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B OBIJECTIVES

Upon completion of this chapter, vou will be able to:
B Distinguish between analog and digital representations.

B Cite the advantages and drawbacks of digital techniques compared
with analog.

B  Understand the need for analog-to-digital converters (ADCs) and
digital-to-analog converters (DACs).

B Recognize the basic characteristics of the binary number system.

B Convert a binary number to its decimal equivalent.

B  Count in the binary number system.

B TIdentify typical digital signals.

B Jdentify a timing diagram.

B State the differences between parallel and serial transmission.

B Describe the property of memory. ;

B Describe the major parts of a digital computer and understand their ;
functions. :

B Distinguish among microcomputers, microprocessors, and

microcontrollers.

B INTRODUCTION

In today’s world, the term digital has become part of our everyday vocabr
lary because of the dramatic way that digital circuits and digital techniques:
have become so widely used in almost all areas of life: computers, automa-
tion, robots, medical science and technology, transportation, telecommuni-
cations, entertainment, space exploration, and on and on. You are about to
begin an exciting educational journey in which you will discover the funda-
mental principles, concepts, and operations that are common to all digital
systems, from the simplest on/off switch to the most complex computer. If
this book is successful, you should gain a deep understanding of how all
digital systems work, and you should be able to apply this understanding to -
the analysis and troubleshooting of any digital system.

We start by introducing some underlying concepts that are a vital part
of digital technology; these concepts will be expanded on as they are
needed later in the book. We also introduce some of the terminology that is
necessary when embarking on a new field of study, and add to this list of
important terms in every chapter. :
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1-1 NUMERICAL REPRESENTATIONS

In science, technology, business, and, in fact, most other fields of endeavor,
we are constantly dealing with quantities. Quantities are measured, moni-
tored, recorded, manipulated arithmetically, observed, or in some other way
utilized in most physical systems. It is important when dealing with various
quantities that we be able to represent their values efficiently and accu-
rately. There are basically two ways of representing the numerical value of
guantities: analog and digital.

] Analog Representations

In analog representation a quantity is represented by a continuously vari-
able, proportional indicator. An example is an automobile speedometer from
the classic muscle cars of the 1960s and 1970s. The deflection of the needle
is proportional to the speed of the car and follows any changes that occur as
the vehicle speeds up or slows down. On older cars, a flexible mechanical
shaft connected the transmission to the speedometer on the dash board. It is
interesting to note that on newer cars, the analog representation is usually
preferred even though speed is now measured digitally.

Thermometers before the digital revolution used analog representation to
measure temperature, and many are still in use today. Mercury thermometers
use a column of mercury whose height is proportional to temperature. These
devices are being phased out of the market because of environmental con-
cerns, but nonetheless they are an excellent example of analog representa-
tion. Another example is an outdoor thermometer on which the position of the
pointer rotates around a dial as a metal coil expands and contracts with tem-
perature changes. The position of the pointer is proportional to the tempera-
ture. Regardless of how small the change in temperature, there will be a
proportional change in the indication.

In these two examples the physical quantities (speed and temperature) are
being coupled to an indicator by purely mechanical means. In electrical analog
systems, the physical quantity that is being measured or processed is converted
to a proportional voltage or current (electrical signal). This voltage or current
is then used by the system for display, processing, or control purposes.

Sound is an example of a physical quantity that can be represented by an
electrical analog signal. A microphone is a device that generates an output
voltage that is proportional to the amplitude of the sound waves that strike
it. Variations in the sound waves will produce variations in the microphone’s
output voltage. Tape recordings can then store sound waves by using the out-
put voltage of the microphone to proportionally change the magnetic field on
the tape.

Analog quantities such as those cited above have an important charac-
teristic, no matter how they are represented: they can vary over a continuous
range of values. The automobile speed can have any value between zero and,
say, 100 mph. Similarly, the microphone output might have any value within
a range of zero to 10 mV (e.g., 1 mV, 2.3724 mV, 9.9999 mV).

Digital Representations

In digital representation the quantities are represented not by continuously
variable indicators but by symbols called digits. As an example, consider the
digital clock, which provides the time of day in the form of decimal digits that
represent hours and minutes (and sometimes seconds). As we know, the time
of day changes continuously, but the digital clock reading does not change
continuously; rather, it changes in steps of one per minute (or per second). In
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other words, this digital representation of the time of day changes in discrete
steps, as compared with the representation of time provided by an analog ac
line-powered wall clock, where the dial reading changes continuously.

The major difference between analog and digital quantities, then, can be
simply stated as follows:
analog = continuous
digital = discrete (step by step)

Because of the discrete nature of digital representations, there is no ambiguity
when reading the value of a digital quantity, whereas the value of an analog
quantity is often open to interpretation. In practice, when we take a measure-
ment of an analog quantity, we always “round” to a convenient level of preci-
sion. In other words, we digitize the quantity. The digital representation is the
result of assigning a number of limited precision to a continuously variable
quantity. For example, when you take your temperature with a mercury (ana-
log) thermometer, the mercury column is usually between two graduation lines,
but you would pick the nearest line and assign it a number of, say, 98.6°F.

~ EXAMPLE 1-1

Whmh nf Lhe followmc involve analog quantities dmi whu,h mvolve digital
gquantities?

(a) Ten-position switch

(b) Current flowing from an electrical outlet
(c) Temperature of a room

(d) Sand grains on the beach

(e) Automobile fuel gauge

Solution

(a) Digital

(b) Analog

{(c) Analog

(d) Digital, since the number of grains can be only certain discrete (integer)
values and not every possible value over a continuous range

(e) Analog, if needle type; digital, if numerical readout or bar graph display

TN \‘\'\\x‘\.‘&“\\\\"\"\x‘\"t‘\\k"‘
SN

R x:--\‘.“w““':ﬁ\“:?“? N ; . . : ; ST
RIS “ixwm%%:i%\ 1. Concisely describe the major difference between analog and digital

quantities.

1-2 DIGITAL AND ANALOG SYSTEMS

A digital system is a combination of devices designed to manipulate logical
information or physical quantities that are represented in digital form; that
is, the quantities can take on only discrete values. These devices are most

*Answers to review questions are found at the end of the chapter in which they occur.
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often electronic, but they can also be mechanical, magnetic, or pneumatic.
Some of the more familiar digital systems include digital computers and cal-
culators, digital audio and video equipment, and the telephone system—the
world’s largest digital system.

An analog system contains devices that manipulate physical quantities
that are represented in analog form. In an analog system, the quantities can
vary over a continuous range of values. For example, the amplitude of the
output signal to the speaker in a radio receiver can have any value between
zero and its maximum limit. Other common analog systems are audio ampli-
fiers, magnetic tape recording and playback equipment, and a simple light
dimmer switch.

Advantages of Digital Techniques

An increasing majority of applications in electronics, as well as in most other
technologies, use digital techniques to perform operations that were once
performed using analog methods. The chief reasons for the shift to digital
technology are:

1. Digital systems are generally easier to design. The circuits used in digital
systems are switching circuits, where exact values of voltage or current
are not important, only the range (HIGH or LOW) in which they fall.

2. Information storage is easy. This is accomplished by special devices and
circuits that can latch onto digital information and hold it for as long as
necessary, and mass storage techniques that can store billions of bits of
information in a relatively small physical space. Analog storage capabil-
ities are, by contrast, extremely limited.

3. Accuracy and precision are easier to maintain throughout the svstem. Once
a signal is digitized, the information it contains does not deteriorate as it
is processed. In analog systems, the voltage and current signals tend to
be distorted by the effects of temperature, humidity, and component tol-
erance variations in the circuits that process the signal.

4. Operation can be programmed. It is fairly easy to design digital systems
whose operation is controlled by a set of stored instructions called a
program. Analog systems can also be programmed, but the variety and
the complexity of the available operations are severely limited.

. Digital circuits are less affected by notse. Spurious fluctuations in voltage
(noise) are not as critical in digital systems because the exact value of a
voltage is not important, as long as the noise is not large enough to pre-
vent us from distinguishing a HIGH from a LOW.

(93]

6. More digital circuitry can be fabricated on IC chips. It is true that analog
circuitry has also benefited from the tremendous development of IC
technology, but its relative complexity and its use of devices that cannot
be economically integrated (high-value capacitors, precision resistors,
inductors, transformers) have prevented analog systems from achieving
the same high degree of integration.

Limitations of Digital Techniques

There are really very few drawbacks when using digital techniques. The two
biggest problems are:

The real world is analog.
Processing digitized signals takes time.
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Most physical quantities are analog in nature, and these quantities are often
the inputs and outputs that are being monitored, operated on, and controlled
by a system. Some examples are temperature, pressure, position, velocity, lig-
uid level, flow rate, and so on. We are in the habit of expressing these quan-
tities digitally, such as when we say that the temperature is 64° (63.8° when
we want to be more precise), but we are really making a digital approxima-
tion to an inherently analog quantity.

To take advantage of digital techniques when dealing with analog inputs
and outputs, four steps must be followed:

Convert the physical variable to an electrical signal (analog).

N o=

. Convert the electrical (analog) signal into digital form.

L

. Process (operate on) the digital information.

=~

. Convert the digital outputs back to real-world analog form.

An entire book could be written about step 1 alone. There are many kinds
of devices that convert various physical variables into electrical analog sig-
nals (sensors). These are used to measure things that are found in our “real”
analog world. On your car alone, there are sensors for fluid level (gas tank),
temperature (climate control and engine), velocity (speedometer), accelera-
tion (airbag collision detection), pressure (oil, manifold), and flow rate (fuel),
to name just a few.

To illustrate a typical system that uses this approach Figure 1-1 describes
a precision temperature regulation system. A user pushes up or down buttons
to set the desired temperature in 0.1° increments (digital representation). A
temperature sensor in the heated space converts the measured temperature
to a proportional voltage. This analog voltage is converted to a digital quan-
tity by an analog-to-digital converter (ADC). This value is then compared to
the desired value and used to determine a digital value of how much heat is
needed. The digital value is converted to an analog quantity (voltage) by a
digital-to-analog converter (DAC). This voltage is applied to a heating ele-
ment, which will produce heat that is related to the voltage applied and will
affect the temperature of the space.

Digital input:

Set Desired Temperature Digital signal representing

power (voltage) to heater

' [ | / Temperature controlled
= == — =i s % # | Digital-Analog > space
e 5 fosil Digital Processor g

Sensor
A : 8_
Heat
R T
2 T
-
Analog-Digital
Digital signal representing eltiausiel Analog signal representing
actual temperature actual temperature

FIGURE 1-1 Block diagram of a precision digital temperature control system.

Another good example where conversion between analog and digital
takes place is in the recording of audio. Compact disks (CDs) have replaced
cassette tapes because they provide a much better means for recording and
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playing back music. The process works something like this: (1) sounds from
instruments and human voices produce an analog voltage signal in a micro-
phone; (2) this analog signal is converted to a digital format using an analog-
to-digital conversion process; (3) the digital information is stored on the CD’s
surface; (4) during playback, the CD player takes the digital information
from the CD surface and converts it into an analog signal that is then ampli-
fied and fed to a speaker, where it can be picked up by the human ear.

The second drawback to digital systems is that processing these digitized
signals (lists of numbers) takes time. And we also need to convert between
the analog and digital forms of information, which can add complexity and
expense to a system. The more precise the numbers need to be, the longer it
takes to process them. In many applications, these factors are outweighed by
the numerous advantages of using digital techniques, and so the conversion
between analog and digital quantities has become quite commonplace in the
current technology.

There are situations, however, where use of analog techniques is simpler
or more economical. For example, several years ago, a colleague (Tom
Robertson) decided to create a control system demonstration for tour
groups. He planned to suspend a metallic object in a magnetic field, as shown
in Figure 1-2. An electromagnet was made by winding a coil of wire and con-
trolling the amount of current through the coil. The position of the metal ob-
ject was measured by passing an infrared light beam across the magnetic
field. As the object drew closer to the magnetic coil, it began to block the
light beam. By measuring small changes in the light level, the magnetic field
could be controlled to keep the metal object hovering and stationary, with no
strings attached. All attempts at using a microcomputer to measure these
very small changes, run the control calculations, and drive the magnet
proved to be too slow, even when using the fastest, most powerful PC avail-
able at the time. His final solution used just a couple of op-amps and a few
dollars’ worth of other components: a totally analog approach. Today we have
access to processors fast enough and measurement techniques precise
enough to accomplish this feat, but the simplest solution is still analog.

(a)

FIGURE 1-2 A magnetic levitation system suspending: (a) a globe with a steel
plate inserted and (b) a hammer.

It is common to see both digital and analog techniques employed within
the same system to be able to profit from the advantages of each. In these
hubrid systems, one of the most important parts of the design phase involves
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determining what parts of the system are to be analog and what parts are to
be digital. The trend in most systems is to digitize the signal as early as pos-
sible and convert it back to analog as late as possible as the signals flow
through the system.

The Future Is Digital

The advances in digital technology over the past three decades have been
nothing short of phenomenal, and there is every reason to believe that more
is coming. Think of the everyday items that have changed from analog format
to digital in your lifetime. An indoor/outdoor wireless digital thermometer
can be purchased for less then $10.00. Cars have gone from having very few
electronic controls to being predominantly digitally controlled vehicles.
Digital audio has moved us to the compact disk and MP3 player. Digital
video brought the DVD. Digital home video and still cameras; digital record-
ing with systems like TiVo; digital cellular phones; and digital imaging in x-
ray, magnetic resonance imaging (MRI), and ultrasound systems in hospitals
are just a few of the applications that have been taken over by the digital
revolution. As soon as the infrastructure is in place, telephone and television
systems will go digital. The growth rate in the digital realm continues to be
staggering. Maybe your automobile is equipped with a system such as GM’s
On Star, which turns your dashboard into a hub for wireless communication,
information, and navigation. You may already be using voice commands to
send or retrieve e-mail, call for a traffic report, check on the car’s mainte-
nance needs, or just switch radio stations or CDs—all without taking your
hands off the wheel or your eyes off the road. Cars can report their exact lo-
cation in case of emergency or mechanical breakdown. In the coming years
wireless communication will continue to expand coverage to provide con-
nectivity wherever you are. Telephones will be able to receive, sort, and
maybe respond to incoming calls like a well-trained secretary. The digital tel-
evision revolution will provide not only higher definition of the picture, but
also much more flexibility in programming. You will be able to select the pro-
grams that you want to view and load them into your television’s memory, al-
lowing you to pause or replay scenes at your convenience, very much like
viewing a DVD today. As virtual reality continues to improve, you will be
able to interact with the subject matter you are studying. This may not sound
exciting when studying electronics, but imagine studying history from the
standpoint of being a participant, or learning proper techniques for every-
thing from athletics to surgery through simulations based on your actual
performance.

Digital technology will continue its high-speed incursion into current ar-
eas of our lives as well as break new ground in ways we may never have con-
sidered. These applications (and many more) are based on the principles
presented in this text. The software tools to develop complex systems are con-
stantly being upgraded and are available to anyone over the Web, We will
study the technical underpinnings necessary to communicate with any of
these tools, and prepare you for a fascinating and rewarding career.

1. What are the advantages of digital techniques over analog?
2. What is the chief limitation to the use of digital techniques?
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1-3 DIGITAL NUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are
the decimal, binary, octal, and hexadecimal systems. The decimal system is
clearly the most familiar to us because it is a tool that we use every day.
Examining some of its characteristics will help us to understand the other
systems better.

Decimal System

The decimal system is composed of 10 numerals or symbols. These 10 symbols
are0,1,2,3.4,5,6,7,8,9; using these symbols as digits of a number, we can ex-
press any quantity. The decimal system, also called the base-10 system because
it has 10 digits, has evolved naturally as a result of the fact that people have 10
fingers. In fact, the word digit is derived from the Latin word for “finger.”

The decimal system is a positional-value system in which the value of a
digit depends on its position. For example, consider the decimal number 453.
We know that the digit 4 actually represents 4 hundreds, the 5 represents 5
tens, and the 3 represents 3 units. In essence, the 4 carries the most weight of
the three digits; it is referred to as the most significant digit (MSD). The 3 car-
ries the least weight and is called the least significant digit (LSD).

Consider another example, 27.35. This number is actually equal to 2 tens
plus 7 units plus 3 tenths plus 5 hundredths, or 2 X 10 + 7 X 1 + 3 X 0.1 +
5 % 0.01. The decimal point is used to separate the integer and fractional
parts of the number.

More rigorously, the various positions relative to the decimal point carry
weights that can be expressed as powers of 10. This is illustrated in Figure 1-3,
where the number 2745.214 is represented. The decimal point separates the
positive powers of 10 from the negative powers. The number 2745.214 is thus
equal to

(2 X 1073) + (7 x 10*?) + (4 x 10Y) + (5 % 10%
+ (2 x 10 + (1 x 1072 + (4 X 1079

FIGURE 1-3 Decimal

Positional values

position values as powers {weights)
of 10.
103 102 10! 162 107'10=102
Py
2 | e S 2|1 4
MSD Decimal LSD
point

In general, any number is simply the sum of the products of each digit value
and its positional value.

Decimal Counting

When counting in the decimal system, we start with 0 in the units position
and take each symbol (digit) in progression until we reach 9. Then we add a
1 to the next higher position and start over with 0 in the first position (see
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Figure 1-4). This process continues until the count of 99 is reached. Then we
add a 1 to the third position and start over with Os in the first two positions.
The same pattern is followed continuously as high as we wish to count.

FIGURE 1-4 Decimal 0 20 103
counting. 1 21 j
2 22 |
3 23 |
4 24 I
5 25 |
6 26 |
7 27 :
8 28 |
9 29 :
10 30 |
11 I !
12 o 199
13 N 200
14 i |
15 [
16 99
17 100 / I
18 101 / 989
19 102 1000

It is important to note that in decimal counting, the units position (LSD)
changes upward with each step in the count, the tens position changes up-
ward every 10 steps in the count, the hundreds position changes upward
every 100 steps in the count, and so on.

Another characteristic of the decimal system is that using only two deci-
mal places, we can count through 10? = 100 different numbers (0 to 99).* With
three places we can count through 1000 numbers (0 to 999), and so on. In gen-
eral, with NV places or digits, we can count through 10" different numbers, start-
ing with and including zero. The largest number will always be 10Y -1,

Binary System

Unfortunately, the decimal number system does not lend itself to convenient
implementation in digital systems. For example, it is very difficult to design
electronic equipment so that it can work with 10 different voltage levels
(each one representing one decimal character, 0 through 9). On the other
hand, it is very easy to design simple, accurate electronic circuits that oper-
ate with only two voltage levels. For this reason, almost every digital system
uses the binary (base-2) number system as the basic number system of its
operations. Other number systems are often used to interpret or represent
binary quantities for the convenience of the people who work with and use
these digital systems.

In the binary system there are only two symbols or possible digit values, 0
and 1. Even so, this base-2 system can be used to represent any quantity that
can be represented in decimal or other number systems. In general though, it
will talke a greater number of binary digits to express a given quantity.

All of the statements made earlier concerning the decimal system are
equally applicable to the binary system. The binary system is also a positional-
value system, wherein each binary digit has its own value or weight expressed
as a power of 2. This is illustrated in Figure 1-5. Here, places to the left of the

*Zero is counted as a number.
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FIGURE 1-5 Binary position Positional
values as powers of 2. values
1 2(] 2—1 2—2 2—3

\_»23222
R

1 0‘1 1#1 0‘1
T (.

MSB Binary LSB
point

binary point (counterpart of the decimal point) are positive powers of 2, and
places to the right are negative powers of 2. The number 1011.101 is shown rep-
resented in the figure. To find its equivalent in the decimal system, we simply
take the sum of the products of each digit value (0 or 1) and its positional value:

1011.101,

(1 x 23 + (0 ¢ 2% + (@ x2Yy + (1 x 2%
rAx2h+@Ox2H+Ax2?
§+0+2+1+05+0+0.125
11.6251,

Notice in the preceding operation that subscripts (2 and 10) were used to in-
dicate the base in which the particular number is expressed. This convention
is used to avoid confusion whenever more than one number system is being
employed.

In the binary system, the term binary digit is often abbreviated to the
term bit, which we will use from now on. Thus, in the number expressed in
Figure 1-5 there are four bits to the left of the binary point, representing the
integer part of the number, and three bits to the right of the binary point, rep-
resenting the fractional part. The most significant bit (MSB) is the leftmost
bit (largest weight). The least significant bit (LSB) is the rightmost bit (small-
est weight). These are indicated in Figure 1.5. Here, the MSB has a weight of
23: the LSB has a weight of 2 >

Binary Counting

When we deal with binary numbers, we will usually be restricted to a spe-
cific number of bits. This restriction is based on the circuitry used to repre-
sent these binary numbers. Let’s use four-bit binary numbers to illustrate the
method for counting in binary.

The sequence (shown in Figure 1-6) begins with all bits at 0; this is called
the zero count. For each successive count, the units (2% position toggles; that
is, it changes from one binary value to the other. Each time the units bit
changes from a 1 to a 0, the twos (21) position will toggle (change states). Each
time the twos position changes from 1 to 0, the fours (22) position will toggle
(change states). Likewise, each time the fours position goes from 1 to 0, the
eights (2%) position toggles. This same process would be continued for the
higher-order bit positions if the binary number had more than four bits.

The binary counting sequence has an important characteristic, as shown in
Figure 1-6. The units bit (LSB) changes either from 0 to 1 or 1 to 0 with each
count. The second bit (twos position) stays at 0 for two counts, then at 1 for two
counts, then at 0 for two counts, and so on. The third bit (fours position) stays
at 0 for four counts, then at 1 for four counts, and so on. The fourth bit (eights
position) stays at 0 for eight counts, then at 1 for eight counts. If we wanted to
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FIGURE 1-6 Binary Weights —» 2°=8 [22=4 |21=2 |20= 1 Decimal equivalent

counting sequence. 0 0 g T i 0
0 0 0 1 e 1
0 0 1 0 I 2
0 0 1 1 i 3
ai Ao I 4
IS G i 5
0 1 1 0 1 6
0 1 1 1 : 7
1 0 0 0 I 8
1 0 0 i ! 9
1 0 1 0 : 10
1 0 1 1 I 1
1 e G ! 12
1 1 0 1 | 13
1 (I | s 14
1 o I Ty 15

}
LSB

count further, we would add more places, and this pattern would continue with
0s and 1s alternating in groups of 21 For example, using a fifth binary place,
the fifth bit would alternate sixteen (s, then sixteen 1s, and so on.

| As we saw for the decimal system, it is also true for the binary system that

' by using N bits or places, we can go through 2" counts. For example, with two
bits we can go through 2> = 4 counts (00, through 11,); with four bits we can
go through 2% = 16 counts (0000, ‘rhmugh 11115); and so on. The last count
will always be all 1s and is equal to 2¥—1 in the decimal system. For exam-
ple, using four bits, the last count is 1111, = 2*-1 = 15;,,.

EXAMPI.E! -2

What is the largest number that can be represented using eight bits?

Solution
N9 =98 1 — D550 = 11111111
. This has been a brief introduction of the binary number system and its

relation to the decimal system. We will spend much more time on these two
systems and several others in the next chapter.

BT ]

ey
N

5 5 "‘\.1\\'\\

SR 1. What is the decimal equivalent of 1101011,?

2. What is the next binary number following 10111, in the counting sequence?
3. What is the largest decimal value that can be represented using 12 bits?

1-4 REPRESENTING BINARY QUANTITIES

In digital systems, the information being processed is usually present in bi-
nary form. Binary quantities can be represented by any device that has only
two operating states or possible conditions. For example, a switch has only
two states: open or closed. We can arbitrarily let an open switch represent
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FIGURE 1-7 (a) Binary
code settings for a garage
door opener. (b) Digital
audio on a CD.
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binary 0 and a closed switch represent binary 1. With this assignment we can
now represent any binary number. Figure 1-7(a) shows a binary code number
for a garage door opener. The small switches are set to form the binary num-
ber 1000101010. The door will open only if a matching pattern of bits is set
in the receiver and the transmitter.

Another example is shown in Figure 1-7(b), where binary numbers are
stored on a CD. The inner surface (under a transparent plastic layer) is
coated with a highly reflective aluminum layer. Holes are burned through
this reflective coating to form “pits” that do not reflect light the same as the
unburned areas. The areas where the pits are burned are considered “1” and
the reflective areas are “0.”

There are numerous other devices that have only two operating states or
can be operated in two extreme conditions. Among these are: light bulb
(bright or dark), diode (conducting or nonconducting), electromagnet (ener-
gized or deenergized), transistor (cut off or saturated), photocell (illumi-
nated or dark), thermostat (open or closed), mechanical clutch (engaged or
disengaged), and spot on a magnetic disk (magnetized or demagnetized).

In electronic digital systems, binary information is represented by voltages
(or currents) that are present at the inputs and outputs of the various circuits.
Typically, the binary 0 and 1 are represented by two nominal voltage levels. For
example, zero volts (0 V) might represent binary 0, and +5V might represent
binary 1. In actuality, because of circuit variations, the 0 and 1 would be rep-
resented by voltage ranges. This is illustrated in Figure 1-8(a), where any volt-
age between 0 and 0.8 V represents a 0 and any voltage between 2 and 5V
represents a 1. All input and output signals will normally fall within one of
these ranges, except during transitions from one level to another.

We can now see another significant difference between digital and ana-
log systems. In digital systems, the exact value of a voltage is not important;
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FIGURE 1-8 (a) Typical voltage assignments in digital system; (b) typical digital
signal timing diagram.

for example, for the voltage assignments of Figure 1-8(a), a voltage of 3.6 V
means the same as a voltage of 4.3 V. In analog systems, the exact value of a
voltage is important. For instance, if the analog voltage is proportional to the
temperature measured by a transducer, the 3.6 V would represent a different
temperature than would 4.3 V. In other words, the voltage value carries sig-
nificant information. This characteristic means.that the design of accurate
analog circuitry is generally more difficult than that of digital circuitry be-
cause of the way in which exact voltage values are affected by variations in
component values, temperature, and noise (random voltage fluctuations).

Digital Signals and Timing Diagrams

Figure 1-8(b) shows a typical digital signal and how it varies over time. It is
actually a graph of voltage versus time (t) and is called a timing diagram. The
horizontal time scale is marked off at regular intervals beginning at t; and
proceeding to ty, tz, and so on. For the example timing diagram shown here,
the signal starts at 0V (a binary 0) at time ¢3 and remains there until time t;.
At tq, the signal makes a rapid transition (jump) up to 4V (a binary 1). At t5,
it jumps back down to 0V. Similar transitions occur at t3 and t5. Note that the
signal does not change at t; but stays at 4V from t3 to ts.

The transitions on this timing diagram are drawn as vertical lines, and so
they appear to be instantaneous, when in reality they are not. In many situ-
ations, however, the transition times are so short compared to the times be-
tween transitions that we can show them on the diagram as vertical lines. We
will encounter situations later where it will be necessary to show the transi-
tions more accurately on an expanded time scale.

Timing diagrams are used extensively to show how digital signals change
with time, and especially to show the relationship between two or more dig-
ital signals in the same circuit or system. By displaying one or more digital
signals on an oscilloscope or logic analyzer, we can compare the signals to their
expected timing diagrams. This is a very important part of the testing and
troubleshooting procedures used in digital systems.

1-5 DIGITAL CIRCUITS/LOGIC CIRCUITS

Digital circuits are designed to produce output voltages that fall within the
prescribed 0 and 1 voltage ranges such as those defined in Figure 1-8.
Likewise, digital circuits are designed to respond predictably to input volt-
ages that are within the defined 0 and 1 ranges. What this means is that a
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FIGURE 1-9 A digital
circuit responds to an
input’s binary level (0 or 1)

and not to its actual
voltage.
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digital circuit will respond in the same way to all input voltages that fall
within the allowed 0 range; similarly, it will not distinguish between input
voltages that lie within the allowed 1 range.

To illustrate, Figure 1-9 represents a typical digital circuit with input v;
and output v,. The output is shown for two different input signal waveforms.
Note that v, is the same for both cases because the two input waveforms,
while differing in their exact voltage levels, are at the same binary levels.

Case |

B\
Vi
oV
_ 1
4V
e oV
! Digital
Y= GE
37V
Vi
05V
_ -t
4V
VO
av

Logic Circuits

The manner in which a digital circuit responds to an input is referred to as
the circuit’s logic. Each type of digital circuit obeys a certain set of logic
rules. For this reason, digital circuits are also called logic circuits. We will
use both terms interchangeably throughout the text. In Chapter 3, we will
see more clearly what is meant by a circuit’s “logic.”

We will be studying all the types of logic circuits that are currently used
in digital systems. Initially, our attention will be focused only on the logical
operation that these circuits perform—that is, the relationship between the
circuit inputs and outputs. We will defer any discussion of the internal cir-
cuit operation of these logic circuits until after we have developed an un-
derstanding of their logical operation.

Digital Integrated Circuits

Almost all of the digital circuits used in modern digital systems are inte-
grated circuits (ICs). The wide variety of available logic ICs has made it pos-
sible to construct complex digital systems that are smaller and more reliable
than their discrete-component counterparts.

Several integrated-circuit fabrication technologies are used to produce dig-
ital ICs, the most common being CMOS, TTL, NMOS, and ECL. Each differs in
the type of circuitry used to provide the desired logic operation. For example,
TTL (transistor-transistor logic) uses the bipolar transistor as its main circuit el-
ement, while CMOS (complementary metal-oxide-semiconductor) uses the en-
hancement-mode MOSFET as its principal circuit element. We will learn about
the various IC technologies, their characteristics, and their relative advantages
and disadvantages after we master the basic logic circuit types.
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B EASRtiSS 1. True or false: The exact value of an input voltage is critical for a digital circuit.

2. Can a digital circuit produce the same output voltage for different input
voltage values?

3. A digital circuit is also referred to as a circuit.

4. A graph that shows how one or more digital signals change with time is
called a

1-6 PARALLEL AND SERIAL TRANSMISSION

One of the most common operations that occur in any digital system is the
transmission of information from one place to another. The information can
be transmitted over a distance as small as a fraction of an inch on the same
circuit board, or over a distance of many miles when an operator at a com-
puter terminal is communicating with a computer in another city. The infor-
mation that is transmitted is in binary form and is generally represented as
voltages at the outputs of a sending circuit that are connected to the inputs
of a receiving circuit. Figure 1-10 illustrates the two basic methods for digi-
tal information transmission: parallel and serial.

FIGURE 1-10 (a) Parallel
transmission uses one con-
necting line per bit, and all
bits are transmitted simul-
taneously: (b) serial trans-

mission uses only one sig-

nal line, and the individual

bits are transmitted serially o e
{one at a time). 0 0 MSB
: -
= <
o] 0 )
i 1 _'
0] 0 E;
0 0 =
0 1 =
LSB
(a)
oy SRR B =
00010010 10010110

TWTJJTIJ?%I%LJJJZI?

LSB MSB LSB MSB
(b)

, Figure 1-10(a) demonstrates parallel transmission of data from a com-
: puter to a printer using the parallel printer port (LPT1) of the computer. In
this scenario, assume we are trying to print the word “Hi” on the printer. The
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binary code for “H” is 01001000 and the binary code for “i* is 01101001. Each
character (the “H” and the “i”) are made up of eight bltS Using parallel
transmission, all eight bits are sent simultaneously over eight wires. The “H”
is sent first, followed by the “1.”

Figure 1-10(b) demonstrdtcs serial transmission such as is employed
when using a serial COM port on your computer to send data to a modem, or
when using a USB (Universal Serial Bus) port to send data to a printer. Al-
though the details of the data format and speed of transmission are quite dif-
ferent between a COM port and a USB port, the actual data are sent in the
same way: one bit at a time over a single wire. The bits are shown in the dia-
| gram as though they were actually moving down the wire in the order shown.
The least significant bit of “H” is sent first and the most significant bit of “i”
is sent last. Of course, in reality, only one bit can be on the wire at any point in
time and time is usually drawn on a graph starting at the left and advancing
to the right. This produces a graph of logic bits versus time of the serial trans-
mission called a timing diagram. Notice that in this presentation, the least
significant bit is shown on the left because it was sent first.

The principal trade-off between parallel and serial representations is one
of speed versus circuit simplicity. The transmission of binary data from one
part of a digital system to another can be done more quickly using parallel
representation because all the bits are transmitted simultaneously, while se-
rial representation transmits one bit at a time. On the other hand, parallel re-
quires more signal lines connected between the sender and the receiver of
the binary data than does serial. In other words, parallel is faster, and serial
requires fewer signal lines. This comparison between parallel and serial
methods for representing binary information will be encountered many
times in discussions throughout the text.

\'\\\\?‘\\\.\ H?\'.-\;J‘“‘F?““

| REVIEW OUE 1. Describe the relative advantages of parallel and serial transmission of
binary data.

1-7 MEMORY

When an input signal is applied to most devices or circuits, the output some-
how changes in response to the input, and when the input signal is removed,
the output returns to its original state. These circuits do not exhibit the prop-
erty of memory because their outputs revert back to normal. In digital
circuitry certain types of devices and circuits do have memory. When an input
is applied to such a circuit, the output will change its state, but it will remain
in the new state even after the input is removed. This property of retaining its
response to a momentary input is called memory. Figure 1-11 illustrates non-
memory and memory operations.

FIGURE 1-11 Comparison TS—
of nonmemory and memory | | =
operation. .

s

Memaory |
> circuit ;
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Memory devices and circuits play an important role in digital systems be-
cause they provide a means for storing binary numbers either temporarily or
permanently, with the ability to change the stored information at any time. As
we shall see, the various memory elements include magnetic and optical types
and those that utilize electronic latching circuits (called latches and flip-flops).

1-8 DIGITAL COMPUTERS

Digital techniques have found their way into innumerable areas of technol-
ogy, but the area of automatic digital computers is by far the most notable
and most extensive. Although digital computers affect some part of all of our
lives, it is doubtful that many of us know exactly what a computer does. In
simplest terms, a computer is a system of hardware that performs arithmetic
operations, manipulates data (usually in binary form), and makes decisions.

For the most part, human beings can do whatever computers can do, but
computers can do it with much greater speed and accuracy, in spite of the fact
that computers perform all their calculations and operations one step at a
time. For example, a human being can take a list of 10 numbers and find their
sum all in one operation by listing the numbers one over the other and adding
them column by column. A computer, on the other hand, can add numbers
only two at a time, so that adding this same list of numbers will take nine ac-
tual addition steps. Of course, the fact that the computer requires only a few
nanoseconds per step makes up for this apparent inefficiency.

A computer is faster and more accurate than people are, but unlike most
of us, it must be given a complete set of instructions that tell it exactly what
to do at each step of its operation. This set of instructions, called a program,
is prepared by one or more persons for each job the computer is to do. Pro-
grams are placed in the computer’s memory unit in binary-coded form, with
each instruction having a unique code. The computer takes these instruction
codes from memory one at ¢ time and performs the operation called for by
the code.

Major Parts of a Computer
| There are several types of computer systems, but each can be broken down
into the same functional units. Each unit performs specific functions, and all
units function together to carry out the instructions given in the program.
| Figure 1-12 shows the five major functional parts of a digital computer and

| Central Processing

Unit (CPU)

| | Arithmetic/ ||
| _;_ J..Io.gic. : i
| i
‘ ' t s .

Data, 23 e i Data

2 | t 5 i t 1

AT . npu - - - - Control - > Outpu : e T

| s T ~ 4 i

— — — 3 Control signals
—— Data or information

FIGURE 1-12 Functional diagram of a digital computer.
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their interaction. The solid lines with arrows represent the flow of data
and information. The dashed lines with arrows represent the flow of timing
and control signals.

The major functions of each unit are:

1. Input unit. Through this unit, a complete set of instructions and data is
fed into the computer system and into the memory unit, to be stored un-
til needed. The information typically enters the input unit from a key-
board or a disk.

2. Memory unit. The memory stores the instructions and data received from
the input unit. It stores the results of arithmetic operations received from
the arithmetic unit. It also supplies information to the output unit.

3. Control unit. This unit takes instructions from the memory unit one at a
time and interprets them. It then sends appropriate signals to all the
other units to cause the specific instruction to be executed.

4. Arithmetic/logic unit. All arithmetic calculations and logical decisions

are performed in this unit, which can then send results to the memory
unit to be stored.

i

. Output unit. This unit takes data from the memory unit and prints out,
displays, or otherwise presents the information to the operator (or
process, in the case of a process control computer).

Central Processing Unit (CPU)

As the diagram in Figure 1-12 shows, the control and arithmetic/logic units
are often considered as one unit, called the central processing unit (CPU).
The CPU contains all of the circuitry for fetching and interpreting instruc-
tions and for controlling and performing the various operations called for by
the instructions.

TYPES OF COMPUTERS All computers are made up of the basic units de-
scribed above, but they can differ as to physical size, operating speed, mem-
ory capacity, and computational power, as well as other characteristics.
Computer systems are configured in many and various ways today, with many
common characteristics and distinguishing differences. Large computer sys-
tems that are permanently installed in multiple cabinets are used by corpo-
rations and universities for information technology support. Desktop
personal computers are used in our homes and offices to run useful applica-
tion programs that enhance our lives and provide communication with other
computers. Portable computers are found in PDAs and specialized comput-
ers are found in video game systems. The most prevalent form of computers
can be found performing dedicated routine tasks in appliances and systems
all around us.

Today, all but the largest of these systems utilize technology that has
evolved from the invention of the microprocessor. The microprocessor is es-
sentially a central processing unit (CPU) in an integrated circuit that can be
connected to the other blocks of a computer system. Computers that use a
microprocessor as their CPU are usually referred to as microcomputers. The
general-purpose microcomputers (e.g., PCs, PDAs, etc.) perform a variety of
tasks in a wide range of applications depending on the software (programs)
they are running. Contrast these with the dedicated computers that are do-
ing things such as operating your car’s engine, controlling your car’s an tilock
braking system, or running your microwave oven. These computers cannot
be programmed by the user, but simply perform their intended control
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task: they are referred to as microcontrollers. Since these microcontrollers
are an integral part of a bigger system and serve a dedicated purpose, they
also are called embedded controllers. Microcontrollers generally have all the
elements of a complete computer (CPU, memory, and input/output ports), all
contained on a single integrated circuit. You can find them embedded in your
kitchen appliances, entertainment equipment, photocopiers, automatic
teller machines, automated manufacturing equipment, medical instrumen-
tation, and much, much more.

So you see, even people who don’t own a PC or use one at work or school
are using microcomputers every day because so many modern consumer
electronic devices, appliances, office equipment, and much more are built
around embedded microcontrollers. If you work, play, or go to school in this
digital age, there’s no escaping it: you’ll use a microcomputer somewhere,

- —

ﬁ*&i@g;ﬁ;@ 1. Explain how a digital circuit that has memory differs from one that does not.
2. Name the five major functional units of a computer.
3. Which two units make up the CPU?
4. An IC chip that contains a CPU is calleda .
SUMMARY
1. The two basic ways of representing the numerical value of physical quan-
tities are analog (continuous) and digital (discrete).
2. Most quantities in the real world are analog, but digital techniques are
generally superior to analog techniques, and most of the predicted ad-
| vances will be in the digital realm.
: 3. The binary number system (0 and 1) is the basic system used in digital
technology.
4. Digital or logic circuits operate on voltages that fall in prescribed ranges
that represent either a binary 0 or a binary 1.
5. The two basic ways to transfer digital information are parallel—all bits
simultaneously—and serial—one bit at a time.
; 6. The main parts of all computers are the input, control, memory, arith-

metic/logic, and output units.

. 7. The combination of the arithmetic/logic unit and the control unit makes
up the CPU (central processing unit).

.
o

A microcomputer usually has a CPU that is on a single chip called a mic-

roprocessor.
9. A microcontroller is a microcomputer especially designed for dedicated
i (not general-purpose) control applications.
8
. IMPORTANT TERMS*
(;, analog representation analog system digital-to-analog
' digital representation analog-to-digital converter (DAC)
) digital system converter (ADC) decimal system
']-
k
it "These terms can be found in boldface type in the chapter and are defined in the Glossary at the end

1 of the book. This applies to all chapters.
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binary system memory output unit

bit digital computer central processing

timing diagram program unit (CPU)

digital circuitsflogic input unit Microprocessor
circuits memory unit microcomputer

parallel transmission control unit microcontroller

serial transmission arithmetic/logic unit

PROBLEMS
SECTION 1-2

1.1*Which of the following are analog quantities, and which are digital?
(a) Number of atoms in a sample of material
(b) Altitude of an aircraft
(¢) Pressure in a bicycle tire
(d) Current through a speaker
(e) Timer setting on a microwave oven
1.2. Which of the following are analog quantities, and which are digital?
(a) Width of a piece of lumber
(b) The amount of time before the oven buzzer goes off
(¢) The time of day displayed on a quartz watch
(d) Altitude above sea level measured on a staircase

(e) Altitude above sea level measured on a ramp

SECTION 1-3

1.3*Convert the following binary numbers to their equivalent decimal
values.
(a) 11001,
(b) 1001.1001,
(c) 10011011001.10110;

1-4. Convert the following binary numbers to decimal.
(a) 10011,
(b) 1100.0101
(c) 10011100100.10010

1.5*Using three bits, show the binary counting sequence from 000 to 111.

1-6. Using six bits, show the binary counting sequence from 000000 to
Il

1.7 *What is the maximum number that we can count up to using 10 bits?
1.8. What is the maximum number that we can count up to using 14 bits?
1-9 *How many bits are needed to count up to a maximum of 5117

1-10. How many bits are needed to count up to a maximum of 637

SECTION 1-4

1.11*Draw the timing diagram for a digital signal that continuously alter-
nates between 0.2 V (binary 0) for 2 ms and 4.4V (binary 1) for 4 ms.

*Answers to problems marked with an asterisk can be found in the back of the text.
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1-12. Draw the timing diagram for a signal that alternates between 0.3 V
(binary 0) for 5 ms and 3.9V (binary 1) for 2 ms.

SECTION 1-6

1-13*Suppose that the decimal integer values from 0 to 15 are to be trans-
mitted in binary.

(a) How many lines will be needed if parallel representation is used?
(b) How many will be needed if serial representation is used?

SECTIONS 1-7 AND 1-8

1-14. How is a microprocessor different from a microcomputer?

1-15. How is a microcontroller different from a microcomputer?

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 1-1

1. Analog quantities can take on any value over a continuous range; digital quanti-
ties can take on only discrete values.

SECTION 1-2

1. Easier to design; easier to store information; greater accuracy and precision;
programmability; less affected by noise; higher degree of integration

2. Real-world physical quantities are analog. Digital processing takes time.

SECTION 1-3

1.107:5 2110005 3:40951,

SECTION 1-5

1. False 2. Yes, provided that the two input voltages are within the same logic
level range 3. Logic 4. Timing diagram

SECTION 1-6

1. Parallel is faster; serial requires only one signal line.

SECTION 1-8

1. One that has memory will have its output changed and remain changed in
response to a momentary change in the input signal. 2. Input, output, memory,
arithmetic/logic, control 3. Control and arithmetic/logic 4. Microprocessor
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B OBIECTIVES

Upon completion of this chapter, you will be able to:

B Convert a number from one number system (decimal, binary, hexade
mal) to its equivalent in one of the other number systems.

B Cite the advantages of the hexadecimal number system.
Count in hexadecimal.

Represent decimal numbers using the BCD code; cite the pros and cons
of using BCD.

Understand the difference between BCD and straight binary. :
Understand the purpose of alphanumeric codes such as the ASCII code.
Explain the parity method for error detection.

Determine the parity bit to be attached to a digital data string.

B INTRODUCTION

The binary number system is the most important one in digital systems,
several others are also important. The decimal system is important beca
it is universally used to represent quantities outside a digital system. T
means that there will be situations where decimal values must be con-
verted to binary values before they are entered into the digital system.
example, when you punch a decimal number into your hand calculator (;
computer), the circuitry inside the machine converts the decimal numbe
to a binary value.
Likewise, there will be situations where the binary values at the out-
puts of a digital system must be converted to decimal values for presenta-
tion to the outside world. For example, your calculator (or computer) uses
binary numbers to calculate answers to a problem and then converts the an-
swers to decimal digits before displaying them. :
As you will see, it is not easy to simply look at a large binary number
and convert it to its equivalent decimal value. It is very tedious to enter a
long sequence of 1s and 0s on a keypad, or to write large binary numbers
on a piece of paper. It is especially difficult to try to convey a binary quan-
tity while speaking to someone. The hexadecimal (base-16) number system
has become a very standard way of communicating numeric values in digi-
tal systems. The great advantage is that hexadecimal numbers can be con-
verted easily to and from binary.
Other methods of representing decimal quantities with binary-encode
digits have been devised that are not truly number systems but offer the
ease of conversion between the binary code and the decimal number sys
tem. This is referred to as binary-coded decimal. Quantities and patterns
| bits might be represented by any of these methods in any given system an_g
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throughout the written material that supports the system, so it is very im-
portant that you are able to interpret values in any system and convert be-
tween any of these numeric representations. Other codes that use 1s and 0s
to represent things such as alphanumeric characters will be covered be-
cause they are so common in digital systems.

2-1 BINARY-TO-DECIMAL CONVERSIONS

As explained in Chapter 1, the binary number system is a positional system
where each binary digit (bit) carries a certain weight based on its position
relative to the LSB. Any binary number can be converted to its decimal
equivalent simply by summing together the weights of the various positions
in the binary number that contain a 1. To illustrate, let’s change 11011, to its
decimal equivalent.

