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Preface

Adaptive control has been extensively investigated and developed in both
theory and application during the past few decades, and it is still a very active
research field. In the earlier stage, most studies in adaptive control concen-
trated on linear systems. A remarkable development of the adaptive control
theory is the resolution of the so-called ideal problem, that is, the proof that
several adaptive control systems are globally stable under certain ideal con-
ditions. Then the robustness issues of adaptive control with respect to non-
ideal conditions such as external disturbances and unmodelled dynamics were
addressed which resulted in many different robust adaptive control algorithms.
These robust algorithms include dead zone, normalization, e-modification, e;-
modification among many others. At the same time, extensive study has been
carried out for reducing a priori knowledge of the systems and improving the
transient performance of adaptive control systems. Most recently, adaptive
control of nonlinear systems has received great attention and a number of
significant results have been obtained.

In this book, we have compiled some of the most recent developments of
adaptive control for both linear and nonlinear systems from leading world
researchers in the field. These include various robust techniques, performance
enhancement techniques, techniques with less a priori knowledge, adaptive
switching techniques, nonlinear adaptive control techniques and intelligent
adaptive control techniques. Each technique described has been developed to
provide a practical solution to a real-life problem. This volume will therefore
not only advance the field of adaptive control as an area of study, but will also
show how the potential of this technology can be realized and offer significant
benefits.

The first contribution in this book is ‘Adaptive internal model control’ by A.
Datta and L. Xing. It develops a systematic theory for the design and analysis
of adaptive internal model control schemes. The ubiquitous certainty equiva-



xvi Preface

lence principle of adaptive control is used to combine a robust adaptive law
with robust internal model controllers to obtain adaptive internal model
control schemes which can be proven to be robustly stable. Specific controller
structures considered include those of the model reference, partial pole
placement, and H, and H,, optimal control types. The results here not only
provide a theoretical basis for analytically justifying some of the reported
industrial successes of existing adaptive internal model control schemes but
also open up the possibility of synthesizing new ones by simply combining a
robust adaptive law with a robust internal model controller structure.

The next contribution is ‘An algorithm for robust direct adaptive control
with less prior knowledge’ by G. Feng, Y. A. Jiang and R. Zmood. It discusses
several approaches to minimizing a priori knowledge required on the unknown
plants for robust adaptive control. It takes a discrete time robust direct
adaptive control algorithm with a dead zone as an example. It shows that
for a class of unmodelled dynamics and bounded disturbances, no knowledge
of the parameters of the upper bounding function on the unmodelled dynamics
and disturbances is required a priori. Furthermore it shows that a correction
procedure can be employed in the least squares estimation algorithm so that no
knowledge of the lower bound on the leading coefficient of the plant numerator
polynomial is required to achieve the singularity free adaptive control law. The
global stability and convergence results of the algorithm are established.

The next contribution is ‘Adaptive variable structure control’ by C. J.
Chiang and Lichen Fu. A unified algorithm is presented to develop the variable
structure MRAC for an SISO system with unmodelled dynamics and output
measurement noises. The proposed algorithm solves the robustness and
performance problem of the traditional MRAC with arbitrary relative
degree. It is shown that without any persistent excitation the output tracking
error can be driven to zero for relative degree-one plants and driven to a small
residual set asymptotically for plants with any higher relative degree.
Furthermore, under suitable choice of initial conditions on control parameters,
the tracking performance can be improved, which is hardly achievable by the
traditional MRAC schemes, especially for plants with uncertainties.

The next contribution is ‘Indirect adaptive periodic control’ by D.
Dimogianopoulos, R. Lozano and A. Ailon. This new, indirect adaptive
control method is based on a lifted representation of the plant which can be
stabilized using a simple performant periodic control scheme. The controller
parameters computation involves the inverse of the controllability/observa-
bility matrix. Potential singularities of this matrix are avoided by means of an
appropriate estimates modification. This estimates transformation is linked to
the covariance matrix properties and hence it preserves the convergence
properties of the original estimates. This modification involves the singular
value decomposition of the controllability/observability matrix’s estimate. As
compared to previous studies in the subject the controller proposed here does
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not require the frequent introduction of periodic n-length sequences of zero
inputs. Therefore the new controller is such that the system is almost always
operating in closed loop which should lead to better performance
characteristics.

The next contribution is ‘Adaptive stabilization of uncertain discrete-time
systems via switching control: the method of localization’ by P. V.
Zhivoglyadov, R. Middleton and M. Fu. It presents a new systematic switching
control approach to adaptive stabilization of uncertain discrete-time systems.
The approach is based on a method of localization which is conceptually
different from supervisory adaptive control schemes and other existing switch-
ing control schemes. The proposed approach allows for slow parameter
drifting, infrequent large parameter jumps and unknown bound on exogenous
disturbances. The unique feature of the localization-based switching adaptive
control proposed here is its rapid model falsification capability. In the LTI case
this is manifested in the ability of the switching controller to quickly converge
to a suitable stabilizing controller. It is believed that the approach is applicable
to a wide class of linear time invariant and time-varying systems with good
transient performance.

The next contribution is ‘Adaptive nonlinear control: passivation and small
gain techniques’ by Z. P. Jiang and D. Hill. It proposes methods to system-
atically design stabilizing adaptive controllers for new classes of nonlinear
systems by using passivation and small gain techniques. It is shown that for a
class of linearly parametrized nonlinear systems with only unknown param-
eters, the concept of adaptive passivation can be used to unify and extend most
of the known adaptive nonlinear control algorithms based on Lyapunov
methods. A novel recursive robust adaptive control method by means of
backstepping and small gain techniques is also developed to generate a new
class of adaptive nonlinear controllers with robustness to nonlinear un-
modelled dynamics.

The next contribution is ‘Active identification for control of discrete-time
uncertain nonlinear systems’ by J. Zhao and I. Kanellakopoulos. A novel
approach is proposed to remove the restrictive growth conditions of the
nonlinearities and to yield global stability and tracking for systems that can
be transformed into an output-feedback canonical form. The main novelties of
the design are (i) the temporal and algorithmic separation of the parameter
estimation task from the control task and (ii) the development of an active
identification procedure, which uses the control input to actively drive the
system state to points in the state space that allow the orthogonalized
projection estimator to acquire all the necessary information about the
unknown parameters. It is proved that the proposed algorithm guarantees
complete identification in a finite time interval and global stability and
tracking.
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The next contribution is ‘Optimal adaptive tracking for nonlinear systems’
by M. Krstic and Z. H. Li. In this chapter an ‘inverse optimal’ adaptive
tracking problem for nonlinear systems with unknown parameters is defined
and solved. The basis of the proposed method is an adaptive tracking control
Lyapunov function (atclf) whose existence guarantees the solvability of the
inverse optimal problem. The controllers designed are not of certainty
equivalence type. Even in the linear case they would not be a result of solving
a Riccati equation for a given value of the parameter estimate. Inverse
optimality is combined with backstepping to design a new class of adaptive
controllers for strict-feedback systems. These controllers solve a problem left
open in the previous adaptive backstepping designs — getting transient per-
formance bounds that include an estimate of control effort.

The next contribution is ‘Stable adaptive systems in the presence of non-
linear parameterization’ by A. M. Annaswamy and A. P. Loh. This chapter
addresses the problem of adaptive control when the unknown parameters
occur nonlinearly in a dynamic system. The traditional approach used in
linearly parameterized systems employs a gradient-search principle in estimat-
ing the unknown parameters. Such an approach is not sufficient for nonlinearly
parametrized systems. Instead, a new algorithm based on a min—-max optimiza-
tion scheme is developed to address nonlinearly parametrized adaptive systems.
It is shown that this algorithm results in globally stable closed loop systems
when the states of the plant are accessible for measurement.

The next contribution is ‘Adaptive inverse for actuator compensation’ by G.
Tao. A general adaptive inverse approach is developed for control of plants
with actuator imperfections caused by nonsmooth nonlinearities such as dead-
zone, backlash, hysteresis and other piecewise-linear characteristics. An
adaptive inverse is employed for cancelling the effect of an unknown actuator
nonlinearity, and a linear feedback control law is used for controlling the
dynamics of a known linear or smooth nonlinear part following the actuator
nonlinearity. State feedback and output feedback control designs are presented
which all lead to linearly parametrized error models suitable for the develop-
ment of adaptive laws to update the inverse parameters. This approach
suggests that control systems with commonly used linear or nonlinear feedback
controllers such as those with an LQ, model reference, PID, pole placement or
other dynamic compensation design can be combined with an adaptive inverse
for improving system tracking performance despite the presence of actuator
imperfections.

The next contribution is ‘Stable multi-input multi-output adaptive fuzzy/
neural control’ by R. Ordéiiez and K. Passino. In this chapter, stable direct and
indirect adaptive controllers are presented which use Takagi-Sugeno fuzzy
systems, conventional fuzzy systems, or a class of neural networks to provide
asymptotic tracking of a reference signal vector for a class of continuous time
multi-input multi-output (MIMO) square nonlinear plants with poorly under-
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stood dynamics. The direct adaptive scheme allows for the inclusion of a priori
knowledge about the control input in terms of exact mathematical equations or
linguistics, while the indirect adaptive controller permits the explicit use of
equations to represent portions of the plant dynamics. It is shown that with or
without such knowledge the adaptive schemes can ‘learn’ how to control the
plant, provide for bounded internal signals, and achieve asymptotically stable
tracking of the reference inputs. No initialization condition needs to be
imposed on the controllers, and convergence of the tracking error to zero is
guaranteed.

The final contribution is ‘Adaptive robust control scheme with an applica-
tion to PM synchronous motors’ by J. X. Xu, Q. W. Jia and T. H. Lee. A new,
adaptive, robust control scheme for a class of nonlinear uncertain dynamical
systems is presented. To reduce the robust control gain and widen the
application scope of adaptive techniques, the system uncertainties are classified
into two different categories: the structured and nonstructured uncertainties
with partially known bounding functions. The structured uncertainty is
estimated with adaptation and compensated. Meanwhile, the adaptive robust
method is applied to deal with the non-structured uncertainty by estimating
unknown parameters in the upper bounding function. It is shown that the new
control scheme guarantees the uniform boundedness of the system and assures
the tracking error entering an arbitrarily designated zone in a finite time. The
effectiveness of the proposed method is demonstrated by the application to PM
synchronous motors.






Adaptive internal model
control

A. Datta and L. Xing

Abstract

This chapter develops a systematic theory for the design and analysis of
adaptive internal model control schemes. The principal motivation stems
from the fact that despite the reported industrial successes of adaptive internal
model control schemes, there currently does not exist a design methodology
capable of providing theoretical guarantess of stability and robustness. The
ubiquitous certainty equivalence principle of adaptive control is used to
combine a robust adaptive law with robust internal model controllers to
obtain adaptive internal model control schemes which can be proven to be
robustly stable. Specific controller structures considered include those of the
model reference, ‘partial’ pole placement, and H, and H,, optimal control
types. The results here not only provide a theoretical basis for analytically
justifying some of the reported industrial successes of existing adaptive internal
model control schemes but also open up the possibility of synthesizing new
ones by simply combining a robust adaptive law with a robust internal model
controller structure.

1.1 Introduction

Internal model control (IMC) schemes, where the controller implementation
includes an explicit model of the plant, continue to enjoy widespread
popularity in industrial process control applications [1]. Such schemes can
guarantee internal stability for only open loop stable plants; since most plants
encountered in process control are anyway open loop stable, this really does
not impose any significant restriction.
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As already mentioned, the main feature of IMC is that its implementation
requires an explicit model of the plant to be used as part of the controller.
When the plant itself happens to be unknown, or the plant parameters vary
slowly with time due to ageing, no such model is directly available a priori and
one has to resort to identification techniques to come up with an appropriate
plant model on-line. Several empirical studies, e.g. [2], [3] have demonstrated
the feasibility of such an approach. However, what is, by and large, lacking in
the process control literature is the availability of results with solid theoretical
guarantees of stability and performance.

Motivated by this fact, in [4], [5], we presented designs of adaptive IMC
schemes with provable guarantees of stability and robustness. The scheme in [4]
involved on-line adaptation of only the internal model while in [5], in addition
to adapting the internal model on-line, the IMC parameter was chosen in a
certainty equivalence fashion to pointwise optimize an H, performance index.
In this chapter, it is shown that the approach of [5] can be adapted to design
and analyse a class of adaptive H,, optimal control schemes that are likely to
arise in process control applications. This class specifically consists of those H,
norm minimization problems that involve only one interpolation constraint.
Additionally, we reinterpret the scheme of [4] as an adaptive ‘partial’ pole-
placement control scheme and consider the design and analysis of a model
reference adaptive control scheme based on the IMC structure. In other words,
this chapter considers the design and analysis of popular adaptive control
schemes from the literature within the context of the IMC configuration. A
single, unified, analysis procedure, applicable to each of the schemes con-
sidered, is also presented.

The chapter is organized as follows. In Section 1.2, we present several
nonadaptive control schemes utilizing the IMC configuration. Their adaptive
certainty equivalence versions are presented in Section 1.3. A unified stability
and robustness analysis encompassing all of the schemes of Section 1.3 is
presented in Section 1.4. In Section 1.5, we present simulation examples to
demonstrate the efficacy of our adaptive IMC designs. Section 1.6 concludes
the chapter by summarizing the main results and outlining their expected
significance.

1.2 Internal model control (IMC) schemes:
known parameters

In this section, we present several nonadaptive control schemes utilizing the
IMC structure. To this end, we consider the IMC configuration for a stable
plant P(s) as shown in Figure 1.1. The IMC controller consists of a stable
‘IMC parameter’ Q(s) and a model of the plant which is usually referred to as
the ‘internal model’. Tt can be shown [1, 4] that if the plant P(s) is stable and
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Internal model controller

Internal model
P(s)

L T ey gy iy S S S

Figure 1.1 The IMC configuration

the internal model is an exact replica of the plant, then the stability of the IMC
parameter is equivalent to the internal stability of the configuration in Figure
1.1. Indeed, the IMC parameter is really the Youla parameter [6] that appears
in a special case of the YJIBK parametrization of all stabilizing controllers [4].
Because of this, internal stability is assured as long as Q(s) is chosen to be any
stable rational transfer function. We now show that different choices of stable
O(s) lead to some familiar control schemes.

1.2.1 Partial pole placement control

From Figure 1.1, it is clear that if the internal model is an exact replica of the
plant, then there is no feedback signal in the loop. Consequently the poles of
the closed loop system are made up of the open loop poles of the plant and the
poles of the IMC parameter Q(s). Thus, in this case, a ‘complete’ pole
placement as in traditional pole placement control schemes is not possible.
Instead, one can only choose the poles of the IMC parameter Q(s) to be in
some desired locations in the left half plane while leaving the remaining poles at
the plant open loop pole locations. Such a control scheme, where Q(s) is
chosen to inject an additional set of poles at some desired locations in the
complex plane, is referred to as ‘partial’ pole placement.

1.2.2 Model reference control

The objective in model reference control is to design a differentiator-free
controller so that the output y of the controlled plant P(s) asymptotically
tracks the output of a stable reference model W, (s) for all piecewise
continuous reference input signals r(¢). In order to meet the control objective,
we make the following assumptions which are by now standard in the model
reference control literature:

(M1) The plant P(s) is minimum phase; and
(M2) The relative degree of the reference model transfer function W, (s) is
greater than or equal to that of the plant transfer function P(s).
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Assumption (M1) above is necessary for ensuring internal stability since
satisfaction of the model reference control objective requires cancellation of
the plant zeros. Assumption (M2), on the other hand, permits the design of a
differentiator-free controller to meet the control objective. If assumptions (M 1)
and (M2) are satisfied, it is easy to verify from Figure 1.1 that the choice

O(s) = Wy(s)P~1(s) (L.1)
for the IMC parameter guarantees the satisfaction of the model reference
control objective in the ideal case, i.e. in the absence of plant modelling errors.

1.2.3 H, optimal contro/
In H, optimal control, one chooses Q(s) to minimize the L, norm of the
tracking error r — y provided r — y € L,. From Figure 1.1, we obtain

y = P(s)Q(s)lr]
=r—y=[1-Ps)0(s)][r]

= / OO(r(T) — y(7))*d7 = (|[1= P(s)Q(s)]R(s)||,)* (using Parseval’s Theorem)
0

where R(s) is the Laplace transform of r(¢) and || - (s)||, denotes the standard
H, norm. Thus the mathematical problem of interest here is to choose Q(s) to
minimize ||[1 — P(s)Q(s)]R(s)|,- The following theorem gives the analytical
expression for the minimizing Q(s). The detailed derivation can be found in [1].

Theorem 2.1 Let P(s) be the stable plant to be controlled and let R(s) be the
Laplace Transform of the external input signal r()'. Suppose that R(s) has no
poles in the open right half plane® and that there exists at least one choice, say
Qo(s), of the stable IMC parameter Q(s) such that [1 — P(s)Qo(s)]R(s) is
stable®. Let z,,,2p,, - . . , 2, be the open right half plane zeros of P(s) and define
the Blaschke product®

(=5 +2p)(=85+2p) - (=5 +2p)

Gt 2p)6+ ) - 5+ 2)

so that P(s) can be rewritten as
P(s) = Bp(s)Pu(s)

BP(S) =

! For the sake of simplicity, both P(s) and R(s) are assumed to be rational transfer
functions. The theorem statement can be appropriately modified for the case where P(s)
and/or R(s) contain all-pass time delay factors [1]

2 This assumption is reasonable since otherwise the external input would be
unbounded.

3 The final construction of the H, optimal controller serves as proof for the existence
of a Qy(s) with such properties.

4 Here (-) denotes complex conjugation.
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where Py (s) is minimum phase. Similarly, let z,,, z,,, ..., z, be the open right
half plane zeros of R(s) and define the Blashcke product

(=s+z)(=s+zp,) ... (=5 +zp,)

Br(s) = (s+2,)+72,)...(s+2,)

so that R(s) can be rewritten as
R(s) = Br(s)Ru(s)

where Ry (s) is minimum phase. Then the Q(s) which minimizes
It = P(s)Q(s)IR(5)]l, is given by

O(s) = Py (s)Ry/ (5)[Bp' (s)Rur (5)], (1.2)

where [-], denotes that after a partial fraction expansion, the terms corre-
sponding to the poles of B! (s) are removed.

Remark 2.1 The optimal Q(s) defined in (1.2) is usually improper. So it is
customary to make Q(s) proper by introducing sufficient high frequency
attenuation via what is called the ‘IMC Filter’ F(s) [1]. Instead of the optimal
O(s) in (1.2), the Q(s) to be implemented is given by

0(s) = Py (5) Ry (5)[Bp' (5)Rue ()] F (s) (1.3)

where F(s) is the stable IMC filter. The design of the IMC filter for H, optimal
control depends on the choice of the input R(s). Although this design is carried
out in a somewhat ad hoc fashion, care is taken to ensure that the original
asymptotic tracking properties of the controller are preserved. This is because
otherwise [1 — P(s)Q(s)]R(s) may no longer be a function in H,. As a specific
example, suppose that the system is of Type 1.° Then, a possible choice for the
IMC filter to ensure retention of asymptotic tracking properties is

F(s) = —
(rs+1)

integer to make Q(s) proper. As shown in [1], the parameter 7 represents a

trade-off between tracking performance and robustness to modelling errors.

7 > 0 where n* is chosen to be a large enough positive

1.2.4 H,, optimal contro/

The sensitivity function S(s) and the complementary sensitivity function 7'(s)
for the IMC configuration in Figure 1.1 are given by S(s) = 1 — P(s)Q(s) and
T(s) = P(s)Q(s) respectively [1]. Since the plant P(s) is open loop stable, it
follows that the H,, norm of the complementary sensitivity function 7'(s) can

be made arbitrarily small by simply choosing Q(s) :% and letting k tend to

3 Other system types can also be handled as in [1].
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infinity. Thus minimizing the H,, norm of T'(s) does not make much sense
since the infimum value of zero is unattainable.

On the other hand, if we consider the weighted sensitivity minimization
problem where we seek to minimize || W (s)S(s)||,, for some stable, minimum
phase, rational weighting transfer function W (s), then we have an interesting
H,, minimization problem, i.e. choose a stable Q(s) to minimize
(| (s)[1 — P(s)Q(5)]|l .- The solution to this problem depends on the number
of open right half plane zeros of the plant P(s) and involves the use of
Nevanlinna—Pick interpolation when the plant P(s) has more than one right
half plane zero [7]. However, when the plant has only one right half plane zero
by and none on the imaginary axis, there is only one interpolation constraint
and the closed form solution is given by [7]

00s) = [1 = PP () (14

Fortunately, this case covers a large number of process control applications
where plants are typically modelled as minimum phase first or second order
transfer functions with time delays. Since approximating a delay using a first
order Padé approximation introduces one right half plane zero, the resulting
rational approximation will satisfy the one right half plane zero assumption.

Remark 2.2 As in the case of H, optimal control, the optimal Q(s) defined by
(1.4) is usually improper. This situation can be handled as in Remark 2.1 so
that the Q(s) to be implemented becomes

06 = [1- 709 | Pisre (15)

where F(s) is a stable IMC filter. In this case, however, there is more freedom
in the choice of F(s) since the H,, optimal controller (1.4) does not necessarily
guarantee any asymptotic tracking properties to start with.

1.2.5 Robustness to uncertainties (small gain theorem)

In the next section, we will be combining the above schemes with a robust
adaptive law to obtain adaptive IMC schemes. If the above IMC schemes are
unable to tolerate uncertainty in the case where all the plant parameters are
known, then there is little or no hope that certainty equivalence designs based
on them will do any better when additionally the plant parameters are
unknown and have to be estimated using an adaptive law. Accordingly, we
now establish the robustness of the nonadaptive IMC schemes to the presence
of plant modelling errors. Without any loss of generality let us suppose that the
uncertainty is of the multiplicative type, i.e.

P(s) = Po(s)(1 + plm(s)) (1.6)
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where Py(s) is the modelled part of the plant and pA,,(s) is a stable multi-
plicative uncertainty such that Py(s)A,,(s)is strictly proper. Then we can state
the following robustness result which follows immediately from the small gain
theorem [8]. A detailed proof can also be found in [1].

Theorem 2.2 Suppose Py(s) and Q(s) are stable transfer functions so that the

IMC configuration in Figure 1.1 is stable for P(s) = Py(s). Then the IMC

configuration with the actual plant given by (1.6) is still stable provided
1

[1Po(5)Q(5) Am($) o’

w € 0, 1*) where p* =

1.3 Adaptive internal model control schemes

In order to implement the IMC-based controllers of the last section, the plant
must be known a priori so that the ‘internal model” can be designed and the
IMC parameter Q(s) calculated. When the plant itself is unknown, the IMC-
based controllers cannot be implemented. In this case, the natural approach to
follow is to retain the same controller structure as in Figure 1.1, with the
internal model being adapted on-line based on some kind of parameter
estimation mechanism, and the IMC parameter Q(s) being updated pointwise
using one of the above control laws. This is the standard certainty equivalence
approach of adaptive control and results in what are called adaptive internal
model control schemes. Although such adaptive IMC schemes have been
empirically studied inthe literature, e.g. [2, 3], our objective here is to develop
adaptive IMC schemes with provable guarantees of stability and robustness.
To this end, we assume that the stable plant to be controlled is described by

Z

p(s) = 2

Ro(s)
where Ry(s) is a monic Hurwitz polynomial of degree n; Z(s) is a polynomial
Zo(s)
RO (S) Zo (S)
u,(s) is a stable multiplicative uncertainty such that Ri()Am(S) is strictly

ols

proper. We next present the design of the robust adaptive law which is carried
out using a standard approach from the robust adaptive control literature [9].

(14 pAn(s)], >0 (L.7)

of degree [/ with [ < m; represents the modelled part of the plant; and

1.3.1 Design of the robust adaptive law
We start with the plant equation

_ Z(s)
Ro(s)

[+ pAn($)][ul, >0 (1.8)
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where u, y are the plant input and output signals. This equation can be
rewritten as

Ro()[y] = Zo(s)[u] + pAm(s)Zo(s)[u]

1

Filtering both sides by Als) where A(s) is an arbitrary, monic, Hurwitz
polynomial of degree n, we obtain
A(s) — Ro(s) Zo(s) 1Am($)Zo(s)
= 1.9
y =T b R e (19)

The above equation can be rewritten as

y=0"¢+un (1.10)

where 60* = [0:", 03']"; 07, 05 are vectors containing the coefficients of

[A(s) — Ro(s)] and Zo(s) respectively; ¢ = [¢7,07]7: ¢ _ i)

6= 200 "
A(S) anfl( ) — [Snfl’ ;1727 ,I]T
a(s) = [s', 5", ,1]T
and
oyt Sy (111)

Equation (1.10) is exactly in the form of the linear parametric model with
modelling error for which a large class of robust adaptive laws can be
developed. In particular, using the gradient method with normalization and
parameter projection, we obtain the following robust adaptive law [9]

0 = Prlyeg)], 6(0) € Cy (1.12)
_y=J

e=—s (1.13)
y=0"¢ (1.14)

m* =1+n2, n=m (1.15)

My = —6gmy + 1> + 3>, my(0) =0 (1.16)

where v > 0 is an adaptive gain; Cy is a known compact convex set containing
0*; Pr[-] is the standard projection operator which guarantees that the param-
eter estimate 6(¢) does not exit the set Cyp and &y > 0 is a constant chosen so that

1
A (s), ﬁ are analytic in Rels] > —70. This choice of é,, of course,

necessitates some a priori knowledge about the stability margin of the
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unmodelled dynamics, an assumption which has by now become fairly
standard in the robust adaptive control literature [9]. The robust adaptive
IMC schemes are obtained by replacing the internal model in Figure 1.1 by
that obtained from equation (1.14), and the IMC parameters Q(s) by time-
varying operators which implement the certainty equivalence versions of the
controller structures considered in the last section. The design of these certainty
equivalence controllers is discussed next.

1.3.2 Certainty equivalence control laws

We first outline the steps involved in designing a general certainty equivalence
adaptive IMC scheme. Thereafter, additional simplifications or complexities
that result from the use of a particular control law will be discussed.

e Step 1: First use the parameter estimate 6(f) obtained from the robust
adaptive law (1.12)—(1.16) to generate estimates of the numerator and
denominator polynomials for the modelled part of the plant®

Zo(s, 1) = 07 (£)ay(s)
Ro(s,1) = A(s) — 07 (£)a,_1(s)

. . X Zo(s, t
e Step 2: Using the frozen time plant P(s,t) = ﬁOES ), calculate the appro-
o(s,
priate Q(s, ) using the results developed in Section 1.2.

Qn( 1)

d\S, t)
time-varying polynomials with Q,(s, t) being monic.

e Step 3: Express O(s, 1) as Q(s, 1) = where O,(s,7) and Qu(s, 1) are

e Step 4: Choose A (s) to be an arbitrary monic Hurwitz polynomial of degree
equal to that of Qu(s,7), and let this degree be denoted by n,.
e Step 5: The certainty equivalence control law is given by

u=ql(t ng-1(5) ul + gl (t n (3) r—em® 1.17

Qd() Al(S) [} qn()Al(S)[ ] ( )

where ¢4() is the vector of coefficients of Aj(s) — 0u(s, t) gn(t) is the

vector of coefficients of Q,(s,1); a,,(s) = [", s, ..., 1] and
ng—1  ng—2 T
n,—1(s) = [s"~, sma=2) Lo 1)

The robust adaptive IMC scheme resulting from combining the control law
(1.17) with the robust adaptive law (1.12)—(1.16) is schematically depicted in

®In the rest of this chapter, the ‘hats’ denote the time varying polynomials/frozen
time ‘transfer functions’ that result from replacing the time-invariant coefficients of a
‘hat-free’ polynomial/transfer function by their corresponding time-varying values
obtained from adaptation and/or certainty equivalence control.
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Regressor

y=0T¢p+un

generating
block. .
r ) +
+ o~ an, (s) @; u

N A] (S

Any—1 (S)
A] (Y)

o)

Figure 1.2 Robust adaptive IMC scheme

Figure 1.2. We now proceed to discuss the simplifications or additional
complexities that result from the use of each of the controller structures
presented in Section 1.2.

1.3.2.1 Partial adaptive pole placement

In this case, the design of the IMC parameter does not depend on the estimated
plant. Indeed, Q(s) is a fixed stable transfer function and not a time-varying
operator so that we essentially recover the scheme presented in [4].
Consequently, this scheme admits a simpler stability analysis as in [4] although
the general analysis procedure to be presented in the next section is also
applicable.

1.3.2.2 Model reference adaptive control
In this case from (1.1), we see that the Q(s,#) in Step 2 of the certainty
equivalence design becomes

O(s, 1) = Wi(s)[P(s,0)] (1.18)

Our stability analysis to be presented in the next section is based on results in
the area of slowly time-varying systems. In order for these results to be
applicable, it is required that the operator Q(s, t) be pointwise stable and
also that the degree of QAd(s7 t) in Step 3 of the certainty equivalence design not
change with time. These two requirements can be satisfied as follows:

e The pointwise stability of Q(s, t) can be guaranteed by ensuring that the
frozen time estimated plant is minimum phase, i.e. Zy(s, ) is Hurwitz stable
for every fixed ¢. To guarantee such a property for Zo(s, t), the projection set
Cy in (1.12)~(1.16) is chosen so that V6 ¢& Cy, the corresponding
Zo(s) = 07a)(s) is Hurwitz stable. By restricting Cy to be a subset of a
Cartesian product of closed intervals, results from Kharitonov Theory [10]
can be used to ensure that Cy satisfies such a requirement. Also, when the
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projection set Cy cannot be specified as a single convex set, results from
hysteresis switching using a finite number of convex sets [11] can be used.
e The degree of QAa;(s7 t) can also be rendered time invariant by ensuring that
the leading coefficient of Z (s, 1) is not allowed to pass through zero. This
feature can be built into the adaptive law by assuming some knowledge
about the sign and a lower bound on the absolute value of the leading
coefficient of Zy(s). Projection techniques, appropriately utilizing this knowl-
edge, are by now standard in the adaptive control literature [12].

We will therefore assume that for IMC-based model reference adaptive
control, the set Cy has been suitably chosen to guarantee that the estimate
6(t) obtained from (1.12)—(1.16) actually satisfies both of the properties
mentioned above.

1.3.2.3 Adaptive H, optimal control

In this case, Q(s, #) is obtained by substituting P/ (s, ), By'(s, ¢) into the right-
hand side of (1.3) where Py(s, ) is the minimum phase portion of P(s, r) and
Bp(s 1) is the Blaschke product containing the open right-half plane zeros of
Zo(s, ). Thus O(s, t) is given by

O(s,1) = Py (s, )R,/ (5)[Bp' (5, 1) Ras (5)], F (s) (1.19)

where [-], denotes that after a partial fraction expansion, the terms corre-
sponding to the poles of B,'(s, ) are removed, and F(s) is an IMC filter used
to force Q(s, t) to be proper. As will be seen in the next section, specifically
Lemma 4.1, the degree of Qd(s, t) in Step 3 of the certainty equivalence design
can be kept constant using a single fixed F(s) provided the leading coefficient of
Zo(s, 1) is not allowed to pass through zero. Additionally Zy(s, ) should not
have any zeros on the imaginary axis. A parameter projection modification, as
in the case of model reference adaptive control, can be incorporated into the
adaptive law (1.12)—~(1.16) to guarantee both of these properties.

1.3.24 AdaQtive H optimal control R
In this case, Q(s, ¢) is obtained by substituting P(s, ¢) into the right-hand side of
(1.5), i.e. .
3 Wb\ 5
5. 1) = |1 — P F 1.2
0(s.1) [ e ] (5,0F () (120)

where b is the open right half plane zero of Zo(s, t) and F(s) is the IMC filter.
Since (1.20) assumes the presence of only one open right half plane zero, the
estimated polynomial Zy(s, 7) must have only one open right half plane zero
and none on the imaginary axis. Additionally the leading coefficient of Zy(s, 7)
should not be allowed to pass through zero so that the degree of Qd(s, t) in Step
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3 of the certainty equivalence design can be kept fixed using a single fixed F(s).
Once again, both of these properties can be guaranteed by the adaptive law by
appropriately choosing the set Cy.

Remark 3.1 The actual construction of the sets Cp for adaptive model
reference, adaptive H, and adaptive H, optimal control may not be
straightforward especially for higher order plants. However, this is a well-
known problem that arises in any certainty equivalence control scheme based
on the estimated plant and is really not a drawback associated with the IMC
design methodology. Although from time to time a lot of possible solutions to
this problem have been proposed in the adaptive literature, it would be fair to
say that, by and large, no satisfactory solution is currently available.

1.4 Stability and robustness analysis

Before embarking on the stability and robustness analysis for the adaptive
IMC schemes just proposed, we first introduce some definitions [9, 4] and state
and prove two lemmas which play a pivotal role in the subsequent analysis.

Definition 4.1 For any signal x : [0, co) — R", x, denotes the truncation of x
to the interval [0, 7] and is defined as

x(r) if <t
X(7) = 1.21
(") {0 otherwise ( )

Definition 4.2  For any signal x : [0, co) — R”, and for any 6 > 0, £ > 0, || x5
is defined as

2

Il ([ e ol ar ) (122)

The ||(-),||5 represents the exponentially weighted L, norm of the signal
truncated to [0,7]. When 6§ =0 and ¢ = oo, H(),||§ becomes the usual L,
norm and will be denoted by ||.|,. It can be shown that ||.||3 satisfies the
usual properties of the vector norm.

Definition 4.3 Consider the signals x : [0,00) — R", y: [0,00) — R* and the
set

+T +T
() = {x: 0,00) — R”|/ ¥ (1)x(r) dr < / () d¢+c}
t t
forsome ¢ > 0and V¢, T > 0. We say that x is y-small in the mean if x € S(y).

Lemma 4.1 1In each of the adaptive IMC schemes presented in the last section,
the degree of Q,(s, 1) in Step 3 of the certainty equivalence design can be made
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time invariant. Furthermore, for the adaptive H, and H,, designs, this can be
done using a single fixed F(s).

Proof The proof of this lemma is relatively straightforward except in the case
of adaptive H, optimal control. Accordingly, we first discuss the simpler cases
before giving a detailed treatment of the more involved one.

For adaptive partial pole placement, the time invariance of the degree of
Qu(s, 1) follows trivially from the fact that the IMC parameter in this case is
time invariant. For model reference adaptive control, the fact that the leading
coefficient of Zo(s, t) is not allowed to pass through zero guarantees that the
degree of QL[(S, 1) is time invariant. Finally, for adaptive H,, optimal control,
the result follows from the fact that the leading coefficient of Zy(s,?) is not
allowed to pass through zero.

We now present the detailed proof for the case of adaptive H, optimal
control. Let n,,m, be the degrees of the denominator and numerator
polynomials respectively of R(s). Then, in the expression for Q(s, 1) in (1.19),

nth order polynomial
~ [th order polynomial
n,th order polynomi.al. [ B1(s, 1) Rug ()].= (n - 1)th order polyn(?mial
m,th order polynomial * nth order polynomial
where 7 < n,, strict inequality being attained when some of the poles of
Ry (s) coincide with some of the stable zeros of Bp!(s, ). Moreover, in any
case, the 7ith order denominator polynomial of [B}' (s, #) Ry (s)], is a factor of
the n,th order numerator polynomial of R}/ (s). Thus for the Q(s, ) given in
(1.19), if we disregard F(s), then the degree of the numerator polynomial is
n+n, — 1 while that of the denominator polynomial is [/ +m, <n+n, — 1.
Hence, the degree of QAd(s, t) in Step 3 of the certainty equivalence design can
be kept fixed at (n + n, — 1), and this can be achieved with a single fixed F(s) of
relative degree n— [+ n, —m, — 1, provided that the leading coefficient of
Zo (s, 1) is appropriately constrained.

it is clear that Py (s,1) while Ryl (s) =

Remark 4.1 Lemma 4.1 tells us that the degree of each of the certainty
equivalence controllers presented in the last section can be made time
invariant. This is important because, as we will see, it makes it possible to
carry out the analysis using standard state-space results on slowly time-varying
systems.

Lemma 4.2 At any fixed time ¢, the coefficients of Qd(s, 1), Qn (s, 1), and hence
the vectors ¢4(t), ¢.(?), are continuous functions of the estimate 6(z).

Proof Once again, the proof of this lemma is relatively straightforward except
in the case of adaptive H, optimal control. Accordingly, we first discuss the
simpler cases before giving a detailed treatment of the more involved one.
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For the case of adaptive partial pole placement control, the continuity
follows trivially from the fact that the IMC parameter is independent of 6(r).
For model reference adaptive control, the continuity is immediate from (1.18)
and the fact that the leading coefficient of Zy(s,) is not allowed to pass
through zero. Finally for adaptive H,, optimal control, we note that the right
half plane zero b; of Zy(s,7) is a continuous function of #(s). This is a
consequence of the fact that the degree of Zy(s, f) cannot drop since its leading
coefficient is not allowed to pass through zero. The desired continuity now
follows from (1.20).

We now present the detailed proof for the H, optimal control case. Since the
leading coefficient of Zy(s, f) has been constrained so as not to pass through
zero then, for any fixed 7, the roots of Zy(s, 7) are continuous functions of 6(z).
Hence, it follows that the coefficients of the numerator and denominator
polynomials of[Py(s, )] = [Bp(s, )][P(s, )] " are continuous functions of
0(r). Moreover, [[Bp(s,7)] 'Ry(s)], is the sum of the residues of
[Bp(s,1)] 'Ry (s) at the poles of Ry(s), which clearly depends continuously
on (1) (through the factor [Bp(s, 7)]"). Since F(s) is fixed and independent of
0, it follows from (1.19) that the coeflicients of Qd(s, 1), Qn(s, t) depend
continuously on 6(r).

Remark 4.2 Lemma 4.2 is important because it allows one to translate slow
variation of the estimated parameter vector 6(¢) to slow variation of the
controller parameters. Since the stability and robustness proofs of most
adaptive schemes rely on results from the stability of slowly time-varying
systems, establishing continuity of the controller parameters as a function of
the estimated plant parameters (which are known to vary slowly) is a crucial
ingredient of the analysis.

The following theorem describes the stability and robustness properties of the
adaptive IMC schemes presented in this chapter.

Theorem 4.1 Consider the plant (1.8) subject to the robust adaptive IMC
control law (1.12)—(1.16), (1.17), where (1.17) corresponds to any one of the
adaptive IMC schemes considered in the last section and r(¢) is a bounded
external signal. Then, 3 p* > 0 such that ¥V u € [0, "), all the signals in the

2,2
closed loop system are uniformly bounded and the error y — y € S <c %) for
some ¢ > 0’ "

7 In the rest of this chapter, ‘c’ is the generic symbol for a positive constant. The exact
value of such a constant can be determined (for a quantitative robustness result) as in
[13, 9]. However, for the qualitative presentation here, the exact values of these
constants are not important.
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Proof The proof is obtained by combining the properties of the robust
adaptive law (1.12)—(1.16) with the properties of the IMC-based controller
structure. We first analyse the properties of the adaptive law.

From (1.10), (1.13) and (1.14), we obtain

—oT -
e=VOTM g g (1.23)
m
Consider the positive definite function

i
V() ==
0 =7,

Then, along the solution of (1.12), it can be shown that [9]
Vv < §T5¢
=¢e[—em? 4+ ] (using (1.23)

1,5, 1 @ :
< ——&m” +=-— (completing the squares) (1.24)
2 2 m?

From (1.11), (1.15), (1.16), using Lemma 2.1 (Equation (7)) in [4], it follows
that %e L. Now, the parameter projection guarantees that V, 0,0 ¢ Ly.

Hence integrating both sides of (1.24) from ¢ to ¢ + T, we obtain
2,2
eme S (%)
m

Also from (112) | |
6 < — 1.25

From the definition of ¢, it follows using Lemma 2.1 (equation (7)) in [4] that
f ‘u2,'72
m m?

€ Lo, which in turn implies that besS (c ) . This completes the analysis

of the properties of the robust adaptive law. To complete the stability proof, we
now turn to the properties of the IMC-based controller structure.
The certainty equivalence control law (1.17) can be rewritten as

A s o @)
A](S) [H] + 51(0 A](S) [H] .ot 5’1(1(0 A](S) [”4 - qn ( ) A](S) [}" em ]
where (1(1), Ba(1)...., 0, (1) are the time-varying coefficients of Qg(s, ).

. B 1 _ s B Sﬂ(]—] N -
Defining  x; = N0 [u], x; = N0 [u,....,xy, = m[u],)(—[xl,xz, N
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the above equation can be rewritten as

X = A(t)X + B! (1) ‘/’\1((::)) [r — en’] (1.26)
where
0 1 0
0 0 1 0
Ar) =
_ﬁn,,([) _5)1(;71(1) : : : _ﬁl (t)
0
0
BA

0
1

Since the time-varying polynomial Qd(s, t) is pointwise Hurwitz, it follows that
for any fixed t, the eigenvalues of A(7) are in the open left half plane. Moreover,
since the coefficients of Q,(s, 7) are continuous functions of #(r) (Lemma 4.2)
and 6(¢) € Cp, a compact set, it follows that 3 oy > 0 such that

Re{)\i(A(l))}S—O'SVZZO and i=1,2,...,n4

The continuity of the elements of A4(f) with respect to 6(¢) and the fact that
2,2
|

. #2‘7’]2 .
0 e S(c—> together imply that A(¢) € S<c—2
m m

5 ) Hence, using the fact

that %e Ly, it follows from Lemma 3.1 in [9] that 3 x7 > 0 such that

Vue[0,u;), the equilibrium state x, =0 of x = A(f)x is exponentially
stable, i.e. there exist c¢g,p9 > 0 such that the state transition matrix ®(z,7)
corresponding to the homogeneous part of (1.26) satisfies

@2, 7| < coe ™IV 1> 7 (1.27)
From the identity u = ﬁl (s) [u], it is easy to see that the control input u can be
rewritten as 1(5) ”
u=T(OX + ¢ () 221 — cpp? 1.28
(0X + 47 () 5 b= (1.28)
where .
U(t) = [/\’1{1 - ﬂﬂdU)? /\’7{171 - 6’7(171 (t)7 T Al — 61(1)]
and

A1(S) =s" 4 NS+ + An,
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Also, using (1.28) in the plant equation (1.8), we obtain

- iﬂg L+ pAn()] |0 (X +4, (1) ill((j)) [r— em?] (1.29)

Now let ¢ € (0,min[éy, po]) be chosen such that Ry(s), Ai(s) are analytic in

Rels] > —g, and define the fictitious normalizing signal m, () by

my (1) = 1.0+ [lug|5 + [lyill3 (1.30)

As in [9], we take truncated exponentially weighted norms on both sides of
(1.28), (1.29) and make use of Lemma 3.3 in [9] and Lemma 2.1 (equation (6))
in [4], while observing that v(7), ¢,(t), r(tf) € L, to obtain

6 6
luelly < e+ ell(em?), 113 (1.31)

s s
lyell3 < e+ cll(em?), 3 (1.32)
which together with (1.30) imply that
my (1) < e+ cf|(en?) I3 (1.33)
Now squaring both sides of (1.33) we obtain

t
my(t) < ¢+ C/o e_é(t_T)Ezmzm%(T)dT (since m(r) < my(1)

t 1
= mp(1) < c+ C/o e U2 (5ym? (s) <ecfs 52m2dT> ds

(using the Bellman-Gronwall lemma [8])
Since em € S(%) and % is bounded, it follows using Lemma 2.2 in [4] that
3 p* € (0, uf) such that ¥ p € [0,u*), my € Ly, which in turn implies that
m € Ly. Since %,% are bounded, it follows that ¢, 1€ Ly. Thus

em* = —07¢ + pun is also bounded so that from (1.26), we obtain X € L.
From (1.28), (1.29), we can now conclude that u, y € L. This establishes the
boundedness of all the closed loop signals in the adaptive IMC scheme. Since

2,2
ekl

2,2
y—)}:&‘l’}’lz and em € S<—2),Wl S Loc,it follows thaty—f/e S<Cul 2 ) as
m m

claimed and, therefore, the proof is complete.
Remark 4.3 The robust adaptive IMC schemes of this chapter recover the
performance properties of the ideal case if the modelling error disappears, i.e.

we can show that if u =0 then y — y — 0 as r — oo. This can be established
using standard arguments from the robust adaptive control literature, and is a
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consequence of the use of parameter projection as the robustifying modifica-
tion in the adaptive law [9]. An alternative robustifying modification which can
guarantee a similar property is the switching-o modification [14].

1.5 Simulation examples

In this section, we present some simulation examples to demonstrate the
efficacy of the adaptive IMC schemes proposed.
We first consider the plant (1.7) with Zy(s) =s+2, Ro(s) = s> +s+ 1,

= S% and p=0.01. Choosing & =0.1, y=1, A(s) = s> +2s+2,
N
1 .
Cop = [-5.0, 5.0] x [-4.0, 4.0] x [0.1, 6.0] x [-6.0, 6.0], Q(s) = T4 and im-

plementing the adaptive partial pole placement control scheme (1.12)—(1.16),

(1.17), with 6(0) = [-1.0, 2.0, 3.0, I.O]T and all other initial conditions set to

zero, we obtained the plots in Figure 1.3 for r(z) = 1.0 and r(z) = sin(0.27).
s+2

(> +s+1)(s+4)

Let us now consider the design of an adaptive model reference control

scheme for the same plant where the reference model is given by

1
2425+ 1
that the estimated plant is pointwise minimum phase, to ensure which, we
now choose the set Cy as Cy = [—5.0, 5.0] x [—4.0, 4.0] x [0.1, 6.0] x [0.1, 6.0].
All the other design parameters are exactly the same as before except that now
(1.17) implements the IMC control law (1.18) and A;(s) = s> + 25> + 25 + 2.
The resulting plots are shown in Figure 1.4 for r() = 1.0 and r(¢) = sin(0.21).
From these plots, it is clear that the adaptive IMC scheme does achieve model
following.

The modelled part of the plant we have considered so far is minimum phase
which would not lead to an interesting H, or H,, optimal control problem.
Thus, for H, and H, optimal control, we consider the plant (1.7) with

_ 5 s+
Zo(s) =—s+1, Ro(s)=s"+3s+2, A, = I3
S=01, y=1, A(s) =52 +25+2, Ai(s) =5 +25+2, Cp=[-5.0, 50]x

From these plots, it is clear that y(r) tracks [r] quite well.

Win(s) The adaptive law (1.12)—(1.16) must now guarantee

and p =0.01. Choosing

[—4.0, 4.0] x [-6.0, —0.1] x [-6.0, 6.0], F(s) =

5 and implementing the
s+ 1)
adaptive H, optimal control scheme (1.12)—(1.16), (1.17), with
0(0) = [2.0, 2.0, —2.0, 2.0]" and all other initial conditions set to zero, we

obtained the plot shown in Figure 1.5. From Figure 1.5, it is clear that y(¢)
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Figure 1.3 PPAC IMC simulation

asymptotically tracks r(r) quite well. Note that the projection set Cy here has
been chosen to ensure that the degree of Zo(s, t) does not drop.

Finally, we simulated an H,, optimal controller for the same plant used for
0.01
s+ 0.01
Cp was taken as Cy = [—5.0, 5.0] x [—4.0, 4.0] x [-6.0, —0.1] x [0.1, 6.0]. This
choice of Cy ensures that the estimated plant has one and only one right half
plane zero. Keeping all the other design parameters the same as in the H,
optimal control case and choosing r(¢) = 1.0 and r(r) = 0.8sin(0.2¢), we
obtained the plots shown in Figure 1.6. From these plots, we see that the

adaptive H.-optimal controller does produce reasonably good tracking.

the H, design.The weighting W (s) was chosen as W (s) = and the set

1.6 Concluding remarks

In this chapter, we have presented a general systematic theory for the design
and analysis of robust adaptive internal model control schemes. The certainty
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Figure 1.6 H., /MC simulation

equivalence approach of adaptive control was used to combine a robust
adaptive law with robust internal model controller structures to obtain
adaptive internal model control schemes with provable guarantees of robust-
ness. Some specific adaptive IMC schemes that were considered here include
those of the partial pole placement, model reference, H, optimal and H
optimal control types. A single analysis procedure encompassing all of these
schemes was presented.

We do believe that the results of this chapter complete our earlier work on
adaptive IMC [4, 5] in the sense that a proper bridge has now been established
between adaptive control theory and some of its industrial applications. It is
our hope that both adaptive control theorists as well as industrial practitioners
will derive some benefit by traversing this bridge.
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An algorithm for robust
adaptive control with less
prior knowledge

G. Feng, Y. A. Jiang and R. Zmood

Abstract

A new robust discrete-time singularity free direct adaptive control scheme is
proposed with respect to a class of modelling uncertainties in this chapter. Two
key features of this scheme are that a relative dead zone is used but no
knowledge of the parameters of the upper bounding function on the class of
modelling uncertainties is required, and no knowledge of the lower bound on
the leading coefficient of the parameter vector is required to ensure the control
law singularity free. Global stability and convergence results of the scheme are
provided.

2.1 Introduction

Since it was shown (e.g. [1], [2]) that unmodelled dynamics or even a small
bounded disturbance could cause most of the adaptive control algorithms to go
unstable, much effort has been devoted to developing robust adaptive control
algorithms to account for the system uncertainties. As a consequence, a
number of adaptive control algorithms have been developed, for example,
see [3] and references therein. Among those algorithms are simple projection
(e.g. [4], [5]), normalization (e.g. [6], [7]), dead zone (e.g. [8—12]), adaptive law
modification (e.g. [13], [14]), o-modification (e.g. [15], [16]), as well as persistent
excitation (e.g. [17], [18]).

In the case of the dead zone based methods, a fixed dead zone can be used
[6-8] in the presence of only bounded disturbance, which turns off the
algorithm when the identification error is smaller than a certain threshold. In
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order to choose an appropriate size of the dead zone, an upper bound on the
disturbance must be known.

When unmodelled dynamics are present, a relative dead zone modification
should be employed [11], [12]. Here the knowledge of the parameters of
bounding function on the unmodelled dynamics and bounded disturbances is
required.

However, such knowledge, especially knowledge of the nonconservative
upper bound or the parameters of the upper bounding function, can be
hardly obtained in practice. Therefore, the robust adaptive control algorithm
which does not rely on such knowledge is in demand but remains absent in the
literature. One may argue that the robustness of the adaptive control
algorithms can be achieved with only simple projection techniques in param-
eter estimation [4], [S]. However, it should be noted that using the robust
adaptive control algorithms such as the dead zone, the robustness of the
resulting adaptive control systems will be improved in the sense that the
tolerable unmodelled dynamics can be enlarged [19]. Therefore, discussion of
the robust adaptive control approaches such as those based on the dead zone
technique is still of interest and the topic of this chapter.

