in London. Hooke’s law says that the elastic strain increases exactly 
linearly with increasing mechanical load. If the load is removed, the strain returns 
back to zero. The strain is still reversible. In this context the concept of mechanical 
stress was introduced. In the simplest case of a rod pulled in a longitudinal direc-
tion, it is the pulling force per unit cross-section of the rod. From Hooke’s law 
the stability of metal structures can be calculated. Hence, in 1779, the first bridge 
worldwide made completely from iron was built near Birmingham in England. 
Subsequently, it has carried the road traffic for 170 years.

In subsequent discussions and in the technical use of their elastic properties, 
for a long time metals were treated as continuous matter, without paying atten-
tion to their inner microscopic structure. However, the still relatively simple, elas-
tic behavior according to Hooke’s law is observed only if the strain of the material 
does not become too large. Above a critical strain level, plastic deformation sets 
in, and eventually the material tears apart. Now the changes in the material due to 
the mechanical load are no longer reversible. At this point the microscopic struc-
ture must be taken into account. The same applies also to the changes occurring in 
metals during bending, rolling, or forging. However, until late into the 19th cen-
tury, nobody knew what actually happened during these processes.

After the crystal structures of the metals were clarified by means of the dif-
fraction of X-rays, the question had to be answered of how the crystal lattice is 
deformed during mechanical working of the metals. At the time, the largest 
advance in knowledge was hoped to be gained from samples consisting only of 
a single crystallite, referred to as single crystals. At the beginning of the 1920s 
at the Kaiser-Wilhelm-Institute for the Chemistry of Fibrous Materials in Berlin-
Dahlem, Hermann Francis Mark, Michael Polanyi, and E. Schmid performed con-
trolled mechanical tension tests with single crystals of zinc. Their experiments 
showed that the deformation of the metals under tension occurs by shifting parts 
of the crystal along distinct gliding planes, where the gliding plane and the glid-
ing direction depends upon the crystal structure. During this process the micro-
scopic crystal structure itself remains unchanged (Fig.  12.3). Experiments at the 
Cavendish Laboratory in Cambridge, England yielded similar results. However, 
during this research there appeared puzzling surprises. During their deforma-
tion, the metals seemed to become mechanically stronger. Therefore, it was pre-
sumed that, during the deformation defects are generated within the crystal lattice, 
which make further deformation more difficult. Furthermore, the calculation of 
the mechanical tension, at which parts of the crystal start shifting relative to each 
other, yielded values which were up to thousand times larger than the experimental 
data. Apparently, the metal crystals were much softer than expected theoretically. 
Something in the concept was wrong, and a new mechanism had to be invented.



193

The way out of this dilemma was provided by three scientific papers, all of 
which were published independently of each other in 1934. The model required 
had to present a strategy, in which in the final result, a more or less local defect, 
by its motion through the crystal lattice, achieved a gliding motion of large parts 
of the crystal relative to each other. In other words: a small cause must achieve a 
large effect. One of the authors was Michael Polanyi, who had studied the plas-
ticity of metals for some time. The second paper was written by the Englishman, 
Sir Geoffrey Taylor. During the First World War, he had investigated the suscep-
tibility of crankshafts to cracks for the Royal Air Force, and he had worked on 
theories about crack formation and crack propagation. Subsequently, as Royal 
Society Professor at the University of Cambridge, Taylor studied the plasticity of 
metal single crystals and the processes during their deformation. Egon Orowan, 
originating from Hungary, was the third author. In the 1920s he had studied elec-
trical engineering at the Technical University in Berlin-Charlottenburg, and also 
developed an interest in physics. Orowan became acquainted with the problems 
of plastic deformation through Richard Becker, at the time just recently appointed 
as Professor of Theoretical Physics. Shortly before, Becker had proposed a theory 
on this subject. One day, Orowan had to visit Becker in his office because of a 
required signature. How this event abruptly changed the career of the young stu-
dent, was told by Orowan later as follows:

In the next minute my course of life was changed. This happened because of the excep-
tionally large office of the professor. Becker was a shy and hesitating person; however, on 
my way out, before I had reached the door of his huge office, he had arrived at a decision. 