Tl UL P DG
22+ 22+0+2'+2°=16+8+2+1

2710

Let’s try another example with a greater number of bits:

e (e il Ao Oy 1. g0) 1=
WL 0+ 224+2+0+2°+0+2=181,

Note that the procedure is to find the weights (i.e., powers of 2) for each bit
position that contains a 1, and then to add them up. Also note that the MSB
has a weight of 27 even though it is the eighth bit; this is because the LSB is
the first bit and has a weight of 2°,

1. Convert 100011011011, to its decimal equivalent.
2. What is the weight of the MSB of a 16-bit number?

2-2 = DECIMAL-TO-BINARY CONVERSIONS

There are two ways to convert a decimal whole number to its equivalent
binary-system representation. The first method is the reverse of the process
described in Section 2-1. The decimal number is simply expressed as a sum
of powers of 2, and then 1s and Os are written in the appropriate bit posi-
tions. To illustrate:

22 +0+22+22+0+2°
=S SpReEn - 1 a0 B

451{) = 32 + S+-4+1

Note that a 0 is placed in the 2! and 2* positions, since all positions must be
accounted for. Another example is the following:

760 =64+8+4=20+0+0+22+2°+0+0
=1 PR ) O I S (R )
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Repeated Division

Another method for converting decimal integers uses repeated division by 2.
The conversion, illustrated below for 251, requires repeatedly dividing the
decimal number by 2 and writing down the remainder after each division un-
til a quotient of 0 is obtained. Note that the binary result is obtained by writ-
ing the first remainder as the LSB and the last remainder as the MSB. This
process, diagrammed in the flowchart of Figure 2-1, can also be used to con-
vert from decimal to any other number system, as we shall see.

= 12 + remainder of 1———&

= 6 + remainder of 0————
|

= 3 = remainderof0—
|

= 1 + remainder of 1

= 0 + remainder of 1
MSB—J

25‘1(] E 1 1 O 0 12

FIGURE 2 -1 Flowchart for
repeated-division method (L sTART )

e, &%)
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of decimal-to-binary

conversion of integers. The -
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to convert a decimal

integer to any other Divide by
number system. =

A

Record quotient (Q)
and remainder (R)

YES

| Collect R's into desired

binary number with

first B as LSB and
last R as MSB
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Convert 374 to binary. Try to do it on your own before you look at the solution.

Solution
37 - : .
i 18.5 —— remainder of 1 (LSB)
—
1§ = 9.0 0
e U
e 45— 1
2
% = 20— 0
% =1.0— 0
1
5 05— 1 (MSB)

Thus, 37'° = 100101;.

Counting Range

Recall that using N bits, we can count through 2N different decimal numbers
ranging from 0 to 2V — 1. For example, for N = 4, we can count from 0000, to
1111,, which is 019 to 154, for a total of 16 different numbers. Here, the
largest decimal value is 24 — 1 = 15, and there are 2* different numbers.

In general, then, we can state:

Using N bits, we can represent decimal numbers ranging from 0 to
2N — 1, a total of 2V different numbers.

EXAMPLE 2-2

(a) What is the total range of decimal values that can be represented in
eight bits?

(b) How many bits are needed to represent decimal values ranging from O to
12,5007

Solution

(a) Here we have N = 8. Thus, we can represent decimal numbers from 0 to
28 _ 1 = 255. We can verify this by checking to see that 11111111, con-
verts to 2551y.
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(b) With 13 bits, we can count from decimal 0 to 21® — 1 = 8191. With 14 bits,
we can count from 0 to 2'* — 1 = 16,383. Clearly, 13 bits aren’t enough, but
14 bits will get us up beyond 12,500. Thus, the required number of bits is 14.

1. Convert 831g to binary using both methods.

2. Convert 729, to binary using both methods, Check your answer by con-
verting back to decimal.

3. How many bits are required to count up to decimal 1 million?

2-3 HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system uses base 16. Thus, it has 16 possible digit
symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as
the 16 digit symbols. The digit positions are weighted as powers of 16 as
shown below, rather than as powers of 10 as in the decimal system.

1671 1672 e 1674

Hexadecimal point

164 16° 162 16! 16°

@

Table 2-1 shows the relationships among hexadecimal, decimal, and binary.
Note that each hexadecimal digit represents a group of four binary digits. It
is important to remember that hex (abbreviation for “hexadecimal™) digits A
through F are equivalent to the decimal values 10 through 15.

Hexadecimal Decimal .Bin'ar_y
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F

15 Ak

Hex-to-Decimal Conversion

A hex number can be converted to its decimal equivalent by using the fact
that each hex digit position has a weight that is a power of 16. The LLSD has a
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weight of 16" = 1; the next h.igher digit position has a weight of 16! = 16;
the next has a weight of 16% = 256; and so on. The conversion process is
demonstrated in the examples below.

35646 =3 X 162+ 5 x 16" + 6 x 16°
= 768+ 80+ 6
— 854]_0

2AFs = 2 X 162+ 10 x 16" + 15 x 16°
= 512+ 160 + 15
= 68710

Note that in the second example, the value 10 was substituted for A and the
value 15 for F in the conversion to decimal.
For practice, verify that 1BC24g is equal to 71064y.

Decimal-to-Hex Conversion

Recall that we did decimal-to-binary conversion using repeated division by 2.
Likewise, decimal-to-hex conversion can be done using repeated division by 16
(Figure 2-1). The following example contains two illustrations of this conversion.

(a) Convert 423, to hex.

Solution
) s
% = 26 + remainder of 7—
26 :
16 = 1 + remainder of 10
i_l
i = 0 + remainder of 1
16 remair ‘J’

4231 i 1A716

(b) Convert 2144, to hex.

Solution +
% = 13 + remainder of 6
E = 0 + remaind f13
16 remainder of 1:

21445 = D644
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Again note that the remainders of the division processes form the digits
of the hex number. Also note that any remainders that are greater than 9 are
represented by the letters A through F.

Hex-to-Binary Conversion

The hexadecimal number system is used primarily as a “shorthand” method
for representing binary numbers. It is a relatively simple matter to convert a
hex number to binary. Each hex digit is converted to its four-bit binary equiv-
alent (Table 2-1). This is illustrated below for 9F2.

9]5"215 = 9 F 2
1 ) \J
Sl )t PSS (e O )
= 100111110010,

For practice, verify that BA61g; = 101110100110,.

Binary-to-Hex Conversion

Conversion from binary to hex is just the reverse of the process above. The
binary number is grouped into groups of four bits, and each group is con-
verted to its equivalent hex digit. Zeros (shown shaded) are added, as
needed, to complete a four-bit group.

@11 10100110
et ——

3 A 6
= 3A6_|_6

0 toloil o

To perform these conversions between hex and binary, it is necessary to
know the four-bit binary numbers (0000 through 1111) and their equivalent
hex digits. Once these are mastered, the conversions can be performed
quickly without the need for any calculations. This is why hex is so useful in
representing large binary numbers.

For practice, verify that 101011111, = 15F ;.

Counting in Hexadecimal
When counting in hex, each digit position can be incremented (increased by 1)
— from 0 to F. Once a digit position reaches the value F, it is reset to (), and the
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next digit position is incremented. This is illustrated in the following hex
counting sequences:

(a) 38,39, 3A, 3B, 3C, 3D, 3E, 3F, 40,41, 42
(b) 6F8, 6F9, 6FA, 6FB, 6FC, 6FD, 6FE, 6FF, 700

Note that when there is a 9 in a digit position, it becomes an A when it is in-
cremented.

With N hex digit positions, we can count from decimal 0 to 16N — 1, for a
total of 16~ different values. For example, with three hex digits, we can
I count from 00015 to FFFy5, which is 09 to 40954, for a total of 4096 = 16 dif-
ferent values.

Usefulness of Hex

Hex is often used in a digital system as sort of a “shorthand” way to repre-
sent strings of bits. In computer work, strings as long as 64 bits are not un-
common, These binary strings do not always represent a numerical value,
but—as you will find out—can be some type of code that conveys nonnu-
merical information. When dealing with a large number of bits, it is more
convenient and less error-prone to write the binary numbers in hex and, as
we have seen, it is relatively easy to convert back and forth between binary
and hex. To illustrate the advantage of hex representation of a binary string,
suppose you had in front of you a printout of the contents of 50 memory lo-
cations, each of which was a 16-bit number, and you were checking it against
a list. Would you rather check 50 numbers like this one: 01 10111001100111,
or 50 numbers like this one: 6E67? And which one would you be more apt to
read incorrectly? It is important to keep in mind, though, that digital
circuits all work in binary. Hex is simply used as a convenience for the
humans involved. You should memorize the 4-bit binary pattern for each
hexadecimal digit. Only then will you realize the usefulness of this tool in
digital systems.

Convert decimal 378 to a 16-bit binary number by first converting to hexa-

decimal.
Solution
378
1 - 23 + remainder of 10,,= A
—

23 i

— = 1 + remainder of 7
o |

i.-0+- ainder of 1
T remainder o

Thus, 37819 = 17A4s. This hex value can be converted easily to binary
000101111010. Finally, we can express 37810 as a 16-bit number by adding
four leading 0s:

3785, = 0000 0001 0111 1010,
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Solution

B2F;c = B x 16% + 2 x 161 + F x 16°
11 X 256 + 2 X 16 + 15
28631

Summary of Conversions

Right now, your head is probably spinning as you try to keep straight all of
these different conversions from one number system to another. You proba-
bly realize that many of these conversions can be done automatically on your
calculator just by pressing a key, but it is important for you to master these
conversions so that you understand the process. Besides, what happens if
your calculator battery dies at a crucial time and you have no handy re-
placement? The following summary should help you, but nothing beats prac-
tice, practice, practice!

1. When converting from binary [or hex| to decimal, use the method of tak-
ing the weighted sum of each digit position.
2. When converting from decimal to binary [or hex], use the method of re-
peatedly dividing by 2 [or 16] and collecting remainders (Figure 2-1).
3. When converting from binary to hex, group the bits in groups of four, and
| convert each group into the correct hex digit.
| 4. When converting from hex to binary, convert each digit into its four-bit
equivalent.

P e T T T

e T Y
| REVIEW-QUESTIONS: |

| REVIEW QUESTHIONS. |

. Convert 24CEq; to decimal.
. Convert 31171, to hex, then from hex to binary.
. Convert 1001011110110101; to hex.

. Write the next four numbers in this hex counting sequence: E9A, E9B,
E9C, E9D, 3 3 ¥

5. Convert 3527 to binaryyg.

oW N e

6. What range of decimal values can be represented by a four-digit hex
number?

2-4 BCD CODE

When numbers, letters, or words are represented by a special group of sym-
bols, we say that they are being encoded, and the group of symbols is called
a code. Probably one of the most familiar codes is the Morse code, where a se-
; ries of dots and dashes represents letters of the alphabet.

We have seen that any decimal number can be represented by an equiva-
lent binary number. The group of 0s and 1s in the binary number can be thought
of as a code representing the decimal number. When a decimal number is
represented by its equivalent binary number, we call it straight binary coding.
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Digital systems all use some form of binary numbers for their internal |
operation, but the external world is decimal in nature. This means that con- '
versions between the decimal and binary systems are being performed [
often. We have seen that the conversions between decimal and binary can
become long and complicated for large numbers. For this reason, a means of .r
encoding decimal numbers that combines some features of both the decimal
and the binary systems is used in certain situations.

Binary-Coded-Decimal Code i

If each digit of a decimal number is represented by its binary equivalent, the
[ result is a code called binary-coded-decimal (hereafter abbreviated BCD).
Since a decimal digit can be as large as 9, four bits are required to code each |
digit (the binary code for 9 is 1001).

To illustrate the BCD code, take a decimal number such as 874. Each
digit is changed to its binary equivalent as follows:

8 7 4 (decimal)
7 1l l '
1000 0111 0100 (BCD)

As another example, let us change 943 to its BCD-code representation:

9 4 3 (decimal)
L L L
1001 0100 0011 (BCD)

Once again, each decimal digit is changed to its straight binary equivalent.
Note that four bits are always used for each digit.

The BCD code, then, represents each digit of the decimal number by a
four-bit binary number. Clearly only the four-bit binary numbers from 0000
through 1001 are used. The BCD code does not use the numbers 1010, 1011,
1100, 1101, 1110, and 1111, In other words, only 10 of the 16 possible four-bit
binary code groups are used. If any of the “forbidden” four-bit numbers ever
occurs in a machine using the BCD code, it is usually an indication that an er-
ror has occurred.

Convert 0110100000111001 (BCD) to its decimal equivalent.

Solution

Divide the BCD number into four-bit groups and convert each to decimal.

0110 1000 0011 1001
e e e
6 3 3 9

EXAMPLE 2-7 Convert the BCD number 011111000001 to its decimal equivalent,
Solution
0111 1100 0001
—_— e
7o oy il

The forbidden code groupindicates an
error in the BCD number
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Comparison of BCD and Binary

It is important to realize that BCD is not another number system like
binary, decimal, and hexadecimal. In fact, it is the decimal system with
each digit encoded in its binary equivalent. It is also important to under-
stand that a BCD number is not the same as a straight binary number. A
straight binary number takes the complete decimal number and represents
it in binary; the BCD code converts each decimal digit to binary individu-
ally. To illustrate, take the number 137 and compare its straight binary and
BCD codes:

13740 = 10001001, (binary)
137,, = 0001 0011 0111 (BCD)

The BCD code requires 12 bits, while the straight binary code requires only
eight bits to represent 137. BCD requires more bits than straight binary to
represent decimal numbers of more than one digit because BCD does not use
all possible four-bit groups, as pointed out earlier, and is therefore somewhat
inefficient.

The main advantage of the BCD code is the relative ease of converting to
and from decimal, Only the four-bit code groups for the decimal digits 0
through 9 need to be remembered. This ease of conversion is especially im-
portant from a hardware standpoint because in a digital system, it is the
logic circuits that perform the conversions to and from decimal.

e e e
REVIEW QUESTIONS |
dl

B UUESHUND 1. Represent the decimal value 178 by its straight binary equivalent. Then
encode the same decimal number using BCD.

‘ e e e e e ]

2. How many bits are required to represent an eight-digit decimal number
in BCD?

3. What is an advantage of encoding a decimal number in BCD rather than
in straight binary? What is a disadvantage?

2-5 THE GRAY CODE

Digital systems operate at very fast speeds and respond to changes that oc-
cur in the digital inputs. Just as in life, when multiple input conditions are
changing at the same time, the situation can be misinterpreted and cause an
erroneous reaction. When you look at the bits in a binary count sequence, it
is clear that there are often several bits that must change states at the same
time. For example, consider when the three-bit binary number for 3 changes
to 4: all three bits must change state.

In order to reduce the likelihood of a digital circuit misinterpreting a
changing input, the Gray code has been developed as a way to represent a
sequence of numbers. The unique aspect of the Gray code is that only one bit
ever changes between two successive numbers in the sequence. Table 2-2
shows the translation between three-bit binary and Gray code values. To con-
vert binary to Gray, simply start on the most significant bit and use it as the
Gray MSB as shown in Figure 2-2(a). Now compare the MSB binary with the
next binary bit (B1). If they are the same, then G1 = 0. If they are different,
then G1 = 1, GO can be found by comparing B1 with BO.
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TABLE 2-2 Three-bit
binary and Gray code
equivalents.

FIGURE 2-3 An eight-
position, three-bit shaft
encoder.
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B> B, Bg Gis Gy Gy
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0
MSB Blaty LSB MSB drey ISB
B, B, By Go Gy Gy
Y Y Y Y l Y
Different? || | Different? |- Different? | Different? \
Y Y Y Y Y Y
G, G Gy B, B, By
Gray Binary
(a) (b)

FIGURE 2-2 Converting (a) binary to Gray and (b) Gray to binary.

Conversion from Gray code back into binary is shown in Figure 2-2(b).
Note that the MSB in Gray is always the same as the MSB in binary. The
next binary bit is found by comparing the binary bit to the left with the corr-
esponding Gray code bit. Similar bits produce a 0 and differing bits produce
a 1. The most common application of the Gray code is in shaft position
encoders as shown in Figure 2-3. These devices produce a binary value that
represents the position of a rotating mechanical shaft. A practical shaft
encoder would use many more bits than just three and divide the rotation
into many more segments than eight, so that it could detect much smaller
increments of rotation.
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ErnTn '
EHEREOE RSN 1. Convert the number 0101 (binary) to its Gray code equivalent.

2. Convert 0101 (Gray code) to its binary number equivalent.

2-6 PUTTING IT ALL TOGETHER

Table 2-3 gives the representation of the decimal numbers 1 through 15 in
the binary and hex number systems and also in the BCD and Gray codes.
Examine it carefully and make sure you understand how it was obtained.
Especially note how the BCD representation always uses four bits for each
decimal digit.

TABLE 2-3 % : et . ;

Decimal Binary Hexadecimal . BCD GRAY
0 0 0 0000 0000
1 1 0001 0001

2 10 2 0010 0011
3 11 3 0011 0010
4 100 4 0100 0110
5 101 5] 0101 0111
6 110 6 0110 0101
7 111 7 0111 0100
8 1000 8 1000 1100
9 1001 9 1001 1101
10 1010 A 0001 0000 1111
11 1011 B 0001 0001 1110
12 1100 C 0001 0010 1010
13 1101 D 0001 0011 1011
14 1110 E 0001 0100 1001
15 1111 E 0001 0101 1000

2-7 THE BYTE, NIBBLE, AND WORD

Bytes

Most microcomputers handle and store binary data and information in groups
of eight bits, so a special name is given to a string of eight bits: it is called a
byte. A byte always consists of eight bits, and it can represent any of numerous
types of data or information. The following examples will illustrate.

How many bytes are in a 32-bit string (a string of 32 bits)?
Solution

32/8 = 4, so there are four bytes in a 32-bit string.
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What is the lalgt.st decunal lelle that can be repreeemed in bmdry using
two bytes?

Solution

Two bytes is 16 bits, so the largest binary value will be equivalent to decimal
216 — 1,—65,535!

How many bytee are nef.d(_d to represent the dec1ma1 Vd]ue 846 '§b9 in BCD P

Solution

Each decimal digit converts to a four-bit BCD code. Thus, a six-digit decimal
number requires 24 bits. These 24 bits are equal to three bytes. This is dia-
grammed below.

8/4 6 5169
.1000 0100 IO]_'I.O 0101 0110 1001 (BCD)

byte2

(decimal)

bytel byte3

Nibbles

Binary numbers are often broken down into groups of four bits, as we have
seen with BCD codes and hexadecimal number conversions. In the early days
of digital systems, a term caught on to describe a group of four bits. Because
it is half as big as a byte, it was named a nibble. The following examples il-
lustrate the use of this term.

How many mbbleb are in a byte?
Solution

What is the hex value of the lf,aat ‘-slgnlf](..d]'lt mhble of the bmary number
1001 01017

Solution
1001 0101

The least significant nibble is 0101 = 5

Words

Bits, nibbles, and bytes are terms that represent a fixed number of binary
digits. As systems have grown over the years, their capacity (appetite?) for
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handling binary data has also grown. A word is a group of bits that repre-
sents a certain unit of information. The size of the word depends on the size
of the data pathway in the system that uses the information. The word size
can be defined as the number of bits in the binary word that a digital system
operates on. For example, the computer in your microwave oven can proba-
bly handle only one byte at a time. It has a word size of eight bits. On the
other hand, the personal computer on your desk can handle eight bytes at a
time, so it has a word size of 64 bits.

1. How many bytes are needed to represent 235 in binary?

2. What is the largest decimal value that can be represented in BCD using
two bytes?

3. How many hex digits can a nibble represent?
4. How many nibbles are in one BCD digit?

2-8 ALPHANUMERIC CODES

In addition to numerical data, a computer must be able to handle nonnu-
merical information. In other words, a computer should recognize codes that
represent letters of the alphabet, punctuation marks, and other special char-
acters as well as numbers. These codes are called alphanumeric codes. A
complete alphanumeric code would include the 26 lowercase letters, 26 up-
percase letters, 10 numeric digits, 7 punctuation marks, and anywhere from
20 to 40 other characters, such as +, /, #, %, *, and so on. We can say that an
alphanumeric code represents all of the various characters and functions
that are found on a computer keyboard.

ASCII Code

The most widely used alphanumeric code is the American Standard Code
for Information Interchange (ASCII). The ASCII (pronounced “askee™)
code is a seven-bit code, and so it has 27 = 128 possible code groups. This
is more than enough to represent all of the standard keyboard characters
as well as the control functions such as the (RETURN) and (LINEFEED)
functions. Table 2-4 shows a listing of the standard seven-bit ASCII code.
The table gives the hexadecimal and decimal equivalents. The seven-bit
binary code for each character can be obtained by converting the hex
value to binary.

Use fable 2-4 to tmd the seven-bit ASCII code for the backsldbh Lhdm(,‘ru (V).

Solution
The hex value given in Table 2-4 is 5C. Translating each hex digit into four-

bit binary produces 0101 1100. The lower seven bits represent the ASCII
code for \, or 1011100.
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TABLE 2-4 Standard ASCII codes.
Character ~ HEX Decimal|Character HEX Decimal | Character HEX Decimal | Character HEX Decimal
NUL (null) 0 0 Space 20 32 @ 40 64 ’ 60 96
Start Heading 1 ! 21 33 A 41 65 a 61 97 |
Start Text 2 2 g 22 34 B 42 66 b 62 98 ﬁ
End Text 3 3 # 23 35 C 43 67 & 63 99
End Transmit. 4 4 $ 24 36 D 44 68 d 64 100
| Enquiry & 5 % 25 37 E 45 69 e 65 101 ||:
i | Acknowlege 6 6 & 26 38 F 46 70 f 66 102 ?
Bell 7 7 27 39 G 47 71 g 67 103
Backspace 8 8 ( 28 40 H 48 72 h 68 104
Horiz. Tab 9 9 ) 29 41 [ 49 73 i 69 105
Line Feed A 10 £ 2A 42 J 4A 74 ] 6A 106
Vert. Tab B 11 + 2B 43 K B 75 K 6B 107 .'
Form Feed C 12 : 2C 44 L 4C 76 | 6C 108 I
Carriage Return D 13 - 2D 45 M 4D 77 m 6D 109 I|
Shift Out E 14 . 2E 46 N 4E 78 n 6E 110 ;
Shift In F 15 / 2F 47 (@] 4F 79 0 6F 111
Data Link Esc 10 16 0 30 48 P 50 80 P 70 112
Direct Control 1 11 17 1 31 49 Q 51 81 q 7 113
Direct Control 2 12 18 2 32 50 R 52 82 r 72 114 .
Direct Control 3 13 19 3 33 51 S 53 83 S 73 115 I
Direct Control 4 14 20 4 34 52 il 54 84 t 74 116 !
Negative ACK 15 21 5 35 53 u 55 85 u 75 117
Synch Idle 16 22 6 36 54 vV 56 86 \% 76 118
End Trans Block 17 23 7 37 55 W 57 87 W 77 119
Cancel 18 24 8 38 56 X 58 88 X 78 120
End of Medium 19 25 9 39 57 Y 59 89 y 79 121
Substitue 1A 26 ; 3A 58 Z BA 90 z TA 122
Escape 1B 27 : 3B 59 [ 5B 91 { 7B 123
Form separator 1C 28 < 3C 60 \ 5C 92 | 7C 124
Group separator 1D 29 = 3D 61 1 5D 93 } 7D 125
Record Separator  1E 30 > 3E 62 ’\ 5E 94 ~ 7E 126
Unit Separator Al 31 5 3F 63 4] ak 95 Delete 7F 127

The ASCII code is used for the transfer of alphanumeric information be-
tween a computer and the external devices such as a printer or another com-
puter. A computer also uses ASCII internally to store the information that an
operator types in at the computer’s keyboard. The following example illus-
trates this.

An operator is typing in a C language program at the keyboard of a certain
microcomputer. The computer converts each keystroke into its ASCII code
and stores the code as a byte in memory. Determine the binary strings that ]
will be entered into memory when the operator types in the following C |
statement: |
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Solution
Locate each character (including the space) in Table 2-4 and record its ASCII
code.

i 69 0110 1001

f 66 0110 0110

space 20 0010 0000

( 28 0010 1000

X 78 0111 1000

> 3E 0011 1110

3 33 0011 0011

) 29 0010 1001

Note that a 0 was added to the leftmost bit of each ASCII code because the
codes must be stored as bytes (eight bits). This adding of an extra bit is
called padding with 0s.

TS S S ST OO ITTIOTTIT ST
— -

NS | 1. Encode the following message in ASCII code using the hex representa-
tion: “COST = $72.”

2. The following padded ASCII-coded message is stored in successive mem-
ory locations in a computer:

01010011 01010100 01001111 01010000

What is the message?

2-9 PARITY METHOD FOR ERROR DETECTION

The movement of binary data and codes from one location to another is the
‘ most frequent operation performed in digital systems. Here are just a few
| examples:

| ® The transmission of digitized voice over a microwave link
B The storage of data in and retrieval of data from external memory de-
vices such as magnetic and optical disk

‘ E The transmission of digital data from a computer to a remote computer
over telephone lines (i.e., using a modem). This is one of the major ways
‘ of sending and receiving information on the Internet.

Whenever information is transmitted from one device (the transmitter)
to another device (the receiver), there is a possibility that errors can occur
such that the receiver does not receive the identical information that was
sent by the transmitter. The major cause of any transmission errors is
electrical noise, which consists of spurious fluctuations in voltage or current
that are present in all electronic systems to varying degrees. Figure 2-4 is a
simple illustration of a type of transmission error.

The transmitter sends a relatively noise-free serial digital signal over a
signal line to a receiver. However, by the time the signal reaches the receiver,

ol S A T e
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Transmitter

Receiver
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FIGURE 2-4 Example of noise causing an error in the transmission of digital data.

it contains a certain degree of noise superimposed on the original signal.
Occasionally, the noise is large enough in amplitude that it will alter the
logic level of the signal, as it does at point x. When this occurs, the receiver
may incorrectly interpret that bit as a logic 1, which is not what the trans-
mitter has sent.

Most modern digital equipment is designed to be relatively error-free,
and the probability of errors such as the one shown in Figure 2-4 is very
low. However, we must realize that digital systems often transmit thou-
sands, even millions, of bits per second, so that even a very low rate of oc-
currence of errors can produce an occasional error that might prove to be
bothersome, if not disastrous. For this reason, many digital systems em-
ploy some method for detection (and sometimes correction) of errors. One
of the simplest and most widely used schemes for error detection is the
parity method.

Parity Bit

A parity bit is an extra bit that is attached to a code group that is being trans-
ferred from one location to another. The parity bit is made either 0 or 1,
depending on the number of 1s that are contained in the code group. Two
different methods are used.

In the even-parity method, the value of the parity bit is chosen so that the
total number of 1s in the code group (including the parity bit) is an even
number. For example, suppose that the group is 1000011. This is the ASCII
character “C.” The code group has three 1s. Therefore, we will add a parity bit
of 1 to make the total number of 1s an even number. The new code group, inc-
luding the parity bit, thus becomes

1000011
jrast e added parity bit*

If the code group contains an even number of 1s to begin with, the parity
bit is given a value of 0. For example, if the code group were 1000001 (the
ASCII code for “A”), the assigned parity bit would be 0, so that the new code,
including the parity bit, would be 01000001.

The odd-parity method is used in exactly the same way except that the
parity bit is chosen so the total number of 1s (including the parity bit) is an
odd number. For example, for the code group 1000001, the assigned parity bit
would be a 1. For the code group 1000011, the parity bit would be a 0.

Regardless of whether even parity or odd parity is used, the parity bit
becomes an actual part of the code word. For example, adding a parity bit to

*The parity bit can be placed at either end of the code group, but it is usually placed to the left of the
MSB.
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‘ the seven-bit ASCII code produces an eight-bit code. Thus, the parity bit is
treated just like any other bit in the code,
The parity bit is issued to detect any single-bit errors that occur during
‘ the transmission of a code from one location to another. For example, sup-
| pose that the character “A” is being transmitted and odd parity is being used.
The transmitted code would be

8 1 0.0:0 001

| When the receiver circuit receives this code, it will check that the code con-
tains an odd number of 1s (including the parity bit). If so, the receiver will
assume that the code has been correctly received. Now, suppose that be-
cause of some noise or malfunction the receiver actually receives the fol-
lowing code:

11000000

The receiver will find that this code has an even number of 1s. This tells the
receiver that there must be an error in the code because presumably the
transmitter and receiver have agreed to use odd parity. There is no way, how-
ever, that the receiver can tell which bit is in error because it does not know
what the code is supposed to be.

It should be apparent that this parity method would not work if two bits
were in error, because two errors would not change the “oddness” or “even-
ness” of the number of 1s in the code. In practice, the parity method is used
only in situations where the probability of a single error is very low and the
probability of double errors is essentially zero.

When the parity method is being used, the transmitter and the receiver
| must have agreement, in advance, as to whether odd or even parity is being
used. There is no advantage of one over the other, although even parity
seems to be used more often. The transmitter must attach an appropriate
parity bit to each unit of information that it transmits. For example, if the
transmitter is sending ASCII-coded data, it will attach a parity bit to each
seven-bit ASCIT code group. When the receiver examines the data that it
has received from the transmitter, it checks each code group to see that the
total number of 1s (including the parity bit) is consistent with the agreed-
upon type of parity. This is often called checking the parity of the data. In
the event that it detects an error, the receiver may send a message back to
the transmitter asking it to retransmit the last set of data. The exact proce-
dure that is followed when an error is detected depends on the particular
system.

Computers often communicate with other remote computers over tele-
: phone lines. For example, this is how dial-up communication over the inter-
net takes place. When one computer is transmitting a message to another,
the information is usually encoded in ASCIL. What actual bit strings would
a computer transmit to send the message HELLO, using ASCII with even
) parity?

Solution

First, look up the ASCII codes for each character in the message. Then for
each code, count the number of 1s. If it is an even number, attach a 0 as the
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MSB. If it is an odd number, attach a 1. Thus, the resulting eight-bit codes
(bytes) will all have an even number of 1s (including parity).

attached even-parity bits

H=38081001000

E=811000101

L =881 001100

L. =3 1 0017100

O =810017111

| |

3\\ EW OUESTIO '-k\ 3 ; . - =
EVIEV & \M\m& 1. Attach an odd-parity bit to the ASCII code for the $ symbol, and express

the result in hexadecimal.
2. Attach an even-parity bit to the BCD code for decimal 69.
3. Why can’t the parity method detect a double error in transmitted data?

2-10 APPLICATIONS

Here are several applications that will serve as a review of some of the con-
cepts covered in this chapter. These applications should give a sense of how
the various number systems and codes are used in the digital world. More ap-
plications are presented in the end-of-chapter problems.

APPL! CATION 2-

A typical CD-ROM can store 650 megabytes of digital data. Since mega =
how many bits of data can a CD-ROM hold?

Solution

Remember that a byte is eight bits. Therefore, 650 megabytes is
650 x 2%¥ x 8 = 5,452,595,200 bits.

In (n‘d&r to program many mu,mcontrollers, ﬂlL bm'—lry instructions are
stored in a file on a personal computer in a special way known as Intel Hex
Format. The hexadecimal information is encoded into ASCII characters so it
can be displayed easily on the PC screen, printed, and easily transmitted one
character at a time over a standard PC’s serial COM port, One line of an Intel
Hex Format file is shown below:

:10002000F7CFFFCF1FEF2FEF2A95F1F71A95DOF7EA

The first character sent is the ASCII code for a colon, followed by a 1.
Each has an even parity bit appended as the most significant bit. A test
instrument captures the binary bit pattern as it goes across the cable to the
microcontroller.

(a) What should the binary bit pattern (including parity) look like?
(MSB - LSB)
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(b) The value 10, following the colon, represents the total hexadecimal num-
ber of bytes that are to be loaded into the micro’s memory. What is the
decimal number of bytes being loaded?

(c) The number 0020 is a four-digit hex value representing the address where
the first byte is to be stored. What is the biggest address possible? How
many bits would it take to represent this address?

(d) The value of the first data byte is F7. What is the value (in binary) of the
least significant nibble of this byte?

FFFF L3k b o B e L U V(G ks 16 bits

Solution

(a) ASCII codes are 3A (for :) and 31 (for 1) 00111010 10110001
even parity bit 3 3

(b) 10hex =1 X 16 + 0 X 1 = 16 decimal bytes

(¢) FFFF is the biggest possible value. Each hex digit is 4 bits, so we need 16
bits.

(d) The least significant nibble (4 bits) is represented by hex 7. In binary this
would be 0111.

A small process-control computer uses hexadecimal codes to represent its
16-bit memory addresses.

(a) How many hex digits are required?
(b) What is the range of addresses in hex?

(c) How many memory locations are there?

Solution

(a) Since 4 bits convert to a single hex digit, 16/4 = 4 hex digits are needed.

(b) The binary range is 0000000000000000, to 1111111111111111,. In hex,
this becomes 000045 to FFFF ;.

(c) With 4 hex digits, the total number of addresses is 16* = 65,536.

Numbers are entered into a microcontroller-based system in BCD, but stored
in straight binary. As a programmer, you must decide whether you need a
one-byte or two-byte storage location.

(a) How many bytes do you need if the system takes a two-digit decimal entry?
(b) What if you needed to be able to enter three digits?

Solution

(a) With two digits you can enter values up to 99 (1001 1001pcp). In binary
this value is 01100011, which will fit into an eight-bit memory location.
Thus you can use a single byte.

(b) Three digits can represent up to 999 (1001 1001 1001). In binary this
value is 1111100111 (10 bits). Thus you cannot use a single byte; you
need two bytes.
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When ASCIT characters must be transmitted between two independent
systems (such as between a computer and a modem), there must be a way
of telling the receiver when a new character is coming in. There is often a
need to detect errors in the transmission as well. The method of transfer is
called asynchronous data communication. The normal resting state of the
transmission line is logic 1. When the transmitter sends an ASCII charac-
ter, it must be “framed” so the receiver knows where the data begins and
ends. The first bit must always be a start bit (logic 0). Next the ASCII code
is sent LSB first and MSB last. After the MSB, a parity bit is appended to
check for transmission errors. Finally, the transmission is ended by send-
ing a stop bit (logic 1). A typical asynchronous transmission of a seven-bit
ASCII code for the pound sign # (23 Hex) with even parity is shown in
Figure 2-5.

APPLICATION 2-5
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FIGURE 2-5 Asynchronous serial data with even parity.

SUMMARY

1. The hexadecimal number system is used in digital systems and comput-
ers as an efficient way of representing binary quantities.

2. In conversions between hex and binary, each hex digit corresponds to
four bits.

3. The repeated-division method is used to convert decimal numbers to
binary or hexadecimal.
4. Using an N-bit binary number, we can represent decimal values from 0 to
28t
. The BCD code for a decimal number is formed by converting each digit
of the decimal number to its four-bit binary equivalent.

[¥p ]

6. The Gray code defines a sequence of bit patterns in which only one bit
changes between successive patterns in the sequence.

7. A byte is a string of eight bits. A nibble is four bits. The word size de-
pends on the system.

8. An alphanumeric code is one that uses groups of bits to represent all of
the various characters and functions that are part of a typical computer’s
keyboard. The ASCII code is the most widely used alphanumeric code.

9. The parity method for error detection attaches a special parity bit to
each transmitted group of bits.




PROBLEMS 47
IMPORTANT TERMS
hexadecimal number Gray code American Standard
system byte Code for
straight binary nibble Information
coding word Interchange
binary-coded-decimal word size (ASCIT)
(BCD) code alphanumeric code parity method

parity bit

PROBLEMS
SECTIONS 2-1 AND 2-2

2-1. Convert these binary numbers to decimal.

(ay-10110 (d) 01101011 (gy*1111010111
(b) 10010101 (e)*11111111 (h) 11011111
(c)*100100001001 (f)y 01101111

2-2. Convert the following decimal values to binary.
(a)*37 (d) 1000 (g)*205
(b) 13 (e)*77 (h) 2133
(c)*189 (f) 390 (1)* 511

2-3. What is the largest decimal value that can be represented by (a)* an
eight-bit binary number? (b) A 16-bit number?

SECTION 2-4

2-4. Convert each hex number to its decimal equivalent.
(ay*743 (d) 2000 (g)*7FF
(b) 36 (e)* 165 (h) 1204
(c)*37FD (f) ABCD

2-5. Convert each of the following decimal numbers to hex.
(ay*59 (d) 1024 (g)*65,536
(b) 372 (e 771 (h) 255
(c)*919 (f) 2313

2-6. Convert each of the hex values from Problem 2-4 to binary.
2-7. Convert the binary numbers in Problem 2-1 to hex.
2-8. List the hex numbers in sequence from 1954¢ to 2804.

2-9. When a large decimal number is to be converted to binary, it is some-
times easier to convert it first to hex, and then from hex to binary. Try
this procedure for 21331y and compare it with the procedure used in
Problem 2-2(h).

2-10. How many hex digits are required to represent decimal numbers up to

20,0007

2-11. Convert these hex values to decimal.
(a)*92 (d) ABCD (g)*2C0
(b) 1A6 (e)* 000F (h) 7FF
(c)*37FD (f) 55

*Answers to problems marked with an asterisk can be found in the back of the text.
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2.12. Convert these decimal values to hex.

(a¥75 (d) 24 (2)*25,619
(b) 314 (e)* 7245 (h) 4095
(c)2048 (f) 498

2.13. Take each four-bit binary number in the order they are written and
write the equivalent hex digit without performing a calculation by
hand or by calculator.

(a) 1001 (e) 1111 (i) 1011 (m) 0001
(b) 1101 (f) 0010 (j) 1100 (n) 0101
| (¢) 1000 (g) 1010 (k) 0011 (o) 0111
(d) 0000 (h) 1001 (1) 0100 (p) 0110

2.14. Take each hex digit and write its four-bit binary value without per-
forming any calculations by hand or by calculator.

(a) 6 (e) 4 (i) 9 (m) 0 |
(b) 7 ) 3 (1) A (n) 8 |
()5 (g8) C (k)2 (o) D |
(d) 1 (h) B () F (p) 9 |
|
1

2.15* Convert the binary numbers in Problem 2-1 to hexadecimal.
2.16* Convert the hex values in Problem 2-11 to binary.
2.17* List the hex numbers in sequence from 280 to 2A0.

2.18. How many hex digits are required to represent decimal numbers up to
1 million?

SECTION 2-5
2.19. Encode these decimal numbers in BCD.
(ay47 (d) 6727 (89,627
(b) 962 (e)*13 (h) 1024
(c)*187 (f) 529

2.20. How many bits are required to represent the decimal numbers in the
range from 0 to 999 using (a) straight binary code? (b) Using BCD
code?

2.21. The following numbers are in BCD. Convert them to decimal.

(a)*1001011101010010 (d) 0111011101110101

(b) 000110000100 (e)*010010010010

(c)*011010010101 (f) 010101010101
SECTION 2-7

2-22*(a) How many bits are contained in eight bytes?
(b) What is the largest hex number that can be represented in
four bytes?
(c) What is the largest BCD-encoded decimal value that can be
represented in three bytes?
2.23. (a) Refer to Table 2-4. What is the most significant nibble of the J
ASCII code for the letter X?
(b) How many nibbles can be stored in a 16-bit word?
(¢) How many bytes does it take to make up a 24-bit word?
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SECTIONS 2-8 AND 2-9

2-24. Represent the statement “X = 3 X Y” in ASCII code. Attach an odd-
parity bit.

2-25* Attach an even-parity bit to each of the ASCII codes for Problem 2-24,
and give the results in hex.

2-26. The following bytes (shown in hex) represent a person’s name as it
would be stored in a computer’s memory. Each byte is a padded ASCII
code. Determine the name of each person.

(a)*42 45 4E 20 53 4D 49 54 48
(b) 4A 6F 65 20 47 72 65 65 6E

2-27. Convert the following decimal numbers to BCD code and then attach
an odd parity bit.

(a)*74 (c)* 8884 (e)*165
(b) 38 (d) 275 (fy 9201

2.28*In a certain digital system, the decimal numbers from 000 through
999 are represented in BCD code. An odd-parity bit is also included at
the end of each code group. Examine each of the code groups below,
and assume that each one has just been transferred from one location
to another. Some of the groups contain errors. Assume that no more
than two errors have occurred for each group. Determine which of the
code groups have a single error and which of them definitely have a
double error. (Hint: Remember that this is a BCD code.)

(a) 1001010110000

parity bit
(b) 0100011101100
(c) 0111110000011
(d) 1000011000101

2-29. Suppose that the receiver received the following data from the trans-
mitter of Example 2-16:

01001000
11000101
11001100
11001000
11001100

What errors can the receiver determine in these received data?

DRILL QUESTIONS

2-30*Perform each of the following conversions. For some of them, you may
want to try several methods to see which one works best for you. For
example, a binary-to-decimal conversion may be done directly, or
it may be done as a binary-to-hex conversion followed by a hex-to-
decimal conversion.

(@l 14170 — e,
(b) 25549 = A
(c) 11010001, = 1

10
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(EN2487 =i g
(f) 51119=___ (BCD)
(2] 285 =D
(h) 43164y = 16
(1) 7A916 = _ 10
() eI o = SR |
(1600 e
(1) 38,18710 = 16
(m) 86519=____ (BCD)
(n) 100101000111 (BCD) = 19
(0) 46516 = )
(py B3dis = -
(q) 01110100 (BCD) = ____
(r) 111010, = ____ (BCD)

2-31*Represent the decimal value 37 in each of the following ways.

(a) straight binary

(b) BCD

(c) hex

(d) ASCII (i.e., treat each digit as a character)

2.32*Fill in the blanks with the correct word or words.

(a) Conversion from decimal to requires repeated division by
16.
(b) Conversion from decimal to binary requires repeated division by

(c) In the BCD code, each _____ is converted to its four-bit binary
equivalent.

(d) The code has the characteristic that only one bit changes in
going from one step to the next.

(e) A transmitter attaches a _ to a code group to allow the re-
ceiver to detect

(f) The _____ code is the most common alphanumeric code used in
computer systems.

(g) is often used as a convenient way to represent large binary
numbers.

(h) A string of eight bits is called a :

. Write the binary number that results when each of the following num-
bers is incremented by one.
(ay<0111 (b) 010011 (c) 1011

. Decrement each binary number.
(a)*1110 (b) 101000 (c) 1110

. Write the number that results when each of the following is incre-
mented.
(ay*7779%6 (c)*OFFF ¢ (e*9FF g
(b) 99994 (d) 200044 (f) 100A4

2-36*Repeat Problem 2-35 for the decrement operation.
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‘ CHALLENGING EXERCISES

2-37*In a microcomputer, the addresses of memory locations are binary

numbers that identify each memory circuit where a byte is stored. The

number of bits that make up an address depends on how many mem-

ory locations there are. Since the number of bits can be very large, the

addresses are often specified in hex instead of binary.

(a) If a microcomputer uses a 20-bit address, how many different
memory locations are there?

(b) How many hex digits are needed to represent the address of a
memory location?

(c) What is the hex address of the 256th memory location? (Note: The
first address is always 0.)
2-38. In an audio CD, the audio voltage signal is typically sampled about
44,000 times per second, and the value of each sample is recorded on
| the CD surface as a binary number. In other words, each recorded bi-
nary number represents a single voltage point on the audio signal
‘ waveform.
(a) If the binary numbers are six bits in length, how many different
‘ voltage values can be represented by a single binary number?
Repeat for eight bits and ten bits.

‘ (b) If ten-bit numbers are used, how many bits will be recorded on the
CD in 1 second?

(c) If a CD can typically store 5 billion bits, how many seconds of au-
dio can be recorded when ten-bit numbers are used?

2-39* A black-and-white digital camera lays a fine grid over an image and
then measures and records a binary number representing the level of
gray it sees in each cell of the grid. For example, if four-bit numbers
are used, the value of black is set to 0000 and the value of white to
1111, and any level of gray is somewhere between 0000 and 1111, If
six-bit numbers are used, black is 000000, white is 111111, and all
grays are between the two.

Suppose we wanted to distinguish among 254 different levels of gray
within each cell of the grid. How many bits would we need to use to
represent these levels?

2-40. A 3-Megapixel digital camera stores an eight-bit number for the
brightness of each of the primary colors (red, green, blue) found in
each picture element (pixel). If every bit is stored (no data compres-
sion), how many pictures can be stored on a 128-Megabyte memory
card? (Note: In digital systems, Mega means 20

2-41. Construct a table showing the binary, hex, and BCD representations of
all decimal numbers from 0 to 15. Compare your table with Table 2-3.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 2-1
1.2267 2.32768

SECTION 2-2
1.1010011 2.1011011001 3. 20 bits
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SECTION 2-3

1.9422 2. C2D; 110000101101 3.97B5
5.11010100100111 6.0 to 65,535

SECTION 2-4

1.101100105; 000101111000 (BCD) 2.32
Disadvantage: BCD requires more bits.

SECTION 2-5
1.0111 2.0110

SECTION 2-7
1. One 2.9999 3. One 4. One

SECTION 2-8

4. E9E, E9F, EA0, EA1

3. Advantage: ease of conversion.

1. 43, 4F, 53, 54, 20, 3D, 20, 24, 37, 32 2. STOP

SECTION 2-9

1. A4 2.001101001 3. Two errors in the data would not change the oddness or

evenness of the number of 1s in the data.
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B OBIJECTIVES

Upon completion of this chapter, you will be able to:
B Perform the three basic logic operations.

B Describe the operation of and construct the truth tables for the AN
NAND, OR, and NOR gates, and the NOT (INVERTER) circuit,

B Draw timing diagrams for the various logic-circuit gates.
B Write the Boolean expression for the logic gates and combinations of

logic gates. >
B Implement logic circuits using basic AND, OR, and NOT gates.

B Appreciate the potential of Boolean algebra to simplify complex logic.
circuits.
B Use DeMorgan’s theorems to simplify logic expressions.

B Use either of the universal gates (NAND or NOR) to implement a
circuit represented by a Boolean expression.

B FExplain the advantages of constructing a logic-circuit diagram using tfidg
alternate gate symbols versus the standard logic-gate symbols.
Describe the concept of active-LOW and active-HIGH logic signals.
Draw and interpret the IEEE/ANSI standard logic-gate symbols.

Use several methods to describe the operation of logic circuits.

Interpret simple circuits defined by a hardware description language
(HDL).
B FExplain the difference between an HDL and a computer programming e
language. ;

B Create an HDL file for a simple logic gate.
B Create an HDL file for combinational circuits with intermediate
variables.

B INTRODUCTION

Chapters 1 and 2 introduced the concepts of logic levels and logic circuits.
In logic, only two possible conditions exist for any input or output: true and
false. The binary number system uses only two digits, 1 and 0, so it is perfect
for representing logical relationships. Digital logic circuits use predefined
voltage ranges to represent these binary states. Using these concepts, we
can create circuits made of little more than processed beach sand and wir
that make consistent, intelligent, logical decisions. It is vitally importan
that we have a method to describe the logical decisions made by these ¢
cuits. In other words, we must describe how they operate. In this chapter,
we will discover many ways to describe their operation. Each description
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method is important because all these methods commonly appear in techni-
cal literature and system documentation and are used in conjunction with
modern design and development tools.