Another potential problem associated with adaptive control is its control law
singularity. The estimated plant model could be in such a form that the pole-
zero cancellations occur or the leading coefficient of the estimated parameter
vector is zero. In such cases, the control law becomes singular and thus cannot
be implemented. In order to secure the adaptive control law singularity free,
various approaches have been developed. These approaches can be classified
into two categories. One relies on persistent excitation. The other depends on
modifications of the parameter estimation schemes.

In the latter case, the most popular method is to hypothesize the existence of
a known convex region in which no pole-zero cancellations occur and then to
develop a convergent adaptive control scheme by constraining the parameter
estimates inside this region (e.g. [11], [20-22]) for pole placement design; or to
hypothesize the existence of a known lower bound on the leading coefficient of
the parameter vector and then to use an ad hoc projection procedure to secure
the estimated leading coefficient bounded away from zero and thus achieve the
convergence and stability of the direct adaptive control system. However, such
methods suffer the problem of requirement for significant a priori knowledge
about the plant.

Recently, another approach has been developed which also modifies the
parameter estimation algorithm. This approach is to re-express the plant model
in a special input—output representation and then use a correction procedure in
the estimation algorithm to secure the controllability and observability of the
estimated model of the system [23-24]. They also addressed the robustness
problem of such algorithms with respect to bounded disturbance [25] using the
dead zone technique. They did not address the robustness problem with respect
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to unmodelled dynamics. Moreover, those algorithms also suffer the same
problem as the usual dead zone based robust adaptive control algorithms. That
is, they still require the knowledge of the upper bound on the disturbance or
the parameters of the upper bounding function on the unmodelled dynamics
and disturbances.

In this chapter, a new robust direct adaptive control algorithm will be
proposed which does use dead zone but does not require the knowledge of the
parameters of the upper bounding functions on the unmodelled dynamics and
the disturbance. It has also been shown that our algorithm can be combined
with the parameter estimate correction procedure, which was originated in [24]
to ensure the control law singularity free, so that the least a priori information
is required on the plant.

The chapter is organized as follows. The problem is formulated in Section
2.2. Ordinary discrete time direct adaptive control algorithm with dead zone is
reviewed in Section 2.3. Our main results, a new robust direct adaptive control
algorithm and its improved version with control law singularity free are
presented in Section 2.4 and Section 2.5 respectively. Section 2.6 presents
one simulation examples to illustrate the proposed adaptive control algo-
rithms, which is followed by some concluding remarks in Section 2.7.

2.2 Problem formulation

Consider a discrete time single input single output plant

B ZidB(Zil)

(1) = Wu(t) + v(1) (2.1)

where y(¢) and u(¢) are plant output and input respectively, v(¢) represents the
class of unmodelled dynamics and bounded disturbances and d is the time
delay. A(z~') and B(z™") are polynomials in z~!, written as

Az DY =14az "+ .. +az™"
B(z’l) =biz bz by

Specify a reference model as
E(z Yy« (1) =z"9R(z"r(r) (2.2)
where E(z7!) is a strictly stable monic polynomial written as

E(z’l) =l4ez+.. . fez "
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Then, there exist unique polynomials F(z~') and G(z~!) written as
FE Y =1+fiz""+ . 4+ fy gz
Gz N=go+giz ' +... + g1z
Ez Y)Y =Fz YAz 427Gz (2.3)

Using equation (2.3), it can be shown that the plant equation (2.1) can be
rewritten as

such that

e +d) = a(z")(1) + Bz )u(r)
=0"¢(1) +1(t +d) (2.4)
where
p(t+d)=E(z )yt +d)
F(z YAz YW(t+d)

3
—
~
S
~
Il

o7 =[0',...0m" ] .= [0,,0'T]
a(=") =Gz
B(z)=F(z")B(")
We make the following standard assumptions [26], [18].

(A1) The time delay d and the plant order n are known.
(A2) The plant is minimum phase.

For the modelling uncertainties, we assume only:
(A3) There exists a function [11] v(¢) such that

(0 < (1)
where ~y(¢) satisfies

(1) < e sup ||x(7)|]* + &

0<r<t
for some unknown constants €; > 0, ¢, > 0, and x(t) is defined as
X(Z) = [y([_ l),...,y(t—n),u(t— l)v“'vu(t_m_d)]T

For the usual direct adaptive control, in order to facilitate the implementa-
tion of projection procedure to secure the control law singularity free, the
following assumption is required.
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(A4) There is a known constant 6! satisfying

|0} <16'| and 6.0' >0

For the usual relative dead zone based direct adaptive control algorithm,
another assumption is needed as follows:

(AS5) The constants €jand &, in (A3) are known a priori.

Remark 2.1 It should be noted that the assumptions (A4) and (AS5) will not be
required in our new adaptive control algorithm to be developed in the next few
sections. It is believed that the elimination of assumptions (A4) and (A5) will
improve the applicability of the adaptive control systems.

2.3 Ordinary direct adaptive control with dead zone

Let é(l) denote the estimate of the unknown parameter 6 for the plant model
(2.4). Defining the estimation error as
elt) = 3(0) — 67 (1~ )il ~ 1) 23)
and a dead zone function as
e—g ife>g
flg,e)=<0 iflef<g O0<g<oo (2.6)
e+g ife<—g

then the following least squares algorithm with a relative dead zone can be used
for parameter estimation

0(1) = proj{é(z —1)+a(r) P(t—1)p(t —d)

1+ ¢(t—d)" P(r = 1)p(t — d)
P(t—1)p(t —d)p(t —d)" P(1 = 1)
1+ ¢(t—d) Pt — (1 — d)

e(1)}

P(t)=P(t—1)—al(r)

P(—1)=kol, ko>0 (2.7)
where the term a(7) is a dead zone, which is defined as follows:
0 if le(r)* < &y(1)

1) = 2.8

a(?) {af(gl/%y(z)‘/z,e(z))/e(z) otherwise 28)

§o

with0<a<l,§:1 ,
—

& > 1, and proj is the projection operator [26]
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such that

o {@m if 0'(1) sgn (6),) > 10}, 29)

0! otherwise

It has been shown that the above parameter estimation algorithm has the
following properties:

(i) 6(¢) is bounded

i) 10" ) and ——— | 2|1

( ) |0 (Z) Z ‘em| a d él(l) - él(l) 91
(iii) A (51/21([) Zety €h

1+¢(t—d) P(t—1)o(t —d)

. FE2(0)" 2 e(0)?

N A ot Pl — Vot —a) =
where R

e(t) =y(1) = 0(t — d)" p(1 — d) (2.10)

The direct adaptive control law can be written as

AOROR A0
(1)

u(r) (2.11)

where
rr(1) = R(z"")r(1) (2.12)
with r(f) a reference input and R(z7!) is specified by the reference model
equation (2.2).
Then with the parameter estimation properties (i)—(iv), the global stability
and convergence results of the adaptive control systems can be established as in
[26], [11], which are summarized in the following theorem.

Theorem 3.1 The direct adaptive control system satisfying assumptions (A1l)-
(AS) with adaptive controller described in equations (2.7)—(2.9) and (2.11) is
globally stable in the sense that all the signals in the loop remain bounded.
However, as discussed in the first section, the requirement for knowledge of
the parameters of the upper bounding function on the unmodelled dynamics
and bounded disturbances is very restrictive. In the next section, we are
attempting to propose a new approach to get rid of such a requirement.

2.4 New robust direct adaptive control

Here we develop a new robust adaptive control algorithm which does not need
such knowledge. That is, we drop the assumption (AY).
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The key idea is to use an adaptation law to update those parameters. The
new parameter estimation algorithm is the same as equations (2.7-2.9) but with
a different dead zone «(z), where

a(t) = { e i ()" < €GO+ 0y 1oy
a f (€2 (3(0) + Q1)  e(1)) fe(t)  otherwise
and
- af sup [|x()|P] "] sup [1x(7)]P
YO T - PG Dot d) l(’“’l ] [OSTStl ]
(2.14)
And 4(7)is calculated by
. T[sup |x<7>||2]
4(1) = C(e)" | 0=t (2.15)
1
o a()B sup [|x(r)|
an_CU_U+2@-@@+¢@-@UW_1WU_@)P1
B>0 (2.16)

where

with zero initial condition. It should be noted that £, and &, will be always
positive and non decreasing.

As shown in [23], the projection operation does not alter the convergence
properties of the original parameter estimation algorithms. Therefore, in the
following analysis, the projection operation will be neglected.

The properties of the above modified least squares parameter estimator with
a relative dead zone are summarized in the following lemma.

Lemma 4.1 The least squares algorithm with equations (2.7), (2.9), (2.13)-
(2.16) applied to any system has the following properties irrespective of the
control law:

(1) 91(1) is bounded
(i) C(¢) is bounded and non-decreasing, and thus &, converges to a constant,
say €;
91

0

iy 1A 1
(iii) [0'(z) > 10}| and e =

(iv) |10() = 0(t — 1)|| € Iy

1
or
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o 1) FEG(0) +0(0)' 2 e(1)’
™) J(0)= 1+ ¢ —d) P(t—1D)p(t—d) 1+ ¢t —d) P(t —1)p(t —d) <l

Proof Define a Lyapunov function candidate

V(e+1) =100 Pt —1)7"0(0) + Ce+1)" 7' C(t + 1)) (2.17)

where (1) = 0(1) — 6%, C(t+1)=C(t+1)—[e; ea]. Then, its difference
becomes
_ a(t)
1+t —d) Pt 1)t — d)
1+ ¢(t—d) P(t — 1)¢(1 — d)
T (=)l — )T P — Déli — d)

. a(t)C(0)" sup ()|
(I-a)(1+o(t—d)P—)et—d) |

V(t4+1)=V(z)

n()? e(r)z]

a(r)’B
+ 2 T 2
4l—a) (l+o(t—d) P(t—1)o(t —d))

{Os;up ||x<r>|2] ' Fup |x<r>|2]
X <7<t <7<t

1 1
g a(?)
T+t —d) P(t— 1)t —d)

y { 1+ ¢(t—d)" P(1—1)p(t — d)
1+ (1 —a()p(t —d) P(t = 1)p(1 — d)

n(1)? = e(t)’

a(t) ST
T aiseti—a) Pa—Doi—a) "

sup |[x(7)|
x | o= +0(0)

1

a(1) 1 , )
=T o d) P 1o~ d) {(1 —oy 07 —eld)

a(r) )
+ (= )1+ ol —d) Pl—D)oli —d) (3(t) =v(0) + 0(1))
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B a(t)
T+t —d) P(t—1)p(t — d)
1 1
g 10 = e s (G0 =200+ Q)
a(t) [ 2 1 .
Tyt GRS TUOR 00|
a(t) [ 5 1 1,5
“Trot—aret—nee—al  Ta—ae? }
a(t) [ ) 1 2
=] Yo(t—d)Pt— Dot —d) | e(f) +56(t) }
&1 a(t) e(t)2
S 14+¢(t—d)" P(t—1)p(t —d)
S S’ (2.18)

S 1+¢(t—d) P(t— 1ot —d)

)> has been used. Therefore,

where the fact that a(t)e(r)* = f(t)e(t) > /(¢
[21], [ 3], the results in Lemma 4.1 are

following the same arguments in [20],
thus proved.

If using the same adaptive control law as in equation (2.11), then with the
parameter estimation properties (i)—(v) in Lemma 4.1, the global stability and
convergence results of the new adaptive control system can be established as in
[26], [11] as long as the estimated &, is small enough, which are summarized in
the following theorem.

Theorem 4.1 The direct adaptive control system satisfying assumptions (Al)-
(A4) with the adaptive controller described in equations (2.7), (2.9), (2.13)-
(2.16) and (2.11) is globally stable in the sense that all the signals in the loop
remain bounded.

In this approach, we have eliminated the requirement for the knowledge of
the parameters of the upper bounding function on the modelling uncertainties.
But the requirement for the knowledge of the lower bound on the leading
coefficient of the parameter vector, i.e. assumption (A4) is still there. In the
next section, the technique of the parameter correction procedure will be
combined with the algorithm developed in this section to ensure the least prior
knowledge on the plant. That is, only assumptions (A1)—(A3) are needed.
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2.5 Robust adaptive control with least prior knowledge

The following modified least squares algorithm will be used for robust
parameter estimation:

P(t - 1)¢(t - d) é(l)
1+ ¢(t—d) Pt — 1)¢(1 — d)
P(t—1)p(t — d)p(t — d)" P(1—1) (2.19)
1+ ¢(t—d) Pt — (1 — d) )

0(t) =0(t — 1) + a(r)

P(t)y=P(t—1)—a(r)
P(—l):kol, ko >0
and the parameter estimate is then corrected [24] as

(1) = (1) + P(DA(1) (2.20)
where B
e(t) = 7(1) — Ot - 1) o(t - d) (2.21)

the vector ((r) is described in Figure 2.1

A1)

—ellp()ll elf'(1)| lp(6)[| — 216" (1)]

Figure 2.1 Parameter correction vector

where p(7) is the first column of the covariance matrix P(r), and the term a(¢) is
now defined as follows:

0 if e()* < €(5(1) + Q1))
a f(EV2(3(1) + 0(1)"/?,e(1)) Je(t)  otherwise

2
with0<a<1,§=1ﬁ,§0>1,and
—

0(t) = [B(t — )" P(t — 1)g(t — d)]? )
aX [ sup ||x<T>||2] [sup |x<¢)|2]

+ T 0<r<t 0<7<1
2(1=a)(1+¢(r —d)" P(1 —1)¢(t —d) 1 1

a(t) =
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And 4()is calculated by

"y [ sup |X(T)||2]
4(1) = C(n)T | o<t (2.22)
1
o a(i)\ sup [(r)|f
A>0 (2.23)

where

CH' = &

with zero initial condition. It should be noted that £; and é,will be always
positive and non-decreasing.

Remark 5.1 The prediction error &(¢) is used in the modified least squares
algorithm to ensure that the estimator property (iii) in the following lemma can
be established.

The properties of the above modified least squares parameter estimator are
summarized in the following lemma.

Lemma 5.1 If the plant satisfies the assumptions (A1)—(A3), the least squares
algorithm (2.19)—(2.23) has the following properties:

(i) 0(z) is bounded, and ||0(r) — 0(1 — 1)|| € L.

(i) C (1) is bounded and non-decreasing, thus converges
SE2E) +00)' 2 e(0)

1+¢(t—d) Pt — (1 — d)

(iv) [|p(0)]] + 16" (1)] > byin Where

(iii)

91
bmin = |—|*
max(1, [|5*]])

with §* defined such that

_ 1—¢
o' (¢ —buin
W) 0] > 5

(vi) 6(¢) is bounded, and ||0(t) — 6(t — 1)|| €

Proof Define a Lyapunov function candidate

V(te+1) =200 P(0)'0() + Cr + )" A1C(1 + 1)) (2.24)
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where 0(r) = 0(1) — 0%, C(1+1) = C(t+ 1) — [e; ]7. Noting that
e(t) = (0) = 0(t = )" ¢(t = d)
= 5(1) = 0t = Do(1 —d) = Bt = 1) P(t = D)1 — d)
=e(t) = Bt—=1)TP(1—1)¢(t — d) (2.25)
Then, the difference of the Lyapunov function candidate becomes
_ a(1)
1+ o(t—d) Pt — 1)l — d)
y 1+ ¢(t—d) P(1 — 1)¢(1 — d)
L+ (1 —a(1)p(t — d)" P(t — 1)¢(t — d)

Vie+1)—V(r)

< (n(0) — Bt — )T Pt~ V(i — d))} — é<z>2]

~ su )P
N a(Z)C(T[)T OSTI;HX( )|
(I =a)(1+¢(t—d) P(t—1)¢(1 — d)) |

n a(1)*A
(1=’ (1 + (1 = d)" Pt = )g(t — d))’

29T 2
lsup |[x(7)] } {Sup |[x(7)]] ]

X 0<r<t 0<r<t
1 1

< a(t)

T4 ¢(t—d) Pt —1)p(t—d)
1

l —«

x|

(1) — Bt — VT P(t— 1)é(t — d))* — e(,)z]
2a()(3(1) A1)
()t oli—d) Pli— (i —d)
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[ sup ||X(T)||2} [ sup ||X(T)|2]
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B a(t)
T L+ g(t—d) P(1 = 1)g(t — d)
xH%EWUZ_T%EWU—1fPO—U¢O-@f_em1

2a(1)(5(1) = (1))
(1= a)(1 +¢(t =) P(t = (1 - d))

At ) s IX@IF) T sup (o)l
+U—®%H¢M—dﬂﬂr4ﬁ@—@f 771 *1

a(t)
1+ ¢t = d)" P(1 = 1)g(1 — d)
0~ el + 2 G0 = 7(0) + 0(0)|
a(t) _ N2 .
T T | A s G0+ 00)
a(l) _,\2 2 17 2
= 1+ ¢t — d)TP(t —Do(t—4d) __ ey + 1 - age(t) }
a(1) _—E 2 lé 2
T4 ¢(t—d) Pt— 1)1 —d) | 2 +@(”}
R a(r)e(r)’

S 1+¢(t—d)" P(t—1)¢(t —d)

<_@—1f@W()+m»W‘UY
T & L+et—d) Pt —1)e(r—d)

2

(2.26)

where the fact that a(t)e(r)* = f(t)e(r) > f(¢)* has been used. Therefore,
following the same arguments in [26], [11], [21], the results (i)—(iii)) in Lemma
5.1 are thus proved. The properties (iv)—(vi) in the lemma can also be obtained
directly from the results in [23].

If using the same adaptive control law as in equation (2.11), then with the
parameter estimation properties (i)—(vi), the global stability and convergence
results of the new adaptive control system can be established as in [26], [11] as
long as the estimated &, is small enough, which are summarized in the
following theorem.
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Theorem 5.1 The direct adaptive control system satisfying assumptions (Al)-
(A3) with the adaptive controller described in equations (2.19)—(2.23) and
(2.11) is globally stable in the sense that all the signals in the loop remain
bounded.

2.6 Simulation example

In this section, one numerical example is presented to demonstrate the
performance of the proposed algorithm. A fourth order plant is given by the
transfer function as

G(s) = Gu(s) Gu(s)
with
5(s+2)
s(s+1)

Gy(s) =
as a nominal part, and . - 229
o5 = T 305+ 29
as the unmodelled dynamics.
With the sampling period T = 0.1 second, we have the following corre-
sponding discrete-time model

Gl = 0.09784¢~" +0.1206~2 — 0.1414¢3 — 0.01878¢*
T ) T T 2342247 + 1.07884 2 — 0490643 + 0.045054

The reference model is chosen as

1
025+ 1

whose corresponding discrete-time model is

0.3935¢""
~1
Gnld™) = 106065

We have chosen ko = 1, and §(0) =[0.6 0 0 0]". If no dead zone is used,
the simulation results are divergent. If using the algorithm developed in this
chapter with A = 107>, the simulation results are shown as in Figure 2.2, where
(a) represents the system output y(¢) and reference model output y*(z), (b) is
the control signal u(¢), (c) is the estimated parameter 6!, and (d) denotes the
estimated bounding parameters £; and é&,.

In order to demonstrate the effect of the update rate parameter ), the
following simulation with A = 1.4 x 107> was also conducted. The result is
shown in Figure 2.3.

The steady state values of the several important parameters and the tracking
error in both cases are summarized in Table 2.1.

Gn(s)
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Table 2.1 Steady state values

A=10"° A=14x10"°
B 1.1898 x 1073 1.4682 x 1073
& 0.3509 x 1073 0.4467 x 1073
g1 0.5649 0.5833
ly — "] 0.0179 0.07587

It can be observed from the above simulation results that the algorithm
developed in this chapter can guarantee the stability of the adaptive system in
the presence of the modelling uncertainties, and the smaller tracking error
could be achieved with smaller update rate parameter A.

Most importantly, the knowledge of the parameters €, and &, of the upper
bounding function and the knowledge of the leading coefficient of the param-
eter vector #' are not required a priori.

2.7 Conclusions

In this chapter, a new robust discrete-time direct adaptive control algorithm is
proposed with respect to a class of unmodelled dynamics and bounded
disturbances. Dead zone is indeed used but no knowledge of the parameters
of the upper bounding function on the unmodelled dynamics and disturbances
is required a priori. Another feature of the algorithm is that a correction
procedure is employed in the least squares estimation algorithm so that no
knowledge of the lower bound on the leading coefficient of the plant numerator
polynomial is required to achieve the singularity free adaptive control law. The
global stability and convergence results of the algorithm are established.
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3

Adaptive variable structure
control

C.-J. Chien and L.-C. Fu

3.1 Introduction

In the past two decades, model reference adaptive control (MRAC) using only
input/output measurements has evolved as one of the most soundly developed
adaptive control techniques. Not only has the stability property been rigor-
ously established [17], [19] but also the robustness issue due to unmodelled
dynamics and input/output disturbance has been successfully solved [15], [18].
However, several limitations on MRAC remain to be relaxed, especially the
problem of unpredictable transient response and tracking performance which
has recently become one of the challenging research topics in the field of
MRAC. A considerable amount of effort has been made to improve these
schemes to obtain better control effects [6], [9], [11], [22]. One effort out of
several is to try to incorporate the variable structure design (VSD) [9], [11]
concept into the traditional model reference adaptive controller structure.
Notably, Hsu and Costa [11] have first successfully proposed a plausible
scheme in this line, which was then followed by a series of more general results
[12], [13], [14]. Aside from those, Fu [9], [10] has taken up a different approach
in placing the variable structure design in the overall resulting adaptive
controller. An offspring of the work [9] and part of the work [12] include
various versions of results respectively applied to SISO [20], [23], MIMO [2],
[5], time-varying [4], decentralized [24] and affine nonlinear [3] systems.

It is well known that a main difficulty for the design of the variable structure
MRAC system is the so-called general case when relative degree of the plant is
greater than one. In this chapter, we present a new algorithm to solve the
variable structure model reference adaptive control for a single input single
output system with unmodelled dynamics and output disturbances. The design
concept will be first introduced for relative degree-one plants and then be
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extended to the general case. Compared with the previous works, which used
adaptive variable structure design or traditional robust adaptive approaches
for the MRAC problem, this algorithm has the following special features:

(1) This control algorithm successfully applies the variable structure adaptive
controller for the general case under robustness consideration.

(2) The control strategy using the concept of ‘average control’ rather than that
of ‘equivalent control’ is thoroughly analysed.

(3) A systematic design approach is proposed and a new adaptation mechan-
ism is developed so that the prior upper bounds on some appropriately
defined but unavailable system parameters are not needed. It is shown that
without any persistent excitation the global stability and robustness with
asymptotic tracking performance can be guaranteed. The output tracking
error can be driven to zero for relative degree-one plants and to a small
residual set (whose size depends on the level of magnitude of some design
parameter) for plants with any higher relative degree. Both results are
achieved even when the unmodelled dynamic and output disturbance are
present.

(4) If the aforementioned bounds on the system parameters are available by
some means before controller design, then with a suitable choice of initial
control parameters, the output tracking error can even be driven to zero in
finite time for relative degree-one plants and to a small residual set
exponentially for plants with any higher relative degree. It is noted that
these bounds are usually assumed to be known before the construction of
the variable structure controller or the robust adaptation law.

In order to make a comparison between the proposed adaptive variable
structure scheme and the traditional approaches, some computer simulations
are made to illustrate the differences of the tracking performance. The
simulations will clearly demonstrate the excellent transient responses as well
as tracking performance, which are almost never possible to achieve when
traditional MRAC schemes are employed [19].

The theoretical framework in this chapter is developed based on Filippov’s
solution concept for a differential equation with discontinuous right-hand side
[8]. In the subsequent discussions, the following notations will be used:

(1) P(s)[u(¢): denotes the filtered version of u(¢) with any proper or strictly
proper transfer function P(s).

(2) |- |: denotes the absolute value of any scalar or the Euclidean norm of any
vector or matrix.

(3) ()l =sup,<,|(-)(7)|: denotes the truncated L., norm of the argument
function or vector.

4) ||P(s)]|y : denotes the H,, norm of the transfer function P(s).

The chapter is organized as follows. In Section 3.2, we give the plant
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description, control objective and then derive the MRAC based error model. In
Section 3.3, the adaptive variable structure controller for relative degree-one
plants is proposed with stability and performance analysis. The extension to
plants with relative degree greater than one is presented in Section 3.4. Section
3.5 gives simulation results to demonstrate the effectiveness of the adaptive
variable structure controller. Finally, a conclusion is made in Section 3.6.

3.2 Problem formulation

3.2.1 Plant description and control objective
In this chapter, we consider the following SISO linear time-invariant plant
described by the equation:

vp(t) = P(s) (1 + pPu(9)) [up) (1) + do(1) (3-1)

where u,(¢) and y,(¢) are plant input and plant output respectively, pP,(s) is
the multiplicative unmodelled dynamics with some p € R", and d, is the
output disturbance. Here, P(s) represents the strictly proper rational transfer
function of the nominal plant which is described by

np(s)

P(s) =k, a,05) (3.2)
where 1, (s) and d,(s) are some monic coprime polynomials and k, is the high
frequency gain. Now suppose that the plant (3.1) is not precisely known but
some prior knowledge about the transfer function may be available. The
control objective is to design an adaptive variable structure control scheme
such that the output y,(¢) of the plant will track the output y,(z) of a linear
time-invariant reference model described by

()
m (S)

where M(s) is a stable transfer function and r,(¢) is a uniformly bounded
reference input. In order to achieve such an objective, we need some
assumptions on the modelled part of the plant and the reference model as
well as the unmodelled part of the plant. These assumptions are made in the
following.

For the modelled part of the plant and reference model:

Y (1) = M()rm) (1) = km [rm] (1) (3-3)

(N

(A1) All the coefficients of n,(s) and d,(s) are unknown a priori, but the order
of P(s) and its relative degree are known to be n and p, respectively.
Without loss of generality, we will assume that the order of M(s) and its
relative degree are also n and p, respectively.



44 Adaptive variable structure control

(A2) The value of high frequency gain k, is unknown, but its sign should be
known. Without loss of generality, we will assume k,, and hence k,,, are
positive.

(A3) P(s) is minimum phase, i.e. all its zeros lie in the open left half complex
plane.

For the unmodelled part of the plant:

(A4) The unmodelled dynamics P,(s—k;) is a strictly proper and stable
transfer matrix such that |D| < ay, ||(Pu(s —ki)s — D)(s+ a2)l|,, < a1,
for some constants aj,a; >0, where D =lim; ., P,(s)s and
1X(5)llc = supcg |X Gw)] 151,

(AS) The output disturbance is differentiable and the upper bounds on

()], | L dy(0)

exist.
dt

Remark 3.1

e Minimum-phase assumption (A3) on the nominal plant P(s) is to guarantee
the internal stability since the model reference control involves the cancella-
tion of the plant zeros. However, as commented by [15], this assumption
does not imply that the overall plant (3.1) possesses the minimum-phase
property.

e The latter part of assumption (A4) is simply to emphasize the fact that P,(s)
are uncorrelated with g in any case [16]. The reasons for assumption (AS5)
will be clear in the proof of Theorem 3.1 and that of Theorem 4.1.

3.2.2 MRAC based error model

Since the plant parameters are assumed to be unknown, a basic strategy from
the traditional MRAC [17], [19] is now used to construct the error model
between y,(¢) and y,,(¢). Instead of applying the traditional MRAC technique,
a new adaptive variable structure control will be given here in order to pursue
better robustness and tracking performance. Let (3.1) be rewritten as

3p(0) = dolt) = P) [y + 1Pu(s) )] () 2 PS) iy + (1) (34)

then from the traditional model reference control strategy [19], it can be shown
that there exists ©* = [6},...,65 ] € R such that if

* k gk k a(s)
Db(s) = [01’ 927 SRR 9,171] )\(S)

* * * % a(s) *
Df(s) = [en’ onJrl’ T 92;172] )\(S) + 02;171

where a(s) =[l,s,...,s"2]" and A(s) is an nth order monic Hurwitz
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polynomial, we have
I = Dj(s) — Dj(s)P(s) = 03,M " (5)P(s) (3.5)
Applying both sides of (3.5) on u, + i, we have
tp (1) +ia(t) =D}y (5)[uy + @ (1) =D (5)[yp— o) (1) =05, M ' (5) [y~ ) (1) (3.6)
so that
¥p(0) = dolt) = M ()03, [y + 7 — Dy(s)[u, + i) — D)y — dol] (1) (3.7)
Since

Dy (8)[up + ul(1) + Dy(s)[yp — do)(1) + 03,7 1)

=0 | 3 Py~ 4l

P (1)
“S) )0 0
A(s) P
a(s) @[ ol(
=077 | 3y 0 | =T | AT S pys)lal0)
) d, (1)
u( 0
i (1)
20 Tw(r) — 0 Tw, (1) + Dj(s)[al (1) (3.8)

we have
p() = do(t) = M(5)65, [, — O Tw + O Ty, + (1 — Dy (s))[it] + 05,r] (1)
= M(s)@ﬁ;l [u, — O w4+ 0" Tw, + uA(s) [up] + 05,1m](2) (3.9)

O +...+0° 5"
- AGs)
the tracking error ey(f) as y,(7) — ym(), then the error model due to the
unknown parameters, unmodelled dynamics and output disturbances can be

where A(s) = (1 — Dj(s))Pu(s) = (1 )Pu(s). If we define
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readily found from (3.3) and (3.9) as follows:
eo(t) = M(s)05," \uy — O Tw+ 0" Twy + uA(s)[uy) | (1) + dy(2) (3.10)

In the following sections, the new adaptive variable structure scheme is
proposed for plants with arbitrary relative degree. However, the control
structure is much simpler for relative degree-one plant, and hence in Section
3.3 we will first give a discussion for this class of plants. Based on the analysis
for relative degree-one plants, the general case can then be presented in a more
straightforward manner in Section 3.4.

3.3 The case of relative degree one

When P(s) is relative degree one, the reference model M (s) can be chosen to be
strictly positive real (SPR) (Narendra and Annaswamy, 1988). The error model
(3.10) can now be rewritten as

eolt) = M($)05," |up — O w+ O Twq, + 05, M~ (5)[do] + pA(s)[uy] | (1)

(3.11)

In the error model (3.11), the terms ©*Tw,©*Twy + 65 M '(s)[d,] and
pA(s)[uy) are the uncertainties due to the unknown plant parameters, output
disturbance, and unmodelled dynamics, respectively. Let (4,,, B, C,) be any
minimal realization of M (s)6%,' which is SPR, then we can get the following
state space representation of (3.11) as:

é(t) = Ame(t)+ B (1, (1) — 0" Tw(t) + 0" Twy, (£)+05, M~ (5)[d,] (1) +pA(s)[up] (1))
eo(1) = Cpe(t) (3.12)
where the triplet (4,,, B, C,) satisfies

PyAp+ A, Py = —20m; PuBy = C,, (3.13)

for some P, = P} >0and Q,, = Q) > 0.

The adaptive variable structure controller for relative degree-one plants is
now summarized as follows:

(1) Define the regressor signal

w(t) = igi;[up](l),igg[yp](t),yp(l),rm(t) = [wi(8), wa(2),. .., wz,,(t)]T

(3.14)
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and construct the normalization signal m(f) [15] as the state of the
following system: 5
m(t) = —8m(t) + 81 (Jup(1)| + 1), m(0) >§ (3.15)
where 6y, 6; > 0 and 6y + 6> < min (ky, k) for some 8, > 0. The parameter
ky > 0 is selected such that the roots of A(s — k) lie in the open left half
complex plane, which is always achievable.
(2) Design the control signal u,(z) as

2n

up(1) = (—sgn (eow);(1)w;(1)) — sgn (e0) B (1) — sgn (eo)Ba(1)m(1) (3.16)

J=1

1 if eg>0
sgn(eg) =< 0 ife=0
—1 ifeg<O0

(3) The adaptation law for the control parameters is given as
0,(1) = yleo(w;(D)], j=1,....2n
Bi(1) = gileo(r)]

Ba(t) = galeo(t)|m(1) (3.17)
where ;,g1,> > 0 are the adaptation gains and 6,(0), 3,(0), 5>(0) > 0 (in
general, as large as possible) j=1,...,2n.

The design concept of the adaptive variable structure controller (3.15) and
(3.16) is simply to construct some feedback signals to compensate for the
uncertainties because of the following reasons:

e By assumption (A5), it can be easily found that [©*Tw, (1)+
05, M(s)"'[d,](1)| < Bt for some 3 > 0.

e With the construction of m, it can be shown [15] that pA(s)[u,](?) < Bim(1),
Vt > 0 and for some constant 35 > 0.

Now, we are ready to state our results concerning the properties of global
stability, robust property, and tracking performance of our new adaptive
variable structure scheme with relative degree-one system.

Theorem 3.1 (Global Stability, Robustness and Asymptotic Zero Tracking
Performance) Consider the system (3.1) satisfying assumptions (A1)—(AS5) with
relative degree being one. If the control input is designed as in (3.15), (3.16) and
the adaptation law is chosen as in (3.17), then there exists p* > 0 such that for
wu € [0,u*] all signals inside the closed loop system are bounded and the
tracking error will converge to zero asymptotically.
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Proof: Consider the Lyapunov function

2n 2
1 1
P 1 )T 2 * —_ p—
V= 7€ Pe+ ;:1 2 |0 §: 2

where P, satisfies (3.13). Then, the time derivative of V, along the trajectory
(3.12) (3.17) will be

v, = —e"Ope + e (u,, —0Tw+ G*de +65,M ’l(s) [do] + nA(s) [up])
2n

+ Z —1671)6 Z
2n
< —e"Ome— > leowi| (0 — 107]) — leol (B1 — B;) — leol (B2 — B3)m
=1

2n 2 1
+Z (0 — 16;1)6; + Z—
= =1 9i

S _Qm|e|2

for some constant ¢, >0. This implies that ec LoNL, and 6,,j=
1,...,2n, 081, 52,e0 € Ly and, hence, all signals inside the closed loop system
are bounded owing to Lemma A in the Appendix. On the other hand, it can be
concluded that ¢ € L., by (3.12). Hence, ¢ € L, N Ly and é € L, readily imply
that e and ey will at least converge to zero asymptotically by Barbalat’s lemma
[19]. Q.E.D.

In Theorem 3.1, suitable integral adaptation laws are given to compensate
for the unavailable knowledge of the bounds on |9]*| and ;. Theoretically, the
adaptive variable structure controller will stabilize the closed loop system with
guaranteed robustness and asymptotic zero tracking performance no matter
what 6;(0)’s and (3;(0)’s are. However, according to the following Theorem 3.2,
we will expect that positive and large values of §;(0),5;(0) should result in
better transient response and tracking performance, especially when

0;(0) > 16;[, 3;(0) > B;.

Theorem 3.2 (Finite-Time Zero Tracking Performance with High Gain
Design) Consider the system set-up in Theorem 3.1. If 6,(0) >
071,3;(0) > B, then the output tracking error will converge to zero in finite
time with all signals inside the closed loop system remaining bounded.

Proof Consider the Lyapunov function V), = 2e TP,e where P, satisfies
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(3.13). The time derivative of V}, along the trajectory (3.12) becomes

2n
Vi=—e"Que = leow;|(6; — 16;]) = leol (51 = B7) — leol (B2 — 33)m
J=1

IN

—e Qe

< —k3Vs
for some k3 >0 since 0;(r) > |6;|,ﬁ_,(l) > 6;,% > 0. This implies that e
approaches zero at least exponentially fast. Furthermore, by the fact that
e0éo = eo{ CruAme + CpBy(tty — O Tw + O Twy, + 65, M~ (5)[dy] + pnA(s)[up])}
2n

< kaleolle] =D leow;| (6 = 16;1) — leol (81 — B7) — leol (B2 — B5)m

J=1

2n
< kaleo|le] — |€o|<z [wil(0; = 1671) + (B1 — BY) + (B2 — 6§>'n>

J=1

A

where k4 = |C 4|, and that |e| approaches zero at least exponentially fast,
there exists a finite time 77 > 0 such that epéy < —ks|eg| for all # > Ty and for
some ks > 0. This implies that the sliding surface ey = 0 is guaranteed to be
reached in some finite time 7> > T} > 0. Q.E.D.

Remark 3.2: Although theoretically only asymptotic zero tracking perform-
ance is achieved when the initial control parameters are arbitrarily chosen, it is
encouraged to set the adaptation gains ; and g; in (3.17) as large as possible.
This is because the large adaptation gains will provide high adaptation speed
and, hence, increase the control parameters to a suitable level of magnitude so
as to achieve a satisfactory performance as quickly as possible. These expected
results can be observed in the simulation examples.

3.4 The case of arbitrary relative degree

When the relative degree of (3.1) is greater than one, the controller design
becomes more complicated than that given in Section 3.3. The main difference
between the controller design of a relative degree-one system and a system with
relative degree greater than one can be described as follows. When (3.1) is
relative degree-one, the reference model can be chosen to be strictly positive
real (SPR) [19]. Moreover, the control structure and its subsequent analysis of
global stability, robustness and tracking performance are much simpler. On the
contrary, when the relative degree of (3.1) is greater than one, the reference
model M (s) is no longer SPR so that the controller and the analysis technique
in relative degree-one systems cannot be directly applied. In order to use the
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similar techniques given in Section 3.3, the adaptive variable structure
controller is now designed systematically as follows:

(1) Choose an operator Li(s) =71(s)...4,-1(s) = (s+1)...(s+ c,_1) such
that M(s)Li(s) is SPR and denote Li(s)=/¢(s)...4p—1(s),i=
2,...,p—1,L,(s)=1.

(2) Define augmented signal

Yalt) = M(s)L(s) [ul D [u,,]} 0
and auxiliary errors
eal(t) = eo(l) +ya(t) (318)
€i1) = 7= b)) = s o) (3.19)
en1) = 75 10101 = s 0) (320)
1 1
eap(t) = 70 [up] (1) — Frs) [1p-1](2) (3.21)

1
where Frs) [ui](¢) is the average control of u;(r) with F(7s) = (rs+ 1)*, 7
T

being small enough. In fact, F(7s) can be any Hurwitz polynomial in 7s
. . .
with degree at least two and F(0) = 1. In the literature, Firs) is referred to
TS
as an averaging filter, which is obviously a low-pass filter whose bandwidth
can be arbitrarily enlarged as 7 — 0. In other words, if 7 is smaller and

smaller, the filter ; is flatter and flatter.

F(7s)
(3) Design the control signals u,, #;, and the bounding function m as follows:

2n

(3.22)
+77),i:2,...,p (3.23)

up(1) = uy(1) (3.24)
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with 7 > 0 and

1 1 1
t)=——=- W) = ——= WU
=7 ™Mo = oMo
The bounding function m(t) is designed as the state of the system
. 6
() = —8gm(1) + 61 (|u,(1)] + 1), m(0) > 5—‘ (3.25)
0
with &, 61 > 0 and 8 + 6, < min(ky,k», a1, ..., a,-1) for some & > 0.
(4) Finally, the adaptation law for the control parameters §;,j = 1,...,2n and
081, B> are given as follows:
0(1) = ylea (DGO, j=1,...,2n (3.26)
Bi(t) = gilea (1) (3.27)
Ba(t) = gylea (1)m(1) (3.28)

with 6;(0) > 0,5(0) > 0 and ; > 0,g; > 0.

In the following discussions, the construction of feedback signals £(¢), m(¢) and
the controller (3.22) (3.23) will be clear.
In order to analyse the proposed adaptive variable structure controller, we
first rewrite the error model (3.10) as follows:
eo(t) = M(s)[uy — 05,0 Tw+ 05,10 Twy, + 05, WA (s)[uy)
+ (05" = Dup](1) + do(1)

x—1
= M(s)L(s) Lll(s) [up] ——05, @*T&Lef'zs) [0 Twao+05, M~ (5)[d,]]
x—1
A Gn] + (1= 83,01 (0) (3.29)

Now, according to the design of the above auxiliary error (3.18) and error
model (3.29), we can readily find that e, always satisfies

9*—1
ea (1) = M(s)Li(s) {ul — 05,10 "¢+ #(v) [0 Twao + 05,M " (5)[d]
—1

S A ] + (1= 83,01 (0) (3.30)

It is noted that the auxiliary error e, is now explicitly expressed as the output
term of a linear system with SPR transfer function M (s)L,(s) driven by some
uncertain signals due to unknown parameters, output disturbances, un-
modelled dynamics and unknown high frequency gain sign.
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Remark 4.1 The construction of the adaptive variable structure controller
(3.22) is now clear since the following facts hold:

x—1

e Since G {@*Tw,ﬁ, + 605, M (s) [da]} () is uniformly bounded due to (AS),

L] (S‘)
we have
03! T .
n * * < g .
‘—Ll ) [@ Wao + 05, M~ (s) [dg]} (1| <6 (3.31)
for some ;.

e With the design of the bounding function m(¢) (3.25), it can be shown that

‘ 05, .
< Bm(1) (3.32)

L] (S)

(HAWp] + (1= 83,)1p (1)

for some 3; > 0.

The results described in Remark 4.1 show that the similar techniques for the
controller design of a relative degree-one system can now be used for auxiliary
error e,1. But what happens to the other auxiliary errors ey, . . ., €4, especially
the real output error ¢y as concerned? In Theorem 4.1, we summarize the main
results of the systematically designed adaptive variable structure controller for
plants with relative degree greater than one.

Theorem 4.1 (Global Stability, Robustness and Asymptotic Tracking
Performance) Consider the nonlinear time-varying system (3.1) with relative
degree p > 1 satisfying (A1)—(AS). If the controller is designed as in (3.18)-
(3.25) and parameter update laws are chosen as in (3.26)—(3.28), then there
exists 7 >0 and p* >0 such that for all 7€ (0,7*) and p € (0,u*), the
following facts hold:

(i) all signals inside the closed-loop system remain uniformly bounded;
(i1) the auxiliary error e, converges to zero asymptotically;
(iii) the auxiliary errors ey, i = 2,..., p, converge to zero at some finite time;
(iv) the output tracking error ¢y will converge to a residual set asymptotically
whose size is a class K function of the design parameter 7.

Proof  The proof consists of three parts.
Part I Prove the boundedness of ¢,; and 60,,...,6,,, 51, 5.

Step 1 First, consider the auxiliary error ¢,; which satisfies (3.30). Since
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M(s)L(s) is SPR, we have the following realization of (3.20)

= Aye; + B ( —05'e e+ 93% ] [0 Twy, + 65, M ' (5)[d,]
0*71 .
A+ (1= 03,0
€q1 — C]E] (333)

with P1A; +A;|—P1 =-20,, P\B, = C;r for some P, :P;r >0 and Q) =
Q[ > 0. Given a Lyapunov function as follows:

2n * 2 2
1 0; 1
V1 = %elTPlel + E 2— (9/ - 07/ ) + E 2_(51 - ﬂ]*)z (334)
= 2n = <9

it can be shown by using (3.32) and (3.31) that
0,

Li(s)

Vi=—el Qre +ea (m 03,107 T¢ +s [0 Twy, + 05, M ' (s)[d,]]

k— 1
s A6+ 1 —%)uﬂ)
w55 (-] S50

2n
< —e|Qier — Z|€alfj (

_|_

*

) leal(B1 — B) — lear| (B2 — B3)m

2n
+z—,(a,»— i3t
=1 Vi 2n j=1 gi
= —e| Qie
< —611\61\2

for some ¢g; > 0 if the controller in (3.22) and update laws in (3.26)—(3.28) are
given. This implies that e}, 0;,...,602,, 01,02 € Ly and e, € Ly N L.

Step 2 From (3.19)—(3.21), we can find that e, ..., ¢,, satisfy

. 1(s

€y = —Qeq +uy — Fl((Ts)) (1]

: £p-1(s)

€ap = —Qp_1€4p + Up — I/;(TS) [upfl]
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Now by the following facts that for i =2,..., p:

G0) = eue
= ey (—Oéileai i — ilv_(lf(ss)) [uil]>
NN eai{—sgn(eai)( i,(;f)) [uil]‘ + n) - /}(lr(ss)) [”’1]}
ot

d
leal < —ai1leal —1 (3.35)

when |e,| # 0. This implies that e,; will converge to zero after some finite time
T >0.

Part II  Prove the boundedness of all signals inside the closed loop system.

Define e, = M(s)Li—1(5)[ea], i =2,...,p and E;,=ez+en+ -+ &4
which is uniformly bounded due to the boundedness of e¢,. Then, from
(3.18)—(3.21), we can derive that

E,=ey+ M(s)Li(s)|ug — ——

+ M(s)La(s)

+ M(s)Ly(s) _/ l(s) [un] — F(lTs) [ul]}
1
(

+M®%«@ki&%—%®m4}

1 1 1
- - — ) M@s)Ly(: - e,
e“( F(TS)> (5)Lr(s) {””/I(S) RO Lo
%0 iR (3.36)
Now, since ||(u),|l < k¢l|(€0),lloo + k6,1 =1,...,p—1 for some k¢ >0 by

Lemma A in the appendix, it can be easily found that

1 1
(4 gl + 4 g o)) | < ol + ko

o0
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for some k7 > 0. Furthermore, since the Hy, norm of || 1 (1 — 715)||, = 27 and

F(7s)
llsM(s)Li(s)||,, = ks for some kg > 0, we can conclude that

(7]
s F(75)) ||l
< 7(koll(eo) Il + ko)
for some kg > 0. Now from (3.36) we have
Ieo)lloe < N(E)Nloe + I(R) Nloe < 1(Ea),llo + 7(Koll(€0), Il + Ko)
which implies that there exists a 7* > 0 such that 1 — 7%k9 > 0 and for all

e (0,7):
me0m) NE Lo + ko
[(e0) llos < B —

oo

I(R), [l < sM(s)Li(s)|| - (kall(eo) llc +47)

]

(3.37)

Combining Lemma A and (3.37), we readily conclude that all signals inside the
closed loop system remain uniformly bounded.

Part 111:  Investigate the tracking performance of e, and ey.

Since all signals inside the closed loop system are uniformly bounded, we
have .

eq € LhyNLy, é4 € Ly

Hence, by Barbalat’s lemma, e, approaches zero asymptotically and
E,=eq +epn+---+é, also approaches zero asymptotically. Now, from
the fact of (3.37) and E, approaching zero, it is clear that e, will converge to
a small residual set whose size depends on the design parameter 7.  Q.E.D.

As discussed in Theorem 3.2, if the initial choices of control parameters
*

0"
9‘—*’ and 3;(0) > 3, then,
2n '

by using the same argument given in the proof of Theorem 3.2, we can
guarantee the exponential convergent behaviour and finite-time tracking
performance of all the auxiliary errors e,. Since e, reaches zero in some
finite time and E, = e, + €, + - - - + €y, it can be concluded that £, converges
to zero exponentially and ey converges to a small residual set whose size
depends on the design parameter 7. We now summarize the results in the
following Theorem 4.2.

6;(0), 5;(0) satisfy the high gain conditions 6;(0) >

Theorem 4.2: (Exponential Tracking Performance with High Gain Design)
Consider the system set-up in Theorem 4.1. If the initial value of control

*
J

2n
there exists a 7* and p* such that for all 7€ (0,7*] and u € (0, u*], the

following facts hold:

parameters satisfy the high gain conditions ¢;(0) > and 3;(0) > 37, then

(i) all signals inside the closed loop system remain bounded;
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(ii) the auxiliary errors e,;,i = 1,..., p, converge to zero in finite time;
(iii) the output tracking errors ¢y will converge to a residual set exponentially
whose size depends on the design parameter 7.

Remark 4.2: It is well known that the chattering behaviour will be observed in
the input channel due to variable structure control, which causes the
implementation problem in practical design. A remedy to the undesirable
phenomenon is to introduce the boundary layer concept. Take the case of
relative degree one, for example, the practical redesign of the proposed
adaptive variable structure controller by using boundary layer design is now
stated as follows:

2n

W) =3 (—w<eow,->e,-<z>w,-<r>) () Bi() — (eo)Ba(Om(n)  (338)

=
sgn (eg) if |eg| > ¢
™ ey) =
(€0) “ if |eg] <e
€

for some small € > 0. Note that m(eg) is now a continuous function. However,
one can expect that the boundary layer design will result in bounded tracking
error, i.e. ¢y cannot be guaranteed to converge to zero. This causes the
parameter drift in parameter adaptation law. Hence, a leakage term is added
into the adaptation law as follows:

0;(1) = jleo()w;(1)] — ab;(1), j=1,...,2n
Bi(1) = gileo(1)| — 0B (1)
Ba(t) = galeo(t)|m(t) — oBa(1) (3.39)

for some o > 0.

3.5 Computer simulations

The adaptive variable structure scheme is now applied to the following
unstable plant with unmodelled dynamics and output disturbances:

8 1 .

Since the nominal plant is relative degree three, we choose the following steps
to design the adaptive variable structure controller:
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e reference model and reference input:

8
M(S): 3
(s+2)
2 ifr<5
rm(t): .
{—2 if5<r<10

e design parameters:
Li(s) =1(5)2(8),41(s) = s+ 1,42(s) =5+ 2
A(s) = (s+1)?

F(rs) = (%H— 1)2

e augmented signal and auxiliary errors:

hm=M®M®V—£5MW0

€il1) = 7= b)) = s )
eaS(t) - /21(8) [u3](t) - F(ITS) [MZ](Z)

e controller:

u () = Z(Sgn ("alfj)e/(l)ﬁj(l)) —sgn (eq1)51(2) — sgn (eq1)B2(t)m(2)
Jj=1
ui(t) = —sgn (e(,i)( i;(i_is)) [ui—1](2)| + 1>, i=2,3

up(1) = uy(1)
m(t) = —m(t) + 0.005(|u, (1) + 1), m(0) =0.2
e adaptation law:
6i(0) = ylea (&), j=1,...,6
Bi(1) = gilea (1)
Ba(1) = galea (1)|m(1)

Three simulation cases are studied extensively in this example in order to verify
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5 T T T T T T T T T
0_——” o
5 Il 1 [ L I 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 3.1 y,(—),ym(——). time (sec)

0 1 2 3 4 5 6 7 8 9 10

Figure 3.2 y, (—),ym (——), time (sec)

all the theoretical results and corresponding claims. All the cases will assume
that there are initial output error y,(0) — y,,(0) = 4.

(1) In the first case, we arbitrarily choose the initial control parameters as
0;(0)
B3(0)

and set all the adaptation gains 7; = g; = 0.1. As shown in Figure 3.1 (the
time trajectories of y, and y,), the global stability, robustness, and
asymptotic tracking performance are achieved.