Fig. 12.3   Deformation of a crystal due to slippage, schematically. Only the front plane of the 
crystal lattice is shown, and additional lattice planes are further behind. The microscopic crys-
tal structure in the undeformed (top) and in the deformed state (bottom) remains the same.  
(U. Essmann)

12.4  Mechanical Strength of Materials
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He called me back and asked if I would not be interested to experimentally check a little 
theory of plasticity, which he had worked out three years ago. To engage oneself in plas-
ticity looked like a prosaic, if not downgrading proposal during the age of a De Broglie, 
Heisenberg, and Schrödinger, however, it was still better than having to calculate my sixti-
eth transformer, and therefore, I accepted.

12.5 � Dislocations

In the quoted three papers the concept of a “dislocation”, which moves through 
the crystal as a local perturbation of the crystal lattice, was proposed for the first 
time. Here an additional plane of atoms is inserted into part of the crystal, which 
at its end within the crystal forms the “dislocation line” (Fig. 12.4). In the region 
around this dislocation line the crystal lattice is distorted. If the dislocation moves 
along its gliding plane through the crystal, at the end of this motion two parts of 
the crystal are displaced relative to each other by one atomic distance. During this 
process only individual atoms on the dislocation line are always displaced by not 
more than a single atomic distance (Fig. 12.5). In this way, during a deformation it 
is no longer necessary, to displace all atoms on the gliding plane simultaneously. 
In agreement with experiment, a relatively small shear stress is now sufficient to 
induce the motion of the dislocation. At one time, Nevill Francis Mott has vividly 
illustrated this process:

The analogy with a wrinkle in a carpet is very useful… We all know that there are two 
methods for moving a carpet along the floor. Either we can grab one end and pull, or we 
can form a wrinkle at one end and drive it carefully to the other end. With a large, heavy 

Fig. 12.4   Model of an edge 
dislocation in a simple-cubic 
lattice. In the lower half 
one can see an additional 
(vertical) plane of lattice 
atoms. (W. Sigle)



195

carpet the second method needs less effort… Now we want to look at the situation in a 
crystal. What I have called here a wrinkle, in the technical jargon is denoted as a ‘disloca-
tion’… We see that we arrive at the same result, if a dislocation is generated at one end of 
the crystal and then moves through the crystal, as if one half is gliding over the other ….

The dislocation line must be understood as the boundary line of a section of the glid-
ing plane, at which the adjoining parts of the crystal on both sides of the gliding 
plane have been displaced by one atomic distance against the other. Therefore, a dis-
location line cannot terminate somewhere in the middle of the crystal, and, instead, 
it must extend until it reaches the crystal surface, or at least it must form a closed 
ring. All of our discussions up to this point refers to the relatively simple case of 
the “edge dislocations”. However, there also exist other types of dislocations, which 
need a more complicated description, and which will not be discussed further here.

The concept of dislocation provided the key mechanism for clarifying our 
understanding of the mechanical properties of crystals. At this point we recall our 
discussion in Sect. 8.6 of the other example where the motion of another type of 
defect, namely individual magnetic flux quanta, results in the key mechanism for 
the destruction of superconductivity and the appearance of electrical resistance.

The first direct experimental evidence for the crystal dislocations by means 
of their observation in an electron microscope was accomplished in the year 
1956 at the Batelle Institute in Geneva and also at the Cavendish Laboratory in 
Cambridge. At the time, it was a particular highlight, when even the motion of 
dislocations could be followed in the electron microscope. The distortion of 
the crystal lattice near the dislocation line results in mechanical stresses in this 
region of the material. The stress field associated with each dislocation extends 
up to a relatively long distance, and by means of the stress fields an interaction 
arises between the dislocations. As the deformation of the crystal progresses, the 
number of dislocations increases. However, during this process, among the dislo-
cations a mutual blocking effect sets in, such that the force necessary for further 
deformation increases. The crystal becomes mechanically stronger and harder, 

Fig. 12.5   Slippage along a gliding plane, caused by the motion of an edge dislocation, schemati-
cally. Left hand The dislocation has been formed at the crystal edge on the left. Middle The dislo-
cation has reached the middle of the crystal. Right hand The dislocation has left the crystal at the 
edge on the right, and has left behind a slippage step. (U. Essmann)

12.5  Dislocations

http://dx.doi.org/10.1007/978-3-319-09141-9_8


196 12  Defects in the Crystal Lattice: Useful or Harmful? 

until it eventually breaks. The same increase in mechanical strength is achieved 
during the cold-working of metals, i.e., by forging, rolling, or bending. Hence, it 
was found essentially, that the same defect in the crystal lattice, which causes the 
highly useful ductility of metals, also leads to the development of their hardness 
during cold-working (Fig. 12.6).