Life is full of examples of circumstances that are in one state or an-
other. For example, a creature is either alive or dead, a light is either on or
off, a door is locked or unlocked, and it is either raining or it is not. In 1854,
a mathematician named George Boole wrote An Investigation of the Laws of
Thought, in which he described the way we make logical decisions based on
true or false circumstances. The methods he described are referred to today
as Boolean logic, and the system of using symbols and operators to describe
these decisions is called Boolean algebra. In the same way we use symbols
such as x and y to represent unknown numerical values in regular algebra,
Boolean algebra uses symbols to represent a logical expression that has one
of two possible values: true or false, The logical expression might be door is
closed, button is pressed, or fuel is low. Writing these expressions is very te-
dious, and so we tend to substitute symbols such as 4, B, and C.

The main purpose of these logical expressions is to describe the rela-
tionship between a logic circuit’s output (the decision) and its inputs (the
circumstances). In this chapter, we will study the most basic logic circuits—
logic gates—which are the fundamental building blocks from which all other
logic circuits and digital systems are constructed. We will see how the oper-
ation of the different logic gates and the more complex circuits formed
from combinations of logic gates can be described and analyzed using
Boolean algebra. We will also get a glimpse of how Boolean algebra can be
used to simplify a circuit’s Boolean expression so that the circuit can be re-
built using fewer logic gates and/or fewer connections. Much more will be
done with circuit simplification in Chapter 4.

Boolean algebra is not only used as a tool for analysis and simplifica-
tion of logic systems. It can also be used as a tool to create a logic circuit
that will produce the desired input/output relationship. This process is
often called synthesis of logic circuits as opposed to analysis. Other tech-
niques have been used in the analysis, synthesis, and documentation of
logic systems and circuits including truth tables, schematic symbols, timing
diagrams, and—last but by no means least—language. To categorize these
methods, we could say that Boolean algebra is a mathematic tool, truth ta-
bles are data organizational tools, schematic symbols are drawing tools,
timing diagrams are graphing tools, and language is the universal descrip-
tion tool.

Today, any of these tools can be used to provide input to computers. The
computers can be used to simplify and translate between these various
forms of description and ultimately provide an output in the form neces-
sary to implement a digital system. To take advantage of the powerful bene-
fits of computer software, we must first fully understand the acceptable
ways for describing these systems in terms the computer can understand.
This chapter will lay the groundwork for further study of these vital tools
for synthesis and analysis of digital systems.

Clearly the tools described here are invaluable tools in describing, ana-
lyzing, designing, and implementing digital circuits. The student who ex-
pects to work in the digital field must work hard at understanding and
becoming comfortable with Boolean algebra (believe us, it’s much, much
easier than conventional algebra) and all the other tools. Do all of the ex-
amples, exercises, and problems, even the ones your instructor doesn’t
assign. When those run out, make up your own. The time you spend will be
well worth it because you will see your skills improve and your confidence
ZrOw.
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3-1 BOOLEAN CONSTANTS AND VARIABLES

Boolean algebra differs in a major way from ordinary algebra because
Boolean constants and variables are allowed to have only two possible values,
0 or 1. A Boolean variable is a quantity that may, at different times, be equal
to either 0 or 1. Boolean variables are often used to represent the voltage
level present on a wire or at the input/output terminals of a circuit. For ex-
ample, in a certain digital system, the Boolean value of 0 might be assigned
to any voltage in the range from 0 to 0.8 V, while the Boolean value of 1 might
be assigned to any voltage in the range 2 to 5 V.*

Thus, Boolean 0 and 1 do not represent actual numbers but instead repre-
sent the state of a voltage variable, or what is called its logic level. A voltage
in a digital circuit is said to be at the logic 0 level or the logic 1 level, depend-
ing on its actual numerical value. In digital logic, several other terms are used
synonymously with 0 and 1. Some of the more common ones are shown in
Table 3-1. We will use the 0/1 and LOW/HIGH designations most of the time.

TABLE 3-1

Logic 0 Logic 1
False True
Off On
Low High
No Yes
Open switch Closed switch

As we said in the introduction, Boolean algebra is a means for expressing
the relationship between a logic circuit’s inputs and outputs. The inputs are
considered logic variables whose logic levels at any time determine the out-
put levels. In all our work to follow, we shall use letter symbols to represent
logic variables. For example, the letter A might represent a certain digital
circuit input or output, and at any time we must have either 4 = 0or 4 = 1:
if not one, then the other.

Because only two values are possible, Boolean algebra is relatively easy
to work with compared with ordinary algebra. In Boolean algebra, there are
no fractions, decimals, negative numbers, square roots, cube roots, loga-
rithms, imaginary numbers, and so on. In fact, in Boolean algebra there are
only three basic operations: OR, AND, and NOT.

These basic operations are called logic operations. Digital circuits called
logic gates can be constructed from diodes, transistors, and resistors con-
nected so that the circuit output is the result of a basic logic operation (OR,
AND, NOT) performed on the inputs, We will be using Boolean algebra first
to describe and analyze these basic logic gates, then later to analyze and de-
sign combinations of logic gates connected as logic circuits.

3-2 TRUTH TABLES

A truth table is a means for describing how a logic circuit’s output depends
on the logic levels present at the circuit’s inputs. Figure 3-1(a) illustrates a
truth table for one type of two-input logic circuit. The table lists all possible

*Voltages between 0.8 and 2 V are undefined (neither 0 nor 1) and should not occur under normal cir-
cumstances.
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FIGURE 3-1 Example
truth tables for (a) two-
input, (b) three-input, and
(¢) four-input circuits.
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combinations of logic levels present at inputs A and B, along with the corre-
sponding output level x. The first entry in the table shows that when A and B
are both at the 0 level, the output x is at the 1 level or, equivalently, in the 1
state. The second entry shows that when input B is changed to the 1 state, so
that A = 0 and B = 1, the output x becomes a 0. In a similar way, the table
shows what happens to the output state for any set of input conditions.

Figures 3-1(b) and (c) show samples of truth tables for three- and four-
input logic circuits. Again, each table lists all possible combinations of input
logic levels on the left, with the resultant logic level for output x on the right.
Of course, the actual values for x will depend on the type of logic circuit.

Note that there are 4 table entries for the two-input truth table, 8 entries
for a three-input truth table, and 16 entries for the four-input truth table.
The number of input combinations will equal 2" for an N-input truth table.
Also note that the list of all possible input combinations follows the binary
counting sequence, and so it is an easy matter to write down all of the com-
binations without missing any.

1. What is the output state of the four-input circuit represented in Figure
3-1(c) when all inputs except B are 1?

2. Repeat question 1 for the following input conditions: 4 = 1,B = 0,C = 1,
D =0.

3. How many table entries are needed for a five-input circuit?

3-3 OR OPERATION WITH OR GATES

The OR operation is the first of the three basic Boolean operations to be
learned. An example can be found in the kitchen oven. The light inside the
oven should turn on if either the oven light switch is on OR if the door is
opened. The letter A could be used to represent the oven light switch is on and
B could represent door is opened. The letter x could represent the light is on.
The truth table in Figure 3-2(a) shows what happens when two logic inputs,
A and B, are combined using the OR operation to produce the output x. The
table shows that x is a logic 1 for every combination of input levels where one
or more inputs are 1. The only case where x is a 0 is when both inputs are 0.
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FIGURE 3-2 (a) Truth
table defining the OR oper-
ation; (b) circuit symbol for
a two-input OR gate.

FIGURE 3-3 Symbol and
truth table for a three-input
OR gate.
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A B Xx=A+B
0 Of 0 A x=A+B
0 1 1
1 @ 1 B
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= OR Gate
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(a) (b)

The Boolean expression for the OR operation is
x=A+B

In this expression, the + sign does not stand for ordinary addition; it stands
for the OR operation. The OR operation is similar to ordinary addition ex-
cept for the case where A and B are both 1; the OR operation produces
1+1=1,notl + 1= 2.InBoolean algebra, 1 is as high as we go, so we can
never have a result greater than 1. The same holds true for combining three
inputs using the OR operation. Here we have x = A + B + C. If we consider
the case where all three inputs are 1, we have

ai= ] AT =0
The expression x = A + B is read as “x equals 4 OR B,” which means that x
will be 1 when A or B or both are 1. Likewise, the expression x = A + B + C
is read as “x equals A OR B OR C,” which means that x will be 1 when:A or B
or C or any combination of them are 1. To describe this circuit in the English
language we could say that x is true (1) WHEN A is true (1) OR B is true (1) OR
Cistrue (1).

OR Gate

In digital circuitry, an OR gate* is a circuit that has two or more inputs and
whose output is equal to the OR combination of the inputs. Figure 3-2(b) is
the logic symbol for a two-input OR gate. The inputs A and B are logic volt-
age levels, and the output x is a logic voltage level whose value is the result
of the OR operation on A and B; that is, x = 4 + B. In other words, the OR
gate operates so that its output is HIGH (logic 1) if either input A or B or both
are at a logic 1 level. The OR gate output will be LOW (logic 0) only if all its
inputs are at logic 0.

This same idea can be extended to more than two inputs. Figure 3-3 shows
a three-input OR gate and its truth table. Examination of this truth table shows
again that the output will be 1 for every case where one or more inputs are 1.
This general principle is the same for OR gates with any number of inputs.

A B G Xx=A+B+C
0 0 0 0
0 0 1 1
A x=A+B+C 0 1 0 1
B 0o 1 1 1
C il ) 0 1
| ) 1 1
1 1 0 1
1 1 1 1

*The term gate comes from the inhibit/enable operation discussed in Chapter 4.
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FIGURE 3-4 Example of
the use of an OR gate in an
alarm system.
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Using the language of Boolean algebra, the output x can be expressed as
x = A + B + C, where again it must be emphasized that the + represents
the OR operation. The output of any OR gate, then, can be expressed as the
OR combination of its various inputs. We will put this to use when we subse-
quently analyze logic circuits.

Summary of the OR Operation

The important points to remember concerning the OR operation and OR
gates are:

1. The OR operation produces a result (output) of 1 whenever any input is
a 1. Otherwise the output is 0.

2. An OR gate is a logic circuit that performs an OR operation on the cir-
cuit’s inputs.

3. The expression x = A + Bisread as “x equals A OR B.”

In many industrial control systems, it is required to activate an output func-
tion whenever any one of several inputs is activated. For example, in a chem-
ical process it may be desired that an alarm be activated whenever the
process temperature exceeds a maximum value or whenever the pressure goes
above a certain limit. Figure 3-4 is a block diagram of this situation. The tem-
perature transducer circuit produces an output voltage proportional to the
process temperature. This voltage, Vi, is compared with a temperature ref-
erence voltage, Vg, in a voltage comparator circuit. The comparator output,
Ty, is normally a low voltage (logic 0), but it switches to a high voltage (logic
1) when Vi exceeds Vg, indicating that the process temperature is too high.
A similar arrangement is used for the pressure measurement, so that its as-
sociated comparator output, Py, goes from LOW to HIGH when the pressure
is too high.

i3
|
|
I | Temperature T
: transducer ; Comparator
| | =
| I
| |
: | Vor Alarm
|
| |
I |y
| Pressure R Py
: transducer | ~ | Comparator
| |
| Chemical process | |
Ven

Since we want the alarm to be activated when either temperature or
pressure is too high, it should be apparent that the two comparator outputs
can be fed to a two-input OR gate. The OR gate output thus goes HIGH (1)
for either alarm condition and will activate the alarm. This same idea can ob-
viously be extended to situations with more than two process variables.
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FIGURE 3-5 Example 3-2.

EXAI’H‘IFI.E 3- 3A

FIGURE 3-6 Examples
3-3A and B.
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D(,tcrmln(. thL OR gate nutput in Figure 3-5. The OR g,atL inputs A clnd B are

varying according to the timing diagrams shown. For example, 4 starts out
LOW at time ty, goes HIGH at t{, back to LOW at t3, and so on.

A 1
: A Output=A+B
[ [ [ = [
| | [ | | B : :
A0 I I I T
B | | | | |
| | [ [ [
0= [ [ i
| | [ R
| [ e [ e
i — P—— <
Output : [ : _E [ :
| [
0 —lem] | ]
[ [ ! | T
| | | el |
tg ty tr) ty  tytg tgts
Time ¢
Solution

The OR gate output will be HIGH whenever any input is HIGH. Between time
ty and tq, both inputs are LOW, so OUTPUT = LOW. At t{, input A goes HIGH
while B remains LOW. This causes OUTPUT to go HIGH at t; and stay HIGH
until t4 because, during this interval, one or both inputs are HIGH. At t4, input
B goes from 1 to 0 so that now both inputs are LOW, and this drives OUTPU'T
back to LOW. At t5, A goes HIGH, sending OUTPUT back HIGH, where it stays
for the rest of the shown time span.

For the situation depu.ted in P1gu1e 3- 6 determme the waveform at Lhe OR
gate output.

| | | A
1 | |
B 0 l ; B A+B+C
| o T L '
AL i
c | ||H| c
0 | 0 |
| i
R

1 . .
ouT | I E I
0

I ouT

Time

Solution

The three OR gate inputs A, B, and C are varying, as shown by their waveform
diagrams. The OR gate output is determined by realizing that it will be
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HIGH whenever any of the three inputs is at a HIGH level. Using this rea-
soning, the OR output waveform is as shown in the figure. Particular atten-
tion should be paid to what occurs at time t;. The diagram shows that, at that
instant of time, input 4 is going from HIGH to LOW while input B is going
from LOW to HIGH. Since these inputs are making their transitions at ap-
proximately the same time, and since these transitions take a certain amount
of time, there is a short interval when these OR gate inputs are both in the
undefined range between 0 and 1. When this occurs, the OR gate output also
becomes a value in this range, as evidenced by the glitch or spike on the out-
put waveform at t1. The occurrence of this glitch and its size (amplitude and
[ width) depend on the speed with which the input transitions occur.

the HIGH state while A and B were changing at time ¢;?

Solution

With the C input HIGH at t;, the OR gate output will remain HIGH, regardless
of what is occurring at the other inputs, because any HIGH input will keep an
OR gate output HIGH. Therefore, the glitch will not appear in the output.

- REVIEW QUESTIONS | ' . 3 NS :
[ HEHEREEE A R 1. What is the only set of input conditions that will produce a LOW output
for any OR gate?

2. Write the Boolean expression for a six-input OR gate.

3. If the A input in Figure 3-6 is permanently kept at the 1 level, what will
the resultant output waveform be?

3-4 AND OPERATION WITH AND GATES

The AND operation is the second basic Boolean operation. As an example of
the use of AND logic, consider a typical clothes dryer. It is drying clothes
(heating, tumbling) only if the timer is set above zero AND the door is closed.
Let’s assign A to represent timer is set, B to represent door is closed, and x can
represent the heater and motor are on. The truth table in Figure 3-7(a) shows
what happens when two logic inputs, A and B, are combined using the AND
operation to produce output x. The table shows that x is a logic 1 only when
both A and B are at the logic 1 level. For any case where one of the inputs is
0, the output is 0.
The Boolean expression for the AND operation is

x=A4AB

In this expression, the - sign stands for the Boolean AND operation and
not the multiplication operation. However, the AND operation on Boolean
variables operates the same as ordinary multiplication, as examination of
the truth table shows, so we can think of them as being the same. This char-
acteristic can be helpful when evaluating logic expressions that contain
AND operations.
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FIGURE 3-7 (a) Truth AND
table for the AND opera- AR R=AE
] tion; (b) AND gate symbol. 0 0 0
j 0o 1 0 S
: 1 0 0 A
9 1 B8 ;
: I AND gate
; (a) (b)
]
| The expression x = A-B is read as “x equals A AND B,” which means

that x will be 1 only when 4 and B are both 1. The - sign is usually omitted
so that the expression simply becomes x = AB. For the case when three in-
puts are ANDed, we have x = A-B:C = ABC. This is read as “x equals A AND
B AND C,” which means that x will be 1 only when 4 and B and C are all 1.

AND Gate

The logic symbol for a two-input AND gate is shown in Figure 3-7(b). The
AND gate output is equal to the AND product of the logic inputs; that is,
\ x = AB. In other words, the AND gate is a circuit that operates so that its out-
put is HIGH only when all its inputs are HIGH. For all other cases, the AND
gate output is LOW,

This same operation is characteristic of AND gates with more than two
inputs. For example, a three-input AND gate and its accompanying truth
table are shown in Figure 3-8. Once again, note that the gate outputis 1 only
for the case where 4 = B = C = 1. The expression for the outputis x = ABC.

t For a four-input AND gate, the output is x = ABCD, and so on.
1 FIGURE 3-8 Truth table ARG x = ABC
‘ and symbol for a three- 0 0 0 0
input AND gate. o o0 1 0
[ ] 0 A @—
Ol T 0 Be—1, x = ABC
1 0 0 0 C o—
1 0 1 0
e 1 1 0 0
I | 1

g
|

n Note the difference between the symbols for the AND gate and the OR
S gate. Whenever you see the AND symbol on a logic-circuit diagram, it tells you
D that the output will go HIGH only when all inputs are HIGH. Whenever you
n see the OR symbol, it means that the output will go HIGH when any input is
S HIGH.

Summary of the AND Operation

1. The AND operation is performed the same as ordinary multiplication of

1s and Os.
d 2. An AND gate is a logic circuit that performs the AND operation on the
n circuit’s inputs.
if 3. An AND gate output will be 1 only for the case when all inputs are 1; for
- all other cases, the output will be 0.

4. The expression x = AB is read as “x equals A AND B.”
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Determine the output x from the AND gate in Figure 3-9 for the given input

waveforms.
FIGURE 3-9 Example 3-4. 1 : I
A | |
| [
O —— [ TR ne x=AB
- | P [ s
[ [ [ ' T B e—
B [ | | | [

| [
1 | | | |
X | ; ' [
5 | [ ! |
f f T = | T
‘ \ e e B e e i
Solution

The output of an AND gate is determined by realizing that it will be HIGH only
when all inputs are HIGH at the same time. For the input waveforms given, this
condition is met only during intervals t,—t3 and tg—t7. At all other times, one or
more of the inputs are 0, thereby producing a LOW output. Note that input level
changes that occur while the other input is LOW have no effect on the output.

FIGURE 3-10 Examples 3-5A  p I | I | ] | | | | l | I A
|

and B.

Solution
The output x will be at 1 only when A and B are both HIGH at the same time.
Using this fact, we can determine the x waveform as shown in the figure.
Notice that the x waveform is 0 whenever B is 0, regardless of the signal
at A. Also notice that whenever B is 1, the x waveform is the same as A. Thus,
we can think of the B input as a control input whose logic level determines
whether or not the A waveform gets through to the x output. In this situation,
the AND gate is used as an inhibit circuit. We can say that B = 0 is the inhibit
condition producing a 0 output. Conversely, B = 1 is the enable condition,
which enables A to reach the output. This inhibit operation is an important
application of AND gates, which will be encountered later.

What will happen to the x output waveform in Figure 3-1
kept at the 0 level?
Seolution

With B kept LOW, the x output will also stay LOW. This can be reasoned in
two different ways. First, with B = 0 we have x = A-B=A-0= 0 because
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anything multiplied (ANDed) by 0 will be 0. Another way to look at it is that
an AND gate requires that all inputs be HIGH for the output to be HIGH, and
this cannot happen if B is kept LOW.

e e e ]

1. What is the only input combination that will produce a HIGH at the out-
put of a five-input AND gate?

2. What logic level should be applied to the second input of a two-input
AND gate if the logic signal at the first input is to be inhibited (pre-
vented) from reaching the output?

3. True or false: An AND gate output will always differ from an OR gate out-
put for the same input conditions.

3-5 NOT OPERATION

The NOT operation is unlike the OR and AND operations because it can be
performed on a single input variable. For example, if the variable A4 is sub-
jected to the NOT operation, the result x can be expressed as

x— A
where the overbar represents the NOT operation. This expression is read as
“x equals NOT A” or “x equals the inverse of A” or “x equals the complement
of A.” Each of these is in common usage, and all indicate that the logic value
of x = A s opposite to the logic value of 4. The truth table in Figure 3-11(a)
clarifies this for the two cases A = 0 and A = 1, That is,
0 =1 because 0isnot1
and

1 =0 because 1isnot0

The NOT operation is also referred to as inversion or complementation, and

1 these terms will be used interchangeably throughout the book. Although we
, will always use the overbar indicator to represent inversion, it is important to
S mention that another indicator for inversion is the prime symbol (). That is,
1, ==
t A=A
1, : S
't Both should be recognized as indicating the inversion operation.
FIGURE 3-11 (a) Truth Nor 1
table; (b) symbol for the = NOT A 5 ’ | | |
INVERTER (NOT circuit); A XA . o
is (c) sample waveforms. D l -
10 o 1
() Presence of small 0

circle always denotes
inversion (c)

e (b
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NOT Circuit (INVERTER)

Figure 3-11(b) shows the symbol for a NOT circuit, which is more commonly
called an INVERTER. This circuit always has only a single input, and its out-
put logic level is always opposite to the logic level of this input. Figure 3-11(c)
shows how the INVERTER affects an input signal. It inverts (complements)
the input signal at all points on the waveform so that whenever the input
= 0, output = 1, and vice versa.

APPLICATION 3-1 Figure 3-12 shows a typical application of the NOT gate. The push button is

wired to produce a logic 1 (true) when it is pressed. Sometimes we want to
know if the push button is not being pressed, and so this circuit provides an
expression that is true when the button is not pressed.

FIGURE 3-12 A NOT gate e

indicating a button is not

pressed when its output is Push Logic level 1 (true) when pressed
true. button (false when button is nof pressed).

l

Pressed

NOT FPressed

T

Logic level 1 (true) when not pressed
(false when button is pressed).

Summary of Boolean Operations

The rules for the OR, AND, and NOT operations may be summ arized as follows:

OR AND NOT
0 0-0=0 ) =l

0r1 =1 9il=10 10
(RS =10

1+ 1= U= il

=
e

(=]
I

P
i

[
Il

\ﬁﬁ&&'}k‘ﬁ\:ﬁ?}sﬁﬁﬁi x\:q‘-\._ ‘-\2 . .

%&m\x&ﬁ&’ K&m@% 1. The output of the INVERTER of Figure 3-11 is connected to the input of
a second INVERTER. Determine the output level of the second IN-
VERTER for each level of input A.

2. The output of the AND gate in Figure 3-7 is connected to the input of an
INVERTER. Write the truth table showing the INVERTER output, v, for
each combination of inputs A and B.

3-6 DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY

Any logic circuit, no matter how complex, can be described completely using
the three basic Boolean operations because the OR gate, AND gate, and NOT
circuit are the basic building blocks of digital systems. For example, consider
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FIGURE 3-13 (a) Logic Ae
circuit with its Boolean A-B
expression; (b) logic circuit B @— Xx=A-B+C
whose expression requires c
parentheses.
= (a)
& A A+B
2 B x=(A+B)+C
C &—
(b)

the circuit in Figure 3-13(a). This circuit has three inputs, 4, B, and C, and a
single output, x. Utilizing the Boolean expression for each gate, we can eas-
ily determine the expression for the output.

The expression for the AND gate output is written A - B. This AND output
is connected as an input to the OR gate along with C, another input. The OR
gate operates on its inputs so that its output is the OR sum of the inputs.
Thus, we can express the OR output as x = A-B + C. (This final expression
could also be written as x = C + A - B because it does not matter which term
of the OR sum is written first.)

Operator Precedence

Occasionally, there may be confusion about which operation in an expression
is performed first. The expression 4 - B + C can be interpreted in two differ-
ent ways: (1) A- B is ORed with C, or (2) A is ANDed with the term B + C. To
i avoid this confusion, it will be understood that if an expression contains both
AND and OR operations, the AND operations are performed first, unless
there are parentheses in the expression, in which case the operation inside
the parentheses is to be performed first. This is the same rule that is used in
ordinary algebra to determine the order of operations.

To illustrate further, consider the circuit in Figure 3-13(b). The expression
for the OR gate output is simply 4 + B. This output serves as an input to the
AND gate along with another input, C. Thus, we express the output of the
AND gate as x = (A + B)-C. Note the use of parentheses here to indicate that
A and B are ORed first, before their OR sum is ANDed with C. Without the
parentheses it would be interpreted incorrectly, because A + B:-C means
that A is ORed with the product B - C.

Circuits Containing INVERTERSs

of Whenever an INVERTER is present in a logic-circuit diagram, its output ex-
N pression is simply equal to the input expression with a bar over it. Figure 3-14

shows two examples using INVERTERs. In Figure 3-14(a), input A4 is fed
n through an INVERTER, whose output is therefore A. The INVERTER output
or is fed to an OR gate together with B, so that the OR output is equal to A + B.

Note that the bar is over the A alone, indicating that A is first inverted and
then ORed with B.

FIGURE 3-14 Circuits A

using INVERTERS, A :—EDX_:? B A A+B
ng B B x=A+B
)T c-
ler (a) (b)
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In Figure 3-14(b), the output of the OR gate is equal to A + B and is fed
through an INVERTER. The INVERTER output is therefore equal to (A + B)
because it inverts the complete input expression. Note that the bar covers the
entire expression (A + B). This is important because, as will be shown later,
the expressions (A + B) and (A + B) are not equivalent. The expression
(A + B) means that A is ORed with B and then their OR sum is inverted,
whereas the expression (A + B) indicates that A is inverted and B is inverted
and the results are then ORed together.

Figure 3-15 shows two more examples, which should be studied carefully.
Note especially the use of two separate sets of parentheses in Figure 3-15(b).
i Also notice in Figure 3-15(a) that the input variable A is connected as an in-
put to two different gates.

A 1
A ABC
B e
Ce
A TN x = ABC(A + D)
: A+D DC
D &—
(a)
A A+B
B

D+ (A+B)C

(b)

FIGURE 3-15 More examples.

m&@i@&m 1. In Figure 3-15(a), change each AND gate to an OR gate, and change the
OR gate to an AND gate. Then write the expression for output x.

2. In Figure 3-15(b), change each AND gate to an OR gate, and each OR
gate to an AND gate. Then write the expression for x.

3-7 EVALUATING LOGIC-CIRCUIT OUTPUTS

Once we have the Boolean expression for a circuit output, we can obtain the
output logic level for any set of input levels. For example, suppose that we
want to know the logic level of the output x for the circuit in Figure 3-15(a)
for the case where A = 0,B = 1,C = 1, and D = 1. As in ordinary algebra,
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the value of x can be found by “plugging” the values of the variables into the
expression and performing the indicated operations as follows:

100+ 1)

0+ 1)

As another illustration, let us evaluate the output of the circuit in Figure
3-15(b) for A =0,B=0,C=1,D=1,and E = 1.

D + (A + B)C]-E
1+ (@ +0)1]-1
1+0-1]-1
1+0]-1

14 1)1

1

X

[
[
[
[
[
1
1
In general, the following rules must always be followed when evaluating a
Boolean expression:

1. First, perform all inversions of single terms; thatis,0 = 1 or 1 = 0.

2. Then perform all operations within parentheses.

3. Perform an AND operation before an OR operation unless parentheses
indicate otherwise.

4. If an expression has a bar over it, perform the operations inside the ex-
pression first and then invert the result.

For practice, determine the outputs of both circuits in Figure 3-15 for the
case where all inputs are 1. The answers are x = 0 and x = 1, respectively.

Analysis Using a Table
Whenever you have a combinational logic circuit and you want to know how

it works, the best way to analyze it is to use a truth table. The advantages of
this method are:

It allows you to analyze one gate or logic combination at a time.
It allows you to easily double-check your work.

When you are done, you have a table that is of tremendous benefit in
troubleshooting the logic circuit,

Recall that a truth table lists all the possible input combinations in nu-
merical order. For each possible input combination, we can determine the logic
state at every point (node) in the logic circuit including the output. For exam-
ple refer to Figure 3-16(a). There are several intermediate nodes in this circuit
that are neither inputs nor outputs to the circuit. They are simply connections
between one gate’s output and another gate’s input. In this diagram they have
been labeled u, v, and w. The first step after listing all the input combinations
is to create a column in the truth table for each intermediate signal (node) as
shown in Figure 3-16(b). Node u has been filled in as the complement of A.
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FIGURE 3-16 Analysis of A
a logic circuit using truth
tables. o
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The next step is to fill in the values for column v as shown in Figure 3-16(c).
From the diagram we can see that v = AB. The node v should be HIGH when
A (node u) is HIGH AND B is HIGH. This occurs whenever 4 is LOW AND B
is HIGH. The third step is to predict the values at node w which is the logical
product of BC. This column is HIGH whenever B is HIGH AND C is HIGH as
shown in Figure 3-16(d). The final step is to logically combine columns v and
w to predict the output x. Since x = v + w, the x output will be HIGH when
v is HIGH OR w is HIGH as shown in Figure 3-16(e).

If you built this circuit and it was not producing the correct output for x
under all conditions, this table could be used to find the trouble. The general
procedure is to test the circuit under each combination of inputs. If any in-
put combination produces an incorrect output (i.e., a fault), compare the
actual logic state of each intermediate node in the circuit with the correct
theoretical value in the table while applying that input condition. If the logic
state for an intermediate node is correct, the problem must be farther to the
right of that node. If the logic state for an intermediate node is incorrect, the
problem must be to the left of that node (or that node is shorted to some-
thing). Detailed troubleshooting procedures and possible circuit faults will
be covered more extensively in Chapter 4.
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~ EXAMPLE36 |

Analyze the operation of Figure 3-15(a) by creating a table showing the logic

state at each node of the circuit.
Solution
Fill in the column for ¢ by entering a 1 for all entries where 4 = 0 and
B=1andC= 1.
Fill in the column for u by entering a 1 for all entries where 4 = 1or D = 1.
Fill in the column for v by complementing all entries in column w.
Fill in the column for x by entering a 1 for all entries where t = land v = 1.
A B 6 D {-8KBC y-A+D Vv-AFD x-ty
0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 1 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 1 0 1 1
0 1 1 1 1 1 0 0
1 0 0 0 0] 1 0 0
1 0 0 1 0] 1 0 0
1 0 1 0 0] 1 0 0
1 0 1 1 0] 1 0 0
1 1 0 0 0 1 0 0
1 1 0 1 0 1 0 0
1 1 1 0 0 1 0 0
1 1 1 1 0 1 0 0
). Ee—=maaaae - |
n @%Qﬁ%ﬁ 1. Use the expression for x to determine the output of the circuit in Figure
B 3-15(a) for the conditions A = 0,B = 1,C = 1, and D = 0.
al 2. Use the expression for x to determine the output of the circuit in Figure
) 3-15(b) for the conditions A = B=E =1,C=D = 0.
;ll 3. Determine the answers to Questions 1 and 2 by finding the logic levels
present at each gate output using a table as in Figure 3-16.
et
ral
in- 3-8 [IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS
?ci When the operation of a circuit is defined by a Boolean expression, we can
e draw a logic-circuit diagram directly from that expression. For example, if we
::l‘ie needed a circuit that was defined by x = A-B-C, we would immediately
e know that all that was needed was a three-input AND gate. If we needed a
e circuit that was defined by x = A + B, we would use a two-input OR gate
il with an INVERTER on one of the inputs. The same reasoning used for these

simple cases can be extended to more complex circuits.
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FIGURE 3-17 Constructing
a logic circuit from a
Boolean expression.
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Suppose that we wanted to construct & circuit whose output is
y=AC + BC + ABC. This Boolean expression contains three terms
(AC, BC, ABC), which are ORed together. This tells us that a three-input OR
gate is required with inputs that are equal to AC, BC, and ABC. This is illus-
trated in Figure 3-17(a), where a three-input OR gate is drawn with inputs la-
beled as AC, BC, and ABC.

BC y = AC + BC + ABC

(@)

j>——~ y = AC + BC + ABC

ABC

(b)

Each OR gate input is an AND product term, which means that an AND
gate with appropriate inputs can be used to generate each of these terms.
This is shown in Figure 3-17(b), which is the final circuit diagram. Note the
use of INVERTERS to produce the A and C terms required in the expression.

This same general approach can always be followed, although we shall
find that there are some clever, more efficient techniques that can be em-
ployed. For now, however, this straightforward method will be used to mini-
mize the number of new items that are to be learned.

1

FIGURE 3-18
Example 3-7.

Draw the circuit diagram to implement the expression x = (A + B)B + C).

Solution

This expression shows that the terms A + B and B + C are inputs to an AND
gate, and each of these two terms is generated from a separate OR gate. The
result is drawn in Figure 3-18.

x=(A+B)B+C)
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1. Draw the circuit diagram that implements the expression x = ABC(4 + D)
using gates with no more than three inputs.

2. Draw the circuit diagram for the expression v = AC + BC + ABC.

3. Draw the circuit diagram for x = [D + (A + B)C)] - E.

3-9 NOR GATES AND NAND GATES

Two other types of logic gates, NOR gates and NAND gates, are widely used
in digital circuits. These gates actually combine the basic AND, OR, and
NOT operations, so it is a relatively simple matter to write their Boolean
expressions.

NOR Gate

The symbol for a two-input NOR gate is shown in Figure 3-19(a). It is the
same as the OR gate symbol except that it has a small circle on the output.
The small circle represents the inversion operation. Thus, the NOR gate op-
erates like an OR gate followed by an INVERTER, so that the circuits in
Figure 3-19(a) and (b) are equivalent, and the output expression for the NOR
gateis x = A + B.

FIGURE 3-19 (a) NOR

2 . ] x=A4+B
symbol; (b) equivalent circuit; A
*) truth table.
(c) truth 5 \

Denotes
(a) {l

inversion
A A+B X=A+B
.'»o
B

(b)

OR NOR
A Bl|A+B || A+B
0 0 0 1
o 1§ 1 0
10 1 0
it 1 1 0

(c)

The truth table in Figure 3-19(c) shows that the NOR gate output is the
exact inverse of the OR gate output for all possible input conditions. An OR
gate output goes HIGH when any input is HIGH; the NOR gate output goes
LOW when any input is HIGH. This same operation can be extended to NOR
gates with more than two inputs.
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EXAMPLE3 B Determine the waveform at the output of a NOR gate for the input wave-

forms shown in Figure 3-20.

FIGURE 3-20 1
Example 3-8. A

Solution

One way to determine the NOR output waveform is to find first the OR out-
put waveform and then invert it (change all 1s to 0s, and vice versa). Another
way utilizes the fact that a NOR gate output will be HIGH only when all in-
puts are LOW. Thus, you can examine the input waveforms, find those time
intervals where they are all LOW, and make the NOR output HIGH for those
intervals. The NOR output will be LOW for all other time intervals. The re-
sultant output waveform is shown in the figure.

~ EXAMPLE 3-9

Determine the Boolean expression for a three-input NOR gate followed by
an INVERTER.

Solution

Refer to Figure 3-21, where the circuit diagram is shown. The expression at
the NOR output is (4 + B + C), which is then fed through an INVERTER to
produce

x=(@A+B+ 0)

The presence of the double inversion signs indicates that the quantity (A +
B + C) has been inverted and then inverted again. It should be clear that this
simply results in the expression (4 + B + C) being unchanged. That 18,

x=(A+B+C)=(A+B+0

Whenever two inversion bars are over the same variable or quantity, they
cancel each other out, as in the example above. However, in cases such as
A + B the inversion bars do not cancel. This is because the smaller inver-
sion bars invert the single variables 4 and B, while the wide bar inverts the
quantity (A + B).Thus, A+ B # A + B. Similarly, AB # AB.

A+B+C x=A+B+C=A+B+C
O >

FIGURE 3-21 Example 3-9

Qw3
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FIGURE 3-22 (a) NAND
symbol; (b) equivalent
circuit; (¢) truth table.

FIGURE 3-23
Example 3-10.
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NAND Gate

The symbol for a two-input NAND gate is shown in Figure 3-22(a). It is the
same as the AND gate symbol except for the small circle on its output. Once
again, this small circle denotes the inversion operation. Thus, the NAND op-
erates like an AND gate followed by an INVERTER, so that the circuits of
Figure 3-22(a) and (b) are equivalent, and the output expression for the
NAND gate is x = AB.

E————— *x =AB
— AND NAND
B \:\ .—”_—\ A

Denotes A AB AB
inversion 0 0 0 1
(a) @ 0o 1 0 1
1 0 0 1
1 1 1 0]
A AB AB
(c)
B

The truth table in Figure 3-22(c) shows that the NAND gate output is the
exact inverse of the AND gate for all possible input conditions. The AND
output goes HIGH only when all inputs are HIGH, while the NAND output
goes LOW only when all inputs are HIGH. This same characteristic is true of
NAND gates having more than two inputs.

Determine the output waveform of a NAND gate having the inputs shown in

Figure 3-23.
[ [
| |
< RS e A s
=t — o lD® ]
| | | |
| | | |
x
Solution

One way is to draw first the output waveform for an AND gate and then in-
vert it. Another way utilizes the fact that a NAND output will be LOW only
when all inputs are HIGH. Thus, you can find those time intervals during
which the inputs are all HIGH, and make the NAND output LOW for those in-
tervals. The output will be HIGH at all other times.
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EXAMPLE A 11

FIGURE 3-24

Examples 3-11 and 3-12.

Implement the logic circuit that has the expression x = AB-(C + 5) using
only NOR and NAND gates.

Solution

The (C + D) term is the expression for the output of a NOR gate. This term is
ANDed with A and B, and the result is inverted; this, of course, is the NAND
operation. Thus, the circuit is implemented as shown in Figure 3- 24. Note
that the NAND gate first ANDs the A, B, and (C + D) terms, and then it in-
verts the complete result.

1

EXAMPLE 3 12

Determine the output level in Figure 3-24 forA=B = C=1and D = 0.

Solution

In the first method we use the expression for x.

E

x =

Il
B
/-\f"‘\

| =

Il »—1 el
>—¢|.—~
p—

= 1

In the second method, we write down the input logic levels on the circuit
diagram (shown in color in Figure 3-24) and follow these levels through
each gate to the final output. The NOR gate has inputs of 1 and 0 to pro-
duce an output of 0 (an OR would have produced an output of 1). The
NAND gate thus has input levels of 0, 1, and 1 to produce an output of 1 (an
AND would have produced an output of 0).

1. What is the only set of input conditions that will produce a HIGH output
from a three-input NOR gate?
2. Determine the output level in Figure 3-24 forA =B =1,C =D = 0.

3. Change the NOR gate of Figure 3-24 to a NAND gate, and change the
NAND to a NOR. What is the new expression for x? |

3-10 BOOLEAN THEOREMS

We have seen how Boolean algebra can be used to help analyze a logic circuit
and express its operation mathematically. We will continue our study of
Boolean algebra by investigating the various Boolean theorems (rules) that
can help us to simplify logic expressions and logic circuits. The first group of
theorems is given in Figure 3-25. In each theorem, x is a logic variable that
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{il
9

. 1 G|
) 2)0 xsl= (6) x+1=1
(3) xrx=Xx (7) x+x=x
X X
jres ° |
4y x+-x=0 (8) x+x=1
FIGURE 3-25 Single-variable theorems.
can be either a 0 or a 1. Each theorem is accompanied by a logic-circuit dia-
gram that demonstrates its validity.

Theorem (1) states that if any variable is ANDed with 0, the result must
be 0. This is easy to remember because the AND operation is just like ordi-
nary multiplication, where we know that anything multiplied by 0 is 0. We
also know that the output of an AND gate will be 0 whenever any input is 0,
regardless of the level on the other input.

Theorem (2) is also obvious by comparison with ordinary multiplication.

Theorem (3) can be proved by trying each case. If x = 0, then 0-0 = 0; if
x=1,then1:1 = 1. Thus,x-x = x.

Theorem (4) can be proved in the same manner. However, it can also be
reasoned that at any time either x or its inverse x must be at the 0 level, and

t so their AND product always must be 0.

h Theorem (5) is straightforward, since 0 added to anything does not affect

)- its value, either in regular addition or in OR addition.

e Theorem (6) states that if any variable is ORed with 1, the result will al-

n ways be 1. We check this for both values of x: 0 + 1 =1and 1 + 1 = 1.
Equivalently, we can remember that an OR gate output will be 1 when any

= input is 1, regardless of the value of the other input.

Theorem (7) can be proved by checking for both values of x: 0 + 0 = 0
and1 + 1= 1.

: Theorem (8) can be proved similarly, or we can just reason that at any
1

time either x or x must be at the 1 level so that we are always ORing a 0 and
a 1, which always results in 1.

Before introducing any more theorems, we should point out that when the-
e orems (1) through (8) are applied, the variable x may actually represent an
expression containing more than one variable. For example, if we have
AE(@), we can invoke theorem (4) by letting x = AB. Thus, we can say that
AB(AB) = 0.The same idea can be applied to the use of any of these theorems.

it Multivariable Theorems

nf The theorems presented below involve more than one variable:
At

of (9) X ty=U+x

at (10) X'y=y'x
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| (11) x+w+a)=xty) tz=x+y-+z
5 (12) x(yz) = (xy)z = XYz

: (13a) x(y +z) = xy + xz

(13b) (w+x)(y+2)=wy + xp+ wz+ xz
: (14) x+xp=x

. (15a) X+ xy=x-+y

’ (15) x+xpy=x+y

Theorems (9) and (10) are called the commutative laws. These laws indi-
cate that the order in which we OR or AND two variables is unimportant; the
il result is the same.

Theorems (11) and (12) are the associative laws, which state that we can
group the variables in an AND expression or OR expression any way we want.

Theorem (13) is the distributive law, which states that an expression can be
expanded by multiplying term by term just the same as in ordinary algebra.
This theorem also indicates that we can factor an expression. That is, if we have
a sum of two (or more) terms, each of which contains a common variable, the
common variable can be factored out just as in ordinary algebra. For example,
if we have the expression ABC + A B C, we can factor out the B variable:

ABC + ABC = B(AC + AC)

As another example, consider the expression ABC + ABD. Here the two
terms have the variables A and B in common, and so A+ B can be factored out
of both terms. That is,

ABC + ABD = AB(C + D)

Theorems (9) to (13) are easy to remember and use because they are
identical to those of ordinary algebra. Theorems (14) and (15), on the other
n%f' hand, do not have any counterparts in ordinary algebra. Each can be proved
i by trying all possible cases for x and y. This is illustrated (for theorem 14) by
creating an analysis table for the equation x + xy as follows:

i

- = o o |
- o = o
S = ) (=)

Notice that the value of the entire expression (x + xv) is always the same
as x.

Theorem (14) can also be proved by factoring and using theorems (6) and
(2) as follows:

x+ xy=x(1+uw)
=ixel [using theorem (6)}]
= x [using theorem (2}]

All of these Boolean theorems can be useful in simplifying a logic expres-
sion—that is, in reducing the number of terms in the expression. When this is
done, the reduced expression will produce a circuit that is less complex than
the one that the original expression would have produced. A good portion of
the next chapter will be devoted to the process of circuit simplification. For
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now, the following examples will serve to illustrate how the Boolean theo-
rems can be applied. Note: You can find all the Boolean theorems on the in-
side back cover.

EXAMRLE3-13 Simplify the expression vy = ABD + ABD.

Solution

Factor out the common variables AB using theorem (13):
y = AB(D + D)

Using theorem (8), the term in parentheses is equivalent to 1. Thus,

= AB [using theorem (2)]

Simplify z = (A + B)(4 + B).

Solution
The expression can be expanded by multiplying out the terms [theorem (13)]:

z=A-A+A-B+B-A+B-B
Invoking theorem (4), the term A-A = 0. Also, B-B = B [theorem (3)]:
z=0+A-B+B-A+B=AB+AB+B
Factoring out the variable B [theorem (13)], we have
z=BA+ A+ 1)

Finally, using theorems (2) and (6),

Simplify x = ACD + ABCD.

Solution
Factoring out the common variables CD, we have

x = CD(A + AB)
Utilizing theorem (15a), we can replace A + AB by A + B, so

x = CD(A + B)
= ACD + BCD
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1. Use theorems (13) and (14) to simplify vy = AC + ABC.
2. Use theorems (13) and (8) to simplify vy = ABCD + ABCD.
3. Use theorems (13) and (15b) to simplify v = AD + ABD.

3-11 DEMORGAN’S THEOREMS

Two of the most important theorems of Boolean algebra were contributed by
a great mathematician named DeMorgan. DeMorgan’s theorems are ex-
tremely useful in simplifying expressions in which a product or sum of vari-
ables is inverted. The two theorems are:

(16) (x + v)

=
(17) Gep) =%+

e

Theorem (16) says that when the OR sum of two variables is inverted,
this is the same as inverting each variable individually and then ANDing
these inverted variables. Theorem (17) says that when the AND product of
two variables is inverted, this is the same as inverting each variable individ-
ually and then ORing them. Each of DeMorgan’s theorems can readily be
proven by checking for all possible combinations of x and y. This will be left
as an end-of-chapter exercise.

Although these theorems have been stated in terms of single variables x
and y, they are equally valid for situations where x and/or y are expressions
that contain more than one variable. For example, let’s apply them to the ex-

pression (AE + () as shown below:

(AB + C) = (4B)-C
Note that we used theorem (16) and treated AB as x and C as y. The result can
be further simplified because we have a product AB that is inverted. Using
theorem (17), the expression becomes

AB-C= (4 + B)-C
Notice that we can replace B by B, so that we finally have

(A+B)-C=AC + BC

This final result contains only inverter signs that invert a single variable.

~ EXAMPLE 3-16

ables inverted.

Solution
Using theorem (17), and treating (4 + C) as x and (B + D) as v, we have

z=@A+C) + (B +D)

N
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and changing the AND sign ( - ) to an OR sign (+). Now the term (4 + C) can
be simplified by applying theorem (16). Likewise, (B + D) can be simpli-
fied:

ra
Il

(A+C)+ B+ D)
(A-C) + B-D

Here we have broken the larger inverter signs down the middle and replaced
the (+) with a (-). Canceling out the double inversions, we have finally

z=AC + BD

Example 3-16 points out that when using DeMorgan’s theorems to reduce
an expression, we may break an inverter sign at any point in the expression
and change the operator sign at that point in the expression to its opposite
(+ is changed to -, and vice versa). This procedure is continued until the ex-
pression is reduced to one in which only single variables are inverted. Two
more examples are given below.