(2) In the second case, we want to demonstrate the effectiveness of a proper
choice of 6;(0) and 5;(0) and repeat the previous simulation case by
increasing the values of the controller parameters to be

0.1, j=1,...,6
01, j=1,2

The better transient and tracking performance between y, and y,, can now
be observed in Figure 3.2.
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Figure 3.3 y, (=), Vm; (——). time (sec)

(3) As commented in Remark 3.2, if there is no easy way to estimate the
suitable initial control parameters 6;(0) and 3;(0) like those in the second
simulation case, it is suggested to use large adaptation gains in order to
increase the adaptation rate of control parameters such that the nice
transient and tracking performance as described in case 2 can be retained
to some extent. Hence, in this case, we use the initial control parameters
as in case 1 but set all the adaptation gains to v; =g, =1. The
expected results are now shown in Figure 3.3, where rapid increase of
control parameters do lead to satisfactory transient and tracking
performance.

3.6 Conclusion

In this chapter, a new adaptive variable structure scheme is proposed for model
reference adaptive control problems for plants with unmodelled dynamic and
output disturbance. The main contribution of the chapter is the complete
version of adaptive variable structure design for solving the robustness and
performance of the traditional MRAC problem with arbitrary relative degree.
A detailed analysis of the closed-loop stability and tracking performance is
given. It is shown that without any persistent excitation the output tracking
error can be driven to zero for relative degree-one plants and driven to a small
residual set asymptotically for plants with any higher relative degree.
Furthermore, under suitable choice of initial conditions on control parameters,
the tracking performance can be improved, which are hardly achievable by the
traditional MRAC schemes, especially for plants with uncertainties.
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Appendix

Lemma A Consider the controller design in Theorem 3.1 or 4.1. If the control
parameters 6;(¢),j = 1,...,2n,31(¢) and (3,(¢) are uniformly bounded V¢, then
there exists p* > 0 such that u,(¢) satisfies

[(p) lloe < Ell(e0) Ml + 5 (A.1)
with some positive constant x > 0.
Proof Consider the plant (3.1) which is rewritten as follows:
Y1) = do(1) = P(s)(1 + pPu(s))[up) (1) (A2)

Let f(s) be the Hurwitz polynomial with degree n — p such that f(s)P(s) is
proper, and hence, /~!(s)P~!(s) is proper stable since P(s) is minimum phase
by assumption (A3). Then

(t) = do (1) = P()f (5)f ' () (1 + pPul(s))[utp) (1) (A.3)

which implies that

SHSP) = (1) = 1 T P () =/ ) ) () 2 (1) (A4

Since f~!(s)P~!(s) and f~!(s) P,(s) are proper or strictly proper stable, we can
find by small gain theorem [7] that there exists u* > 0 such that

1@ oo < KNG e + 5 < Kll(e0),lloo +# (A.5)
for some suitably defined x > 0 and for all i € [0, *]. Now if we can show that
1@p) lloe < Rl (), lloe + (A.6)

for some « > 0, then (A.1) is achieved. By using Lemma 2.8 in [19], the key
point to show the boundedness between u, and u* in (A.6) is the growing
behaviour of signal u,. The above statement can be stated more precisely as
follows: if u, satisfies the following requirement

|up(11)] = clup(tr + T))| (A7)
where t; and #; + T are the time instants defined as
[+ T C Q= {t | up| = [ (up), [l } (A.8)

and cis a constant € (0, 1), then u, will be bounded by u*, i.e. (A.6) is achieved.
Now in order to establish (A.7) and (A.8), let (4,, By, C,) and (A, B) be the
a(s)

state space realizations of P(s)(1 + puP,(s)) and —— respectively. Also

A(s)
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define S = [x),w],w, ,m]". Then, using the augmented system

Xp 4, 0 0 0 Xp Byu,
Wi _ 0O A 0 O wi n Bu,
W BC, 0 A O 1) Bd,
m 0 0 0 —bo m o1 |Ll,,| +1

Since d, is uniformly bounded, we can easily show according to the control
design (3.16) or (3.24) that there exists x such that

S < KIS Il + 5

This means that S is regular [21] so that x,, w;, w2, m,y, and u, will grow at
most exponentially fast (if unbounded), which in turn guarantees (A.7) and
(A.8) by Lemma 2.8 in [19]. This completes our proof. Q.E.D.
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4

Indirect adaptive periodic
control

D. Dimogianopoulos, R. Lozano and A. Ailon

Abstract

In this chapter a new indirect adaptive control method is presented. This
method is based on a lifted representation of the plant which can be stabilized
using a simple performant periodic control scheme. The controller parameter’s
computation involves the inverse of the controllability/observability matrix.
Potential singularities of this matrix are avoided by means of an appropriate
estimates modification. This estimates transformation is linked to the covar-
1ance matrix properties and hence it preserves the convergence properties of the
original estimates. This modification involves the singular value decomposition
of the controllability/observability matrix’s estimate. As compared to previous
studies in the subject the controller proposed here does not require the frequent
introduction of periodic n-length sequences of zero inputs. Therefore the new
controller is such that the system is almost always operating in closed loop
which should lead to better performance characteristics.

4.1 Introduction

The problem of adaptive control of possibly nonminimum phase systems has
received several solutions over the past decade. These solutions can be divided
into several different categories depending on the a priori knowledge on the
plant, and on whether persistent excitation can be added into the system or not.

Schemes based on persistent excitation were proposed in [1], [11] among
others. This approach has been thoroughly studied and is based on the fact
that convergence of the estimates to the true plant parameter values is
guaranteed when the plant input and output are rich enough. Stability of the



64 Indirect adaptive periodic control

closed loop system follows from the unbiased convergence of the estimates.
The external persistent excitation signal is then required to be always present,
therefore the plant output cannot exactly converge to its desired value because
of the external dither signal. This difficulty has been removed in [2] using a self-
excitation technique. In this approach excitation is introduced periodically
during some pre-specified intervals as long as the plant state and/or output
have not reached their desired values. Once the control objectives are
accomplished the excitation is automatically removed. Stability of these type
of schemes is guaranteed in spite of the fact that convergence of the parameter
estimates to their true values is not assured. This technique has also been
extended to the case of systems for which only an upper bound on the plant
order is known in [12] for the discrete-time case and in [13] for the continuous-
time case.

Since adding extra perturbations into the system is not always feasible or
desirable, other adaptive techniques not resorting to persistent exciting signals
have been developed. Different strategies have been proposed depending on the
available information on the system.

When the parameters are known to belong to given intervals or convex sets
inside the controllable regions in the parameter space, the schemes in [9] or [10]
can be used, respectively. These controllers require a priori knowledge of such
controllable regions. An alternative method proposes the use of a pre-specified
number of different controllers together with a switching strategy to commute
among them (see [8]). This method offers an interesting solution for the cases
when the number of possible controllers in the set is finite and available. In the
general case the required number of controllers may be large so as to guarantee
that the set contains a stabilizing controller.

In general, very little is known about the structure of the admissible regions
in the parameter space. This explains the difficulties encountered in the search
of adaptive controllers not relying on exciting signals and using the order of the
plant as the only a priori information. In this line of research a different
approach to avoid singularities in adaptive control has been proposed in [6]
which only requires the order of the plant as available information. The
method consists of an appropriate modification to the parameter estimates
so that, while retaining all their convergence properties, they are brought to the
admissible area. The extension of this scheme to the stochastic case has been
carried out in [7]. The extension of this technique to the minimum phase
multivariable case can be found in [4]. This method does not require any a
priori knowledge on the structure of the controllable region. It can also be
viewed as the solution of a least-squares parameter estimation problem subject
to the constraint that the estimates belong to the admissible area. The
admissible area is defined here as those points in the parameter space whose
corresponding Sylvester resultant matrix is nonsingular. The main drawback of
the scheme presented in [6] is that the number of directions to be explored in
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the search for an appropriate modification becomes very large as the order of
the system increases. This is due essentially to the fact that the determinant of
the Sylvester resultant matrix is a very complex function of the parameters.

The method based on parameter modification has also been previously used
in [3] for a particular lifting plant representation. The plant description
proposed in [3] has more parameters than the original plant, but has the
very appealing feature of explicitly depending on the system’s controllability
matrix. Indeed, one of the matrix coefficients in the new parametrization turns
out to be precisely the controllability matrix times the observability matrix.
Therefore, the estimates modification can actually be computed straightfor-
wardly without having to explore a large number of possible directions as is the
case in [6]. It actually requires one on-line computation involving a polar
decomposition of the estimate of the controllability matrix. However, no
indication was given in [3] on how this computation can be effectively carried
out. Recently, [14] presented an interesting direct adaptive control scheme for
the same class of liftings proposed in [3]. As pointed out in [14] the polar
decomposition can be written in terms of a singular value decomposition (SVD)
which is more widely known. Methods to perform SVD are readily available.
This puts the adaptive periodic controllers in [3] and [14] into a much better
perspective. At this point it should be highlighted that even if persistent
excitation is allowed into the system, the presented adaptive control schemes
offer a better performance during the transient period by avoiding singularities.

The adaptive controller proposed in [3] and [14] is based on a periodic
controller. A dead-beat controller is used in one half of the cycle and the input
is identically zero during the other half of the cycle. Therefore a weakness of
this type of controllers is that the system is left in open loop half of the time. In
this chapter we propose a solution to this problem.

As compared to [3] and [14] the controller proposed here does not require the
frequent introduction of periodic n-length sequences of zero inputs. The new
control strategy is a periodic controller calculated every n-steps, n being the
order of the system. For technical reasons we still have to introduce a periodic
sequence of zero inputs but the periodicity can be arbitrarily large. As a result
the new controller is such that the system is almost always operating in closed
loop which should lead to better performance characteristics.

4.2 Problem formulation

Consider a discrete-time system, described by the following state-space

representation: .
X1 = Ax; + bu, + b'y,
(4.1
v =clx, + v
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where x is the (n x 1) state vector, u, y are respectively the plant’s input and

output and A4, b, ¢ are matrices of appropriate dimensions. Signals v/ v can be

identified as perturbations belonging to a class, which will be discussed later.
The state part of equation (4.1) is iterated » times:

Xpon = A"x 4 [A" b b U+ [A YV (4.2)
Matrix [4"~'h...b] is the system’s (4.1) controllability matrix C(n x n) and
similarly C = [A"7'5'...b']. Vectors U,, V; are defined as:
U=[ut)...ut+n-1] UeR" V,=[/()...v(t+n-1)] V' eR"

Working in a similar way as in (4.2), an alternative expression for x, can be

obtained: ,
x; = A"X_y+CU_, +CV!_, (4.3)

introducing (4.3) into (4.2) becomes:
Xepn = A X1y + A"CU,_, + A"C'V|_, +CU, +C'V! (4.4)
The next step will be to express the system’s output y for a time interval
[t,t +n — 1], using (4.1):
yi=clx +)

1

Vi1 =T Ax, + eTbu + T+ vl

_ — — /
Veenotr = A", + T A 2buy + .+ T hupyyr + T A 2h v+ ...
Tyl "
+c b Ut+n—2 + UH—n—l

which can be written as the following expression:

YH—n = Oxt + GU{ + G,V[l + IV,N (45)
where -
O=[cT Ta...-T4 ", O0er™ (4.6)
is the system’s observability matrix
0 ()
Th cee e 0 Yin
G= . . . . GeR™ Y, = : Y,eR" (4.7)
: . .o e
A2 - Th 0 [

and V] is similarly defined as V] but with ¢/ replaced by v”. Identically, G’ is
defined as G in (4.7) with &' instead of b. From (4.5) we get:

Yiion=O0xpin+ GUpn + GV, + 1V

t+n (4'8)

“+n
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Since the state is not supposed to be measurable, we will obtain an expression
that depends only on the system’s output and input. Introducing (4.4) into the
above it follows

Yivon = 0A%x, , + 0A"CU,_, + 0A"C'V]_, + OCU, + OC'V!

—n

+GUu + GV, + IV, (4.9)
whereas, by (4.5)
Y, =O0x 0+ GU_,+ GV, ,+1V], (4.10)
and Xen=O0'Y,—GU._, —GV_,—1V/,] (4.11)
So finally, by substituting (4.11) into (4.9), one has:
Yison=DY,+BU,+BU,_,+GU,py + Ny, (4.12)

where t = 0,n,2n,... and
D=04"0"", B=0C, B =[04"C-04"0'G], D,B,B €R"™
(4.13)

N =04"CV, ,—0"' 470" 'G'V,_ +OC'V+G'V| ,+1V/,,— 040"V,
(4.14)
The following control law is proposed for the plant:
BU,=-DY,-BU,_, (4.15)
The closed loop system becomes:
Yiion — GUppn = Niyon (4.16)
whereas from (4.11) and (4.16), one has:

Xttn = 071 [N”rz” -G Vll+n + IVI{Crn

] = 071 [N”an - Nt1+2n] (417)

where N/,,, is another noise term. Therefore the state x,.,, = 0,n,2n,... is
bounded by the (bounded) noise. In the ideal case x,, will be identically zero.

From (4.3), it is clear that U, is bounded and becomes zero in the ideal case.

Remark 2.1 Dead-beat control can induce large control inputs. For a
smoother performance, one can use the following control strategy:

BU[ = —DY[—B,U[_;1+C[Y[—GUf_;1] (4.18)

where C has all its eigenvalues inside the unit disc. The closed loop system is in

this case:
Yt+2n - GUt+n = C[Yt - GUtfn] + Nf+2n (4]9)

In the ideal case the LHS of the above converges to zero and so does the state.
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4.3 Adaptive control scheme

In this section the adaptive control scheme based on the strategy previously
developed is presented. For sake of simplicity an index k will be associated to ¢
as follows: t=kn, k=0,1,2,.... The plant representation (4.12) can be
rewritten as:

Y = 9¢k + Nis1 Yier € R" (4.20)

where:

= [B ‘B G D} 0 R ¢ = Ui Uy Uy Yiy]T ¢ e R¥
(4.21)
for k=0,1,2,.... The class of disturbances satisfies:
INU)I < (4.22)

The following a priori knowledge on the plant is required:
Assumption 1: n and an upper bound 7 in (4.22) is known

Assumption 2: The existence of a lower bound by is required, so that
boI < BT B. The value of this bound, however, may not be known.

The equations of the adaptive scheme are given in the order they appear in
the control algorithm. Note that signals Y, ¢,_; are measurable.The predic-
tion error:

E. = Yk — Qk_lgg,Fl E. € R" (4.23)

where the variables marked with a bar are the normalized versions of the
original ones:

Yie=Yi/[L+ gelll, b1 = dr1/[1+ ll a1l (4.24)

Least squares with dead zone:

_T —
Wi = E{ Ec + G P b (4.25)
& = n/[1 + || dx [l (4.26)
0 if w? <82(1+a)n
Ak =9 af[wi| = &/(1 + a)n] (4.27)

a >0 otherwise

(14 o] | P7_ i1 |wrl
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—
- AMPro1Gk 191 Pt

— Py € R (4.28)
1+ Ny P19y

P = P
Or =01 + )‘kEkQ;]\Tqu e [Bk B/k G Dk] 0 € R4 (4.29)

The forgetting factor A can also be chosen to commute between 0 and 1 using
the same scheduling variable as in [6].

Modification of the parameters estimates

L' (n x 4n)

P.=L LT > L=|—— """ 4.

k wlic 20, [Lz(Sn X 4n)] (4.30)

Br=QkSk; Sk >0; 00l =1 0,SeR™ (4.31)

Ok = Ok + QkLy L] = (B : B, : G, : D] (4.32)
N——

Bre

(4.30) is the so-called Cholesky decomposition which gives a triangular positive
semi-definite matrix L and (4.31) is a polar decomposition. The first one is often
found in software packages used for control purposes, as it is a special case of
the LU decomposition. The second one can be calculated in many ways. The
way that is described here consists of calculating the singular value decomposi-
tion of B: B, = Z/lkSkaT.

Then the matrices Q; and S; can be calculated as follows:

O =UVE, Sk =SV (4.33)

4.4 Adaptive control law

4.4.1 Properties of the identification scheme
In this section we will present the convergence properties of the parameter
identification algorithm proposed in the previous section. These properties will
be essential in the stability of the adaptive control closed loop system.
Let us define the parametric distance at instant k as: 6, = 6 — 6, and matrix

H, as:

M EGET

— —
1+ Mty Pro1dp_y

The following properties hold:

Hi = Hi_, — H) € R4 (4.34)
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(1) The forgetting factor X in (4.27) satisfies:
0<M<a, Mo Pridp, <o (4.35)

(2) There is a positive definite function Vj defined as: Vj = tr (Px + Hj) that
satisfies: Vj < Vi
(3) The augmented error wy in (4.25) is bounded as follows:
klim sup (W — &7 (1 +a)n) <0 (4.36)
(4) The covariance matrix converges.
(5) The forgetting factor X is such that: .~ /\kéi < 00.
(6) The modified parameter estimate B, satisfies the following:

b3l
BBl > 4.37
PiLr = 4V3 ( )
(7) Ok converges and: 6,07 < V2I
(8) The modified prediction error Ej defined as:
Ek = Yk — @kflggkfl Ek eR" (4.38)
is bounded as follows:
ETE, <2w? (4.39)
Proofs of the above properties are given in [3].
4.4.2 Adaptive control strategy
The expression (4.38) can be written as follows (see also (4.24)):
B — Yi — O 19k-1 & O 21
=
1+ [ @1 |
_ Y= Ok 2k 1 + (Ok2 = Ok1) i1
I+l pp—1 ]
From (4.21) and (4.32):
B = Yi =By U2 — B hUk3 — Gy 3 U1 — Dy Yy
1+ [[ U2 Ug—3U—1 Y2 |
(O 2 — O _1)pk1 (4.40)

L+ [ a1
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Using (4.32), we obtain:

(O 2= Ok 1)pk1 B _
T = (O — Ok_1)Pr—1

= (Ok—2 — Ok—1) b1 + (BraL k2 — B 1 LT k1)

(4.41)

Note that property (7) tells us that: ||6x—2 — Ox—1|| = 0 as k — oo.
Note also that the last term in (4.41) can be rewritten as:

(B2l j2 = B L k1 £ B LT o1) i
=B (L ko2 = LT) ko + (Bia — Biy ) L k11 (4.42)

But HLT Py —LTk,lH — 0 because matrix L, results from the Cholesky
decomposition of the covariance matrix P in (4.30), which converges. On the
other hand, using (4.25), term L7;_;¢;_; in (4.42) can be written as:

(LT 1k ) (LT s 1dp1) = G Peo1Gri
< N dfall 1Pt x|
< \/ég_lkaqu,lqgk,l (using (4.24))
< \/ETkEk + ¢ | Pl 1 Proidr
=V (4.43)

Using (4.41), (4.42), (4.43) and the facts that as &k — oo, (O—2 — k_1) — 0
and ||(Bx_» — Br_1)|| < oo, we can conclude that:

[(©k—2 = Or-1)r-1ll < 182 = Bra v/ Iwel + NIl (4.44)
where _ _
& = (02 — Ok_1) b1 + Bra(L 2 — LT 1)y (4.45)

and ||| — 0 as k — oo.
From (4.40) and using (4.39) and the above we have:

|1 Yi — By 2Up2 — By sUp3 — G Uit — Dy, Yioo|
1 4+ || Uk—2Uk—3 Uk Yia||
< || Ex|| + 1(Ok=2 — Ok—1) i1 |
< V2wl + 182 — Bioi IV Iwel + 1€ (4.46)

or equivalently
| Yirr = Bi Ukt = By Ura = Gy Uk = Dy Y ||

L+ | U1 U2 U Y ||

< V2wt |+ 11 = Bl Iwiert | + &1 (4.47)
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Using the certainty equivalence principle the adaptive control strategy could
simply be obtained from (4.15) by replacing the true parameters by their
estimates. However, for technical reasons that will appear clear later, we will
have to introduce some sequences of inputs equal to zero. These sequences are
introduced periodically after a time interval of arbitrary length L. We will
assume that k > k* where k* is a time instant large enough such that the RHS
of (4.47) is small enough. This will be made clear in (4.50). Since some
sequences of inputs equal to zero are periodically introduced let us assume
that k > k* is the first time instant after k* that we apply the zero sequences
defined below:

Ugr = 0
Uy =B (Dp_ Y+ B U y)
U; = 0

—1
U1€+1 = _§E+1 (Q/€+l Y1€+1 + E/QH UIE)
—B-

Uy = —kiz (Dgi2 Yo + BraUpyy)
Uiz = etc.
(4.48)

Ugsr2 = 0
Uy = _Eﬁikl (Dior 1 Yoo+ B 1 Usip o)

Uiy = 0
UIE+L+1 = _ﬁlilrLH (QIE+L+1 YIE+L+1 + EIE+L+1 UI€+L)
Uyro = *ﬁauz (DiyraYiorn + BiinnaUiiin)
Uiz = ete.

The convergence analysis will be carried out by contradiction. We will
assume that the regressor vector ¢; goes to infinity and prove that this leads
to a contradiction. Note that if ||¢z] — oo then from (4.26) and (4.36) it
follows that ||wg|| — 0.

Introducing the control strategy (4.48) into (4.47) we obtain

[ Vel
1+ [|Ug_; 00 Yi 4|

~0 (4.49)
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Note from (4.48) that U;_, = —ﬁk?_ll (Dj_, Yi_,). Therefore U;_, is bounded
by Y;_,. Introducing this fact into (4.49)
H Y H
—————<e¢ (4.50)
L Yl
or equivalently
Yeall < e+ Yl (4.51)

where € > 0 is arbitrarily small.
Using equation (4.11), (4.51) and the fact that U = 0, one has

el < IO 1 Yall + ¢ < ecll Yyl +¢ (4.52)

Hereafter to simplify notation, ¢ will generically represent bounded terms. ¢
may denote the bound for the system noises or the bound for different matrix
norms. We will not give the exact expression for ¢ because it is irrelevant for the
analysis purposes. Combining (4.52 ) and (4.3), we have

x| < eCll Yeill +¢ (4.53)

From (4.3) we get

X2 = Anx/€+1 + CUIEH +C V/l€+1 (4~54)
where Ug_ | is given in (4.48)
||U1€+1 || = H_EIEL(B/EHUIE +Q/€+1 Y1€+1)H
= H_EELQ/EH Y/€+1H (4.55)
< el B D [ (11 Vi ) (see(a51)
Consequently one has (see (4.53), (4.54), (4.55)):
|xeall < eCll Yol +¢ (4.56)

We may proceed in the same way to obtain an expression for ||xg;||-
Consider the following expressions from (4.3), (4.48), (4.10) respectively:

X];+3 = A"x,;Jrz +CU1;+2 +C/VI/€+2 (457)
Ui = _Eaz <§E+2 U1 + Diss Yl€+2) (4.58)
Yo ZOXk’H +GUr, +G/V1/g+1 +IV]/;/+1 (4.59)
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From the above and using (4.53) and (4.55), we obtain:
1Yol < [|0xg41 + GUR [ +¢

<elll Yl +¢ (4.60)
From the above and (4.55)—(4.58) one has:
X3l < ebsll Yl +¢ (4.61)
Introducing (4.48) and (4.59), one has
[k 3| < ebsll xe ol +¢ (4.62)

It should be noted that b3 is a finite quantity which, for a given system,
depends only on the length of the time interval [k -2,k + 3] We may extend
this procedure over the interval [k — 2,k — 2+ L|. Then (4.62) becomes:

el < ebell xgall +¢ (4.63)
where by is a quantity similar to b3 in (4.62). Finally we may repeat the same
procedure for iL, i =1,2,..., in order to obtain an expression for ||x;_,. ;||

Hx1€—2+iLH < EbLHx1€—2+(i—1)LH +¢ (4.64)

Expressions (4.63) and (4.64) can be combined to obtain:
[ ¥eaeiell < (ebu) ool + [(eb2) !¢+ (eb) ¢+ .+ ebiC4+¢| - (465)

Factor [(eb.) "¢+ (ebr) *C+ ...+ eb ¢+ ¢] will be a sum of an infinite
number of terms. But as eb; < 1 this sum will be bounded. Hence we will have
a bounded decreasing state Hx,;2 +iLH as follows:

e 2|l < (ebr) sl +¢ Vi=1,... (4.66)

From (4.66) we conclude that the state x;_,_ ; fori=1,...,00is bounded in
the limit by a term that depends on the noise. The states at other time instants
inside the intervals [k —2 + (i — 1)L,k — 2 + iL] can be proven to be bounded
too, by using the procedure described in (4.56) up to (4.62). This clearly
contradicts our assumption that ¢ diverges. Therefore all the signals remain
bounded. Furthermore in view of the previous analysis, the smaller the noise
upper bound, the smaller the state becomes in the limit.

45 Simulations

4.5.1 System without noise
The performance of the proposed adaptive control scheme is illustrated in this
section through a series of simulations. The following non-minimum phase
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system is considered:

3 1
Xepl = 5 X+

u + b'v,

0 (4.67)

ye=[1 0]x,+V/

The system’s poles and zeroes are respectively (1, 2) and 1.5. In this way
matrices B, B, G, D are:

1.5 1 . [—105 25 0 0 —14 15
B= , B = , G= , D=
25 15 —22.5 45 10 -30 31
(4.68)

The initial parameter estimates By, B'g, Gy, Dy are chosen in such a way
that the signs of the determinants of By and B are opposite. This will lead to
important conclusions concerning the utility of the modification of the param-
eters’ estimates. So the initial parameter estimates are:

2 1 —-105 25 0 0 —14 15

_ (4.69)
25 15 —225 45 1 0 —30 31

0o

and initial conditions are: zero control input and state xo = [100,100]" for
t € [0, 8]. The parameters’ modification was used only when the determinant of
the estimate of B was below a threshold of 0.1.

It is clear that §x in (4.32) can be multiplied by a scalar without losing the
convergence properties. Such a coefficient can be used to reduce the abrupt
changes in the modified parameter estimates and therefore improve the
transient behaviour. In our case § in (4.32) was multiplied by a coefficient
equal to 0.001. The initial value of the covariance matrix is chosen as
P =220I3, whereas there is no noise corrupting the system. On the other
hand sequences of zero inputs have not been used in the simulations that
follow. Figures that are referred hereafter are given in the appendix.

Figures 4.1 and 4.2 show that modifying the parameter estimates helps to
avoid unboundedness of the plant signals y(7) and u(z). The results that are
presented in Figure 4.2 clearly denote that at around k = 22 or t = 44 thereis a
value of det(B) smaller than 0.1 in the case of unmodified parameters. The
values of det(B) that follow are all very close to zero, a fact that leads to the
behaviour shown in Figure 4.1. On the other hand, when the modification of
the paprameters estimates is applied, the critical value of det(B) at r = 44 is
avoided and the evolution of det(B) thereafter is clearly away from zero.

4.5.2 System with noise
Simulation results are now presented in the case when the system is corrupted
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with noise. System (4.67) remains the same with the exception of
V=b=][1 — 1.5]T in (Figure 4.1) and of a sinusoidal noise described by:

v/, = 0.0004 sin (2k) + 0.0003 cos (2k) (4.70)
v, = 0.0004 sin (2k) — 0.0003 cos (2k) (4.71)

Initial conditions are the same as in the ideal case (i.e. zero control input and
state xo = [100 100]" until 7=8) and P =200l. Figure 4.3 shows the
evolution of output and input signals and Figure 4.4 explains how values of
determinant of B estimates close to zero can lead to huge output and input
signals.

4.6 Conclusions

This chapter has presented an indirect adaptive periodic control scheme based
on the lifted representation of the plant proposed in [3]. New arguments have
been presented so that this technique appears in a better position as a solution
to the long standing problem of singularities in adaptive control of non-
minimum phase plants. Contrary to other techniques, the only a priori
knowledge required on the plant is its order besides the standard controll-
ability/observability assumption. As compared to previous studies in the
subject [3], [14], the proposed controller does not require the frequent
introduction of periodic n-length sequences of zero inputs. Furthermore
simulations have shown that in practice there is no need to introduce sequences
of inputs equal to zero. Therefore the new controller is such that the system
always operates in closed loop which leads to better performance character-
istics. Simulation results have also shown that the use of the proposed estimate
modification can significantly reduce signal peaks during the transient period
even in the case when signals y(¢) and u(¢) of the original unmodified system do
not become unbounded.
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Adaptive stabilization of
uncertain discrete-time
systems via switching
control: the method of

localization
P. V. Zhivoglyadov, R. H. Middleton and M. Fu

Abstract

In this chapter a new systematic switching control approach to adaptive
stabilization of uncertain discrete-time systems with parametric uncertainty is
presented. Our approach is based on a localization method which is concep-
tually different from supervisory adaptive control schemes and other existing
switching adaptive schemes. Our approach allows for slow parameter drifting,
infrequent large parameter jumps and unknown bound on exogenous dis-
turbance. The unique feature of localization based switching adaptive control
distinguishing it from conventional adaptive switching schemes is its rapid
model falsification capabilities. In the LTI case this is manifested in the ability
of the switching controller to quickly converge to a suitable stabilizing
controller. We believe that the approach presented in this chapter is the first
design of a switching controller which is applicable to a wide class of linear
time-invariant and time-varying systems and which exhibits good transient
performance. The performance of the proposed switching controllers is
illustrated by many simulation examples.

5.1 Introduction

Control design for both linear and nonlinear dynamic systems with unknown
parameters has been extensively studied over the last three decades. Despite
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significant advances in adaptive and robust control in recent years, control of
systems with large-size uncertainty remains a difficult task. Not only are the
control problems complicated, so is the analysis of stability and performance.

It is well known [12,14] that classical adaptive algorithms prior to 1980 were
all based on the following set of standard assumptions or variations of them:

(i) An upper bound on the plant order is known.
(i1) The plant is minimum phase.
(iii) The sign of high frequency gain is known.
(iv) The uncertain parameters are constant, and the closed loop system is free
from measurement noise and input/output disturbances.

Classical adaptive algorithms are known to suffer from various robustness
problems [34]. A number of attempts have been made since 1980 to relax the
assumptions above. A major breakthrough occurred in the mid-1980s [17, 21,
35] for adaptive control of LTV plants with sufficiently small in the mean
parameter variations. Later attempts were made for a broader class of systems.
Fast varying continuous-time plants were treated in [36], assuming knowledge
of the structure of the parameter variations. By using the concept of
polynomial differential (integral) operators the problem of model reference
adaptive control was dealt with in [32] for a certain class of continuous-time
plants with fast time-varying parameters. An interesting approach based on
some internal self-excitation mechanism was considered in [7] for a general
class of LTV discrete-time systems. The global boundedness of the state was
proved. However, it must be noted that the presence of such self-excitation
signals in a closed loop system is often undesirable.

In another research line, a number of switching control algorithms have been
proposed recently by several authors [2, 6, 8, 20, 23, 24, 31], thus significantly
weakening the assumptions in (i)—(iv). Both continuous and discrete linear
time-invariant systems were considered. Research in this direction was
originated by the pioneering works of Nussbaum [31] and Martensson [20].
Nussbaum considered the problem of finding a smooth stabilizing controller

(1) = £ (g(2),2(1))
{ u(t) = g(y(1),2(1)) (5.1)
for the one-dimensional system
X(t) = ax(t) + qu(r)
{ y(1) = x(1) (5.2)

with both ¢ #£ 0 and a > 0 unknown. In [31] Nussbaum describes a whole
family of controllers of the form (5.1) which achieve the desired stabilization of



82 Adaptive stabilization of uncertain discrete-time systems

the system (5.2). For example, it was shown that every solution (x(¢),z(¢)) of

{ X = ax + gx(z* + 1) cos(nz/2) exp z* (5.3)

=x(22+1)

has the property that lim, ., x(7) = 0 and lim, . z(#) exists and is finite. We
note that the structure of the adaptive controller is explicitly seen from (5.3).
Another important result proved in [31] is that there exists no stabilizing
controller for the plant (5.2) expressed in terms of polynomial or rational
functions. A more general result was presented by Martensson [20]. In
particular, it was shown in [20] that the only a priori information which is
needed for adaptive stabilization of a minimal linear time-invariant plant is the
order of a stabilizing controller. This assumption can even be removed if a
slightly more complicated controller is used. Consider the following dynamic
feedback problem. Given the plant

X=Ax+ Bu, xeR" ueR"
( | o
y=Cx, yeR
and the controller 1
=Fz+G R
FErEAOr z€ (5.5)
u=Hz+ Ky

where m, r are known and fixed, and # is allowed to be arbitrary. It is easy to
see that this is equivalent to the static feedback problem

Il
k)

X =A%+ Bil
§=Cx i=Kjp
where £ = (x7z7)7, i = (uTz")", j = (»7z7)" and 4, B, C, and K are matrices

of appropriate dimensions. Let the regulator be

{a = g(h(k))N(h(k))p

(5.6)

. 5.7

o= {311 + |l 57
where N (/) is an ‘almost periodic’ dense function and / and g are continuous,
scalar functions satisfying a set of four assumptions (see [20] for more details).
Martensson’s result reads: ‘Assume that / is known so that there exists a fixed
stabilizing controller of the form (5.5), and that the augmentation to the form
(5.6) has been done. Then the controller (5.7) will stabilize the system in the
sense that

(x(2), z(2), k(2)) — (0, 0, k) as t— 0 (5.8)

where ko, < o0’.
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One such set of functions given by Martensson is
h(k) = (log k)'?, k> 1, g(h) = (sin h'/?> + 1)i'/? (5.9)

Martensson’s method is based on a ‘dense’ search over the control parameter
space, allows for no measurement noise, and guarantees only asymptotic
stability rather than exponential stability. These weaknesses were overcome
in [8] where a finite switching control method was proposed for LTI systems
with uncertain parameters satisfying some mild compactness assumptions.
Different modifications of Martensson’s controller aimed at achieving
Lyapunov stability, avoiding dense search procedures, as well as extending
this approach to discrete-time systems have been reported recently (see, e.g., [2,
8, 19, 23]). However, the lack of exponential stability might result in poor
transient performance as pointed out by many researchers (see, e.g., [8,19] for
simulation examples). Below we present a simple example of a controller based
on a dense search over the parameter space. This controller is a simplified
version of that presented in [19].

Example 1.1 The second order plant
x(t+ 1) =aix(t) + axx(t — 1)+ bu(t) + £(r), x,ueR (5.10)

with a1 € R, b # 0 being arbitrary unknown constants and sup,s,, ()| < oo
has to be controlled by the switching controller

u(t) = k(0)x(1) (5.11)

where k(0) = h(1) and k(¢) = h(i), t € (#;, ti+1] and h(i) is a function dense in R
defined so that it successively looks at each interval [—p, p], p € N and tries
points 1/2? apart, namely,

h(l)=1 h(4)=-0.5 K(7)=1.5
h(2)=0.5 h(5)=-1 etc.
h(3)=0 h(6) =2
The system performance is monitored using a function
(1) = M (ti0) Bt )"V x(ti1)| + v(tio1) (5.12)
For each i > 1 such that #;_| # oo, the switching instant is defined as

. min{7 : 1> 1y, |x(1)] > M (t:-1)B(ti-1) " |x(ti-1) |+ v(ti-1)} if this exists
" oo otherwise (5.13)

where 0 < M(¢), 0 < B(r) <1 and 0 < v(r) are strictly positive increasing
functions satisfying the following conditions lim, . M(f) = 400,
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Figure 5.1 Example of a dense search

lim, ., B(¢) = 1, lim,_«, v(¢) = + oo. The behaviour of the closed loop system
with a; = —2.2, a = 0.3 and b =1 is illustrated in Figure 5.1(a)—(b).

A different switching control approach, called hysteresis switching, was
reported in a number of papers [22, 27, 37] in the context of adaptive control.
In these papers, the hysteresis switching is used to swap between a number of
‘standard’ adaptive controllers operating in regimes of the parameter space.
The switching, in these cases, is used to avoid the ‘stabilizability’ problem in
adaptive controllers.

Conventional switching control techniques are all based on some mechanism
of an exhaustive search over the entire set of potential controllers (either a
continuum set [20] or a finite set [8]). A major drawback is that the search may
converge very slowly, resulting in excessive transients which renders the system
‘unstable’ in a practical sense. This phenomenon can take place even if the
closed loop system is exponentially stable. To alleviate this problem, several
new switching control schemes have been proposed recently. The so-called
supervisory control of LTI systems for adaptive set-point tracking is proposed
by Morse [25, 26] to improve the transient response. A further extension of
Morse’s approach is given in [13]. A very similar, in spirit, supervisory control
scheme for model reference adaptive control is analysed in [29]. The main idea
of supervisory control is to orchestrate the process of switching into feedback
controllers from a pre-computed finite (continuum) set of fixed controllers
based on certain on-line estimation. This represents a significant departure
from traditional estimator based tuning algorithms which usually employ
recursive or dynamic parameter tuning schemes. This approach has apparently
significantly improved the quality of regulation, thus demonstrating that
switching control if properly performed is no longer just a nice theoretical
toy but a powerful tool for high performance control systems design. However,
several issues still remain unresolved. For example:
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(i) a finite convergence of switching is not guaranteed. This aspect is
especially important in situations when convergence of switching is
achievable. It seems intuitively that in adaptive control of a linear time-
invariant system it is desirable that the adaptive controller ‘converges’ to a
linear time-invariant controller;

(i1) the analysis of the closed loop stability is quite complicated and often
dependent on the system architecture. Without a simpler proof and better
understanding of the ‘hidden’ mechanisms of supervisory switching
control its design will remain primarily a matter of trial and error.

In this chapter, we present a new approach to switching adaptive control for
uncertain discrete-time systems. This approach is based on a localization
method, and is conceptually different from the supervisory control schemes
and other switching schemes. The localization method was initially proposed
by the authors for LTI systems [39]. This method has the unique feature of fast
convergence for switching. That is, it can localize a suitable stabilizing
controller very quickly, hence the name of localization. Later this method
was extended to LTV plants in [40]. By utilizing the high speed of localization
and the rate of admissible parameter variations exponential stability of the
closed loop system was proved. The main contribution of this chapter is a
unified description of the method of localization. We show that this method is
also easy to implement, has no bursting phenomenon, and can be modified to
work with or without a known bound on the exogenous disturbance.

To highlight the principal differences between the proposed framework and
existing switching control schemes, in particular, supervisory switching control,
we outline potential advantages of localization based switching control:

(1) The switching controller is finitely convergent provided that the system is
time invariant. Depending on how the switching controller is practically
implemented the absence of this property could potentially have far
reaching implications.

(i) Unlike conventional switching control based on an exhaustive search over
the parameter space, the switching converges rapidly thus guaranteeing a
high quality of regulation.

(iii) The closed loop stability analysis is comparatively simple even in the case
of linear time-varying plants. This is in sharp contrast to supervisory
switching control where the stability analysis is quite complicated and
depends on the system architecture.

(iv) Localization based switching control is directly applicable to both linear
time-invariant and time-varying systems.

(v) The localization technique provides a clear understanding of the control
mechanism which is important in applications.

The rest of this chapter is organized as follows. Section 5.2 introduces the class
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of LTI systems to be controlled and states the switching adaptive stabilization
problem. Two different localization principles are studied in Sections 5.3 and
5.4. We also study a problem of optimal localization, which allows us to obtain
guaranteed lower bounds on the number of controllers discarded at each
switching instant and adaptive stabilization in the presence of unknown
exogenous disturbance. Simulation examples are given in Section 5.5 to
demonstrate the fast switching capability of the localization method.
Conclusions are reached in Section 5.6.

5.2 Problem statement

We consider a general class of LTI discrete-time plants in the following form:
D(z () = Nz Du(t) + €t — 1) +n(t— 1) (5.14)

where u(¢) is the input, y(7) is the output, £(¢) is the exogenous disturbance, 7(¢)
represents the unmodelled dynamics (to be specified later), z~! is the unit delay
operator:

Nz Y =mz ' 4z 4. 4 nz" (5.15)
Dz Y=1+dz"+.. . +dz" (5.16)

Remark 2.1 By using simple algebraic manipulations, measurement noise and
input disturbance are easily incorporated into the model (5.14). In this case,
(1), u(t), and £(¢) represent the measured output, computed input and
(generalized) exogenous disturbance, respectively. For example, if a linear
time-invariant discrete-time plant is described by

71
e = ) ) + () + ()

where d(z) and ¢(z) are the input disturbance and plant noise, respectively, the
plant can be rewritten as

D(z)y(z) = Nz Du(z) + (N(z1)d(2) + D(z")a(z"))

Consequently, the exogenous input &(z) is N(z~1)d(z) + D(z"1)q(z™}).
We will denote by 6 the vector of unknown parameters, i.c.

9:(I/ln,...,I’lz,—dn,...,—dl,nl)T (517)

Throughout the chapter, we will use the following nonminimal state-space
description of the plant (5.14):

x(t+ 1) = A(0)x(t) + B(O)u(t) + E(&(r) + n(1)) (5.18)
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where
x()=u(t—n+1)-u(t=1) | y(t —n+1)--y()]" (5.19)

and the matrices A(f), B(f) and E are constructed in a standard way

0 o -~ 0 0
A(6) = (5.20)
0O 0 -~ 0 0 1 0 -
0 0 0 0 0 1
L Hp—1 - M2 _dn _dZ _dl_
S0 T 0
0 0
0
BO)=|—|, E=|— (5.21)
0 0
0 0
L7 L 1

We also define the regressor vector
x(t
o= | 50 (5.22)
Then, (5.14) can be rewritten as
w(1) = 0Tp(r — 1) +&(t = 1)+t — 1) (5.23)

The following assumptions are used throughout this section:

(A1) The order n of the nominal plant (excluding the unmodelled dynamics) is
known.
(A2) A compact set Q € R*, is known such that 6 € Q.
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(A3) The plant (5.14) without unmodelled dynamics (i.e. n(¢) = 0) is stabiliz-
able over 2. That is, for any 0 € , there exists a linear time-invariant
controller C(z") such that the closed loop system is exponentially stable.

(A4) The exogenous disturbance ¢ is uniformly bounded, i.e. for all 75 € N

sup [€(1)] < € (5.24)
>1
for some known constant £.
(A5) The unmodelled dynamics is arbitrary subject to

(0] < (1) = < sup o' ¥|Jx(k)| (5.25)

for some constants £ > 0 and 0 < o < 1 which represent the ‘size’ and
‘decay rate’ of the unmodelled dynamics, respectively.

Remark 2.2 Assumption (Al) can be relaxed so that only an upper bound
Nmax 18 known. Assumption (A4) will be used in Sections 5.3—5.4 and will be
relaxed to allow ¢ to be unknown in Sections 5.3.2 and 5.4.1 where an
estimation scheme is given for &.

Remark 2.3 We note that the assumptions outlined above are quite standard
and have been used in adaptive control to derive stability results for systems
with unmodelled dynamics (see, e.g., [7, 16, 21, 30] for more details).

The switching controller to be designed will be of the following form:
u(t) = Kjx(t) (5.26)

where Kj, is the control gain applied at time ¢, and i(¢) is the switching index at
time ¢, taking value in a finite index set /. The objective of the control design is
to determine the set of control gains

K ={K,icl} (5.27)

and an on-line switching algorithm for i(¢) so that the closed loop system will
be ‘stable’ in some sense.

We note that switching controllers can be classified according to the logic
governing the process of switching. Here are some typical examples.

1. Conventional switching control
The switching index is defined as

i(l):{i(z—l) if G, <0

5.28
i(t—1)+1 otherwise (5.28)

where G, is some appropriately chosen performance index. This type of
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switching control is finitely convergent and based on an exhaustive search over
the parameter space (see, e.g., [8], [9]).

2 Supervisory switching control
The switching index is defined as

i(1) = {i(rl) if 1—5(7) <ty

5.29
arg min;.; |e;(¢)] otherwise (5.29)

where s(7) is the time of the most recent switching, 7, is a positive dwell time,
and ¢;(f), Vi € I is a weighted prediction error computed for the ith nominal
system. This type of switching control has been extensively studied recently by
a number of researchers (see, e.g., [25, 26]). The proof of the closed loop
stability in this case is not dependent on finite convergence of the switching
process, furthermore, supervisory switching control is not finitely convergent in
general.

5.3 Direct localization principle

The switching algorithms to be used in this section are based on a localization
technique. This technique, originally used in [39] for LTI plants, allows us to
falsify incorrect controllers very rapidly while guaranteeing exponential stab-
ility of the closed loop system. In this section, we describe a direct localization
principle (see, e.g., [40]) for LTI plants which is slightly different from [39] but
is readily extended to LTV plants. The main idea behind this principle consists
of simultaneous falsification of potentially stabilizing controllers based ex-
plicitly on the model of the controlled plant. That implies the use of some effective
mechanism of discarding controllers inconsistent with the measurements.

The specific notion of stability to be used in this section is described below.

Definition 3.1 The system (5.14) satisfying (A1)—(A5) is said to be globally &-
exponentially stabilized by the controller (5.26) if there exist constants M| > 0,
0 < p<1,and a function M»(:) : Ry — Ry with M>(0) = 0 such that

(Ol < Mip!""|x(20)|| + M (€) (5.30)

holds for all # >0, x(t), £ >0, and &(-) and 7n(-) satisfying (A4)~(AS),
respectively.

The definition above yields exponential stability of the closed loop system
provided that £ =0 and exponential attraction of the states to an origin
centred ball whose radius is related to the magnitude of the exogenous
disturbance.

First, we decompose the parameter set {) to obtain a finite cover {Qi}le
which satisfies the following conditions:



90 Adaptive stabilization of uncertain discrete-time systems

CH QcCcQU#{},i=1,...,L

(€2 UL, =9

(C3) Foreachi=1,...,L,let §; and r; > 0 denote the ‘centre’ and ‘radius’ of
Q;, i.e. ;€ Q; and |0 —6;]| <r; for all 8 € Q;. Then, there exist K,
i=1,...,L, such that

[Amax(4(0) + BOK)| <1, V|0—-0i|| <r, i=1,... L. (5.31)

Conditions (C1)—(C2) basically say that the uncertainty set §2 is presented as a
finite union of non-empty subsets while condition (C3) defines each subset 2, as
being stabilizable by a single LTI controller K;. It is well known that such a
finite cover can be found under assumptions (A1)—(A3) (see, e.g., [8, 24, 25] for
technical details and examples). More specifically, there exist (sufficiently large)
L, (sufficiently small) r;, and suitable K;, i = 1,. .., L, such that (C1)-(C3) hold.
Leaving apart the computational aspects of decomposing the uncertainty set
satisfying conditions (C1)—~(C3) we just note that decomposition can be
conducted off-line, moreover, some additional technical assumptions (see,
e.g., (C3’) below) make the process of decomposing pretty trivial. The
computational complexity of decomposing the uncertainty set, in general,
depends on many factors including the ‘size’ of the set, its dimension and
‘stabilizability’ properties, and has to be evaluated on a case-by-case basis.

The key observation used in the localization technique is the following fact:
given any parameter vector 6 € (}; and a control gain Kj, for some
i(t),j=1,..., L. If i(t) = j, then it follows from

p(0)=0"p(t— 1) + &= 1) +n(t—1) (5.32)
107 6t = 1) = y()] < rilld(e = D[+ E+ (e = 1) (5.33)

This observation leads to a simple localization scheme by elimination: If the
above inequality is violated at any time instant, we know that the switching
index i() is wrong (i.e. i(f) # j), so it can be eliminated. In identification theory
this concept is sometimes referred to as falsification; see, e.g., a survey [15] and
references therein. The unique feature of the localization technique comes from
the fact that violation of (5.33) allows us not only to eliminate i(¢) from the set
of possible controller indices, but many others. This is the key point! As a
result, a correct controller can be found very quickly.

We now describe the localization algorithm. Let 7(z) denote the set of
‘admissible’ control gain indices at time ¢ and initialize it to be

I(t) = {1,2,....L} (5.34)

that

Choose any initial switching index (7)) € I(t). For ¢ > 1, define
I(1)={j:(5.33) holds, j=1,...,L} (5.35)

Then, the localization algorithm is simply given by
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I()=1(t—1)NI(1), Vt>1, (5.36)
The switching index is updated by taking'

{i(tl) if t>1tandi(t—1)€I(z)
any member of /(z) otherwise

= (5.37)
A simple geometrical interpretation of the localization algorithm (5.36) is given
in Figure 5.2. One possible way to view the localization technique is to interpret
it as family set identification of a special type, that is, family set identification
conducted on a finite set of elements. Interpreted in this way the localization
technique represents a significant departure from traditional family set
identification ideas. Either strip depicted in Figure 5.2 contains only those
elements which are consistent with the measurement of the input/output pair
{y(t),u(t — 1)}. The high falsifying capability of the proposed algorithm
observed in simulations can informally be explained in the following way.
Let the index i(¢) be falsified, then the discrete set of elements {6;:i € I(¢)}
consistent with all the past measurements is separated from the point 6, by
one of the hyperplanes

07 (1 = 1) = p(t) +rjlle(r = V| + €+t — 1) (5.38)
or

07 (1= 1) = (1) = rjllo(r = DIl = €=t = 1) (5.39)

dividing the parameter space into two half-spaces. It is also clear that every
element belonging to the half-space containing the point 0y, is falsified by the
algorithm of localization (5.36) at the switching instant z. We note that
the rigorous analysis of the problem of optimal localization conducted in
Section 5.3.1 allows us to derive a guaranteed lower bound on the number of
controllers falsified at an arbitrary switching instant. A different non-identifica-
tion based interpretation of localization can be given in terms of the prediction
errors ¢; = |0/ ¢(t — 1) — y(1)|, j=1,2,... L computed for the entire set of
‘nominal’ models. Thus, any model giving a large prediction error is falsified.
The following technical lemma describes the main properties of the algorithm
of localization (5.36).

Lemma 3.1 Given the uncertain system (5.14) satisfying assumptions (Al)-
(A5), suppose the finite cover {Qi}f:] of ) satisfies conditions (C1)—(C3). Then,
the localization algorithm given in (5.34)—(5.37) applied to an LTI plant (5.14)
possesses the following properties:

W) 1) £ {}. V=0

"'In fact, we will see in Section 5.3.1 that there may be ‘clever’ ways of selecting i(¢)
when i(t — 1) is falsified.
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PARAMETER SPACE

UNCERTAINTY SET

Figure 5.2 Localization

(ii) There exists a switching index j € I(¢) for all 7 > o such that the closed
loop system with u(#) = K;x(¢) is globally exponentially stable.
Proof The proof is trivial: suppose the parameter vector 6 for the true plant is
in ) for some j € {1,...,L}. Then, the localization algorithm guarantees that
j € I(z) for all 7. Hence, both (i) and (ii) hold.
To guarantee exponential stability of the closed loop system, we need a
further property of the finite cover of 2. To explain this, we first introduce the
notion of quadratic stability [3].

Definition 3.2 A given set of matrices {A4(0) : § € Q} is called quadratically
stable if there exist symmetric positive-definite matrices H, Q such that

AT(O)HA(O) —H < —Q, VHecQ (5.40)

It is obvious that the finite cover {€;}~, of Q can always be made such that
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each €; is ‘small’ enough for the corresponding family of the ‘closed-loop’
matrices {A(0) + B(O)K; : 6 € Q;} to be quadratically stable with some K.