In metals, permanently changing mechanical loads are particularly harm-
ful. There is the possibility of metal fatigue, which eventually leads to “fatigue 
fracture”. We all know the phenomenon, i.e., that a metal wire can break, if one 
bends it back and forth often enough. Changing mechanical loads appear very 
frequently in technical equipment. As long as the load stays precisely within 
the elastic regime of the material, it is still harmless. However, the situation 
becomes critical if tiny plastic deformations start to develop, such that dislo-
cations move back and forth within the crystal lattice. Eventually, a collection 
of many dislocations can lead to the seed of microcracks, representing the first 
stage of fatigue fracture. Here the details are highly complex, and even today 
they are the subject of further research. It appears that a similar scenario has 
led to the terrible accident of the Intercity Express Train on June 3, 1998 near 
Eschede north of Hannover in Germany, with many people killed or severely 
injured. At the time, the train ICE 884 “Wilhelm Conrad Röntgen”, running 
between Munich and Hamburg-Altona, was involved. A hidden crack at the 
inner side of a metal tire eventually resulted in fatigue fracture of the tire. The 
tire was then caught in a switch, which considerably enhanced the disaster. The 
involved tire had been in operation since 1994, and it had run 1.8 million kilo-
meters until the day of the accident. However, during these 4  years it was not 
exactly and carefully checked one single time.

bottom

top

(0006)

400nm

Fig.  12.6   Two-beam image showing several parallel edge dislocations in hexagonal BaTiO3 
ceramics. The dislocations were imaged by diffraction contrast in a transmission electron micro-
scope. Bragg diffracting planes are bent due to the strain field of the dislocations yielding a con-
trast along the dislocation line. Right sketch of a dislocation penetrating the TEM foil (about 
100 nm thick) from top to bottom. (O. Eibl)
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12.6 � Materials Testing

The accident we have just discussed raises the question of the early detection of 
defects in materials or of perhaps already developed microcracks or damages due 
to corrosion. The technical equipment required for this purpose has been available 
for many years, and it is being continuously improved. In the meantime, “nonde-
structive materials testing” has become an important and unavoidable technical sub-
field. In addition to the inspection of the raw materials of the iron and steel industry, 
important fields for the application of testing methods exist, for example, in 
armored pre-stressed concrete, in certain parts of airplanes such as wheels, fuselage, 
and wings, or in the under-water steel construction of derricks for oil. In the materi-
als testing of metals a highly prominent role is played by the eddy-current method. 
In this method an electric high-frequency alternating current is locally induced in 
the test sample by means of a high-frequency coil, and simultaneously the electri-
cal resistance behavior at this location of the test piece is determined. In this way, 
even very small microcracks in the interior of the material can be detected. Because 
of his pioneering research and development in this field over many years, which he 
had started in the 1930s, the German Friedrich Förster gained worldwide fame.

During recent years, also the SQUID, based on the Josephson effect and on the 
magnetic flux quantization in superconductors, has become increasingly important 
for the nondestructive materials testing and in particular also for the detection of 
microcracks and foreign inclusions. Having the highest sensitivity of all sensors of 
magnetic fields, SQUIDs are used for the detection of local anomalies in the mag-
netic or the electromagnetic stray field. Initially, the SQUIDs were fabricated from 
classical superconductors, and usually they had to be cooled down to only a few 
Kelvin using liquid helium. However, for a few years, SQUIDs made from high-
temperature superconductors have also been available, which need to be cooled 
only to about 80 K, for example, with liquid nitrogen. Compared with the traditional 
electric eddy-current method, discussed above, the SQUID sensors are much more 
sensitive, in particular for the detection of defects which are located more deeply 
within the material. Recently, a routine evaluation at the wheel-testing facility of the 
German Lufthansa Airline at the Airport of Frankfurt, yielded promising results.