Example 1 Example 2

27— AL B.C w= (A + BC) - (D + EF)
—4:-(B-C) — (A + BC) + (D + EF)
=A-(B+ 0O) = (A-BC) + (D- EF)
= A-(B+ 0) =[A(B+ O]+ [D-(E+ F)]

= AB + AC + DE + DF

DeMorgan’s theorems are easily extended to more than two variables.
For example, it can be proved that
SR

x . y .

T
<l

4+ z

ral e
EAR

Here, we see that the large inverter sign is broken at tweo points in the expres-
sion and the operator sign is changed to its opposite. This can be extended to
any number of variables. Again, realize that the variables can themselves be
expressions rather than single variables. Here is another example.

x= 4B CD-EF _

=AB + CD + E
= AB + CD + EF

Implications of DeMorgan’s Theorems

Let us examine theorems (16) and (17) from the standpoint of logic circuits.
First, consider theorem (16):

w2

X+py=x-1

The left-hand side of the equation can be viewed as the output of a NOR gate
whose inputs are x and y. The right-hand side of the equation, on the other
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FIGURE 3-26

(a) Equivalent circuits
implied by theorem (16);
(b) alternative symbol for

| the NOR function.

FIGURE 3-27

(a) Equivalent circuits
implied by theorem (17);
(b) alternative symbol for
the NAND function.

EXAMPLE 3-17

FIGURE 3-28
Example 3-17.
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W = -

|

=
Il
>
+

(b)

hand, is the result of first inverting both x and v and then putting them through
an AND gate. These two representations are equivalent and are illustrated in
Figure 3-26(a). What this means is that an AND gate with INVERTERSs on each
of its inputs is equivalent to a NOR gate. In fact, both representations are u sed
to represent the NOR function. When the AND gate with inverted inputs is used
to represent the NOR function, it is usually drawn as shown in Figure 3-26(b),
where the small circles on the inputs represent the inversion operation.
Now consider theorem (17):

=N Y

The left side of the equation can be implemented by a NAND gate with in-
puts x and u. The right side can be implemented by first inverting inputs x
and v and then putting them through an OR gate. These two equivalent rep-
resentations are shown in Figure 3-27(a). The OR gate with INVERTERs on
each of its inputs is equivalent to the NAND gate. In fact, both representa-
tions are used to represent the NAND function. When the OR gate with in-
verted inputs is used to represent the NAND function, it is usually drawn as
shown in Figure 3-27(b), where the circles again represent inversion.

X — b Y A N,
Xy — y X+ Y = Xy
Y — ¥

Determine the output expression for the circuit of Figure 3-28 and simplify
it using DeMorgan’s theorems.

A.— 3 e —¢ S — -
B &— L z=A-B-C=A+B+C=A+B+C
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Solution

The expression for z is z = ABC. Use DeMorgan’s theorem to break the large
inversion sign:

z=A+B+C
Cancel the double inversions over C to obtain

z=A+B+C |

e e S A |
mxmx\\\\\m\\\\v:\ o |

= S ool

REVIEW QUESTIONS | . — 5
l LSS 1. Use DeMorgan’s theorems to convert the expression z = (4 + B)'C to ;
one that has only single-variable inversions.

2. Repeat question 1 for the expression v = RST + Q

3. Implement a circuit having output expression z = A BC using only a NOR
gate and an INVERTER.

4. Use DeMorgan’s theorems to convert v = A + B + CD to an expression |
containing only single-variable inversions. :

2 3-12 UNIVERSALITY OF NAND GATES AND NOR GATES

All Boolean expressions consist of various combinations of the basic opera-

tions of OR, AND, and INVERT. Therefore, any expression can be imple- !
mented using combinations of OR gates, AND gates, and INVERTERs. It is
possible, however, to implement any logic expression using only NAND gates
and no other type of gate. This is because NAND gates, in the proper combi-
nation, can be used to perform each of the Boolean operations OR, AND, and |
INVERT. This is demonstrated in Figure 3-29.

(a) INVERTER

FIGURE 3-29 NAND gates can be used to implement any Boolean function.
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First, in Figure 3-29(a), we have a two-input NAND gate whose inputs are
purposely connected together so that the variable A4 is applied to both. In
this configuration, the NAND simply acts as INVERTER because its output
isx=AA=A

In Figure 3-29(b), we have two NAND gates connected so that the AND
operation is performed. NAND gate 2 is used as an INVERTER to change AB
to AB = AB, which is the desired AND function.

The OR operation can be implemented using NAND gates connected as
shown in Figure 3-29(c). Here NAND gates 1 and 2 are used as INVERTERs
to invert the inputs, so that the final output is x = A- B, which can be sim-
plified to x = A + B using DeMorgan’s theorem.

In a similar manner, it can be shown that NOR gates can be arranged to
implement any of the Boolean operations. This is illustrated in Figure 3-30.
Part (a) shows that a NOR gate with its inputs connected together behaves
as an INVERTER because the outputisx = A + A = A.

x=A+A=A
E=) ﬁ\'—————ﬁ —
@) INVERTER
A+B A+B
_ A
=
B
(0 OR
Xx=A+B=AB i
B
AND

FIGURE 3-30 NOR gates can be used to implement any Boolean operation.

In Figure 3-30(b), two NOR gates are arranged so that the OR opera-
tion is performed. NOR gate 2 is used as an INVERTER to change A + B
to A + B = A + B, which is the desired OR function.

The AND operation can be implemented with NOR gates as shown in
Figure 3-30(c). Here, NOR gates 1 and 2 are used as INVERTERS to invert
the inputs, so that the final output is x = A + B, which can be simplified to
x = A- B by use of DeMorgan’s theorem.

Since any of the Boolean operations can be implemented using only
NAND gates, any logic circuit can be constructed using only NAND gates.
The same is true for NOR gates. This characteristic of NAND and NOR gates
can be very useful in logic-circuit design, as Example 3-18 illustrates.

In a certain manufacturing process, a conveyor belt will shut down when-
ever specific conditions occur. These conditions are monitored and reflected
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by the states of four logic signals as follows: signal A will be HIGH when-
ever the conveyor belt speed is too fast; signal B will be HIGH whenever
the collection bin at the end of the belt is full; signal C will be HIGH when
the belt tension is too high; signal D will be HIGH when the manual over-

__ride is off.
= X

i Alogic circuit is needed to generate a signal x that will go HIGH when-
ever conditions 4 and B exist simultaneously or whenever conditions C
and D exist simultaneously. Clearly, the logic expression for x will be
x = AB + CD. The circuit is to be implemented with a minimum number
of ICs. The TTL integrated circuits shown in Figure 3-31 are available.
Each IC is a quad, which means that it contains four identical gates on one
chip.

vl
74LS00 Cb-' @
0T 2T & (] [5] (o] [
4 [al [ [ [0l [5] [e] f_[3 2 [ [0 3] [8]
v Voo
[ 2] 7] [T 27 (6 (4] 15 (6] [7]

FIGURE 3-31 1ICs available for Example 3-18.

Solution

The straightforward method for implementing the given expression uses two
AND gates and an OR gate, as shown in Figure 3-32(a). This implementation
uses two gates from the 74LS08 IC and a single gate from the 74LS32 IC. The
numbers in parentheses at each input and output are the pin numbers of the
respective IC. These are always shown on any logic-circuit wiring diagram.
For our purposes, most logic diagrams will not show pin numbers unless they
are needed in the description of circuit operation.

Another implementation can be accomplished by taking the circuit of
Figure 3-32(a) and replacing each AND gate and OR gate by its equivalent
NAND gate implementation from Figure 3-29. The result is shown in Figure
3-32(b).

At first glance, this new circuit looks as if it requires seven NAND
gates. However, NAND gates 3 and 5 are connected as INVERTERs in se-
ries and can be eliminated from the circuit because they perform a double
inversion of the signal out of NAND gate 1. Similarly, NAND gates 4 and 6
can be eliminated. The final circuit, after eliminating the double INVERTERS,
is drawn in Figure 3-32(c).

This final circuit is more efficient than the one in Figure 3-32(a) be-
cause it uses three two-input NAND gates that can be implemented from
one IC, the 74L.S00.
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? FIGURE 3-32 Possible s
implementations for s 3
| Example 3-18. A - (3)
| Be—— () 74ess2
! (a) : ' ' x = AB + CD
(4) 74LS08 _ o
Ce (6)
(5) '
.—_—
il
| |
fit
AND
A
a y

(b)

After eliminating
double inversions

74L800

3 B &— 741500

1. How many different ways do we now have to implement the inversion op-
eration in a logic circuit?

2. Implement the expression x = (A + B)(C + D) using OR and AND gates.
Then implement the expression using only NOR gates by converting
each OR and AND gate to its NOR implementation from Figure 3-30.
Which circuit is more efficient?

3. Write the output expression for the circuit of Figure 3-32(c), and use
DeMorgan’s theorems to show that it is equivalent to the expression for
the circuit of Figure 3-32(a).

3-13 ALTERNATE LOGIC-GATE REPRESENTATIONS

We have introduced the five basic logic gates (AND, OR, INVERTER, NAND,
and NOR) and the standard symbols used to represent them on logic-circuit
diagrams. Although you may find that some circuit diagrams still use these




FIGURE 3-33 Standard
and alternate symbols for
various logic gates and
inverter.
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standard symbols exclusively, it has become increasingly more common to
find circuit diagrams that utilize alternate logic symbols in addition to the
standard/Symbols.

Before discussing the reasons for using an alternate symbol for a logic
gate, we will present the alternate symbols for each gate and show that they
are equivalent to the standard symbols. Refer to Figure 3-33; the left side of
the illustration shows the standard symbol for each logic gate, and the right
side shows the alternate symbol. The alternate symbol for each gate is ob-
tained from the standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by
adding bubbles (small circles) on input and output lines that do not have
bubbles and by removing bubbles that are already there.

2. Change the operation symbol from AND to OR, or from OR to AND. (In
the special case of the INVERTER, the operation symbol is not changed.)

= A

= : A+B=AB
B
A A+B A—Q ==

OR A-B=A+B

B B e—)

NAND A+B=AB
B &—| : B

A o—]
[[AND
Be—

.

=

For example, the standard NAND symbol is an AND symbol with a bub-
ble on its output. Following the steps outlined above, remove the bubble
from the output, and add a bubble to each input. Then change the AND sym-
bol to an OR symbol. The result is an OR symbol with bubbles on its inputs.

We can easily prove that this alternate symbol is equivalent to the stan-
dard symbol by using DeMorgan’s theorems and recalling that the bubble
represents an inversion operation. The output expression from the standard
NAND symbol is AB = A + B, which is the same as the output expression for
the alternate symbol. This same procedure can be followed for each pair of
symbols in Figure 3-33.

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences can be extended to gates with any number of inputs.

2. None of the standard symbols have bubbles on their inputs, and all the
alternate symbols do.
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3. The standard and alternate symbols for each gate represent the same
physical circuit; there is no difference in the circuits represented by the two

sumbols. {

4, NAND and NOR gates are inverting gates, and so both the standard and
the alternate symbols for each will have a bubble on either the input or
the output. AND and OR gates are noninverting gates, and so the alter-
nate symbols for each will have bubbles on both inputs and output.

Logic-Symbol Interpretation

i | Each of the logic-gate symbols of Figure 3-33 provides a unique interpreta-
tion of how the gate operates. Before we can demonstrate these interpreta-
tions, we must first establish the concept of active logic levels.

When an input or output line on a logic circuit symbol has no bubble on
it, that line is said to be active-HIGH. When an input or output line does have
a bubble on it, that line is said to be active-LOW. The presence or absence of
a bubble, then, determines the active-HIGH/active-LOW status of a circuit’s
inputs and output, and is used to interpret the circuit operation.

To illustrate, Figure 3-34(a) shows the standard symbol for a NAND gate.
The standard symbol has a bubble on its output and no bubbles on its inputs.
Thus, it has an active-LOW output and active-HIGH inputs. The logic opera-
tion represented by this symbol can therefore be interpreted as follows:

The output goes LOW only when all of the inputs are HIGH.

Note that this says that the output will go to its active state only when all of
the inputs are in their active states. The word all is used because of the AND

symbol.
FIGURE 3-34 N AR
Interpretation of the two : Output goes LOW only
NAND gate symbols, B “\ when all inputs are HIGH.

/ LOW state is
Active-HIGH the active state.
(a)
A

Output is HIGH when
any input is LOW.

" HIGH state is the
active state.

(b)

Active-LOW

The alternate symbol for a NAND gate shown in Figure 3-34(b) has an
active-HIGH output and active-LOW inputs, and so its operation can be stated
as follows:

The output goes HIGH when any input is LOW.

This says that the output will be in its active state whenever any of the in-
puts is in its active state. The word any is used because of the OR symbol.

With a little thought, you can see that the two interpretations for the .
NAND symbols in Figure 3-34 are different ways of saying the same thing.
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FIGURE 3-35
Interpretation of the two
OR gate symbols.
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Summary

At this point you are probably wondering why there is a need to have two dif-
ferent symbols and interpretations for each logic gate. We hope the reasons
will become clear after reading the next section. For now, let us summarize
the important points concerning the logic-gate representations.

1. To obtain the alternate symbol for a logic gate, take the standard symbol
and change its operation symbol (OR to AND, or AND to OR), and change
the bubbles on both inputs and output (i.e., delete bubbles that are pres-
ent, and add bubbles where there are none).

2. To interpret the logic-gate operation, first note which logic state, 0 or 1,
is the active state for the inputs and which is the active state for the out-
put. Then realize that the output’s active state is produced by having all
of the inputs in their active state (if an AND symbol is used) or by having
any of the inputs in its active state (if an OR symbol is used).

Give the interpretation of the two OR gate symbols.

Solution

The results are shown in Figure 3-35. Note that the word any is used when the
operation symbol is an OR symbol and the word all is used when it includes
an AND symbol.

T

Output goes HIGH when
any input is HIGH.

HIGH state is
Active-HIGH active state.
(a)
g 8 AsB =R+ B Output goes LOW only
B when alfinputs are LOW.
; N LOW state is
Active-LOW active state.

(b)

1. Write the interpretation of the operation performed by the standard
NOR gate symbol in Figure 3-33.

2. Repeat question 1 for the alternate NOR gate symbol.
3. Repeat question 1 for the alternate AND gate symbol.
4, Repeat question 1 for the standard AND gate symbol.

3-14 WHICH GATE REPRESENTATION TO USE

Some logic-circuit designers and some textbooks use only the standard logic-
gate symbols in their circuit schematics, While this practice is not incorrect, it
does nothing to make the circuit operation easier to follow. Proper use of the
alternate gate symbols in the circuit diagram can make the circuit operation
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FIGURE 3-36 (a) Original
circuit using standard
NAND symbols; (b) equiva-
lent representation where
output Z is active-HIGIH; (c)
equivalent representation
where output Z is active-
LOW:; (d) truth table.
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(c)

much clearer. This can be illustrated by considering the example shown in
Figure 3-36.

The circuit in Figure 3-36(a) contains three NAND gates connected to
produce an output Z that depends on inputs A, B, C, and D. The circuit dia-
gram uses the standard symbol for each of the NAND gates. While this dia-
gram is logically correct, it does not facilitate an understanding of how the
circuit functions. The circuit representations given in Figures 3-36(b) and (c),
however, can be analyzed more easily to determine the circuit operation.

The representation of Figure 3-36(b) is obtained from the original circuit
diagram by replacing NAND gate 3 with its alternate symbol. In this dia-
gram, output Z is taken from a NAND gate symbol that has an active-HIGH
output. Thus, we can say that Z will go HIGH when either X or Yis LOW. Now,
since X and Y each appear at the output of NAND symbols having active-LOW
outputs, we can say that X will go LOW only if A = B = 1, and Y will go LOW
only if C = D = 1. Putting this all together, we can describe the circuit oper-
ation as follows:

Output Z will go HIGH whenever either A =B = 1orC = D=1
(or both).

This description can be translated to truth-table form by setting Z = 1 for
those cases where 4 = B = 1 and for those cases where C = D = 1. For all other
cases, Z is made a 0. The resultant truth table is shown in Figure 3-36(d).
The representation of Figure 3-36(c) is obtained from the original circuit
diagram by replacing NAND gates 1 and 2 by their alternate symbols. In this
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equivalent representation, the Z output is taken from a NAND gate that has an
active-LOW output. Thus, we can say that Z will go LOW only when X = Y = 1.
Because X and Y are active-HIGH outputs, we can say that X will be HIGH
when either 4 or B is LOW, and Y will be HIGH when either C or D is LOW,
Putting this all together, we can describe the circuit operation as follows:

Output Z will go LOW only when A or B is LOW and C or D is LOW.

This description can be translated to truth-table form by making Z = 0 for all
cases where at least one of the 4 or B inputs is LOW at the same time that at
least one of the C or D inputs is LOW. For all other cases, Z is made a 1. The
resultant truth table is the same as that obtained for the circuit diagram of
Figure 3-36(b).

Which Circuit Diagram Should Be Used?

The answer to this question depends on the particular function being per-
formed by the circuit output. If the circuit is being used to cause some action
(e.g., turn on an LED or activate another logic circuit) when output Z goes to
the 1 state, then we say that Z is to be active-HIGH, and the circuit diagram
of Figure 3-36(b) should be used. On the other hand, if the circuit is being
used to cause some action when Z goes to the 0 state, then Z is to be active-
1.OW, and the diagram of Figure 3-36(c) should be used.

Of course, there will be situations where both output states are used to
produce different actions and either one can be considered to be the active
state. For these cases, either circuit representation can be used.

Bubble Placement

Refer to the circuit representation of Figure 3-36(b) and note that the symbols
for NAND gates 1 and 2 were chosen to have active-LOW outputs to match the
active-LOW inputs of NAND gate 3. Refer to the circuit representation of
Figure 3-36(c) and note that the symbols for NAND gates 1 and 2 were chosen
to have active-HIGH outputs to match the active-HIGH inputs of NAND gate 3.
This leads to the following general rule for preparing logic-circuit schematics:

Whenever possible, choose gate symbols so that bubble outputs are
connected to bubble inputs, and nonbubble outputs to nonbubble
inputs.

The following examples will show how this rule can be applied.

~ EXAMPLE 3-20

output Z goes HIGH., Modify the circuit diagram so that it represents the cir-
cuit operation more effectively.

A A e—)
Z e ] 7z i
B 2 —— ALARM l B &—( 2 - —— ALARM :
}

C o— C o—
1 |
D o— D &—
(a) (b)
FIGURE 3-37 Example 3-20.
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Solution

Because Z = 1 will activate the alarm, Z is to be active-HIGH. Thus, the AND
gate 2 symbol does not have to be changed. The NOR gate symbol should be
changed to the alternate symbol with a nonbubble (active-HIGH) output to
match the nonbubble input of AND gate 2, as shown in Figure 3-37(b). Note
that the circuit now has nonbubble outputs connected to the nonbubble in-
puts of gate 2.

FIGURE 3-38
Example 3-21.

When the output of the logic circuit in Figure 3-38(a) goes LOW, it activates
another logic circuit. Modify the circuit diagram to represent the circuit op-
eration more effectively.

Solution

Because Z is to be active-LOW, the symbol for OR gate 2 must be changed to
its alternate symbol, as shown in Figure 3-38(b). The new OR gate 2 symbol
has bubble inputs, and so the AND gate and OR gate 1 symbols must be
changed to bubbled outputs, as shown in Figure 3-38(b). The INVERTER al-
ready has a bubble output. Now the circuit has all bubble outputs connected
to bubble inputs of gate 2.

Analyzing Circuits

When a logic-circuit schematic is drawn using the rules we followed in these
examples, it is much easier for an engineer or technician (or student) to fol-
low the signal flow through the circuit and to determine the input conditions
that are needed to activate the output. This will be illustrated in the follow-
ing examples—which, incidentally, use circuit diagrams taken from the logic
schematics of an actual microcomputer.

~ exampiezz

The logic circuit in Figure 3-39 generates an output, MEM, that is used to ac-
tivate the memory ICs in a particular microcomputer. Determine the input
conditions necessary to activate MEM,
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FIGURE 3-39
Example 3-22.

FIGURE 3-40
Example 3-23.
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X
RD @ o[> ° :
: MEM
ROM-A W '
ROM-B
Y
RAM @
v
Solution

One way to do this would be to write the expression for MEM in terms of the
inputs RD, ROM-A, ROM-B, and RAM, and to evaluate it for the 16 possible
combinations of these inputs. While this method would work, it would re-
quire a lot more work than is necessary.

A more efficient method is to interpret the circuit diagram using the
ideas we have been developing in the last two sections. These are the steps:

MEM is active-LOW, and it will go LOW only when X and Y are HIGH.
. X will be HIGH only when RD = 0.

. Y will be HIGH when either W or Vis HIGH.

. V will be HIGH when RAM = 0.

. Wwill be HIGH when either ROM-A or ROM-B = 0.

. Putting this all together, MEM will go LOW only when RD = 0 and at
least one of the three inputs ROM-A, ROM-B, or RAM is LOW.

The logic circuit in Figure 3-40 is used to control the drive spindle motor for
a floppy disk drive when the microcomputer is sending data to or receiving
data from the disk. The circuit will turn on the motor when DRIVE = 1.
Determine the input conditions necessary to turn on the motor.

MNote: All gates are CMOS

w
74HC30 : Y
Az @——1 74HC32 :
v
Al 74HC02 DRIVE

—
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Solution

Once again, we will interpret the diagram in a step-by-step fashion:

DRIVE is active-HIGH, and it will go HIGH only when X = Y = 0.

. X will be LOW when either IN or OUT is HIGH.

Y will be LOW only when W = 0 and A, = 0.

. W will be LOW only when 4, through A; are all HIGH.

. Putting this all together, DRIVE will be HIGH when A; = A; = Az = A4 =
As = Ag = A; = 1 and Ay = 0, and either IN or OUT or both are 1.

Note the strange symbol for the eight-input CMOS NAND gate (74HC30);
also note that signal 45 is connected to two of the NAND inputs.

Asserted Levels

We have been describing logic signals as being active-LOW or active-HIGH.
For example, the output MEM in Figure 3-39 is active-LOW, and the output
DRIVE in Figure 3-40 is active-HIGH because these are the output states that
cause something to happen. Similarly, Figure 3-40 has active-HIGH inputs Ay
to A, and active-LOW input Ay.

When a logic signal is in its active state, it can be said to be asserted. For
example, when we say that input 4 is asserted, we are saying that it is in its
active-LOW state. When a logic signal is not in its active state, it is said to be
unasserted. Thus, when we say that DRIVE is unasserted, we mean that it is
in its inactive state (low).

Clearly, the terms asserted and unasserted are synonymous with active
and inactive, respectively:

asserted = active
unasserted = inactive

Both sets of terms are in common use in the digital field, so you should rec-
ognize both ways of describing a logic signal’s active state.

Labeling Active-LOW Logic Signals

It has become common practice to use an overbar to label active-LOW sig-
nals. The overbar serves as another indication that the signal is active-LOW;
of course, the absence of an overbar means that the signal is active-HIGH.

To illustrate, all of the signals in Figure 3-39 are active-LOW, and so they
can be labeled as follows:

RD, ROMA, ROM-B, RAM, MEM

Remember, the overbar is simply a way to emphasize that these are active-
LOW signals. We will employ this convention for labeling logic signals when-
ever appropriate.

Labeling Bistate Signals

Very often, an output signal will have two active states; that is, it will have
one important function in the HIGH state and another in the LOW state. It
is customary to label such signals so that both active states are apparent. A
common example is the read/write signal, RD/WR, which is interpreted as
follows: when this signal is HIGH, the read operation (RD) is performed;
when it is LOW, the write operation (WR) is performed.
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W QUESTION:

DEY Al

; R
| REVIEVY UUES LIUNS 1. Use the method of Examples 3-22 and 3-23 to determine the input con-
ditions needed to activate the output of the circuit in Figure 3-37(b).

. Repeat question 1 for the circuit of Figure 3-38(b).
. How many NAND gates are shown in Figure 3-39? ‘
. How many NOR gates are shown in Figure 3-40?

. What will be the output level in Figure 3-38(b) when all of the inputs are
asserted?

1 4= W

o

. What inputs are required to assert the alarm output in Figure 3-37(b)?
. Which of the following signals is active-LOW: RD, W, RIW?

~J

3-15 [IEEE/ANSI STANDARD LOGIC SYMBOLS

The logic symbols we have used so far in this chapter are the traditional stan-
dard symbols used in the digital industry for many, many years. These tradi-
- tional symbols use a distinctive shape for each logic gate. A newer standard
L for logic symbols was developed in 1984; it is called the IEEE/ANSI Standard
91-1984 for logic symbols. The IEEE/ANSI standard uses rectangular symbols

|
[
!
|
¢ to represent all logic gates and circuits. A special dependency notation inside
3 the rectangular symbol indicates how the device outputs depend on the de- ‘
> vice inputs. Figure 3-41 shows the IEEE/ANSI symbols alongside the tradi-
3 tional symbols for the basic logic gates. Note the following points:
e 1. The rectangular symbols use a small right triangle (I\) in place of the
small bubble of the traditional symbels to indicate the inversion of the
logic level. The presence or absence of the triangle also signifies whether
an input or output is active-LOW or active-HIGH.
FIGURE 3-41 Standard NOT
logic symbols: (a) traditional; :
(b) IEEE/ANSI. A= X A—i s e
2" AND
V; A —] A —
X & X
Bie——cut B —i
'y
OR
A e
X =1 X
B B —]
e_
n-
NAMD
A —] A ——
% & = %
Bri——— Bl i—
ve
It NOR :
A A
A ) X =1 Bt ey
as B B ——ia
d; —

(a) {b)

_— e —
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2. A special notation inside each rectangular symbol describes the logic re-
lation between inputs and output. The “1” inside the INVERTER symbol
denotes a device with only one input; the triangle on the output indicates
that the output will go to its active-LOW state when that one input is in
its active-HIGH state. The “&” inside the AND symbol means that the
output will go to its active-HIGH state when all of the inputs are in their
active-HIGH state. The “=” inside the OR gate means that the output
will go to its active state (HIGH) whenever one or more inputs are in their
active state (HIGH). .

3. The rectangular symbols for the NAND and the NOR are the same as
those for the AND and the OR, respectively, with the addition of the
small inversion triangle on the output.

Traditional or IEEE/ANSI?

The TEEE/ANSI standard has not yet been widely accepted for use in the dig-
ital field, although you will run across it in some newer equipment schemat-
ics. Most digital IC data books include both the traditional and IEEE/ANSI
symbols, and it is possible that the newer standard might eventually become
more widely used. We will employ the traditional symbols in most of the cir-
cuit diagrams throughout this book.

1 Draw all of the basic logic gates using both the traditional symbols and

the IEEE/ANSI symbols.
2 Draw the IEEE/ANSI symbol for a NOR gate with active-HIGH output.

3-16 SUMMARY OF METHODS TO DESCRIBE LOGIC CIRCUITS

The topics we have covered so far in this chapter have all centered around
just three simple logic functions that we refer to as AND, OR, and NOT. The
concept is not new to anyone because we all use these logical functions every
day as we make decisions. Here are some logical examples. If it is raining OR
the newspaper says that it could rain, then I will take my umbrella. If T get
my paycheck today AND I make it to the bank, then I will have money to
spend this evening. If T have a passing grade in lecture AND T have NOT
failed in lab, then I will pass my digital class. At this point, you may be won-
dering why we have spent so much effort in describing such familiar con-
cepts. The answer can be summed up in two key points:

1. We must be able to represent these logical decisions.

2 We must be able to combine these logic functions and implement a decision-
making system.

We have learned how to represent each of the basic logic functions using:

Logical statements in our own language
Truth tables
Traditional graphic logic symbols

L
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IEEE/ANSI standard logic symbols

Boolean algebra expressions l
|'
|

Timing diagrams

The following English expression describes the way a logic circuit needs to
operate in order to drive a seatbelt warning indicator in a car.

If the driver is present AND the driver is NOT buckled up AND
the ignition switch is on, THEN turn on the warning light.

Describe the circuit using Boolean algebra, schematic diagrams with logic
symbols, truth tables, and timing diagrams.

Solution
See Figure 3-42. ‘

Boolean expression ‘
warning_light = driver_present » buckled. Jﬁ * ignition_on
| (a)

Schematic diagram

| driver_present
= [k o
buckled_up Do } warning_light
ignition_on
(b)
X Truth table |
1 %_ driver_present buckled_up ignition_on warning_light
= ] 0 0 0 0
4 ) 0 0 1 0
3
t 0 1 0 0 I
) 0 1 1 0 |
E 1 0 0 0
& 1 0 1 1
= 1 1 0 0
1 1 1 0
(c)
= Timing diagram
Mame al . 1.Dlm3 2.0ms 3.0ms 4.0ms 50ms 6.0 ms ?.Olms 8.0ms Q.OIms 10 ms
- ignition_on | 0 | [ [ [ = | [
[=— buckled up 0
ED— driver_present| 1
warning _light | O [ |
()

FIGURE 3-42 Methods of describing logic circuits: (a) Boolean expression;
(b) schematic diagram; (c) truth table; (d) timing diagram.
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| | Figure 3-42 shows four different ways of representing the logic circuit

i that was described in English as the problem statement of Example 3-24.
2 There are many other ways in which we could represent the logic of this de-
;."| cision. As an example we could dream up an entirely new set of graphic sym-
E bols, or state the logical relationship in French or Japanese. Of course, we
cannot cover all the possible ways of describing a logic circuit, but we must
understand the most common methods to be able to communicate with oth-
ers in this profession. Furthermore, certain situations are easier to describe
using one method over another. In some cases, a picture is worth a thousand
words, and in other cases words are concise enough and are more easily com-
1 municated to others. The important point here is that we need ways to de-
scribe and communicate the operation of digital systems.

|
REVIEW QUESTION ' SN N
‘ @m&i@&ﬁiﬁ@ 1. Name five ways to describe the operation of logic circuits.

3-17 DESCRIPTION LANGUAGES VERSUS PROGRAMMING
LANGUAGES*

Recent trends in the field of digital systems are favoring text-based language
description of digital circuits. You probably noticed that each description
method in Figure 3-42 offers challenges to computer entry, whether it is due to
overbars, symbols, formatting, or line-drawing issues. In this section, we will
begin to learn some of the more advanced tools that professionals in the digi-
tal field use to describe the circuits that implement their ideas. These tools are
referred to as hardware description languages (HDLs). Even with the powerful
e computers we have today, it is not possible to describe a logic circ uit in English
L4l prose and expect the computer to understand what you mean. Computers need
| a more rigidly defined language. We will focus on two languages in this text:
Altera hardware description language (AHDL) and very high speed integrated
circuit (VHSIC) hardware description language (VHDL).

VHDL and AHDL

VHDL is not a new language. It was developed by the Department of
Defense in the early 1980s as a concise way to document the designs in the
very high speed integrated circuit (VHSIC) program. Appending HDL onto
this acronym was too much, even for the military, and so the language was ab-
breviated to VHDL. Computer programs were developed to take the VHDL
language files and simulate the operation of the circuits. With the growth of
complex programmable logic devices in digital systems, VHDL has evolved
into one of the primary high-level hardware description languages for de-
signing and implementing digital circuits (synthesis). The language has been
standardized by the IEEE, making it universally appealing for engineers as
well as the makers of software tools that translate designs into the bit pat-
terns used to program actual devices.

AHDL is a language that the Altera Corporation developed to provide a
convenient way to configure the logic devices that they offer. Altera was one
of the first companies to introduce logic devices that can be reconfigured

“All sections covering hardware description languages may by skipped without loss of continuity in the
balance of Chapters 1-12.
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electronically. These devices are called programmable logic devices (PLDs).
Unlike VHDL,, this language is not intended to be used as a universal lan-
guage for describing any logic circuit. It is intended to be used for program-
ming complex digital systems into Altera PLDs in a language that is generally
perceived to be easier to learn yet very similar to VHDL. It also has features
that take full advantage of the architecture of Altera devices. All of the ex-
amples in this text will use the Altera MAX +PLUS IT or Quartus IT software
to develop both AHDL and VHDL design files. You will see the advantage of
using Altera’s development system for both languages when you program an
actual device. The Altera system makes circuit development very easy and
contains all the necessary tools to translate from the HDL design file to a file
ready to load into an Altera PLD. It also allows you to develop building
blocks using schematic entry, AHDL, VHDL, and other methods and then in-
terconnect them to form a complete system.

Other HDLs are available that are more suitable for programming simple
programmable logic devices. You will find any of these languages easy to use
after learning the basics of AHDL or VHDL as covered in this text.

Computer Programming Languages

It is important to distinguish between hardware description languages in-
tended to describe the hardware configuration of a circuit and programming
languages that represent a sequence of instructions intended to be carried
out by a computer to accomplish some task. In both cases, we use a language
to program a device. However, computers are complex digital systems that
are made up of logic circuits. Computers operate by following a laundry list
of tasks (i.e., instructions, or “the program”), each of which must be done in
sequential order. The speed of operation is determined by how fast the com-
puter can execute each instruction. For example, if a computer were to respond
to four different inputs, it would require at least four separate instructions
(sequential tasks) to detect and identify which input changed state. A digi-
tal logic circuit, on the other hand, is limited in its speed only by how quickly
il the circuitry can change the outputs in response to changes in the inputs. It
is monitoring all inputs concurrently (at the same time) and responding to
any changes.

The following analogy will help you understand the difference between
computer operation and digital logic circuit operation and the role of lan-

et A S o o

o pd 3 AW

i guage elements used to describe what the systems do. Consider the chal-
= lenge of describing what is done to an Indy 500 car during a pit stop. If a single
2 person performed all the necessary tasks one at a time, he or she would need
3 to be very fast at each task. This is the way a computer operates: one task at
L_ a time but very quickly. Of course, at Indy, there is an entire pit crew that
f swarms the car, and each member of the crew does his or her task while the
d others do theirs. All crew members operate concurrently, like the elements
=" of a digital circuit. Now consider how you would describe to someone else
1 what is being done to the Indy car during the pit stop using (1) the individual-
> mechanic approach or (2) the pit-crew approach. Wouldn’t the two English
= language descriptions of what is being done sound very similar? As we will
see, the languages used to describe digital hardware (HDL) are very similar
g to languages that describe computer programs (e.g., BASIC, C, JAVA), even
]cel though the resulting implementation operates quite differently. Knowledge !

of any of these computer programming languages is not necessary to under-
stand HDL. The important thing is that when you have learned both an HDL
he and a computer language, you must understand their different roles in digi-
tal systems.
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Compare the operation of a computer and a logic circuit in performing the
simple logical operation of y = AB.

Solution
The logic circuit is a simple AND gate. The output vy will be HIGH within ap-
proximately 10 nanoseconds of the point when A and B are HIGH simultane-
ously. Within approximately 10 nanoseconds after either input goes LOW,
the output y will be LOW.

| The computer must run a program of instructions that makes decisions.
| Suppose each instruction takes 20 ns (that’s pretty fast!). Each shape in the
| l flowchart shown in Figure 3-43 represents one instruction. Clearly, it will

take a minimum of two or three instructions (40-60 ns) to respond to
changes in the inputs.

FIGURE 3-43 Decision
process of a computer
program.

IsAHIGH‘?

" s BHIGH? O

| v 4

| Uake yLOW [Make y LOW l I Make y HIGH
| l l

X

Jump back and repeat

1. What does HDL stand for?
2. What is the purpose of an HDL?
3. What is the purpose of a computer programming language?

4. What is the key difference between HDL and computer programming
languages?

3-18 IMPLEMENTING LOGIC CIRCUITS WITH PLDs

Many digital circuits today are implemented using programmable logic de-
vices (PLDs). These devices are not like microcomputers or microcontrollers
that “run” the program of instructions. Instead, they are configured elec-
tronically, and their internal circuits are “wired” together electronically to
form a logic circuit. This programmable wiring can be thought of as thou-
sands of connections that are either connected (1) or not connected (0).
Figure 3-44 shows a small area of programmable connections. Each intersec-
tion between a row (horizontal wire) and a column (vertical wire) is a pro-
grammable connection. You can imagine how difficult it would be to try to
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FIGURE 3-44 Configuring pigital A

hardware connections with INPUTS B

programmable logic 8

devices. E
= |
G |
H i |

......... o

circuits

Programmable connections matrix

configure these devices by placing 1s and 0s in a grid manually (which is how
they did it back in the 1970s).

The role of the hardware description language is to provide a concise and
convenient way for the designer to describe the operation of the circuit in a |
format that a personal computer can handle and store conveniently. The |
computer runs a special software application called a compiler to translate :
from the hardware description language into the grid of 1s and 0s that can ‘
be loaded into the PLD. If a person can master the higher-level hardware de-
scription language, it actually makes programming the PLDs much easier |
than trying to use Boolean algebra, schematic drawings, or truth tables. In !
much the same way that you learned the English language, we will start by
expressing simple things and gradually learn the more complicated aspects |
of these languages. Our objective is to learn enough of HDL to be able to i
communicate with others and perform simple tasks, A full understanding of I
all the details of these languages is beyond the scope of this text and can re- l
ally be mastered only by regular use. [

In the sections throughout this book that cover the HDLs, we will present i
both AHDIL and VHDL in a format that allows you to skip over one language
and concentrate on the other without missing important information. Of
course, this setup means there will be some redundant information presented
if you choose to read about both languages. We feel this redundancy is worth
the extra effort to provide you with the flexibility of focusing on either of the
two languages or learning both by comparing and contrasting similar exam-

& ples. The recommended way to use the text is to focus on one language. It is
true that the easiest way to become bilingual, and fluent in both languages, is
to be raised in an environment where both languages are spoken routinely. It
is also very easy, however, to confuse details, so we will keep the specific ex- I
amples separate and independent. We hope this format provides you with the
opportunity to learn one language now and then use this book as a reference

i:‘:‘% later in your career should you need to pick up the second language.
ec-
s
g REVIEW QUESTIONS 1. What does PLD stand for?
23; 2. How are the circuits reconfigured electronically in a PLD?
TO- 3. What does a compiler do?

to T ST T TISSN |
|




o

102

FIGURE 3-45 A schematic
diagram description.

FIGURE 3-46 Format of
HDL files.

CHAPTER 3/DESCRIBING Logic CIRCUITS

3-19 HDL FORMAT AND SYNTAX

Any language has its unique properties, similarities to other languages, and
its proper syntax. When we study grammar in school, we learn conventions
such as the order of words as elements in a sentence and proper punctuation.
This is referred to as the syntax of language. A language designed to be in-
terpreted by a computer must follow strict rules of syntax. A computer is just
an assortment of processed beach sand and wire that has no idea what you
“meant” to say, so you must present the instructions using the exact syntax
that the computer language expects and understands. The basic format of any
hardware circuit description (in any language) involves two vital elements:

1. The definition of what goes into it and what comes out of it (i.e.,
input/output specs)
2. The definition of how the outputs respond to the inputs (i.e., its operation)

AND2

\ ;“'O”UTPE].'.F. =

~INPUT

a |

b A

A circuit schematic diagram such as Figure 3-45 can be read and under-
stood by a competent engineer or technician because both would under-
stand the meaning of each symbol in the drawing. If you understand how
each element works and how the elements are connected to each other, you
can understand how the circuit operates. On the left side of the diagram is
the set of inputs, and on the right is the set of outputs. The symbols in the
middle define its operation. The text-based language must convey the same
information. All HDLs use the format shown in Figure 3-46.

Documentation

1/0 definitions

Functional description

In a text-based language, the circuit being described must be given a
name. The inputs and outputs (sometimes called ports) must be assigned
names and defined according to the nature of the port. Is it a single bit from
a toggle switch? Or is it a four-bit number coming from a keypad? The text-
based language must somehow convey the nature of these inputs and out-
puts. The mode of a port defines whether it is input, output, or both. The type
refers to the number of bits and how those bits are grouped and interpreted.
If the type of input is a single bit, then it can have only two possible values:
0 and 1. If the type of input is a four-bit binary number from a keypad, it can
have any one of 16 different values (0000;—1111,). The type determines
the range of possible values. The definition of the circuit’s operation in a
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text-based language is contained in a set of statements that follow the circuit in-
put/output (I/O) definition. The following two sections describe the very simple
circuit of Figure 3-45 and illustrate the critical elements of AHDL and VHDL.

BOOLEAN DESCRIPTION USING AHDL

Refer to Figure 3-47. The keyword SUBDESIGN gives a name to the circuit
block, which in this case is and_gate. The name of the file must also be
and_gate.tdf. Notice that the keyword SUBDESIGN is capitalized. This is not
required by the software, but use of a consistent style in capitalization makes
the code much easier to read. The style guide that is provided with the Altera
compiler for AHDL suggests the use of capital letters for the keywords in the
language. Variables that are named by the designer should be lowercase.

FIGURE 3-47 Essential SRR &
elements in AHDL. : SUBDESJ.GN and gate
R el
Y SR :'DUT_?UT:
- BEGIN S
i '—_—7 a & b;
.END'; AR RN

The SUBDESIGN section defines the inputs and outputs of the logic cir-
cuit block. Something must enclose the circuit that we are trying to describe,
much the same way that a block diagram encloses everything that makes up
that part of the design. In AHDL, this input/output definition is enclosed in
parentheses. The list of variables used for inputs to this block are separated
by commas and followed by :INPU'T;. In AHDL, the single-bit type is assumed
unless the variable is designated as multiple bits. The single-output bit is de-
clared with the mode :OUTPUT;. We will learn the proper way to describe
other types of inputs, outputs, and variables as we need to use them.

The set of statements that describe the operation of the AHDL circuit
are contained in the logic section between the keywords BEGIN and END. In
this example, the operation of the hardware is described by a very simple
Boolean algebra equation that states that the output (v) is assigned (=) the
logic level produced by a AND b. This Boolean algebra equation is referred
to as a concurrent assignment statement. Any statements (there is only one
in this example) between BEGIN and END are evaluated constantly and con-
currently. The order in which they are listed makes no difference. The basic
Boolean operators are:

AND
OR

NOT
XOR

@~ 3k Qo

1. What appears inside the parentheses () after SUBDESIGN?
2. What appears between BEGIN and END?
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designer should be lowercase.

FIGURE 3-48 Essential
elements in VHDL.

[ :
3
£
Eb

no difference.

BOOLEAN DESCRIPTION USING VHDL

Refer to Figure 3-48. The keyword ENTITY gives a name to the circuit block,
which in this case is and_gate. Notice that the keyword ENTITY is capital-
ized but and_gate is not. This is not required by the software, but use of a
consistent style in capitalization makes the code much easier to read. The
style guide provided with the Altera compiler for VHDL suggests using cap-
ital letters for the keywords in the language. Variables that are named by the

ENTITY and gate IS5
PORE (- a; b - +IN BIT;
W VO BT ;

END and gate;
ARCHITECTURE ckt OF and gate IS
BEGIN

vy <= a AND b;
END ckt;

The ENTITY declaration can be thought of as a block description.
Something must enclose the circuit we are trying to describe, much the same
way a block diagram encloses everything that makes up that part of the de-
sign. In VHDL, the keyword PORT tells the compiler that we are defining in-
puts and outputs to this circuit block. The names used for inputs (separated
by commas) are listed, ending with a colon and a description of the mode and
type of input (:IN BIT;). In VHDL, the BIT description tells the compiler that
each variable in the list is a single bit. We will learn the proper way to de-
scribe other types of inputs, outputs, and variables as we need to use them.
The line containing END and_gate; terminates the ENTITY declaration.

The ARCHITECTURE declaration is used to describe the operation of
everything inside the block. The designer makes up a name for this architec-
tural description of the inner workings of the ENTITY block (ckt in this ex-
ample). Every ENTITY must have at least one ARCHITECTURE associated
with it. The words OF and IS are keywords in this declaration. The body of
the architecture description is enclosed between the BEGIN and END key-
words. END is followed by the name that has been assigned to this architec-
ture. Within the body (between BEGIN and END) is the description of the
block’s operation. In this example, the operation of the hardware is de-
scribed by a very simple Boolean algebra equation that states that the out-
put (v) is assigned (< =) the logic level produced by a AND b. This is referred
to as a concurrent assignment statement, which means that all the state-
ments (there is only one in this example) between BEGIN and END are eval-
uated constantly and concurrently. The order in which they are listed makes

1. What is the role of the ENTITY declaration?
2. Which key section defines the operation of the circuit?
3. What is the assignment operator used to give a value to a logic signal?
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3-20 INTERMEDIATE SIGNALS

In many designs, there is a need to define signal points “inside” the circuit |

block. They are points in the circuit that are neither inputs nor outputs for

the block but may be useful as a reference point. It may be a signal that

needs to be connected to many other places within the block. In an analog or

digital schematic diagram, they would be called test points or nodes. In an |

HDL, they are referred to as buried nodes or local signals. Figure 3-49 shows |

a very simple circuit that uses an intermediate signal named m. In the HDL,
|
f
|
|
|

these nodes (signals) are not defined with the inputs and outputs but rather
in the section that describes the operation of the block. The inputs and out-
puts are available to other circuit blocks in the system, but these local sig-
nals are recognized only within this block.

Intermediate signal m

INPUT /
a

b | INPUT _ ala )
' ' OUTPUT " 5
y
i W _ j ) _ [

FIGURE 3-49 A logic circuit diagram with an intermediate variable. |

In the example code that follows, notice the information at the top. The ‘
purpose of this information is strictly for documentation purposes. It is ab-
solutely vital that the design is documented thoroughly. At a minimum, it ‘
should describe the project it is being used in, who wrote it, and the date.
¢ This information is often referred to as a header. We are keeping our head- i
ers brief to make this book a little lighter to carry to class, but remember:
memory space is cheap and information is valuable. So don’t be afraid to
o document thoroughly! There are also comments next to many of the state-

{ o ST e s S

pher the code. Notice that the comments at the end of lines 9, 10, 13, 15, and
16 are preceded by two dashes (--). The text following the dashes is for docu-
P mentation only. Either type of comment symbol may be used, but percent ‘

{-

.)f ' ments in the code. These comments help the designer remember what she or

V.‘ he was trying to do and to help any other person to understand what was in-

' tended.