In view of the observation above, we replace the condition (C3) with the
following:

(C3') Foreachi=1,...,L,let 6; and r; > 0 denote the ‘centre’ and ‘radius’ of
Q;, 1. 0; € Q; and ||0 — 6;|| < r; for all 6 € Q;. Then, there exist control
gain matrices K;, symmetric positive-definite matrices H; and Q,,
i=1,...,L, and a positive number ¢ such that

(A(0) + BO)K:)" Hi(A(0) + B(O)K;) — H; < —Q;,

(5.41)
V006l <(ritq), i=1,...,L

Remark 3.1 Condition (C3’) requires that every subset 2; obtained as a result
of decomposition be quadratically stabilized by a single LTI controller. We
also note that a finite cover which satisfies (C1)—(C2) and (C3’) is guaranteed to
exist. Moreover, Condition (C3’) translated as one requiring the existence of a
common quadratic Lyapunov function for any subset €; further facilitates the
process of decomposition.

The following theorem contains the main result for the LTI case:

Theorem 3.1 Given an LTI plant (5.14) satisfying assumptions (A1)—(AS5). Let
{Qi}iL:l be a finite cover of § satisfying conditions (C1)—(C2) and (C3’). Then,
the localization algorithm given in (5.34)—(5.37) will guarantee the following
properties when ¢ (i.e. the ‘size’ of unmodelled dynamics) is sufficiently small:

(i) The closed loop system is globally é-exponentially stable, i.e., there exist
constants M; >0, 0<p<1, and a function M>,(-):R; — Ry,
M>(0) = 0 such that

1Ol < M1p!" 1x(20)|| + M2 (E) (5.42)

holds for all ¢ > £, and x(¢).
(i) The switching sequence {i(t),i(to + 1),...} is finitely convergent, i.e.
i(t) =const, V ¢ > t* for some t*.

Proof See Appendix A.

The proof of the theorem presented in Appendix A is based on the
observation that between any two consecutive switchings the closed loop
system behaves as an exponentially stable LTI system subject to small
parametric perturbations and bounded exogenous disturbance. This is the
key point offering a clear understanding of the control mechanisms.

It follows from the proof of Theorem 3.1 that the constant M in the bound
(5.42) is proportional to the total number of switchings made by the controller
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while the parameter p is dependent on the ‘stabilizability’ property of the
uncertainty set €. This further emphasizes the importance of fast switching
capabilities of the controller for achieving good transient performance.

5.3.1 Optimal localization

The localization scheme described above allows an arbitrary new switching
index in 7(7) to be used when a switching occurs. That is, when the previous
switching index i(¢ — 1) is eliminated from the current index set I(¢), any
member of /(f) can be used for i(f). The problem of optimal localization
addresses the issue of optimal selection of the new switching index at each
switching instant so that the set of admissible switching indices I(¢) is
guaranteed to be pruned down as rapidly as possible. The problem of optimal
localization is solved in this section in terms of the indices of localization
defined below. In the following for notational convenience we drop when
possible the index ¢ from the description of the set of indices /(7). Also we make
the technical assumption

(A7) ri=rj=vr, Vi,j=1,2,...,L,and some r > 0.
For any set 7 C {1,2,...,L}, ©={6,:i€ I}, a fixed j €I and any z #0,
z € R*, define the function

Nz,j,0) = {0:: (0: —0)"z>0, icTI} (5.43)
where | - | denotes the cardinal number of a set. Then

ind(6,.6) = min A(=./.6) (5.44)

will be referred to as the index of localization of the element 6; with respect to
the set ©.

Lemma 3.2 The index of localization ind(f;, ©) represents a guaranteed lower
bound on the number of indices discarded from the localization set I(z) at the
next switching instant provided that u(z) = K;x(¢).

Proof  Without loss of generality we assume that (z + 1) is the next switching
instant, and controller K; is discarded. From (5.35) we have j¢I(t+1),
equivalently

07 (1) > y(t+ 1) + (r; + @)lle(0)]| + €+ 7t + 1) (5.45)

" 07 (1) < y(t+1) = (rj + @)l|o(0)]| = € =it + 1) (5.46)

Taking z = —¢(1)/||6(7)|| for (5.45), or z = ¢(2)/||¢(¢)|| for (5.46) and using
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(5.43) we see that there are \(z,j, ©) number of controller indices which do not
belong to I(z+ 1). We note that ¢(7) # 0, because otherwise it is easy to see
from (5.23) that there exists no element 6, € O satisfying (5.45) or (5.46), and,
consequently, switching is not possible. Since ind(§;,0) < A(z,/,©), we con-
clude that there are at least ind(6;, ©) number of controllers to be discarded at
the switching instant (7 + 1).

In terms of (5.44) the index of localization of the discrete set © is defined as

ind © = max{ind(#;,©) : j €I} (5.47)
J

That is, ind ©, is the largest attainable lower bound on the number of
controllers eliminated at the time of switching, assuming that the regressor
vector can take any value. The structure of an optimal switching controller is
described by

u(t) = Kiqx(1) (5.48)
_ i(t—1) if i(r—1) € I(1);
0 = lopt() = arg max;{ind(6;, (7)) : j € I(t)} otherwise (5.49)

The problem of optimal localization reduces to determining the optimal
control law, that is, specifying the switching index i,,,(f) at each time instant
when switching has to be made. To solve this problem we introduce the notion
of separable sets.

Definition 3.3 Given a finite set © C R” and a subset J C ©; J is called a
separable set of order k if

(i) 7] = k.
(i) co {J}[) co {© —J} = {} where co {-} stands for the convex hull of a
set.

The main properties of separable sets are listed below:

(a) A vertex of co {O} is a separable set of order 1.

(b) The order of a separable set k < |O)].

(c) For each separable set J of order k, k > 1, there exists a set J' C J such
that J' is a separable set of order (k — 1).

Proof (a), (b) are obvious. To prove (c), we note that for each separable set J,
there exists a hyperplane P separating J and © —J. Let 77 be the normal
direction of P. Move P along 77 towards J until it hits J. Two cases are possible.

Case 1. One vertex is in contact. In this case move P a bit further to pass the
vertex. The remaining points in J form J'.
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Case 2: Multiple vertices are in contact. One can always change 7 slightly so
that P still separates J and © — J, but there is only one vertex in contact with
P, and we are back to Case 1.

Lemma 3.3 Let OF be the set of all separable sets of order k and
Ek = UJkGG)/‘ Jk. Then,

ind © = 1+ arg max{k : =40} (5.50)

Proof Follows immediately from Definition 3.3 and the property of separable
sets (c). Indeed, suppose that the index of localization satisfies the relation

ind© =m>1+arg max{k: = £0) (5.51)

then there must exist an element §; € ©, such that ind(¢;,©) = m, moreover
0;¢E""' 6 c0-E"! (5.52)

since otherwise, by definition of separable sets ind(6;,©) <m — 1. But it
follows from (5.51) that © — E”~! = {}. On the other hand by Definition 3.3
and the properties of separable sets (b), (c) the index of localization of the set ©
cannot be smaller than that given by (5.50). This concludes the proof.

Denote by V(-) the set of vertices of co (-). The complete solution to the
problem is given by the following iterative algorithm.

Algorithm A
Step | Initialize k = 1. Compute ®' = {{6} : 6 € V(©)}.
Step 2 Set k = k + 1. Compute
O ={Ji Ul Ty, cO T 0, €V(O—Ji), JiUBb is separable}

Step 3 If EF = ©, then ind © = k, and stop, otherwise go to Step 2.

The properties of localization based switching control are summarized in the
following theorem. Let sub{-} denote the set of subscripts of all the elements
in {-}.
Theorem 3.2
(1) The solution to the problem of optimal localization may not be unique
and is given by the set
Lop = sub{® — "} (5.53)

where
m=ind © =1+ arg max{k : =40} (5.54)

(i) For any £>0, € >0, the total number of switchings / made by the
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optimal switching controller (5.48), (5.49) applied to an LTI plant (5.14)
satisfies the relation

/-1
> ind ©(1) —2< L1 (5.55)
p=0

where #,, p=0,1,...,/ — 1 denote the switching instants.

Proof The proof of (i) follows directly from Lemma 3.3. To prove (ii) we note
that

|@([1)| < L —ind @(lo);
10(12)] < [6(11)| — ind ©(11) < L — ind O(19) — ind O(11)

then
-1

o) <y =L- Z_:ind ()

i=0
Since v; > 1 the result follows.

Algorithm A applied to an arbitrary localization set © indicates that except
for a very special case, namely, {0;},.; = V(©), localization with any choice of
the switching index i() such that 6;,) ¢ V'(©) will always result in elimination
of more than one controller at any switching instant. This is a remarkable
feature distinguishing localization based switching controllers from conven-
tional switching controllers. Moreover, a simple geometrical analysis (see, e.g.,
Figure 5.2) indicates that for ‘nicely’ shaped uncertainty sets (for example, a
convex () and large L the index of localization is typically large, that is,
ind(©) >> 1. Theorem 3.2 gives a complete theoretical solution to the problem
of optimal localization formulated above in terms of indices of localization.
However, it must be pointed out that the search for optimality in general is
involved and may be computationally demanding. To alleviate potential
computational difficulties we propose one possible way of constructing a
suboptimal switching controller.

Algorithm B

Step 1 Initialize k = 1. Compute I'' = V'(©).

Step 2 Set k = k + 1. Compute
rr=r~'ure-r

Step 3 If I'* = ©, then ind © > k, and stop, otherwise go to Step 2.

Algorithm B allows for a simple geometrical interpretation, namely, at each
step a new set I'* is obtained recursively by adding the set of vertices of



98 Adaptive stabilization of uncertain discrete-time systems

CE Fk’l). The simplicity of the proposed algorithm is explained by the fact
that we no longer need to check the property of separability (see Step 2 in
Algorithm A).

The main property of the Algorithm B is presented in the following
proposition.

Proposition 3.3 The index of localization ind © satisfies the inequality

ind © > 1 +arg max {k : " +£ 0} (5.56)

Proof The proof is very simple and follows from the fact that for any 6 € ©,
such that 0 ¢ V(O©) it is true that ind(f,©) > 2. By applying this rule
recursively we obtain (5.56).

Example 3.1 To illustrate the idea of optimal (suboptimal) localization we
consider a simple localization set © = {G,-}le depicted in Figure 5.3.

We note that the point 65 is located exactly in the centre of the square
(01, 6, 04, 03). Applying Algorithm A to the set © we obtain

0' = {{61}, {62}, {63}, {64}},
®2 = {{91’ 92}7{91793}a{927 94}7{03) 94}}’
0O’ = ({01, 02, 0s},{01,05, 0s},{0s, 04, O5},{62,04, Os}}

Since U, g3 J = O we conclude that ind © = 3 and the optimal switching index
is given by i(¢) = 5. To compute a guaranteed lower bound on the index of

91 02

k *

05

03 04
% %

Figure 5.3 Example of optimal localization
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localizaton ind © Algorithm B is used. We have
' = {6, 61, 63, 64},
2= {01, 65, 05, 04, 05} =0

therefore, ind ® > 2. We note that in this particular example the optimal
solution, that is, i(f) = 5, coincides with the suboptimal one.

Remark 3.2 To deal with the problem of optimal (suboptimal) localization
different simple heuristic procedures can be envisioned. For example, the
following ‘geometric mean’ algorithm of computing a new switching index is
likely to perform well in practice, though it is quite difficult in general to obtain
any guaranteed lower bounds on the indices of localization. At any switching
instant ¢ we choose

i(r) = arg min [|6; - > 6/l (5.57)

iel(r)

5.3.2 Localization in the presence of unknown disturbance bound
In this section we further relax assumption (A4) to allow the disturbance
bound £ to be unknown. That is, we replace (A4) with

(A4’) The exogenous disturbance £ is uniformly bounded

sup [(1)] < & (5.58)

>ty
for some unknown constant &.

We further relax assumptions (A1)—(AS5) by allowing parameters to be slowly
varying. To this end we introduce the following additional assumption

(A7) The uncertain parameters are allowed to have slow drifting described by
10() —0(t=1)|| <a, YVi>1 (5.59)
for some constant a > 0.

Following the results presented in previous sections, we introduce a general-
ized localization algorithm to tackle the new difficulty. The key feature of the
algorithm is the use of an on-line estimate of £. This estimate starts with a small
(or zero) initial value, and is gradually increased when it is invalidated by the
observations of the output. With the trade-off between a larger number of
switchings and a higher complexity, the new localization algorithm guarantees
qualitatively similar properties for the closed loop system as for the case of
known disturbance bound.
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Let £(¢) be the estimate for £ at time ¢. Define
1(1,E0) = {j:16] ¢t = 1) = y(1)] < (ri + @) |6t — )]
+&t—1)+aq(t—1), j=1,...,L}

That is, 1(z,£(¢)) is the index set of parameter subsets which cannot be falsified
by any exogenous disturbance sup,-,, [{(7)] < &(r —1). -

Denote the most recent switching instant by s(z). We define s(¢) and £(¢) as
follows:

(5.60)

S(l‘()) =1y (561)

&(to) =0 (5.62)

(1) = {z if m,g:f(Fl)i(k,g’(k)) ={} and 1—s()> 14 (563)
s(t—1) otherwise

gy { €00 H80R I N Tk = 1) = {} and (=50 < 1
Er—1) otherwise (5.64)
where 74 is some positive integer representing a length of a moving time interval
over which validation of a new estimate £(¢) is conducted, p is a small positive
constant representing a steady state residual (to be clarified later), and 6(¢) is an

integer function defined as follows:

!

8(f) =ming &: () I(k,&(k —1)+6u) #{},6 €N (5.65)
k=s(t)

The main idea behind the estimation scheme presented above is as follows. At
each time instant when the estimate &(z—1) is invalidated, that is,
My [(k,&(k — 1)) = {} we determine the least possible value § € N which
guarantees that no exogenous disturbance sup,, [£(2)] < (&(r—1) + ép)
would have caused the falsification of all the indices in the current localization
set. This is done by recomputing the sequence of localization sets over the finite
period of time [s(7), ] whose length is bounded from above by #,. Since the
total number of switchings caused by the ‘wrong’ estimate £(¢) is finite and for
every sufficiently large interval of time the number of switchings due to slow
parameter drifting can be made arbitrarily small by decreasing the rate of slow
parameter drifting « it is always possible to choose a sufficiently large 7; which
would guarantee global stability of the system.
The algorithm of localization is modified as follows:

(1) = Moy (k, €(K)) (5.66)
But the switching index i(#) is still defined as in (5.37).
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The key properties of the algorithm above are given as follows:

Theorem 3.4 For any constant p > 0, there exist a parameter drifting bound
a > 0, a ‘size’ of unmodelled dynamics € > 0 (both sufficiently small), and an
integer ¢, (sufficiently large), such that the localization algorithm described
above, when applied to the plant (5.14) with assumptions (A1)-(A3), (A4') and
(A7), possesses the following properties:

(1) 1(2) # {} for all 1 > 1.
2 SuptZtog([) <&+ p.

Subsequently, the following properties hold:

(3) The closed loop system is globally (£ + u)-exponentially stable, i.e. there
exist constants M, >0, 0 < p < 1, and a function M;(-) : Ry — R, with
M>(0) = 0 such that

(DI < Mip!" " lx(t0)|| + M2 (€ + p) (5.67)

holds for all ¢ > ¢y and x(t).
(4) The switching sequence {i(t),i(fo+ 1),...} is finitely convergent, i.e.
i(f) =const, ¥ ¢ > t* for some ¢* if the uncertain parameters are constant.

Proof See Appendix B.

We note that even though the value i can be arbitrarily chosen, the estimate
of the disturbance bound, £(¢), can theoretically be larger than & by the margin
u. Consequently, the state is only guaranteed to converge to a residual set
slightly larger than what is given in Theorem 3.4. Our simulation results
indicate that £(¢) very likely converges to a value substantially smaller than &.
Nevertheless, there are cases where £(7) exceeds £. One possible solution is to
reduce the value of p. However, a small p may imply a large number of
potential switchings.

5.4 Indirect localization principle

The idea of indirect localization was first proposed in [39] and is based on the
use of a specially constructed performance criterion as opposed to direct
localization considered in the previous section. To this end the output of the
plant is replaced by some auxiliary output observation which is subsequently
used for the purpose of model falsification. The notion of ‘stabilizing sets’
introduced below is central in the proposed indirect localization scheme. We
first define an auxiliary output, z(7), as

z(1) = Cx(1), CT e R*"! (5.68)
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and the inclusion:
Lo |2(0] < Allx( = DI + o (5.69)

Definition 4.1 7, is said to be a stabilizing inclusion of the system (5.18) if Z,
being satisfied for all 7> #, and boundedness of &(1),(&(7) € /), implies
boundedness of the state, x(7), and in particular, there exist «p, Sy and
o € (0,1) such that:

I < oo™ [Ix(20) | + Boll&le.,

Remark 4.1 Note that the inclusion, Z; is transformed into a discrete-time
sliding hyperplane [11] as A — 0,¢9 — 0. In contrast with conventional
discrete-time sliding mode control we explicitly define an admissible vicinity
around the sliding hyperplane by specifying the values A > 0 and ¢y > 0.

Definition 4.2 The uncertain system (5.18) is said to be globally (C,A)-
stabilizable if

(1) Z, is a stabilizing inclusion of the system (5.18), and
(2) there exists a control, u(z) = —Kx(¢), such that after a finite time, Z, is
satisfied.

We will show below that stabilizing sets can be effectively used in the process
of localization. Before we proceed further we need some preliminary results.
Assume for simplicity that 7(z) = 0. The case n(¢) # 0 is analysed similarly,
provided ¢ is sufficiently small.

Lemma 4.1 Let sup,>, |£(7)| < oo, CB > 0. Then there exists a ¢y such that
the system (5.18) is globally (C,0)-stabilizable if and only if

[Amax(PA)| < 1 (5.70)
where

p= (1— (CB)_IBC> (5.71)

Proof First, suppose that (5.70) is violated, that is
[Amax(PA)| > 1 (5.72)

We now show that Z, is not a stabilizing inclusion for any ¢y > 0. To do this,
we take £(r) = 0, and u(r) = —(CB)~'CAx(r). With this control we note from
(5.18) that z(¢) = 0 for ¢ > 0, and so for any ¢y > 0,z(¢) satisfies (5.69). The
equation for the closed loop system takes the form

x(t+1) = Ax(t) + Bu(t) = PAx(t) (5.73)

which is not exponentially stable. Therefore, (5.72) implies that there is no ¢
such that Z, is a stabilizing inclusion. We now establish the converse. Suppose
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(5.70) is satisfied. Then we can rewrite (5.18) as:

x(t+ 1) = PAx(t) + Bu(t) + é (BCA)x(t) + E&(1)
(5.74)

B
= PAx(1) +§(z(z‘ + 1) — CE¢(1)) + E&(1)
From (5.74) it is clear that if z and & are bounded, then in view of (5.70), x(7) is
bounded. Therefore, Z, is a stabilizing inclusion for any ¢(. Finally, we take the

control

u(t) = —é (CA)X() (5.75)

which gives

z(t+ 1) = CE(1) (5.76)
Therefore, for ¢y > |CE|sup, |£(7)|,Z, is satisfied for all # > 0, and the proof is
complete.

Remark 4.2 The control, (5.75), is a ‘one step ahead’ control on the auxiliary
output, z(¢). It then follows that the stability condition (5.70), (5.71) is
equivalent to the condition that C(zI — 4)'B be relative degree one, and
minimum phase.

Remark 4.3 If the original plant transfer function, (5.14), is known to be
minimum phase, and relative degree one then it suffices to take C = ET, and
the system is then ¢ stabilizable for any ¢y > 0.

If the original plant transfer function is non-minimum phase, then let:

C= [foafl -~'fi172;g07gl gnfl] (577)

The transfer function from u(7), via (5.14) to z(t) is then:
z(1) = F(q)u(1) + G(q)y(1)

_ (D(q)F(q) + G(q)N(q)> o) (5.78)
D(q)

where IF(Q) =(fo+fig+- +/i2q"?) and Glq) = (go+g1q+ ... +
g’771qn_ )

Therefore, for a non minimum phase plant, knowledge of a C such that Z, is
a stabilizing inclusion is equivalent to knowledge of a (possible improper)
controller {u(r) = —G(q)/F(q)y(r)} which stabilizes the system. Because we are
dealing with discrete-time systems, it is not clear whether this corresponds to
knowledge of a proper, stabilizing controller for the set.

Remark 4.4 Because of the robustness properties of exponentially stable
linear time invariant systems, Lemma 4.1 can easily be generalized to include
nonzero, but sufficiently small A.
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Lemma 4.2 Any  which satisfies assumptions (A2) and (A3) has a finite
decomposition into compact sets:

L
0= U o (5.79)
(=1

such that for each /, there exists a C;,A, and ¢y, such that, for all
(4,B) € Q’, T, is a stabilizing inclusion, and C,B has constant sign.

Proof (Outline)
It is well known that (see, e.g., [8]) that 2 has a finite decomposition into sets
stabilized by a fixed controller. From Remark 4.3, the requirements for
knowledge of a C, such that Z(Cy, -, -) is a stabilizing set on (2 are less stringent
than knowledge of a stabilizing controller for the set Q.

We now introduce our control method, including the method of localization
for determining which controller to use. The first case we consider is the
simplest case where there is a single set to consider.

Case I1: L =1 (sign of CB known)
This case covers a class of minimum phase plants, plus also certain classes of
nonminimum phase plants.

For L =1 we have:

a=0'={Jo (5.80)
i=1
For i=1...s we define a control law:
i 1
M([)’ — —K,’X([) L& _ CiBiCAiX([) (581)

where the plant model, 4;, B; is in the set €2;. We require knowledge of a A such

that:
CB

IC(4 - A,~(§>)|| < A; Vi,VY(A4,B) € Q; (5.82)
and Z, is a stabilizing inclusion on €; for all i. Note that for any bounded {2, for
which we can find a single C which gives C(zI — A)”' B minimum phase and
relative degree one we can always find, for s large enough, a A with the
required properties (see, e.g., [8]).

At any time ¢ > 0, the auxiliary output z(z + l)i which would have resulted if
we applied u(1)' = —K;x(7) to the true plant is, using (5.18).

2(t+ 1) 2 CAx(t) + CBu(1)' + CE&(1)

. (5.83)
=z(t+1)— CB(u(t) - u(t)’)
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Note that if the true plant is in the set 2;, then from (5.83) and (5.81)

i B
S+ 1) = C<A _ A,»(%))x(t) + CEE(h) (5.84)
and, therefore, if the true plant is in €2;, then from (5.82), and with ¢y = |CE{|
2+ 1)] < Allx(1)]| + <o (5.85)

Our proposed control algorithm for Case 1 is as follows (where, without loss of
generality, we take CB > 0).

Algorithm C
1.1 Initialization
Define
So={1,2,...,s} (5.86)
1.2 If t > 0,
If z(¢) > Alx(z — 1)| + ¢o then set S, = S,y — {k, ..., Js—1, Js}
If —Z(Z) > A|x(l — 1)| + ¢o then set S, = S, — {jl,jz, - ,k}
otherwise, S; = S;_.
where k,j; ... j; and s are integers from the previous time instant (see
1.4, 1.5).
1.3 If >0,
For all i € S, compute u(z)" as in (5.81).
1.4 Order u(1)', i € S; such that:

u(l) <u(n” < ... <u()” (5.87)
1.5 Apply the ‘median’ control:
u(t) = u(t)* (5.88)

where k = ji2/,
1.6 Then wait for the next sample and return to 1.2.

We then have the following stability result for this control algorithm.

Theorem 4.1 The control algorithm, (5.86)—(5.88), applied to a plant where C
is known, and where the decomposition (5.80) has the properties that (5.82) is
satisfied and Z, is a stabilizing inclusion, has the following properties:
(a) The inclusion:
Zo:z(0)| < Allx(r = D] + <o (5.89)
is violated no more than N = |log,(s)| times, and
(b) All signals in the closed loop system are bounded. In particular, there exist

constants «, 5 < oco,0 € (0,1) such that all trajectories satisfy, for any

to, T >0 .
[x(20 + T)|| < ao” [|x(10)]| + 8 (5.90)
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Proof
(a) Suppose at time (1 + 1), (5.89) is violated. This can occur in one of two
ways which we consider separately:
(i) :
Z(t+ 1) =z(t+ 1)" > Allx(0)| + co (5.91)
In this case, because of the ordering of u(7)" in (5.87), and the definition of
z(t+1)" in (5.83), then

Z(t+ 1) > Allx(0)]| + co (5.92)
forall i e {k,... js—1,Js}
(i) .
Z(t+ 1) =z(t+ 1)" < —(Al|x(@)|| + ¢o) (5.93)
In this case .
z(t+ 1) < =(Allx()] + <o) (5.94)
for all i = {ji,/2,...,k}. In either case, we see that if (5.91) is violated at
time ¢, then !
St+1 § ES[ (595)

from which the result follows.

(b) First, we note that the control is well defined, that is, S; is never empty.
This follows since there is at least one index, namely the index of the set £2;
which contains the true plant, which is always an element of S,.

Next, we note that although we cannot guarantee that we converge to the
correct control, from (a) we know (5.85) is satisfied all but a finite number of
times.

Since Z 7 is a stabilizing inclusion, then by definition the states and all signals
will be bounded.

Furthermore, since Z,; is a stabilizing inclusion, there exist «g, Sy and
o € (0,1) such that if the inclusion (5.89) is satisfied, for 7 € [ty, 70 + T), then

1x(t0 + T)|| < awo " [|x(t0) | + o (5.96)

(Note that if this is not the case, then from the definition, Z, is not a stabilizing

inclusion.) Also, there exist @ and (3 such that when (5.89) is violated:
[x(t+ D < allx(0)]| + 5 (5.97)

If we define oy = % and B = (awafy + Bo + apf), then after some algebraic
manipulations we can show that for any 79, T > 0 such that (5.89) is violated
not more than once in the interval, (1, % + T), then

1x(t0 + T)|| < aro”[|x(t0) | + By (5.98)

aon &ozg

Also, we can show that with ap = =— and 3, = By + B + apaf =
g
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(14 ap + (apa)?)Bo(1 + @) B, provided (5.89) is not violated more than
twice in the interval [tg, 7o + T), then

Ix(t0 + T)| < caza” [[x(10) || + 52 (5.99)

Repeating this style of argument leads to the conclusion that with

\N
o= o (2)', = [ (22

(0405() —1

(Bo + B)

then if there are not more than N switches in [, o + T), then
Ix(t0 + T)|| < ano™ [[x(to)[| + By (5.100)

The desired result follows from (a) since we know that there are at most
N = [log,(s)] times at which (5.89) is violated.

Case 2. L>1
Suppose that we do not know a single C such that I, is a stabilizing inclusion,
and CB is of known sign, then using finite covering ideas [§8], as in Remark 4.3

let
L L s
o=Jo=U U, (5.101)
/=1 /=1 m=1

where for each /, we know C,, Ay, ¢} such that Z, is a stabilizing inclusion on
Q) and the sign of (C,B) is constant for all plants in Q.

At this point, one might be tempted to apply localization, as previously
defined, on the sets € individually and switch from €’ should the set of valid
indices, S’, become empty. Unfortunately, this procedure cannot be guaran-
teed to work. In particular, if  does not contain the true plant, Z, need not be
a stabilizing inclusion, and so divergence of the states may occur without
violating (5.89). To alleviate this problem, we use the exponential stability
result, (5.90), in our subsequent development.

Algorithm D
We initialize ¢(i) =0, Ry = {1,2,...,L} and take any Zy € Ry.
We then perform localization on Q’, with the following additional® steps: If

at any time ‘
X0 > o™ O|x(e()I| + (5.102)

(where «, 0, § are the appropriate constants for  from Theorem 4.1), then we
set 8" ={}. If at any time ¢, S’ becomes empty, we set R, = R, — {/},
t(i) = t, and we take a new / from R,.

2In fact, we can localize simultaneously within other Q' i# /: however, for
simplicity and brevity we analyse only the case where we localize in one set at a time.
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With these modifications, it is clear that Theorem 4.1 can be extended to
cover this case as well:

Corollary 4.1 The control algorithm (5.86)—(5.88) with the above modifica-
tions applied to a plant with decomposition as in (5.101) satisfies:

(a) There are no more than: L — 1 + 3.7, |log,(s/)] instants such that
20+ 1) = A |x(0) | + oy, (5.103)

(where /, denotes the value of 7 at time ?).
(b) All signals in the closed loop are bounded. In particular, there exist
constants @, 5 < 00,5 € (0, 1) such that for any #,, 7 > 0

Ix(t0 + T)|| < ac" [|x(to) + 5 (5.104)

Proof Follows from Theorem 4.1.

5.4.1 Localization in the presence of unknown disturbance

In the previous section the problem of indirect localization based switching
control for linear uncertain plants was considered assuming that the level of the
generalized exogenous disturbance £(7) was known. This is equivalent to
knowing some upper bound on £(¢). The flexibility of the proposed adaptive
scheme allows for simple extension covering the case of exogenous distur-
bances of unknown magnitude. This can be done in the way similar to that
considered in Section 5.3.2. Omitting the details we just make the following
useful observation. The control law described by Algorithms C and D is well
defined, that is, R, # {} for all 7 > #g if ¢ > sup,,, |C/EE(7)|, V£ =1,..., L.
This is the key point allowing us to construct an algorithm of on-line
identification of the parameters ¢j,/ =1,..., L.

5.5 Simulation examples

Extensive simulations conducted for a wide range of LTI, LTV and nonlinear
systems demonstrate the rapid falsification capabilities of the proposed
method. We summarize some interesting features of the localization technique
observed in simulations which are of great practical importance.

(1) Falsification capabilities of the algorithm of localization do not appear to
be sensitive to the switching index update rule. One potential implication
of this observation is as follows. If not otherwise specified any choice of a
new switching index is admissible and will most likely lead to good
transient performance;

(i1)) The speed of localization does not appear to be closely related to the total
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Figure 5.4 Example of localization: constant parameters

number of fixed controllers obtained as a result of decomposition. The
practical implication of this observation (combined with the quadratic
stability assumption) is that decomposition of the uncertainty set {2 can be
conducted in a straightforward way employing, for example, a uniform
lattice which produces subsets ;, i = 1,2,..., L of an equal size.

Example 5.1 Consider the following family of unstable (possibly nonmini-
mum phase) LTV plants:

y() =12p(t — 1) = 1.22y(t = 2) + b1 ()u(t — 1) + ba(H)u(t — 2) + £(2)
(5.105)

where the exogenous disturbance £() is uniformly distributed on the interval
[-0.1, 0.1], and b;(¢) and b,(¢) are uncertain parameters. We deal with two
cases which correspond to constant parameters and large-size jumps in the
values of the parameters.

Case 1: Constant parameters
The a priori uncertainty bounds are given by

bi(t) € [-1.6, —0.15]U[0.15, 1.6], ba(2) € [-2, —1]U]L, 2] (5.106)
ie. Q={[-1.6, —0.15]U[0.15, 1.6] x [-2, —1]U[1, 2]}. To meet the require-

ments of the localization technique, we decompose €2 into 600 nonintersecting
subsets with their centres 6; = (by;,b2),i = 1,...,600 corresponding to
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byye{-16, —1.5,...,-0.3, =0.2, 0.2, 0.3,...,1.5, 1.6}
by e{-2, -19,...,—-1.1, =1, 1, 1.1,...,1.9, 2}
respectively.

Figures 5.4(a)—(c) illustrate the case where 6 is constant. The switching
sequence {i(1),i(2),...} depicted in Figure 5.4(a) indicates a remarkable speed
of localization.

Case 2:  Parameter jumps

The results of localization on the finite set {9,«}?2? are presented in Figures
5.5(a)—(e). Random abrupt changes in the values of the plant parameters occur
every 7 steps. In both cases above the algorithm of localization in Section 5.2 is
used. However, in the latter case the algorithm of localization is appropriately
modified. Namely, /(¢) is updated as follows

10 = {1(;- DI i I(t—1)ni(t) #{}

) , (5.107)
(1) otherwise
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Once (or if) the switching controller, based on (5.107) has falsified every index
in the localization set it disregards all the previous measurements, and the
process of localization continues (see [40] for details). In the example above a
pole placement technique was used to compute the set of the controller gains
{Ki}?gl). The poles of the nominal closed loop system were chosen to be (0,
0.07, 0.1).

Example 5.2 Here we present an example of indirect localization considered
in Section 5.4. The model of a third order unstable discrete-time system is given
by

Y+ 1) =aiy(t) + ay(t — 1)+ asy(t — 2) + u(t) + £(2) (5.108)

where a;,a,,a; are unknown constant parameters, and &(z) = & sin(0.9¢)
represents exogenous disturbance. The a priori uncertainty bounds are given by

ay € [-1.6,—0.1] U [0.1,1.6], by € [~1.6,—0.1] U [0.1,1.6], a3 € [0.1,1.6]
(5.109)

ie. Q={[-1.6,—0.1]U[0.1,1.6] x[~1.6, —0.1]U[0.1, 1.6]x[0.1,1.6]}. Choosing

0 20 40 60 80 100 120 140 160 180 200
@)

Control

_6 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

(b)

Figure 5.6 Example of indirect localization
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the vector C and the stabilizing set Z as prescribed in Section 5.4, we obtain

T:|z(t+ 1) < Allx(0)|| + co (5.110)
where C = (0, 0, 1) and A = 0.6. We decompose 2 into 256 nonintersecting
subsets with their centres 6; = (ai;, az,a3;), i =1,...,256 corresponding to

a; € {-0.3,-0.7,-1.1,-1.5,0.3,0.7, 1.1, 1.5} (5.111)
ay € {-0.3,-0.7,-1.1,—1.5,0.3,0.7, 1.1, 1.5} (5.112)
as € {0.3,0.7,1.1, 1.5} (5.113)

256

respectively. This allows us to compute the set of controller gains {K;};”],
K; = (kii, ki, k3;). Each element of the gain vector k;, i€ {l,2,3},
je{l,...,256} takes values in the sets (5.111), (5.112), (5.113), respectively.
The results of simulation with & = 0.1, a; = —1.1, a = —0.7, a3 = 1.4, are
presented in Figure 5.6(a)-(b). Algorithm C has been used for this study.

5.6 Conclusions

In this chapter we have presented a new unified switching control based
approach to adaptive stabilization of parametrically uncertain discrete-time
systems. Our approach is based on a localization method which is conceptually
different from the existing switching adaptive schemes and relies on on-line
simultaneous falsification of incorrect controllers. It allows slow parameter
drifting, infrequent large parameter jumps and unknown bound on exogenous
disturbance. The unique feature of localization based switching adaptive
control distinguishing it from conventional adaptive switching controllers is
its rapid model falsification capabilities. In the LTI case this is manifested in
the ability of the switching controller to quickly converge to a suitable
stabilizing controller. We believe that the approach presented in this chapter
is the first design of a falsification based switching controller which is
applicable to a wide class of linear time-invariant and time-varying systems
and which exhibits good transient performance.

Appendix A

Proof of Theorem 3.1 First we note that it follows from Lemma 3.1 and the
switching index update rule (5.37) that the total number of switchings made by
the controller is finite. Let {71, 2,...,#} be a finite set of switching instants. By
virtue of (5.31)—(5.33) the behaviour of the closed loop system between any two
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consecutive switching instants #,,¢;,1 <s,j < [, > t, is described by
x(t+1) = (A(0) + B(0)Ki,))x(1) + E(E(1) + (1))
= (A(0ir,)) + B(Oi(1,)) K, )x(1) + Ex(1)

where [(()| < rig) [l(D] + &+ 1(2).

Therefore, taking into account the structure of the parameter dependent
matrices 4(6) and B(#), namely the fact that only the last rows of 4(6) and
B(0) depend on 6 the last equation can be rewritten as

X(t+ 1) = (A(Oi,) + A0(1)) + B(0ir,) + AO(1))Kj(s,))x(1) + EE(r)  (5.115)

for some Af(z) : |[A0(7)|| < 7y +¢g and |£(1)] < E+17(). This is a direct
consequence of the fact that the last equation in (5.114) can be rewritten as
y(t+1) =0, ¢(r) + (1) and that max)ag<i ||A07¢(1)]| = [|¢(7)]| holds for
any ¢(¢). By Definition 3.2 and condition (C3’) the system (5.115) is quad-
ratically stable with & (1) = 0 and ¢, being fixed; moreover, there exists a positive
definite matrix H = H, such that

14 (0ir,) + A0(1)) + B(0ir,) + A0(1)) Kigyy |, <1 (5.116)

(5.114)

P, = max
) [[AO(N)]|<rigs)+4
Here ||x||,; = (xTHx)l/2 and for any matrix 4 € R™", ||4||, denotes the
corresponding induced matrix norm. The equation (5.115) along with the
property of quadratic stability guarantee that between any two consecutive
switchings the closed loop system behaves as an exponentially stable LTI
system subject to small parametric perturbations Af(¢) and bounded dis-
turbance é(l) and this property holds regardless of the possible evolution of
the plant parameters. This is the key point making the rest of the proof
transparent.

Assume temporarily that 77(¢) = 0, then it follows from (5.115), (5.116) that

[t + D, < Prllx()|ly, + &, (5.117)
1t + 2|1, < PLIIX() |, + (P, + 1DE, (5.118)
~ k .
1ty + k)|, < Pyllx(e)llg, +€) P (5.119)
i=1
k

1 (ts + N < max (1) Amin (H)) PPN (e) |+ €S Pt Amin (H)'

i=1
(5.120)

where §, = max<¢ ||EE]|p, -
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Denote
= . 172 —
M= Jnax Amax(Hy,) [ Amin(H,)) ', p= Inax P <1, (5.121)
a )2 j-1
M(§) = max &/ (Amin( E P/7 <0 (5.122)

Since 0y € 0(1,), Ky € {K,-}l.:1 for all 1 € N, i(¢) € I,, there exist constants
0 < My < 00, v = maxy ¢ ||[EE|[ < oo such that

[lx(2)[] < Mo|x(z; = DIl + (5.123)
for any switching instant ¢, < z; < ¢,.
Hence,
[t0,11) = [[x(e)|| < Mo||x(tr = D[ 470 < MoMp" ="~ x(10)|| + MoM (€) + 0
(5.124)
[Ix(2)] < Molx(t = 1)|| + 70 < MagM?p"~"72(|x(10) || + M2 (€)

(5.125)

where My(€) = Mo(M(MoM(€) + o) + M(§)) +;
[t,00) = [Ix(O)ll < MEM o= |x(10)]| + Mi(&) (5.126)

Having denoted M, = (MoM/p), M>(&) = M;(€) < oo we obtain (5.42). To
conclude the proof we note that the result above can be easily extended to the
case 7)(t) # 0, provided that the ‘size’ of unmodelled dynamics ¢ is sufficiently
small. Indeed, let 7(¢) # 0. First, we note that due to the term 7(¢) in the
algorithm of localization (5.33)—(5.37) the process of localization cannot be
disrupted by the presence of small unmodelled dynamics. In view of (AS),
(5.117)—(5.126) it is easy to show that provided that ¢ is sufficiently small

[11,00) : [[x(1)]| < MM p ="~ x(20) || + My(&) + Myellx(to)l|  (5.127)
with M, being a positive constant independent of x(#y). Therefore
Ix(D)]] < (M1p"™" + Mye)||x(10)l] + Mi(€) (5.128)

is valid for all zp € N, ¢t > ;. From (5.128) and assumption (A5) exponential
stability of the closed loop system (if M;(£) = 0) or exponential convergence of
the states to the residual set (if M 1(€) > 0) can be easily established. Indeed, in
this case it is always possible to specify a sufficiently large integer 7" such that
(M p” + M,g) < 1. This, in turn, trivially implies stability. The finite number
of the controller switchings follows directly from the switching index update
rule (5.37). This also implies the finite convergence of switching; however, it is
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quite difficult, in general, to put an upper bound on #;. This obviously does not
affect the stability properties of the closed loop.

Appendix B

Proof of Theorem 3.4  First we note that the property (1) follows directly
from the structure of the algorithm of localization (5.66). It is straightforward
to verify that relations (5.60)—(5.65) guarantee that the sequence of localization
sets I(¢) is well defined.

To prove (2) consider first the case v = 0. It is clear that

K D # ) (5.129)

l

if' ming¢y {f(k +1)} > €& for all t> 1. Since, according to (5.64), the
estimate §( ) is updated only if (5.129) does not hold, and taking into account
the discrete nature of updating expressed by (5.65) we conclude that
sup &(1) < €+ p (5.130)
>t
Let @« > 0. Then it is easy to see that the arguments above remain valid for
any finite interval of time [s(7), s() + 74), provided that the rate of parameter
variations is sufficiently small, namely, o < g/t4. To conclude the proof of
(5.130) it suffices to note that the estimate £(¢) in (5.64) does not change if
t—s(t) > 1.

Proof of statements (5.3),(5.4) follows closely those of Theorem 3.1. Here
we present a brief sketch of the proof. Consider a finite time interval
T = [s(1),s(t) + t4),] < ty < 0o. Let &(s(r)) > &, then the total number of
switchings s made by the controller over T satisfies the condition s </ if
a < g/t4. Therefore, the states are bounded by (5.126) with 7 replaced by s(¢).
Moreover, (5.126) is valid for any time interval T = [s(¢), s(¢) + ), > t4 such
that

h )£ (5.131)

A l

Relying on (5.126) and taking into account the fact that the index s(¢) is reset
every time when (5.131) is violated for ¢—s(r) > t, it is always possible to
choose sufficiently large integer #; such as to guarantee exponential stability
of the closed loop system. Let & be unknown, then for any &(fy) > 0 the
inequality (5.126) can be possibly violated no more than ([¢/u] + 1) times.
Relying on this fact and using standard arguments exponential stability of the
closed loop system is easily established.
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6

Adaptive nonlinear control:
passivation and small gain
techniques

Z.-P. Jiang and D. Hill

Abstract

In this chapter, passivation and small gain techniques are used as two
fundamental tools to systematically design stabilizing adaptive controllers for
new classes of nonlinear systems. We first show that, for a class of linearly
parametrized nonlinear systems with only unknown parameters, the concept of
adaptive passivation can be used to unify and extend most of the known
adaptive nonlinear control algorithms based on Lyapunov methods. Then, we
consider the global robust adaptive control problem for a broader class of
nonlinear systems with time-varying and dynamic uncertainties in addition to
parametric uncertainties. Small gain arguments are used to provide a robus-
tification methodology for prior backstepping-based adaptive controllers.

6.1 Introduction

The area of adaptive nonlinear control has moved on quickly since the early
1990s — see the survey paper [37] and two more recent textbooks [26, 32]. We
observe that the development of most adaptive nonlinear controller designs
was based on Lyapunov methods. In this chapter, we shall approach this field
from the somewhat different input/output viewpoint using the concepts of
passivation and small gain. Our contributions are twofold: (1) we exploit recent
advances on the feedback stabilization of nonlinear systems via passive systems
theory and apply some of these useful results to formulate a passivation
framework for adaptive nonlinear stabilization; (2) we employ small gain
techniques as a means to study robustness issues in adaptive systems with
unmodelled dynamics. The latter topic has received less attention in the
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literature and the results presented here are a substantial development beyond
earlier results.

In the first part, after reviewing some needed definitions and properties of
passivity and passive systems, we briefly state the breakthrough made by
Byrnes, Isidori and Willems [2] on the feedback equivalence of nonlinear
systems to passive systems (or simply, passivation). Roughly speaking, a
nonlinear control system can be transformed into a passive system via a
change of feedback if and only if it is minimum phase and of relative degree
one. As shown in [2], this theorem together with other passivity tools allow
unification of early global stabilization results. Using this as a starting point,
we first establish an adaptive version of a basic result in [2], that is, a linearly
parametrized nonlinear system is feedback equivalent to a passive system if and
only if it is adaptively stabilizable. Then, we show this property can be
propagated each time we add a feedback passive system with linearly appearing
unknown parameters. This recursive passivation design procedure is different
to the currently popular adaptive backstepping with tuning functions introduced
in [26] in several respects. We were motivated by a passivity-aimed adaptive
design strategy. Some elementary examples illustrate this point in the case of
output feedback passivation [15]. Our passivation-based adaptive controller
design reduces to the above-mentioned Lyapunov-type adaptive scheme in the
case of strict-feedback structures, but the construction turns out to be simpler
and easier to understand by means of feedback passivation. To be more
precise, we first augment the system (with unknown parameters) under
consideration by adding a new parameter update system with adaptive law
as input. Then, we only need to render the augmented system passive by a
change of feedback at the levels of both control input and adaptive law. The
immediate benefit is that we can do it recursively and shed light on how
overparametrization is avoided.

The second part of the chapter collects a series of nonlinear small gain
techniques recently presented in our papers [14, 16, 20, 17, 21, 36] on the basis
of Sontag’s input-to-state stability (ISS) concept [42, 44]. As demonstrated in
these papers and other references therein, nonlinear small gain theorems have
proved to be powerful design tools for interconnected nonlinear systems with
complex structure. For a class of feedback linearizable systems with various
disturbances including parametric uncertainty and unbounded nonlinear
unmeasured dynamics, we show that these techniques are of paramount
importance in designing a robust adaptive controller in the presence of
unbounded unmodelled dynamics. Adaptive feedback designs without and
with dynamic normalization will be proposed and compared in two elementary
examples including a physical example of a simple pendulum.

The rest of the chapter is organized as follows: Section 6.2 states needed
definitions and some known basic results. Section 6.3 is devoted to the adaptive
passivation development for interconnected nonlinear systems. Section 6.4
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presents a novel small-gain based adaptive scheme for nonlinear systems with
unbounded unmodeled dynamics. Section 6.5 offers some brief concluding
remarks.

6.2 Mathematical preliminaries

6.2.17 Notation and basic definitions

The notation used in this article is quite standard: |-| denotes the usual
Euclidean norm for vectors and || - || denotes the L., norm for time functions.
For a real-valued differentiable function 7, ' stands for its derivative. For a
vector-valued function z of time ¢, Z denotes its time derivative while zj, ;)
denotes the truncated function of z over the interval [f,1]. xT is the
transposition of the vector x € R". For a symmetric and positive definite
matrix P in R™", A (P) is the maximal eigenvalue of P.

The concepts of positive definite, proper, class K—, K,,— and KL— functions
are widely used in the literature of Lyapunov stability theory [7], [24]. A
function ¥V : R" — R, is said to be positive definite if V(0) =0 and V(x) >0
for all x # 0. It is said to be proper, or radially unbounded if V(x) — oo as
|x| — co. A function v : Ry — Ry is said to be of class K if it is continuous,
strictly increasing and v(0) = 0. It is of class K if, in addition, it is proper. A
function 8: Ry x Ry — Ry is of class KL if, for each fixed ¢, the function
B(-,1) is of class K and, for each fixed s, the function ((s, -) is decreasing and
tends to zero at infinity.

6.2.2 Passivity and feedback passivation

We begin with a brief review of basic definitions and properties related to
passive systems. Then we present several more recent results about feedback
equivalence of a nonlinear system to a passive system via static state feedback.
The interested reader is referred to [50, 12, 2] and references therein for the
details.

6.2.2.1 Passivity and passive systems
Consider a nonlinear control system with outputs:

X =f(x)+ G(x)u (6.1)
¥ = h(x) (6.2)

where xe R", u,yeR”, [ R'—=R", G: R" - R™ and h: R" — R".
Assume that these functions are locally Lipschitz with £(0) = 0 and /(0) = 0.
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Definition 2.1 (Passivity) A system (6.1)—(6.2) is said to be C"-passive if there
exists a C" storage function V' : R" — R, with 77(0) =0, such that, for all
admissible inputs u, all initial conditions x° and all t > 0

V(x(1) - V(x*) < / VT (s)u(s) ds (6.3)

Definition 2.2 (Strict passivity) A system (6.1)—(6.2) is said to be output strictly
C"-passive if there exists a C" storage function V : R" — R, with V(0) =0,
and a positive definite function S;(y) such that, for all admissible inputs u, all
initial conditions x° and all # > 0

Vx(r) = V(x°) < /OlyT(s)u(s) ds — /()[Sl (y(s)) ds (6.4)

If (6.4) holds with a positive definite function S»(x), i.e.

V(x(1)) — V(x°) §/0 T (s)u(s) ds — /0 SH(x(s)) ds (6.5)

then the system is said to be (state) strictly C"-passive.

The passivity and strict passivity properties of a nonlinear system can be
tested by the following ubiquitous nonlinear KYP lemma.

Lemma 2.1 [10] A system (6.1)(6.2) is (resp. strictly) C!-passive if and only if
there exists a C! non-negative function ¥ (x), with ¥ (0) = 0, such that L,V (x)
is negative semi-definite (resp. negative definite) and L,V (x) = /(x) for all
x e R

A fundamental property of a passive system is the Lyapunov stability of its
unforced system (i.e. u =0 in (6.1)—(6.2)) and its reduced system with zero-
output (i.e. y = 0 in (6.1)). More interestingly, under a zero-state detectability
condition, passive systems are asymptotically stabilizable by static output
feedback. We first recall the definition of the zero-state detectability.

Definition 2.3 (Zero-state detectability) A system of the form (6.1)-(6.2) is
locally zero-state detectable if there exists a neighbourhood N of x = 0 such
that for any initial condition x(0) € NV,

u=0 and y=0 = limx(r)=0 (6.6)

—00

It is (globally) zero-state detectable if the property (6.6) holds with A/ = R".

Theorem 2.1 [11], [2] Assume that system (6.1)<(6.2) is C-passive with a
positive definite storage function ¥ and that it is locally zero-state detectable.
Then, for any ‘first-sector third-sector’ function ¢, that is, a continuous
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function ¢ such that y7¢(y) > 0if y # 0

u=—¢(») (6.7)

is an asymptotically stabilizing controller for the system (6.1)—(6.2).
Furthermore, if 7 is proper and (6.1)—(6.2) is (globally) zero-state detectable,
the equilibrium x =0 of the closed loop system (6.1)—(6.7) is globally
asymptotically stable (GAS).

6.2.2.2 Feedback passivation

As seen in the preceding subsection and demonstrated by numerous research-
ers, passive systems enjoy many desirable properties which turn out to be very
useful for practical control systems design. Naturally, this motivated people to
address the feedback passivation issue. That is, when can a nonlinear control
system in the form (6.1)—(6.2) be rendered passive via a state feedback
transformation? This question had remained open until [2] where Byrnes,
Isidori and Willems nicely provided a rather complete answer by means of
differential geometric systems theory.