Using another example we wish to illustrate the importance of materials test-
ing, in particular for constructions made of steel: i.e., the shipwreck of the Titanic 
during April 1912. Even today this marine catastrophe is a frequently-discussed 
dramatic subject. In 2012, exactly 100  years after the accident, it received very 
much attention. The physicist Uwe Essmann, working at the Max Planck Institute 
for Metals Research in Stuttgart, has impressively summarized this case in an 
essay entitled “Metals: From Stone Age Ornaments To Jet Turbine Engines”, 
where he refers to an article in the International Herald Tribune from February 19, 
1998. In the following we quote his summary:

On her maiden voyage, on April 14, 1912 shortly before midnight, the Titanic collided 
with an iceberg, and on April 15 at 2:20 a.m. she sank. In 1985 the wreck was discovered 
by the oceanographer Robert Ballard off Newfoundland at a depth of 3,650 m. In 1910, 
the hull had been assembled from steel sheets of about 2.5 cm thickness at a shipyard in 

12.6   Materials Testing
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Belfast, using approximately three million forged-iron rivets. By means of special robots, 
steel sheets from the hull and some rivets could be recovered, and it is expected that, dur-
ing expeditions to the wreck in the future, additional circumstantial evidence about the 
course of the collision with the iceberg can be found. A group of ship-building engi-
neers and metallurgists associated with William Garzke, Chairman of the Commision on 
Damages of the Society of Naval Architects and Marine Engineers, is interested in the 
metallurgical questions arising in this case.

Following a maneuver with the rudder, the Titanic hit the iceberg at its starboard side. 
Up to now it had been assumed that, because of this collision, a longitudinal rupture 
appeared across several bulkheads, which eventually resulted in the shipwreck. However, 
in the year 1996 investigations of the wreck with a special sonar instrument could not 
confirm this expectation. Instead, six lateral openings were found in the hull, which appar-
ently were caused by blows as the Titanic scratched along the iceberg.

With the engineers involved in this case this observation raised the suspicion that, 
at the openings, the rivet seams between neighboring steel sheets had burst. Then at the 
(American) National Institute of Standards and Technology in Gaithersburg, Maryland, 
Tim Foecke started a metallurgical inspection of the salvaged rivets. By means of a dia-
mond saw, one rivet was parted along its length, and its inner texture was studied with a 
metallurgical microscope. Forged iron does not consist of pure iron, but normally it con-
tains about 2 % of slag fibers, which result from slag inclusions during forging, and which 
are well recognized within the texture. The slag fibers improve the fatigue and the cor-
rosion properties of the material. However, its volume fraction must not exceed 2 % by 
much, since otherwise the mechanical strength of the rivets deteriorates. In the inspected 
rivet the slag content was 9 %, which cannot be tolerated. If initially only a few weak riv-
ets have given in, a seam could rupture further like in textiles, leading to a fatal influx of 
water. It remains to be seen, if this suspicion will be confirmed. If so, it would not change 
anything directly relating to the collision with the iceberg. However, if the seams between 
the hull sheets would have been intact, perhaps only small leaks would have appeared, 
which could have been handled by the bilge-pumps of the Titanic.

In 2008, together with Jennifer Hooper McCarthy, Tim Foecke published the book 
What really sank the Titanic—New Forensic Discoveries, in which they reported 
on the materials research for nearly 10 years, dealing with the objects recovered 
from the Titanic and particularly with the poor quality of the rivets.
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1901	� Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable 
rays subsequently named after him

1909	� Guglielmo Marconi, London, and Ferdinand Braun, Strassburg, for their 
contributions to the development of wireless telegraphy

1913	� Heike Kamerlingh Onnes, Leiden, for his investigations on the properties 
of matter at low temperatures which lead, inter alia, to the production of 
liquid helium

1914	� Max von Laue, Frankfort/Main, for his discovery of the diffraction of 
X-rays by crystals

1915	� William Henry Bragg, London, and William Lawrence Bragg, 
Manchester, for their analysis of crystal structure by means of X-rays

1918	� Max Planck, Berlin, in recognition of the services he rendered to the 
advancement of Physics by his discovery of energy quanta

1920	� Charles Edouard Guillaume, Sèvres, in recognition of the service he has 
rendered to precise measurements in Physics by his discovery of anoma-
lies in nickel steel alloys

1921	� Albert Einstein, Berlin, for services to Theoretical Physics, and especially 
for his discovery of the law of the photoelectric effect

1923	� Robert Andrews Millikan, Pasadena, California, for his work on the ele-
mentary charge of electricity and on the photo-electric effect

1924	� Manne Siegbahn, Uppsala, for his discoveries and researches in the field 
of X-ray spectroscopy

1926	� Jean Baptiste Perrin, Paris, for his work on the discontinuous structure of 
matter, and especially for his discovery of sedimentation equilibrium

1928	� Owen Willans Richardson, London, for his work on the thermionic phe-
nomenon and especially for his discovery of the law named after him

1929	� Louis Victor de Broglie, Paris, for his discovery of the wave nature of 
electrons