C..

e

e-

. AHDL BURIED NODES o

.d The AHDL code that describes the circuit in Figure 3-49 is shown in Figure ok i

e- 3-50. The comments in AHDL can be enclosed between % characters, as you = I

a1- can see in the figure between lines 1 and 4. This section of the code allows il

es the designer to write many lines of information that will be ignored by com- Sl
puter programs using this file but can be read by any person trying to deci- e

Y |

' signs must be used in pairs to open and close a comment. Double dashes in-
dicate a comment that extends to the end of the line.
In AHDL, local signals are declared in the VARTABLE section, which is
2 : placed between the SUBDESIGN section and the logic section. The interme-
' diate signal m is defined on line 11, following the keyword VARIABLE. The
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FIGURE 3-50 S : : ' Ny
Intermediate variables it % Intermediate variables in AHDL (Figure 3-49)
in AHDL described in 2 . pigital Systems 10th oL
Figure 3-49. 3 L
4 T e e
5 SUBDESIGN £ig3.50
) "'a,b:,'c-. COGINPUT: == deﬁ-iﬁe_' i-nput._s' to block
8 SRR  .ouTPUT; -- define block output
| 9 e N s
i 10 | VARTABLE 3 3 : ; :
‘ 11 n :NODE; -~ name an intermediate signal
12 BEGIN SR R R
123 Shiimts e B . - generate buried product term
14 : e —'.—'-"gen_érate. sum on output
i 15 _EN'D_: 3 = ¥ SR g

keyword NODE designates the nature of the variable. Notice that a colon

) separates the variable name from its node designation. In the hardware de-

i 5 . scription on line 13, the intermediate variable is assigned (connected to) a

f 4 value (m = a & b;) and then m is used in the second statement on line 14 to

; assign (connect) a value toy (v = m # ¢;). Remember that the assignment

: statements are concurrent and, thus, the order in which they are given does

not matter. For human readability, it may seem more logical to assign values

to intermediate variables before they are used in other assignment state-
ments, as shown here.

1. What is the designation used for intermediate variables?
2. Where are these variables declared? |
3. Does it matter whether the m or y equation comes first?

4. What character is used to limit a block of comments? !
5. What characters are used to comment a single line?

? VHDL LOCAL SIGNALS

The VHDL code that describes the circuit in Figure 3-49 is shown in Figure
3-51. The comments in VHDL follow two dashes (--). Typing two successive
dashes allows the designer to write information from that point to the end of
the line. The information following the two successive dashes will be ignored
by computer programs using this file, but can be read by any person trying to
decipher the code.

The intermediate signal m is defined on line 13 following the keyword
SIGNAL. The keyword BIT designates the type of the signal. Notice that a
colon separates the signal name from its type designation. In the hardware de-
scription on line 16, the intermediate signal is assigned (connected to) a value
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i -- Intermediate wvariables in VHDL (Figure 3-49)
2 -- Digital Systems 10th ed

i 3 -~ NS Widmer
4 —= MEY 23, 2005
35y
6 ENTITY fig3 51 18 i
7 EORT( &, b, ¢ :IN BIT; ~~ define inputs to block |
8 W :0UT BIT); -- define block output
9 END fig3 51; !
10 :
i ARCHITECTURE ckt COF fig3 51 IS
12 |
13 STGNAL m :BIT; -- name an intermediate signal
14
15 BEGIN
16 m == a AND b; ~-- generate buried product term
147 y == m OR c¢; -~ generate sum on output
18 END ckt;

e R e e s e

FIGURE 3-51 Intermediate signals in VHDL described in Figure 3-49.

(m<=a AND b;) and then m is used in the statement on line 17 to assign (con-
nect) a value to v (v<=m OR ¢;). Remember that the assignment statements
are concurrent and, thus, the order in which they are given does not matter.
For human readability, it may seem more logical to assign values to interme-
diate signals before they are used in other assignment statements, as shown
here. ’

1. What is the designation used for intermediate signals?
2. Where are these signals declared?

3. Does it matter whether the m or y equation comes first?
4. What characters are used to comment a single line?

B SUMMARY

1. Boolean algebra is a mathematical tool used in the analysis and design of
e ] digital circuits.
= 2. The basic Boolean operations are the OR, AND, and NOT operations.

gate produces a HIGH output only when all inputs are HIGH. A NOT cir-

to < i S

cuit (INVERTER) produces an output that is the opposite logic level
rd compared to the input.
a 4. A NOR gate is the same as an OR gate with its output connected to an IN-
le- VERTER. A NAND gate is the same as an AND gate with its output con-

ue nected to an INVERTER.

|
|
I
of : . : :
i 3. An OR gate produces a HIGH output when any input is HIGH. An AND l
|
[
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5. Boolean theorems and rules can be used to simplify the expression of a

£ logic circuit and can lead to a simpler way of implementing the circuit.

b 6. NAND gates can be used to implement any of the basic Boolean opera-

4 tions. NOR gates can be used likewise.

I | 7. Either standard or alternate symbols can be used for each logic gate, de-

& pending on whether the output is to be active-HIGH or active-LOW.

8. The IEEE/ANSI standard for logic symbols uses rectangular symbols for
each logic device, with special notations inside the rectangles to show
how the outputs depend on the inputs.

i | 9. Hardware description languages have become an important method of
describing digital circuits.

10. HDL code should always contain comments that document its vital char-
acteristics so a person reading it later can understand what it does.

11. Every HDL circuit description contains a definition of the inputs and
outputs, followed by a section that describes the circuit’s operation.

12. In addition to inputs and outputs, intermediate connections that are
i buried within the circuit can be defined. These intermediate connec-
: tions are called nodes or signals.

IMPORTANT TERMS

symbols

PROBLEMS

devices (PLDs)

logic level active logic levels concurrent
Boolean algebra active-HIGH compiler
truth table active-LOW symtax
OR operation asserted mode
OR gate unasserted type
AND operation IEEE/ANSI SUBDESIGN
‘_ AND gate hardware description concurrent
=3 NOT operation languages (HDLs) assignment
inversion Altera hardware statement
| (complementation) description ENTITY
i NOT circuit language (ATIDL) BIT
i (INVERTER) very high speed ARCHITECTURE
I NOR gate integrated circuit buried nodes (local
NAND gate (VHSIC) hardware signals)
Boolean theorems description comments
DeMorgan’s theorems language (VHDL) VARIABLE
alternate logic programmable logic NODE

The color letters preceding some of the problems are used to indicate the na-

ture or type of problem as follows:

B basic problem

T troubleshooting problem

D design or circuit-modification problem

N new concept or technique not covered in text

C challenging problem
H HDL problem
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SECTION 3-3

3-1*Draw the output waveform for the OR gate of Figure 3-52.

3-2. Suppose that the A input in Figure 3-52 is unintentionally shorted to
ground (i.e., A = 0). Draw the resulting output waveform.

3-3*Suppose that the 4 input in Figure 3-52 is unintentionally shorted
to the +5V supply line (i.e., 4 = 1). Draw the resulting output wave-
form.

3-4. Read the statements below concerning an OR gate. At first, they may
appear to be valid, but after some thought you should realize that nei-
ther one is always true. Prove this by showing a specific example to re-
fute each statement.

(a) If the output waveform from an OR gate is the same as the wave-
form at one of its inputs, the other input is being held perma-
nently LOW.

(b) If the output waveform from an OR gate is always HIGH, one of its
inputs is being held permanently HIGH.

3-5. How many different sets of input conditions will produce a HIGH out-
put from a five-input OR gate?

SECTION 3-4

3-6. Change the OR gate in Figure 3-52 to an AND gate.
(aDraw the output waveform.
(b) Draw the output waveform if the 4 input is permanently shorted
to ground.
(c) Draw the output waveform if A is permanently shorted to +5 V.

3-7*Refer to Figure 3-4. Modify the circuit so that the alarm is to be acti-
vated only when the pressure and the temperature exceed their max-
imum limits at the same time.

3-8*Change the OR gate in Figure 3-6 to an AND gate and draw the output
waveform.

3-9. Suppose that you have an unknown two-input gate that is either an
OR gate or an AND gate. What combination of input levels should you
apply to the gate’s inputs to determine which type of gate it is?

3-10. True or false: No matter how many inputs it has, an AND gate will pro-
duce a HIGH output for only one combination of input levels.

*Answers to problems marked with an asterisk can be found in the back of the text.
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SECTIONS 3-5T0 3-7

B 3-11. Apply the A waveform from Figure 3-23 to the input of an IN VERTER.

| Draw the output waveform. Repeat for waveform B.

= B 3-12. (a)* Write the Boolean expression for output x in Figure 3-53(a).
Determine the value of x for all possible input conditions, and
list the values in a truth table.

(b) Repeat for the circuit in Figure 3-53(b).

b | FIGURE 3-53 i
B
| X
5 c
‘ (a)
i A
B [
| ¢ ———>—
|
[ I .
gi:- i
D
(b)

B 3.13*Create a complete analysis table for the circuit of Figure 3-15(b) by
finding the logic levels present at each gate output for each of the 32
possible input combinations.

B 3-14. (a)*Change each OR to an AND, and each AND to an OR, in Figure

3-15(b). Then write the expression for the output.
(b) Complete an analysis table.

B 3-15. Create a complete analysis table for the circuit of Figure 3-16 by find-
ing the logic levels present at each gate output for each of the 16 pos-
sible combinations of input levels.

SECTION 3-8

B 3-16. For each of the following expressions, construct the corresponding
logic circuit, using AND and OR gates and INVERTERsS.

(@rx = ABCHD) _
(byz=A + B + CDE) + BCD
() y= M+ N+ PQ)
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(d) x =W+ PQ
(e) z = MNP + N)
(f) x = (A4 + B)(A + B)

SECTION 3-9

3-17%(a) Apply the input waveforms of Figure 3-54 to a NOR gate, and draw
the output waveform.
(b) Repeat with C held permanently LOW.

(c) Repeat with C held HIGH.

FIGURE 3-54 _Iu—u—l_
A b

|
3-18. Repeat Problem 3-17 for a NAND gate.
3-19*Write the expression for the output of Figure 3-55, and use it to de-
termine the complete truth table. Then apply the waveforms of Figure
3-54 to the circuit inputs, and draw the resulting output waveform.
FIGURE 3-55 A =i 1 b
X
B JQ)—«
(6]
|

3-20. Determine the truth table for the circuit of Figure 3-24,

3-21. Modify the circuits that were constructed in Problem 3-16 so that
NAND gates and NOR gates are used wherever appropriate.

SECTION 3-10

3-22. Prove theorems (15a) and (15b) by trying all possible cases.
3-23* DRILL QUESTION
Complete each expression.

(@AaArl=" """ (f) D-1 =

(g d =us i (g) D+ 0=
BB erea L (h) C+ C =
(diltetG= 8 0 o | @) G+ GE=

tenlbxafi=1 TR sl fi) G e |
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FIGURE 3-56
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C 3-24. (a)* Simplify the following expression using theorems (13b), (3), and (4):
x = (M + N)M + P)(N + P)
(b) Simplify the following expression using theorems (13a), (8), and (6):
2 = ABC + ABC + BCD

SECTIONS 3-11 AND 3-12
C 3.25. Prove DeMorgan’s theorems by trying all possible cases.
B 3-26. Simplify each of the following expressions using DeMorgan’s theo-

rems. LR ERea -
(a)*ABC d) A+ B (g)*A(B + OD

(b) A + BC (e)*AB (h)y (M + N)(M + N)
(¢)* ABCD (f) A+ C+D (i) ABCD

B 3-27*Use DeMorgan’s theorems to simplify the expression for the output of
Figure 3-55.

C 3.28. Convert the circuit of Figure 3-53(b) to one using only NAND gates.
Then write the output expression for the new circuit, simplify it using
DeMorgan’s theorems, and compare it with the expression for the
original circuit.

C  3-29. Convert the circuit of Figure 3-53(a) to one using only NOR gates.
Then write the expression for the new circuit, simplify it using
DeMorgan’s theorems, and compare it with the expression for the
original circuit.

B 3.30. Show how a two-input NAND gate can be constructed from two-input
NOR gates.

B 3-31. Show how a two-input NOR gate can be constructed from two-input
NAND gates.

C  3-32. A jet aircraft employs a system for monitoring the rpm, pressure, and
temperature values of its engines using sensors that operate as follows:

RPM sensor output = 0 only when speed < 4800 rpm
P sensor output = 0 only when pressure < 220 psi
T sensor output = 0 only when temperature < 200°F

Figure 3-56 shows the logic circuit that controls a cockpit warning
light for certain combinations of engine conditions. Assume that a
HIGH at output W activates the warning light.

(a) Determine what en gine conditions will give a warning to the pilot.

(b) Change this circuit to one using all NAND gates.

Temp T
sensor

Warning
light
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SECTIONS 3-13 AND 3-14

B 3-33. For each statement below, draw the appropriate logic-gate symbol—
standard or alternate—for the given operation.
(a) A HIGH output occurs only when all three inputs are LOW.
(b) A LOW output occurs when any of the four inputs is LOW.
(c) A LOW output occurs only when all eight inputs are HIGH.

B 3-34. Draw the standard representations for each of the basic logic gates.
Then draw the alternate representations.

C 3-35. The circuit of Figure 3-55 is supposed to be a simple digital combina-

tion lock whose output will generate an active-LOW UNLOCK signal
for only one combination of inputs.

(aY"Modify the circuit diagram so that it represents more effectively
the circuit operation.

(b) Use the new circuit diagram to determine the input combination
that will activate the output. Do this by working back from the
output using the information given by the gate symbols, as was
done in Examples 3-22 and 3-23, Compare the results with the
truth table obtained in Problem 3-19.

C 3-36. (a) Determine the input conditions needed to activate output Z in
Figure 3-37(b). Do this by working back from the output, as was
done in Examples 3-22 and 3-23.

(b) Assume that it is the LOW state of Z that is to activate the alarm.
Change the circuit diagram to reflect this, and then use the re-
vised diagram to determine the input conditions needed to acti-
vate the alarm.

D 3-37. Modify the circuit of Figure 3-40 so that A; = 0 is needed to produce

DRIVE = 1 instead of 4; = 1.

B 3-38*Determine the input conditions needed to cause the output in Figure

3-57 to go to its active state.

T

B 3-39*What is the asserted state for the output of Figure 3-57? For the out-
put of Figure 3-36(c)?

B 3-40. Use the results of Problem 3-38 to obtain the complete truth table for
the circuit of Figure 3-57.

N 3-41*Figure 3-58 shows an application of logic gates that simulates a two-
way switch like the ones used in our homes to turn a light on or off
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from two different switches. Here the light is an LED that will be ON
(conducting) when the NOR gate output is LOW. Note that this output
is labeled LIGHT to indicate that it is active-LOW. Determine the in-
put conditions needed to turn on the LED. Then verify that the circuit
operates as a two-way switch using switches 4 and B. (In Chapter 4,
you will learn how to design circuits like this one to produce a given
relationship between inputs and outputs.)

FIGURE 3-58 +5V

4

v
A
LIGHT
v

1
;‘/

SECTION 3-15

B 3.42. Redraw the circuits of (a)* Figure 3-57 and (b) Figure 3-58 using the
IEEE/ANSI symbols.

SECTION 3-17
HDL DRILL QUESTIONS

H 3-43* True or false:
(a) VHDL is a computer programming language.
(b) VHDL can accomplish the same thing as AHDL.
(¢) AHDL is an IEEE standard language.
(d) Each intersection in a switch matrix can be programmed as an
open or short circuit between a row and column wire.
(e) The first item that appears at the top of an HDL listing is the
functional description.
(f) The type of an object indicates if it is an input or an output.
(g) The mode of an object determines if it is an input or an output.
(h) Buried nodes are nodes that have been deleted and will never be
used again.
(i) Local signals are another name for intermediate variables.
(i) The header is a block of comments that document vital informa
tion about the project.

SECTION 3-18

B 3-44. Redraw the programmable connection matrix from Figure 3-44. Label
the output signals (horizontal lines) from the connection matrix (from
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top row to bottom row) as follows: AAABADHE. Draw an X in the ap-
propriate intersections to short-circuit a row to a column and create
these connections to the logic circuit.

3-45*Write the HDL code in the language of your choice that will produce
the following output functions:

X—4+B
Y = AB
Z=A+B+C

3-46. Write the HDL code in the language of your choice that will imple-
ment the logic circuit of Figure 3-39.

(a) Use a single Boolean equation.
(b) Use the intermediate variables V, W, X, and Y.

MICROCOMPUTER APPLICATION

3-47*Refer to Figure 3-40 in Example 3-23. Inputs A; through A, are address
inputs that are supplied to this circuit from outputs of the micro-
processor chip in a microcomputer. The eight-bit address code A7 to 4
selects which device the microprocessor wants to activate. In Example
3-23, the required address code to activate the disk drive was A-
through 4y = 11111110, = FEq;.
Modify the circuit so that the microprocessor must supply an ad-
dress code of 4A 5 to activate the disk drive,

CHALLENGING EXERCISES

3-48. Show how x = ABC can be implemented with one two-input NOR
and one two-input NAND gate.

3-49*Implement v = ABCD using only two-input NAND gates.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 3-2
lL.x=1 2.x=0 882

SECTION 3-3
1. All inputs LOW 2.x=A+B+C+D+E+F 3. Constant HIGH

SECTION 3-4

1. All five inputs = 1 2. A LOW input will keep the output LOW. 3. False; see
truth table of each gate.

SECTION 3-5

1. Output of second INVERTER will be the same as input A. 2. v will be LOW
only for4 = B = 1.

SECTION 3-6
1.x=A+B+C+AD 2.x=DAB + C) + E
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SECTION 3-7

1.x=1 A=l 3. x = 1 for both.

SECTION 3-8

1. See Figure 3-15(a). 2. See Figure 3-17(Db). 3. See Figure 3-15(b).

SECTION 3-9
1. All inputs LOW. 2.x=0

3. x=A+B+CD

SECTION 3-10

1.y=AC 2.y=4ABD 3.y=AD+BD

SECTION 3-11

1.z=AB+C 2y=(R+S+T)Q 3.Same as Figure 3-28 except NAND is
replaced by NOR. 4.y = AB(C + D)

SECTION 3-12

1. Three. 2. NOR circuit is more efficient because it can be implemented with

one 741502 IC. 3.x = (AB) (CD) = AB + ((,D) + AB + CD

SECTION 3-13

1. Qutput goes LOW when any input is HIGH.
all inputs are LOW. 3. Output goes LOW when any input is LOW.
goes HIGH only when all inputs are HIGH.

2. Output goes HIGH only when
4. Qutput

SECTION 3-14

1. Z will go HIGH when A = B =0and C =D = 1 2. Z will go LOW when
A=B=0,E =1, and either C or D or both are 0. 3. Two 4, Two 5.LOW
6.A=B=0,C=D=1 7. W

SECTION 3-15

1. See Figure 3-41. 2. Rectangle with & inside, and triangles on inputs.

SECTION 3-16

1. Boolean equation, truth table, logic diagram, timing diagram, language.

SECTION 3-17

1. Hardware description language 2. To describe a digital circuit and its
operation. 3. To give a computer a sequential list of tasks. 4. HDL describes
concurrent hardware circuits; computer instructions execute one at a time.

SECTION 3-18

1. Programmable logic device 2. By making and breaking connections in a
switching matrix 3. It translates HDL code into a pattern of bits to configure the
switching matix.

SECTION 3-19
AHDL

1. The input and output definitions. 2. The description of how it operates.
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VHDL

1. To give a name to the circuit and define its inputs and outputs. 2. The
ARCHITECTURE description. 3. ==

SECTION 3-20
AHDL
1. NODE 2. After the I/O definition and before BEGIN, 3. No . Yo

VHDL
1. SIGNAL 2. Inside ARCHITECTURE before BEGIN. 3. No 4. -
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B OBIJECTIVES |

Upon completion of this chapter, vou will be able to:
E Convert a logic expression into a sum-of-products expression.

I}
(1
® Perform the necessary steps to reduce a sum-of-products expression to :

its simplest form. i

Use Boolean algebra and the Karnaugh map as tools to simplify and
design logic circuits, :
Explain the operation of both exclusive-OR and exclusive-NOR circu

Design simple logic circuits without the help of a truth table.
Implement enable circuits.

Cite the basic characteristics of TTL and CMOS digital ICs.
Use the basic troubleshooting rules of digital systems.

Deduce from observed results the faults of malfunctioning
combinational logic circuits.

Describe the fundamental idea of programmable logic devices (PLDs)

%

Outline the steps involved in programming a PLD to perform a simpl
combinational logic function.

B Go to the Altera user manuals to acquire the information needed to d
a simple programming experiment in the lab.

B Describe hierarchical design methods.
B Identify proper data types for single-bit, bit array, and numeric vdlue :
variables.
B  Describe logic circuits using HDL control structures IF/ELSE, IF/ELSIF,
and CASE. '

®  Select the appropriate control structure for a given problem.

B INTRODUCTION

In Chapter 3, we studied the operation of all the basic logic gates, and we
used Boolean algebra to describe and analyze circuits that were made up of
combinations of logic gates. These circuits can be classified as
combinational logic circuits because, at any time, the logic level at the out-
put depends on the combination of logic levels present at the inputs. A
combinational circuit has no memory characteristic, so its output depends
only on the current value of its inputs.

In this chapter, we will continue our study of combinational circuits. To
start, we will go further into the simplification of logic circuits. Two meth:
will be used: one uses Boolean algebra theorems; the other uses a mapping
technique. In addition, we will study simple techniques for designing
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combinational logic circuits to satisfy a given set of requirements. A com-
plete study of logic-circuit design is not one of our objectives, but the meth-
ods we introduce will provide a good introduction to logic design.

A good portion of the chapter is devoted to the troubleshooting of com-
binational circuits. This first exposure to troubleshooting should begin to
develop the type of analytical skills needed for successful troubleshooting.
To make this material as practical as possible, we will first present some of
the basic characteristics of logic-gate ICs in the TTL and CMOS logic families
along with a description of the most common types of faults encountered in
digital IC circuits.

In the last sections of this chapter, we will extend our knowledge of pro-
grammable logic devices and hardware description languages. The concept
of programmable hardware connections will be reinforced, and we will pro-
vide more details regarding the role of the development system. You will
learn the steps followed in the design and development of digital systems
today. Enough information will be provided to allow you to choose the cor-
rect types of data objects for use in simple projects to be presented later in
this text. Finally, several control structures will be explained, along with
some instruction regarding their appropriate use.

4-1 SUM-OF-PRODUCTS FORM

The methods of logic-circuit simplification and design that we will study
require the logic expression to be in a sum-of-products (SOP) form. Some ex-
amples of this form are:

1. ABC + ABC
2 AB + ABC+ CD + D
3. AB + CD + EF + GK + HL

Each of these sum-of-products ex pressions consists of two or more AND terms
(products) that are ORed together. Each AND term consists of one or more
variables individually appearing in either complemented or uncomple-
mented form. For example, in the sum-of-products expression ABC + ABC,
the first AND product contains the variables A, B, and C in their uncomple-
mented (not inverted) form. The second AND term contains A and C in their
complemented (inverted) form. Note that in a sum-of-products expression,
one inversion sign cannot cover more than one variable in a term (e.g., We
cannot have ABC or RST).

Product-of-Sums

g Another general form for logic expressions is sometimes used in logic
. circuit design. Called the product-of-sums (POS) form, it consists of two or
more OR terms (sums) that are ANDed together. Each OR term contains
one or more variables in complemented or uncomplemented form. Here
are some product-of-sum expressions:

E 1.(A+B+O(A+C)
2. (A + B)(C + D)F
3. (A+ C)B + D)B + O)A + D+ E)

: The methods of circuit simplification and design that we will be using
E |,. i are based on the sum-of-products (SOP) form, so we will not be doing much
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FIGURE 4-1 It is often
possible to simplify a logic
circuit such as that in part
(a) to produce a more
efficient implementation,
shown in (b).
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with the product-of-sums (POS) form. It will, however, occur from time to
time in some logic circuits that have a particular structure.

1. Which of the following expressions is in SOP form?
(a) AB + CD + E
(b) AB(C + D)
() (A+BYC+D+F)
(d) MN + PQ
2. Repeat question 1 for the POS form.

4-2 SIMPLIFYING LOGIC CIRCUITS

Once the expression for a logic circuit has been obtained, we may be able to re-
duce it to a simpler form containing fewer terms or fewer variables in one or
more terms. The new expression can then be used to implement a circuit that is
equivalent to the original circuit but that contains fewer gates and connections.

To illustrate, the circuit of Figure 4-1(a) can be simplified to produce the
circuit of Figure 4-1(b). Both circuits perform the same logic, so it should be ob-
vious that the simpler circuit is more desirable because it contains fewer gates
and will therefore be smaller and cheaper than the original. Furthermore, the
circuit reliability will improve because there are fewer interconnections that

can be potential circuit faults.
4>::\ B(A + BC)

In subsequent sections, we will study two methods for simplifying logic
circuits. One method will utilize the Boolean algebra theorems and, as we
shall see, is greatly dependent on inspiration and experience. The other
method (Karnaugh mapping) is a systematic, step-by-step approach. Some
instructors may wish to skip over this latter method because it is somewhat
mechanical and probably does not contribute to a better understanding of
Boolean algebra. This can be done without affecting the continuity or clarity
of the rest of the text.

4-3 ALGEBRAIC SIMPLIFICATION

We can use the Boolean algebra theorems that we studied in Chapter 3 to
help us simplify the expression for a logic circuit. Unfortunately, it is not al-
ways obvious which theorems should be applied to produce the simplest
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result. Furthermore, there is no easy way to tell whether the simplified
expression is in its simplest form or whether it could have been simplified
further. Thus, algebraic simplification often becomes a process of trial and
error. With experience, however, one can become adept at obtaining reason-
ably good results.

The examples that follow will illustrate many of the ways in which the
Boolean theorems can be applied in trying to simplify an expression. You
should notice that these examples contain two essential steps:

1. The original expression is put into SOP form by repeated application of
DeMorgan’s theorems and multiplication of terms.

2. Once the original expression is in SOP form, the product terms are
checked for common factors, and factoring is performed wherever possi-
ble. The factoring should result in the elimination of one or more terms.

EXAMPLE 4-1

AC ' _—
A—o-+>o—|__ A AB(AC)

z = ABC + AB(AC)

' L ABC
2 S SRS (&)
B DC B+C
G i D—D—QZA(B+C}
TIRARE
(b)

FIGURE 4-2 Example 4-1.

Solution
The first step is to determine the expression for the output using the method
presented in Section 3-6. The result is

2z = ABC + AB-(A C)

Once the expression is determined, it is usually a good idea to break down
all large inverter signs using DeMorgan’s theorems and then multiply out
all terms.

z = ABC + AB(A + C) [theorem (17)]
= ABC + AB(A + C) [cancel double inversions]
= ABC + ABA + ABC  [multiply out]
= ABC + AB + ABC [A+A = A]
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With the expression now in SOP form, we should look for common variables
among the various terms with the intention of factoring. The first and third
terms above have AC in common, which can be factored out:

z=AC(B + B) + AB

Since B + B = 1, then
7= AC(l) +_AE
= AC + 4B
We can now factor out A, which results in
z=A(C + B)

This result can be simplified no further. Its circuit implementation is shown
in Figure 4-2(b). It is obvious that the circuit in Figure 4-2(b) is a great deal
simpler than the original circuit in Figure 4-2(a).

Simplify the expression z = AB C + ABC + ABC.

Solution

The expression is already in SOP form. =
Method 1: The first two terms in the expression have the product AB in

common. Thus,

z = AB(C + C) + ABC
= AB(1) + ABC
= AB + ABC

We can factor the variable A from both terms:
z = A(B + BC)
Invoking theorem (15b):
z=A(B + C)

Method 2: The original expression is z = AB C + ABC + ABC. The first
two terms have AB in common, The last two terms have AC in common. How
do we know whether to factor AB from the first two terms or AC from the
last two terms? Actually, we can do both by using the ABC term twice. In
other words, we can rewrite the expression as:

z = ABC + ABC + ABC + ABC

where we have added an extra term ABC. This is valid and will not change

we can factor AB from the first two terms and AC from the last two terms:

AB(C + C) + AC(B + B)
AB+1 + AC+1
AB + AC = AB + O

r
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;
3
3
:
E:
Tl.u’

‘ Of course, this is the same result obtained with method 1. This trick of using
the same term twice can always be used. In fact, the same term can be used R
more than twice if necessary.

Simplify z = AC(ABD) + ABCD + ABC. )

Selution
First, use DeMorgan’s theorem on the first term:

2 = AC(A + B + D) + ABCD + ABC (step 1)

Multiplying out yields

\ » = ACA + ACB + ACD + ABCD + ABC (2)
Because A-A = 0, the first term is eliminated:
2 = ABC + ACD + ABCD + ABC (3)

This is the desired SOP form. Now we must look for common factors among
the various product terms. The idea is to check for the largest common factor
between any two or more product terms. For example, the first and last terms
have the common factor BC, and the second and third terms share the com-
mon factor 4 D. We can factor these out as follows:

¥ 2= BC(A +4) + AD(C + BC) (4)
Now, because A = doand E BC = C + B [theorem (15a)], we have

z=BC+AD®B + 0) (5)

This same result could have been reached with other choices for the

factoring. For example, we could have factored C from the first, second, and
fourth product terms in step 3 to obtain

z=C@AB+AD + AB) + ABCD

The expression inside the parentheses can be factored further:

2 = C(B[A + A] + AD) + ABCD

Because A + A = 1, this becomes

=
=
e
s
=
=
5
i
°
=
=
bl
Ly
oy
75}

TR
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Now we can factor A D from the second and third terms to get
z=BC + AD(C + BC)

If we use theorem (15a), the expression in parentheses becomes B + C.Thus,
we finally have

z=BC+ ADB + C) ?

This is the same result that we obtained earlier, but it took us many more
steps. This illustrates why you should look for the largest common factors: it
will generally lead to the final expression in the fewest steps.

Example 4-3 illustrates the frustration often encountered in Boolean
simplification. Because we have arrived at the same equation (which ap-
pears irreducible) by two different methods, it might seem reasonable to
conclude that this final equation is the simplest form. In fact, the simplest
form of this equation is

2 = ABD + BC

But there is no apparent way to reduce step (5) to reach this simpler version.
In this case, we missed an operation earlier in the process that could have
led to the simpler form. The question is, “How could we have known that
we missed a step?” Later in this chapter, we will examine a mapping tech-
nique that will always lead to the simplest SOP form.

} TOEETaE S T e e S Sl S S T L s e S T S Tl ey = T
Simplify the expression x = (A + B)(A + B + D)D.
Solution ‘|,
) The expression can be put into sum-of-products form by multiplying out all I
the terms. The result is
c L B a . <), s = -
d x = AAD + ABD + ADD + BAD + BBD + BDD

The first term can be eliminated because A4 = 0. Likewise, the third and
sixth terms can be eliminated because DD = 0. The fifth term can be sim-
plified to BD because BB = B. This gives us

x = ABD + ABD + BD

We can factor BD from each term to obtain

x=BDA +A4+1)
Clearly, the term inside the parentheses is always 1, so we finally have

x = BD
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FIGURE 4-3 Example 4-5.

Simplify the circuit of Figure 4-3(a).

(a) (b)

Solution
The expression for output z is

z=(4 + BYA + B)
Multiplying out to get the sum-of-products form, we obtain
2=AA+AB + BA + BB
We can eliminate AA = 0 and BB = 0 to end up with
2=AB + AB
This expression is implemented in Figure 4-3(b), and if we compare it with
the original circuit, we see that both circuits contain the same number of

gates and connections. In this case, the simplification process produced an
equivalent, but not simpler, circuit.

Simplify x = ABC + ABD + e,

Solution

You can try, but you will not be able to simplify this expression any further.

1. State which of the following expressions are not in the sum-of~pr0ducts'.

form:

(a) RST + RST + T

(b) ADC + ADC

(c) MNP + (M + N)P

(d) AB + ABC + ABCD .
2. Simplify the circuit in Figure 4-1(a) to arrive at the circuit of Figure 4-1(b).
3. Change each AND gate in Figure 4-1(a) to a NAND gate. Determine the

new expression for x and simplify it.
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4-4 DESIGNING COMBINATIONAL LOGIC CIRCUITS

When the desired output level of a logic circuit is given for all possible input
conditions, the results can be conveniently displayed in a truth table. The
Boolean expression for the required circuit can then be derived from the
truth table. For example, consider Figure 4-4(a), where a truth table is shown
for a circuit that has two inputs, 4 and B, and output x. The table shows that
output x is to be at the 1 level only for the case where A = 0 and B = 1. It now
remains to determine what logic circuit will produce this desired operation.
It should be apparent that one possible solution is that shown in Figure
4-4(b). Here an AND gate is used with inputs 4 and B, so that x = A-B.
Obviously x will be 1 only if both inputs to the AND gate are 1, namely, A=
(which means that A = 0) and B = 1. For all other values of A and B, the out-
put x will be 0.

FIGURE 4-4 Circuit that A B
produces a 1 output only for o ollo A
the A = 0, B = 1 condition. o 181 A =
1 ollo Sl
1 1 0 =
(a) (b)

A similar approach can be used for the other input conditions. For in-
stance, if x were to be high only for the 4 = 1, B = 0 condition, the resulting
circuit would be an AND gate with inputs A and B. In other words, for any of
the four possible input conditions, we can generate a high x output by using

) an AND gate with appropriate inputs to generate the required AND product.
t The four different cases are shown in Figure 4-5. Each of the AND gates
1 shown generates an output that is 1 only for one given input condition and

the output is 0 for all other conditions. It should be noted that the AND in-
puts are inverted or not inverted depending on the values that the variables
have for the given condition. If the variable is 0 for the given condition, it is
inverted before entering the AND gate.

FIGURE 4-5 An AND gate :\/\
with appropriate inputs can
£ be used to produce a 1 B [ >

output for a specific set of

input levels. A ;i>
AB | HIGH only when A=0,B=1 |
B ——
—_— . "

AB | HIGH only whenA=0,B=0 |

AB {HIGHonIywhenA=1,B=O}

AB  {HIGH only whenA=1,B=1|

b).

he Let us now consider the case shown in Figure 4-6(a), where we have a
truth table that indicates that the output x is to be 1 for two different cases:
A=0,B=1and A =1, B = 0. How can this be implemented? We know that
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the AND term A - B will generate a 1 only for the A=0,B =1 condition, and
‘ the AND term A - B will generate a 1 for the A = 1, B = 0 condition. Because
‘ + must be HIGH for either condition, it should be clear that these terms
| should be ORed together to produce the desired output, x. This implementa-
| tion is shown in Figure 4-6(b), where the resulting expression for the output
isx = AB + AB.

: FIGURE 4-6 Each set of
ikl input conditions that is to J a ’_OD_‘
i i produce a HIGH output is I

implemented by a separate S T 8
AND gate. The AND outputs
are ORed to produce the

final output.

x = AB + AB

(a) (b)

In this example, an AND term is generated for each case in the table
where the output x is to bea 1. The AND gate outputs are then ORed together
to produce the total output x, which will be 1 when either AND term 1s 1. This
same procedure can be extended to examples with more than two inputs.
Consider the truth table for a three-input circuit (Table 4-1). Here there are
three cases where the output x is to be 1. The required AND term for each of
these cases is shown. Again, note that for each case where a variable is 0, it
appears inverted in the AND term. The sum-of-products expression for x is
obtained by ORing the three AND terms.

x = ABC + ABC + ABC

TABLE 4-1

— ABC
— ABC

Sl g e ol ey EeEy: e (] h
L A s o

L 00 O = =+ O O X

Complete Design Procedure
= Any logic problem can be solved using the following step-by-step procedure,

1. Interpret the problem and set up a truth table to describe its operation.
> Write the AND (product) term for each case where the output is 1.

3. Write the sum-of-products (SOP) expression for the output.

R 4. Simplify the output expression if possible.

; 5. Tmplement the circuit for the final, simplified expression.
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The following example illustrates the complete design procedure.

Design a logic circuit that has three inputs, A, B, and C, and whose output
will be HIGH only when a majority of the inputs are HIGH.

Solution

Step 1. Set up the truth table.

On the basis of the problem statement, the output x should be 1 whenever two
or more inputs are 1; for all other cases, the output should be 0 (Table 4-2).

TABLE 4-2

A B C |x
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 —ABC
1 0 0 0
1 0 1 1 —ABC
1 1 0 1  —ABC
1 1 1 1 —ABC

Step 2. Write the AND term for each case where the outputisa 1.

There are four such cases. The AND terms are shown next to the truth table
(Table 4-2). Again note that each AND term contains each input variable in
either inverted or noninverted form.

Step 3. Write the sum-of-products expression for the output.
x = ABC + ABC + ABC + ABC

Step 4. Simplify the output expression.

This expression can be simplified in several ways. Perhaps the quickest way
is to realize that the last term ABC has two variables in common with each of
the other terms. Thus, we can use the ABC term to factor with each of the
other terms. The expression is rewritten with the ABC term occurring three
times (recall from Example 4-2 that this is legal in Boolean algebra):

x = ABC + ABC + ABC + ABC + ABC + ABC
Factoring the appropriate pairs of terms, we have
x = BC(A + A) + AC(B + B) + AB(C + C)
Each term in parentheses is equal to 1, so we have

x = BC + AC + AB
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‘ Step 5. Implement the circuit for the final expression.

‘ This expression is implemented in Figure 4-7. Since the expression is in SOP
form, the circuit consists of a group of AND gates working into a single OR gate.

‘ FIGURE 4-7 Example 4-7. g

BC
= C —

‘. | i AC

I | x = BC +AC + AB
]

|

| AB

Refer to Figure 4-8(a), where an analog-to-digital converter is monitoring the
g dc voltage of a 12-V storage battery on an orbiting spaceship. The converter’s
i output is a four-bit binary number, ABCD, corresponding to the battery volt-
| age in steps of 1V, with A as the MSB. The converter’s binary outputs are fed
: to a logic circuit that is to produce a HIGH output as long as the binary value
is greater than 0110; = 61¢; that is, the battery voltage is greater than 6V.
‘ Design this logic circuit.

| i AEE G DI
3 Analog- A -l © o 0 0 0[]0
L to- B » B Logic @ o o o 48 0
i el digital C »| G circuit P (RS TR Y 0
= converter D - oy e 0
: 2 LSB 4 0o 1 0 0[]0
= L (a) (5 o 1 0o 1[|o0O
| L & o 1 1 offo

i = (7) 0 1 1 1|| 1->ABCD

| 8 1 0 0 O0]|| 1—»ABCD

(@9 1 0 0 1 || 1-ABCD

Ae O L I O 1— ABGCD

(1) 10 1 1 [| 1-ABCD

(12) 1 1 0o o0|| 1>ABCD

‘ 2 | (13) 1 1 0 1 || 1> ABGCD

B (14) 1 1 1 0| 1—>ABCD

7 (15) 1 1 1 1[|1->ABCD

9 (b)

I FIGURE 4-8 Example 4-8.

Solution

= The truth table is shown in Figure 4-8(b). For each case in the truth table, we
i have indicated the decimal equivalent of the binary number represented by
| the ABCD combination.

The output z is set equal to 1 for all those cases where the binary num-

l ber is greater than 0110. For all other cases, z is set equal to 0. This truth

' table gives us the following sum-of-products expression:

Tt , — ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
|
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Simplification of this expression will be a formidable task, but with a little
care it can be accomplished. The step-by-step process involves factoring
and eliminating terms of the form A + A:

z = ABCD + AB C(D + D) + ABC(D + D) + ABC(D + D) + ABC(D + D)
= ABCD + ABC + ABC + ABC + ABC
= ABCD + AB(C + C) + AB(C + C)
= ABCD + AB + AB

This can be reduced further by invoking theorem (15a), which says that
x + xv = x + y. In this case x = A and y = BCD. Thus,

z=ABCD + A = BCD + A

This final expression is implemented in Figure 4-8(c).

As this example demonstrates, the algebraic simplification method can
be quite lengthy when the original expression contains a large number of
terms. This is a limitation that is not shared by the Karnaugh mapping
method, as we will see later.

Refer to Figure 4-9(a). In a simple copy machine, a stop signal, §, is to be

generated to stop the machine operation and energize an indicator light
whenever either of the following conditions exists: (1) there is no paper in
the paper feeder tray; or (2) the two microswitches in the paper path are

(b)

FIGURE 4-9 Example 4-9.
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activated, indicating a jam in the paper path. The presence of paper in the
feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches
produces a logic signal (Q and R) that goes HIGH whenever paper is passing
over the switch to activate it. Design the logic circuit to produce a HIGH at
output signal S for the stated conditions, and implement it using the 74HC00

CMOS quad two-input NAND chip.

Solution
We will use the five-step process used in Example 4-7. The truth table is
shown in Table 4-3. The S output will be a logic 1 whenever P =0 because
this indicates no paper in the feeder tray. S will also be a 1 for the two cases
where Q and R are both 1, indicating a paper jam. As the table shows, there
are five different input conditions that produce a HIGH output. (Step 1)

TABLE 4-3

The AND terms for each of these cases are shown. (Step 2)
The sum-of-products expression becomes
S=POR+ POR + PQR + POR + POR (Step 3)

We can begin the simplification by factoring out PQ from terms 1 and 2

and by factoring out PQ from terms 3 and 4:

s =POR + R) + PQ(R + R) + POR (Step 4)
Now we can eliminate the R + R terms because they equal 1:
S=PQ + PQ + PQR

Factoring P from terms 1 and 2 allows us to eliminate Q from these terms:

S =P+ POR

Here we can apply theorem (15b) (x + xp = x -+ v) to obtain

SI=IPEEOR

As a double check of this simplified Boolean equation, let’s see if it
matches the truth table that we started out with. This equation says that
the output S will be HIGH whenever P is LOW OR both ¢ AND R are HIGH.
Look at Table 4-3 and observe that the output is HIGH for all four cases
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when Pis LOW. S is also HIGH when Q AND R are both HIGH, regardless of
the state of P. This agrees with the equation.

The AND/OR implementation for this circuit is shown in Figure 4-9(b).

(Step 5)

To implement this circuit using the 74HCO00 quad two-input NAND
chip, we must convert each gate and the INVERTER by their NAND-gate
equivalents (per Section 3-12). This is shown in Figure 4-9(c). Clearly, we
can eliminate the double inverters to produce the NAND-gate implementa-
tion shown in Figure 4-9(d).

The final wired-up circuit is obtained by connecting two of the NAND
gates on the 74HCOO0 chip. This CMOS chip has the same gate configuration
and pin numbers as the TTL 74L.S00 chip of Figure 3-31. Figure 4-10 shows
the wired-up circuit with pin numbers, including the +5V and GROUND
pins. It also includes an output driver transistor and LED to indicate the
state of output S.

+5V

100 £

74HCOO @ 14

E 4
Vd
5.
Q 1
SR 4 -

Note: The other two
gates on the chip
are not connected,

74HCO0

1. Write the sum-of-products expression for a circuit with four inputs and
an output that is to be HIGH only when input 4 is LOW at the same time
that exactly two other inputs are LOW.

2. Implement the expression of question 1 using all four-input NAND gates.
How many are required?

4-5 KARNAUGH MAP METHOD

The Karnaugh map (K map) is a graphical tool used to simplify a logic equa-
tion or to convert a truth table to its corresponding logic circuit in a simple,
orderly process. Although a K map can be used for problems involving any
number of input variables, its practical usefulness is limited to five or six
variables. The following discussion will be limited to problems with up to
four inputs because even five- and six-input problems are too involved and
are best done by a computer program.
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Karnaugh Map Format

The K map, like a truth table, is a means for showing the relationship be-
tween logic inputs and the desired output. Figure 4-11 shows three examples
of K maps for two, three, and four variables, together with the corresponding
truth tables. These examples illustrate the following important points:

1. The truth table gives the value of output X for each combination of input
values. The K map gives the same information in a different format. Each
case in the truth table corresponds to a square in the K map. For example,
in Figure 4-11(a), the A = 0,B = 0 condition in the truth table corresponds

| to the A B square in the K map. Because the truth table shows X =1

i for this case, a 1 is placed in the A B square in the K map. Similarly, the

A =1, B = 1 condition in the truth table corresponds to the AB square of

the K map. Because X = 1 for this case,a 11s placed in the AB square. All

other squares are filled with 0s. This same idea is used in the three- and
four-variable maps shown in the figure.

2. The K-map squares are labeled so that horizontally adjacent squares dif-
fer only in one variable. For example, the upper left-hand square in the
four-variable map is A B C D, while the square immediately to its right is
A BCD (only the D variable is different). Similarly, vertically adjacent

FIGURE 4-11 Karnaugh

maps and truth tables for A BRIX
(a) two, (b) three, and 0 0||1—AB — ']
(c) four variables. 0 1|0 x = AB + AB r
1 of|o § |
1 115 AB
(a)
e e
A B Gx i
0 0 0||1—=ABC AB | 1 1
0 0 1||1—ABC
0 1 0||1—ABC [- e e B sl 1 0
o1 1|lo {lx=5BQ+A59|L
10 0|0 +ABC + ABC |
10 140 i = AB. (BRSSO
i1 0||1—ABC N
g 1 1 1 @0 AB 0 0
(b) |
A B C DJX
000O0[[O ! €O ©b €b Db
0 00 1||1-ABCD e
00 10[|0 AB| © 1 0 0
00 1 10
FTRD SO oA I o e e Sl : R
g 1 0 15 1 — ABCD ¥ = ABCD + ABCD
01 1 0RO { +ABED+ABCD}
21 1 180 S AB| 0 q 1 0
1 000[]o0
1 0 0 1f4o0 ARien A . 5
¥ 1 0 1 0o
3 10 1 1§§o
5 RO
: 1 4 9 1§ 1—>ABCD
: dod A oo
11 1 1/]1—ABCD
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squares differ only in one variable. For example, the upper left-hand
square is A B C D, while the square directly below it is ABC D (only the B
variable is different).