Definition 2.4 (Passivation) A system (6.1)-(6.2) is said to be feedback
(strictly) C"-passive if there exists a change of feedback law

u = i (x) + po(x)o (6.8)
such that the system (6.1)—(6.2)-(6.8) with new input v is (strictly) C"-passive.

Theorem 2.2 [2] Consider a nonlinear system (6.1)—(6.2) having a global
normal form

z= q(z,y)
y=>b(z,y) +alz,y)u

where a(-) is globally invertible. Then system (6.1)—(6.2), or (6.9) is globally
feedback equivalent to a (resp. strictly) C>-passive system with a positive
definite storage function, if and only if it is globally weakly minimum phase
(resp. globally minimum phase).

(6.9)

As an application of this important result to the global stabilization of
cascaded nonlinear systems, it was shown in [2] that several previous stabil-
ization schemes via different approaches can be unified. In particular, combin-
ing Theorems 2.1 and 2.2, the following general result can be established.

Theorem 2.3 [2, 34] Consider a cascaded nonlinear system of the form
¢ =/o(¢) + /(¢ x)y
X =f(x)+ g(x)u (6.10)
y=h(x)
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Suppose C':fo(g) is GAS at ¢ = 0. It is also assumed that {f, g, i} is zero-
state detectable and C'-passive with a positive definite and proper storage
function (r > 1). Then system (6.10) is GAS by smooth state feedback.

It should be noted that corresponding local results also hold.

6.2.3 Nonlinear gain

The concept of nonlinear gain has recently been brought to the literature from
two apparently different routes: the state-space approach [42, 44, 45, 46] and
the input—output approach [39, 9, 30]. The special case of linear or affine gain
had previously been extensively used in the stability theory of interconnected
systems [5, 11, 33]. In Section 6.4, this notion will play a key role in addressing
the robust adaptive control problem for parametric-strict-feedback systems in
the presence of nonlinear dynamic uncertainties.

In what follows, we limit ourselves to state-space systems. We begin with the
introduction of Sontag’s input-to-state stability (ISS) concept in which the role
of initial conditions are made explicit. Then, we give an output version of this
notion to allow for a broader set of controlled dynamical systems. Recent
applications of these notions to establish nonlinear small gain theorems for
interconnected feedback systems are recalled in the subsection 6.2.3.2.

6.2.3.1 Input-to-state stable systems
Consider the general time-varying dynamical system with outputs

R :f(tvxv I/l)

6.11
y =h(t,x,u) ( )

where x € R” is the state, u € R™ is the control input and y € R" is the system
output. Notice that many dynamical systems subject to exogenous disturbances
can be described by a differential equation of the form (6.11).

Roughly speaking, the property of input-to-state stability (ISS) says that the
ultimate bound of the system trajectories depends only on the magnitude of the
control input u and that the zero-input ISS system is globally uniformly
asymptotically stable (GUAS) at the origin. More precisely,

Definition 2.5 A system of the form (6.11) is said to be input-to-state stable
(ISS) if for any initial conditions 7y > 0 and x(zy) and for any measurable
essentially bounded control function u, the corresponding solution x(¢) exists
for each t > 7 and satisfies

Ix(0)] < B(Ix(20)l, £ = t0) + v(lluagr.11]) (6.12)

where (3 is a class KL-function and + is a class K-function.
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An output version of the ISS property was given in [21, 16] and is recalled as
follows.

Definition 2.6 A system of the form (6.11) is said to be input-to-output
practically stable (IOpS) if for any initial conditions 7y > 0 and x(zy) and for
any measurable essentially bounded control function u, the corresponding
solution x(7) exists for each ¢ > 1y and satisfies

@ < B(x(@0)l, 1 = 10) + ([[ug.0ll) +d (6.13)

where (3 is a class KL-function, + is a class K-function and d is a non-negative
constant.

If d =0 in (6.13), the IOpS property becomes [0S (input-to-output stabil-
ity). Moreover, the system (6.11) is input-to-state practically stable (ISpS) if
(6.13) holds with y = x.

An obvious property of an IOpS system of form (6.11) is that the system is
bounded-input bounded-output (BIBO) stable. In addition, for any IOS system
(6.11), a converging input yields a converging output.

Among various characterizations of the ISS property is the notion of an ISS-
Lyapunov function which was introduced by means of some differential
dissipation inequality [46], [28]. In Section 6.4, we consider a class of uncertain
systems with persistently exciting disturbances. As a consequence, an extension
of the ISS-Lyapunov function notion turns out to be necessary.

Definition 2.7 A smooth function V is said to be an ISpS-Lyapunov function
for system (6.11) if

e 7 is proper and positive definite, that is, there exist functions ¢, ¢, of class
K, such that .
oi(lx])) < V(x) < da(lx]), VxeR (6.14)
e there exist a positive-definite function «, a class K-function xy and a non-
negative constant ¢ such that the following implication holds:
14
{xl = x(ju) + e} = =)/ (tx5,u) < —allx]) (6.15)
When (6.15) holds with ¢ = 0, V' is called an ISS-Lyapunov function for system
(6.11) as in [28].
With the help of arguments in [46, 47, 28], it is not hard to prove the
following fact.

Fact: If a system of form (6.11) has an ISpS- (resp. ISS-) Lyapunov function
V', then the system is ISpS (resp. ISS).

6.2.3.2 Nonlinear small gain theorems
In this subsection, we recall two nonlinear versions of the classical small
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(finite-) gain theorem [S] which were recently proposed in the work [21, 20, 16].
They will be used to construct robust adaptive controllers and develop the
stability analysis in Section 6.4. The interested reader is referred to [4, 6, 20, 21,
49] and references therein for applications of the nonlinear small gain theorems
to several feedback control problems.

Consider the general interconnected time-varying nonlinear system

X1 =f(t,x1,y2,u1),  y1=h(t,x1,y2,u1) (6.16)
Xy = fat, x2,y1,u2),  y2 = ha(t,x2,y1,u2) (6.17)

where, fori = 1,2, x; € R", u; € R™ and y; € R™, and f;, h; are C! in all their
arguments. It is assumed that there is a unique C' solution to the algebraic
loop introduced by the interconnection functions 4y, /.

Theorem 2.4 [21, 16] Assume that the subsystems (6.16) and (6.17) are IOpS
in the sense that, for all 0 < ¢y < ¢,

i) < Bi(lx1(20)ls 1 = 10) + 7 ([1v2m0l) + A1 (lergegll) + i
2(0)] < Ballx2(20)], 1 = 10) + % ([1V1700.011) + 5 (g g ll) + o

Assume further that the subsystems (6.16) and (6.17) are also ISpS (resp. ISS).
If there exist two class K,-functions p; and p; and a nonnegative real number

s, satisfying: , ,
T U oo T+ m)onils) <5
Vs > s,

(I+p) oo +p)omn(s) <s

then the interconnected system (6.16)—(6.17) with (y1,y,) as output is ISpS
(resp. ISS) and TOpS (resp. IOS when s, = d; =0 for i = 1,2).

(6.18)

(6.19)

Motivated by the above Fact, we consider properties of the feedback system
derived from existence of ISpS-Lyapunov functions on each subsystem.
Following step by step the proof of Theorem 3.1 in [20], we can prove the
following result.

Theorem 2.5 Consider the interconnected system (6.16)—(6.17) with y; = x;
and y; = xp. Assume that, for i = 1,2, the x;-subsystem has an ISpS-Lyapunov
function V; satisfying the properties
(1) there exist class K..-functions ¢;; and ¢; such that

Gi(|xil) < Vilxi) < daa(|xil), Vxi € R™ (6.20)
(2) there exist class K. -functions «;, class K-functions x;,~; and some

constant ¢; > 0 so that V1 (x;) > max {x1(V2(x2)),71 (Ju1|) + ¢1 } implies
oV

a_m(xl)fl(ﬁxl,xz,ul) < —aq(Vi(x1)) (6.21)
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and V;(xp) > max {x2(V1(x1)), 2(|u2]) + c2} implies
oV
8)62

If there exists some ¢y > 0 such that

(x2) f2(t, x1,x2,u2) < —2(V2(x2)) (6.22)

X1oxa(r) <r, Vr>co, (6.23)

then the interconnected system (6.16)—(6.17) is ISpS. Furthermore, if
co = c¢; = ¢ = 0, then the system is ISS.

Remark 2.1 As noticed in the Fact, it follows from (6.21) that the x;-system is
ISpS. Moreover, the following ISpS property can be proved:

Vilxi(0) < Bi(lxi (o)l £ = to)+xa (I1V2(x2) g )+ 71 (lrsg gD +e1, =120 20
(6.24)
where (3, is a class KL-function.
Similarly, (6.22) implies that the x;-system is ISpS and enjoys the following
IOpS property:
Va(x1(0)) < Ba(lxa(to)], £ = to) 22 ([[Vi (x1) gy gD 020125, 0[) 42, 1> 129 >0
(6.25)

In order to invoke Theorem 2.4 to conclude the ISpS and IOpS properties for
the feedback system, we shall require the small gain condition (6.19) to hold
between the gain functions x; and x». This obviously leads to a stronger gain
condition than (6.23).

6.3 Adaptive passivation

The main purpose of this section is to extend passivation tools in [2] to a
nonlinear system with unknown parameters 6 described by:

X = @o(x) + @(x)0 + (o (x) + P (x)0)u (6.26)

Then, we show that these adaptive passivation tools can be recursively used to
design an adaptive controller for a class of interconnected nonlinear systems
with unknown parameters. Our results can be regarded as a passivity inter-
pretation of the popular adaptive backstepping with tuning functions algorithm
as advocated in [26].

6.3.1 Definitions and basic results
We will introduce notions of adaptive stabilizability and adaptive passivation
for a system of the form (6.26). Our definition of adaptive stabilizability was
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motivated by a related notion in [26, p. 132] but is applicable to a broader class
of systems — see Section 6.3.2 below. First, we define two useful properties.

Definition 3.1 (COCS- and UO-functions) Consider a control system of the
general form x = f(x,u).

(i) Assume a dynamic controller u = u(x,x) where x = v(x,x). A contin-
uous function y = n(x,x) is converging-output converging-state (COCS)
for the closed loop system if all the bounded solutions (x(z), x(¢)) satisfy
the following implication

{n(x(0),x(1)) — 0} = {x(t) —0} (6.27)

(ii)) A function V : R" — R, is said to be unboundedness observable (UO) if
for any initial condition x(0) and any control input u : [0, 7) — R", with
0 < T < 400, the following holds

{Ix()] =5 400} = {(V(x(1)) =b 400} (6.28)
for some 0 < T* < T.

Note that any proper function V' (x) is a UO-function for system x = f'(x, u),
but the converse is not true. Similarly, a sufficient condition for n being a
COCS-function is that 7 is positive definite in x for each x.

Throughout the chapter, we use 6 to denote the update estimate of the
unknown parameter 6 and restrict ourselves to the case where dim 6 = dim 6.
In other words, overparametrization is avoided in that the number of param-
eter estimates equals to the number of unknown parameters.

Definition 3.2 (Adaptive stabilizability) The system (6.26) is said to be globally
adaptively (quadratically) stabilizable if there exist a smooth UO-function
V(x,0) for each 6, an adaptive law 6 = 7(x,0) and an adaptive controller
u=9(x, é) such that the time derivative of the augmented Lyapunov function
candidate

V(x,0)=V(x,0)+1@0-6)"T""(0-0) (6.29)
satisfies . R

V< —m(x,0) (6.30)
where 7 (x, é) is a COCS-function for the closed loop system (6.26).

Remark 3.1 A system which satisfies this property is stabilizable in the sense
that all the solutions of the closed loop system are bounded and that x(¢) tends
to zero as t — oo. Indeed, the boundedness property follows from (6.29) and
(6.30). In addition, by application of Barbalat’s lemma [24], n(x(7),8()) goes
to zero as t — oo. Since 7; is a COCS-function, the claim follows readily.

Definition 3.3 (Adaptive passivation) The system (6.26) is said to be adaptively
(quadratically) feedback passive (AFP) if there exist smooth functions
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V(x,0) >0, 9 and 7, with V(0,6) = 0V6, and a C° function / such that the
resulting system with adaptive feedback

é:T(x,OA)—H_', u=19(x,0)+v (6.31)
is passive with respect to input (v,7) and output / and the storage function V
of the form (6.29). That is

V < —m(x,0) + hT(x,6,0) < ”) (6.32)

7
where 7, is a nonnegative function.

If mp(x, 0) is a COCS-function for the zero-input closed loop system (6.26),
then system (6.26) is said to be strongly AFP.

The following result, which is an adaptive version of [2, Proposition 4.14],
shows that the above notions of adaptive stabilizability and adaptive passiva-
tion are equivalent.

Proposition 3.1 A system of the form (6.26) is strongly AFP with a UO-
function V for (6.26) if and only if it is globally adaptively stabilizable.

Proof The necessity is obvious. To prove the sufficiency, define / by

W (x.6,0) = (Z—z (5, ) (W (x) + $()8), (0 - 9>Tr-1)

which completes the proof by Lemma 2.1.

Let us point out that the problem of adaptive passivation cannot be trivially
solved using the existing (known parameter) passivation tools. To this end,
consider a scalar nonlinear system

x=x>+0x+u
(6.33)
y=x

where 6 is an unknown constant parameter.

If 6 were known, system (6.33) would be made passive via the change of
feedback law u = —x — x* — Ox + v. However, in the present case where 6 is
unavailable for feedback design, it is not clear how to find a feedback
transformation of the form (6.8) so that the resulting system is passive for
every 6 in R. In fact, it can be shown that no memoryless continuous state-
feedback law of the form (6.8) achieves the passivation goal regardless of the
value of 6.

We now give an adaptive passivation result for cascaded nonlinear systems
in the form of (6.26) but without unknown parameters in the input space. This
result was motivated by Theorem 6.3 in which all parameters are known.
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Theorem 3.1 Consider a cascaded nonlinear system of the form

/
C=10(Q) + XSl G X)0)
- (6.34)
X =f(x) + A ()0 + g () + Ag(x)0)

y = h(x)

where @ is a vector of unknown constant parameters.

Suppose ¢ = fo(¢) is GAS at ¢ = 0. It is also assumed that { f, g, i} is strictly
C"-passive with a positive definite and proper storage function (r > 1). If there
exists a matrix g, of appropriate dimension such that

Af(x) =g(x)g,(x), VxeR" (6.35)

then system (6.34) is strongly adaptively feedback passive with a proper storage
function V.

Proof By a Converse Lyapunov Theorem [27], there exists a C* Lyapunov
function U which is positive definite and proper satisfying

ou

8_§(Of°(o < —n(<) (6.36)

where 7 is a positive definite function.
Let W be a C" storage function associated with {f,g,/} and consider the
augmented Lyapunov function candidate

V(Gx,0)=UQ)+W(x)+1@0-0T10-0) (6.37)
By hypotheses and Lemma 2.1, it follows that

) !
V< 00) + 3 5 Qe xt + S (/)
i=1

+ yu+ (g, (x) + Ag(x))0] + (0 —0)' T4 (6.38)

. ow . . o
Notice that — (x)f(x) is negative definite in x.

ox

For each (¢, x), denote the m x / matrix ¢(¢, x) as
roU
a

O fulen™ 2 () (6.39)

(¢.%) = (ha () 5
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Then, (6.38) yields
ow

V< =(Q) 5 = (0 (x) + 7 [u+ e(C2)0 + (91 (x) + Ag(x))6] + (0~ )'T 10
(6.40)
Thus, by choosing the following parameter update law and adaptive controller
0 =T(c(¢x) +g1(x) + Ag(x) " (6.41)
u=—¢(y) = (c(¢, ) + 91 (x) + Ag(x)d (6.42)

with ¢ a ‘first-sector third-sector’ function, (6.40) implies

= ow

Vs =n(Q) + 5 - (x)f(x) - »To() (6.43)

Since V is proper in its argument (¢, x, é), it follows from (6.43) that all the
solutions (¢(1), x(¢),6(z)) of the closed loop system (6.34), (6.41) and (6.42) are
well-defined and uniformly bounded on [0, o).

Furthermore, a direct application of LaSalle’s invariance principle ensures
that all the trajectories (¢(1),x(1),0(t)) converge to the largest invariant set E
contained in the manifold {(¢,x,6)|(¢,x) = (0,0)}. Therefore, x(7) tends to
zero as t goes to oco. In other words, the cascade system (6.34) is globally
adaptively stabilized by (6.41) and (6.42). Finally, Proposition 3.1 ends the
proof of Theorem 3.1

Remark 3.2 It is of interest to note that, if rank {g(0)(g,(0) + Ag(0))} =1 =
dim 6, then )

lim |6(r) — 0] =0

t—+00
Indeed, on the set E, we have g(0)(g,(0) + Ag(0))(6 — 0(1)) = 0 which, in turn,
implies that 6(¢) = 6. So, E = {(0,0,6)}.

The following corollary is an immediate consequence of Theorem 3.1 where
the (-system in (6.34) is void.

Corollary 3.1 Consider a linearly parametrized nonlinear system in the form
X =f(x) + Af(x)0 + g(x)(u+ Ag(x)0)
y = h(x)

If {f,g,h} is strictly C*>®-passive with a positive definite and proper storage
function, and if (6.35) holds, then system (6.44) is strongly adaptively C*-
feedback passive with a proper storage function V.

(6.44)

6.3.2 Recursive adaptive passivation
In this section, we show that the adaptive passivation property can be
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propagated via adding a feedback passive system with linearly appearing
parameters. This is indeed the design ingredient which was used in [19].
More precisely, consider a multi-input multi-output nonlinear system of the
form (6.26) with linear parametrization:

£=f10(&) +/1(§0+ (G1o(&) + AG1(£)0)y
2=4(&2) (6.45)
¥ =/20(x) +/2(x)0 + (Ga(x) + AG2(x)0)u

with x = (7,27,yT)", ¢ e R™, z € R"™ and y, u € R”. Denote G(x,0) =
Gzo(x) + AGz(X)g

Proposition 3.2 If the £-subsystem of (6.45) with y considered as input is AFP,
if G, is globally invertible for each 6, then the interconnected system (6.45) is
also AFP. Furthermore, under the additional condition that the z-system is
BIBS (bounded-input bounded-state) stable and is GAS at z = 0 whenever
(&y) = (0,0), if the &-system has a UO-function 7} and a COCS-function 7,
associated with its AFP property, then the whole composite system (6.45) also
possesses a UO-function V, and a COCS-function 7, associated with its AFP
property.

Remark 3.3 Under the conditions of Proposition 3.2, it follows from
Theorem 2.2 that the (z,y)-system in (6.45) is feedback passive for every
frozen £ and each 6.

Proof Introduce the extra integrator 6 = 7, where 7 is a new input to be built
recursively. By assumption, there exist a smooth positive semidefinite function
V(¢ é), smooth functions ¥; and 7, as well as a nonnegative function 7; and a
continuous function /; such that the time derivative of the function

Vi=Vi(0) +1@6-0"T'(6-9) (6.46)
satisfies . -
V1< —m(€.0) + hT(€.0.0) ( ’ ) (6.47)

where j := y — 9,(&,0) and 71 := 79 — 71 (&, 0).
Letting b = (A7}, hT))”, it follows from Lemma 2.1 that
oV, 4 vy, 4 .
i =g GG +AGI€0), hy=—5(E0)+ (=0T (648)

which implies /1 (&, é, 0) is affine in 0. Then, there exist smooth functions hi
and Ahy; such that

mi(€,0,0) = hii(€,0) + Ay (€,0)(0 — ) (6.49)
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Consider the nonnegative functions
Va=Vi(6.0) +5ly = 91(&0)P (6.50)
Vy=Vi+1y—0i(&0)) (6.51)

In view of (6.47) and the definition of y and 7y, the time derivative of V, along
the solutions of (6.45) and 0 = 7, satisfies

oV,
00

V< —mi(E.0) + Wy (€.0.0)5 + ( (€.0) + (6 9)TF1)71

+ 51| fa0(x) +/(x)0 + Ga(x, O)u

o0 _ o
- 8_9] (n+71)— 8_51 (f10(&) +/1(€)0 + (G10(€) + AG, (5)9))%1)} (6.52)
We wish to find changes of feedback laws which are independent of 6
u=1v x,é +v
2(%.6) (6.53)
TO=T1+T1 =T +7T
such that ¥V, satisfies a differential dissipation inequality like (6.47).
To this end, set
Ay =T(QF + 1]y (6.54)
Hh=Am+7 (6.55)
where Q,, T> and U, € R are defined by
oY - A .
Uy = (7 (EOAGH(E. .57 (€ 0)AG,(E)y (6.56)
23 23
. N -
D = fo(x) + Ahyi (§,0) — 8_5‘}(1 (&) — Wa(x,0) (6.57)
Tz = (AGZ] (X)ﬁz(x, é), ceey AGQP(X)192 (X, é)) (658)

Noticing that

vy, 4 N vy, 4
< e 0+ - G)TF‘)ﬂ =SR] + 1)y

+@-0)" @ + 1)y

OVy o a a0 Tl ) =
+ (aé (&0)+0—-6)'T 1>Tz (6.59)




134 Adaptive nonlinear control: passivation and small gain techniques

and that
0 A 0
gu, ) = Vl ThE0) - ), (6.60)

with (6.52), (6.53) and (6.55), 51mple computation ylelds

72 < -mled) + (22 n0) +0-0"T )

—T 8191

+ )7T |:/’;11(f, é) +f20(x) +f2(x) ) &9@1 (T] + ATQ) + Gz(x, 9)\} + Gz(x, é)”ﬂz

F @i B io©) + (90 + (Gol) + Acl@ém}
= (&) + (8822 (x,0) + (- 9>Tr')@ T Gax, )

+7 (mz(x 0) + Ga(x, )91 (x, ) +T2Fa (&, )) (6.61)

Observing that T, depends on 9,, the following variable is introduced to split
this dependence

6T V1 /
(&0) R

p =
With (6.58)

T
N . V
G (x, )95 (x, ) + YoT 8@@ !

(€,0) = Ga(x,0+ p)0a(x,0) (6.62)

Since G,(x, ) is globally invertible, by choosing ¥, as
D2(x,0) = Ga(x, 0+ p) ! (=ka(x, 0) - 7) (6.63)
and defining hy = (h%,, h%)" by

T _ 8T Vz A, 71 ~
hy = G, (x,0)5, hn = % (x,0)+T77(0—0) (6.64)
we obtain
Vy < —m(x,0) + T (x,6 9)( ) (6.65)
™

with 7, = 1 (£,6) + |y)>. The first statement of Proposition 3.2 was proved.
The second part of Proposition 3.2 follows readily from our construction
and the main result of Sontag [43].

On the basis of Corollary 3.1 and Proposition 3.1, a repeated application of
Proposition 3.2 yields the following result on adaptive backstepping
stabilization.
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Corollary 3.2 [26] Any system in strict-feedback form
Xi = Xip1 + di(xr,...,x)0, 1<i<n-—1

6.66
xn:u+¢n(xl7“-7xn)0 ( )

is globally adaptively (quadratically) stabilizable.

6.3.3 Examples and extensions

We close this section by illustrating our adaptive passivation algorithm with
the help of cascade-interconnected controlled Duffing equations. Possible
extensions to the output-feedback case and nonlinear parametrization are
briefly discussed via two elementary examples.

6.3.3.1 Controlled Cuffing equations
Consider an interconnected system which is composed of two (modified)
Duffing equations in controlled form, i.e.

F1 4 61x1 4+ 0131 + 0rx] = uy

L . (6.67)
Xo + 02Xy + 032 + Osx5 = up

where 61, 6, > 0 are known parameters, 6 = (0;,6,,05.04) is a fourth-order
vector of unknown constant parameters and u, is the control input. The
interconnection constraint is given by

U = 62xy + X2 (668)
Denoting z; = x; and z; = x,, the coupled Duffing equations (6.67) can be

transformed into the following state-space model

21 ==b1z1 + 1, Y1 =—b1z1 — bz + 12,

.1 1z1 + 01 Jlfl 121 2; »2 (6.69)
Iy = =0z 4y, V2= —0320 — 04z +ur

Obviously, the (zj,y;)-system in (6.69) is AFP by means of the change of

parameter update law and adaptive controller

51 =-Ayizi+71, A >0
52 =z + 72, A >0
2=y + 0z + ézzf +n
In addition, ¥, =17 is a UO-function for the (zy,y;)-system which satisfies

the differential dissipation equality

0, — 0, 0, — 06,
NN

Vl :_y%""()/l; )(}_}2777—1)T (670)

A 1 4 «
with V| = Vl(y1)+2—)\1(91 701)24* (92702)2.

2%
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It is easy to check that the conditions of Proposition 3.2 hold. A direct
application of our adaptive passivation method in the proof of Proposition 3.2
gives our passivity-aimed adaptive stabilizer for system (6.69), or the original
system (6.67):

01 = =\ (21 + 32 — 121 — 22z

0, = =202y +y2 — 0,z — ézz%)z?

03 == 3(y1 + 2 — 0,21 — ézz?)zz, A3 >0 (6.71)
04 = =M1 + 12 — 0121 — 022))23, Ay >0

U= —2y; — 2y, + 0325 + 9423 + 0,z + ézz? + (6 + 3922%)(—5121 + 1)

6.3.3.2 Adaptive output feedback passivation

The adaptive passivation results presented in the previous sections rely on full-
state feedback (6.31). In many practical situations, we often face systems whose
state variables are not accessible by the designer except the information of the
measured outputs. Unlike the state feedback case, the minimum-phase and the
relative degree-one conditions are not sufficient to achieve adaptive passivation
if only the output feedback is allowed. This is the case even in the context of
(nonadaptive) output feedback passivation, as demonstrated in [40] using the
following example:

= 4¢
E=z+4u (6.72)
y=¢£

It was shown in [40, p. 67] that any linear output feedback u = —ky + v, with
k > 0, cannot render the system (6.72) passive. In fact, Byrnes and Isidori [1]
proved that the system (6.72) is not stabilizable under any C' output feedback
law. As a consequence, this system is not feedback passive via any C! output
feedback law though it is feedback passive via a C* state feedback law.

However, system (6.72) can be made passive via the C° output-feedback
given by ;

1

Indeed, consider the quadratic storage function

V=12+1¢ (6.74)
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Forming the derivative of ¥ with respect to the solutions of (6.72), using
Young’s inequality [8] gives

. 4
V= —z% 4226 — k& + yv

<—(1-ez*— (k )3 + o (6.75)

" Rdp
where % <e<l1.

Therefore, system (6.72) in closed loop with output feedback (6.73) is (state)
strictly passive.

As seen from this example, the output feedback passivation issue is more
involved and requires additional conditions on the system or nonsmooth
feedback strategy. Thus, it is not surprising that the problem of adaptive
output feedback passivation is also complex and solving it needs extra
conditions in addition to minimum phaseness and relative-degree one. As an
illustration, let us consider a nonlinearly parametrized system with output-
dependent nonlinearity:

f=—-2+¢
£:z+u+g0(y70) (6.76)
y=¢£

where 6 is a vector of unknown constant parameters. Assume that the
nonlinear function ¢ checks the following concavity-like condition.

(C) For any y and any pair of parameters (6}, 6,), we have

yo(y,62) — ye(y,01) > y%(y, 62)(62 — 01) (6.77)

Non-trivial examples of ¢ verifying such a condition include all linear
parametrization (i.e. ©(»,0) = ¢;(»)d) and some nonlinearly parametrized
functions like ¢(y,60) = w2(y)(exp(8p3(»)) + @1 (y)0) where yp,(y) < 0 for all
yeR.

Consider the augmented storage function

V=Ve)+i0-0"T"0-0 (6.78)

where 6 is an update parameter to be précised later.
By virtue of (6.73) and (6.75), we have

V<—(1-oz - (k - ﬁ)f““ F30+00,0) + 0-0)"T9 (679)
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Letting

~ " O o
v=—p(0)+7, 9=F8—(g(y,9)Ty+7", (6.80)

it follows from the condition (C) and (6.79) that

7s-(1-9: - (k Jer e @-0Ttr e

T 04/31/3
In other words, the system (6.76) is made passive via adaptive output-feedback
law (6.73)-(6.80). In particular, the zero-input closed-loop system (i..
(v,7) = (0,0)) is globally stable at (z,&60) = (0,0,0) and, furthermore, the
trajectories (z(#),£(¢)) go to zero as ¢ goes to co.

6.4 Small gain-based adaptive control

Up to now, we have considered nonlinear systems with parametric uncertainty.
The synthesis of global adaptive controllers was approached from an input/
output viewpoint using passivation—a notion introduced in the recent literature
of nonlinear feedback stabilization. The purpose of this section is to address
the global adaptive control problem for a broader class of nonlinear systems
with various uncertainties including unknown parameters, time-varying and
nonlinear disturbance and unmodelled dynamics. Now, instead of passivation
tools, we will invoke nonlinear small gain techniques which were developed in
our recent papers [21, 20, 16], see references cited therein for other applications.

6.4.1 Class of uncertain systems
The class of uncertain nonlinear systems to be controlled in this section is
described by

z=q(t,z,x1)
Xi=xip + 0T oi(x1, . ) F Ai(x zuyt), 1<i<n—1 6.8
Xp = u+ 0T 0u(x1, .., x0) + A, z,u, 1) (052
y=2x
where u in R is the control input, y in R is the output, x = (x,...,x,) is the

measured portion of the state while z in R™ is the unmeasured portion of the
state. §in R’ is a vector of unknown constant parameters. It is assumed that the
A;’s and ¢ are unknown Lipschitz continuous functions but the ¢;’s are known
smooth functions which are zero at zero.
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The following assumptions are made about the class of systems (6.82).

(A1) For each 1 <i < n, there exist an unknown positive constant p; and two
known nonnegative smooth functions 1, ¥ such that, for all (z, x,u, )

1Ai(x, 2,u, )] < pipa ([ (xrs - -5 x0)]) + pidpa(lz2]) (6.83)

Without loss of generality, assume that ¢, (0) = 0.

(A2) The z-system with input x; has an ISpS-Lyapunov function V), that is,
there exists a smooth positive definite and proper function ¥(z) such
that

o
0z

where o and -y are class K,.-functions and dj is a nonnegative constant.

(2)q(t2,1) < —ao(lz]) +(xf) +do ¥ (zx1) (6.84)

The nominal model of (6.82) without unmeasured z-dynamics and external
disturbances A; was referred to as a parametric-strict-feedback system in [26]
and has been extensively studied by various authors—see the texts [26, 32] and
references cited therein. The robustness analysis has also been developed to a
perturbed form of the parametric-strict-feedback system in recent years [48, 22,
31, 35, 51]. Our class of uncertain systems allows the presence of more
uncertainties and recovers the uncertain nonlinear systems considered pre-
viously within the context of global adaptive control.

The theory developed in this section presupposes the knowledge of partial x-
state information and the virtual control coefficients. Extensions to the cases of
output feedback and unknown virtual control coefficients are possible at the
expense of more involved synthesis and analysis — see, for instance, [17, 18]. An
illustration is given in subsection 6.4.4 via a simple pendulum example.

6.4.2 Adaptive controller design

6.4.2.1 Initialization
We begin with the simple x;-subsystem of (6.82), i.e.

X1 =x2+0"01(x1) + Ar(x,z,u,1) (6.85)

where x; is considered as a virtual control input and z as a disturbance input.
Consider the Lyapunov function candidate

= 4i0) 40— 0T 0 -0+ 5 -0 (686)

where I" > 0, A\ > 0 are two adaptation gains, 7 is a smooth class-K, function
to be chosen later, p > max {p?,pj2|l < i < n} is an unknown constant and the
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time-varying variables 0, p are introduced to diminish the effects of parametric
uncertainties.

With the help of Assumption (Al), the time derivative of V| along the
solutions of (6.82) satisfies:

Vi </ (xD)x1 (xa + 071 (x1)) + pin (D) |x1 [ (Jxa ) + 212 (12])]
F(O-0)TT 0+ % (h—p)p (6.87)

where 7/(x?) is the value of the derivative of 7 at x7. In the sequel, 7 is chosen
such that 7/ is nonzero over R,.
Since 11 is a smooth function and ¢ (|x1]) = ¥11(0) + | x| fol 1 (s]x1]) ds,

given any &; > 0, there exists a smooth nonnegative function ; such that

pin (D xlvn(xl) < prf (FD)xidi(x) + e1n(0)°, ¥x e R (6.88)
By completing the squares, (6.87) and (6.88) yield

Vi <0 (6])x1 (x2 + 071 (x1) + pxin (x1) + phxin/ (x3) + (0 — 0)'T-9

+§(13—P)1'3+¢12(|Z|)2+€1¢n(0)2 (6.89)
Define

7 = —Togd + T/ (x3)x101 (x1) (6.90)

@1 = =Aopp + Axi (1 (x1) + 50/ (xD) () (6.91)

I = —xi(x)) — 07 p1(x1) = plaidn (1) +§xm (7)) (6.92)

wy = x3 — 91 (x1, 6, p) (6.93)

where 04, 0, > 0 are design parameters, v is a smooth and nondecreasing
function satisfying that v;(0) > 0.
Consequently, it follows from (6.89) that

Vi < /X3 (33) + 'xiwy — 090 — ) 0 —a,(p—p)p+ (0 — )T —7)

P2 =)~ )+ via(ll) + e (0 (6.94)

It is shown in the next subsection that a similar inequality to (6.94) holds for
each (xp,...,x;)-subsystem of (6.82), with i =2,...,n.

6.4.2.2 Recursive steps
Assume that, for a given 1 < k < n, we have established the following property
(6.95) for the (xi,...,xx)-subsystem of system (6.82). That is, for each
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1 < i<k, there exists a proper function V; whose time derivative along the
solutions of (6.82) satisfies

i
Vi < =/ xi (i (x) =i+ 1) = (¢—i+i)w] + wiwiy —o9(0—0)"0—0,(p — p)p
=

to-orm-y w,»aggl)@—ﬂ>+(§<ﬁ—p>—j2izjw,6§%;‘)@—wi>

Jj=2
+ 3 (2’ + D et (0)? (6.95)
=1 =

In (6.95), ¢ >0(1 <j<i) are arbitrary, ¢; >n—j(2 <j<1i) are design
parameters, ¥; (1 <j <), 7; and w; are smooth functions and the variables
w;’s are defined by

Wy = xm’(x%), wyi=x; — U 1(x1, ... ,xj,l,é,ﬁ), 2<j<i+1  (6.96)

It is further assumed that ;(0, ... 7O,é,ﬁ) = 0 for each pair of (é,ﬁ) and all
1<i<k.

The above property was established in the preceding subsection with k = 1.
In the sequel, we prove that (6.95) holds for i =k + 1.

Consider the Lyapunov function candidate

Vit = Vi, wa, .o owie, 0, ) +4wg | (6.97)

In view of (6.95), differentiating V| along the solutions of system (6.82) gives

k
Vi <=1/ xi(n () —=k+1) =Y _(¢j—k+ j)w} +wiwi 1 —09(0—0)"6—0,(p—p)p

=)
(-0 =3 2 G+ (2 - -3 2 )
7 o0 N ' op o
k
ov Ny » Ny -
+Wk+1<Xk+2+9T90k+1+A/c+1 *;TQ(XHWQT%JFA]‘)*?;@* aﬁkp)
k 5 k 5
+ > (12D’ + > ek 1¥ie1(0) (6.98)
= =

Recalling that p > max {p},p:?|1 <i < n}, by virtue of assumption (A1), we
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have
k k 2
o 09k
Wk+1<Ak+1 Z A ) <PWA+1(%+%Z (8_x> )
j=1 ]
+|Wk+1|(P7<+1?/1(k+1)1(|(x1,--~,xk+1)|)

k+1
+Z w,l xl,...,x,->|>) +3 ()’
=1

(6.99)

From (6.93) and (6.96), it is seen that (wy,...,wk,wiy1) = (0,...,0,0) if and
only if (x1,..., %k Xks1) = (0,...,0,0). Recall that »/(x?) #0 by selection.
With this observation in hand, given any &4, > 0, lengthy but simple
calculations imply the existence of a smooth nonnegative function Yrs1 such
that

k
wkm(p,;lwkmlu(xl, e+

J=1

?—gwﬂuul,.-.,x,—n))

k+1
< Wi et (Wi, wa, Wir1,0,p) + xin/ (x7 +Zw +Zej¢jl 0)*  (6.100)

Combining (6.98), (6.99) and (6.100), we obtain

k

Vit < =n/xi(i(x) —k) =Y (¢ =k = 1+ j)w} — o9(0 — )70 — 0,(p — p)p
=

w00 -2 i (b —p)—jzk;wf)?;)@—ww

=

k
0
+ Wkt {Xk+2 + wr + 9T50k+1 - E ™ (Xjp1 + ‘9T90j)
j=1 ]

1 1 0% - My 5 Oy
i 5> (G -k
+PVV/+1<4+4FZ](6 _;‘) Jr1/’k+1> 20 8pp
k+1 5 k+1 5
) 22127+ jer—i2thu—+21(0) (6.101)
j=1 j=1

Inspired by the tuning functions method proposed in [26, Chapter 4] for
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parametric-strict-feedback systems without unmodelled dynamics, introduce
the notation

k
av,
Th+1 = Tk + F<ka+1 - Zakgo/> Wit1 (6.102)
=1 9N
k
o -
Tt 1 wk+/\< %Z ( k ) +1/Jk+1>w,3+1 (6.103)

j=1

09

2 k

Vil = —Chp1 Wi — Wi + E Oy,
j=1 x.l

k
~ oYy
— (9T = wi——T
( j; L
k
— Wil (]3 — Z)\W/ 61;/;1
=2

o9 0k
+ 8; Th1 =+ 61 k41 Wk+2 (6.104)
W2 = Xes2 — et (X1, Xerr, 0, p) (6.105)

Therefore, inequality (6.95) follows readily after equalities (6.102) to (6.105)
are substituted into (6.101).

By induction, at the last step where kK =n in (6.95), if we choose the
following parameter update laws and adaptive controller
0=7u(X1, X0, 0,0), P =10u(xX1,. ., Xn, 0, ) (6.106)
u=9,(x1,...,xn0,p) (6.107)

the time derivative of the augmented Lyapunov function
V= Lnly +Z (xi =)’ + 10— 0T (0 - 0) +2A(” P’ (6.108)

satisfies

v, < n(xf)xf(yl(xl) —n+1)— n(-—n—i—z)w —09(9 9) —ap(p P)p
=2

+ Z iWirna(2])* + Z ien-is1%(n-i+11(0)° (6.109)
i=1 i=1

As a major difference with most common adaptive backstepping design
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procedures [26, 32], because of the presence of dynamic uncertainties z, we are
unable to conclude any significant stability property from the inequality
(6.109). Another step is needed to robustify the obtained adaptive back-
stepping controllers (6.106) and (6.107).

6.4.2.3 Small gain design step
The above design steps were devoted to the x-subsystem of (6.82) with z
considered as the disturbance input. The effect of unmeasured z-dynamics has
not been taken into account in the synthesis of adaptive controllers (6.106) and
(6.107). The goal of this section is to specify a subclass of adaptive controllers
in the form of (6.106), (6.107) so that the overall closed loop system is
Lagrange stable. Furthermore, the output y can be driven to a small vicinity
of the origin if the control design parameters are chosen appropriately.

First of all, the design function v; as introduced in subsection 6.4.2.1 is
selected to satisfy oo o 5 s

(D)X () =+ 1) > e(x) (6.110)

with ¢; > 0 a design parameter. Such a smooth function always exists because
7' (x?) # 0 for any x;.

Then, let n; be a smooth class-K,, function which satisfies the inequality

D it iinn(12)* < ml=P) (6.111)
=1
Noticing that
) Th J6 ) Tr—1/p T0 2
—opl—0)To<—— 2 _G-o)r G-+ 112
gp(0—0) 6 < 2)\111ax(1—‘71)<9 6) (0—10)+ 5 6] (6.112)
. . Op . o
~op(p=P)h < =3 (G + 5P’ (6.113)
(6.1006) yields: . 5
Vo < =cVu+m(z]") + &1 (6.114)
where _ . o .
¢ =min {2¢1,2(c; = n+ i), =, 0pN; 2 < i <n} (6.115)
Anua.x(l_‘_ )
n
(o] (9 .
er =5 10 +577" + > ien 111 (0)° (6.116)

Let o, and @, be two class-K,, functions such that
a,(|2]) < Vo(z) <au(|z)) (6.117)
Given any 0 < &3 < ¢, (6.114) ensures that
V, < —eV, (6.118)
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whenever

2 _ 281
V> 1 (Vo(2))Y), 6.119
max {2 (o 0, 2 (619

Return to the z-subsystem. According to assumption (A2), we have
oV _
5(2)‘](2,361) < —&3a0(|2]) + (v

where Vo = e3Vy, €3 > 0 is arbitrary and ~ is a class-K, function to be
determined later.
Given any 0 < g4 < 1, we obtain

o e30(|x1])) + e3do (6.120)

Vo < —e3eq0(|z]) (6.121)
as long as
. 2 2d,
Vo > max §es@, 00, o (v e o(lxi)), e, 0 g’ 0
1 - €4 1 - €4
(6.122)

To check the small gain condition (6.23) in Theorem 2.5, we select any class-
K, function ~ such that

1— _
y(s) < 25“@00@.10%( n11<c462s>>, Vs >0 (6.123)

Finally, to invoke the Small Gain Theorem 2.5, it is sufficient to choose the
function 7 appropriately so that

v o(lx) <3n(x) +es (6.124)
where €5 > 0 is arbitrary. In other words,
771 o ’70(|X1|) S I/”()Q,Xz, R ,X”,é,ﬁ) + €5 (6125)

Clearly, such a choice of the smooth function 7 is always possible.
Consequently,

Vo < —esesan(|2]) (6.126)
as long as

_ 2 _ i 2y
— Y(2V,), esq, 005" 0 T Y(2¢5), e3a, 0 g’ (1 — >}

(6.127)

Under the above choice of the design functions 7 and v, the stability properties
of the closed loop system (6.82), (6.106) and (6.107) will be analysed in the next
subsection.
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6.4.3 Stability analysis

If we apply the above combined backstepping and small-gain approach to the
plant (6.82), the stability properties of the resulting closed loop plant (6.82),
(6.106) and (6.107) are summarized in the following theorem.

Theorem 4.1 Under Assumptions (Al) and (A2), the solutions of the closed
loop system are uniformly bounded. In addition, if a bound on the unknown
parameters p; is available for controller design, the output y can be driven to
an arbitrarily small interval around the origin by appropriate choice of the
design parameters.

Proof Letting 6 = 6— 6 and P = p — p, it follows that V, is a positive definite
and proper function in (x,. .., X, 6, D). Also, 6= éandﬁ = p. Decompose the
closed-loop system (6.82), (6.106) and (6.107) into two interconnected sub-
systems, one is the (x,. .., x,, 0, p)-subsystem and the other is the z-subsystem.
We will employ the Small Gain Theorem 2.5 to conclude the proof.
Consider first the (xi,.. .,xn,é,ﬁ)-subsystem. From (6.118) and (6.119), it
follows that a gain for this ISpS system with input ¥ and output ¥, is given by

x1(s) =C_262m (a;‘<;—3s)2) (6.128)

Similarly, with the help of (6.126) and (6.127), a gain for the ISpS z-subsystem
with input V,, and output Vj is given by

x2(s) = @ 0y 0 ~v(2s) (6.129)

As it can be directly checked, with the choice of 7 as in (6.123), the small gain
condition (6.23) as stated in Theorem 2.5 is satisfied between y; and y;. Hence,
a direct application of Theorem 2.5 concludes that the solutions of the
interconnected system are uniformly bounded. The second statement of
Theorem 4.1 can be proved by noticing that the drift constants in (6.119)
and (6.127) can be made arbitrarily small.

Remark 4.1 It is of interest to note that the adaptive regulation method
presented in this section can be easily extended to the tracking case. Roughly
speaking, given a desired reference signal y,(7) whose derivatives P (1) of order
up to n are bounded, we can design an adaptive state feedback controller so
that the system output y(#) remains near the reference trajectory y,(¢) after a
considerable period of time.

Remark 4.2 Our control design procedure can be applied mutatis mutandis
to a broader class of block-strict-feedback systems [26] with nonlinear
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unmodelled dynamics

z= Q(Zazaxl)
xi = Xit1 + er(pi(xh ceey X C17 e 7Ci) + Ax’.(X, <a Z, U, t) (6 130)
CI' = (I)i,()(xh"'7x[7C17"'aCi) +9T¢)i(xl7"'axi7€1a"'7<i)
+A;(x, ¢ zut), 1<i<nm
where X, =u, x = (x1,...,x,)" and ¢ = (C1,...,¢)". Assume that all (-
dynamics are measured and satisfy a BIBS stability property when
(x1y...,%,Cly...,Co1,2) is considered as the input. Similar conditions to

(6.83) are required on the disturbances A, and A,.

6.4.4 Examples and discussions

We demonstrate the effectiveness of our robust adaptive control algorithm by
means of a simple pendulum with external disturbances. Along the way, we
show that our combined backstepping and small gain control design procedure
can be extended to cover systems with unknown virtual control coefficients.
Moreover, we shall see that the consideration of dynamic uncertainties
occurring in our class of systems (6.82) becomes very natural when the
output feedback control problem is addressed. Then, in the subsection
6.4.4.2, we compare the above adaptive design method with the dynamic
normalization-based adaptive scheme proposed in our recent contribution
[18] via a second order nonlinear system.

6.4.4.1 Pendulum example
The following simple pendulum model has been used to illustrate several
nonlinear feedback designs (see, e.g., [3,24]):

.. -1
mléz—mgsiné—kl(5+7u+Ao(t) (6.131)

where u € R is the torque applied to the pendulum, ¢ € R is the anticlockwise
angle between the vertical axis through the pivot point and the rod, g is the
acceleration due to gravity, and the constants k, / and m denote a coefficient of
friction, the length of the rod and the mass of the bob, respectively. Ay(?) is a
time-varying disturbance such that |Ag(¢)| < ao for all £ > 0. It is assumed that
these constants k, /, m and ay are unknown and that the angular velocity & is
not measured.

Using the adaptive regulation algorithm proposed in subsection 6.4.3, we
want to design an adaptive controller using angle-only so that the pendulum is
kept around any angle —w < § = 6y < 7.
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We first introduce the following coordinates

& = ml (6 — &)

, 6.132
§2:m12<6—|—£(5—60)> ( )

to transform the target point (6,8) = (6,0) into the origin (£;,&) = (0,0).
It is easy to check that the pendulum model (6.131) is written in &-co-
ordinates as

& 252—551 (6.133)
f-z =u — mglsin ((5() +#§1> +1A(1) (6.134)

Since the parameters k, / and m are unknown and the angular velocity 6 is
unmeasured, the state £ = (£;,&) of the transformed system (6.133)—(6.134) is
therefore not available for controller design. We try to overcome this burden
with the help of the ‘Separation Principle’ for output-feedback nonlinear
systems used in recent work (see, e.g., [23, 26, 32, 36]).
Here, an observer-like dynamic system is introduced as follows
= £1((6—bo) —
fl &+ 41((6 = bo) Afl) (6.135)
& =u+7/2((6—b)—&)

where /) and /, are design parameters. Denote the error dynamics e as

e:=(&—-&.6-&)" (6.136)
Noticing (6.132), the e-dynamics satisfy

[k
T (””mm)fl
“=ls olT /s 1
2 2 .
y (/2 _W>£l —mglsm ((50 +W€1> +1A0([)
(6.137)

For the purpose of control law design, let us choose a pair of design parameters
/1 and /5 so that 4 is an asxmptotically stable matrix.
Letting x; = 6 — &, x2 = & and z = e¢/a with

a=max{|/yml* — ¢y — kI*|,|Loml® — (5], mgl, lag } (6.138)
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we establish the following system to be used for controller design:

xi(&yml? — ¢y — kI?)/a

z=Az+ ) )
x1(£aml* — £3)/a — (mgl/a)sin (x; + &) + (I/a)A
. 1 k 1
X1 =Xy = X +Wd22 (6.139)

Xo=u+7/>(1 - mlz)xl + /haz,
y=xi

. . 1 . .
Since the unknown coefficient per referred to as a ‘virtual control coefficient’
m

[26], occurs before x;, this system (6.139) is not really in the form (6.82).
Nonetheless, we show in the sequel that our control design procedure in
subsection 6.4.3 can be easily adapted to this situation.

Let P > 0 be the solution of the Lyapunov equation

PA+A"P=-2I (6.140)

Then, it is directly checked that along the solutions of the z-system in (6.139)
the time derivation of ¥y = zT Pz satisfies

Vo < —)z]* + 3Amax (P)X3 + 8Anax (P) (6.141)

Step 1: Instead of (6.86), consider the proper function

1 1 .
where
1 1 kK &
2
pZmaX{“’W’W’W’W} (6.143)

It is important to note that we have not introduced the update parameter 6, for
the unknown but negative parameter —k/m because the term —(k/m)x is
stabilizing in the x|-subsystem of (6.139).

The time derivative of V| along the solutions of (6.139) yields:

. R N A .
Vi < —uixi + xpwa — Up(P_p)p+X(p_p>(p_wl> +173 (6.144)
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where vy > 0 is a design parameter, c; and w, are defined by

2

@ = —Aopp+ AL, (6.145)
91 = i) fp%, (6.146)
wy = xp — V1(x1,p) (6.147)

Step 2: Consider the proper function
Vo=V, + iwj (6.148)

Then, with (6.144), the time derivative of }/, along the solutions of (6.139)
satisfies

. R R 1 .
Vay < =t + x1wa — 0, (p —p)p—&-x(p —p)(p—m)+1i

p 1 k 1 2 X
+w (u+/2(1 —mil*)x)+/2az) + (V] —|—g> (sz—%)ﬂ +Wazz> +p71>
(6.149)

From the definition of x; in (6.147) and p as in (6.143), we ensure that

W —I-l5 IX <
) V —_— —_—
2\t 5 B 2P

With the choice of p as in (6.143), by completing the squares, it follows from
(6.149) and (6.150) that

I/]—l-l—7

L\ 4
3 + <1/1 —|—§) )w%—k}lx% (6.150)

Vs <~ 15— 0plp —p)p+ 5 (0~ P)(p — 1) +|2P

2 X D p p /2
+ 2 [u+x1 +p21+p<1 + |n er‘ + 5+ +p)4+2>wz}

2 2 2 4
(6.151)
Thus, setting
- p p\ ANNG:
ﬁw1+)\<l+ V1+2‘+<u1+2> +<u1+2> +42>w§
X)L p P2 P 03
MV2W2X1P7[7<1+ V1+§’+(1/1+§) +(V1+§) +Z>wz

(6.152)
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and substituting these definitions into (6.151), we establish

Vy < —(n — l)x%—uzwg—% A—p)2+%p2+|z|2 (6.153)
with v, > 0 a design parameter.