1930	� Venkata Raman, Calcutta, for his work on the scattering of light and for 
the discovery of the effect named after him

Nobel Prizes in Physics Closely Connected 
with the Physics of Solids
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1932	� Werner Heisenberg, Leipzig, for the creation of quantum mechanics, the 
application of which has, inter alia, led to the discovery of the allotropic 
forms of hydrogen

1933	� Erwin Schrödinger, Berlin, and Paul Adrien Maurice Dirac, Cambridge, 
for the discovery of new productive forms of atomic theory

1937	� Clinton Joseph Davisson, New York, N. Y., and George Paget Thomson, 
London, for their experimental discovery of the diffraction of electrons 
by crystals

1945	� Wolfgang Pauli, Zurich, for the discovery of the Exclusion Principle, also 
called the Pauli Principle

1946	� Percy Williams Bridgman, Harvard University, Massachusetts, for the 
invention of an apparatus to produce extremely high pressures and for 
discoveries he made in the field of high pressure physics

1952	� Felix Bloch, Stanford University, California, and Edward Mills Purcell, 
Harvard University, Massachusetts, for the development of new methods 
for nuclear magnetic precision measurements and the discoveries in con-
nection therewith

1954	� Max Born, Edinburgh, for his fundamental research in quantum mechan-
ics, especially for his statistical interpretation of the wave-function

1956	� William Shockley, Pasadena, California, John Bardeen, Urbana, Illinois, 
and Walter Houser Brattain, Murray Hill, New Jersey, for their investiga-
tions on semiconductors and their discovery of the transistor effect

1961	� Rudolf Ludwig Mössbauer, Munich, for his researches concerning the 
resonance absorption of gamma radiation and his discovery in this con-
nection of the effect which bears his name

1962	� Lew Dawidowitsch Landau, Moscow, for his pioneering theories for con-
densed matter, especially liquid helium

1965	� Sin-itiro Tomonaga, Tokyo, Julian Seymour Schwinger, Cambridge, 
Massachusetts, and Richard Phillips Feynman, Pasadena, California, for 
their fundamental work in quantum electrodynamics, with deep-plough-
ing consequences for the physics of elementary particles

1970	� Louis Eugène Felix Néel, Grenoble, for fundamental work and discover-
ies concerning antiferromagnetism and ferromagnetism which have led to 
important applications in solid state physics

1972	� John Bardeen, Urbana, Illinois, Leon Neil Cooper, Providence, Rhode 
Island, and John Robert Schrieffer, Philadelphia, Pennsylvania, for their 
theory of superconductivity, usually called the BCS-theory

1973	� Leo Esaki, Yorktown Heights, New York, and Ivar Giaever, Schenectady, 
New York, one half for their experimental discoveries regarding tunnel-
ing phenomena in semiconductors and superconductors, respectively, and 
with the other half to Brian David Josephson, Cambridge, UK, for his 
theoretical predictions of the properties of a supercurrent through a tunnel 
barrier, in particular those phenomena which are generally known as the 
Josephson effects
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1977	� Philip Warren Anderson, Murray Hill, New Jersey, Nevill Francis 
Mott, Cambridge, UK, and John Hasbrouck Van Vleck, Cambridge, 
Massachusetts, for their fundamental theoretical investigations of the 
electronic structure of magnetic and disordered systems

1978	� Pyotr Leonidovich Kapitza, Moscow, for his basic inventions and discov-
eries in the area of low-temperature physics

1981	� Kai Manne Siegbahn, Uppsala, for his contribution to the development of 
high-resolution electron spectroscopy

1982	� Kenneth Geddes Wilson, Cornell University, New York, for his theory of 
critical phenomena in connection with phase transitions

1985	� Klaus von Klitzing, Stuttgart, for the discovery of the quantized Hall 
effect

1986	� Ernst Ruska, Berlin, for his fundamental work in electron optics and for 
the design of the first electron microscope, and the other half jointly to 
Gerd Binnig and Heinrich Rohrer, Zurich, for their design of the scanning 
tunneling microscope

1987	� Johannes Georg Bednorz and Karl Alexander Müller, Zurich, for their 
important breakthrough in the discovery of superconductivity in ceramic 
materials

1991	� Pierre-Gilles de Gennes, Paris, for discovering that methods developed 
for studying order phenomena in simple systems can be generalized 
to more complex forms of matter, in particular to liquid crystals and 
polymers