Note that each square in the top row is considered to be adjacent to
a corresponding square in the bottom row. For example, the A BCD
square in the top row is adjacent to the ABCD square in the bottom row
because they differ only in the A variable. You can think of the top of the
map as being wrapped around to touch the bottom of the map. Similarly,
squares in the leftmost column are adjacent to corresponding squares in
the rightmost column.

|
L

3. In order for vertically and horizontally adjacent squares to differ in only
one variable, the top-to-bottom labeling must be done in the order |
shown: A B, ZL}, AB, AB. The same is true of the left-to-right labeling:
CD,Ch, ED, €D,

4. Once a K map has been filled with Os and 1s, the sum-of-products expression
for the output X can be obtained by ORing together those squares that con-
tain a 1. In the three-variable map of Figure 4-11(b), the A B C, A BC, ABC,
and ABC squares contain a 1, so that X = AB C + A BC + ABC + ABC.

Looping

The expression for output X can be simplified by properly combining those
squares in the K map that contain 1s. The process for combining these 1s is
called looping.

Looping Groups of Two (Pairs)

Figure 4-12(a) is the K map for a particular three-variable truth table. This
map contains a pair of 1s that are vertically adjacent to each other; the first

TIGURE 4-12 Examples of G c C c
looping pairs of adjacent 1s. i
AB| © 0 AB| o0 0
AB [ 1 0 - AB || 1 1
X = ABC + ABC X = ABC + ABG
AB LLJ 0 =RE AB| 0 0 =28
AB| 0O 0 AB | O 0
(a) (b) _
T T e €B Eb 6D ¢€b o
v RBC
AB |\ 1 0 AB| 0 0 1 1| R ,
AB | O 0 AB| 0 0 0 0 | Xx=ABCD + ABCD
X = ABC + ABC = BC + ABCD + ABCD |
AB | 0 0 AB| o | o 0 0 =ABC +ABD
sl _ = |
AB |/T\| 0 AB B o |o |G |~
B = < |
' | e |
(d) ABD
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represents ABC, and the second represents ABC. Note that in these two
terms only the A variable appears in both normal and complemented (in-
verted) form, while B and C remain unchanged. These two terms can be
looped (combined) to give a resultant that eliminates the A variable because
it appears in both uncomplemented and complemented forms. This is easily

proved as follows:

X = ABC + ABC
= BC(A + A)_
= BC(1) = BC

This same principle holds true for any pair of vertically or horizontally
adjacent 1s. Figure 4-12(b) shows an example of two horizontally adjacent
1s.These two can be looped and the C variable eliminated because it appears
in both its uncomplemented and complemented forms to give a resultant
of X = AB.

Another example is shown in Figure 4-12(¢). In a K map, the top row and
bottom row of squares are considered to be adjacent. Thus, the two 1s in this
map can be looped to provide a resultant of ABC + ABC = BC.

Figure 4-12(d) shows a K map that has two pairs of 1s that can be looped.
The two 1s in the top row are horizontally adjacent. The two 1s in the bot-
tom row are also adjacent because, in a K map, the leftmost column and the
rightmost column of squares are considered to be adjacent. When the top
pair of 1s is looped, the D variable is eliminated (because it appears as both
D and D) to give the term A BC. Looping the bottom pair eliminates the C
variable to give the term AB D. These two terms are ORed to give the final
result for X.

To summarize:

Looping a pair of adjacent 1s in a K map eliminates the variable that
appears in complemented and uncomplemented form.

Looping Groups of Four (Quads)

A K map may contain a group of four 1s that are adjacent to each other. This
group is called a quad. Figure 4-13 shows several examples of quads. In
Figure 4-13(a), the four 1s are vertically adjacent, and in Figure 4-13(b), they
are horizontally adjacent. The K map in Figure 4-13(c) contains four 1sina
square, and they are considered adjacent to each other. The four 1s in Figure
4-13(d) are also adjacent, as are those in Figure 4-13(e), because, as pointed
out earlier, the top and bottom rows are considered to be adjacent to each
other, as are the leftmost and rightmost columns.

When a quad is looped, the resultant term will contain only the variables
that do not change form for all the squares in the quad. For example, in
Figure 4-13(a), the four squares that contain a 1 are A BC, ABC, ABC, and
ABC. Examination of these terms reveals that only the variable C remains
unchanged (both A and B appear in complemented and uncomplemented
form). Thus, the resultant expression for X is simply X = C. This can be

proved as follows:

X = ABC + ABC + ABC + ABC
— AC(B + B) + AC(B + B)

= AC + AC
=CA+A)=C




FIGURE 4-13 Examples
of looping groups of four 1s
(quads).
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As another example, consider Figure 4-13(d), where the four squares con-
taining 1s are ABCD, AB CD, ABCD, and ABCD. Examination of these terms
indicates that only the variables 4 and D remain unchanged, so that the sim-
plified expression for X is

X=AD

This can be proved in the same manner that was used above. The reader
should check each of the other cases in Figure 4-13 to verify the indicated ex-
pressions for X.

To summarize:

Looping a quad of adjacent 1s eliminates the two variables that ap-
pear in both complemented and uncomplemented form.

Looping Groups of Eight (Octets)

A group of eight 1s that are adjacent to one another is called an octet.
Several examples of octets are shown in Figure 4-14. When an octet is looped
in a four-variable map, three of the four variables are eliminated because
only one variable remains unchanged. For example, examination of the eight
looped squares in Figure 4-14(a) shows that only the variable B is in the same
form for all eight squares: the other variables appear in complemented and
uncomplemented form. Thus, for this map, X = B. The reader can verify the
results for the other examples in Figure 4-14-.
To summarize:

Looping an octet of adjacent 1s eliminates the three variables that
appear in both complemented and uncomplemented form.
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i
| FIGURE 4-14 Examples of b Cb ©D CD ©h . GO/ ©D €D
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Complete Simplification Process

We have seen how looping of pairs, quads, and octets on a K map can be used to
obtain a simplified expression. We can summarize the rule for loops of any size:

When a variable appears in both complemented and uncomple-
mented form within a loop, that variable is el iminated from the
expression. Variables that are the same for all squares of the loop
must appear in the final expression.

It should be clear that a larger loop of 1s eliminates more variables. To
be exact, a loop of two eliminates one variable, a loop of four eliminates two
variables, and a loop of eight eliminates three. This principle will now be
used to obtain a simplified logic expression from a K map that contains any
combination of 1s and 0s.

The procedure will first be outlined and then applied to several exam-
ples. The steps below are followed in using the K-map method for simplifying
a Boolean expression:

Step 1 Construct the K map and place 1s in those squares corresponding to
the 1s in the truth table. Place 0s in the other squares.

Step 2 Examine the map for adjacent 1s and loop those 1s that are not
adjacent to any other 1s. These are called isolated 1s.

Step 3 Next, look for those 1s that are adjacent to only one other 1. Loop any
pair containing such a 1.

Step 4 Loop any octet even if it contains some 1s that have already been
looped.

Step 5 Loop any quad that contains one or more 1s that have not already
been looped, making sure to use the minimum number of loops.
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Step 6 Loop any pairs necessary to include any 1s that have not yet been
| looped, making sure to use the minimum number of loops.

Step 7 Form the OR sum of all the terms generated by each loop.
These steps will be followed exactly and referred to in the following ex-

amples. In each case, the resulting logic expression will be in its simplest
sum-of-products form.

EXAMPLE

Figure 4-15(a) shows the K map for a four-variable problem. We will assume
that the map was obtained from the problem truth table (step 1). The squares
are numbered for convenience in identifying each loop.

FIGURE 4-15 Examples CDh ©b ¢cb cb
4-10 to 4-12.
AB| o | 0 | o @
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AB| 0 | 0 U 0
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o

+ Step 2 Square 4 is the only square containing a 1 that is not adjacent to any
other 1. It is looped and is referred to as loop 4.

o Step 3 Square 15 is adjacent only to square 11. This pair is looped and re-
ferred to as loop 11, 15.

o Step 4 There are no octets.

Step 5 Squares 6, 7, 10, and 11 form a quad. This quad is looped (loop 6, 7,
y 10, 11). Note that square 11 is used again, even though it was part of
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Step 6 All 1s have already been looped.

Step 7 Each loop generates a term in the expression for X. Loop 4 is simply
A BCD. Loop 11, 15 is ACD (the B variable is eliminated). Loop 6, 7,

‘ 10, 11 is BD (A and C are eliminated).

EXAMPLE4-11

Consider the K map in Figure 4-15(b). Once again, we can assume that step 1
has already been performed.

Step 2 There are no isolated 1s.

R | Step 3 The 1 in square 3 is adjacent only to the 1 in square 7. Looping this
pair (loop 3, 7) produces the term ACD.

Step 4 There are no octets.

Step 5 There are two quads. Squares 5,6, 7, and 8 form one quad. Looping this
quad produces the term AB. The second quad is made up of squares 5,
6, 9, and 10. This quad is looped because it contains two squares that
have not been looped previously. Looping this quad produces BC.

Step 6 All 1s have already been looped.

Step 7 The terms generated by the three loops are ORed together to obtain
the expression for X,

Consider the K map in Figure 4-15(c).

Step 2 There are no isolated 1s.

Step 3 The 1 in square 2 is adjacent only to the 1 in square 6. This pair is
looped to produce A CD. Similarly, square 9 is adjacent only to
square 10. Looping this pair produces ABC. Likewise, loop 7, 8 and
loop 11, 15 produce the terms ABC and ACD, respectively.

Step 4 There are no octets.

Step 5 There is one quad formed by squares 6,7, 10, and 11. This quad, how-
ever, is not looped because all the 1s in the quad have been included
in other loops.

Step 6 All 1s have already been looped.

11 L

Step 7 The expression for X is shown in the figure.

" EXAMPLE 4-13

Consider the K map in Figure 4-16(a).

s FIGURE 4-16 The same K ERrLED GRIGD cD:. CD CD CD
% map with two equally good | f
' solutions. AB| O 1 0 0 AB| O 1 0 0

| ABOOOF a8l o |o | o ||1

= T 5
| |

X = ACD + ABG + ABC + ACD X = ABD + BCD + BCD + ABD
(a) (b)
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Step 2 There are no isolated 1s.

Step 3 There are no 1s that are adjacent to only one other 1.

Step 4 There are no octets.

1 Step 5 There are no quads.

| Steps 6 and 7 There are many possible pairs. The looping must use the min-

! imum number of loops to account for all the 1s. For this map, there are

| two possible loopings, which require only four looped pairs. Figure 4-
16(a) shows one solution and its resultant expression. Figure 4-16(b)

| shows the other. Note that both expressions are of the same com-

| plexity, and so neither is better than the other,

Filling a K Map from an Output Expression

When the desired output is presented as a Boolean expression instead of a
truth table, the K map can be filled by using the following steps:

1. Get the expression into SOP form if it is not already in that form.

2. For each product term in the SOP expression, place a 1 in each K-map
square whose label contains the same combination of input variables.
Place a 0 in all other squares.

| The following example illustrates this procedure.

Use a K map to simplify vy = C(ABD + D) + ABC + D.

EXAMPLE 4-14

Solution

1. Multiply out the first term to get vy = ABCD + CD + ABC + D, which is
now in SOP form.

2. For the A B C D term, simply put a 1 in the A B C D square of the K map
(Figure 4-17). For the CD term, place a 1 in all squares with CD in their
labels, that is, A B CD, ABCD, ABCD, A B CD. For the ABC term, place a 1
in all squares that have an ABC in their labels, that is, ABCD, ABCD. For
the D term, place a 1 in all squares that have a D in their labels, that is,
all squares in the leftmost and rightmost columns.

FIGURE 4-17 Example cD CD cD CD
4-14.

AB| 1 1 0 1

AB| 1 1 1 1

y=AB+C+D

The K map is now filled and can be looped for simplification. Verify that
proper looping produces y = AB + C + D, '
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Don’t-Care Conditions

Some logic circuits can be designed so that there are certain input condi-
tions for which there are no specified output levels, usually because these
input conditions will never occur. In other words, there will be certain com-
binations of input levels where we “don’t care” whether the output is HIGH
or LOW. This is illustrated in the truth table of Figure 4-18(a).

FIGURE 4-18 “Don’t- e C C
care” conditions should be A B G|z Lhis b
changed to 0 or 1 to pro- 5 0 oMo AB | O 0 AB| O 0
duce K-map looping that o o 48 o e
yields the simplest 0 1 oo AB| 0 X AB | 0O 0
expression. o 1 1 x| "don"t >
1 g ‘13 :j care’ e T AB ‘ e r—» z=A]
1 oA [, i 2. il
S AB| x | 1 AB (|1 | 1
(a) (b) (c)

Here the output z is not specified as either 0 or 1 for the conditions 4, B,
Cc=1,0,0and4,B,€C=0,1,1. Instead, an x is shown for these conditions.
The x represents the don’t-care condition. A don’t-care condition can come
about for several reasons, the most common being that in some situations
certain input combinations can never occur, and so there is no specified out-
put for these conditions.

A circuit designer is free to make the output for any don’t-care condi-
tion either a 0 or a 1 to produce the simplest output expression. For exam-
ple, the K map for this ‘truth table is shown in Figure 4-18(b) with an x
placed in the AB C and ABC squares. The designer here would be wise to
change the x in the AB C square to a 1 and the x in the ABC square to a 0 be-
cause this would produce a quad that can be looped to produce z = A, as
shown in Figure 4-18(c).

Whenever don’t-care conditions occur, we must decide which x to change
to 0 and which to 1 to produce the best K-map looping (i.e., the simplest ex-
pression). This decision is not always an easy one. Several end-of-chapter
problems will provide practice in dealing with don’t-care cases. Here’s an-
other example.

~ EXAMPLE 4-15

Let’s design a logic circuit that controls an elevator door in a three-story
building. The circuit in Figure 4-19(a) has four inputs. M is a logic signal that
indicates when the elevator is moving (M = 1) or stopped (M = 0). F1, F2, and
F3 are floor indicator signals that are normally LOW, and they go HIGH only
when the elevator is positioned at the level of that particular floor. For ex-
ample, when the elevator is lined up level with the second floor, F2 =1 and
F1 = F3 = 0. The circuit output is the OPEN signal, which is normally LOW
. and will go HIGH when the elevator door is to be opened.

B We can fill in the truth table for the OPEN output [Figure 4-19(b)] as
| follows:

1. Because the elevator cannot be lined up with more than one floor at a
time, only one of the floor inputs can be HIGH at any given time. This
means that all those cases in the truth table where more than one floor
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input is a 1 are don’t-care conditions. We can place an x in the OPEN out-
put column for those eight cases where more than one F input is 1.

2. Looking at the other eight cases, when M = 1 the elevator is moving, so
OPEN must be a 0 because we do not want the elevator door to open.
When M = 0 (elevator stopped) we want OPEN = 1 provided that one of
the floor inputs is 1. When M = 0 and all floor inputs are 0, the elevator is
stopped but is not properly lined up with any floor, so we want OPEN = 0
to keep the door closed.

The truth table is now complete and we can transfer its information to
the K map in Figure 4-19(c). The map has only three 1s, but it has eight don’t-
cares. By changing four of these don’t-care squares to 1s, we can produce
quad loopings that contain the original 1s [Figure 4-19(d)]. This is the best
we can do as far as minimizing the output expression. Verify that the loop-
ings produce the OPEN output expression shown.

Summary

The K-map process has several advantages over the algebraic method. K
mapping is a more orderly process with well-defined steps compared with
the trial-and-error process sometimes used in algebraic simplification. K
mapping usually requires fewer steps, especially for expressions containing
many terms, and it always produces a minimum expression.
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FIGURE 4-20

(a) Exclusive-OR circuit
and truth table; (b) tradi-
tional XOR gate symbol;
(¢) IEEE/ANSI symbol for
XOR gate.

CHAPTER 4/COMBINATIONAL Locic CIRCUITS

Nevertheless, some instructors prefer the algebraic method because it
requires a thorough knowledge of Boolean algebra and is not simply a me-
chanical procedure. Each method has its advantages, and although most
logic designers are adept at both, being proficient in one method is all that
is necessary to produce acceptable results.

There are other, more complex techniques that designers use to minimize
logic circuits with more than four inputs. These techniques are especially
suited for circuits with large numbers of inputs where algebraic and K-mapping
methods are not feasible. Most of these techniques can be translated into a
computer program that will perform the minimization from input data that
supply the truth table or the unsimplified expression.

1. Use K mapping to obtain the expression of Example 4-7.
2. Use K mapping to obtain the expression of Example 4-8. This should em-

phasize the advantage of K mapping for expressions containing many
terms.

3. Obtain the expression of Example 4-9 using a K map.
4. What is a don’t-care condition?

4-6 EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS

Two special logic circuits that occur quite often in digital systems are the
exclusive-OR and exclusive-NOR circuits.

Exclusive-OR

Consider the logic circuit of Figure 4-20(a). The output expression of this cir-
cuit is

x = AB + AB

AB = :
! AB

XOR gate symbols

L ¥

(a)

x=A®B

A = AB + AB A o—
-1 | —ex=A®B
B B e—
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The accompanying truth table shows that x = 1 for two cases: A =0, B = 1
(the AB term) and A = 1, B = 0 (the AB term). In other words:

This circuit produces a HIGH output whenever the two inputs are
at opposite levels.

This is the exclusive-OR circuit, which will hereafter be abbreviated XOR.

This particular combination of logic gates occurs quite often and is very
useful in certain applications. In fact, the XOR circuit has been given a sym-
bol of its own, shown in Figure 4-20(b). This symbol is assumed to contain all
of the logic contained in the XOR circuit and therefore has the same logic ex-
pression and truth table. This XOR circuit is commonly referred to as an
XOR gate, and we consider it as another type of logic gate. The IEEE/ANSI
symbol for an XOR gate is shown in Figure 4-20(c). The dependency notation
(= 1) inside the block indicates that the output will be active-HIGH only
when a single input is HIGH.

An XOR gate has only two inputs; there are no three-input or four-input
XOR gates. The two inputs are combined so that x = AB + AB. A shorthand
way that is sometimes used to indicate the XOR output expression is

x=A®B

where the symbol @ represents the XOR gate operation.
The characteristics of an XOR gate are summarized as follows:

1. It has only two inputs and its output is
x=AB + AB = A®B
2. Its output is HIGH only when the two inputs are at different levels.

Several ICs are available that contain XOR gates. Those listed below are
quad XOR chips containing four XOR gates.

741586 Quad XOR (TTL family)

74C86 Quad XOR (CMOS family)
74HC86 Quad XOR (high-speed CMOS)

Exclusive-NOR

The exclusive-NOR circuit (abbreviated XNOR) operates completely oppo-
site to the XOR circuit. Figure 4-21(a) shows an XNOR circuit and its accom-
panying truth table. The output expression is

x=A4B + AB

which indicates along with the truth table that x will be 1 for two cases: A =
B = 1 (the AB term) and A = B = 0 (the A B term). In other words:

The XNOR produces a HIGH output whenever the two inputs are at !
the same level. '

It should be apparent that the output of the XNOR circuit is the exact in-
verse of the output of the XOR circuit. The traditional symbol for an XNOR
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FIGURE 4-21

(a) Exclusive-N OR circuit;
(b) traditional symbol for
XNOR gate; (c) [EEE/AN SI
symbol.
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EX_;AB +AB

(a)

XNOR gate symbols

(b) (c)

gate is obtained by simply adding a small circle at the output of the XOR
symbol [Figure 4-21(b)]. The IEEE/ANSI symbol adds the small triangle on
the output of the XOR symbol. Both symbols indicate an output that goes to
its active-LOW state when only one input is HIGH.

The XNOR gate also has only two inputs, and it combines them so thatits
output is

x = AB +AB

A shorthand way to indicate the output expression of the XNOR is

x=A®B
which is simply the inverse of the XOR operation. The XNOR gate is sum-
marized as follows:

1. Tt has only two inputs and its output is

- A®B

|

x=AB + A
2. Tts output is HIGH only when the two inputs are at the same level.

Several ICs are available that contain XNOR gates. Those listed below
are quad XNOR chips containing four XNOR gates.

7415266  Quad XNOR (TTL family)
74C266 Quad XNOR (CMOS)
74HC266  Quad XNOR (high-speed CMOS)




FIGURE 4-22
Example 4-16.
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Each of these XNOR chips, however, has special output circuitry that limits
its use to special types of applications. Very often, a logic designer will
obtain the XNOR function simply by connecting the output of an XOR to
an INVERTER.

Determine the output waveform for the input waveforms given in Figure 4-22.

e [ o

I
I_l ._H_'
| | |
| | |
| | |

1 1 ty

Solution

The output waveform is obtained using the fact that the XOR output will go
HIGH only when its inputs are at different levels. The resulting output wave-
form reveals several interesting points:

1. The x waveform matches the A input waveform during those time in-
tervals when B = 0. This occurs during the time intervals ¢ to ty and t;
to ti.

2. The x waveform is the inverse of the A input waveform during those time
intervals when B = 1. This occurs during the interval ¢; to t;.

3. These observations show that an XOR gate can be used as a controlled IN-
VERTER; that is, one of its inputs can be used to control whether or not
the signal at the other input will be inverted. This property will be use-
ful in certain applications.

The notation xixy represents a two-bit binary number that can have any
value (00, 01, 10, or 11); for example, when x; = 1 and xy = 0, the binary num-
ber is 10, and so on. Similarly, vy, represents another two-bit binary num-
ber. Design a logic circuit, using x1, xg, v1, and yg inputs, whose output will be
HIGH only when the two binary numbers xyx, and y,yp are equal.

Solution

The first step is to construct a truth table for the 16 input conditions (Table
4-4). The output z must be HIGH whenever the x;xq values match the y1yg
values; that is, whenever x; = y; and xy = yo. The table shows that there are
four such cases. We could now continue with the normal procedure, which
would be to obtain a sum-of-products expression for z, attempt to simplify it,
and then implement the result. However, the nature of this problem makes it
ideally suited for implementation using XNOR gates, and a little thought
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FIGURE 4-23 Circuit for
detecting equality of two
two-bit binary numbers.
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TABLE 4-4 sonmm R PR
X3 X N Y z{Output)

0 oF RO 1 |
0 ol g e 0

0 0o 1 0 0

0 OPE| 1 0

0 1 oo 1:0 0

0 1 A A 1

0 1 1 0 0

0 1 1 1 0 :
1 g o 0 0 g
1 o) B 0

1 B 0 1

1 0 1 1 0 5
1 1 0o 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

will produce a simple solution with minimum work. Refer to Figure 4-23: in
this logic diagram, x; and y; are fed to one XNOR gate, and xg and vy are fed
to another XNOR gate. The output of each XNOR will be HIGH only when its
inputs are equal. Thus, for xo = Yo and xq = vy, both XNOR outputs will be
HIGH. This is the condition we are looking for because it means that the two
two-bit numbers are equal. The AND gate output will be HIGH only for this
case, thereby producing the desired output.

i

s

o [ i, — (D
number Yo

L

Binary
number

S

When simplifying the expression for the output of a combinational logic cir-
cuit, you may encounter the XOR or XNOR operations as you are factoring.
This will often lead to the use of XOR or XNOR gates in the implementation
of the final circuit. To illustrate, simplify the circuit of Figure 4-24(a).

Solution

The unsimplified expression for the circuit is obtained as
z=ABCD + ABCD +AD
We can factor AD from the first two terms:

z=ADBC + BC) + AD
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A 8—

z = ABCD + ABCD +AD

| Ce

AD(B @ C)

el

z=AD (B@C) + AD

(b)

FIGURE 4-24 FExample 4-18, showing how an XNOR gate may be used to simplify
circuit implementation.

At first glance, you might think that the expression in parentheses can be
replaced by 1. But that would be true only if it were BC + BC. You should
recognize the expression in parentheses as the XNOR combination of B
and C. This fact can be used to reimplement the circuit as shown in Figure
4-24(b), This circuit is much simpler than the original because it uses gates
with fewer inputs and two INVERTERSs have been eliminated.

1. Use Boolean algebra to prove that the XNOR output expression is the ex-
act inverse of the XOR output expression.

'l 2. What is the output of an XNOR gate when a logic signal and its exact in-
' verse are connected to its inputs?

3. A logic designer needs an INVERTER, and all that is available is one
XOR gate from a 74HC86 chip. Does he need another chip?

4-7 PARITY GENERATOR AND CHECKER

In Chapter 2, we saw that a transmitter can attach a parity bit to a set of data
bits before transmitting the data bits to a receiver. We also saw how this allows
the receiver to detect any single-bit errors that may have occurred during the
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transmission. Figure 4-25 shows an example of one type of logic circuitry that
is used for parity generation and parity checking. This particular example
uses a group of four bits as the data to be transmitted, and it uses an even-
parity bit. It can be readily adapted to use odd parity and any number of bits.

Even-parity generator

("~ Da
Original J D2
data <
W\ D, Parity (P)
Do >
) =l = | Transmitted
— - data with
e parity bit
r“‘l
(a)
Even-parity checker
P
>
Dy
From Dp {1 = error
transmitier : 0 = no error}
Dy
Dy

(b)

FIGURE 4-25 XOR gates used to implement (a) the parity generator and (b) the parity
checker for an even-parity system.

In Figure 4-25(a), the set of data to be transmitted is applied to the
parity-generator circuit, which produces the even-parity bit, P, at its output.
This parity bit is transmitted to the receiver along with the original data bits,
making a total of five bits. In Figure 4-25(b), these five bits (data + parity)
enter the receiver’s parity-checker circuit, which produces an error output, E,
that indicates whether or not a single-bit error has occurred.

It should not be too surprising that both of these circuits employ XOR
gates when we consider that a single XOR gate operates so that it produces
a 1 output if an odd number of its inputs are 1, and a 0 output if an even
number of its inputs are 1.

Determine the parity generator’s output for each of the following sets of input
data, D;D,D1Dg: (a) 0111; (b) 1001; () 0000; (d) 0100. Refer to Figure 4-25(a).

Solution

For each case, apply the data levels to the parity-generator inputs and trace
them through each gate to the P output. The results are: (a) 1; (b) 0; (¢) 0; and
(d) 1. Note that Pis a 1 only when the original data contain an odd number of
1s.Thus, the total number of 1s sent to the receiver (data + parity) will be even.
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Determine the parity checker’s output [see Figure 4-25(b)] for each of the
following sets of data from the transmitter:

P Dsy D; Dy Dy
(a) 0 1 0 1 0
(b) 1 1 1 1 0
(c) 1 1 1 1 1
(d) il 0 0 0 0
Solution

For each case, apply these levels to the parity-checker inputs and trace them
through to the E output. The results are: (a) 0; (b) 0; (¢) 1; (d) 1. Note that a 1
is produced at E only when an odd number of 1s appears in the inputs to the
parity checker. This indicates that an error has occurred because even parity
is being used.

4-8 ENABLE/DISABLE CIRCUITS

Each of the basic logic gates can be used to control the passage of an input
logic signal through to the output. This is depicted in Figure 4-26, where a
logic signal, A, is applied to one input of each of the basic logic gates. The

ENABLE ! DISABLE

A o— X =A M
e Sn

|

g

A o— X=A
21.__MJ_)—0

FIGURE 4-26 Four basic gates can either enable or disable the passage of an input signal, A,

under con

trol of the logic level at control input B.
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other input of each gate is the control input, B. The logic level at this control
input will determine whether the input signal is enabled to reach the output
or disabled from reaching the output. This controlling action is why these cir-
cuits came to be called gates.

Examine Figure 4-26 and you should notice that when the noninverting
gates (AND, OR) are enabled, the output will follow the A signal exactly.
Conversely, when the inverting gates (NAND, NOR) are enabled, the output
will be the exact inverse of the A signal.

Also notice in the figure that AND and NOR gates produce a constant
LOW output when they are in the disabled condition. Conversely, the NAND
and OR gates produce a constant HIGH output in the disabled condition.

There will be many situations in digital-circuit design where the passage
of a logic signal is to be enabled or disabled, depending on conditions present
at one or more control inputs. Several are shown in the following examples.

EXAMPLE4-21

Design a logic circuit that will allow a signal to pass to the output only when
control inputs B and C are both HIGH; otherwise, the output will stay LOW.

Solution

An AND gate should be used because the signal is to be passed without in-
version, and the disable output condition is a LOW. Because the enable con-
dition must occur only when B = C = 1, a three-input AND gate is used, as
shown in Figure 4-27(a).

FIGURE 4-27 Examples | '| rl
4-21 and 4-22.
A @ X
A X B
B e—
C o— (&
(a) (b)

EXAMPLE 4-22 Design a logic circuit that allows a signal to pass to the output only when
one, but not both, of the control inputs are HIGH; otherwise, the output will

stay HIGH.

Solution

The result is drawn in Figure 4-27(b). An OR gate is used because we want
the output disable condition to be a HIGH, and we do not want to invert the
signal. Control inputs B and C are combined in an XNOR gate. When B and C
are different, the XNOR sends a LOW to enable the OR gate. When B and C
are the same, the XNOR sends a HIGH to disable the OR gate.

e e ————————— i —————— e T e e e ——— N S

EXAMPLE4-23

Design a logic circuit with input signal A, control input B, and outputs X and
Y to operate as follows:

1. When B = 1, output X will follow input 4, and output Y will be 0.
2. When B = 0, output X will

be 0, and output Y will follow input A.
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Solution

The two outputs will be 0 when they are disabled and will follow the input
signal when they are enabled. Thus, an AND gate should be used for each
output. Because X is to be enabled when B = 1, its AND gate must be con-
trolled by B, as shown in Figure 4-28. Because Y is to be enabled when B = 0,
its AND gate is controlled by B. The circuit in Figure 4-28 is called a pulse-

steering circuit because it steers the input pulse to one output or the other,
! depending on B.

! JIGURE 4-28 Example ~ ' M
F[QL 4-28 Example B ‘ o Bl
| 4-23. X
| ] 0 IF B=0
| (%o IF B=1
., A
L o [
|.
|
‘I i B
[ HEYHEREUS RS R 1. Design a logic circuit with three inputs 4, B, C and an output that goes
LOW only when A is HIGH while B and C are different.
l 2. Which logic gates produce a 1 output in the disabled state?
‘ 3. Which logic gates pass the inverse of the input signal when they are

[ enabled?

4-9 BASIC CHARACTERISTICS OF DIGITAL ICs

Digital ICs are a collection of resistors, diodes, and transistors fabricated on
a single piece of semiconductor material (usually silicon) called a substrate,
which is commonly referred to as a chip. The chip is enclosed in a protective
plastic or ceramic package from which pins extend for connecting the IC to
other devices. One of the more common types of package is the dual-in-line
package (DIP), shown in Figure 4-29(a), so called because it contains two
parallel rows of pins. The pins are numbered counterclockwise when viewed
from the top of the package with respect to an identifying notch or dot at one
end of the package [see Figure 4-29(b)]. The DIP shown here is a 14-pin pack-
age that measures 0.75 in. by 0.25 in.; 16-, 20-, 24-, 28-, 40-, and 64-pin pack-
ages are also used.

Figure 4-29(c) shows that the actual silicon chip is much smaller than the
DIP; typically, it might be a 0.05-in. square. The silicon chip is connected to
the pins of the DIP by very fine wires (1-mil diameter).

The DIP is probably the most common digital IC package found in older
digital equipment, but other types are becoming more and more popular.
The IC shown in Figure 4-29(d) is only one of the many packages common to
modern digital circuits. This particular package uses J-shaped leads that curl
under the IC. We will take a look at some of these other types of IC packages
in Chapter 8.
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14 132

— <

Notch~__

Chip may have
small dot near pin 1°

Actual

i - Beveled corner
silicon chip

c) (d)

FIGURE 429 (a) Dual-in-line package (DIP); (b) top view; (c) actual silicon chip is much smaller
than the protective package; (d) PLCC package.

TABLE 4-5

Digital ICs are often categorized according to their circuit complexity as
measured by the number of equivalent logic gates on the substrate. There
are currently six levels of complexity that are commonly defined as shown in
Table 4-5.

: Complemty GatesperChip : =
Small-scale integration (SSI) Fewer than 12
Medium-scale integration (MSI) 12 to 99
Large-scale integration (LSI) 100 to 9999

Very large-scale integration (VLSI) 10,000 to 99,999
Ultra large-scale integration (ULSI) 100,000 to 999,999
Giga-scale integration (GSI) 1,000,000 or more

All of the specific ICs referred to in Chapter 3 and this chapter are SSI
chips having a small number of gates. In modern digital systems, medium-
scale integration (MSI) and large-scale integration devices (LSI, VLSI,
ULSI, GSI) perform most of the functions that once required several circuit
boards full of SSI devices. However, SSI chips are still used as the “inter-
face,” or “glue,” between these more complex chips. The small-scale ICs also
offer an excellent way to learn the basic building blocks of digital systems.
Consequently, many laboratory-based courses use these ICs to build and test
small projects.

The industrial world of digital electronics has now turned to program-
mable logic devices (PLDs) to implement a digital system of any significant
size. Some simple PLDs are available in DIP packages, but the more complex
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‘ programmable logic devices require many more pins than are available in
| DIPs. Larger integrated circuits that may need to be removed from a circuit
, and replaced are typically manufactured in a plastic leaded chip carrier
‘ (PLCC) package. Figure 4-29(d) shows the Altera EPM 7128S1.C84 in a PLCC
[ package, which is a very popular PLD used in many educational laboratories.
The key features of this chip are more pins, closer spacing, and pins around
[ the entire periphery. Notice that pin 1 is not “on the corner” like the DIP but
| rather at the middle of the top of the package.
!
|

: Bipolar and Unipolar Digital ICs

Digital ICs can also be categorized according to the principal type of electronic
| component used in their circuitry. Bipolar ICs are made using the bipolar junc-
| tion transistor (NPN and PNP) as their main circuit element. Unipolar ICs use
the unipolar field-effect transistor (P-channel and N-channel MOSFETSs) as
‘ their main element.
| _ The transistor-transistor logic (TTL) family has been the major family of
‘ bipolar digital ICs for over 30 years. The standard 74 series was the first se-
ries of TTL ICs. It is no longer used in new designs, having been replaced by
several higher-performance TTL series, but its basic circuit arrangement
forms the foundation for all the TTL series ICs. This circuit arrangement is
shown in Figure 4-30(a) for the standard TTL INVERTER. Notice that the cir-
cuit contains several bipolar transistors as the main circuit element.

+Vpp
+VGC O {14)
(14)
Qy
Input A
(1) Qutput
(2)
Qs
Output
Y
Input A © (2) L. GND
(1) (7)
\ (b)
Pin
number

FIGURE 4-30 (a) T'TL INVERTER circuit; (b) CMOS INVERTER circuit. Pin numbers are given in
parentheses.

TTL had been the leading IC family in the SSI and MSI categories up un- '
til the last 12 or so years. Since then, its leading position has been challenged
by the CMOS family, which has gradually displaced TTL from that position. I
The complementary metal-oxide semiconductor (CMOS) family belongs to I
the class of unipolar digital ICs because it uses P- and N-channel MOSFETSs as '
the main circuit elements. Figure 4-30(b) is a standard CMOS INVERTER cir-
cuit. If we compare the TTL and CMOS circuits in Figure 4-30, it is apparent

B oo et i




!I_%
|

156 CHAPTER 4/COMBINATIONAL LogIc CIRCUITS

that the CMOS version uses fewer components. This is one of the main advan-
tages of CMOS over TTL.
‘ Because of the simplicity and compactness as well as some other superior
attributes of CMOS, the modern large-scale 1Cs are manufactured primarily us-
ing CMOS technology. Teaching laboratories that use SSI and MSI devices of-
ten use TTL due to its durability, although some use CMOS as well. Chapter 8
will provide a comprehensive study of the circuitry and characteristics of TTL
and CMOS. For now, we need to look at only a few of their basic characteristics
so that we can talk about troubleshooting simple combinational circuits.

il TTL Family

? The TTL logic family actually consists of several subfamilies or series. Table
; 4-6 lists the name of each TTL series together with the prefix designation
| used to identify different ICs as being part of that series. For example, ICs
that are part of the standard TTL series have an identification number that
5 starts with 74. The 7402, 7438, and 74123 are all ICs in this series. Likewise,
1Cs that are part of the low-power Schottky TTL series have an identification
number that starts with 74LS. The 741.802, 741.S38, and 74L5123 are exam-
ples of devices in the 74LS series.

TABLE 4-6 Various series

within the TTL logic family, B o TTLSeries  Prefix ~ ExampleIC
Standard TTL 74 7404 (hex INVERTER)
Schottky TTL 745 74504 (hex INVERTER)
Low-power Schottky TTL 74LS 741504 (hex INVERTER)
Advanced Schottky TTL 74AS 74AS04 (hex INVERTER)
Advanced low-power Schottky TTL ~ 74ALS 74ALS04 (hex INVERTER)

The principal differences in the various TTL series have to do with their
electrical characteristics such as power dissipation and switching speed. They
do not differ in the pin layout or logic operations performed by the circuits on
the chip. For example, the 7404, 74504, 741504, 74AS04, and 74ALS04 are all
hex. INVERTER ICs, each containing six INVERTERS on a single chip.

CMOS Family

Several CMOS series are available, and some of these are listed in Table 4-7.
The 4000 series is the oldest CMOS series. This series contains many of the
same logic functions as the TTL family but was not designed to be pin-
compatible with TTL devices. For example, the 4001 quad NOR chip containg
four two-input NOR gates, as does the TTL 7402 chip, but the gate inputs and
outputs on the CMOS chip will not have the same pin numbers as the corre-
sponding signals on the TTL chip.

The 74C, 74HC, 74HCT, 74AC, and 74ACT series are newer CMOS series.
The first three are pin-compatible with correspondingly numbered TTL
devices. For example, the 74C02, 74HCO02, and 74HCTO02 have the same pin
layout as the 7402, 741502, and so on. The 74HC and 74HCT series operate at
a higher speed than 74C devices. The 74HCT series is designed to be electrically
compatible with TTL devices; that is, a 74HCT integrated circuit can be con-
nected directly to TTL devices without any interfacing circuitry. The 74AC and
Z4ACT series are advanced-performance ICs. Neither is pin-compatible with
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within the CMOS logic
family.
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- CMOS Series Prefix ~ ExampleIC
Metal-gate CMOS 40 4001 (quad NOR gates)
Metal-gate, pin-compatible with TTL 74C 74C02 (quad NOR gates)
Silicon-gate, pin-compatible with TTL, 74HC 74HCO2 (quad NOR gates)
high-speed

Silicon-gate, high-speed, pin-compatible 74HCT 74HCTO2 (quad NOR gates)
and electrically compatible with TTL

Advanced-performance CMOS, not 74AC 74AC02 (quad NOR)
pin-compatible or electrically
compatible with TTL

Advanced-performance CMOS, not T4ACT 74ACTO2 (quad NOR)
pin-compatible with TTL, but
electrically compatible with TTL

TTL. The 74ACT devices are electrically compatible with TTL. We explore the
various TTL and CMOS series in greater detail in Chapter 8.

Power and Ground

To use digital ICs, it is necessary to make the proper connections to the IC
pins. The most important connections are dc power and ground. These are re-
quired for the circuits on the chip to operate correctly. In Figure 4-30, you can
see that both the TTL and the CMOS circuits have a dc power supply voltage
connected to one of their pins, and ground to another. The power supply pin
is labeled V¢ for the TTL circuit, and Vpp for the CMOS circuit. Many of the
newer CMOS integrated circuits that are designed to be compatible with TTL
integrated circuits also use the V¢ designation as their power pin.

If either the power or the ground connection is not made to the IC, the
logic gates on the chip will not respond properly to the logic inputs, and the
gates will not produce the expected output logic levels.

Logic-Level Voltage Ranges

For TTL devices, Ve is nominally +5 V. For CMOS integrated circuits, Vpp
can range from +3 to +18 V, although +5V is most often used when CMOS
integrated circuits are used in the same circuit with T'TL integrated circuits.

For standard TTL devices, the acceptable input voltage ranges for the
logic 0 and logic 1 levels are defined as shown in Figure 4-31(a). A logic 0 is
any voltage in the range from 0 to 0.8 V; a logic 1 is any voltage from 2 to 5V.
Voltages that are not in either of these ranges are said to be indeterminate
and should not be used as inputs to any TTL device. The IC manufacturers
cannot guarantee how a TTL circuit will respond to input levels that are in
the indeterminate range (between 0.8 and 2.0V).

The logic input voltage ranges for CMOS integrated circuits operating
with Vpp = +5V are shown in Figure 4-31(b). Voltages between 0 and 1.5V
are defined as a logic 0, and voltages from 3.5 to 5V are defined as a logic 1.
The indeterminate range includes voltages between 1.5 and 3.5 V.

Unconnected (Floating) Inputs

What happens when the input to a digital IC is left unconnected? An uncon-
nected input is often called a floating input. The answer to this question will
be different for TTL and CMOS.
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FIGURE 4-31 Logicl evel
input voltage ranges for
(a) TTL and (b) CMOS
digital ICs.
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A floating TTL input acts just like a logic 1. In other words, the IC will re-
spond as if the input had a logic HIGH level applied to it. This characteristic is
often used when testing a TTL circuit. A lazy technician might leave certain in-
puts unconnected instead of connecting them to a logic HIGH. Although this
is logically correct,itisnota recommended practice, especially in final circuit
designs, because the floating TTL input is extremely susceptible to picking up
noise signals that will probably adversely affect the device’s operation.

A floating input on some TTL gates will measure a dc level of between
1.4 and 1.8V when checked with a VOM or an oscilloscope. Even though this
isin the indeterminate range for TTL, it will produce the same response as a
logic 1. Being aware of this characteristic of a floating TTL input can be valu-
able when troubleshooting TTL circuits.

If a CMOS input is left floating, it may have disastrous results. The 1C
may become overheated and eventually destroy itself. For this reason all in-
puts to a CMOS integrated circuit must be connected to a LOW or a HIGH
level or to the output of another IC. A floating CMOS input will not measure
as a specific dc voltage but will fluctuate randomly as it picks up noise. Thus,
it does not act as logic 1 or logic 0, and so its effect on the output is unpre-
dictable. Sometimes the output will oscillate as a result of the noise picked
up by the floating input.

Many of the more complex CMOS ICs have circuitry built into the inputs,
which reduces the likelihood of any destructive reaction to an open input.
With this circuitry, it is not necessary to ground each unused pin on these
large ICs when experimenting. It is still good practice, however, to tie unused
inputs to HIGH or LOW (whichever is appropriate) in the final circuit
implementation.

Logic-Circuit Connection Diagrams

A connection diagram shows all electrical connections, pin numbers, IC num-
bers, component values, signal names, and power supply voltages. Figure
4-32 shows a typical connection diagram for a simple logic circuit. Examine
it carefully and note the following important points:

1. The circuit uses logic gates from two different ICs. The two INVERTERS
are part of a 74HC04 chip that has been given the designation 7 e
74HC04 contains six INVERTERS; two of them are used in this circuit,
and each is labeled as being part of chip Z1. Similarly, the two NAND
gates are part of a 74HCO00 chip that contains four NAND gates. All of
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FIGURE 4-32 'Typical
logic-circuit connection
diagram.
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+5 Y +5V

IC Type

Z1 | 74HC04 hex inverter
Z2 | 74HCO00 quad nand

CLKOUT

® SHIFTOUT
z2 =

the gates on this chip are designated with the label Z2. By numbering
each gate as Z1, 722, Z3, and so on, we can keep track of which gate is part
of which chip. This is especially valuable in more complex circuits con-
taining many ICs with several gates per chip.

2. Each gate input and output pin number is indicated on the diagram. These
pin numbers and the IC labels are used to reference easily any point in the
circuit. For example, Z1 pin 2 refers to the output pin of the top INVERTER.
Similarly, we can say that Z1 pin 4 is connected to Z2 pin 9.

3. The power and ground connections to each IC (not each gate) are shown
on the diagram. For example, Z1 pin 14 is connected to +5V, and Z1 pin
7 is connected to ground. These connections provide power to all of the
six INVERTERSs that are part of Z1.

4. For the circuit contained in Figure 4-32, the signals that are inputs are on
the left. The signals that are outputs are on the right. The bar over the
signal name indicates that the signal is active when LOW. The bubbles
are positioned on the diagram symbols also to indicate the active-LOW
state. Each signal in this case is obviously a single bit.

U1

. Signals are defined graphically in Figure 4-32 as inputs and outputs, and
the relationship between them (the operation of the circuit) is described
graphically using interconnected logic symbols.

Manufacturers of electronic equipment generally supply detailed schemat-
ics that use a format similar to that in Figure 4-32. These connection diagrams
are a virtual necessity when troubleshooting a faulty circuit. We have chosen to
identify individual ICs as Z1, Z2, Z3, and so on. Other designations that are
commonly used are IC1, IC2, IC3, and so on, and U1, U2, U3, and so on.

Personal computers with schematic diagram software can be used to draw
logic circuits. Computer applications that can interpret these graphic sym-
bols and signal connections and can translate them into logical relationships
are often called schematic capture tools. The Altera MAX+PLUS develop-
ment system for programmable logic allows the user to enter graphic design
files (.gdf) using schematic capture techniques. Thus, designing the circuit is
as easy as drawing the schematic diagram on the computer screen. Notice
that in Figure 4-33 there are no pin numbers or chip designations on the logic
symbols. The circuits will not be implemented using actual SSI or MSI chips,
but rather the equivalent logic functionality will be “programmed” into a
PLD. We will explain this further at a later point in this chapter.
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FIGURE 4-33 Logic diagram using schematic capture.
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 What is the most common type of digital IC package?

7

2 Name the six common categories of digital ICs according to complexity.

3. True or false: A 74574 chip will contain the same logic and pin layout as
the 74L.S74.

4, True or false: A 74HC74 chip will contain the same logic and pin layout as
the 74AS74.

5. Which CMOS series are not pin-compatible with TTL?
6. What is the acceptable input voltage range of a logic 0 for TTL? What is
it for a logic 1?
7. Repeat question 6 for CMOS operating at Vpp = 5V.
8. How does a TTL integrated circuit respond to a floating input?
9. How does a CMOS integrated circuit respond to a floating input?
10. Which CMOS series can be connected directly to TTL with no interfacing
circuitry?
11, What is the purpose of pin numbers on a logic circuit connection diagram?