In the present situation, it is easy to compute a storage function for the
whole closed loop system from the above differential inequalities (6.141) and
(6.153). So, instead of pursuing the small gain design step as in subsection
6.4.2.3 where no storage function for the total system was given, we give such a
storage function for the closed loop pendulum system. Indeed, consider the
composite storage function

V= Vo(z)—|—%V2(x1,x2,f)) (6154)
Clearly, from (6.141) and (6.153), it follows

V< —0.5(y — 1)x3 — 0.50pm2 — % (- p)* — 0.5|z]> + %ﬁ (6.155)

In other words
. g,
V< —CV+TPP2 (6.156)
with
¢ =min {(v; — 1)mi%, 15,0.50,X,0.5A.x(P) '}

Finally, from (6.156), it is seen that all the solutions of the closed loop system
are bounded. In particular, the angle 6 eventually stays arbitrarily close to the
given angle & if an a priori bound on the system parameters m, / are known
and the design parameters vy, 15, 0, and A are chosen appropriately.

6.4.4.2 Robustification via dynamic normalization

It should be noted that an alternative adaptive control design was recently
proposed in [17, 18] for a similar class of uncertain systems (6.82). The adaptive
strategy in [17, 18] is a nonlinear generalization of the well-known dynamic
normalization technique in the adaptive linear control literature [13] in that a
dynamic signal was introduced to inform about the size of unmodelled
dynamics. The adaptive nonlinear control design presented in this chapter
yields a lower order adaptive controller than in [17, 18]. Nevertheless, due to
the worse-case nature of this design, the consequence is that the present
adaptive scheme may yield a conservative adaptive control law for some
systems with parametric and dynamic uncertainties. Therefore, a co-ordinated
design which exploits the advantages and avoids the disadvantages of these two
adaptive control approaches is certainly desirable and this is left for future
investigation.
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As an illustration of this important point, let us compare the two methods
with the following simple example:

Z=—z+X (6.157)
X=u+0x+z2 (6.158)

where z is unmeasured and 6 is unknown.

Let us start with Method I: robust adaptive control approach without
dynamic normalization as proposed in this chapter.

Considering the z-subsystem with input x, assumption (A2) holds with
Vo = z2 whose time derivative satisfies

Vo < —Jz)* + 2 (6.159)
In order to apply the Small Gain Theorem 2.5 we show that the x-system can
be made ISpS (input-to-state practically stable) via an adaptive controller. An

ISpS-Lyapunov function is obtained for the augmented system.
To this purpose, consider the function
1 .
W =1n(x?) +£(97 0) (6.160)

where v > 0 and 7 is a smooth function of class K.
A direct computation implies:

. 1 -
PV:xﬁ@+ﬂx+f)+;@—0W (6.161)

R 1, A
< x1f (u + 0x + %xn’) +zt 4 5 (0—0) (9 - 7x277/) (6.162)

where 7/ stands for the derivative of 7.
By choosing the adaptive law and adaptive controller

f— —0970 + X2 (%) (6.163)
u=—xv(x?) —fx — 1xn/(x?) (6.164)
where oy > 0 and v(-) > 0 is a smooth nondecreasing function, it holds:
W < —*nv(x?) —Log(0 — 6)* + 24 + L oyf? (6.165)
Select v so that s s s
X (xX)v(x7) = n(x7) (6.166)

Then (6.165) gives: ) o
W< —6W+z4+?992 (6.167)

with ¢ := min{2, oyy}.
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Hence, letting 0=0—0 and noticing 0=10, (6.167) implies that W is an
ISpS-Lyapunov function for the x-system augmented with the #-system when z
is considered as the input.

To complete our small gain argument, we need to choose an appropriate
function 7 so that a small gain condition holds. Following the small gain design
step developed in subsection 6.4.2.3, we need to pick a function 5 such that

6

o

A choice of such a function 7 to meet (6.168) is:

8
n(s) = gsz (6.169)
This leads to the following choice for v
v(x*) >1 (6.170)
and therefore to the following controller
p ~ 16
- —0970+%x4 (6.171)
4,
U=—-x—0x—<-x (6.172)

o
In view of (6.159) and (6.167), a direct application of the Small Gain Theorem

2.5 concludes that all the solutions (x(7), z(7),8()) are bounded over [0, c0).

In the sequel, we concentrate on the Method II: robust adaptive control
approach with dynamic normalization as advocated in [17,18].

To derive an adaptive regulator on the basis of the adaptive control
algorithm in [17], [18], we notice that, thanks to (6.159), a dynamic signal
r(¢) is given by:

F=—-08r+x* r(0)>0 (6.173)

The role of this signal r is to dominate ¥(z) — the output of the unmodelled
effects — in finite time. More precisely, there exist a finite 7° >0 and a
nonnegative time function D(¢) such that D(¢) = 0 for all r > T° and

Vo(z(£)) <r(t)+ D(1), Vt>0 (6.174)
Consider the function
1 - 1
1.2 2
=124 — (- — 1
V=3x +27(0 0) —I—)\Or (6.175)

where )y > 0. A direct application of the adaptive scheme in [18] yields the
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Figure 6.2 Method Il with r(t) versus Method | without r(t). the solid lines refer to
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following adaptive regulator:

0=vx* >0 (6.176)
5 1 A Ao
(2o g 1
u (4+)\0)A Ox e (6.177)
With such a choice, the time derivative of V satisfies:
. 0.4
V< —xr-r (6.178)
Ao

Therefore, all solutions x(¢), r(¢) and z(¢) converge to zero as 7 goes to co.

Note that the adaptive controller (6.177) contains the dynamic signal r which
is a filtered version of x?> while in the adaptive controller (6.172), we have
directly x?. But, more interestingly, the adaptation law (6.176) is in x> whereas
(6.171) is in x*. As seen in our simulation (see Figures 6.1 and 6.2), for larger
initial condition for Xx, this results in a larger estimate 6 and consequently a
larger control u. Note also that, with the dynamic normalization approach 11,
the output x(¢) is driven to +0.5% in two seconds.

For simulation use, take 6 =0.1 and design parameters =3 and
op = r(0) = Ao = 1. The simulations in Figures 6.1 and 6.2 are based on the
following choice of initial conditions:

z(0) = x(0) =5, 6(0)=0.5

Summarizing the above, though conservative in some situations, the adaptive
nonlinear control design without dynamic normalization presented in this
chapter requires less information on unmodelled dynamics and gives simple
adaptive control laws. As seen in Example (6.157), the robustification scheme
using dynamic normalization may yield better performance at the price of
requiring more information on unmodelled dynamics and a more complex
controller design procedure. A robust adaptive control design which has the
best features of these approaches deserves further study.

6.5 Conclusions

We have revisited the problem of global adaptive nonlinear state-feedback
control for a class of block-cascaded nonlinear systems with unknown param-
eters. It has been shown that adaptive passivation represents an important tool
for the systematic design of adaptive nonlinear controllers. Early Lyapunov-
type adaptive controllers for systems in parametric-strict-feedback form can be
reobtained via an alternative simpler path. While passivation is well suited for
systems with a feedback structure, small gain arguments have proved to be
more appropriate for systems with unstructured disturbances. From practical
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considerations, a new class of uncertain nonlinear systems with unmodelled
dynamics has been considered in the second part of this chapter. A novel
recursive robust adaptive control method by means of backstepping and small
gain techniques was proposed to generate a new class of adaptive nonlinear
controllers with robustness to nonlinear unmodelled dynamics.

It should be mentioned that passivity and small gain ideas are naturally
complementary in stability theory [5]. However, this idea has not been used in
nonlinear control design. We hope that the passivation and small gain
frameworks presented in this chapter show a possible avenue to approach
this goal.

Acknowledgements. This work was supported by the Australian Research
Council Large Grant Ref. No. A49530078. We are very grateful to Laurent
Praly for helpful discussions that led to the development of the result in
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Active identification for
control of discrete-time
uncertain nonlinear
systems

J. Zhao and |. Kanellakopoulos

Abstract

The problem of controlling nonlinear systems with unknown parameters has
received a great deal of attention in the continuous-time case. In contrast, its
discrete-time counterpart remains largely unexplored, primarily due to the
difficulties associated with utilizing Lyapunov design techniques in a discrete-
time framework. Existing results impose restrictive growth conditions on the
nonlinearities to yield global stability.

In this chaper we propose a novel approach which removes this obstacle and
yields global stability and tracking for systems that can be transformed into an
output-feedback, strict-feedback, or partial-feedback canonical form. The
main novelties of our design are: (i) the temporal and algorithmic separation
of the parameter estimation task from the control task, and (ii) the develop-
ment of an active identification procedure, which uses the control input to
actively drive the system state to points in the state space that allow the
orthogonalized projection estimator to acquire all the necessary information
about the unknown parameters. We prove that our algorithm guarantees
complete (for control purposes) identification in a finite time interval, whose
maximum length we compute.

Thus, the traditional structure of concurrent on-line estimation and control
is replaced by a two-phase control strategy: first use active identification, and
then utilize the acquired parameter information to implement any control
strategy as if the parameters were known.



160 Active identification for control of discrete-time uncertain nonlinear systems

7.1 Introduction

In recent years, a great deal of progress has been made in the area of adaptive
control of continuous-time nonlinear systems [1], [2]. In contrast, adaptive
control of discrete-time nonlinear systems remains a largely unsolved problem.
The few existing results [3, 4, 5, 6] can only guarantee global stability under
restrictive growth conditions on the nonlinearities, because they use techniques
from the literature on adaptive control of linear systems [7, 8]. Indeed, it has
recently been shown that any discrete-time adaptive nonlinear controller using
a least-squares estimator cannot provide global stability in either the determi-
nistic [9] or the stochastic [10] setting. The only available result which
guarantees global stability without imposing any such growth restrictions is
found in [11], but it only deals with a scalar nonlinear system which contains a
single unknown parameter.

The backstepping methodology [1], which provided a crucial ingredient for
the development of solutions to many continuous-time adaptive nonlinear
problems, has a very simple discrete-time counterpart: one simply ‘looks ahead’
and chooses the control law to force the states to acquire their desired values
after a finite number of time steps. One can debate the merits of such a
deadbeat control strategy [12], especially for nonlinear systems [13], but it seems
that in order to guarantee global stability in the presence of arbitrary non-
linearities, any controller will have to have some form of prediction capability.
In the presence of unknown parameters, however, it is impossible to calculate
these ‘look-ahead’ values of the states. Furthermore, since these calculations
involve the unknown parameters as arguments of arbitrary nonlinear func-
tions, no known parameter estimation method is applicable, since all of them
require a linear parametrization to guarantee global results. This is the biggest
obstacle to providing global solutions for any of the more general discrete-time
nonlinear problems.

In this chapter we introduce a completely different approach to this problem,
which allows us to obtain globally stabilizing controllers for several classes of
discrete-time nonlinear systems with unknown parameters, without imposing
any growth conditions on the nonlinearities. The major assumptions are that
the unknown parameters appear linearly in the system equations, and that the
system at hand can be transformed, via a global parameter-independent
diffeomorphism, into one of the canonical forms that have been previously
considered in the continuous-time adaptive nonlinear control literature [1].

Another major assumption is that our system is free of noise; this allows us
to replace the usual least-squares parameter estimator with an orthogonalized
projection scheme, which is known to converge in finite time, provided the
actual values of the regressor vector form a basis for the regressor subspace.
The main difficulty with this type of estimator is that in general there is no way
to guarantee that this basis will be formed in finite time. The first steps towards
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removing this obstacle were taken in preliminary versions of this work [14, 15].
In those papers we developed procedures for selecting the value of the control
input during the initial identification period in a way that drives the system
state towards points in the state space that generate a basis for this subspace in
a specified number of time steps. In this chapter we integrate those procedures
with the orthogonalized projection estimator to construct a true active
identification scheme, which produces a parameter estimate in a familiar
recursive (and thus computationally efficient) manner, and at each time instant
uses the current estimate to compute the appropriate control input. As a result,
we guarantee that all the parameter information necessary for control purposes
will be available after at most 2nr steps for output-feedback systems and
(n+ 1)r steps for strict-feedback systems, where n is the dimension of the
system and r is the dimension of the regressor subspace. If the number of
unknown parameters p is equal to r, as it would be in any well-posed
identification problem, this implies that at the end of the active identification
phase the parameters are completely known. If, on the other hand, p > r, then
we only identify the projection of the parameter vector that is relevant to the
system at hand, and that is all that is necessary to implement any control
algorithm. In essence, our active identification scheme guarantees that all the
conditions for persistent excitation will be satisfied in a finite time interval: in
the noise-free case and for the systems we are considering, all the parameter
information that could be acquired by any identification procedure in any
amount of time, will in fact be acquired by our scheme in an interval which is
made as short as possible, and whose upper bound is computed a priori. The
fact that our scheme attempts to minimize the length of this interval is
important for transient performance considerations, since this will prevent
the state from becoming too large during the identification phase.

Once this active identification phase is over, the acquired parameter
information can be used to implement any control algorithm as if the
parameters were completely known. As an illustration, in this chapter we use
a straightforward deadbeat strategy. The fact that discrete-time systems (even
nonlinear ones) cannot exhibit the finite escape time phenomenon, makes it
possible to delay the control action until after the identification phase and still
be able to guarantee global stability.

7.2 Problem formulation

The systems we consider in this section comprise all systems that can be
transformed via a global diffeomorphism to the so-called parametric-output-
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feedback form:
X1 (14 1) = x2(1) + 0 1 (x1(2))
Xpo1 (4 1) = xu(2) + 0 hp_1 (x1(2)) (7.1)
xa(t+ 1) = () + 6", (x1(£))
y(1) = x1(1)
where 6 € R? is the vector of unknown constant parameters and ¢;, i = 1,...,n

are known nonlinear functions. The name ‘parametric-output-feedback form’
denotes the fact that the nonlinearities t; that are multiplied by unknown
parameters depend only on the output y = x;, which is the on/y measured
variable; the states x, ..., x, are not measured. It is important to note that the
functions ; are not restricted by any type of growth conditions; in fact, they
are not even assumed to be smooth or continuous. The only requirement is that
they take on finite values whenever their argument x; is finite; this excludes

nonlinearities like T for example, but it is necessary since we want to

X1 —
obtain global results. This requirement also guarantees that the solutions of
(7.1) (with any control law that remains finite for finite values of the state
variables) exist on the infinite time interval, i.e. there is no finite escape time.
Furthermore, no restrictions are placed on the values of the unknown constant
parameter vector @ or on the initial conditions. However, the form (7.1) already
contains several structural restrictions: the unknown parameters appear
linearly, the nonlinearities are not allowed to depend on the unmeasured
states, and the system is completely noise free: there is no process noise, no
sensor noise, and no actuator noise.

Our control objective consists of the global stabilization of (7.1) and the
global tracking of a known reference signal y,(¢) by the output x;(¢).
For notational simplicity, we will denote v;, = v;(x(¢)) fori=1,... n.

7.2.1 A second-order example
To illustrate the difficulties present in this problem, let us consider the case
when the system (7.1) is of second order, i.e.

xi(t+ 1) = xo(1) + 0Ty,
Xt +1) = u(t) + 07, (7.2)
(1) =x1(2)

Even if # were known, the control u(#) would only be able to affect the output
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X1 at time 7 4 2. In other words, given any initial conditions x(0) and x,(0), we
have no way of influencing x; (1) through u(0). The best we can do is to drive
x1(2) to zero and keep it there. The control would simply be a deadbeat
controller, which utilizes our ability to express future values of x; as functions
of current and past values of x; and u:

x1(t+2) = x2(t+ 1) + 0"y 14
=u(t) + 0" [2; + ¥1,41]
= () + 0" 12, + 1 (x2(0) + 0791
= u(t) + 0" o, + 1 (u(t = 1) + 0" (Y1 +9010))]  (7.3)
Thus, the choice of control
u(t) = ya(t +2) = 0" [tho; + b1.111]
= pa(t+2) = 0" [tho, + 1 (u(t = 1) + 0" (o1 +b1,))], t>1 (7.4

would yield x; (¢) = yq(#) for all # > 3 and would achieve the objective of global
stabilization.

We emphasize that here we use a deadbeat control law only because it makes
the presentation simpler. All the arguments made here are equally applicable to
any other discrete-time control strategy, as is the parameter information
supplied by our active identification procedure. We hasten to add, however,
that, from a strictly technical point of view, deadbeat control is perfectly
acceptable in this case, for the following two reasons:

(1) The well-known problems of poor inter-sample behaviour resulting from
applying deadbeat control to sampled-data systems do not arise here, since
we are dealing with a purely discrete-time problem.

(2) Deadbeat control can result to instability when applied to general
polynomial nonlinear systems. As an example, consider the system

xi(t+1)=x(0) + xl(t)xg(t)
xa(t+1) = u(r) (7.5)
y(t) = x1(2)

If we implement a deadbeat control strategy to track the reference signal
ya(t) =271, one of the two possible closed-form solutions yields

() = =20 =1+ 2% (7.6)

which is clearly unbounded. The computational procedures presented in
[13] provide ways of avoiding such problems. However, in the case of
systems of the form (7.1) and of all the other forms we deal with in this
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chapter, such issues do not even arise, owing to the special structure of our
systems which guarantees that boundedness of xi,...,x; automatically
ensures boundedness of x;1, since x;1(¢) = x;(¢ + 1) — 0Th;(x;(1)).

Of course, when 6 is unknown, the controller (7.4) cannot be implemented.
Furthermore, it is clear that any attempt to replace the unknown 6 with an
estimate 6 would be stifled by the fact that 6 appears inside the nonlinear
function ;. Available estimation methods cannot provide global results for
such a nonlinearly parametrized problem, except for the case where v is
restricted by linear growth conditions.

7.2.2 Avoiding the nonlinear parametrization

Our approach to this problem does not solve the nonlinear parametrization
problem; instead, it bypasses it altogether. Returning to the control expression
(7.4), we see that its implementation relies on the ability to compute the term

9T<1/J2,t + ¢1,t+1> (7.7)

Since this computation must happen at time ¢, the argument x; (¢ + 1) is not yet
available, so it must be ‘pre-computed’ from the expression

xi(t4 1) = x2(2) + 04y,
=u(t—1)+ HT(wz,z—l + Y1) (7.8)

Careful examination of the expressions (7.4)—(7.8) reveals that our controller
would be implementable if we had the ability to calculate the projection of the
unknown parameter vector ¢ along known vectors of the form

P2(x) + ¢1(X) (7.9)

since then we would be able at time 7 to compute the terms
0" (Va,-1 + Y1) (7.10)
0" (2 + P111) (7.11)

and from them the control (7.4).
Hence, our main task is to compute the projection of § along vectors of the
form (7.9). To achieve this, we proceed as follows:

Regressor subspace: First, we define the subspace spanned by all vectors of
the form (7.9):

A - -

SHER{P1(x) + (X)), VxeR, VieR} (7.12)

Note that the known nonlinear functions v; and ¥, need to be evaluated
independently over all possible values of their arguments. This is necessary
because we are not imposing any smoothness or continuity assumptions on
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these functions. However, for any reasonable nonlinearities, determining this
subspace will be a fairly straightforward task which of course can be performed
off-line. The dimension of SY, denoted by ry, will always be less than or equal
to the number of unknown parameters p: ro < p. In fact, in any reasonably
posed problem we will have ry = p, since rp < p means that we are considering
more parameters than are actually entering the system equations; in that case,
complete parameter identification cannot be achieved with any method or
input, since the regressor vector cannot acquire the values necessary to identify
some of the parameters. Hence, if ry < p, then the number of unknown
parameters can be reduced to ry without any loss of information or generality.

Projection measurements Clearly, in order to be able to implement the control
(7.4), all we need to know about 6 is its projection on the subspace 52}. But how
do we acquire this projection? From (7.3) we see that at time ¢, using the
measurements x(¢),x;(t — 1), x;(t — 2) and the known value of the control
u(t — 2), we can compute the following projection:

0" [a(x1 (1 = 2)) + ¥ (xi (e = 1))] = x1(r) — u(t = 2) (7.13)

Hence, if the values of x| are such that the corresponding values of the vector
Pa(x1(t —2)) + 91 (x1(¢ — 1)) eventually form a basis for the subspace S, we
will obtain all the necessary information about ¢. But how do we guarantee
that this identification phase will be of finite duration?

Active identification Instead of allowing the system state to drift on its own,
we use the control input u to drive the output x; to values which result in
linearly independent vectors ;> + 11,1 and form a basis for Sg, in at most
2nrg steps (where 7 is the dimension of the system state and ry the dimension of
the nonlinearity subspace). But how can we determine the values of u that will
result in such basis vectors in the presence of unknown parameters? This
seemingly hopeless dilemma can be resolved by the following observation,
which will be clarified further later on:

The expression (7.4) is not computable if and only if at least one of the
vectors s,y + 91, and v¥n; + 41 is independent of the past values
V21 + 11,/ < t— 1. Thus, inability to compute (7.4) from already meas-
ured projections is equivalent to the knowledge that new independent
directions are being generated by the system.

In other words, whenever our identification process gets ‘stuck’, that is, the
system does not generate new directions over the next few steps, then the
projection information we have already acquired is enough for us to compute a
value of control which will get the system ‘unstuck’ and will generate a new
direction after at most 2n (in this case 4) steps: this is the time it takes to change
the arguments of both ¢ and i, and measure the resulting projection.
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Orthogonalized projection estimation All the projection information of € is
automatically incorporated into the parameter estimate 6 produced by an
orthogonalized projection algorithm. This means that after the active identi-
fication phase is complete, all the terms appearing in (7.10) and (7.11) can be
computed simply by replacing 6 by its estimate 6. This allows us to proceed
with the implementation of the controller (7.4) or any other control strategy as
if the parameters were known.

Clearly, this two-stage process depends critically on the fact that, contrary to
their continuous-time counterparts, discrete-time nonlinear systems cannot
exhibit finite escape times, as long as their nonlinearities take on finite values
whenever their arguments are finite. This property allows us to postpone
closing the loop with a controller until after the finite-duration identification
phase has been completed.

7.3 Active identification

Let us now elaborate further on the above outlined approach by presenting in
detail its two most challenging ingredients, namely the pre-computation
scheme and the input selection for active identification. To do this, we return
to the general output-feedback form (7.1) and rewrite it in the following scalar
form:

xi(t+n)=x2(t+n—1)+0%(x1(t +n—1))

= X3(l+ n— 2) + 9T1/)2(x1(l+n — 2)) + 9T1/)] (xl(l+n — 1))

n
= u(t)+ Y 0" (xi(t+n—k)) (7.14)
k=1
Hence, the following choice of a deadbeat control law:
u(t) = ya(t+n) = 0" rins (7.15)
k=1

will globally stabilize the system (7.1) and yield x;(¢) = yq(?), t > n.

Clearly, the implementation of the control law (7.15) requires us to calculate
(at time 7) the projection of the unknown 6 along the vector > }_, ¢ +n—«. This
means that we need to compute the value of ;| 1k 1,k at time 7. Rewriting

ZZ:I wk.Hn*k as n n

> Wksink = Y telxi(t+n—k)) (7.16)
k=1 k=1

we can therefore infer that it is necessary for us to be able to calculate the value



Adaptive Control Systems 167

of the states x; (¢4 1),...,x;(t +n — 1) at time 7. To see how to calculate these
states, let us return to equation (7.14) and express x;(t+ 1),...,x(t+n—1)
as

xl(t—i—i):u(l—n+i)—&—HTi:z/Jk(xl(l—i-i—k)), i=1,....n—1 (7.17)
k=1

Clearly, equation (7.17) shows that the value of x; (¢ + 1) depends on the values
of both 07 > ¥y 11—« and u(t — n+ 1). Since the values of u(z — n+ 1) and
the vector Y ;_; ¥k +1-k are known at time 7, the key to successfully calculating
(at time ) the value of x;(¢+ 1) depends on whether we are able to compute
the projection of the unknown 6 along the vector ZZZI Yir+1-k at time 7.

Next, let us examine what we need to calculate the value of x| (7 + 2) at time
t. From (7.17), the value of x;(7+ 2) is equal to the sum of u(z —n+2) and
0T ZZ:, Yi42-k. Clearly, if we are able to calculate the values of both
u(t —n+2) and 7 > h—i Ykit2—k at time 7, then the value of x»(7 + 2) can be
acquired (at time ¢). The value of u(f — n+ 2) is known at time ¢, while from
the expression

n—1

> k=P + D Pk =i+ 1)+ Y (x4 1—k))
p p P
(7.18)

we see that the value of Y, ¥k 2 depends on x;(z+ 1). This means that
pre-computing the value of x,(z + 2) requires the values of both x;(¢+ 1) and
0" > i Ykis2—k. In view of the discussion of the previous paragraph, the
calculation of x; (¢ + 1) at time ¢ requires us to compute (at time #) the value of
0T >}, Yks+1-k- Thus, in summary, the calculation of x| (7 + 2) requires us to
pre-compute (at time ¢) the values of

[QT pya ¢k7t+1k‘|

7.19
07 > i Vkir2k (7.19)

Generalizing the argument of the previous two paragraphs, we can conclude
that the pre-computation of the value of x;(z+/) (1 </<n—1) requires
knowledge (at time ¢) of the vector

07 > ey Yrs1-k
: (7.20)
07 > ey Yrkri—k
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Hence, the knowledge (at time ¢) of the above vector with / =n — 1
01 >k Vkrr1—k
: (7.21)

0T > Vkren1—k

enables us to determine the values of the states x;(¢+1),...,x1(t +n—1) at
time ¢. However, the implementation of the control law (7.15) requires the
value of 4T > i_1 Yk.r+n—k also. This leads finally to the conclusion that, in order
to use the control law (7.15), we need to pre-compute (at time ¢) the vector

07 > h Vkr1—k
~ (7.22)

HT ZZ:] wk,ﬂrnfk

The procedure for acquiring (7.22) at time ¢ (f > n) is given in the next two
sections, whose contents can be briefly summarized as follows: first, the section
on pre-computation explains how to pre-compute the vector (7.22) after the
identification phase is complete, that is, for any time ¢ such that S?_l = Sg,
where SL denotes the subspace that has been identified at time 7 (with ¢ > n):

St AR{ZWM, i=n,.--,t} (7.23)
k=1

while S,gj denotes the subspace formed by all possible values of the regressor
vector:

SZAR{ZQﬂi(Z,'), V(z1,...,2) € [Re"}, ro = dim S (7.24)
i=1

Then, the section on input selection for identification shows how to guarantee
that the identification phase will be completed in finite time, that is, how to
ensure the existence of a finite time # at which S?F = S?w In addition, we will
show that ¢ < 2nry.

The reason for this seemingly inverted presentation, where we first show
what to do with the results of the active identification and then discuss how to
obtain these results, is that it makes the procedure easier to understand.

7.3.1 Pre-computation of projections

The pre-computation of (7.22) is implemented through an orthogonalized
projection estimator. Therefore, we first review briefly the standard version
of this estimation scheme; for more details, the reader is referred to Section 3.3
of [7].
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Orthogonalized projection algorithm Consider the problem of estimating an
unknown parameter vector # from a simple model of the following form:

y(1) =o(t—1)"6 (7.25)

where y(7) denotes the (scalar) system output at time 7, and ¢(¢# — 1) denotes a
vector that is a linear or nonlinear function of past measurements

V=1 ==, p(r=2),...}
Uit —1)={u(t—1),u(t-2),...}

The orthogonalized projection algorithm for (7.25) starts with an initial
estimate 6y and the p x p identity matrix P_;, and then updates the estimate
and the covariance matrix P for ¢ > 1 through the recursive expressions:

A P >0, A .
R 01 +T[Pz¢(y(f) — ¢ 10im1) if @7 Piag #0
g, 1 Pr2¢i (7.27)
9#1 if ¢;F—1Pt72¢[71 =0
Py 19T P,
Pr—2 St ik o 2T¢[Pl ¢t71 2 if ¢1T71Pt—2¢t—l ?é 0
P, = i1 Pr2gi (7.28)
Pf72 if ¢[T71Pt72¢f71 =0

(7.26)

This algorithm has the following useful properties, which are given here
without proof:

(i) P,—1¢(¢) is a linear combination of the vectors ¢(1),...,d(7).
(i) N[P]=R{p(1),...,¢(t)}. In other words, P,x = 0 if and only if x is a
linear combination of the vectors ¢(1),..., ¢(1).
(i) Prd()LRAG(D),. .. 6(t— )},
(iv) 0(0)LR{s(1),...,¢0(t — 1)}, where 0,0, — 0 is the parameter estimation
error.

It is worth noting that the orthogonalized projection algorithm produces an
estimate 6, that renders

!

JiB) =3 (k) = 0" 6k ~ 1))’ = 0 (7.29)

k=1

and thus minimizes this cost function. This implies that orthogonalized
projection is actually an implementable form of the batch least-squares
algorithm, which minimizes the same cost function (7.29). However, the
batch least-squares algorithm, that is, the least-squares algorithm with infinite
initial covariance (P~} = 0), relies on the necessary conditions for optimality,
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namely

aJ,(0 : -
G =0 = Dotk Dotk — 9= yWotk—1) (730

k=1

which cannot be solved to produce a computable parameter estimate before
enough linearly independent measurements have been collected to make the
matrix St ¢(k — 1)¢(k —1)" invertible. In contrast, the orthogonalized
projection algorithm produces an estimate which, at each time 7, incorporates
all the information about the unknown parameters that has been acquired up
to that time.

Now we are ready to describe how to apply the orthogonalized projection
algorithm (7.27)—(7.28) to our output-feedback system (7.1).

Orthogonalized projection for output-feedback systems At each time ¢, we can
only measure the output x;(¢). Utilizing this measurement and (7.14), we can
compute the projection of the unknown vector 6 along the known vector

> it Yk—k» that is, )
X; = ZQTW(M([ — k)) = (z);lllg (731)
k=1

where ¢, 2 > it Yki—k and X, éxl(t) — u(t — n) for any ¢ with ¢ > n.

Since equation (7.31) is in the same form as (7.25), we can use the expressions
(7.27)—(7.28) to recursively construct the estimate 6, and the covariance matrix
P; (with t > n+ 1 in order for (7.31) to be valid), starting from initial estimates
6, and P, =1

A P, ¢, S .

. 0,1 Jr(thP#(xr - ¢1T_10t—1) if ¢1T_1Pt—2¢1—1 #0

0, = P29 (7.32)
9#1 if ¢[T_1Pt—2¢14 =0

Pagi 10 Py .. p

P, — if P ¢, 0

P_ = 2 ¢;T_1P172¢t—1 bi-1 Pr2fe 7 (7.33)

Pf72 if ¢?,1Pt—2¢t71 =0

Lemma 3.1 When the estimation algorithm (7.32)—(7.33) is applied to the
system (7.31), the following properties are true for ¢ > n:

6 P1g=0 & ¢, €8, (7.34)
¢ €S, = 0p1=0, P =P (7.35)

' This notation is used in place of the traditional 6y and P_, to emphasize the fact
that for the first n time steps we cannot produce any parameter estimates.



Adaptive Control Systems 171
0 T _ 4T T

veS,_, = 0,v=0_pv=0v, [=012... (7.36)
The proof of this lemma is given in the appendix. The properties (7.34)—
(7.36) are crucial to our further development, so let us understand what they
mean. Properties (7.34) and (7.35) state that whenever the regressor vector ¢, is
linearly dependent on the past regressor vectors, then our estimator does not
change the value of the parameter estimate and the covariance matrix; this is
due to the fact that the new measurement provides no new projection
information. Property (7.35) states that the estimate 0, produced at time ¢ is
exactly equal to the true parameter vector 6, when both are projected onto the
subspace spanned by the regressor vectors used to generate this estimate,
namely the subspace S? | =R{¢y,...,¢,—1}. This property is one of the
cornerstones on which we develop our pre-computing methodology in the
following sections, because it implies that at time ¢ we know the projection of

the true parameter vector ¢ along the subspace S .

Pre-computation procedure In order to better explain the pre-computation
part of our algorithm, we postulate that there exists a finite time instant # > n
at which the regressor vectors that have been measured span the entire
subspace generated by the nonlinearities:

S0 A (7.37)

ti—1 =

Hence, at time # the identification procedure is completed, because the
orthogonalized projection algorithm has covered all ry independent directions
of the parameter subspace, and hence has identified the true parameter vector
0. 1t is important to note (i) that the existence of such a time #; < 2nry will be
guaranteed through appropriate input selection as part of our active identifica-
tion procedure in the next section, and (ii) that our ability to compute € at such
a time 7, be it through orthogonalized projection or through batch least
squares, is in fact independent of the manner in which the linearly independent
regressor vectors were obtained.
The definition (7.24) tells us that

g ESYy=S)_\, Vi>1>n (7.38)
Hence, (7.36) implies that
by =00, Vi>1>n (7.39)

In particular, with the help of (7.14) we can then pre-compute (at time ¢ with
t > tr) the state x;(z + 1) through

(D) =u(t+1—n)+ 076, =u(t+1-n)+0, ¢ (7.40)

Using the pre-computed x;(¢+ 1), we can also pre-compute (at time ¢ with
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t Z tf) wl.ﬁ—l IR wn,H—l

Y141 ) (u(t +1—n)+ équt)

L = : (7.41)
o] | a(ulr+ 1=m)+0,0,)
and the vector )
Gt =Y+ Y Vi
- n—1
=1 (1 =)+ 0,00) + > tieriris (7.42)

i=1

Since S)_, = S}, the pre-computed ¢, still belongs to S} _,. Hence, we can

repeat the argument from (7.40) to (7.42) to pre-compute (at time ¢ > t;) the
state x; (1 +2) as

xi(t+2) =u(t+2—n)+ 60"
—u(t+2-n)+0, 611 (7.43)

Then, using the pre-computed x;(z + 1) and x; (¢ + 2), we can calculate (at time
t > tr) the vectors ¥ /42, . .., %42 through

Y1142 N (u(t +2-—n)+ OA,T‘,QZ),H)
: = : (7.44)
Y42 Uy (”(l +2—n)+ éz¢z+l>

and also the vector ¢, as follows:
n
G2 = V142 + V241 + Z Yig43—i
i=3

n—2

vi (u(t +3—j-n)+ ézqsfﬂ—j) + Z VYirar1-i (7.45)
i=1

I
'M'\’

1

J

In general, since the pre-computed vector (1 </ < n — 1) satisfies
Grii1 €S) =S, (7.46)
we can pre-compute (at time 7 > #) the state x;(¢z + /) as
X+ D) =ult+1—n) + 0% = u(t+1—n)+ 6, 601 (7.47)

Then, using the pre-computed x;(z+1),...,x,(f+ /), we can pre-compute
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(still at time ¢ > f) the vectors:
(IR P (u(t +1—n)+ é:abm,l)
: = : (7.48)
buir] [t 1=m) + 0,001

and also ¢,y = Z?;l Yirir1-i.
In summary, for any ¢ with ¢ > ¢, using the procedure from (7.46)—(7.48), we

can pre-compute the vectors 9;,4, withi=1,...,nand /=1,...,n—1 and,
thus, the vectors ¢;i1,...,¢mn_1 € S?f_]. Combining this with (7.36), we can
pre-compute the vector (7.22) as
0 ¢, 92(;5,
: = : (7.49)
AT
9T¢z+n—1 erf(btﬂlfl

which implies that after time # we can implement any control algorithm as if
the parameter vector 6 were known.

7.3.2 Input selection for identification

So far, we have shown how to pre-compute the values of the future states and
the vectors associated with these future states, provided that we can ensure the
existence of a finite time instant #; > n at which S9_, = Sg Now we show how
to guarantee the existence of such a time #; this is achieved by using the control
input u to drive the output x; to values that yield linearly independent
directions for the vectors ¢;. This input selection takes place whenever
necessary during the identification phase, that is, whenever we see that the
system will not produce any new directions on its own. The main idea behind
our input selection procedure is the following:

At time ¢, we can determine whether any of the regressor vectors
Oty Praty- -y Prin_1 Will be linearly independent of the vectors we have
already measured. If they are not, then we can use our current estimate 0,
and the equation (7.15) to select a control input u(¢) to drive x;(¢ +n) to a
value that will generate a linearly independent vector ¢,.,. In the worst-case
scenario, we will have to use u(z),u(t+1),...,u(t+n—1) to specify the
values xi(t+n),x;(t+n+1),...,x1(t+2n—1) in order to generate a
linearly independent vector ¢, 2,_1.

Proposition 3.1 As long as there are still directions in Sg along which the
projection of 6 is unknown, it is always possible to choose the input u so that a
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new direction is generated after at most 2n steps:

dimS) | <dimS) =ry = dimS},,, | >dimS)  +1, Vi>n (7.50)

Proof The proof of this proposition actually constructs the input selection
algorithm. Let us first note that (7.23) yields (for ¢ > n)

Sy, CSyC---CS), Csy (7.51)
which implies
dim S, | <dimS) < --- < dim S} | < dim S}, = r (7.52)

0

9 1 = dimS? | + 1is implemented as

The algorithm that guarantees dim S
follows:

Step 1 At time 7, measure x(¢) and compute ;, and ¢,.

Case 1.1 1f ¢fP,_1¢, #0, then by (7.34) we have ¢, ¢ S |, and therefore
dim S? = dim $? | + 1. No input selection is needed; return to Step 1 and wait

for the measurement of x; (¢ + 1).
Case 1.2 If ¢TP,_1¢, =0, then ¢, € S" | and S*=5%,. Go to Step 2.
Step 2 Since ¢, € SY |, use the procedure (7.38)—(7.42) to calculate all of the

-1
following quantities, whose values are independent of u(¢) (since u() affects

only x| (z+ n)):

{xl(t + 1) Pty Yna ,¢r+1} (7.53)
Case 2.1 If ¢} | P11 #0, then ¢,y ¢ S} | and dim S, | = dim S}, + 1.

+1
No input selection is needed; return to Step 1 and wait for the measurement of

xi1(t+2).

Case 2.2 If ¢}, | P,_1¢1 = 0 then ¢, € S? , and S SY .. Go to Step 3.

Stepi (3<i<n) Since ¢ i1 €S, use the procedure (7.38)-(7.42) to
calculate all of the following quantities (whose values are also independent
of u(r)):

0
1 =

{xi(t+i=1) Vit Unriot » Praict (7.54)
Case il If ¢, \Pi¢i1#0, then ¢iq ¢S, and dimSP, |, =

dim 59_1 + 1. No input selection is needed; return to Step 1 and wait for the
measurement of x; (¢ + i).

Case i.2 1If ¢, \Pi1dryio1 #0, then ¢y € S, and S?, | = S? . Go to
Step i + 1.
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Step n+1 At this step, we have pre-computed all of the following quantities:

Xl(l+1), RN xl(t+n—1)
¢t+1 ) sty ¢t+n71
L s WA (7.55)
wn,r+l ) D) 'l/}n,tJrnfl

and we know that the pre-computed vectors satisfy

€S, o P €S, (7.56)

Case (n+1).1 If there exists a real number a;; such that QSE“P,_IQSGH #£0,
that is, ¢q,, & S° ,,where

n
A
Gy =1 (an) + Z Yitn+1-i (7.57)
i=2
then choose the control input u(¢) to be

AT
u(l) =daj — 9[ Orin—1 (7.58)
This choice yields

xi(t+n)=u(t) + 0T¢t+n71
=ai — 0  Grin 1 + 0 P
= d (759)

where the last equality follows from (7.56) and (7.36). Therefore, we have

Grin = bay, & S, and, hence, dim S?,, = dim S} | + 1. Return to Step 1 and

wait for the measurement of x;(r +n+ 1).

Case (n+1).2 If there exists no a;; that renders ¢

ap

Pi_1¢4, # 0, that is, if

U1(a) + O Wjsenpr =) + > _(xi(t+n+1-j) €S’ VacR
j=2 j=2

(7.60)
then go to Step n + 2.

Step n+2 We have pre-computed all the quantities in (7.55), and we also
know from (7.60) that any choice of u(7) will result in ¢4, € S? .

Case (n+2).1 TIf there exist two real numbers ayj,a2 such that



176 Active identification for control of discrete-time uncertain nonlinear systems

Dayy any Pr1Pasy ay 7# 0, that is, ¢uy, a, & 7|, where

¢azl-uzz é '(/}1 (a21) + "/}2(a22) + Z wi,t+n+27i (761)
i=3
then choose the control inputs u(¢) and u(z + 1) as
T
u(t) =y — 9; Dran—1 (762)
T
u(t+1) = an — 0, ¢ren (7.63)

In view of (7.14), these choices yield
xi(t+n) = u(t) + 0" ¢rin

AT T
=ai1 — 0; prin—1 + 0" drn

= i,
xi(t+n+1)=ult+1)+ 60",

=dax — é’tr¢t+n + 0T¢t+n

= dan (7.64)
where we have used (7.36) and the fact that ¢,,_1, ¢r1n € SO . Therefore, we
have @rini1 = Guyan & SL_; and, hence, dim 8%, | = dim S?_, + 1. Return to

Step 1 and wait for the measurement of x;(z + n + 2).

Case (n+2).2 1If no such ¢y, 4, exist, that is, if

2 n 2 n
Z ﬂfj(aj)JrZ Yy rini2—j :Z ¢j(“j)+z Yix(t+n+2-j)eS),
= = = =

V(a,a)€ R* (7.65)
then go to Step n + 3.

Stepn+i(3<i<n—1) We have pre-computed all the quantities in (7.55),
and we also know from the previous steps that any choice of
u([)a u(t + 1)v ce 7u(t +i— 2) will result in ¢t+m ¢t+n+1a ) ¢t+n+i72 € S?,l-

Case (n+i).1 If there exist i real numbers a;,ap,...,a; such that
aiipt—l(ba,-l.“.,a,[ 7é Oa that isa ¢(1[1,4..ﬁa,-[ ¢ S?,l, where

ilyeeey

Parsents D 0i(@5) + Y prensig (7.66)
=

J=it1
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then choose the control inputs u(¢),...,u(t+i—1) as
u(t+j—1) = a5 — 0, rinry2, 1<j<i (7.67)
In view of (7.14), these choices yield
xi(t+n+j—1)=ult+j—=1)+ 60 G102

AT T
=aj — 0, brinsj2+ 0 Pringi2

—ay, 1<j<i (7.68)
where we have used (7.36) and the fact that ¢, 1, 1,...,¢nnri2 € S?fl.
Therefore, we have ¢niic1 = @ay,...ay € ST, and, hence, dimsS?, ., =

dim S? | + 1. Return to Step 1 and wait for the measurement of x; (7 + n + i).

Case (n+1i).2 If no such a;,ap,...,a; exist, that is, if

Do) + D G = Y (@) + Y it +n+i—j)) €S,
=1 j=it1 =1 j=itl

(7.69)
for all (a) ,as,...,a;) € R, then go to Step n+i + 1.

Step 2n We have pre-computed all the quantities in (7.55), and we also know
from Step 2n — 1 that any choice of u(#),u(t + 1),...,u(t +n — 2) will result in
Briny Brontty .- Prim—2 € SY . Since from (7.50) we know that

dim S? | < dim SY, we conclude that there is at least one vector of the form

A
Pt = Y Vi) (7.70)
J=1
that does not belong to S?_l, that is, such that ¢2,“,.‘.,a,mPtfzfﬁam7...,am #0.
Therefore, choose the control inputs u(¢),...,u(t+n—1) as
. AT .
u(t +j-1)= nj — 0, Grintj—2, 1<j<n (7'71)

In view of (7.14), these choices yield
xi(t+n+j—1) =ult+j—1)+0 G102

AT T
=y — 0; Grnyji2 + 0" drintj—2

=ay, 1<j<n (7.72)
where we have used (7.36) and the fact that ¢, 1, 1,...,¢n2m—2 65?71.
Therefore, we have @201 = du,..a, € S;-1 and, hence, dimS), | =

dim S? | + 1. Return to Step 1 and wait for the measurement of x;(z + 2n).
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This completes the input selection procedure as well as the proof. The input
selection algorithm is summarized in Figure 7.1.

Figure 7.2 provides a graphic description of the relationships between the
control inputs, the vectors ¢ and ¢, and the output x;. This graph illustrates
the fact that in order to compute the value of x;(z +2) (at time f) we must
know the values of ¥3,_1, ¥24, 91,41 and u(f — 1). The pre-computed vectors
V3,41, Y2, and ¢y .41 further enable us to calculate the vector ¢, 5. On the other
hand, if we want to compute x; (¢ + 3) (at time ¢), then from Figure 7.1 we see
that we need (1) the pre-computed ¢,42 € S? |, (2) the pre-computation of s,
V2141, Y1442, and (3) the value of u(z).

7.4 Finite duration

Using the computational procedure developed in the proof of Proposition 3.1,
we can now guarantee that our active identification procedure will have a finite
duration:

Theorem 4.1 The active identification procedure completely identifies the
projection of the unknown parameter vector # along the subspace ng at

time
tr < 2nrg = (7.73)

Proof Proposition 3.1 shows that each independent direction in S?b takes at
most 2n time steps to identify. Since the dimension ry of the subspace Sg is
equal to the number of such independent directions, the active identification
procedure will be completed in at most 2nry time steps.

Once this procedure is completed, we can proceed with the implementation
of any control algorithm as if the parameter vector § were known.

7.5 Concluding remarks

In this chaper, we have developed a systematic method to achieve global
stabilization and tracking for discrete-time output-feedback nonlinear systems
with unknown parameters. Our two-phase control strategy bears some
resemblance to dual control [16], which not only stabilizes and regulates the
system, but also improves the parameter estimates and the future value of the
control. First, in the active identification phase, we systematically use the
control to drive the states to desired points so that useful projection
information about the unknown parameters is obtained. This process of
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Measure x| (k) )<

l={+1

YE
S /<k>

Jac R st
U=a= ¢} Pr1¢s # 02

YES

Figure 7.1 The input selection algorithm
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Figure 7.2 A graphic representation of the pre-computation procedure

active identification is finite. Once all the necessary projection information is
obtained, we are able to systematically pre-compute future states and the
associated projections. Then, in the subsequent control phase, we use this
prediction capability to treat the system as completely known; this means that
one can apply any control algorithm (the simplest being ‘deadbeat’ control)
that globally stabilizes the system and tracks any given bounded reference
signal when the parameters are known.

The input selection procedure that we proposed here guarantees that the
active identification interval will be of finite duration. However, it does not
provide any guarantees on the transient behaviour of the states during this
phase. Clearly, one may be able to exploit the freedom of choice of u(¢) in order
to make this phase shorter and smoother. This issue is a topic of current
research.
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Appendix

Proof of Lemma 3.1 First, let us prove (7.34).
(<) Since NP 1] =R{bn-1,..-,¢r—1} =5, ¢ €S, implies that
P, 1¢, = 0. Thus, we have

€S’ | = ¢ Py =0 0=0 (A.1)

(=) Assume that ¢,TP,,1¢[ = 0. Then, the fact that P, ¢, is a linear

combination of the vectors ¢,_i,...,¢, implies that P, ¢, € S,O, that is,
there exist constants ¢,_1,..., ¢, such that
t

Piigi= Y cioy (A2)

i=n—1
Hence, using the definition (3.23), we can infer

t—1

P 1¢r— iy = Z cipi € SV, (A.3)

i=n—1
Since ¢, € S? | C S?, we can decompose the vector ¢, into
¢ = vs + U5 (A.4)

where vy, denotes the component of ¢, which belongs to S | and vs € S? is the
component of ¢, which is orthogonal to S?_l. Then (A.3) can be reorganized as

t—1
P[71¢; - C[Ué = CsUy, + Z Cj¢i < S?—l (A.S)

i=n—1

We know that P, LR{by-1,..., -1} = S?fl. Hence, we conclude that
Piy¢;— o5 LS? . Combining  this  with  the  fact  that
Pi1¢ — Croniavy € SY | (from (A.5)) yields

P — Ct”é =0

that is N
P[_]Q/)[ = C[UE (A.7)

Multiplying both sides of equation (A.7) by ¢!, we obtain
3 Piiy = ¢/ v (A8)
In view of the decomposition (A.4), we can simplify (A.8) and obtain
61 Pi1n = iy vy
= c(vs + ) vy

= ooz ? (A.9)
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On the other hand, from the assumption we have ¢,TP,_1¢>, = 0. Thus, equation
(A.9) implies

ellogl? =0 (A.10)
from which we can conclude that
c,,,1+2v§ =0 (A.11)
Substituting (A.11) into (A.7) gives P,_1¢, = 0, that is
¢ € N(Py) = S), (A.12)
So, we have shown that
OFP 1 =0= ¢ €S, (A.13)
To prove (7.35), we first use (7.34):
¢ E€SL, = ¢ Piig =0 (A.14)

But, when ¢! P, 1¢, =0 the update laws (7.32)~(7.33) yield é,H =0, and
P[ == Pl*l'
Finally, the proof of (7.36) is as follows: We know that

~ o T .

0 LR{bn-1,...,¢1—1}. Thus, ve 5?71 implies that ¢, v =0, which can be
. AT . .

rewritten as 6, v = 6Tv. On the other hand, v € S? | implies that v € S, ,,

. T T

since S? | C 8%, . Hence, we also conclude that 6, v = 0, that is, 6, v = 6T0.

Combining these, we obtain

0T = 6" =6,,0, ¥I=0,12,... (A.15)
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Optimal adaptive tracking for
nonlinear systems

M. Krsti¢c and Z.-H. Li

Abstract

We pose and solve an ‘inverse optimal’ adaptive tracking problem for non-
linear systems with unknown parameters. A controller is said to be inverse
optimal when it minimizes a meaningful cost functional that incorporates
integral penalty on the tracking error state and the control, as well as a
terminal penalty on the parameter estimation error. The basis of our method is
an adaptive tracking control Lyapunov function (atclf) whose existence
guarantees the solvability of the inverse optimal problem. The controllers
designed in this chapter are not of certainty equivalence type. Even in the linear
case they would not be a result of solving a Riccati equation for a given value
of the parameter estimate. Our abandoning of the CE approach is motivated
by the fact that, in general, this approach does not lead to optimality of the
controller with respect to the overall plant-estimator system, even though both
the estimator and the controller may be optimal as separate entities. Our
controllers, instead, compensate for the effect of parameter adaptation
transients in order to achieve optimality of the overall system.

We combine inverse optimality with backstepping to design a new class of
adaptive controllers for strict-feedback systems. These controllers solve a
problem left open in the previous adaptive backstepping designs — getting
transient performance bounds that include an estimate of control effort, which
is the first such result in the adaptive control literature.