1994	� Bertram Neville Brockhouse, McMaster University, Hamilton, Ontario, 
for the development of neutron spectroscopy, and to Clifford Glenwood 
Shull, Massachusetts Institute of Technology, Cambridge, Massachusetts, 
for the development of the neutron diffraction technique

1996	� David Morris Lee, Cornell University, New York, Douglas Dean 
Osheroff, Stanford University, California, and Robert Coleman 
Richardson, Cornell University, New York, for their discovery of super-
fluidity in helium-3

1998	� Robert Betts Laughlin, Stanford University, California, Horst Ludwig 
Störmer, Columbia University, New York, and Daniel Chee Tsui, 
Princeton University, New Jersey, for their discovery of a new form of 
quantum fluid with fractionally charged excitations

2000	� Zhores Ivanovich Alferov, St. Petersburg, Herbert Kroemer, Santa 
Barbara, California, and Jack St. Clair Kilby, Dallas, Texas, for basic 
work on information and communication technology, in particular for 
developing semiconductor hetero-structures used in high-speed- and 
opto-electronics, and for the invention of the integrated circuit

2003	� Alexei Alexeyevich Abrikosov, Argonne, Illinois, Vitaly Lazarevich 
Ginzburg, Moscow, and Anthony James Leggett, Urbana, Illinois, for 
their pioneering contributions to the theory of superconductors and 
superfluids
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2007	� Albert Louis Francois Fert, Paris, and Peter Grünberg, Jülich, for the dis-
covery of giant magneto-resistance

2009	� Willard S. Boyle, Charles Kuen Kao, and George Elwood Smith, Bell 
Laboratories, Murray Hill, New Jersey, for the invention of an imaging 
semiconductor circuit—the CCD sensor

2010	� Andre Geim and Konstantin Novoselov, Manchester, UK, for discovering 
and isolating a single free-standing atomic layer of carbon (graphene) and 
elucidating its remarkable electronic properties
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Nobel Prizes in Chemistry Closely Connected 
with the Physics of Solids

1920	� Walther Nernst, Berlin, in recognition of his work in thermochemistry
1936	� Peter Debye, Berlin-Dahlem, for his contributions to our knowledge of 

molecular structure through his investigations on dipole moments and on 
the diffraction of X-rays and electrons in gases

1949	� William Francis Giauque, Berkeley, California, for his contributions in 
the field of chemical thermodynamics, particularly concerning the behav-
iour of substances at extremely low temperatures

1954	� Linus Carl Pauling, Pasadena, California, for his research into the nature 
of the chemical bond and its application to the elucidation of the structure 
of complex substances

1966	� Robert Sanderson Mulliken, Chicago, Illinois, for his fundamental work 
concerning chemical bonds and the electronic structure of molecules by 
the molecular orbital method

1968	� Lars Onsager, New Haven, Connecticut, for the discovery of the reciproc-
ity relations bearing his name, which are fundamental for the thermody-
namics of irreversible processes

1977	� Ilya Prigogine, Brussels, for his contribution to non-equilibrium thermo-
dynamics, particularly the theory of dissipative structures

1985	� Herbert Aaron Hauptman, Buffalo, New York, and Jerome Karle, 
Washington, DC, for their outstanding achievements in the development 
of direct methods for the determination of crystal structures

1988	� Johann Deisenhofer, Dallas, Texas, Robert Huber, Martinsried, and 
Hartmut Michel, Frankfort/Main, for the determination of the three-
dimensional structure of a photosynthetic reaction centre

1991	� Richard Robert Ernst, Zurich, for his contributions to the development of 
the methodology of high resolution nuclear magnetic resonance (NMR) 
spectroscopy

1996	� Robert Floyd Curl, Jr., Rice University, Houston, Texas, Harold Walter 
Kroto, University of Sussex, and Richard Errett Smalley, Rice University, 
for their discovery of fullerenes
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1998	� Walter Kohn, Santa Barbara, California, for his development of the den-
sity-functional theory, and John Anthony Pople, Northwestern University, 
Evanston, Illinois, for his development of computational methods in 
quantum chemistry

2000	� Alan Jay Heeger, Santa Barbara, California, Alan Graham MacDiarmid, 
Philadelphia, Pennsylvania, and Hideki Shirakawa, Tsukuba, for the dis-
covery and development of conductive polymers

2007	� Gerhard Ertl, Fritz-Haber Institut, Berlin, for his studies of chemical pro-
cesses at solid surfaces

2011	� Daniel Shechtman, Technion, Haifa, for the discovery of quai-crystals
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