12. What are the key similarities of graphic design files used for program-
mable logic and traditional logic circuit connection diagrams?

4-10 TROUBLESHOOTING DIGITAL SYSTEMS

There are three basic steps in fixing a digital circuit or system that has a
fault (failure):

1. Fault detection. Observe the circuit/system operation and compare it with
the expected correct operation.
2 Fault isolation. Perform tests and make measurements to isolate the fault.

3. Fault correction. Replace the faulty component, repair the faulty connec-
tion, remove the short, and so on.

Although these steps may seem relatively apparent and straightforward, the
actual troubleshooting procedure that is followed is highly dependent on the
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i type and complexity of the circuitry, and on the kinds of troubleshooting
tools and documentation that are available.
Good troubleshooting techniques can be learned only in a laboratory en-
| vironment through experimentation and actual troubleshooting of faulty cir-
cuits and systems. There is absolutely no better way to become an effective
| troubleshooter than to do as much troubleshooting as possible, and no amount
[ of textbook reading can provide that kind of experience. We can, however,
help you to develop the analytical skills that are the most essential part of ef-
i fective troubleshooting. We will describe the types of faults that are common
to systems that are made primarily from digital ICs and we will tell you how to
'i recognize them. We will then present typical case studies to illustrate the ana-
' Iytical processes involved in troubleshooting. In addition, there will be end-of-
[ chapter problems to provide you with the opportunity to go through these an-
alytical processes to reach conclusions about faulty digital circuits.
. For the troubleshooting discussions and exercises we will be doing in
this book, it will be assumed that the troubleshooting technician has the ba-
' sic troubleshooting tools available: logic probe, oscilloscope, logic pulser. Of
| course, the most important and effective troubleshooting tool is the techni-
i cian’s brain, and that’s the tool we are hoping to develop by presenting trou-
| bleshooting principles and techniques, examples and problems, here and in
' the following chapters.
[ In the next three sections on troubleshooting, we will use only our brain
l and a logic probe such as the one illustrated in Figure 4-34. The logic probe
has a pointy metal tip that is touched to the specific point you want to test.
Here, it is shown probing (touching) pin 3 of an IC. It can also be touched to
a printed circuit board trace, an uninsulated wire, a connector pin, a lead on
a discrete component such as a transistor, or any other conducting point in a
circuit. The logic level that is present at the probe tip will be indicated by the
status of the indicator LEDs in the probe. The four possibilities are given in
the table of Figure 4-34. Note that an indeterminate logic level produces no
| indicator light. This includes the condition where the probe tip is touched to
| a point in a circuit that is open or floating—that is, not connected to any
‘ source of voltage. This type of probe also offers a yellow LED to indicate the
presence of a pulse train. Any transitions (LOW to HIGH or HIGH to LOW)
will cause the yellow LED to flash on for a fraction of a second and then turn
off. If the transitions are occurring frequently, the LED will continue to flash

LEDs
Red Green Yellow Logic Condition
OFF ON OFF LOW
ON OFF OFF HIGH
OFF OFF OFF INDETERMINATE*
X X FLASHING PULSING

* Includes open or floating condition

FIGURE 4-34 A logic probe is used to monitor the logic level activity at an IC pin or any
3 other accessible point in a logic circuit.
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at around 3 Hz. By observing the green and red LEDs along with the flashing
yellow, you can tell whether the signal is mostly HIGH or mostly LOW.

4-11 INTERNAL DIGITAL IC FAULTS

The most common internal failures of digital ICs are:

1. Malfunction in the internal circuitry

2. Inputs or outputs shorted to ground or Vg

3. Inputs or outputs open-circuited

4. Short between two pins (other than ground or Vee)

We will now describe each of these types of failure.

Malfunction in Internal Circuitry

This is usually caused by one of the internal components failing com-
pletely or operating outside its specifications. When this happens, the IC
outputs do not respond properly to the IC inputs. There is no way to pre-
dict what the outputs will do because it depends on what internal compo-
nent has failed. Examples of this type of failure would be a base-emitter
short in transistor (4 or an extremely large resistance value for R; in the
TTL INVERTER of Figure 4-30(a). This type of internal IC failure is not as
common as the other three.

Input Internally Shorted to Ground or Supply

e This type of internal failure will cause an IC input to be stuck in the LOW or
HIGH state. Figure 4-35(a) shows input pin 2 of a NAND gate shorted to
i ground within the IC. This will cause pin 2 always to be in the LOW state. If
- this input pin is being driven by a logic signal B, it will effectively short B to
s ground. Thus, this type of fault will affect the output of the device that is

generating the B signal.

FIGURE 4-35 (a) IC input Internal
internally shorted to +9 M short +5 Y
ground; (b) IC input inter-
nally shorted to supply volt-
_ age. These two types of fail-
i ures force the input signal
at the shorted pin to stay in
the same state. (¢) IC out-

i put internally shorted to Ir;trz]a(;r:tal

k ground; (d) output inter- (a) (b)

nally shorted to supply volt-

f’ age. These two failures do

2 not affect signals at the IC 9Vesnternal
B inputs. shou

short
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FIGURE 4-36
Example 4-24.
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Similarly, an IC input pin could be internally shorted to +5 V, as in
Figure 4-35(b). This would keep that pin stuck in the HIGH state. If this in-
put pin is being driven by a logic signal A, it will effectively short 4 to +5V.

Output Internally Shorted to Ground or Supply

This type of internal failure will cause the output pin to be stuck in the LOW
or HIGH state. Figure 4-35(c) shows pin 3 of the NAND gate shorted to ground
within the IC. This output is stuck LOW, and it will not respond to the condi-
tions applied to input pins 1 and 2; in other words, logic inputs A and B will
have no effect on output X,

An IC output pin can also be shorted to +5V within the IC, as shown in
Figure 4-35(d). This forces the output pin 3 to be stuck HIGH regardless of
the state of the signals at the input pins. Note that this type of failure has no
effect on the logic signals at the IC inputs.

Refer to the circuit of Figure 4-36. A technician uses a logic probe to deter-
mine the conditions at the various IC pins. The results are recorded in the
figure. Examine these results and determine if the circuit is working prop-
erly. If not, suggest some of the possible faults,

+5 v +5 ¥V
Pin | Condition
14 14 Z1-3| Pulsing
Ae——tg it ! 5 X z1-4| LOW
5 [See Zo-1| LOW
7 pe—= z2-2| HIGH
= Z 72-3| HIGH

Solution

Output pin 4 of the INVERTER should be pulsing because its input is puls-
ing. The recorded results, however, show that pin 4 is stuck LOW. Because
this is connected to Z2 pin 1, this keeps the NAND output HIGH. From our
preceding discussion, we can list three possible faults that could produce
this operation.

First, there could be an internal component failure in the INVERTER
that prevents it from responding properly to its input. Second, pin 4 of the
INVERTER could be shorted to ground internal to Z1, thereby keeping it
stuck LOW. Third, pin 1 of Z2 could be shorted to ground internal to Z2.
This would prevent the INVERTER output pin from changing.

In addition to these possible faults, there can be external shorts to
ground anywhere in the conducting path between Z1 pin 4 and Z2 pin 1. We
will see how to go about isolating the actual fault in a subsequent example.

Open-Circuited Input or Output

Sometimes the very fine conducting wire that connects an IC pin to the IC’s in-
ternal circuitry will break, producing an open circuit. Figure 4-37 in Example
4-25 shows this for an input (pin 13) and an output (pin 6). If a signal is applied
to pin 13, it will not reach the NAND-1 gate input and so will not have an effect
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FIGURE 4-37 An IC with
an internally open input
will not respond to signals
applied to that input pin.
An internally open output
will produce an unpre-
dictable voltage at that
output pin.

EXAMPLE 4-

TR TR

FIGURE 4-38 Example
4-26.
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on the NAND-1 output. The open gate input will be in the floating state. As
stated earlier, TTL devices will respond as if this floating input is a logic 1, and
CMOS devices will respond erratically and may even become damaged from
overheating.

The open at the NAND-4 output prevents the signal from reaching 1@
pin 6, so there will be no stable voltage present at that pin. If this pin is con-
nected to the input of another IC, it will produce a floating condition at that

input.

What would a logic probe indicate at pin 13 and at pin 6 of Figure 4-377

@ [
’7\‘!06 |

Open ‘;( .

74L500 )

R R DR

Solution

At pin 13, the logic probe will indicate the logic level of the external signal
that is connected to pin 13 (which is not shown in the diagram). At pin 6, the
logic probe will show no LED lit for an indeterminate logic level because the
NAND output level never makes it to pin 6.

Refer to the circuit of Figure 4-38 and the recorded logic probe indications.
What are some of the possible faults that could produce the recorded re-
sults? Assume that the ICs are 4 IBIE

Condition

A 3
HIGH
LOW
72-1| LOW
Be— 72-2| Pulsing

Z2-3 Pulsing

Note; Ve and ground
connections to each
|G are not shown

Solution

Examination of the recorded results indicates that the INVERTER appears
to be working properly, but the NAND output is inconsistent with its inputs.
The NAND output should be HIGH because its input pin 1 is LOW. This LOW
should prevent the NAND gate from responding to the pulses at pin 2. It is
probable that this LOW is not reaching the internal NAND gate circuitry
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because of an internal open. Because the IC is TTL, this open circuit would
produce the same effect as a logic HIGH at pin 1. If the IC had been CMOS,
the internal open circuit at pin 1 might have produced an indeterminate out-
put and possible overheating and destruction of the chip.

From our earlier statement regarding open TTL inputs, you might have
expected that the voltage of pin 1 of Z2 would be 1.4 to 1.8V and should have
been registered as indeterminate by the logic probe. This would have been
true if the open circuit had been external to the NAND chip. There is no open
circuit between Z1 pin 4 and Z2 pin 1, and so the voltage at Z1 pin 4 is reach-
ing Z2 pin 1, but it becomes disconnected inside the NAND chip.

Short Between Two Pins

An internal short between two pins of an IC will force the logic signals at
those pins always to be identical. Whenever two signals that are supposed to
be different show the same logic-level variations, there is a good possibility
that the signals are shorted together.

Consider the circuit in Figure 4-39, where pins 5 and 6 of the NOR gate
are internally shorted together. The short causes the two INVERTER output
pins to be connected together so that the signals at Z1 pin 2 and Z1 pin 4
must be identical, even when the two INVERTER input signals are trying to
produce different outputs. To illustrate, consider the input waveforms shown
in the diagram. Even though these input waveforms are different, the wave-
forms at outputs Z1-2 and Z1-4 are the same.

1 2 4 v
Ae al z1
5 Z1-1
4
6 X Oy | | [ |
| | | |
3 4 4V .- T | Lo
B ® '@ V4 71-3 | |
Internal AT : :
short | | | |
z1-2'] 7=l e | P
and =
z1—4_f0\""' =

FIGURE 4-39 When two input pins are internally shorted, the signals driving these pins
are forced to be identical, and usually a signal with three distinct levels results.

During the interval ¢ to t;, both INVERTERSs have a HIGH input and
both are trying to produce a LOW output, so that their being shorted to-
gether makes no difference. During the interval t; to t;, both INVERTERSs
have a LOW input and are trying to produce a HIGH output, so that again
their being shorted has no effect. However, during the intervals t; to t3 and
t; to t4, one INVERTER is trying to produce a HIGH output while the other
is trying to produce a LOW output. This is called signal contention because
the two signals are “fighting” each other. When this happens, the actual
voltage level that appears at the shorted outputs will depend on the inter-
nal IC circuitry. For TTL devices, it will usually be a voltage in the high end
of the logic 0 range (i.e., close to 0.8 V), although it may also be in the inde-
terminate range. For CMOS devices, it will often be a voltage in the inde-
terminate range.
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Whenever you see a waveform like the 7.1-2, Z1-4 signal in Figure 4-39
with three different levels, you should suspect that two output signals may
be shorted together.

1. List the different internal digital IC faults.

2. Which internal IC fault can produce signals that show three different
voltage levels?

3. What would a logic probe indicate at 71-2 and Z1-4 of Figure 4-39 if
A=0and B =12

4. What is signal contention?

4-12 EXTERNAL FAULTS

We have seen how to recognize the effects of various faults internal to digi-
tal ICs. Many more things can go wrong external to the ICs; we will describe
the most common ones in this section.

Open Signal Lines

This category includes any fault that produces a break or discontinuity in
the conducting path such that a voltage level or signal is prevented from go-
ing from one point to another. Some of the causes of open signal lines are:

1. Broken wire

2 Poor solder connection; loose wire-wrap connection

3. Crack or cut trace on a printed circuit board (some of these are hairline
cracks that are difficult to see without a magnifying glass)

4. Bent or broken pin on an IC

5. Faulty IC socket such that the IC pin does not make good contact with
the socket

This type of circuit fault can often be dete
and then verified by disconnecting power

cted by a careful visual inspection
from the circuit and checking for

continuity (i.e., a low-resistance path) with

an ohmmeter between the two

points in question.

Consider the CMOS circuit of Figure 4-40 and the accompanying logic probe
indications. What is the most probable circuit fault?

Solution

The indeterminate level at the NOR gate out
terminate input at pin 2. Because there is a

put is probably due to the inde-
LOW at Z1-6, this LOW should

also be at Z2-2. Clearly, the LO

W from Z1-6 is not reaching Z2-2, and there

must be an open circuit in the signal p

ath between these two points. The lo-

cation of this open circuit can be determine
Jogic probe and tracing the LOW level along
til it changes into an indeterminate level.

d by starting at Z1-6 with the
the signal path toward Z2-2 un-
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FIGURE 4-40
| 4-27.
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Pin Condition

Z1-1| Pulsing

Z1-2 | HIGH

Z1-3 | Pulsing

Z1-4 | LOW

Z1-5| Pulsing

Z1-6 | LOW

Z2-3 | Pulsing

Z2-2 | Indeterminate
Z2-1| Indeterminate

All ICs
are CMOS
Z1: 74HCO08
Z2: 74HCO02

Shorted Signal Lines

This type of fault has the same effect as an internal short between IC pins. It
causes two signals to be exactly the same (signal contention). A signal line
may be shorted to ground or Ve rather than to another signal line. In those
cases, the signal will be forced to the LOW or the HIGH state. The main
causes for unexpected shorts between two points in a circuit are as follows:

1. Sloppy wiring. An example of this is stripping too much insulation from
ends of wires that are in close proximity.

2. Solder bridges. These are splashes of solder that short two or more points
together. They commonly occur between points that are very close to-
gether, such as adjacent pins on a chip.

3. Incomplete etching. The copper between adjacent conducting paths on a
printed circuit board is not completely etched away.

Again, a careful visual inspection can very often uncover this type of fault,
and an ohmmeter check can verify that the two points in the circuit are
shorted together.

Faulty Power Supply

All digital systems have one or more dc power supplies that supply the V¢
and Vpp voltages required by the chips. A faulty power supply or one that is
overloaded (supplying more than its rated amount of current) will provide
poorly regulated supply voltages to the ICs, and the ICs either will not oper-
ate or will operate erratically.

A power supply may go out of regulation because of a fault in its internal
circuitry, or because the circuits that it is powering are drawing more current
than the supply is designed for. This can happen if a chip or a component has
a fault that causes it to draw much more current than normal.

It is good troubleshooting practice to check the voltage levels at each
power supply in the system to see that they are within their specified ranges.
It is also a good idea to check them on an oscilloscope to verify that there is
no significant amount of ac ripple on the dc levels and to verify that the volt-
age levels stay regulated during the system operation.

One of the most common signs of a faulty power supply is one or more
chips operating erratically or not at all. Some ICs are more tolerant of power
supply variations and may operate properly, while others do not. You should
always check the power and ground levels at each IC that appears to be op-
erating incorrectly.
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Qutput Loading

When a digital IC has its output connected to too many IC inputs, its output
current rating will be exceeded, and the output voltage can fall into the in-
determinate range. This effect is called loading the output signal (actually
it’s overloading the output signal) and is usually the result of poor design or
an incorrect connection.

1. What are the most common types of external faults?
2. List some of the causes of signal-path open circuits.
3. What symptoms are caused by a faulty power supply?
4. How might loading affect an IC output voltage level?

4-13 TROUBLESHOOTING CASE STUDY

The following example will illustrate the analytical processes involved in
troubleshooting digital circuits. Although the example is a fairly simple com-
binational logic circuit, the reasoning and the troubleshooting procedures
used can be applied to the more complex digital circuits that we encounter

in subsequent chapters.

Consider the circuit of Figure 4-41. Output Y is
ther of the following conditions:

1. A = 1, B = 0 regardless of the level on C
2.A=0,B=1,€=1

You may wish to verify these results for yourself.

FIGURE 441 Example T,
4-28. 1
’ 14 =
E Z1 2 o] 2 Y
B
2
7
= 13
Condition
12
Ce Z1-1 LOW
Z1-2 LOW
= 71-3 HIGH
Z2-4 LOW
Z2-5 HIGH
Z2-6.10 HIGH
ICs are TTL Z2-13 HIGH
Z1: 74L586 Z22-12 HIGH
Z2: 74LS00 Z2-9.11 LOW
Z2-8 HIGH
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When the circuit is tested, the technician observes that output Y goes
HIGH whenever A is HIGH or C is HIGH, regardless of the level at B. She
takes logic probe measurements for the condition where A = B=0,C =1 and
comes up with the indications recorded in Figure 4-41.

Examine the recorded levels and list the possible causes for the malfunc-
tion. Then develop a step-by-step procedure to determine the exact fault.

Solution

All of the NAND gate outputs are correct for the levels present at their in-
puts. The XOR gate, however, should be producing a LOW at output pin 3 be-
cause both of its inputs are at the same LOW level. It appears that Z1-3 is
stuck HIGH, even though its inputs should produce a LOW. There are several
possible causes for this:
1. An internal component failure in Z1 that prevents its output from going
LOW
. An external short to Vge from any point along the conductors connected
to node X (shaded in the diagram of the figure)

I

. Pin 3 of Z1 internally shorted to Ve
. Pin 5 of Z2 internally shorted to Ve

0 B

. Pin 13 of Z2 internally shorted to V¢

All of these possibilities except for the first one will short node X (and
every IC pin connected to it) directly to V.

The following procedure can be used to isolate the fault. This proce-
dure is not the only approach that can be used and, as we stated earlier, the
actual troubleshooting procedure that a technician uses is very dependent
on what test equipment is available.

1. Check the Ve and ground levels at the appropriate pins of Z1. Although
it is unlikely that the absence of either of these might cause Z1-3 to stay
HIGH, it is a good idea to make this check on any IC that is producing an
incorrect output.

2. Turn off power to the circuit and use an ohmmeter to check for a short
(resistance less than 1 (}) between node X and any point connected to
Vee (such as Z21-14 or Z2-14). If no short is indicated, the last four possi-
bilities in our list can be eliminated. This means that it is very likely that
71 has an internal failure and should be replaced.

3. If step 2 shows that there is a short from node X to Vg, perform a thor-
ough visual examination of the circuit board and look for solder bridges,
unetched copper slivers, uninsulated wires touching each other, and any
other possible cause of an external short to Vee. A likely spot for a solder
bridge would be between adjacent pins 13 and 14 of Z2. Pin 14 is con-
nected to Ve, and pin 13 to node X. If an external short is found, remove
it and perform an ochmmeter check to verify that node X is no longer
shorted to V.

4. If step 3 does not reveal an external short, the three possibilities that re-
main are internal shorts to Ve at Z1-3, Z2-13, or Z2-5. One of these is
shorting node X to V.

To determine which of these IC pins is the culprit, we should discon-
nect each of them from node X one at a time and recheck for a short to Vee
after each disconnection. When the pin that is internally shorted to Vi is
disconnected, node X will no longer be shorted to Ve.
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‘ The process of disconnecting each suspected pin from node X can be

easy or difficult depending on how the circuit is constructed. If the ICs are
‘ in sockets, all you need to do is to pull the IC from its socket, bend out the
’ ‘ suspected pin, and reinsert the IC into its socket. If the ICs are soldered into
: a printed circuit board, you will have to cut the trace that is connected to the
‘ pin and repair the cut trace when you are finished.

| ‘ Example 4-28, although fairly simple, shows you the kinds of thinking that
a troubleshooter must employ to isolate a fault. You will have the opportunity

| to begin developing your own troubleshooting skills by working on many end-

| i of-chapter problems that have been designated with a T for trouble shooting.

‘ 4-14 PROGRAMMABLE LOGIC DEVICES"

| In the previous sections, we briefly considered the class of ICs known as pro-
| || grammable logic devices. In Chapter 3, we introduced the concept of de-
scribing a circuit’s operation using a hardware description language. In this

section, we will explore these topics further and become prepared to use the
tools of the trade to develop and implement digital systems using PLDs. Of
course, it is impossible to understand all the complex details of how a PLD
works before grasping the fundamentals of digital circuits. As we examine
new fundamental concepts, we will expand our knowledge of the PLDs and
the programming methods. The material is presented in such a way that any-
one who is not interested in PLDs can easily skip over these sections without
. loss of continuity in the coverage of the basic principles.

Let’s review the process we covered earlier of designing combinational
I digital circuits. The input devices are identified and assigned an algebraic
| name like A, B, C, or LOAD, SHIFT, CLOCK. Likewise, output devices are given
names like X, Z, or CLOCK_OUT, SHIFT OUT. Then a truth table is constructed
that lists all the possible input combinations and identifies the required state
of the outputs under each input condition. The truth table is one way of de-
scribing how the circuit is to operate. Another way to describe the circuit’s op-
{ eration is the Boolean expression. From this point the designer must find the
simplest algebraic relationship and select digital ICs that can be wired to-
gether to implement the circuit. You have probably experienced that these
last steps are the most tedious, time consuming, and prone to errors.
[ Programmable logic devices allow most of these tedious steps to be au-
tomated by a computer and PLD development software. Using programmable
logic improves the efficiency of the design and development process.
Consequently, most modern digital systems are implemented in this way. The
job of the circuit designer is to identify inputs and outputs, specify the logi-
cal relationship in the most convenient manne, and select a programmable
device that is capable of implementing the circuit at the lowest cost. The con-
cept behind programmable logic devices is simple: put lots of logic gates in
a single IC and control the interconnection of these gates electronically.

PLD Hardware

Recall from Chapter 3 that many digital circuits today are implemented us-
ing programmable logic devices (PLDs). These devices are configured elec-
tronically and their internal circuits are “wired” together electronically to

“All sections covering PLDs may be skipped without loss of continuity in the balance of Chapters 1-12.
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form a logic circuit. This programmable wiring can be thought of as thou-
sands of connections that are either connected (1) or not connected (0). It is
very tedious to try to configure these devices by manually placing 1s and 0s
in a grid, so the next logical question is, “How do we control the intercon-
nection of gates in a PLD electronically?”

A common method of connecting one of many signals entering a networlk
to one of many signal lines exiting the network is a switching matrix. Refer
back to Figure 3-44, where this concept was introduced, A matrix is simply a
grid of conductors (wires) arranged in rows and columns. Input signals are
connected to the columns of the matrix, and the outputs are connected to the
rows of the matrix. At each intersection of a row and a column is a switch
that can electrically connect that row to that column. The switches that con-
nect rows to columns can be mechanical switches, fusible links, electromag-
netic switches (relays), or transistors. This is the general structure used in
many applications and will be explored further when we study memory de-
vices in Chapter 12.

PLDs also use a switch matrix that is often referred to as a programma-
ble array. By deciding which intersections are connected and which ones are
not, we can “program” the way the inputs are connected to the outputs of the
array. In Figure 4-42, a programmable array is used to select the inputs for
each AND gate. Notice that in this simple matrix, we can produce any logical
product combination of variables A, B at any of the AND gate outputs. A ma-
trix or programmable array such as the one shown in the figure can also be
used to connect the AND outputs to OR gates. The details of various PLD ar-
chitectures will be covered thoroughly in Chapter 13.

A T—D\/
Ny
B i - 1_'___“_ -
= ———— Column wires
o =
1
o
- 2 } Product 1
3
4 } Product 2
Row wires .
8 } Product 3
7
o 8 } Product 4
—

ikl Sl S8 St e
Blmp RN

FIGURE 4-42 A programmable array for selecting inputs as product terms.

Programming a PLD

There are two ways to “program” a PLD IC. Programming means making the
actual connections in the array. In other words, it means determining which of
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FIGURE 4-43 APLD
development system.
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those connections are supposed to be open (0) and which are supposed to be
closed (1). The first method involves removing the PLD IC chip from its circuit
board. The chip is then placed in a special fixture called a programmer, shown
in Figure 4-43. Most modern programimers are connected to a personal com-
puter that is running software containing libraries of information about the
many types of programmable devices available.

Development Programming
software software

Programming fixture

Serial (programmer)

The programming software 1s invoked (called up and executed) on the PC
to establish communication with the programmer. This software allows the
user to set up the programmer for the type of device thatis to be programmed,
check if the device is blank, read the state of any programmable connection in
the device, and provide in structions for the user to program a chip. Ultimately,
the part is placed into a special socket that allows you to drop the chip in and
then clamp the contacts onto the pins. This is called a zero insertion force
(ZIF) socket. Universal prograrnmers that can program any type of program-
mable device are available from numerous manufacturers.

Fortunately, as programmable parts began to proliferate, manufacturers
saw the need to standardize pin assignments and programming methods. Asa
result, the Joint Electronic Device Engineering Council (JEDEC) was formed.
One of the results was JEDEC standard 3, a format for transferring program-
ming data for PLDs, independent of the PLD manufacturer or programming
software. Pin assignments for various IC packages were also standardized,
making universal programmers less complicated. Consequently, program-
ming fixtures can program numerous types of PLDs.The software that allows
the designer to specify a configuration for a PLD simply needs to produce an
output file that conforms to the JEDEC standards. Then this JEDEC file can
be loaded into any JEDEC-compatible PLD programmer that is capable of
programming the desired type of PLD.

The second method is referred to as in system programming (ISP). As its
name implies, the chip does not need to be removed from its circuit for stor-
age of the programming information. A standard interface has been devel-
oped by the Joint Test Action Group (JTAG). The interface was developed to
allow ICs to be tested without actually connecting test equipment to every
pin of the IC. It also allows for internal programming. Four pins on the IC are
used as a portal to store data and retrieve information about the inner con-
dition of the IC. Many ICs, including PLDs and microcontrollers, are manu-
factured today to include the JTAG interface. An interface cable connects
the four JTAG pins on the IC to an output port (like the printer port) of a per-
sonal computer. Software running on the PC establishes contact with the IC
and loads the information in the proper format.
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blocks developed using dif-
ferent description methods.
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Development Software

We have examined several methods of describing logic circuits now, including
schematic capture, logic equations, truth tables, and HDL. We also described
the fundamental methods of storing 1s and 0s into a PLD IC to connect the
logic circuits in the desired way. The biggest challenge in getting a PLD pro-
grammed is converting from any form of description into the array of 1s and
0s. Fortunately, this task is accomplished quite easily by a computer running
the development software. The development software that we will be refer-
ring to and using for examples is produced by Altera. This software allows
the designer to enter a circuit description in any one of the many ways we
have been discussing: graphic design files (schematics), AHDL, and VHDL. It
also allows the use of another HDL, called Verilog, and the option of de-
scribing the circuit with timing diagrams. Circuit blocks described by any of
these methods can also be “connected” together to implement a much larger
digital system, as shown in Figure 4-44. Any logic diagram found in this text
can be redrawn using the schematic entry tools in the Altera software to cre-
ate a graphic design file. We will not focus on graphic design entry in this
text because it is quite straightforward to pick up these skills in the labora-
tory. We will focus our examples on the methods that allow us to use HDL as
an alternate means of describing a circuit. For more information on the
Altera software, see the accompanying CD as well as user manuals from the
Altera web site (http://www.altera.com).

Intermediate

signals
‘Schematic block ; VHDL block
: ENTITY.........

System s

inputs i
et

ARCHITECTURE...
System
i outputs
~ Timing block

This concept of using building blocks of circuits is called hierarchical
design. Small, useful logic circuits can be defined in whatever manner is most
convenient (graphic, HDL, timing, etc.) and then combined with other cir-
cuits to form a large section of a project. Sections can be combined and con-
nected with other sections to form the whole system. Figure 4-45 shows the
hierarchical structure of a CD player using a block diagram. The outer box en-
closes the entire system. The dashed lines identify each major subsection, and
each subsection contains individual circuits. Although it is not shown in this
diagram, each circuit may be made up of smaller building blocks of common
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FIGURE 4-45 Block diagram of a CD player.

| digital circuits. The Altera development software makes this type of modular,
hierarchical design and development easy to accomplish.

Design and Development Process

Another way you might see the hierarchy of a system like the CD player just
described is shown in Figure 4-46. The top level represents the entire system.
It is made up of three subsections, each of which in turn is made up of the
smaller circuits shown. Notice that this diagram does not show how the sig-
nals flow throughout the system but clearly identifies the various levels of
the hierarchical structure of the project.

This type of diagram has led to the name for one of the most common
methods of design: top-down. With this design approach, you start with the
overall description of the entire system, such as the top box in Figure 4-46.
Then you define several subsections that will make up the system. The sub-
sections are further refined into individual circuits connected together.
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I CD system
‘ Spindle drive section Laser tracking section Audio section
l Track Disk speed Position Motor Skip Pulse
decoding control control drive detect train
loop decoder
Parity error Skip Digital D/A Filter

} correction memory filter amp

FIGURE 4-46 An organizational hierarchy chart.

Every one of these hierarchy levels has defined inputs, outputs, and behav-
ior. Each can be tested individually before it is connected to the others.
After defining the blocks from the top down, the system is built from the
bottom up. Each block in this system design has a design file that describes
it. The lowest level blocks must be designed by opening a design file and
writing a description of its operation. The designed block is then compiled
using the development tools. The compiling process determines if you have
made errors in your syntax. Until your syntax is correct, the computer can-
not possibly translate your description into its proper form. After it has been
compiled with no syntax errors, it should be tested to see if it operates cor-
rectly. Development systems offer simulator programs that run on the PC and
simulate the way your circuit responds to inputs. A simulator is a computer
program that calculates the correct output logic states based on a description
of the logic circuit and the current inputs. A set of hypothetical inputs and
their corresponding correct outputs are developed that will prove the block !
works as expected. These hypothetical inputs are often called test vectors.
Thorough testing during simulation greatly increases the likelihood of the !
final system working reliably. Figure 4-47 shows the simulation file for the |
circuit described in Figure 3-13(a) of Chapter 3. Inputs a, b, and ¢ were en- |
tered as test vectors, and the simulation produced output v. |

Refl: [0.0ns ![;_! Time: | 0.0 ns Interval: i0.0nS E |

0.0ns i
[ i
Mame: Value: 1.0ms 2.0 ms 3.0ms 4.0 ms 50ms 6.0 ms 7.0ms 8.0 ms 9.0ms 10 ms |
B-c [¢] T | ]
. B b 0 | 1 [ ] |
i . -2 0 I 1 I 1 I | [ | |
; D y 0 I | i
1 FIGURE 4-47 A timing simulation of a circuit described in HDL.
1
= When the designer is satisfied that the design works, the design can be
& verified by actually programming a chip and testing. For a complex PLD, the
)7 ; designer can either let the development system assign pins and then lay out
B

the final circuit board accordingly, or specify the pins for each signal using
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FIGURE 4-48 PLD devel-
opment cycle flowchart.
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the software features. If the compiler assigns the pins, the assignments can
be found in the report file or pin-out file, which provides many details about
the implementation of the design. If the designer specifies the pins, it is im-
portant to know the constraints and limitations of the chip’s architecture.
These details will be covered in Chapter 13. The flowchart of Figure 4-48
summarizes the design process for designing each block.

Design

Create design file

Edit design file

Identify
design flaw

‘ Troubleshoot l

After each circuit in a subsection has been tested, all can be combined and
the subsection can be tested following the same process that was used for the
small circuits. Then the subsections are combined and the system is tested.
This approach lends itself very well to a typical project environment, where a

team of people are working together, each responsible for his or her own cir-
cuits and sections that will ultimately come together to make up the system.

1. What is actually being “programmed” in a PLD?

2. What bits (column, row) in Figure 4-42 must be connected to make
Product 1 = AB? :

3. What bits (column, row) in Figure 4-42 must be connected to make
Product 3 = AB?
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4-15 REPRESENTING DATA IN HDL

Numeric data can be represented in various ways. We have studied the use of
the hexadecimal number system as a convenient way to communicate bit
patterns. We naturally prefer to use the decimal number system for numeric
data, but computers and digital systems can operate only on binary informa-
tion, as we studied in previous chapters. When we write in HDL, we often
need to use these various number formats, and the computer must be able to
understand which number system we are using. So far in this text, we have
used a subscript to indicate the number system. For example, 101, was bi-
nary, 101;5 was hexadecimal, and 101y, was decimal. Every programming
language and HDL has its own unique way of identifying the various number
systems, generally done with a prefix to indicate the number system. In most
languages, a number with no prefix is assumed to be decimal. When we read
one of these number designations, we must think of it as a symbol that rep-
resents a binary bit pattern. These numeric values are referred to as scalars
or literals. Table 4-8 summarizes the methods of specifying values in binary,
hex, and decimal for AHDL and VHDL.

Tk Bit Decimal
Number System VHDL Pattern Equivalent
Binary S Bao 101 5
Hexadecimal ': X" O'T” 100000001 257
Decimal - 1100101 101

Express the following bit pattern’s numeric value in binary, hex, and decimal
using AHDL and VHDL notation:

11001

Solution
Binary is designated the same in both AHDL and VHDL: B “11001”.
Converting the binary to hex, we have 1944.
In AHDL: H “19”
L EAVA S D G S, o [
Converting the binary to decimal, we have 254
Decimal is designated the same in both AHDL and VHDL: 25.

Bit Arrays/Bit Vectors

In Chapter 3, we declared names for inputs to and outputs of a very simple logic
circuit. These were defined as bits, or single binary digits. What if we want to
represent an input, output, or signal that is made up of several bits? In an HDL,
we must define the type of the signal and its range of acceptable values.

To understand the concepts used in HDLs, let’s first consider some con-
ventions for describing bits of binary words in common digital systems.
Suppose we have an eight-bit number representing the current temperature,
and the number is coming into our digital system through an input port that
we have named P1, as shown in Figure 4-49. We can refer to the individual
bits of this port as P1 bit 0 for the least significant bit, on up to P1 bit 7 for
the most significant bit.
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We can also describe this port by saying that it is named P1, with bits
numbered 7 down to 0. The terms bit array and bit vector are often used to
describe this type of data structure. It simply means that the overall data
structure (eight-bit port) has a name (P1) and that each individual element
(bit) has a unique index number (0-7) to describe that bit’s position (and
possibly its numeric weight) in the overall structure. The HDLs and com-
puter programming languages take advantage of this notation. For example,
the third bit from the right is designated as P1[2], and it can be connected to
another signal bit by using an assignment operator.

Assume there is an eight-bit array named P1, as shown in Figure 4-49, and an-
other four-bit array is named P5.

(a) Write the bit designation for the most significant bit of P1.
(b) Write the bit designation for the least significant bit of P5.

(c) Write an expression that causes the least significant bit of P5 to drive
the most significant bit of P1.

FIGURE 4-49 Bit array
notation.

A/D converter

S
S T TG, T S T

P51 | P11l | PA[a1| P21 | P11 P1[O]J

[wsm
v v

Input port | P1[7] | P1[6]
P1

Solution

(a) The name of the port is P1 and the most significant bit is bit 7. The
proper designation for P1 bit 7 is P1[7].

(b) The name of the port is PS5 and the least significant bit is bit 0. The
proper designation for P5 bit 0 is P5[0].

(c) The driving signal is placed on the right side of the assignment operator,
and the driven signal is placed on the left: P1[7] = P5[0];.

AHDL BIT ARRAY DECLARATIONS

In AHDL, port pI of Figure 4-49 is defined as an eight-bit input port, and the

value on this port can

be referred to using any number system,

such as hex,

binary,

decimal, etc. The syntax for AHDL uses a name for

the bit vector fol-

lowed by the r

ange of index designations, which are enclosed in square

brackets. This declaration is included in the SUBDESIGN section. For exam-
ple, to declare an eight-bit input port called p1, you would write

Gl [ 0 ST B —-define an 8-bit input port

Declare a four-bit input named keypad using AHDL.

Solution

keypad [3..0] :INPUT;:
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‘ Intermediate variables can also be declared as an array of bits. As with

single bits, they are declared just after the I/O declarations in SUBDESIGN.
As an example, the eight-bit temperature port pl can be assigned (con-
l nected) to a node named temp, as follows:

VARTABLE temp [7..0] :NODE;
| BEGTIN
‘ Eempids =l bl
END;

' Notice that the input port pl has the data applied to it, and it is driving
‘ the signal wires named temp. Think of the term on the right of the equals
sign as the source of the data and the term on the left as the destination.
The empty brackets [] mean that each of the correspanding bits in the two
arrays are being connected. Individual bits can also be “connected” by
specifying the bits inside the brackets. For example, to connect only the
least significant bit of pl to the LSB of temp, the statement would be
temp[0] = p1[0];.

VHDL BIT VECTOR DECLARATIONS

In VHDL, port pl of Figure 4-49 is defined as an eight-bit input port, and the
value on this port can be referred to using only binary literals. The syntax for
VHDL uses a name for the bit vector followed by the mode (:IN), the type
(BIT_VECTOR), and the range of index designations, which are enclosed in
parentheses. This declaration is included in the ENTITY section. For exam-
ple, to declare an eight-bit input port called p1, you would write

PORT (pl :IN BIT_VECTOR (7 DOWNTO 0);

Solution

PORT (keypad :IN BIT VECTCE (3 DOWNTC O} ;

i Intermediate signals can also be declared as an array of bits. As with sin-
gle bits, they are declared just inside the ARCHITECTURE definition. As an
example, the eight-bit temperature on port p! can be assigned (connected)
to a signal named temp, as follows:

STGMNAL temp :BIT_VECTOR (7 DOWNTC 0} ;
BEGTHN

temp == pl;
END;

Notice that the input port pI has the data applied to it, and it is driving the

signal wires named temp. No elements in the bit vector are specified, which 1
means that all the bits are being connected. Individual bits can also be “con- |
nected” using signal assignments and by specifying the bit numbers inside |
parentheses. For example, to connect only the least significant bit of pI to 1
the LSB of temp, the statement would be temp(0) <= p1(0);.
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VHDL is very particular regarding the definitions of each type of the
‘ data. The type “bit_vector” describes an array of individual bits. This is in-
| ‘ terpreted differently than an eight-bit binary number (called a scaler quan-
| tity), which has the type integer. Unfortunately, VHDL does not allow us to
‘ assign an integer value to a BIT VECTOR signal directly. Data can be repre-
‘ sented by any of the types shown in Table 4-9, but data assignments and
‘ other operations must be done between objects of the same type. For exam-
ple, the compiler will not allow you to take a number from a keypad declared
as an integer and connect it to four LEDs that are declared as BIT_VECTOR
outputs. Notice in Table 4-9, under Possible Values, that individual BIT and
STD LOGIC data objects (e.g., signals, variables, inputs, and outputs) are
designated by single quotes, whereas values assigned to BIT_VECTOR and
STD LOGIC_VECTOR types are strings of valid bit values enclosed in dou-
ble quotes.

| TABLE 4-9 Common VHDL data types.

DataType Sample Declaration  Poss o

BIT y :OUT BIT; Hgpg | y <="'0%

STD_LOGIC driver :STD_LOGIC R o driver <= 'z’;

BIT_VECTOR bed_data :BIT_VECTOR “0101”1001" digit <= bed_data; "I
(3 DOWNTO 0); “0000"

STD_LOGIC_VECTOR dbus :STD_LOGIC_VECTOR “0Z1X" IFrd = ‘0' THEN
(3 DOWNTO 0); dbus <= "zzzz™;

INTEGER SIGNAL z:INTEGER RANGE —32..-2,-1,0,1,2...31 [Fz>5THEN... i
—32 TO 31; '

VHDL also offers some standardized data types that are necessary when
using logic functions that are contained in the libraries. As you might have
guessed, libraries are simply collections of little pieces of VHDL code that
can be used in your hardware descriptions without reinventing the wheel.
These libraries offer convenient functions, called macrofunctions, like
many of the standard TTL devices that are described throughout this text.
Rather than writing a new description of a familiar TTL device, we can sim-
ply pull its macrofunction out of the library and use it in our system. Of
course, you need to get signals into and out of these macrofunctions, and the
| types of the signals in your code must match the types in the functions
’ (which someone else wrote). This means that everyone must use the same
standard data types.

When VHDL was standardized through the IEEE, many data types were
. created at the same time. The two that we will use in this text are

STD LOGIC, which is equivalent to BIT type, and STD LOGIC_VECTOR,
I which is equivalent to BIT_VECTOR. As you recall, BIT type can have val-

it | ues of only ‘0> and ‘1’. The standard logic types are defined in the TEEE li-
brary and have a broader range of possible values than their built-in coun-
| terparts. The possible values for a STD_LOGIC type or for any element in a
;I STD _LOGIC_VECTOR are given in Table 4-10. The names of these cate-
gories will make much more sense after we study the characteristics of logic
circuits in Chapter 8. For now, we will show examples using values of only ‘1’
and ‘0°.
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‘ T"lBLf 410 STD_LOGIC .. | 54ic 1 (just like BIT type)
values.

! ‘o Logic O (just like BIT type)

‘z High impedance®

don’t care (just like you used in your K maps)

‘U Uninitialized

X Unknown

W Weak unknown .
‘L Weak ‘0’

‘Hi Weak 1’

*We will study tristate logic in Chapter 8.

1. How would you declare a six-bit input array named push_buttons in (a)
AHDL or (b) VHDL?

2. What statement would you use to take the MSB from the array in ques-
tion 1 and put it on a single-bit output port named z? Use (a) AHDL or
(b) VHDL.

3. In VHDL, what is the IEEE standard type that is equivalent to the BIT
type? I

4. In VHDL, what is the IEEE standard type that is equivalent to the
BIT VECTOR type? |

4-16 TRUTH TABLES USING HDL

We have learned that a truth table is another way of expressing the opera-
tion of a circuit block. It relates the output of the circuit to every possible
combination of its inputs. As we saw in Section 4-4, a truth table is the start-
ing point for a designer to define how the circuit should operate. Then a
Boolean expression is derived from the truth table and simplified using K
maps or Boolean algebra. Finally the circuit is implemented from the final
Boolean equation. Wouldn’t it be great if we could go from the truth table di-
rectly to the final circuit without all those steps? We can do exactly that by
entering the truth table using HDL.

TRUTH TABLES USING AHDL

The code in Figure 4-50 uses AHDL to implement a circuit and uses a truth
table to describe its operation. The truth table for this design was presented
in Example 4-7. The key point of this example is the use of the TABLE key-
i word in AHDL. It allows the designer to specify the operation of the circuit
J\ just like you would fill out a truth table. On the first line after TABLE, the in-
put variables (a,b,c) are listed exactly like you would create a column head-
ing on a truth table. By including the three binary variables in parentheses,
we tell the compiler that we want to use these three bits as a group and to re-
fer to them as a three-bit binary number or bit pattern. The specific values
for this bit pattern are listed below the group and are referred to as binary
literals. The special operator (=>) is used in truth tables to separate the in-
puts from the output (v).

AHDL
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FIGURE 4-50 AHDL 3
design file for Figure 4-7 %  Figure 4-7 in AHDL
Digital Syéﬁems'lOth ed
CNeal Widmers olihaamn
: MAY 23, 2005 ..
- SUBDESIGN FIG4 50 ' N
' a,b,c :INPUT; . ——define inputs to block

: v . QUTPUT; ~~define block output
| = _ S :
BEGIN
TABLE
' fa,b.c) N == Vi  —-column headings
- (0,0,0) Sl e
{0,0,1) s
RO s ey
R R s Lr
(1,0,0) 0y
ST S SRR R
R R
(L) R S 1;

 END TABLE;
BND; SR

The TABLE in Figure 4-50 is intended to show the relationship between the
] HDL code and a truth table. A more common way of re presenting the input data
heading is to use a variable bit array to represent the value on a, b, c. This
method involves a declaration of the bit array on the line before BEGIN, such as:

VARIABLE in bits[2..0] - NODE;

Just before the TABLE keyword, the input bits can be assigned to the array,

inbitsf |:
l' | in bits[]l = (a.,b,c);
i Grouping three independent bits in order like this is referred to as concate-
| | nating, and it is often done to connect individual bits to a bit array. The table
' | heading on the input bit sets can be represented by in_bits[ |, in this case.

| Note that as we list the possible combinations of the inputs, we have several
| options. We can make up a group of 1s and 0Os in parentheses, as shown in
i | Figure 4-50, or we can represent the same bit pattern using the equivalent bi-
|;-j nary, hex, or decimal number. It is up to the designer to decide which format
' is most appropriate depending on what the input variables represent.

The code in Figure 4-51 uses VHDL to implement a circuit using a selected
signal assignment to describe its operation. It allows the designer to specify
| g the operation of the circuit, just like you would fill out a truth table. The
| g truth table for this design was presented in Example 4-7. The primary point
‘_._ . of this example is the use of the WITH signal_name SELECT statement in
‘ i VHDL. A secondary point presented here shows how to put the data into a

|
i_ TRUTH TABLES USING VHDL: SELECTED SIGNAL ASSIGNMENT
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Figure 4-7 in WVHDL
Digital Systems 10th ed
Neal Widmer

MAY 23, 2005

ENTITY figd4 51 IS

PORT {

END fig4 51;

ARCHITECTURE truth OF figd 51 I8

a5 e o RIS -—declare individual input bits
v :OUT BIT) ;

SIGNAL in _bits :BIT VECTOR(Z DOWNTO 0);

BEGIN i
111 bibs <= & & b &k o --concatenate input bits into bit vector i
WITH in bits SELECT i
3V ] e WHEN "000™", -=Truth Table
Vink WHEN "0G1",
L WHEN *Ql0h,
LT WHEN g1,
0! WHEN "100"%,
it WHEN "101",
Ikt WHEN "1310",
A S R PR E
END truth:

FIGURE 4-51 VHDL design file for Figure 4-7.