8.1 Introduction

Because of the burden that the Hamilton—Jacobi—Bellman (HJB) pde’s impose
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on the problem of optimal control of nonlinear systems, the efforts made over
the last few years in control of nonlinear systems with uncertainties (adaptive
and robust, see, e.g., Krsti¢ et al., 1995; Marino and Tomei, 1995; and the
references therein) have been focused on achieving stability rather than
optimality. Recently, Freeman and Kokotovi¢ (1996a, b) revived the interest
in the optimal control problem by showing that the solvability of the (robust)
stabilization problem implies the solvability of the (robust) inverse optimal
control problem. Further extensive results on inverse optimal nonlinear stabil-
ization were presented by Sepulchre et al. (1997).

The difference between the direct and the inverse optimal control problems is
that the former seeks a controller that minimizes a given cost, while the latter is
concerned with finding a controller that minimizes some ‘meaningful’ cost. In
the inverse optimal approach, a controller is designed by using a control
Lyapunov function (clf) obtained from solving the stabilization problem. The
clf employed in the inverse optimal design is, in fact, a solution to the HJB pde
with a meaningful cost.

In this chapter we formulate and solve the inverse optimal adaptive tracking
problem for nonlinear systems. We focus on the tracking rather than the (set-
point) regulation problem because, even when a bound on the parametric
uncertainty is known, tracking cannot (in general) be achieved using robust
techniques — adaptation is necessary to achieve tracking. The cost functional in
our inverse optimal problem includes integral penalty on both the tracking
error state and control, as well as a penalty on the terminal value of the
parameter estimation error. To solve the inverse optimal adaptive tracking
problem we expand upon the concept of adaptive control Lyapunov functions
(aclf) introduced in our earlier paper (Krstic and Kokotovi¢, 1995) and used
to solve the adaptive stabilization problem.

Previous efforts to design adaptive ‘linear-quadratic’ controllers (see, e.g.,
Ioannou and Sun, 1995) were based on the certainty equivalence principle: a
parameter estimate computed on the basis of a gradient or least-squares update
law is substituted into a control law based on a Riccati equation solved for that
value of the parameter estimate. Even though both the estimator and the
controller independently possess optimality properties, when combined, they
fail to exhibit optimality (and even stability becomes difficult to prove) because
the controller ‘ignores’ the time-varying effect of adaptation. In contrast, the
Lyapunov-based approach presented in this chapter results in controllers that
compensate for the effect of adaptation.

A special class of systems for which we constructively solve the inverse
optimal adaptive tracking problem in this chapter are the parametric strict-
feedback systems, a representative member of a broader class of systems dealt
with in Krstic et al. (1995), which includes feedback linearizable systems and, in
particular, linear systems. A number of adaptive designs for parametric strict-
feedback systems are available, however, none of them is optimal. In this
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chapter we present a new design which is optimal with respect to a meaningful
cost. We also improve upon the existing transient performance results. The
transient performance results achieved with the tuning functions design in
Krsti¢ et al. (1995), even though the strongest such results in the adaptive
control literature, still provide only performance estimates on the tracking
error but not on control effort (the control is allowed to be large to achieve
good tracking performance). The inverse optimal design in this chapter solves
the open problem of incorporating control effort in the performance bounds.

The optimal adaptive control problem posed here is not entirely dissimilar
from the problem posed in the award-winning paper of Didinsky and Basar
(1994) and solved using their cost-to-come method. The difference is twofold:
(a) our approach does not require the inclusion of a noise term in the plant
model in order to be able to design a parameter estimator, (b) while Didinsky
and Basgar (1994) only go as far as to derive a Hamilton—Jacobi-Isaacs
equation whose solution would yield an optimal controller, we actually solve
our HJB equation and obtain inverse optimal controllers for strict-feedback
systems. A nice marriage of the work of Didinsky and Basar (1994) and the
backstepping design in Krsti¢ et al. (1995) was brought out in the paper by Pan
and Basar (1996) who solved an adaptive disturbance attenuation problem for
strict-feedback systems. Their cost, however, does not impose a penalty on
control effort.

This chapter is organized as follows. In Section 8.2, we pose the adaptive
tracking problem (without optimality). The solution to this problem is given in
Sections 8.3 and 8.4 which generalize the results of Krsti¢c and Kokotovic¢
(1995). Then in Section 8.5 we pose and solve the inverse optimal problem for
general nonlinear systems assuming the existence of an adaptive tracking
Lyapunov function (atclf). A constructive method for designing atclf’s based
on backstepping is presented in Section 8.6, and then used to solve the inverse
optimal adaptive tracking problem for strict-feedback systems in Section 8.7. A
summary of the transient performance analysis is given in Section 8.8.

8.2 Problem statement: adaptive tracking

We consider the problem of global tracking for systems of the form
X =/(x) + F(x)0 + g(x)u
y = h(x)

where x € R", u € R, the mappings f(x), F(x), g(x) and A(x) are smooth, and
is a constant unknown parameter vector which can take any value in R”. To
make tracking possible in the presence of an unknown parameter, we make the
following key assumption.

(8.1)
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(A1) For a given smooth function y,(¢), there exist functions p(¢, ) and «, (¢, 6)
such that
dp(1,0)
— = 1,0)) + F(p(t,0))0 + t,0))a(t,0
g =S (e(1,0)) + F(p(1,0))0 + g(p(t, 0))eu(1,6) (8.2)

ye(t) = h(p(1,0)), Vi>0, V9eR

Note that this implies that

%h op(t,0) =0, V>0, V0e R (8.3)
For this reason, we can replace the objective of tracking the signal
vi(t) = hop(t,0) by the objective of tracking y,(t) = ho p(t,0(¢)), where 0(t)
is a time function — an estimate of # customary in adaptive control.
Consider the signal x,(¢) = p(z,0(¢)) which is governed by
. 8p(lvé) ap(lvé) 5 %) %) 8,0(l‘7é) A
X, = + —0=f(x,)+ F(x,)0 + g(x,).(¢,0) + —0 8.4
G+ 0 = £ () + Fx)f + glv)an(1.0) + L20 - (8.4)
We define the tracking error e=x—x, =x — p(t,6) and compute its
derivative:

é=[(x) =f(x) + [9(x) — g(xr)]a(2,0)

+ F(x)0 — F(x,)0 — %}9)5 +9(x)[u — a(1,0)] (8.5)

:f~+F0+F,‘9~—%§+gﬁ

where § = 6 — 6 and

(8.6)

ii=u— a1,

(With a slight abuse of notation, we will write g(x) also as g(t, e, §).) The global
tracking problem is then transformed into the problem of global stabilization
of the error system (8.5). This problem is, in general, not solvable with static
feedback. This is obvious in the scalar case n = p = 1 where, even in the case
() = x,(t) =0, a control law u = a(x) independent of ¢ would have the
impossible task to satisfy x[f(x) + F(x)0 4+ g(x)a(x)] < 0 for all x # 0 and all
0 € R. Therefore, we seek dynamic feedback controllers to stabilize system (8.5)
for all 6.
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Definition 2.1 The adaptive tracking problem for system (8.1) is solvable if
(A1) is satisfied and there exist a function d(l,e,é) smooth on
Ry x (R"\ {0}) x R” with a(z,0,0) =0, a smooth function 7(z,e,6), and a
positive definite symmetric p x p matrix I', such that the dynamic controller

i=a(te,0) (8.7)

6 =Tr(1,e,0) (8.8)

guarantees that the equilibrium ¢ =0, § = 0 of the system (8.5) is globally
stable and e(¢) — 0 as t — oo for any value of the unknown parameter 6 € R”.

8.3 Adaptive tracking and atclf’'s

Our approach is to replace the problem of adaptive stabilization of (8.5) by a
problem of nonadaptive stabilization of a modified system. This allows us to
study adaptive stabilization in the Sontag—Artstein framework of control
Lyapunov functions (clf) (Sontag, 1983; Artstein, 1983; Sontag, 1989).

Definition 3.1 A smooth function V, : R, x R" x R — R, positive definite,
decrescent, and proper (radially unbounded) in e (uniformly in ¢) for each 6, is
called an adaptive tracking control Lyapunov function (atclf) for (8.1) (or
alternatively, an adaptive control Lyapunov function (aclf) for (8.5)), if (A1) is
satisfied and there exists a positive definite symmetric matrix I' € R”*? such
that for each 6 € R?, V,(t,¢,0) is a clf for the modified nonadaptive system

T
am,) @F(an

T
0 ) "0 e F) + gii (8.9)

e':f'+ﬁ9+Fr<
that is, V, satisfies
, Wy WVl - VNY p_(ove N\
lglef IR{ T + P [f+F9+FF< 89) —%F< o F> +gu]}<0

(8.10)

In the sequel we will show that in order to achieve adaptive stabilization of
(8.5) it is necessary and sufficient to achieve nonadaptive stabilization of (8.9).
Noting that for (¢) = 0 the system (8.5) reduces to the nonadaptive system

é=f+F0+gi (8.11)
we see that the modification in (8.9) is

VN dp [OV. \*
Fr( ae) —@r( e F) (8.12)
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Since these terms are present only when I' is nonzero, the role of these terms is
to account for the effect of adaptation. Since V,(t, ¢, 0) has a minimum at e = 0
for all ¢+ and 6, the modification terms vanish at the e =0, so e =0 is an
equilibrium of (8.9).

We now show how to design an adaptive controller (8.7)—(8.8) when an atclf
is known.

Theorem 3.1 The following two statements are equivalent:

(1) There exists a triple (&, V,,I') such that a(z,e,6) globally uniformly
asymptotically stabilizes (8.9) at e = 0 for each § € R” with respect to the
Lyapunov function V,(t,e,0).

(2) There exists an atclf V,(t,e,0) for (8.1).

Moreover, if an atclf V,(t,e,0) exists, then the adaptive tracking problem for
(8.1) is solvable.

Proof (1 = 2) Obvious because 1 implies that there exists a continuous
function W : Ry x R" x R” — R, positive definite in e (uniformly in 7) for
each 6, such that

ov, IV,

8l+6€

T
6VG> @F(an

T
_ A< —
B %0 5 F> +ga]_ W(t,e,0)

[f+ Fo+ FF<
(8.13)

Thus V,(¢,¢,0) is a clf for (8.9) for each 6 € R”, and therefore it is an atclf for
(8.1).

(2 = 1) The proof of this part is based on Sontag’s formula (Sontag, 1989).
We assume that V, is an atclf for (8.1), that is, a clf for (8.9). Sontag’s formula
applied to (8.9) gives a control law smooth on Ry x (R"\ {0}) x R*:

8Va+8Vaf+ 6V[,+6V[,f2+8Va 4
ar " de a1 de a ) oy, (10,870
- ) a_ , €,
a(tye, 0) = IV e J
a g
e
oV, B
0; 86 g(taeva)*o
(8.14)
where
VNY op_[ov, \"
ff+F9+FF< ae) @r< o F) (8.15)

With the choice (8.14), inequality (8.13) is satisfied with the continuous
function
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2 4
W(t,e, 8) = \/(aat” (t,e,0) +%f(l,e,0)> +<3aza g(t,e, 9)) (8.16)

which is positive definite in e (uniformly in #) for each 6, because (8.10) implies
that

oV, oV, oV, =

—4g(t,e,0) = —(t,e,0) +——f(t,e,0 t> 8.17

Sen0(1,e,0) = 0=t (1,6,0) + 547 (1,e,0) <0, Ve £0,120 (8.17)
We note that the control law a(, e, ), smooth away from e = 0, will be also
continuous at ¢ = 0 if and only if the atclf V, satisfies the following property,
called the small control property (Sontag, 1989): for each # € R’ and for any
e > 0 there is a 6 > 0 such that, if e # 0 satisfies |e| < 6, then there is some @
with |i| < e such that

aVv, JoV,| - =
ot +W[f+F9+FF<

for all t > 0.

Assuming the existence of an atclf we now show that the adaptive tracking
problem for (8.1) is solvable. Since (2 = 1), there exists a triple (&, V,, ') and a
function W such that (8.13) is satisfied. Consider the Lyapunov function
candidate

T
6Vu) @F<ava

T
7 ) 5’ 5 F) +gu}<0 (8.18)

V(t,e,0) = Va(t,e,0) +1(0—0)'T-'(0 — ) (8.19)

With the help of (8.13), the derivative of V" along the solutions of (8.5), (8.7),
(8.8), is

o OV OValz = ~ Op - - p
V= 5 + 9 {erF@JrFrG‘aéFT(I,e,G)+ga(I,e,0)}
avV. L~ A
+—2T7(t,e,0) — 0" 7(t,e,0
—eDr(1.e.) ~ 0"r(1.e.6)
78Va 8Va ~ A ~ A aVa ~ 3Vaap BV(t AT
=5 + e |:f+F9+ga(l,e,0>:| + 9 Fo % 8éFT+ % I'r—0'r
T T
S—W(t,e,é)—a—I{”F Wap) Wy, OValpy (OVap)' OValpy,
a0\ Oe 90 de 90\ Oe de 90
T
+§T(6V0F) —0'r
Oe
(8.20)
Choosing

(1,e,0) = (‘W"F(z, e, é))T (8.21)
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we get ) R
V< —W(te,b) (8.22)

Thus the equilibrium e = 0,6 = 0 of (8.5), (8.7), (8.8) is globally stable, and by
LaSalle’s theorem, e(f) — 0 as t — oo. By Definition 2.1, the adaptive tracking
problem for (8.1) is solvable.

The adaptive controller constructed in the proof of Theorem 3.1 consists of a
control law i = G(t, e, ) given by (8.14), and an update law 6 = I'r(z, ¢, 6) with
(8.21). The control law &(t, e, 0) is stabilizing for the modified system (8.9) but
may not be stabilizing for the original system (8.5). However, as the proof of
Theorem 3.1 shows, its certainty equivalence form a(,e, é) is an adaptive
globally stabilizing control law for the original system (8.5). The modified
system ‘anticipates’ parameter estimation transients, which results in incorpor-
ating the runing function T in the control law &. Indeed, the formula (8.14) for &
depends on 7 via

(8.23)

v, - a oV, OV.0p
5o (he.0) =/ + FO) + (ae De ae)

which is obtained by combining (8.15) and (8.21). Using (8.21) to rewrite the
inequality (8.13) as

v, 8V
o

V. 9V.0p
0 e 00

[f+F0—|—ga(t60)] < )FT(I€9)<—W(I7€,9)
(8.24)

it is not difficult to see that the control law (8.14) containing (8.23) prevents 7
from destroying the nonpositivity of the Lyapunov derivative.

Example 3.1 Consider the problem of designing an adaptive tracking
controller for the system:

X1 = x4 p(x1)"0

X =u (8.25)
y=xi
In light of (8.1), f(x) = [x2,0]", F(x) = [¢(x1),0]", g(x) =[0,1]". For any
given C* function y,(7), the functlon p(t 0) = [p1(1), pa(2,0)]" is given by
pi() = y.(t) and py(1,0) = y,(1) — o(y,)"0, and the reference input is
a,(t,0) =y, () — Bgo(y,) 0y,(t). Hence Assumption (Al) is satisfied.

oy,
With the signal x,(1) = p(¢,0) and the tracking error e = x — x,, we get the
error system
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é1 —ez+<pT9+<p 0

o (8.26)

6 =U——
? 90

where ¢ = ¢(x1) —p(x1), @ =@(x1) =¢(), 4 =u—ca,. The modified
nonadaptive error system is

, ~ V\"
€1 :€2+SOT9+Q0TF( 80)

(8.27)
. ~ 8p2
== 661
The control law
= a(t,e, )
opT o0pT opT
=—Z] — 2y — (—clzl + 22) ((31 + %;9) — %9 _ @Trgp[l, ¢l + aL;IG:| z,
(8.28)

where z; = ey, 2o = cie; +e2 + $7 6, and ¢1, ¢» > 0, globally uniformly asymp-
totically stabilizes (8 27) at e=0 with respect to V,=1(z1+2z3) with

W(t,e,0) = 123 + c223. By Theorem 3.1, the adaptive tracklng problem for
(8.25) is solved with the control law & = &(z, e,0) and the update law

0 =T7(1,e,0) = Tp(1,e,0) [1 e+ 88—19] (8.29)

As it is always the case in adaptive control, in the proof of Theorem 3.1 we

used a Lyapunov function V' (¢, e, é) given by (8.19), which is quadratic in the

parameter error 6 — 6. The quadratic form is suggested by the linear depen-

dence of (8.5) on 6, and the fact that # cannot be used for feedback. We will

now show that the quadratic form of (8.19) is both necessary and sufficient for
the existence of an atclf.

Definition 3.2 The adaptive quadratic tracking problem for (8.1) is solvable if
the adaptive tracking problem for (8.1) is solvable and, in addition, there exist a
smooth function V,(t,e,0) positive definite, decrescent, and proper in e
(uniformly in 7) for each 6, and a continuous function W(z,e, ) positive
definite in e (uniformly in ¢) for each 6, such that the derivative of (8.19) along
the solutions of (8.5), (8.7), (8.8) is given by (8.22).

Corollary 3.1 The adaptive quadratic tracking problem for the system (8.1) is
solvable if and only if there exists an atclf V,(t,e,0).
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Proof The ‘if’ part is contained in the proof of Theorem 3.1 where the
Lyapunov function ¥ (¢, e, ) is in the form (8.19). To prove the ‘only if’ part,
we start by assuming global adaptive quadratic stabilizability of (8.5), and first
show that 7(¢,¢, é) must be given by (8.21). The derivative of V' along the
solutions of (8.5), (8.7), (8.8), given by (8.20), is rewritten as

oV, v, OV p OV,

ot De De 80AFT(1, e, 9) + EFT([, e, 9)
o ((Va ' Wa \"
o (Pap) 0 a _

() ) () )

This expression has to be nonpositive to satisfy (8.22). Since it is affine in 0, it
can be nonpositive for all # € R only if the last term is zero, that is, only if 7 is
defined as in (8.21). Then, it is straightforward to verify that

T T
6V"+8V“ [f+ﬁé+FF<88[;“> @F(aV"F> +gd}

Vv [f + F6 + ga(t,e,0)] —

(8.30)

ot Oe 90 Oe
. T 8.31
:V+<éT—a—I/1‘F)(T—(%F> ) (8:31)
00 de
< —W(1,e,0)

for all (z,e,0) € R, x R"”. By (1 = 2) in Theorem 3.1, V,(1,e,6) is an atclf
for (8.1).

8.4 Adaptive backstepping

With Theorem 3.1, the problem of adaptive stabilization is reduced to the
problem of finding an atclf. This problem is solved recursively via back-

stepping.
Lemma 4.1 If the adaptive quadratic tracking problem for the system
x=f(x)+ F(x)0 + g(x)u

8.32
y = h(x) (832

is solvable with a C' control law, then the adaptive quadratic tracking problem
for the augmented system
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X =f(x) + F(x)0 +g(x)¢
E=u (8.33)

, y=h(x)

is also solvable.

Proof Since the adaptive quadratic tracking problem for the system (8.32) is
solvable, by Corollary 3.1 there exists an atclf V,(¢,¢,0) for (8.32), and by
Theorem 3.1 it satisfies (8.13) with a control law a(z,e,6). Define & =
€ — a,(1,0) and consider the system

¢ =f(e.0) + Flt.e.0)0 + F(1.0)0 - L0+ g(1.e.0)¢
0
(8.34)
g: i oo, %
o By, (1,0
where i = u — o (1,6) and oy (1,6) = %. We will now show that

Vi(t,e,,0) = Vi(t,e,0) +1(€— a(t,e,0)) (8.35)

is an atclf for the augmented system (8.33) by showing that it is a cIf for the
modified nonadaptive system

T T
éf+ﬁ9+FF<%> @r(%p) +gé

00 a0 \ Oe
. (8.36)
>~ o~ Ba,. 8V1
§=i— T <aeF )
We present a constructive proof which shows that the control law
u= dl(tveaga 0)
s, Oa 0V, oa , ~ = ~
= —C(f—aﬂ'a— 9 g+§(f+F9+g§)
o, 06 0adp\ . [OVI \' [0V, OV.0p\.[0& \*
+(ae +89_aeae)r<aeF> +(ae e o) \a ) <=0
(8.37)
satisfies

T T
f+F6+FT (aVl) a”r<aV1F) +g€

) 8 \0 3
% 68V1~ , o e T < —W—C@—&)z
(e;€) a(t,e,,0) — ;gr<8—lF)
e
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Let us start by introducing for brevity a new error state z = £ — a(t,e,0). With
(8.35) we compute

v v V+F9+g€~}
" 9e,€) L a1 e,E,0)

V. 0a (V. 0E\, s =, = OVi_
o o (ae‘%)(f”“gf“a—g“‘

Wy Wafx =~ _da 9V, da,. - =
=2 T e (f+F0+ga>+z[aIE+ Ep Q*E(erFGJrgf)
(8.39)
On the other hand, in view of (8.35), we have
aViIN" op (o \'
v, FF(W) _%F(EF
6(6,5) _aa" %
89F Oe F
vV, Oa v, oa\" dp_ [0V, oa \"
_<E_Z§) FF<W_Z%> ‘@%%“Z&@
8@,. 8V1 T
_Zaer(EF)
Ve (VAT oV.9p  (0V. \T
= e FF(W) ‘%@% De F)
da, 0a 0adp\.[oVi \' [0V, OV,0p\.[0a \*
‘Zl(@+@‘§@)F(WF> (o5 (ar
(8.40)

Adding (8.39) and (8.40), with (8.13) and (8.37) we get (8.38).This proves by
Theorem 3.1 that V(z, e, £, 0) is an atclf for system (8.33), or, an aclf for (8.34),
and by Corollary 3.1 the adaptive quadratic tracking problem for this system is
solvable.

The new tuning function is determined by the new atclf 7| and given by
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S e R OB CRE )

=7(t,e,0) — (%F>T(§N— a)

(8.41)

The control law &(z,e,&,6) in (8.37) is only one out of many possible
control laws. Once we have shown that ¥} given by (8.35) is an atclf for (8.33),
or, an aclf for (8.34), we can use, for example, the C° control law &; given by
Sontag’s formula (8.14).

Example 4.1 (Example 3.1 continued) Let us consider the system:

X1 = X2+ <p(x1)T9

X) =X
e (8.42)
).C3:u
y=x

We treat the state x3 as an integrator added to the (x,x;)-subsystem for
Example 3.1, so Lemma 4.1 is applicable. Defining z3 = X3 — &(¢, e, 6), where
X3 = x3 — o, by Lemma 4.1, the function V;(t,e,X3,0) =1 (3 + 23 4+ 23) is an
atclf for the system (8.42). With (8.37) and (8.41) we obtain

u= dl(laeaé 9)
_ da  Oa[es+ @t0
= —Zy) — (Cz3 +E+$ |: %
do, O0a O0a ¢ .. 9@
—+— . I I'p— 4
+<89+69+a€2<p(y)> T+ @ <pa€122 (8.43)
- oa
T = ’7'1(1,6,)(3,9):7'—87619023 (844)
T
The actgal C%ntrol is u=ia+a, where oy = 8;,. = (1) — %
. F oy, . r
o) — 25,0

dy?
A repeated application of Lemma 4.1 (generalized as in Krstic et al., 1995 (page
138, to the case where £ = u + ¢(x, f)TQ) recovers our earlier result (Krsti¢ et
al., 1992).

Corollary 4.1 [Krsti¢ et al., 1992] The adaptive quadratic tracking problem
for the following system is solvable
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X=X +ei(xt, .. x)T0, i=1,...n—1
S =4 on(x1,...,x0)"0 (8.45)
y=xi

8.5 Inverse optimal adaptive tracking

While in the previous sections our objective was only to achieve adaptive
tracking, in this section our objective is to achieve its optimality in a certain
sense.

Definition 5.1 The inverse optimal adaptive tracking problem for system (8.1)
is solvable if there exist a positive constant 3, a positive real-valued function
r(t,e,0), a real-valued function /(z, e, §) positive definite in e for each 6, and a
dynamic feedback law (8.7), (8.8) which solves the adaptive quadratic tracking
problem and also minimizes the cost functional

J=plim |0 - 0031 + /0 (Z(z,e,é) +r(t,e, é)ﬁz)dt (8.46)

for any 0 € R,

This definition of optimality puts penalty on e and # as well as on the
terminal value of |0]. Even though 6(¢) is not guaranteed to have a limit in the
general tracking case (it is guaranteed to have a limit in the case of set-point
regulation (Krsti¢, 1996; Li and Krsti¢, 1996), the existence of lim,_, |0~|%,1 is
assured by the assumption that the adaptive quadratic tracking problem is
solvable. This can be seen by noting that, since V'(¢) > 0 and from (8.22) V' (¢) is
nonincreasing, V(¢) has a limit. Since (8.22) guarantees that V,(7) — 0, it
follows from (8.19) that |6|%,1 has a limit. The absence of an integral penalty on
6 in (8.46) should not be surprising because adaptive feedback systems, in
general, do not guarantee parameter convergence to a true value.

Theorem 5.1 Suppose there exists an atclf V,(z,e,0) for (8.1) and a control
law & = &(t, e,0) that stabilizes the system

V' Op 0V
a0 a0\ Oe

J

T
é=f+FO+ FF( F) +gil (8.47)

has the form

oV,

alt,e,0) = —r(t,e,0) 50 ¢

(8.48)

where r(z,e,0) > 0 for all ¢,¢,6. Then
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(1) The nonadaptive control law
u=a'(t,e0) = pa(te,d), [>2 (8.49)

minimizes the cost functional
Ja= / (I(t,e,0) + r(t,e,0)i)dt, Vo€ R (8.50)
0

along the solutions of the nonadaptive system (8.47), where

(o) w2 (ea) s

oV, BV

I(t,e,0) = —24

(2) The inverse optimal adaptive tracking problem is solvable.

Proof (Part 1) In light of (8.13), we have

2
T+ e+ 00)| + 005 - 2 (5)

I(t,e,0) = —25[
(8.52)

(Ve )
> 200 (1,e,0) + BB -2 (St
Since 8 > 2, r(t,e,8) >0, and W (t,e,8) is positive definite, /(¢,e,0) is also
positive definite. Therefore J, defined in (8.50) is a meaningful cost functional,
which puts penalty both on e and #. Substituting /(¢, e, ) and

V.
u:%@*:ﬂﬁr*%g (8.53)
into J,, we get
> ve \° . v,
& _/0 { ( Oe g) Oe g

2
+ 577! (%q) |dt
— —Zﬁ/ [ (f +gu)}dl+/oorvzdl (8.54)
0

=28 / dv, + / rotdt
0 0

=243V,(0,¢(0),6(0)) — 25}3?0 Va(t,e(1),0(1)) + /Ooomzdt

Since the control input #(7) solves the adaptive quadratic tracking problem,
lim, ,« e(?) =0, and we have that lim, ., V,(¢,e(¢),0(¢)) = 0. Therefore, the
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minimum of (8.54) is reached only if v = 0, and hence the control &z = &*(¢, e, 0)
is an optimal control.

(Part 2) Since there exists an atclf V, for (8.1), the adaptive quadratic
tracking problem is solvable. Next, we show that the dynamic control law

=& (1,e,0) (8.55)

<

>
I

T
I'r(t,e,0) = F(aaza F> (8.56)

minimizes the cost functional (8.46). The choice of the update law (8.56) is due

to the requirement that (8.55), (8.56) solves the adaptive quadratic tracking
problem (see the proof of Corollary 3.1). Substituting /(¢, e, 6) and

oV,

_ = -1
v =i+ fr 5

g (8.57)

into J, along the solutions of (8.5) and (8.56) we get

T
g 0 <f+ﬁe+E.§—a—€F(aV“F> )

Va
ot — 28 Oe
e o\ (Ve N o 1 (Ve \°

2
g%—ﬁzr*l <8V0g> ]dt
de

o XTIV, OWVals+ = ~op (Ve \T
= Blim |67, —2 a a FO+F0——T(=—°F
B Jim |6 5/0 [8t+8e <f+ MY <88 > +gu>

T 00
+ ((Wf’ — éTr—‘>r(8V“ F) dt + / rotde
90 e 0
. ~ 00 1 ~ e 00
:5[1LI§O|9|§,, fzﬁ/o d<Va+§0TF 10) +/0 ro’dt

= 26V,(0,¢(0), 6(0)) + AIFO) -1 — 28 im Va(r,e(1),6(1)) + /0 Py
(8.58)

J = i 9'27 ” -2 a
ﬁfi%||rl+/o{ o 96 \ de

_2@<

+r? —20v

aV,
Oe

Again, since (f) solves the adaptive quadratic tracking problem,
lim, o e(1) = 0, and we have that lim, .., V,(z,e(1),0(r)) = 0. Therefore, the
minimum of (8.58) is reached only if v =0, thus the control & = &*(1,e,6)
minimizes the cost functional (8.46).
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Remark 5.1 Even though not explicit in the proof of the above theorem, the
atelf V,(t,e,0) solves the following family of HJB equations parametrized in

B> 2
8Va 0 a |l = ~ an T (9;7 aVa !
5 T e {f+F9+FF<89> @F<8e F) ]

8 .\ t,e,0)
_2r(t,e,9)<6eg>+ 203 =0

(8.59)

The under-braced terms represent the ‘non-certainty equivalence’ part of this
HIJB equation. Their role is to take into account the time-varying effect of
parameter adaptation and make the control law optimal in the presence of an
update law.

Remark 5.2 The freedom in selecting the parameter 5 > 2 in the control law
(8.49) means that the inverse optimal adaptive controller has an infinite gain
margin.

Example 5.1 Consider the scalar /inear system

X=u+0x
(8.60)
y=x

For simplicity, we focus on the regulation case, y.(f) = 0. Since the system is
scalar, Vy =32, LyVy = x, LiV, = x26. We choose the control law based on
Sontag’s formula

Uy = _x(e +0r 1) — 2 (O)x (8.61)

where
2
r(f) =———=>0, V0 8.62
Oy vET (562
The control 5 is stabilizing for the system (8.60) because
Vil = =3 (=0 + VP +1)x? (8.63)

By Theorem 5.1, the control ug is optimal with respect to the cost functional

J /Dc(l(x 0) + )i 2/00 e, (8.64)
a = 5 u = — .
0 0o 0+V02+1

with a value function J*(x) = 2x%. Meanwhile, the dynamic control
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Uy = —x(é+ \/ﬁ> (8.65)

6= 2 (8.66)

is optimal with respect to the cost functional

R oo )C2 + ”2
J =2(0—6(c0))* + 2/ —
0 0+VoP+1
with a value function J*(x, 0) =[x+ (6 — 6)*.
We point out that 0(co) exists both due to the scalar (in parameter ¢) nature
of the problem and because it is a problem of regulation (Krstic, 1996). Note
that, even though the penalty coefficient on x and u in (8.67) varies with 6(¢),

the penalty coefficient is always positive and finite.

(8.67)

Remark 5.3 The control law (8.61) is, in fact, a linear-quadratic-regulator
(LQR) for the system (8.60) when the parameter 6 is known. The control law
can be also written as u; = —p(6)x where p(6) is the solution of the Riccati
equation

pPP—20p—1=0 (8.68)
It is of interest to compare the approach in this chapter with ‘adaptive LQR
schemes’ for linear systems in loannou and Sun (1995, Section 7.4.4).

e Even though both methodologies result in the same control law (8.61) for the
scalar linear system in Example 5.1, they employ different update laws. The
gradient update law in Ioannou and Sun (1995, Section 7.4.4) is optimal with
respect to an (instantaneous) cost on an estimation error; however, when its
estimates (1) are substituted into the control law (8.65), this control law is
not (guaranteed to be) optimal for the overall system. (Even its proof of
stability is a non-trivial matter!) In contrast, the update law (8.66) guarantees
optimality of the control law (8.65) for the overall system with respect to the
meaningful cost (8.67).

e The true difference between the approach here and the adaptive LQR scheme
in Ioannou and Sun (1995, Section 7.4.4) arises for systems of higher order.
Then the under-braced non-certainty equivalence terms in (8.59) start to play
a significant role. The CE approach in Ioannou and Sun (1995) would be to
set I' =0 in the HJB (Riccati — for linear systems) equation (8.59) and
combine the resulting control law with a gradient or least-squares update
law. The optimality of the nonadaptive controller would be lost in the
presence of adaptation due to the time-varying é(t) In contrast, a solution to
Example (5.1) with T" > 0 would lead to optimality with respect to (8.46).

Corollary 5.1 If there exists an atclf V,(z,e,0) for (8.1) then the inverse
optimal adaptive tracking problem is solvable.
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Proof  Consider the Sontag-type control law u; = &(t, e, 0) where a(z,e,0) is
defined by (8.14).The control law % =1a(z,e,6) is an asymptotic stabilizing
controller for system (8.9) because inequality (8.13) is satisfied with

ov, oV, - oV, OV, \> [V, \*
_l _ a a a a a
Wi(t.e.0) =2 <8t + aef) +\/( o | oe f> +<8e g) (8.69)

v, ov,-
o e <0

g=0, e#£0 and ¢>0. Since 1a(r,e,0) is of the form

which is positive definite in e (uniformly in ¢) for each 6, since

V(l

whenever

%d(z, e,0) = —r!

Vo . .
90 8 with r(¢,e,0) > 0 given by

e
W\
2( Oe g> oV,
(1,e,0) = { Va OV, ov, av,\' [av, \* % €70
r(t,e, = a a gz a az a
o "ol T <8t + 8ef> +< de g)
any positive real number, aaza g=0

(8.70)

by Theorem 5.1, the inverse optimal adaptive tracking problem is solvable. The
optimal control is the formula (8.14) itself.

Corollary 5.2 The inverse optimal adaptive tracking problem for the follow-
ing system is solvable

)'c,-:x,-+1+np,-(x1,...,xl-)T9, i=1,...,.n—1
Np =4 on(X1,. .., x0) "0 (8.71)
y=x

Proof By Corollary 4.1 and Corollary 3.1, there exists an atclf for (8.71). It

then follows from Corollary 5.1 that the inverse optimal adaptive tracking
problem for system (8.71) is solvable.

8.6 Inverse optimality via backstepping

With Theorem 5.1, the problem of inverse optimal adaptive tracking is reduced
to the problem of finding an atclf. However, the control law (8.14) based on
Sontag’s formula is not guaranteed to be smooth at the origin. In this section
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we develop controllers based on backstepping which are smooth everywhere,
and, hence, can be employed in a recursive design.

Lemma 6.1 If the adaptive quadratic tracking problem for the system
X =[(x) + F(x)0+g(x)u
y = h(x)

is solvable with a smooth control law &(z,e,0) and (8.13) is satisfied with
W(t,e,0) =eTQ(t,e,0)e, where Q(t,e,0) is positive definite and symmetric for
all ¢, ¢, 0; then the inverse optimal adaptive tracking problem for the augmented
system

(8.72)

%= f(x) + F(x)0 + g(x)¢
E=u (8.73)
y=h(x)

is also solvable with a smooth control law.

Proof Since the adaptive quadratic tracking problem for the system (8.72) is
solvable, by Lemma 4.1 and Corollary 3.1, Vi(t,e,£,60) = V,(t,e,60)+
%(f— 07(1,6,9))2 is an atclf for the augmented system (8.73), i.e. a clf for the
modified nonadaptive error system (8.36). Adding (8.39) and (8.40), with
(8.13), we get

T T
f+ ﬁ&—&—FF(%) —@r<%F) +g€

. oV oV o0 00 Oe
1 — (. = T
ot 8(37 5) ~ (90(,‘ 6V1
e
oa JV, oa , ~ = -
< — g — — _
< WJrz{u 5 9 Y ae(f+F9+g(oz+z))

da, 0a 0adp\ . [(OVe \' (0o, 0a& 0adp\.[da \'
_(W+@_§@>F(WF) +(%+@‘§%)F(§F> g

oV, OV,0p\.[0a
B ( 9 e ae)r<aeF”

where z = £ — a(t,e,d). To render V1 negative definite, one choice is (8.37)
which cancels all the nonlinear terms inside the bracket in (8.74). However, the
cancellation controller (8.37) is not (guaranteed to be) optimal. Therefore, we
have to use other techniques in the design of our control law. One such
technique we will use here is ‘nonlinear damping’ (Krstic et al., 1995).

(8.74)
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. . Oa =~ ~ OV, 9V, .
Since &, —a, f, F, =2, —2 are smooth and vanish for ¢ = 0, then we can
. ot Oe’ 00
write
oa JV, o0&, ~ = .
—— - — Fo
o T o0 9 gV T F %)

do, & dadp\ (Ve " (OVa OVadp\.(0a \T (8.75)
B (aa *@‘&@)F(ae F) ‘(W‘E@)F@F)
= U(t,e,0)"Q(t,e,0)%e

where W (7,e,6) is a vector-valued smooth function and Q(z,e,6)"/? is

invertible for all 7, e, 6. In addition, let us denote

Oc (6&,. N oa Oa 3,0) r (8a

"0\ 0 T dean) \oe

Then (8.74) is re-written as

F)T: Us(1,e,0) (8.76)

Vi < =92 + zii + 20,9 e + U, 2 (8.77)
The choice
o - ARz
u:oq(t,e,f,ﬁ):—(c—i- 5 —&-Z)z, c>0 (8.78)
renders
Vi< =112 - %ZZ (8.79)
Since the control law & = &; defined in (8.78) is of the form
- x _ - oVy [0
a(t,e,€,0) = —R7'(t,¢,¢, Q)m[ } (8.80)
where
R7(t,e,£,0) = (w@#i—f) >0, Vieé,0, (8.81)

by Theorem 5.1, the dynamic feedback control (adaptive control) u* =
ﬂdl(tveagv 0)9 ﬂ > 2a with

. T
0=T7(t,e,&0)=T (%F(z, e,&, é)) (8.82)

is optimal for the closed loop tracking error system (8.34) and (8.32).

Example 6.1 (Example 4.1 revisited) For the system (8.42), we designed a
controller (8.43) which is not optimal due to its cancellation property. With
Lemma 6.1, we can design an optimal control as follows. First we note that &
given by (8.28) in Example 3.1 is of the form
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opT 0T
a(tye, 8) = —{1 + Ty — (cl +8L;19>01 +%9}21

8~T

- [62 + (q +i6> (1+ QDTFQD)}Zz
36’1

=a(t,e,0)z; + b(t,e,0)z>

because @ = p(x1) — w(x;1) = p(er + x,1) — (x1) = e1p(e;) and ‘z)—f =z %.

Instead of (8.43) we choose the ‘nonlinear damping’ control suggested by
Lemma 6.1:

a:dl(laeaée)
_ e tqea, da 9a (0o D& 0 1\ |
~ Y 260 [0 T T 0 B 90 90 9e, )7
da da b Oa (8.84)
3 [”a—el*" D P PR

doy 06 06 o 02T \1* 1 [9a\>
_ =, r o — (==
(ae % " v SOf) ‘0<Cl 20 ’)| 26 \0e) (7
The tuning function 7, is the same as in (8.44). The control law
= Pa(t,e&,0), 8> 2, with § = 'ty is optimal.

8.7 Design for strict-feedback systems

We now consider the parametric strict-feedback systems (Krsti¢ et al., 1995):

Xi = Xip1 +<p,-(>€,~)T9, i=1,....n—1

Xu = u+u(x)0 (8.85)
y=x
where we use the compact notation X; = (xi,...,x;), and develop a procedure

for optimal adaptive tracking of a given signal y,(¢). An inverse optimal design
following from Corollary 5.2 (based on Sontag’s formula) would be non-
smooth at e¢=0. In this section we develop a design which is smooth
everywhere. This design is also different from the nonoptimal design in
Krstic et al. (1992, 1995).

For the class of systems (8.85), (A1) is satisfied for any function y,(z), and
there exist functions p; (), pa2(t,0),...,p.(2,0), and «,(z,6) such that
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pi=pis +oi(p)0, i=1,...,n—1
pn = r(1,0) + @u(p) 0 (8.86)
ye(1) = p1(0)
Consider the signal x,(¢) = p(t,0) which is governed by

. T, Opiy .
Xpi = Xpiy1 + (pr'i(xl'i)T9+ apéle’ i=1,...,n—-1

x;'n = Oér(l, é) + me<x,,)T9A + aapélé (887)

Vr = X111

The tracking error e = x — x, is governed by the system

6 =ei1 + @j(l,éi,é)Te"‘r@rj(t,é)Té— (?9pélé7 i=1,....,.n—1

(8.88)
.~ ~ NT NT A 8/)71;
én =+ @u(t,e,0) 0+ @, (1,0) 0 ——0
o0
where i1 = u — «, (1, é) and @; = ¢i(X;) — ¢i(X), i =,...,n. For an atclf V,, the
modified nonadaptive error system is
, N VA" dpi (V. \'
& = el —|—<piT9+<p,-T1"( 60a) _82F< 6:F) , i=1,...,n—1
(8.89)

X VT Opp (0Ve \"
by = i+ Pu(t,e,0) 0+ oI T 2 ) — 220 ( Z2F
€n u+801< ) ) “FSD,, (89 80 ae

where F = [p),...,0,]T.
First, we search for an atclf for the system (8.85). Repeated application of
Lemma 4.1 gives an atclf

n
_l§ 2
Va_i Z;
i=1

Zi =€ — di*l(la éi*la 9)

(8.90)

where @;’s are to be determined. For notational convenience we define zy := 0,
o := 0. We then have
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Wy ~0a
a0 __Z:l a0 (8:91)
6Va 6V 80£k 1 1
<a€ F) *E 26, ¢ = E < E a@j )%‘-J_El wiz; (8.92)
where
wi(t,;,0) S]:adf” (8.93)
i\l €, V) =@ — Pk .
j\E € j 2~ dey

Therefore the modified nonadaptive error system (8.89) becomes

" O " Op;
¢ =ei 1 + @?9 - Z%F(ﬁﬂj - Z%I‘wjzﬁ i=1,...,n—1
=1 =1
! ’ (8.94)

pn
fqugonG Z 8 2 aeFW]j

The functions a,. . .,&4,_ are yet to be determined to make ¥V, defined in (8.90)
a clf for system (8.94). To design these functions, we apply the backstepping
technique as in Krsti¢ et al. (1995). We perform cancellations at all the steps
before step n. At the final step n, we depart from Krstic et al. (1995) and choose
the actual control # in a form which, according to Lemma 6.1, is inverse
optimal.

Step i=1,....n—1:

i1 N Od,
- i i T
ai(t,e;,0) = —zi — cizi + + E err1 — w; 0

ot i 8ek
i1
- Z(Uki +oi)zk — oazi, ¢ >0 (8.95)
k=1
Wi(t,2;,0) = i ’iad"” 5 (8.96)
i\l, €, Pi 2 Der Pk .
a&i 1 6,01 = aal 1 apj
k== T'wy 8.97
7 ( 0 Jj=2 86/ " ( )

Step n: ~ With the help of Lemma A.l in the appendix, the derivative of V, is
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n—1

Zp—1 + E (Ukn + Unk)zlc + OuwnzZn + i
k=1

n—1

y § 2
Va = - CiZy + zy
k=1

(8.98)

n—1

aéznfl adnfl ~T
— — ek w6
o1 ; e k+1 + W,

We are now at the position to choose the actual control #. We may choose #
such that all the terms inside the bracket are cancelled and the bracketed term
multiplying z, is equal to —c,z2 as in Krsti¢ et al. (1995), but the controller
designed in that way is not guaranteed to be inverse optimal. To design a
controller which is inverse optimal, according to Theorem 5.1, we should
choose a control law that is of the form

oV,
Oe

where r(t,e,0) > 0, Vt,e,0. In light of (8.94) and (8.90), (8.99) simplifies to

i=ay(te ) =—r(t,e0) ="y (8.99)

= ay(t,e,0) = —r(t,e,0)z, (8.100)
1.e. we must choose &, with z, as a factor.

Since ejy) = zpr1 +ax, k=1,...,n— 1, and the expression in the second
line in (8.98) vanishes at e = 0, it is easy to see that it also vanishes for z = 0.
Therefore, there exist smooth functions ¢, k = 1,...,n, such that

aONénfl = adnfl ~T .
— — —¢p + W, 0 = Zk 8.101
% kz:; Dep Sk Y kz:; Pk ( )

Thus (8.98) becomes
n—1 n
Vo=~ Z Ckzlzc + zput + Z ZnPrz (8.102)
k=1 k=1
where
(bk:Uk}1+Unk+¢k7 kil,,n—Z
O, =1+ On—1n+ Onp-1+ Pn-1 (8103)
D, = op + Pu

A control law of the form (8.100) with

o
r(t,e,0) = [ ¢y + s
= 2ck

results in

-1
) >0, ¢ >0, Vie,0 (8.104)
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. U > 1 Ck (I)k 2
V{[ = —% Cka — E ? (Zk — C—Z”) (8105)
k=1 =1 k

By Theorem 5.1, the inverse optimal adaptive tracking problem is solved
through the dynamic feedback control (adaptive control) law

i = & (t,e,0) = 2a,(1,e,0)

(3_V F) = FZW]ZJ

5 (8.106)

8.8 Transient performance

In this brief section, we give an £, bound on the error state z and control # for
the inverse optimal adaptive controller designed in Section 8.7. According to
Theorem 5.1, the control law (8.106) is optimal with respect to the cost
functional

J =2 lim |0 - 0(1)[7

2
+2/ Zc/‘zk—Fch(zk——Z,]) +u—n dt
0
2( '>

with a value function
J =210 -0 +2z (8.108)
In particular, we have the following £, performance result.

Theorem 8.1 In the adaptive system (8.88), (8.106), the following inequality
holds

00 n ~2 ~
/ Nz b < 00) s+ |2(0)P (8.109)
0
2( | y)

This theorem presents the first performance bound in the adaptive control
literature that includes an estimate of control effort.

The bound (8.109) depends on z(0) which is dependent on the design
parameters cj,...,c,, and I'. To eliminate this dependency and allow a
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systematic improvement of the bound on ||z||,, we employ trajectory initializa-
tion as in Krsti¢ et al. (1995, Section 4.3.2) to set z(0) = 0 and obtain:

| n ~) ~
/ P —— g 71(1) | (8.110)
0 n
2( | >

8.9 Conclusions

In this chapter we showed that the solvability of the inverse optimal adaptive
control problem for a given system is implied by the solvability of the HIB
(nonadaptive) equation for a modified system. Our results can be readily
extended to the multi-input case and the case where the input vector field
depends on the unknown parameter.

In constructing an inverse optimal adaptive controller for strict-feedback-
systems we followed the simplest path of using an atclf designed by the tuning
functions method in Krstic er al. (1995). Numerous other (possibly better)
choices are possible, including an inverse optimal adaptive design at each step
of backstepping. The relative merit of different approaches is yet to be
established.

Appendix A technical lemma

Lemma A.1 The time derivative of V, in (8.90) along the solutions of system
(8.94) with (8.95)—(8.97) is given by

n—1 n—1
. 5 B
V,=-— E CrZy + zn |:an + (O'kn + Unlc)Z/c + Opnzn + U.
k=1 k=1

n—1

864;171 (954,7,1 ~T
- - Cis1 + w0
ot ,; Do T

Proof First we prove that the closed loop system after i steps is
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[ —a 1+mp T3 TLi-1 i ]
“l=-m - l+4+m T,i-1 i
Z Z1
| M3z —l-mx
3 1 +mioi Ti-2,i z;
—TMiol —Te] =1 —mi —Ci I +miy,
L - —my —Ti—2 =1 —miy —¢
i+l T1i+2 Tin |
T02i+1 72,42 Tn Zit1
+
Ti—1,i+1 Ti—1,i+2 Ti-1,n Zn
L1+ i1 Wi Tin |
(A2)
and the resulting V; is
Z ckzk + zizig1 + Z z; Z ThiZk (A.3)
J=i+1 k=1
where
Tie = Nik + ik (A.4)
Odty—1
Nik = _Wrwi (A~5)
Ipi O0dy— 5/)
J
= — A6
w--(Z-5 % (A9

The proof is by induction. Step 1: Substituting a1 = —c1z; — @] 6 into (8.94)
with i = 1, using (8.90) and noting &y = 0 and % =0, we get

04/1

21 = —C1z21 + 20 — E zj I'wiy = —c1z1 + 20 — 7223 — — MnZn (A7)
and
n a~ n
. i
V= —clz% +z1z5 — E z; 8{9 I'wiz; = —clz% +z1z9 — E zimyzi (A8)
Jj=1 Jj=2

which shows that (A.2) and (A.3) are true for i = 1.
Assume that (A.2) and (A.3) are true for i — 1, that is
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—c 1+ 3 T,i-2 Ti-1
—1—-mp - 1+ m3 xE T2 i1
Zy
-m3 —l-my
. I +mi 0, Ti-2,i-1
Zig
—Miy  —M e =l =iz —Cip 1+ mioi
| —Tio1 =T —Ti3,i-1 =1 =71 —cio1 |
T,i T1,i+1 v Tn
Z1 T T2,i+1 to T2n Zi
X +
Zi-1 Ti-2,i Ti-2,i+1 **° Ti2n Zn
L+ Tty Tictiet o Ticia ]
(A9)
and

Viei = — ZCkaJrZ, 1z,+iz]2wkak (A.10)

The z;-subsystem is

. ~ | AT
Zi = Ziy1 + o + p;

n apl
— E —Tw;z:
J J<
J=1 o9

(08 06 (L ory Zaa“r : Za Pz,
a1 2 der k1 + O PrZj — a0 ViE

_ 0@ Loa T .
=Zip i - —Z?ekHJFWi 9+Z7Tijzj
k=1 k J=1

(A.11)

The derivative of V; = V;_; + z is calculated as
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n
E ckzk—i—z,z,_H—i— E Z/E TkjZk + E ZiTiiZi

Jj=i+l k=1 Jj=i+1
i—1 ~ i—1
- 8ai_1 804,_
+zi|zi-1 + E TkiZk + Q T o er —— kg1 +W; To+ E TikZk
k=1 k=1

= - E C/cZk+ZlZ,+1 + E Zj § TkjZk

k=1 J=i+1 k=1

N TR, -
ol — o = Y ek AW O+ Y (Thi + T )Zk + Tazi

ot i ey =

(A12)

From the definitions of 7y, nyx, 6x and oy, it is easy to show that
ki + i = o + oy and that m; = 0;;. Therefore the choice of &; as in (8.95)
results in (A.3) and

= _Zﬂ'/cizk — (I +m14)zier — cizi + (1 +miie1)zi + Z iz (A.13)
k=1 k=it+2
Combining (A.13) with (A.9), we get (A.2).
We now rewrite the last equation of (8.94) as

"~ Opy
zn—u+<pn9 Z 8 (%F’,,

k=1

adnfl = a541171 0 j—1
T -3 Der ekt + @0 — Z g LRz - Z 89F1¢ iz

~ adn—l L a&
=u— T —kz:]: Der €k+1+14/ 9—&—;77”,2,

(A.14)

where w, follows the same definition as in (8.96). Noting that V, = V,_| + %zﬁ

and 7, + T = Okn + Onie, and 7w, = o4, (A.1) follows readily from (A.3) and
(A4).
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Stable adaptive systems in
the presence of nonlinear
parametrization

A. M. Annaswamy and A.-P. Loh

Abstract

This chapter addresses the problem of adaptive control when the unknown
parameters occur nonlinearly in a dynamic system. The traditional approach
used in linearly parametrized systems employs a gradient-search principle in
estimating the unknown parameters. Such an approach is not sufficient for
nonlinearly parametrized (NLP) systems. Over the past two years, a new
algorithm based on a min—max optimization scheme has been developed to
address NLP adaptive systems. This algorithm is shown to result in globally
stable closed loop systems when the states of the plant are accessible for
measurement. We present the fundamental principles behind this approach and
the stability properties of the resulting adaptive system in this chapter. Several
examples from practical applications are presented which possess the NLP
property. Simulation studies that illustrate the performance that results from
the proposed algorithm and the improvement over the gradient scheme are also
presented.