EXAMPLE 4-33

format that can be used conveniently with the selected signal assignment.
Notice that the inputs are defined in the ENTITY declaration as three inde-
pendent bits a, b, and c¢. Nothing in this declaration makes one of these more
significant than another. The order in which they are listed does not matter.
We want to compare the current value of these bits with each of the possible
combinations that could be present. If we drew out a truth table, we would
decide which bit to place on the left (MSB) and which to place on the right
(LSB). This is accomplished in VHDL by concatenating (connecting in order)
the bit variables to form a bit vector. The concatenation operator is “&”. A
and is used to compare the input’s value with the string literals contained in
quotes. The output (p) is assigned (<=) a bit value (‘0° or ‘1) WHEN in_bits
contains the value listed in double quotes.

VHDL is very strict in the way it allows us to assign and compare objects
such as signals, variables, constants, and literals. The output v is a BIT, and so
it must be assigned a value of ‘0” or ‘1°. The SIGNAL in_bits is a three-bit
BIT _VECTOR, so it must be compared with a three-bit string literal value.
VHDL will not allow in_bits (a BIT_VECTOR) to be compared with a hex
number like X “5” or a decimal number like 3. These scalar quantities would
be valid for assignment or comparison with integers.

Declare three signals in VHDL that are single bits named too_hot, too_cold,
and just right. Combine (concatenate) these three bits into a three-bit signal
called temp_status, with hot on the left and cold on the right.
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Solution
1. Declare signals first in Architecture.

STCHNAL too_hot, too_cold, Tustlpight sBET:
SIGHNAL temp_status :BIT VECTOR (2 DOWNTO 0

2. Write concurrent assignment statements between BEGIN and END.

temp_status <= too_hot & just_right & too_cold;

1. How would you concatenate three bits x, v, and z into a three-bit array
named omega? Use AHDL or VHDL.

2. How are truth tables implemented in AHDL?
3. How are truth tables implemented in VHDL?

4-17 DECISION CONTROL STRUCTURES IN HDL

In this section, we will examine methods that allow us to tell the digital sys-
tem how to make “logical” decisions in much the same way that we make de-
cisions every day. In Chapter 3, we learned that concurrent assignment
statements are evaluated such that the order in which they are written has
no effect on the circuit being described. When using decision control struc-
tures, the order in which we ask the questions does matter. To summarize
this concept in the terms used in HDL documentation, statements that can
be written in any sequence are called concurrent, and statements that are
evaluated in the sequence in which they are written are called sequential.
The sequence of sequential statements affects the circuit’s operation.

The examples we have considered so far involve several individual bits.
Many digital systems require inputs that represent a numeric value. Refer
again to Example 4-8, in which the purpose of the logic circuit is to monitor
the battery voltage measured by an A/D converter. The digital value is rep-
resented by a four-bit number coming from the A/D into the logic circuit.
These inputs are not independent binary variables but rather four binary
digits of a number representing battery voltage. We need to give the data the
correct type that will allow us to use it as a number.

IF/ELSE

Truth tables are great for listing all the possible combinations of independent
variables, but there are better ways to handle numeric data. As an example,
when a person leaves for school or work in the morning, she must make a log-
ical decision about wearing a coat. Let’s assume she decides this issue based
only on the current temperature. How many of us would reason as follows?

I will wear a coat if the temperature is 0.

I will wear a coat if the temperature is 1.

1 will wear a coat if the temperature is 2. . ..
I will wear a coat if the temperature is 55.




FIGURE 4-52 Logical flow
of (a) IF/THEN and (b)
IF/THEN/ELSE constructs.
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I will not wear a coat if the temperature is 56.
I will not wear a coat if the temperature is 57.
I will not wear a coat if the temperature is 58. . ..

I will not wear a coat if the temperature is 99.

This method is similar to the truth table approach of describing the decision.
For every possible input, she decides what the output should be. Of course,
what she would really do is decide as follows:

I will wear a coat if the temperature is less than 56 degrees.
Otherwise, I will not wear a coat.

An HDL gives us the power to describe logic circuits using this type of
reasoning. First, we must describe the inputs as a number within a given
range, and then we can write statements that decide what to do to the out-
puts based on the value of the incoming number. In most computer program-
ming languages, as well as HDLs, these types of decisions are made using an
IF/THEN/ELSE control structure. Whenever the decision is between doing
something and doing nothing, an IF/THEN construct is used. The keyword
IF is followed by a statement that is true or false. IF it is true, THEN do
whatever is specified, In the event that the statement is false, no action is
taken. Figure 4-52(a) shows graphically how this decision works. The dia-
mond shape represents the decision being made by evaluating the statement
contained within the diamond. Every decision has two possible outcomes:
true or false. In this example, if the statement is false, no action is taken.

It is too
cold
outside

THEN ELSE THEN
put on a take off your puton a
FALSE coat! coat coat!
+ | | ) |
(a) (b)

In some cases it is not enough only to decide to act or not to act, but
rather we must choose between two different actions. For example, in our
analogy about the decision to wear a coat, if the person already has her coat
on when making this decision, she will not be taking it off. The use of
IF/THEN logic assumes that she is not wearing her coat initially.

When decisions demand two possible actions, the IF/THEN/ELSE con-
trol structure is used, as shown in Figure 4-52(b). Here again, the statement
is evaluated as true or false. The difference is that, when the statement is
false, a different action is performed. One of the two actions must occur with
this construct. We can state it verbally as, “IF the statement is true, THEN do
this. ELSE do that.” In our coat analogy, this control structure would work,
regardless of whether the person’s coat was on or off initially.

Example 4-8 gave a simple example of a logic circuit that has as its input
a numeric value representing battery voltage from an A/D converter. The in-
puts A, B, C, D are actually binary digits in a four-bit number, with A being
the MSB and D being the L.SB. Figure 4-53 shows the same circuit with the
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FIGURE 4-53 Logic
circuit similar to
Example 4-8.
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I——

T Logic circuit
(MSB) A | Digital value3
B »| Digital_value2 Z >
C | Digital_valuel
— (LSB) D | Digital_valuel

I

inputs labeled as a four-bit number called digital_value. The relationship be-
tween bits is as follows:

A digital_value[3] digital value bit 3 (MSB)
B digital value{2] digital value bit 2
C digital_valuef1] digital value bit 1
D digital_value[0] digital value bit 0 (LSB)

The input can be treated as a decimal number between 0 and 15 if we
specify the correct type of the input variable.

FIGURE 4-54 AHDL
version.

IF/THEN/ELSE USING AHDL

In AHDL, the inputs can be specified as a binary number made up of multi-
ple bits by assigning a variable name followed by a list of the bit positions,
as shown in Figure 4-54. The name is digital value, and the bit positions
range from 3 down to 0. Notice how simple the code becomes using this
method along with an IF/ELSE construct. The IF is followed by a statement
that refers to the value of the entire four-bit input variable and compares it
with the number 6. Of course, 6 is a decimal form of a scalar quantity and
digital_value[ | actually represents a binary number. The compiler can inter-
pret numbers in any system, so it creates a logic circuit that compares the bi-
nary value of digital_value with the binary number for 6 and decides if this
statement is true or false. If it is true, THEN the next statement (z = VCC) is
used to assign z a value. Notice that in AHDL, we must use VCC for a logic 1
and GND for a logic 0 when assigning a logic level to a single bit. When
digital_value 1s 6 or less, it follows the statement after ELSE (z = GND). The
END IF; terminates the control structure.

T b

SUBDESIGN FIG4 54
{ :
digital valuel3. 0] :INPUT; -- define inputs to block
= L QUTPUT; ~- define block ocutput
i :
BEGIN
I dig_ital_Valu.e[} > § THEN
7 = VCOC; : Cooopupput & L
ELSE =z = GND; B —— output a 0
END IE; AT,
B ; J
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IF/THEN/ELSE USING VHDL

In VHDL, the critical issue is the declaration of the type of inputs. Refer to
Figure 4-55. The input is treated as a single variable called digital value.
Because its type is declared as INTEGER, the compiler knows to treat it as a
number. By specifying a range of 0 to 15, the compiler knows it is a four-bit
number, Notice that RANGE does not specify the index number of a bit vec-
tor but rather the limits of the numeric value of the integer. Integers are
treated differently than bit arrays (BIT_VECTOR) in VHDL. An integer can
be compared with other numbers using inequality operators. A BIT_VECTOR
cannot be used with inequality operators.

FIGURE 4-55 VHDL AT
VEersion. ENTITY figd 55 IS
PORT( digital_walue :IN INTEGER RANGE 0 TO 15; -- 4-bit inpukt
5 :0UT BIT) ;
END figd 55;

ARCHITECTURE decision OF figd 55 I5

| BEGIN
PROCESS (digital wvalue)
BEGIN
1F (digital_walue > &) THEN
Fosmaatd aa
ELSE
g s =l
END IF;

END PROCESS ;
END decision;

To use the IF/THEN/ELSE control structure, VHDL requires that the
code be put inside a “PROCESS.” The statements that occur within a process
are sequential, meaning that the order in which they are written affects the
operation of the circuit. The keyword PROCESS is followed by a list of vari-
ables called a sensitivity list, which is a list of variables to which
the process code must respond. Whenever digital_value changes, it causes
the process code to be reevaluated. Even though we know digital_value is

_ really a four-bit binary number, the compiler will evaluate it as a number

| between the equivalent decimal values of 0 and 15. IF the statement in
parentheses is true, THEN the next statement is applied (z is assigned a
value of logic 1). If this statement is not true, the logic follows the ELSE
clause and assigns a value of 0 to z. The END IF; terminates the control
structure, and the END PROCESS; terminates the evaluation of the se-
guential statements.

ELSIF

We often need to choose among many possible actions, depending on the sit-
uation. The IF construct chooses whether to perform a set of actions or not.
The TF/ELSE construct selects one out of two possible actions. By combining
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FIGURE 4-56 Flowchart
for multiple decisions using
IF/ELSIE.

FIGURE 4-57
Temperature range
indicator circuit.
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IF and ELSE decisions, we can create a control structure referred to as
ELSIF, which chooses one of many possible outcomes. The decision structure
is shown graphically in Figure 4-56.

Action 3

‘ Action 5 l Action 4 ,

Notice that as each condition is evaluated, it either performs an action if
true or goes on to evaluate the next condition. Each action is associated with
one condition, and there is no chance to select more than one action. Note
also that the conditions used to decide the appropriate action can be any
expression that evaluates as true or false. This fact allows the designer to
use the inequality operators to choose an action based on a range of input
values. As an example of this application, let’s consider the temperature-
measuring system that uses an A/D converter, as described in Figure 4-57.
Suppose that we want to indicate when the temperature is in a certain range,
which we will refer to as Too Cold, Just Right, and Too Hot.

A/D converter Logic circuit ——_"O Too Gold

Temp :
Just Right

Four-bit
digital

value
—>O Too Hot

e

The relationship between the digital values for temperature and the cat-
egories is

Digital Values Category
0000-1000 Too Cold
1001-1010 Just Right

1011-1111 Too Hot
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We can express the decision-making process for this logic circuit as follows:

IF the digital value is less than or equal to 8 THEN light only the Too
Cold indicator.

ELSE IF the digital value is greater than 8 AND less than 11, THEN light
only the Just Right indicator.

ELSE light only the Too Hot indicator.

ELSIF USING AHDL

The AHDL code in Figure 4-58 defines the inputs as a four-bit binary num-
ber. The outputs are three individual bits that drive the three range indica-
tors. This example uses an intermediate variable (status) that allows us to as-
sign a bit pattern representing the three conditions of too_cold, just_right,
and too_hot. The sequential section of the code uses the IF, ELSIF, ELSE to
identify the range in which the temperature lies and assigns the correct bit
pattern to status. In the last statement, the bits of status are connected to the
actual output port bits. These bits have been ordered in a group that relates
to the bit patterns assigned to status/ . This could also have been written as
three concurrent statements: too_cold = status|2]; just_right = status[1];
too_hot = status[0];.

SUBDESIGN fig4 58
{

digital value[3..0] INPUT; --define inputs to block 1
too cold, just right, too hot :0UTPUT;--define outputs |
) |
VARIABLE
status[2..0] :NODE; —-holds state of too_cold, just right, too hot
BEGIN :
IF digital wvalue[] <= 8 THEN status[] = b*100";
ELSIF digital walue[] > 8 AND digital walue[] < 11 THEN

stacusil s hroLon :
ELSE status[] = b1001°; :

END IF; : |
(too_cold, just_right, too heot}) = statusl[l; -- update output bits '
END ;
I FIGURE 4-58 Temperature range example in AHDL using ELSIL.
|
ELSIF USING VHDL

The VHDL code in Figure 4-59 defines the inputs as a four-bit integer. The
‘ outputs are three individual bits that drive the three range indicators. This
example uses an intermediate signal (status) that allows us to assign a bit
pattern representing all three conditions of too_cold, just_right, and too_hot.
The process section of the code uses the IF, ELSIF, and ELSE to identify the
range in which the temperature lies and assigns the correct bit pattern to i
status. In the last three statements, each bit of status is connected to the cor- o
rect output port bit. o
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=

PORT{digital,value:IN TNTEGER RANGE gt
too cold, just_right, too_hot :0UT BILT) ;

) ENTITY figd 52 Teks
l - declare 4-bit input |
% END £igd 59

‘l ARCHITECTURE howhot OF £igd 59 IS5 |
\ gIGHAL status .BIT_VECTOR (2 downto 0);

BEGIN
PROCESS (digital value) |

l BEGIN
IF (digital value == §) THEN status <= i A
\ FLSIF {(digital value > 8 AND digital wvalue < 11) THEN |

status == "010";

ELSE  status <= "001%; |

END IF; |

\ END PROCESS | |
I too_cold <= statusl(2}; —_ assign status bits to output l

SustoEpLghls =5 status (L};

‘ too hot <= status(0); ]
|

l END howhot;
i |

FIGURE 4-59 Temperature range exa ple in VHDL using ELSTE.

CASE
One more important control st
current conditions. It is called by various na
ming language, but it nearly always involve
determines the value of an expression or object and then goes through a list
of possible values (cases) for the expression or object being evaluated. Each
case has a list of actions that should take place. A CASE construct is differ-
ent from an IF/ELSIF because a case correlates one unique value of an ob-
ject with a set of actions. Recall that an 1F/ELSIF correlates a set of actions
with a true statement. There can be only one match for a CASE statement.
An TE/ELSIF can have more than one statement that is true, but will THEN
perform the action associated with the first true statement it evaluates.
Another important point in the examples that follow is the need to com-
bine several independent yariables into a set of bits, called a bit vector.
Recall that this action of linking several bits in a particular order is called
concatenation. It allows us to consider the bit pattern as an ordered group.

ructure is useful for choosing actions based on
mes, depending on the program-
s the word CASE. This construct

CASE USING AHDL
The AHDL example in Figure 4-60 demonstrates a case construct imple-
menting the circuit of Figure 4-9 (see also Table 4-3). 1t uses individual bits
as its inputs. In the first statement after BEGIN, these bits are concatenated
and assigned to the intermediate variable called status. The CASE state-
ment evaluates the variable status and finds the bit pattern (following the
keyword WHEN) that matches the value of status. It then performs the ac-
tion described following =>. In this example, it simply assigns logic 0 to the
output for each of the three specified cases. All other cases result in a logic

1 on the output.




FIGURE 4-60 Figure 4-9
represented in AHDL.

[  SUBDESIGN figd 60
' D5 o or : INPUT; . -= define inputs to block
8 2 2 :-OUTPU.T';- _—:— define outputs
VARTABLE :
. status[2..0]  :NODE;
BEGIN :
statusll= (D, g, r)p - 1irik._iﬁput bits in order
CASE status(] IS ;
WHEN b"100" => 5 = GND;
WHEN br101" = & = GND;
WHEN bU110" LEsne R
WHEN OTHERS => 8§ = VCC:
END CASE; SR
END; & J
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FIGURE 4-61 Figure 4-9
represented in VHDL.

CASE USING VHDL

The VHDL example in Figure 4-61 demonstrates the case construct imple-
menting the circuit of Figure 4-9 (see also Table 4-3). It uses individual bits
as its inputs. In the first statement after BEGIN, these bits are concatenated
and assigned to the intermediate variable called status using the & operator.
The CASE statement evaluates the variable status and finds the bit pattern
(following the keyword WHEN) that matches the value of status. It then per-
forms the action described following =>. In this simple example, it merely
assigns logic 0 to the output for each of the three specified cases. All other
cases result in a logic 1 on the output.

ENTITY figd 61 IS

PORT( B, o, T S IN it
= SO BT

END figd 61;

—~declare 3 bits input

ARCHITECTURE copy OF figd 61 IS
SIGHNAL status :BIT VECTOR (2 downto 0);
BEGIN
status <= p & d & ¥;
PROCESS (status)
BEGLHN
CASE status IS

--link bits in order.

WHEN "100" => g5 <= '"0"';
WHEN "101% => s <= "0'%
WHEN "110" = s == '0';
WHEN OTHERS == s == '1';

END CASE;
! END PROCESS;
END copyi
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| A coin detector in a vending machine accepts quarters, dimes, and nickels
‘ | and activates the corresponding digital signal (Q, D, N) only when the correct
i coin is present. It is physically impossible for multiple coins to be present at
‘ { the same time. A digital circuit must use the Q, D, and N signals as inputs and

! produce a binary number representing the value of the coin as shown in
‘ | Figure 4-62. Write the AHDL and VHDL code.

il | FIGURE 4-62 A coin ,
: : Insert Coin
‘ detector circuit for a Logic Circuit
{1 | vending machine. Quarter - Q Five-bit array
! representing coin
‘ | ‘ Dime > D cents[4..0] vacljue g
ii ‘ \ Nickel | N
! ‘ ‘ Solution

| | This is an ideal application of the CASE construct to describe the correct op-
‘ ‘ eration. The outputs must be declared as five-bit numbers in order to repre-
' sent up to 25 cents. Figure 4-63 shows the AHDL solution and Figure 4-64
| shows the VHDL solution.

| :
' SUBDESIGN = fig4 63
| | S Epnoach SN PR REE define guarter, dime, nickel
| L : ) cents[4..0] :'OUTEUFI_‘-;. .~ -- define binary value of _ccjihs
| ﬁfﬁ BEGIN W 3 : : R -
o - ERSE el I SRR -~ group coins in an ordered set
l WHEN b"001' =» cents[] = 5; . - S
msten WHEN b"010" => cents[] = 10;
I WHEN b!'100" => cents[] = 25;
| WHEN others => centsl] = 0;
END CASE;
| END;
f | FIGURE 4-63 An AHDL coin detectot.
|
| | ENTITY fig4 64 IS
i PORT{ g, d, n:IN BIT; -~ quarter, dime, nickel
! | cents :0UT INTEGER RANGE 0 TO 25); -- binary value of coins
L END figd 64;
’ i ARCHITECTURE detector of fig4 64 IS
| SIGNAL coins :BIT VECTOR(2 DOWNTO 0);-- group the coin sensors
| B BEGIN
coins <= (g & d & nj; -- agsign sensors to group
_ | PROCESS (coins)
| BEGIN
| : CASE (coins) IS
WHEN "0O01" == cents <= 5y
WHEN 020" == gents == 10;
WHEN "100" == cents == 25;
WHEN others => cents <= 0;
| END CASE;
i I : END PROCESS;
n ' END detector;

FIGURE 4-64 A VHDL coin detector.
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|
|
‘ S T
- REVIEW DUESTIONS | 5 >
| REVIEVY QUES OIS 1. Which control structure decides to do or not to do?

‘ 2. Which control structure decides to do this or to do that?

| 3. Which control structure(s) decides which one of several different actions
i to take?

| 4. Declare an input named count that can represent a numeric quantity as
big as 205. Use AHDL or VHDL.

SUMMARY

1. The two general forms for logic expressions are the sum-of-products form E
and the product-of-sums form. |

2. One approach to the design of a combinatorial logic circuit is to (1) con-
struct its truth table, (2) convert the truth table to a sum-of-products
expression, (3) simplify the expression using Boolean algebra or K map-
ping, (4) implement the final expression.

|
) 3. The K map is a graphical method for representing a circuit’s truth table !
and generating a simplified expression for the circuit output. :

4, An exclusive-OR circuit has the expression x = AB + AB. Its output x
will be HIGH only when inputs 4 and B are at opposite logic levels.

5. An exclusive-NOR circuit has the expression x = A B + AB. Its output x
will be HIGH only when inputs A and B are at the same logic level.

6. Each of the basic gates (AND, OR, NAND, NOR) can be used to enable or
disable the passage of an input signal to its output.

7. The main digital IC families are the TTL and CMOS families. Digital ICs
are available in a wide range of complexities (gates per chip), from the
basic to the high-complexity logic functions.

8. To perform basic troubleshooting requires—at a minimum—an under-
standing of circuit operation, a knowledge of the types of possible faults,
a complete logic-circuit connection diagram, and a logic probe.

9. A programmable logic device (PLD) is an IC that contains a large num-
ber of logic gates whose interconnections can be programmed by the
user to generate the desired logic relationship between inputs and
outputs.

10. To program a PLD, you need a development system that consists of a
computer, PLD development software, and a programmer fixture that
does the actual programming of the PLD chip.

11. The Altera system allows convenient hierarchical design techniques us-
ing any form of hardware description.

12. The type of data objects must be specified so that the HDL compiler
knows the range of numbers to be represented.

13. Truth tables can be entered directly into the source file using the fea-
tures of HDL.

14. Logical control structures such as IF, ELSE, and CASE can be used to de-
. scribe the operation of a logic circuit, making the code and the problem’s
solution much more straightforward.
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g
IMPORTANT TERMS .
sum-of-products complementary integer |
(SOP) metal-oxide- objects B
product-of-sums semiconductor libraries
(POS) (CMOS) macrofunction
- Karnaugh map indeterminate STD_LOGIC
“ (K map) floating STD _LOGIC_
I looping logic probe VECTOR
: don’t-care condition contention concatenate
exclusive-OR (XOR) programmer selected signal
exclusive-NOR ZIF socket assignment
(XNOR) JEDEC decision control
parity generator JTAG structure
parity checker hierarchical design concurrent
enable/disable top-down sequential
| dual-in-line package test vectors IF/THEN
(DIP) literals ELSE
SSI, MSI, LSI, VLSI, bit array PROCESS
ULSI, GSI bit vector sensitivity list
transistor-transistor BIT VECTOR ELSIF
logic (TTL) index CASE
’ PROBLEMS
SECTIONS 4-2 AND 4-3

4-1*Simplify the following expressions using Boolean algebra.

(a) x = ABC + AC

(b) v =(Q+R(Q +R)

(c) w = ABC + ABC + A

| (d) g =RSTR+ S+ T)

. (¢) x =ABC + ABC + ABC + ABC + ABC
| 6 z=@B+C)B+C +A+B+C
‘ (8 v=(C+D)+ACD+ABC + ABCD + ACD

| (h) x = AB(CD) + ABD + BCD
4-2. Simplify the circuit of Figure 4-65 using Boolean algebra.

o —— '_DO—'
r | Lo f—

e

| |‘ FIGURE 4-65 Problems
i | 4-2 and 4-3.

o=z=
..T

*Answers to problems marked with an asterisk can be found in the back of the text.
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B 4-3*Change each gate in Problem 4-2 to a NOR gate, and simplify the cir-
cuit using Boolean algebra.

SECTION 4-4
B, D 4-4*Design the logic circuit corresponding to the truth table shown in
Table 4-11.
FABLE 4-11 o
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
B,D 4-5. Design a logic circuit whose output is HIGH only when a majority of
inputs 4, B, and C are LOW,
D 4-6. A manufacturing plant needs to have a horn sound to signal quitting

time. The horn should be activated when either of the following con-
ditions is met:

1. It’s after 5 o’clock and all machines are shut down.

2. It’s Friday, the production run for the day is complete, and all ma-
chines are shut down.
Design a logic circuit that will control the horn. (Hint: Use four logic
input variables to represent the various conditions; for example, in-
put A will be HIGH only when the time of day is 5 o’clock or later.)
D 4-7*A four-bit binary number is represented as AzA;A, Ay, where Az, A,
Ay, and Ag represent the individual bits and Ay is equal to the LSB.
Design a logic circuit that will produce a HIGH output whenever the
binary number is greater than 0010 and less than 1000.
D 4-8. Figure 4-66 shows a diagram for an automobile alarm circuit used to
detect certain undesirable conditions. The three switches are used to

FIGURE 4-66 Problem SN
; +5 V
4-8. I
Open Door
Closed l“ /
. i3 LED
+5V
ON I Ignition Logic Alarm
circuit
OFF
+5V e =
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indicate the status of the door by the driver’s seat, the ignition, and
the headlights, respectively. Design the logic circuit with these three
switches as inputs so that the alarm will be activated whenever either
of the following conditions exists:
s The headlights are on while the ignition is off.
s The door is open while the ignition is on.
4.9*Implement the circuit of Problem 4-4 using all NAND gates.
4-10. Implement the circuit of Problem 4-5 using all NAND gates.

SECTION 4-5

B 4-11. Determine the minimum expression for each K map in Figure 4-67.
Pay particular attention to step 5 for the map in (a).

FIGURE 4-67 Problem ¢b ©b CbD GCD
4-11.

(b)

B 4-12. For the truth table below, create a 2 X 2 K map, group terms, and sim-

plify. Then look at the truth table again to see if the expression is true
for every entry in the table.

B 4-13. Starting with the truth table in Table 4-11, use a K map to find the
simplest SOP equation.
B 4-14. Simplify the expression in (a)* Problem 4-1(e) using a K map.

(b) Problem 4-1(g) using a K map. (¢)* Problem 4-1(h) using a K map.
B 4-15*Obtain the output expression for Problem 4-7 using a K map.

C.,D  4-16. Figure 4-68 shows a BCD counter that produces a four-bit output rep-
resenting the BCD code for the number of pulses that have been ap-
plied to the counter input. For example, after four pulses have
occurred, the counter outputs are DCBA = 0100, = 44¢. The counter
resets to 0000 on the tenth pulse and starts counting over again. In
other words, the DCBA outputs will never represent & number greater
than 10012 = 910.

(a)*Design the logic circuit that produces a HIGH output whenever
the count is 2, 3, or 9. Use K mapping and take advantage of the
don’t-care conditions.

(b) Repeat for x = 1 when DCBA = 3, 4, 5.8
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FIGURE 4-68 Problem p (MsB)
4-16. P
e BCD [ > Logi X | HIGH only wh |
P Logic | only when
_ T i e
counter | B »-| circuit )Il DCBA = 245, 340, 0r 94 ‘
A : :

D 4-17 *Figure 4-69 shows four switches that are part of the control circuitry

FIGURE 4-69 Problem
4‘1? . SW-I

Swaz

SwW3

SW4

C  4-19.

in a copy machine. The switches are at various points along the path
of the copy paper as the paper passes through the machine. Fach
switch is normally open, and as the paper passes over a switch, the
switch closes. It is impossible for switches SW1 and SW4 to be closed
at the same time. Design the logic circuit to produce a HIGH output
whenever two or more switches are closed at the same time. Use K
mapping and take advantage of the don’t-care conditions.

%4-5 V'
§+5 \'
5V Logic X J HIGH wheneyer ]
e —— ¢ two or more switches -
circuit X
L are closed |
%+5 Vv

*SWH1 and SW4 will never
be closed at the same time

. Example 4-3 demonstrated algebraic simplification. Step 3 resulted in

the SOP equation z = ABC + ACD + ABCD + ABC. Use a K map to
prove that this equation can be simplified further than the answer
shown in the example.

Use Boolean algebra to arrive at the same result obtained by the K
map method of Problem 4-18.

SECTION 4-6

B 420

FIGURE 4-70 Problem 1

4-20.

(a) Determine the output waveform for the circuit of Figure 4-70.
(b) Repeat with the B input held LOW.
(c¢) Repeat with B held HIGH.

B[ s
0
| | (|
1 Time ——+—+> X
I I I
1 | | 1
|
e o [
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B

FIGURE 4-72 Problem
4-25.
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4.21*Determine the input conditions needed to produce x = 1 in Figure

FIGURE 4-71 Problem

4-21.

4-22,

4-71.

Design a circuit that produces a HIGH out only when all three inputs
are the same level.
(a) Use a truth table and K map to produce the SOP solution.

(b) Use two-input XOR and other gates to find a solution. (Hint:
Recall the transitive property from algebra. . .if a = band b = ¢
thena = c¢.)

4-23*A 7486 chip contains four XOR gates. Show how to make an XNOR

gate using only a 7486 chip. Hint: See Example 4-16.

4-24*Modify the circuit of Figure 4-23 to compare two four-bit numbers and

4-25.

produce a HIGH output when the two nu mbers match exactly.

Figure 4-72 represents a relative-magnitude detector that takes two
three-bit binary numbers, x;x1xg and y,y1v9, and determines whether
they are equal and, if not, which one is larger. There are three outputs,
defined as follows:

1. M = 1 only if the two input numbers are equal.

2. N = 1 only if x;x1xg is greater than vv1Yo.

3. P =1 only if you1yp is greater than xzx;xp.

Design the logic circuitry for this detector. The circuit has six inputs
and three outputs and is therefore much too complex to handle using
the truth-table approach. Refer to Example 4-17 as a hint about how
you might start to solve this problem.

Binary [ Xo—> —>M {x=y}
number < Xy —F
X L xoT_S—F Relative
B magnitude —» N {x>y}
Binary [ Y™ detector
number { Yi——»
— — X <
y Yo LSB {x=<y}
MORE DESIGN PROBLEMS

4-26*Figure 4-73 represents a multiplier circuit that takes two-bit binary

numbers, x1xg and yiyg, and produces an output binary number
23252129 that is equal to the arithmetic product of the two input num-
bers. Design the logic circuit for the multiplier. (Hint: The logic circuit
will have four inputs and four outputs.)
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FIGURE 4-73 Problem MSB
4.26. di—— ===
Xg ——P
I sB Multiplier [ 22
7 circuit s
Yo ———F — 7
LSB LSB

D  4-27. A BCD code is being transmitted to a remote receiver. The bits are A3,
As, Ay, and Ag, with A3 as the MSB. The receiver circuitry includes a
BCD error detector circuit that examines the received code to see if it
is a legal BCD code (i.e.,<1001). Design this circuit to produce a HIGH
for any error condition.

D 4-28*Design a logic circuit whose output is HIGH whenever A and B are
both HIGH as long as C and D are either both LOW or both HIGH. Try
to do this without using a truth table. Then check your result by con-
structing a truth table from your circuit to see if it agrees with the
problem statement.

D 4-29. Four large tanks at a chemical plant contain different liquids being
heated. Liguid-level sensors are being used to detect whenever the level
in tank A or tank B rises above a predetermined level. Temperature
sensors in tanks C and D detect when the temperature in either of these
tanks drops below a prescribed temperature limit. Assume that the
liquid-level sensor outputs 4 and B are LOW when the level is satisfac-
tory and HIGH when the level is too high. Also, the temperature-sensor
outputs C and D are LOW when the temperature is satisfactory and
HIGH when the temperature is too low. Design a logic circuit that will
detect whenever the level in tank 4 or tank B is too high at the same
time that the temperature in either tank C or tank D is too low.

C,D 4-30*Figure 4-74 shows the intersection of a main highway with a second-
ary access road. Vehicle-detection sensors are placed along lanes C
and D (main road) and lanes A and B (access road). These sensor

FIGURE 4-74 Problem
4:30.

[uy]
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‘ | outputs are LOW (0) when no vehicle is present and HIGH (1) when a
vehicle is present. The intersection traffic light is to be controlled ac-
‘ ‘ cording to the following logic:
| | 1. The east-west (E-W) traffic light will be green whenever both
| lanes C and D are occupied.

‘ ’ 2. The E-W light will be green whenever either C or D is occupied

| but lanes A and B are not both occupied.

‘ 3. The north-south (N-S) light will be green whenever both lanes A
and B are occupied but C and D are not both occupied.

il ‘ 4. The N-S light will also be green when either A or B is occupied
[ ‘ while C and D are both vacant.
5. The E-W light will be green when no vehicles are present.
‘ Using the sensor outputs 4, B, C, and D as inputs, design a logic circuit
| to control the traffic light. There should be two outputs, N-S and E-W,
that go HIGH when the corresponding light is to be green. Simplify
| the circuit as much as possible and show all steps.
‘ .

| SECTION 4-7

D 4-31. Redesign the parity generator and checker of Figure 4-25 to (a) oper-
I ate using odd parity. (Hint: What is the relationship between an odd-
-_ parity bit and an even-parity bit for the same set of data bits?) (b)
| Operate on eight data bits.

| SECTION 4-8
, | B 4-32. (a) Under what conditions will an OR gate allow a logic signal to pass
through to its output unchanged?
"
. (b) Repeat (a) for an AND gate.
_ | (c) Repeat for a NAND gate.
‘- | (d) Repeat for a NOR gate.

| B 4-33*(a) Can an INVERTER be used as an enable/disable circuit?
Explain.

“ I (b) Can an XOR gate be used as an enable/disable circuit? Explain.
I D 4-34. Design a logic circuit that will allow input signal A to pass through to
! | il the output only when control input B is LOW while control input Cis
!‘ HIGH; otherwise, the output is LOW.

, i D  4-35*Design a circuit that will disable the passage of an input signal only
‘ | when control inputs B, C, and D are all HIGH; the output is to be
I | HIGH in the disabled condition.

|

| . D  4-36. Design a logic circuit that controls the passage of a signal A according

i ' to the following requirements:

|' 1. Output X will equal A when control inputs B and C are the same.

2. X will remain HIGH when B and C are different.

D  4-37. Design a logic circuit that has two signal inputs, Ay and Ay, and a con-
trol input S so that it functions according to the requirements given in
Figure 4-75. (This type of circuit is called a multiplexer and will be coy-
ered in Chapter 9.)
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\ FIGURE 4-75 Problem
4-37. A

_kog,‘
4

=7 :
Multiplexer — 4

I

D  4-38*Use K mapping to design a circuit to meet the requirements of
Example 4-17. Compare this circuit with the solution in Figure 4-23.
This points out that the K-map method cannot take advantage of the
XOR and XNOR gate logic. The designer must be able to determine

I
i
when these gates are applicable.

SECTIONS 4-9T0 4-13
> 4-39, (a) A technician testing a logic circuit sees that the output of a par-
ticular INVERTER is stuck LOW while its input is pulsing. List as
many possible reasons as you can for this faulty operation.
(b) Repeat part (a) for the case where the INVERTER output is stuck
at an indeterminate logic level.
T 4-40*The signals shown in Figure 4-76 are applied to the inputs of the circuit
of Figure 4-32. Suppose that there is an internal open circuit at Z1-4.
(a) What will a logic probe indicate at Z1-4?

(b) What dc voltage reading would you expect at Z1-4? (Remember
that the ICs are TTL.)

(c) Sketch what you think the CLKOUT and SHIFTOUT signals will
look like.

(d) Instead of the open at Z1-4, suppose that pins 9 and 10 of Z2
are internally shorted. Sketch the probable signals at Z2-10,

FIGURE 4-76 Problem GLOCK :
4-40. !

LOAD

SHIFT

T  4-41. Assume that the ICs in Figure 4-32 are CMOS. Describe how the cir-
cuit operation would be affected by an open circuit in the conductor
connecting Z22-2 and Z2-10.

T 4-42, In Example 4-24, we listed three possible faults for the situation of
Figure 4-36. What procedure would you follow to determine which of
the faults is the actual one?

i . il 4-43*Refer to the circuit of Figure 4-38. Assume that the devices are CMOS.

1 Also assume that the logic probe indication at Z2-3 is “indeterminate”

*Recall that T indicates a troubleshooting exercise.
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rather than “pulsing.” List the possible faults, and write a procedure to
follow to determine the actual fault.

T  4-44*Refer to the logic circuit of Figure 4-41. Recall that output Y is sup-

T 445,

posed to be HIGH for either of the following conditions:

1. A =1,B = 0, regardless of C

2. A=0B=1,C=1
When testing the circuit, the technician observes that Y goes HIGH
only for the first condition but stays LOW for all other input condi-
tions. Consider the following list of possible faults. For each one, write
yes or no to indicate whether or not it could be the actual fault.
Explain your reasoning for each no response.

(a) An internal short to ground at Z2-13

(b) An open circuit in the connection to Z2-13
(¢) An internal short to Ve at Z2-11

(d) An open circuit in the Ve connection to Z2
(e) An internal open circuit at Z2-9

(f) An open in the connection from Z2-11 to Z2-9
(g) A solder bridge between pins 6 and 7 of Z2

Develop a procedure for isolating the fault that is causing the mal-
function described in Problem 4-44.

T  4-46*Assume that the gates in Figure 4-41 are all CMOS. When the techni-

T  447.

IGN @

cian tests the circuit, he finds that it operates correctly except for the
following conditions:

1. A=1,B=0,C=0

2. A=0,B=1,C=1
For these conditions, the logic probe indicates indeterminate levels at
7.2-6, Z2-11, and Z2-8. What do you think is the probable fault in the
circuit? Explain your reasoning.
Figure 4-77 is a combinational logic circuit that operates an alarm in a
car whenever the driver and/or passenger seats are occupied and the
seatbelts are not fastened when the car is started. The active-HIGH sig-
nals DRIV and PASS indicate the presence of the driver and passenger,
respectively, and are taken from pressure-actuated switches in the
seats. The signal IGN is active-HIGH when the ignition switch is on. The
signal BELTD is active-LOW and indicates that the driver’s seatbelt is

+5V

14

DRIV 12
| 1 1l e
13| 22 ALARM

geETive) 3 4 2| 2
BELTD - € -

8 —
10
PASS
+5 V | 4 Z1: 74LS04
14 6 Z2: 74LS00
SNz
i

FIGURE 4-77 Problems 4-47, 4-48, and 4-49.
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belt. The alarm will be activated (LOW) whenever the car is started and

either of the front seats is occupied and its seatbelt is not fastened.

(a) Verify that the circuit will function as described.

(b) Describe how this alarm system would operate if Z1-2 were inter-
nally shorted to ground.

(c) Describe how it would operate if there were an open connection
from Z2-6 to Z2-10.

4-48 * Suppose that the system of Figure 4-77 is functioning so that the alarm
is activated as soon as the driver and/or passenger are seated and the
car is started, regardless of the status of the seatbelts. What are the pos-
sible faults? What procedure would you follow to find the actual fault?

4-49*Suppose that the alarm system of Figure 4-77 is operating so that the
alarm goes on continuously as soon as the car is started, regardless of
the state of the other inputs. List the possible faults and write a pro-
cedure to isolate the fault.

DRILL QUESTIONS ON PLDs (50 THROUGH 55)

4-50* True or false:
(a) Top-down design begins with an overall description of the entire
system and it specifications.
(b) A JEDEC file can be used as the input file for a programmer.
(¢) If an input file compiles with no errors, it means the PLD circuit
will work correctly.
(d) A compiler can interpret code in spite of syntax errors.
(e) Test vectors are used to simulate and test a device.
4-51. What are the % characters used for in the AHDL design file?
4-52. How are comments indicated in a VHDL design file?
4-53. What is a ZIF socket?
4-54* Name three entry modes used to input a circuit description into PLD
development software.
4-55. What do JEDEC and HDL stand for?

SECTION 4-15

4-56. Declare the following data objects in AHDL or VHDL.
(ay*An array of eight output bits named gadgets.
(b) A single-output bit named buzzer.
(¢) A 16-bit numeric input port named altitude.
(d) A single, intermediate bit within a hardware description file named
wire2.

4-57. Express the following literal numbers in hex, binary, and decimal us-
ing the syntax of AHDL or VHDL.

(ay1524¢
(b) 1001010100,
(c) 3C445

4-58*The following similar I/O definition is given for AHDL and VHDL.
Write four concurrent assignment statements that will connect the in-
puts to the outputs as shown in Figure 4-78.
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FIGURE 4-78 Problem

4-58.

H,D

B
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ENTITY hw IS5

PORT |
inbits .TN BIT VECTOR (3 downto 0);
outbits .OUT BIT VECTOR (2 downto 0)
Vi
EMD hw;
Inbits Outbits
PWR_ON 3 a3 EMPTY_LED
MOTOR_ON o POWER_LED
EMPTY_LIMIT FULL_LED
FULL_LIMIT MOTOR

SECTION 4-16
4-59. Modify the AHDL truth table of Figure 4-50 to implement
AB + AC + AB.

4-60*Modify the AHDL design in Figure 4-54 so that z = 1 only when the
digital value is less than 1010,.

4-61. Modify the VHDL truth table of Figure 4-51 to implement
AB + AC + AB.

4-62*Modify the VHDL design in Figure 4-55 so that z = 1 only when the
digital value is less than 1010,.

4-63. Modify the code of (a) Figure 4-54 or (b) Figure 4-55 such that the out-
put z is LOW only when digital_value is between 6 and 11 (inclusive).

4-64. Modify (a) the AHDL design in Figure 4-60 to implement Table 4-1.
(b) the VHDL design in Figure 4-61 to implement Table 4-1.

4-65*Write the hardware description design file Boolean equation to im-
plement Example 4-9.

4-66. Write the hardware description design file Boolean equation to im-
plement a four-bit parity generator as shown in Figure 4-25(a).

DRILL QUESTION

4.67. Define each of the following terms.
(a) Karnaugh map
(b) Sum-of-products form
(¢) Parity generator
(d) Octet
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(e) Enable circuit

(f) Don’t-care condition

(g) Floating input

(h) Indeterminate voltage level
(i) Contention

(i) PLD

(k) TTL

(1) CMOS

MICROCOMPUTER APPLICATIONS

4-68.

In a microcomputer, the microprocessor unit (MPU) is always commu-
nicating with one of the following: (1) random-access memory (RAM),
which stores programs and data that can be readily changed; (2) read-
only memory (ROM), which stores programs and data that never
change; and (3) external input/output (I/O) devices such as keyboards,
video displays, printers, and disk drives. As it is executing a program,
the MPU will generate an address code that selects which type of de-
vice (RAM, ROM, or I/O) it wants to communicate with. Figure 4-79
shows a typical arrangement where the MPU outputs an eight-bit ad-
dress code A5 through Ag. Actually, the MPU outputs a 16-bit address
code, but the low-order bits 4; through 4, are not used in the device
selection process. The address code 1s applied to a logic circuit that
uses it to generate the device select signals: RAM, ROM, and I/O.

. ' {>o > RAM
Az o e
A )
lAIO =
MPU : 110
Aq O
Ag O
IO \Oo— ROM
Lt
Analyze this circuit and determine the following.
(ay*The range of addresses A;: through Ag that will activate RAM
(b) The range of addresses that activate I/O
(¢) The range of addresses that activate ROM
Express the addresses in binary and hexadecimal. For example, the
answer to (a) is A5 to Ag = 00000000, to 11101111, = 0045 to EF 4.
4-69. In some microcomputers, the MPU can be disabled for short periods of

time while another device controls the RAM, ROM, and I/O. During
these intervals, a special control signal (DMA) is activated by the
MPU and is used to disable (deactivate) the device select logic so that
the RAM, ROM, and I/0 are all in their inactive state. Modify the cir-
cuit of Figure 4-79 so that RAM, ROM, and I/O will be deactivated
whenever the signal DMA is active, regardless of the state of the ad-
dress code.
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ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 4-1
1. Only (a) 2, Only (c)

SECTION 4-3

1. Expression (b) is not in sum-of-products form because of the inversion sign over
both the C and D variables (i.e., the _ACD term). Expression (clis not in sum-of-
products form because of the (M + N)P term. 3.x=A+B+C

SECTION 4-4
1 x=ABCD+ ABCD + ABCD  2.Eight

SECTION 4-5

{.w=AB +AC+BC  2ix=A+HBCD  3.S= P+ QR 4. Aninput condition
for which there is no specific required output condition; i.e., we are free to make it
0orl.

SECTION 4-6

2. A constant LOW 3. No; the available XOR gate can be used as an INVERTER
by connecting one of its inputs to a constant HIGH (see Example 4-16).

SECTION 4-8
1.x=A(B&C) 2.0R,NAND 3. NAND, NOR

SECTION 4-9

1. DR 2. SSI, MSI, LSI, VLSI, ULSI, GSI 3. True 4, True 5. 40, 74AC,
74ACT series 6.0t00.8V;2.0t050V 7.0to 1.5V;3.5t050V 8. As if the
input were HIGH 9. Unpredictably; it may overheat and be destroyed.

10. 74HCT and 74ACT 11. They describe exactly how to interconnect the chips
for laying out the circuit and troubleshooting. 12. Inputs and outputs are
defined, and logical relationships are described.

SECTION 4-11

1. Open inputs or outputs; inputs or outputs shorted to Ve inputs or outputs
shorted to ground; pins shorted together; internal circuit failures 2. Pins shorted
together 3. For TTL, a LOW; for CMOS, indeterminate 4. Two or more outputs
connected together

SECTION 4-12

1. Open signal lines; shorted signal lines; faulty power supply; output loading

2. Broken wires; poor solder connections; cracks or cuts in PC board; bent or broken
IC pins; faulty IC sockets 3, ICs operating erratically or not at all 4. Logic
level indeterminate

SECTION 4-14

1. Electrically controlled connections are being programmed as open or closed.
2.(4,1)(2,2) or (2,1)(4,2) 3.(4,5) (1,6) or (4, 6)(1,5)

SECTION 4-15

1.(a) pu sh_buttons[5..0] INPUT: (b) push_buttons :IN BIT_VECTOR (5 DOWNTO 0),
2.(a)z = push_buttons|5]; {b)z<= push_buttons(5); 3.STD_LOGIC

4. STD_LOGIC_VECTOR
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SECTION 4-16

1. (AHDL) omega|| = (x, v, z); (VHDL) omega <= x & v & z; 2. Using the keyword
TABLIE 3. Using selected signal assignments

SECTION 4-17

1. IF/THEN 2. IF/ THEN/ELSE 3. CASE or IF/ELSIF

4. (AHDL) count[7..0] :INPUT; (VHDL) count :IN INTEGER RANGE 0TO 205
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