9.1 Introduction

The field of adaptive control has, by and large, treated the control problem in
the presence of parametric uncertainties with the assumption that the unknown
parameters occur linearly [1]. This assumption has been fairly central in the
development of adaptive estimation and control strategies, and commonly
made in both discrete-time and continuous-time plants. Whether in an adaptive
observer or an adaptive controller, the assumption of linear parametrization
has dictated the choice of the structure of the dynamic system. For instance, in
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adaptive observers, the focus has been on structures that allow measurable
outputs to be expressed as linear, but unknown, combinations of accessible
system variables. In direct adaptive control, a model-based controller is chosen
so as to allow the desired closed loop output to be linear in the control
parameters. In indirect adaptive control, estimators and controllers are often
chosen so as to retain the linearity in the parameters being estimated. The
design of stable adaptive systems using the classical augmented approach as in
[1] or using adaptive nonlinear designs as in [2] relies heavily on linear
parametrization.

The problem is an important one both in linear and nonlinear dynamic
systems, albeit for different reasons. In nonlinear dynamic systems, despite the
fact that the majority of results have sought to extend the ideas of feedback
linearization to systems with parametric uncertainties using the certainty
equivalence principle, it is only within the context of linearly parametrizable
nonlinear dynamics that global results have been available. Obviously, it is a
nontrivial task to find transform methods for general nonlinear systems so as
to convert them into systems with linear parametrizations. In linear dynamic
systems, it is quite possible to transform the problem into one where unknown
parameters occur linearly. However, such a transformation also can result in a
large dimension of the space of linear parameters. This has a variety of
consequences. The first is due to overparametrization which requires much
larger amounts of persistent excitation or results in a lower degree of
robustness. The second is that it can introduce undue restrictions in the
allowable parametric uncertainty due to possible unstable pole-zero cancella-
tions [3].

Nonlinearly parameterized systems are ubiquitous in nature, and as such
unavoidable in many characterizations of observed complex behaviour.
Friction dynamics [4], dynamics of magnetic bearing [5], and biochemical
processes [6] are some examples where more than one physical parameter
occurs nonlinearly in the underlying dynamic model. Several biological models
of complex systems such as Hammerstein, Uryson, and Wiener models, consist
of combinations of static nonlinearities and linear dynamic systems, which
invariably result in NLP systems. The recent upsurge of interest in neural
networks also stems from the fact that they can parsimoniously represent
complex behaviour by including nonlinear parameterization.

The fundamental property that linearly parametrized (LP) systems possess is
in the cost function related to the parameter estimation. The latter can be
posed as a hill-climbing problem, where the objective is to get to the bottom of
the hill which is a measurable cost function of the parameter error. In LP
systems, this hill is unimodal due to the linearity as a result of which, gradient
rules suffice to ensure convergence to the bottom of the hill which is guaranteed
to be unimodal. In NLP systems, such a property is no longer preserved and
hence, the gradient algorithm is not sufficient to ensure either stability or
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convergence. We show how algorithms that guarantee desired stability proper-
ties can be designed for general NLP systems in this chapter.

Our proposed approach involves the introduction of a new adaptive law that
utilizes a min—max optimization procedure, properties of concave functions
and their covers, and a new error model. In the min—max optimization, the
maximization is that of a tuning function over all possible values of the
nonlinear parameter, and the minimization is over all possible sensitivity
functions that can be used in the adaptive law. These two tuning functions
lead to sign definiteness of an underlying nonlinear function of the states and
the parameter estimates. Such a property is then utilized to establish closed
loop system stability. Concave/convex parametrization can be viewed as a
special case of nonlinear parametrization. That is, if 6 is an unknown param-
eter and is known to lie in a compact set ©, then the underlying nonlinearity is
either concave with respect to all # € © or convex with respect to all § € ©. We
make use of properties of concave and convex functions in the development of
the adaptive algorithms. To address adaptive control for general NP systems, a
concave cover is utilized.The third feature of our approach is the development
of an error model for NP systems. In any adaptive system, typically, there are
two kinds of errors, which include a tuning error and parameter error. The goal
of the adaptive system is to drive the former to zero while the latter is required
to be at least bounded. Depending on the complexity of the dynamic system
and the parametrization, the relationship between the two errors is correspond-
ingly complex. A new error model is introduced in this chapter that is
applicable to stable NLP adaptive system design.

Very few results are available in the literature that address adaptive control
in the presence of nonlinear parametrization 7, 8]. For these systems, the use of
a gradient algorithm as in systems with linear parametrization will not only
prove to be inadequate but can actually cause the system errors to increase.
The approach used in [7], for example, was a gradient-like adaptive law which
suffices for stabilization and concave functions but would be inadequate either
for tracking or for convex functions. In [9, 10, 11, 12], adaptive estimation and
control of general NLP systems, both in continuous-time and discrete-time has
been addressed, stability conditions for the closed loop system have been
derived, and the resulting performance in various practical applications such as
friction dynamics, magnetic bearing, and chemical reactors, has been ad-
dressed. An overview of the approach developed in these papers and the
major highlights are presented in this chapter.

In Section 9.2, we provide the statement of the problem, the applicability of
the gradient rule, and the motivation behind the new algorithm. In Section 9.3,
we present certain preliminaries that provide the framework for the proposed
adaptive algorithms. These include definitions, properties of concave/convex
functions, concave covers, solutions of min—max optimization problems, and
sign definiteness of related nonlinear functions. In Section 9.4, the new error
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model is introduced, and its properties are derived. This is followed by stable
adaptive system designs for both a controller and an observer. The first
addresses NLP systems when states are accessible, and the second addresses
the problem of estimation in NLP systems when states are not accessible.
Together, they set the stage for the general adaptive control problem when only
the input and output are available for measurement. In Section 9.5, the
performance of the proposed adaptive controller is explored in the context
of physical examples, such as the position control of a single mass system
subjected to nonlinear friction dynamics, positioning in magnetic bearings, and
temperature regulation in chemical reactors. In Section 9.6, concluding re-
marks and extensions to discrete-time systems and systems where the matching
conditions are not satisfied are briefly discussed. Proofs of lemmas are
presented in the appendix.

9.2 Statement of the problem

The class of plants that we shall consider in this chapter is of the form
. m

Xy =A4,(p)X, + by u+<pT(t)ﬂ+Zﬁ(¢,-(l),0i) (9.1)
i1

where u is a scalar control input, X, € R" is the plant state assumed accessible
for measurement, p,0; € R”, and (S e R are unknown parameters.
¢ : RY = R™, and ¢:R" — R’ are known and bounded functions of the
state variable. A4, is nonlinear in p, and f; is nonlinear in both ¢; and ;. Our
goal is to find an input u such that the closed loop system has globally bounded
solutions and so that X, tracks as closely as possible the state X, of a reference
model specified as )
X = Ap Xy + by (9.2)
where r is a bounded reference input.

The plant in (9.1) has been studied in the literature extensively, whether or
not the states of the system are accessible, but with the assumption that 4, is
linear in p, and that f; is linear in ;. Our focus here is when 4, and f; are
nonlinear functions of the parameters p and 6;, respectively. This chapter is
restricted to the case when all states of (9.1) are accessible. Further extensions
to such systems with only input and output accessible are open problems and
are currently under investigation.

9.2.1 The structure of the adaptive controller
In order to evaluate the behaviour of the adaptive controller that is employed
when the plant is linearly parametrized (which shall be referred to as an LP-
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adaptive controller), we consider the simplest form of plants in (9.1), given by
X, =f(¢,0)+u (9.3)

where x, and 6 are scalars, and 6 is an unknown parameter and ¢ is a bounded
function of x,. Choosing 4,, = —k < 0, and b,, = 1, the structure of the plant
in equation (9.3) suggests that when 6 is known, a control input of the form

u=—f(¢,0) —kx,+r (9.4)
leads to a closed loop system
Xp = AmXxp + byr
and hence x, is bounded and tracks X, asymptotically. The question is how u

can be determined when 6 is unknown and f is nonlinear in . The LP-adaptive
control approach is to choose the input as

—f(8,0) —kx, +r (9.5)

u =
Defining e, = x, — Xy, 0=0-0, and f =f(o, é), we obtain that the error
equation is of the form of R
é.=—ke.+f—f (9.6)
Suppose f is linear in 6 with

f(9,0) = g(¢)0

then the gradient algorithm used in linear adaptive control approaches (see
Chapter 3 in [1], for example) suggests that 6 must be adjusted as

0 = e.Vf; 9.7)

The above adaptive law is derived from stability considerations by showing
that .

V=e+0 (9.8)
is a Lyapunov function, which follows since the gradient of f* with respect to 0
is g(¢) and is independent of 6.

When f is nonlinear in 6, the application of such a gradient approach is
inadequate and in fact undesirable, since it can lead to an unstable behaviour.
For instance, if V' is chosen as in (9.8), the error equation (9.6) with the
adaptive law as in (9.7) leads to a time derivative

V = ket +e[f ~f +69f]

When f is concave, the property of a concave function enables us to conclude
that V' < 0 when e, > 0; it also implies that

V20 ife<0 and K< |f—f+0V|
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This illustrates that, for a general f, it cannot be guaranteed that V <0 for all
e, and 6 and thus can lead to unbounded solutions. To illustrate this, if we
choose f = ¢fe "% k=1 and 6 =1, then for any ¢ which is such that

[6(1)] = ¢o >0, Vi
we have Vf; < 0 and GNVfé > 0 for all

je (_oo,—ﬂ%%) if 6(1) >
i (ﬁ oo) if 6(1) < —go

It follows therefore that when ¢(7) > 0, in the region

D= {(ec,é) | 0 < ke, <f-fbe (—oo,—%)}
0
we have V =—ke’ +e, [f —f+0~vlfé} >0

since

ke <f —f<[f—f+06Vf

Hence, D is an open invariant region where ¥V > 0, since ¢. > 0 at e, =0,

é, <0 for 0<el,<f

—/ andd<o0vhe ( — o0, — “This implies that

1
V20 >
the gradient algorithm will lead to 6(r) — —oco if ¢(r) >0 and hence in
unbounded solutions. Similarly, we can show that 0(r) — oo if ¢(r) < 0.
This clearly illustrates the inadequacy of the gradient rule for nonlinear
parametrizations.

The discussion above indicates that the underlying problem is to ensure that
the nonlinear function of the form

ec[f—fA—i-éw}

has to be made nonpositive by an appropriate choice of w. This has to be
ensured independent of the sign of e, without introducing discontinuities in the
controller. We illustrate how this can be accomplished in Section 9.4.

9.3 Preliminaries

The problem of NLP systems is addressed by making use of concavity/
convexity of the underlying nonlinearity wherever possible and by introducing
concave covers in other cases. In this section, we introduce the basic definitions
and properties of concave/convex functions as well as concave covers in
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Sections 9.3.1 and 9.3.2, respectively.We show that these properties also ensure
the desired sign-definiteness property which will be used to design globally
stable adaptive systems in Section 9.4.

9.3.1 Concave/convex functions
9.3.1.1 Definitions
Definition 3.1 A function f(0) is said to be (i) convex on © if it satisfies the
inequality

SN0+ (1 = N)2) < A (61) + (1 = A)f (62), Vb1,0, €0 (9.9)
and (ii) concave if it satisfies the inequality

S0+ (1= X)b2) 2 M (01) + (1 = A)f (02), V01,0, €0 (9.10)

where 0 < )\ < 1.

Definition 3.2 A simplex Og in R is a convex polyhedron having exactly
m + 1 vertices.

In order to obtain a continuous controller, we employ the following
saturation function extensively in the control design:

Definition 3.3 The saturation function, sat(-), is defined as

1 y>1
sat(y) =q v <1
-1 y< -1

9.3.1.2 Properties of concave/convex functions
A useful property of these functions is their relation to the gradient. When f/(6)
is convex and differentiable on ©, then it can be shown that

J(0) =1 (00) = Vo0 — o), V0,00€0 (9.11)
and when f'(0) is concave and differentiable on O, then
S(0) = f(6o) < Vfy(6—bo), V0,00 €6 (9.12)

<A

where Vfy, = 5o,
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Lemma 3.1 Let

J(w,0) = B|f(6,60) —/(6,0) + (0 - 0) (9.13)
ap = 15161”% max J(w,0) (9.14)
wy = arg meln% max J(w,0) (9.15)

where 6 € © and 3 is independent of §. Then

ap = ﬁ fmin _f +%(é - emin):| if ﬁf is convex on © (916)
0 if Bf is concave on ©
o — fﬁlizi :];:::1 if 3 is convex on © 9.17)
Vf; if Bf is concave on ©
where © = [9m111; emax]a f;uax :f(¢7 emax) and f;uin :f(¢7 9miu)~
Proof See appendix.
Lemma 3.2 For any x, and Q,é €0,
- A X
—_f_ (- _ ) < .
x[f f=(0—6)wo — ao sat(g)] <0, V|x|>¢ (9.18)

whether /" is concave or convex, if ¢y and wy are chosen as in (9.16) and (9.17)
respectively, with 3 = sign(x).

Proof See appendix.

When f is linear in #, Lemma 3.2 is trivially satisfied, which can be shown as
follows. If (¢, 0) = g(¢)0, then, ay = 0 if wy = g(¢). With such an ag, the left-
hand side in (9.18) is identically zero. Lemma 3.2 implies that when f is
nonlinear in 6, appropriate ay and wy can be found leading to an inequality as
in (9.18) rather than an equality.

Lemma 3.3 For a vector 6, let

ay = min max J(w,0) (9.19)
= i 0 9.2
wo = arg min max J(w,0) (9.20)

where J(w, 6) is as in (9.13), € ©5 € © and § is a known nonzero constant.
Then

- {Al if GBf is convex on Og (9.21)

0 if §f is concave on Og
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A, if Bf is convex on Og
wy = . . (9.22)
Vf if fBf is concave on Og
where 4 = [Al,Az]T: G 'b,A, is a scalar, 4, € R™
R T X
1 ﬂE?Gsl)T ﬂ(/i—fﬂ)
-1 B(0—0s ",
G=| _S) e | V) (9.23)
1 g(é_QSmH)T BUf = fsmn
and fs; = f (¢, 0si).
Proof See appendix.
9.3.2 Concave covers
9.3.2.1 Definitions
Definition 3.4 A point #° € 6, if ° € © and
BVfw(0—6°) > B(f — ), Voe€®© (9.24)
where Vfp £ g‘ and 10 = f(¢,6°).
00 | po
Definition 3.5 6,26, N O, where f, denotes the complement of 6,.
A concave cover of a function §( f —f) on O is defined as:
Definition 3.6
Fo)= U=, e (9.25)
Bw+ ) VOe bl e,
where
y T fi y . L ) )
N B N R A (0 (9.26)

9.3.2.2 Properties
Lemma 3.4 F(0) as defined in (9.25) has the following properties:
(1) F(0) is concave on © and F(8) > B(f —f), V0 € ©.
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(2) The solutions ay and wy for equations (9.14) and (9.15) are given by
ap = F(6) (9.27)
{ Vf; if6eb.
Wy = - . - .
WY if e’ eh,

where ¥ is defined as in (9.26).

(9.28)

Proof See appendix.
Lemma 3.5 For any x, and 9,@ €0

x| =f = (0= bwo —arsat(3)] <0 (9.29)

by choosing ay and wy using (9.27) and (9.28) respectively.

Proof  The proof follows along the same lines as that of Lemma 3.2.

9.3.2.3 Examples of concave covers

To illustrate the nature and construction of a concave cover for a general
function f, we present a number of examples in this section. We show that the
nature of the cover not only depends on the function but also on the compact
set O that the parameter 6 lies in.

Example 3.1 Let

f(¢,0) = g(¢) cosd (9.30)
where ¢ is a nonlinear function of the system variable ¢. Obviously, if ©
includes any interval whose length is larger than =, f is neither concave nor
convex on ©. We show how a concave cover F(f) can be constructed for
different intervals of ©, assuming g = 1.

(a) © = [~7/2,57/2]: Since inequality (9.24) is satisfied for all ° in intervals
¢! = [-7/2,0] and 6> = 27, 57/2], we have that 6°', 6> C §.. For any
6° € 9'2 = [0,27], the inequality (9.24) is not satisfied, and hence 6§, = 0'2.
At first glance, one might be tempted to conclude that the interval
[~7/2,7/2] € 0. This is not true since for any 6° € (0,7/2], inequality
(9.24) will not be satisfied V8 € O since © includes points beyond 7/2. Since
6' =0 and 6> = 27, we have that

2_0 and 2=1-f

Hence, in this example, F(6) =/ — f over 6°! and 6% and is a straight line
with zero gradient over 62, as shown in Figure 9.1. Note that although

F(#) depends on f the determination of the sets 6. and 0. in this example is
independent of f since f only affects the vertical scale of F.
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|
o
o1

T

!

Figure 9.1 //lustration of cos(f) (...) and F(8) (—) for ® = [-n/2,57/2]

(b) © = [—1.4m,2x]: Unlike case (a), there are fewer subintervals in 6, in this
case. We note that there does not exist any point ° € [—1.4m, —7/2] which
satisfies (9.24). Therefore, §' = —1.4w. Next, we need to find a point 6
greater than —m/2 such that §* satisfies (9.24). Since ¢° lies on f — f and
0'2 € 6, 6% is at the intersection of f — f and the straight line joining f’
and f? whose gradient is —sin(6?) at #*. That is, 6> satisfies the relation

cos(—1.47) — cos(6?) = (6% + 1.4x) sin(6?)
which yields #> = —0.31365 rad. Proceeding as in Ehe previous example, we
note that 6% = [6%,0] € 6. while 6** = [0,27] € .. The resulting F(6) is

illustrated in Figure 9.2. It should be noted that 6> is close to but not
coincident with the peak at zero.

—0.5F .

Figure 9.2 /llustration of cos(0) (...) and F(0) (—) for ® = [—1.47, 27|
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0.5+ —

I
-5 0 5

0
Figure 9.3 /llustration of cos(0) (...) and F(0) (—) for ® = [—1.47, 1.47]

(c) © =[—1.4r, 1.4x]: Case (b) implies that 0'2 = [—1.47,—0.31365] € 6.
Also, [—0.31365,0] € 6. In this case, since O includes only points up to
1.4, we also have that [O, 03] € 0. for some 6> > 0. Proceeding as in case
(b), we can show that #° is the solution of the equation

cos(1.47) — cos(6®) = (8> — 1.4n) sin(8?)

or 6° =0.31365. We also can conclude that 6* = [63,1.47] € 0.. The
resulting F(6) as well as the convex cover which is computed in a similar
fashion are shown in Figure 9.3.

d ©=[-amAr], n+05<a,AX<n+2,n=0,2,...,even: We first define
n, as the largest even integer that is smaller than x. Then 6, and 0. can be
determined as

0 = {[~nam+ 0", —no7l, [nam,mym + 67}
0. = {[—am, —nom + 0'], [=nom, ny7l, [mym + 6%, Ar]}
where 6! and 6% are computed using the relations
cos am — cos 0! = amsinf' + 0 sin 6
cos A\ — cos 67 = 6% sin 6> — Arrsin 6

It is worthwhile noting that when «, A = n, n even, then 6, is an empty set
and 0. = [—nm, nx.

We note that f in (9.30) is independent of ¢ and as a result, 6, and 0. can be
determined off-line which reduces the implementational burden of the pro-
posed on-line algorithm. We next consider an example where 6. and 6, are
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Figure 9.4 /llustration of f(¢,0) = ﬁ (...) and F(8) (—) for ® =[-2,2] and
¢=5 '

functions of the system variable ¢ and thus cannot be determined easily on-
line.

Example 3.2 Consider f given by

1
f(qsae):ma 96[_252]

In this case, . = {[0', 2]} and 0, = {[-2, 6']} where 6" is determined from
the following nonlinear equation :

d2 40N =14 (9.31)

It is clear that the solution of equation (9.31) depends on ¢. For a fixed ¢, a
numerical routine such as the Newton—Raphson method could be used to solve
for §'. Figure 9.4 gives an illustration for the concave cover F(f) for ¢ = 5.

We note that F(6) always exist for any bounded f. Their complexities
depend on the complexity of /. We also note that the number of subintervals in
6. (and 6,) is proportional to the number of local maximas of /. Consequently,
more computation is needed to determine all the #”’s when f has several local
maximas. In addition, if the s are independent of system variables, ¢, then
these 0"’s may be computed off-line. However, if they are dependent on ¢, their
on-line computation may prove to be too cumbersome.

In the case of 6 € R”, the determination of the sets 6. and éc generally
involves a search over # € © such that

g 52" — o —/!

Furthermore, given 6. and 6., we need to define hyperplanes, w?6 + ¢ such
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that . .

F(0) = BW'0+c)2B(f —f), 0€0.
We believe that the solutions to 6., é(),w and c¢ are nontrivial due to the
dimensionality of the problem and is currently a subject of on-going research.

9.4 Stable adaptive NP-systems

We now address the design of stable adaptive systems in the presence of
nonlinear parametrization. We address the problem of adaptive control of
systems of the form of (9.1) in Section 9.4.2 with the assumption that states are
accessible, propose a controller that includes tuning functions derived from the
solution of a min—max optimization problem, and show that it guarantees
global boundedness. In Section 9.4.3, we address the problem when the states
cannot be measured, and propose a globally stable adaptive observer. We begin
our discussion by proposing a new error model for NLP-systems in Section 9.4.1.

9.4.1 A new error model for NLP-systems

All adaptive systems have, typically, two types of errors, a tracking error, e,
that can be measured, and a parameter error,f, that is not accessible for
measurement. The nature of the relationship between these two errors is
dependent on the complexity of the underlying plant dynamics as well as on
the parametrization. This relationship in turn affects the choice of the adaptive
algorithms needed for parameter adjustment. It therefore is important to
understand the error model that describes this relationship and develop the
requisite adaptive algorithm. In this section we discuss a specific error model
that seems to arise in the context of NLP-adaptive systems.

The error model for NLP-systems is of the form

.= —e.+ [f —f — apsat (%)} (9.32)
6 = e.wp (9.33)
e. = e, —esat (%) (9.34)

where /"= f(¢(1), 0) and /= f(¢,60). In (9.32), e.(r) € R is the tracking error
while §(¢) € R is the parameter error. ¢(z) € R" is a given measurable function,
while ay(#) and wy(¢) are tuning functions to be determined.

Lemma 4.1 If é(t) € O for all t > 1y, and ay and wy are chosen as in (9.16) and
(9.17) for concave—convex functions and (9.27) and (9.28) for nonconcave—
convex functions, with § = sign(e,) in all cases, then the solutions of the error
model in (9.32)—(9.34) are globally bounded, provided é(t) € OVL> 1.
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Proof See Appendix.
The requirement that 6(r) € © can be relaxed by making the following
changes in the adaptive laws in equation (9.33).

0 = ewy—y(0—-0), v>0

0 0ecoO
0=1 Ounax 0> Onax (9.33")
Hmin 9 < Gmin

This results in the following corollary.

Corollary 4.1 1f 6(1) € © and 6 is adjusted as in (9.33), where ay and w are
chosen as in (9.16) and (9.17) for concave—convex functions and (9.27) and
(9.28) for nonconcave—convex functions, with 5 = sign(e.) in all cases, then e,
and 6 are always bounded.

Proof See appendix.

We note that unlike LP systems, the tracking error in (9.32) is a scalar. This
raises the question as to how the error model can be applied for general
adaptive system design where there is a vector of tracking errors. This is shown
in the following section.

9.4.1.1 Extensions to the vector case
The following lemma gives conditions under which the stability properties of a
vector of error equations can be reduced to those of a scalar equation.

Lemma 4.2 Let )
E=A4,E+bv (9.35)

é. = —ke.+v (9.36)

If 4,, is asymptotically stable, (4,,,b) controllable, and s = —k is one of the
eigenvalues of 4,,, then 34 such that for e, = hTE:

(1) If e. is bounded, then E is bounded; and
(i) lim;soe.(t) =0 = lim, E(f) = 0.

Proof See appendix.

9.4.1.2 The scalar error model with linear parameters
Often, in NLP-systems, linear unknown parameters and multiplicative param-
eters are simultaneously present. This necessitates the need for the following
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extension of equation (9.32):
o= —eo+ o—[f —f—pTa— oﬂ g (9.37)

where o is a constant whose sign and an upper bound ||, are known.
(1) €eR, A e R and a(r) € R' are parameter errors, while p(7) € R’ is a
measurable signal. In such a case, the following adaptive laws for adjusting
5, 0 and & are needed, and the boundedness of the resulting errors is stated in

Lemma 8:

6 = sign(o)e.wn (9.38)
& = sign(o)ef (9.39)
& = sign(o)e.p (9.40)
Uy = aolo],. .. sat(%) (9.41)

Lemma4.3 If é(t) € O forall 1 > ¢, and ag and wy are chosen as in (9.16) and
(9.17) for concave—convex functions and (9.27) and (9.28) for nonconcave—
convex functions, using 5 = sign(oe.) in all cases, then the solutions of the
error model in (9.37)—(9.41) are bounded.

Proof See appendix.

As in Corollary 4.1, the requirement that 6(r) € © in Lemma 4.3 can be
relaxed by making the following change in the adaptive law for @ in equation
(9.38).

0 = ecwy—~y(@—10), v>0

0 0co

Omax 0> Onax (9.38")
Onmin 0 < Oroin

é:

The corresponding result is stated in the following corollary:

Corollary 4.2 If 6(1y) € ©, and g and wy are chosen as in (9.16) and (9.17) for
concave—convex functions and (9.27) and (9.28) for nonconcave—convex
functions, using § = sign(oe.) in all cases, then the solutions of the error
model in (9.37), (9.38"), (9.39)—(9.41) are bounded.

Proof Proof omitted since it follows closely that of Lemma 4.3 and Corollary
4.1.

9.4.2 Adaptive controller
The dynamic system under consideration here is of the form of equation (9.1),
where u is a scalar control input, X, € R" is the plant state assumed accessible
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for measurement, p,6; € R, and Fec R are unknown parameters.
¢ RT — R, and ¢:RT — R’ are known and bounded functions of the
state variable. 4, is nonlinear in p, and f; is nonlinear in both ¢; and ;. Our
goal is to find an input u such that the closed loop system has globally bounded
solutions and so that X, tracks as closely as possible the state X, of a reference
model specified in equation (9.2), where r is a bounded scalar input. We make
the following assumptions regarding the plant and the model:

(A1) X,(¢) is accessible for measurement.

(A2) 0; € ©,, where ©; £ [Opin i, Omaxi], and Oy and Oy, are known; p is
unknown and lies in a known interval P = [pin, Pmax] C R.

(A3) ¢(1) and ¢(¢) are known, bounded functions of the state variable X,,.

(A4) f is a known bounded function of its arguments.

(AS) All elements of A(p) are known, continuous functions of the parameter p.

(A6) by = b,o where « is an unknown scalar with a known sign and upper
bound on its modulus, |af,. .

(A7) (A(p),b,) is controllable for all values of p € P, with

A(p) + bmgT(p) =A,

where ¢ is a known function of p.
(A8) A,, is an asymptotically stable matrix in R"with

det(s] — Ay) 2 Ryu(s) = (s+k)R(s), k>0

Except for assumption (Al), the others are satisfied in most dynamic
systems, and are made for the sake of analytical tractability. Assumption
(A2) is needed due to the nonlinearity in the parametrization. Assumptions
(A3)—(AS5) are needed for analytical tractability. Assumptions (A6) and (A7)
are matching conditions that need to be satisfied in LP-adaptive control as
well. (A8) can be satisfied without loss of generality in the choice of the
reference model, and is needed to obtain a scalar error model. Assumption
(A1) is perhaps the most restrictive of all assumptions, and is made here to
accomplish the first step in the design of stable adaptive NLP-systems.

Our objective is to construct the control input, u, so that the error,
E = X, — X,,, converges to zero asymptotically with the signals in the closed
loop system remaining bounded. The structure of the dynamic system in
equation (9.1) and assumptions (A6) and (A7) imply that when 3, p, o, and

0; are known .

u=a(g(p) X, +1r)=>_ fi(¢i.0:) — "B (9.42)
i=1

meets our objective since it leads to a closed loop system
AYp = Am)(p + bmr

Our discussions in Section 9.2 indicate that an adaptive version of the
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controller in (9.42), with the actual parameters replaced by their estimates
together with a gradient-rule for the adaptive law, will not suffice. We therefore
propose the following adaptive controller:

= a(9(p)" X, +r) - Zf, 0n0) — "B ua(r)  (9.43)

e. = ec —esat() (9.44)
é =sign(a)l'ge.p, T'p>0 (9.45)
& = —sign(a)vae-G, Yo >0 (9.46)

0; = sign(a)yge.w; =1 (6i—60), 7,7, >0

0; 6, € O,

0; =< Onaxi 0 > Ona (9.47)
Omini 0 < Oini

P =l — (P —D) 2 >0
P pEP

p Pmax P > Pmax (9.48)
Pmin P < Pmin

G(xp,p) = 9(p) X, +71,G = g(p) X, +r (9.49)

m+1

u, = —sign(a sat( ) Za, (9.50)

where
a; = min max s1gn(aeg){f —fi + wilf; —9)} i=1,...,m (9.51)
wiER 6;€6;
ai*nJrl = |a|nnx wmlnellR I;IE%PX Slgn(eE) [G G Wm+1(]7 P)] (952)

w; are the corresponding w;’s that realize the min-max solutions in (9.51) and
(9.52), and ||, denotes the maximum modulus of «.The stability property of
this adaptive system is given in Theorem 4.1 below.

Theorem 4.1 The closed loop adaptive system defined by the plant in (9.1), the
reference model in (9.2) and (9.43)-(9.52) has globally bounded solutions if
p(ty) € P and 6,(tg) € ©; V i. In addition, lim, ., e-(¢) = 0.

Proof For the plant model in (9.1), the reference model in (9.2) and the
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control law in (9.43), we obtain the error differential equation

b

E = 4,E+" (G - G) +Z( (61,0) = fi(61,00)) = "B+ GG+ ua(1)

(9.53)
Assumptions (A6)—(A8) and Lemma 4.2 imply that there exists a /& such that
e. = hTE and

m

e = —kec-+ 2 a(G = )+ 3 (461,09 = fi9n6)) = "B+ GG+ ui(r)

(9.54)

which is very similar to the error model in (9.37). Defining the tuning error, e.,
as in (9.44), we obtain that the control law in (9.43), together with the adaptive
laws in (9.45)—(9.52) lead to the following Lyapunov function:

m

e+ ﬁTrglﬁ-+| | aldz—kq§4ﬁ2-+| |j£:wg‘92

1
V=2 %

2

m

+25(p — p) ||§:9 (9.55)

This follows from Corollary 4.2 by showing that ¥ < 0. This leads to the
global boundedness of e., B, p, & and 6; for i =1,...,m. Hence e, is bounded
and by Lemma 4.2, E is also bounded. As a result, ¢;, p and the derivative é,
are bounded which, by Barbalat’s lemma, implies that e. tends to zero.

Theorem 4.1 assures stable adaptive control of NLP-systems of the form in
(9.3) with convergence of the errors to within a desired precision . The proof
of boundedness follows using a key property of the proposed algorithm. This
corresponds to that of the error model discussed in Section 9.4.1, which is given
by Lemma 3.2. As mentioned earlier, Lemma 3.2 is trivially satisfied in
adaptive control of LP-systems, where the inequality reduces to an equality
for wy determined with a gradient-rule and @y = 0. For NLP-systems, an
inequality of the form of (9.18) needs to be satisfied. This in turn necessitates
the reduction of the vector error differential equation in (9.53) to the scalar
error differential equation in (9.54).

We note that the tuning functions & and w} in the adaptive controller have
to be chosen differently depending on whether /' is concave/convex or not, since
they are dictated by the solutions to the min—max problems in (9.51) and (9.52).
The concavity/convexity considerably simplifies the structure of these tuning
functions and is given by Lemma 3.1. For general nonlinear parametrizations,
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the solutions depend on the concave cover, and can be determined using
Lemma 4.3.

Extensions of the result presented here are possible to the case when only a
scalar output y is possible, and the transfer function from u to y has relative
degree one [10].

9.4.3 Adaptive observer

As mentioned earlier, the most restrictive assumption made to derive the
stability result in Section 9.4.2 is (A1), where the states were assumed to be
accessible. In order to relax assumption (Al), the structure of a suitable
adaptive observer needs to be investigated. In this section, we provide an
adaptive observer for estimating unknown parameters that occur nonlinearly
when the states are not accessible.

The dynamic system under consideration is of the form

S bilp)s"!
Sk . 9.56
S S ai(p)s ©-56)

vp=W(s,p)u, W(s,p)=

and the coefficients «;(p) and b;(p) are general nonlinear functions of an
unknown scalar p. We assume that

(A2-1) p lies in a known interval P = [puin, Pmax)-
(A2-2) The plant in (9.56) is stable for all p € P.
(A2-3) a; and b; are known continuous functions of p.

It is well known [1] that the output of the plant, y,, in equation (9.56)
satisfies a first order equation given by

By == +/(P)'Q A>0 9.57)
where
w1 = Aw; + ku (958)
W = Awy + ky, (9.59)
Q= [u,w!,y,wf]" (9.60)
1) = [eo(p). o) o, dp)7] ©0.61)

for some functions ¢o(-), ¢(-), do(-),and d(-), which are linearly related to b;(-)
and ¢;(-). A in (9.58) and (9.59) is an (n — 1) x (n — 1) asymptotically stable
matrix and (A, k) is controllable.

Given the output description in equation (9.57), an obvious choice for an
adaptive observer which will allow the on-line estimation of the nonlinear
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parameter p, and hence «;’s and b;’s in (9.56), is given by
fp = -\ + /70— ay sat(%) (9.62)

where f =f(p) and e; is the output error e; = y, — y,. It follows that the
following error differential equation can be derived:

er= e +1f 12— ap sat(%) (9.63)

Equation (9.63) is of the form of the error model in (9.32) with k| = A\, k», =1,
wr=o,=0,m=1, fi =—fTQ, ¢, =, and 0, = p. Therefore, the algorithm

el
e. = e —esat(—
€

ﬁ = —VpCeWo — (P - p), >0

D peP
ﬁ = Pmax P > Pmax (964)
pmin p < pmin

where a¢ and wy are the solutions of

weR  peP

ay = min max sign (e.) [(f —7) 2w —p)}

. T
wp = arg min max sign(e.) [(f —f) Q—wp —p)}

weR  pe

The stability properties are summarized in Theorem 4.2 below:

Theorem 4.2 For the linear system with nonlinear parametrization given in
(9.56), under the assumptions (A2-1)-(A2-3), together with the identification
model in (9.62), the update law in (9.64) ensures that our parameter estimation
problem has bounded errors in p if p(ty) € P. In addition, lim, .. e-(f) = 0.

Proof  The proof is omitted since it follows along the same lines as that of
Theorem 4.1.

We note that as in Section 9.4.2, the choices of @y and wy are different
depending on the nature of f. When f is concave or convex, these functions are
simpler and easier to compute, and are given by Lemma 3.1. For general
nonlinear parametrizations, these solutions depend on the concave cover and
as can be seen from Lemma 3.4, are more complex to determine.
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9.5 Applications

9.5.1 Application to a low-velocity friction model

Friction models have been the focus of a number of studies from the time of
Leonardo Da Vinci. Several parametric models have been suggested in the
literature to quantify the nonlinear relationship between the different types of
frictional force and velocities. One such model, proposed in [13] is of the form

F = Fcsgn(xX) + (Fs — Fe) sgn()'c)zf(%)2 + Fux (9.65)

where x is the angular position of the motor shaft, F' is the frictional force, F¢
represents the Coulomb friction, Fs stands for static friction, F, is the viscous
friction coefficient, and v, is the Stribeck parameter. Another steady state
friction model, proposed in [14] is of the form :

sgn(X)(Fs — Fe)
1+ (5/v,)?

Equations (9.65) and (9.66) show that while the parameters F¢, Fs and F,
appear linearly, v; appears nonlinearly. As pointed out in [14], these param-
eters, including vy, depend on a number of operating conditions such as
lubricant viscosity, contact geometry, surface finish and material properties.
Frictional loading, usage, and environmental conditions introduce uncertain-
ties in these parameters, and as a result these parameters have to be estimated.
This naturally motivates adaptive control in the presence of linear and
nonlinear parametrization. The algorithm suggested in Section 9.4.2 in this
chapter is therefore apt for the adaptive control of machines with such
nonlinear friction dynamics.

In this section, we consider position control of a single mass system in the
presence of frictional force F modelled as in equation (9.65). The underlying
equations of motion can be written as

i=F+u (9.67)

F = Fcsgn(X%) + + Fux (9.66)

where u is the control torque to be determined. A similar procedure to what
follows can be adopted for the model in equation (9.66) as well.
Denoting

¢ = [sen(x),%]", f(x,0) =sgn(x)e ™, B=[Fc,F]"
0

(9.68)
(I/Uf)a o=Fs—Fc

it follows that the plant model is of the form
¥=of (x,0) + o B +u (9.69)
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where f(x,0) is convex for all x > 0 and concave for all X < 0. We choose a
reference model as

[s2 + 2Cwps + w,z,] Xy = wir (9.70)

where ¢ and w, are positive values suitably chosen for the application problem.
It therefore follows that a control input given by

u=—ke, — Dy (s)[x] + wr — ©T f — 61 (,0) — ap sat (EE—‘) (9.71)

where D (s) = 2(w,s + w2, together with the adaptive laws

B=The.p, Ty>0 9.72)
6= Voeewo Y9 >0 (9.73)
G =0, Yo >0 (9.74)

with @y and wy corresponding to the min—max solutions when sign(e.)f is
concave/convex, suffice to establish asymptotic tracking.

We now illustrate through numerical simulations the performance that can
be obtained using such an adaptive controller. We also compare its perform-
ance with other linear adaptive and nonlinear fixed controllers. In all the
simulations, the actual values of the parameters were chosen to be

Fe=1N, Fg=15N, F,=04Ns/m, uv;,=0.018m/s (9.75)
and the adaptive gains were set to
Ly = dlag(lv 2)7 Vo =2, Yo = 108 (976)

The reference model was chosen as in equation (9.70) with ( = 0.707, w, =
5rad/s, r = sin(0.2¢).

Simulation 1 We first simulated the closed loop system with our proposed
controller. That is, the control input was chosen as in equation (9.71) with
k =1, and adaptive laws as in equations (9.72)~(9.74) with ¢ = 0.0001. 6(0)
was set to 1370 corresponding to an initial estimate of o, = 0.027 m/s, which is
50% larger than the actual value. Figure 9.5 illustrates the tracking error,
e = X — Xp,the control input, u, and the error in the frictional force,
er = F — F, where F is given by (9.65) and F is computed from (9.65) by
replacing the true parameters with the estimated values. e, u and ep are
displayed both over [0, 6 min] and [214 min, 220 min] to illustrate the nature
of the convergence. We note that the position error converges to about
5 x 1073 rad, which is of the order of e, and ey to about 5 x 103 N. The
discontinuity in u is due to the signum function in f in (9.68).



238 Stable adaptive systems in the presence of nonlinear parametrization

~5

0.02 5X10
'g 4] 0
(V]
-0.02 -5
0 2 4 6 214 216 218 220
time (min) time (min)
(a)
2
g 0
N
-2
0 2 4 6 214 216 218 220
time (min) time (min)
(b)
- -3
1 5 x 10
z0 0 WH‘MW
'Y
()
-1 -5
0 2 4 6 214 216 218 220
time (min) time (min)
(c)

Figure 9.5 Nonlinear adaptive control using the proposed controller. (a) e vs. time,
(b) u vs. time, (c) er vs. time

Simulation 2 To better evaluate our controller’s performance, we simulated
another adaptive controller where the Stribeck effect is entirely neglected in the
friction compensation. That is

F = Fesgn(x) + Fox (9.77)

so that the control input .
u=—ke. — Di(s)[x] +wir — F (9.78)

with estimates F¢ and F, obtained using the linear adaptive laws as in [1]. As
before, the variables e, u and e are shown in Figure 9.6 for the first 6 minutes
as well as for 7' =[214min, 220 min]. As can be observed, the maximum
position error does not decrease beyond 0.01 rad. It is worth noting that the
control input in Figure 9.6 is similar to that in Figure 9.5 and of comparable
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Figure 9.6 Linear adaptive control with the Stribeck effect neglected. (a) e vs.
time, (b) u vs. time, (c) er vs. time

magnitude showing that our min—max algorithm does not have any discon-
tinuities nor is it of a ‘high gain’ nature. Note also that the error, ex does not
decrease beyond 0.5 N.

Simulation 3 In an attempt to avoid estimating the nonlinear parameters vy,
in [15], a friction model which is linear-in-the-parameters was proposed. The
frictional force is estimated in [15] as

F = Fesgn(x) + Fs|x|'? sgn(x) + Fox (9.79)

with the argument that the square-root-velocity term can be used to closely
match the friction-velocity curves and linear adaptive estimation methods
similar to Simulation 2 were used to derive closed loop control. The resulting



240 Stable adaptive systems in the presence of nonlinear parametrization

0.02 — 0.01
)
g o 0
(‘5]
-0.02 Joo1l .
0 2 4 6 360 362 364 366
time {min) time (min)
(a)
2
o0
S]
-2 .
0 2 4 6 360 362 364 366
time (min) time (min)
(b)
1
z
— 0
w
[\)
-1 — - .
0 2 4 6 360 362 364 366
time (min) time (min)
(c)

Figure 9.7 Linear adaptive control with friction model as in (9.79). (a) e vs. time,
(b) u vs. time, (c) er vs. time

performance using such a friction estimate and the control input in equation
(9.78) is shown in Figure 9.7 which illustrates the system variables e, u and ep
for T =[0, 6 min] and for T = [360 min, 366 min]. Though the tracking error
remains bounded, its magnitude is much larger than those in Figure 9.5
obtained using our controller.

9.5.2 Stirred tank reactors (STRs)

Stirred tank reactors (STRs) are liquid medium chemical reactors of constant
volume which are continuously stirred. Stirring drives the reactor medium to a
uniform concentration of reactants, products and temperature. The stabiliza-
tion of STRs to a fixed operating temperature proves to be difficult because a
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few physical parameters of the chemical reaction can dramatically alter the
reaction dynamics. Defining X, and X, as the concentration of reactant and
product in the inflow, respectively, r as the reaction rate, T as the temperature,
h as the reaction heat released during an exothermic reaction, d as the
volumetric flow into the tank, 7% = T — Tymp, it can be shown that three
different energy exchanges affect the dynamics of X [16]: (i) conductive heat
loss with the environment at ambient temperature, T,mnp, With a thermal heat
transfer coefficient, e,(ii)) temperature differences between the inflow and
outflow which are T,,, and T respectively, (iii) a heat input, u, which acts
as a control input and allows the addition of more heat into the system. This
leads to a dynamic model

X )X +d (X — X))

= —1pnex _— Sy —

1 0 €Xp T + T 1 lin 1
. -

Xo =vyexp| =——— | X1 — dX. 9.80
2 0 Xp(T*+Tamb) 1 2 ( )
: q 1 —V

r =11 (e (1 )3+ )

p p < e T* + Tamb :

The thermal input, u, is the only control input. (Volumetric feed rate, d, and
inflow reactant concentration, X7;, are held constant.) To drive 7™ from zero
(Tamb) to the operating temperature, 7., we can state the problem as the
tracking of the output 77, of a first order model, specified as

T: = kT + kT (9.81)

oper

where k > 0.

Driving and regulating an STR to an operating temperature is confounded
by uncertainties in the reaction kinetics. Specifically, a poor knowledge of the
constants, vy and vy, in Arrhenius’ law, the reaction heat, 4, and thermal heat
transfer coefficient, e, makes accurately predicting reaction rates nearly
impossible. To overcome this problem, an adaptive controller where vy, vy, h
and e are unknown may be necessary.

9.5.2.1 Adaptive control based on nonlinear parametrization
The applicability of the adaptive controller discussed in Section 9.4.2 becomes
apparent with the following definitions

0
Hl:l/07 02:V15 0:[0_;:|a Ap:_q/pa bpzl/p7 /6:0
_92
—Qhexp(—2— Xy, T,=T —-T', ¢6=T"
f 1 eXp<T* T Tamb> 15 m QS

which indicates that equation (9.80) is of the form (9.1). Note that f is a convex
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function of 6. (It is linear in #; = 14 and exponential in , = v;. If reaction heat,
h, is unknown, it may be incorporated in 6, i.e. §; = hi.) Since vy, v and h are
unknown constants within known bounds, assumption (A2) is satisfied.
Assumption (Al) is satisfied since the temperatures are measurable. The
system state, T = ¢, complies with (A3). Furthermore f is smooth and
differentiable with known bounds and hence (A4) is satisfied. Finally, (A6)-

(A8) are met due to the choice of the model as in (9.81) for a = k — 9 Since e is
P

unknown, « is unknown and is therefore estimated. Since the plant is first
order, the composite error e. is given by e. = T,. Referring to the adaptive
controller outlined in Section 9.4.2, the control input and adaptation laws are
as follows:

u=—f(¢,0) —aT" + PkT G e, — a*sat (%)

e
€. =e.— aS'at(—c), e>0
£

&=-Tpe.T*, To>0

9:F9[65w*—(0_—é)], Ty >0

é[ if é[ S [ei,mina ei,max]
0

>

i,min if 61’ S ei,min
0i,m'a.x if 91’ 2 gi,max

Simulation results have shown that our proposed controller performs better
than a linear adaptive system based on linear approximations of the nonlinear
plant dynamics. Due to space constraints, however, the results are not shown in
this chapter but the reader may refer to [11] for more details.

9.5.3 Magnetic bearing system

Magnetic bearings are currently used in various applications such as machine
tool spindle, turbo machinery, robotic devices, and many other contact-free
actuators. Such bearings have been observed to be considerably superior to
mechanical bearings in many of these applications. The fact that the underlying
electromagnetic fields are highly nonlinear with open loop unstable poses a
challenging problem in dynamic modelling, analysis and control. As a result,
controllers based on linearized dynamic models may not be suitable for
applications where high rotational speed during the operation is desired. Yet
another feature in magnetic bearings is the fact that the air gap, which is an
underlying physical parameter, appears nonlinearly in the dynamic model. Due
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to thermal expansion effects, there are uncertainties associated with this
parameter. The fact that dynamic models of magnetic bearings include non-
linear dynamics as well as nonlinear parametrizations suggests that an adaptive
controller is needed which employs prior knowledge about these nonlinearities
and uses an appropriate estimation scheme for the unknown nonlinear
parameters.

To illustrate the presence of nonlinear parametrization, we focus on a
specific system which employs magnetic bearings which is a magnetically
levitated turbo pump [5]. The rotor is spun through an electric motor, and
to actively position the rotor, a bias current i, is applied to both upper and
lower magnets and an input u is to be determined by the control strategy. For a
magnetic bearing system where rotor mass is M operating in a gravity field ¢,
the rotor dynamics is represented by a second order differential equation of the
form
_ n*ugA(iy + 0.5u)%  n?uoA(io — 0.5u)

4(hy — z)° 4(ho + )
where n denotes the number of coils, o the air permeability, 4 the pole face

area, iy the bias current (with |u| < 2iy), 5 the nominal air gap, and z the rotor
position. One can rewrite equation (9.82) as

Mz —

(9.82)

Z- g :fl (h(),()é,Z) +.f2(h07 a,z)u +f3(h0a a,z)uz, |u| < 210 (983)
where
o= n2u0A
4M
Adachyziz .
f](/’lo,Oé,Z) = 020 = OéZl(z)’}/l (ho,Z)

(ho — 2)*(ho + 2)°
2a(hg + 2%)iy
(ho — 2)*(ho + z)*
ahyz
(ho — 2)*(ho + 2)°
The control objective is to track the rotor position with a stable second order

model as represented by the following differential equation:

Zm A CLEm + CoZy =T (9.84)

Sa(ho,a,z) = = aigya(ho, z)

Sfilho,a,z) = = azys(ho, z)

9.5.3.1 Adaptive control based on nonlinear parametrization

By examining equation (9.83), it is apparent that the parameter Ay occurs
nonlinearly while o occurs linearly. An examination of the functions f, fou,
and fyu® further reveals their concavity/convexity property and are
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Table 9.1 Properties of f\,f>u and fsu® as a function of h;

Function Concavity/convexity Monotonic property Prerequisite

Fi =1 convex decreasing 0 < z < hmin
concave increasing —hmin <z2<0

F, = fu convex decreasing u>0
concave increasing u<0

F3 = fyu? convex decreasing 0 < z < hmin
concave increasing —hmin <z2<0

summarized in Table 9.1. Following the approach outlined in Section 9.4.2, we
show that the following adaptive controller can be realized:

1
f2(ﬁ07daz)

u =

{~ke. = Da(s) + r+ ual0) + g ~ fi(ho, @ 2) = fi o, &, )i}

(9.85)

where ¢ is the dead zone, ¢; and ¢; are positive constants and

e =e —¢ sat<e€“>, ec = D(s) [/(z — Z) dT} (9.86)

D(s)=s*+cis4+ ¢, Di(s)=ci(s) + e (9.87)

Ua(1) = —sat( Z) ia,(l) (9.88)

The adaptive laws are determined, following the method outlined in Section
9.4.2 as the approach described in Section 9.4.2 allows us to establish
adaptation laws for /i, using 4; as follows:

//;1 =ewi, };2 = €5F2w2, /’;3 =eJJ3w;, T;>0 (989)
and the linear parameters as
G = e Myizid, Gy = e Mapiou,  éy = e Az, A >0 (9.90)

where A; are positive.
Since the functions F; are either convex or concave, ¢; and w; are chosen as
follows:
(a) F;is convex
. F —F .
Sat(ec/e)amax Fl‘max — E — ﬁ(h — hmin) if e > 0
max min

0 otherwise

a; =
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F. —F
—sat(e,/e) = —— T if o >0
hmax — Pmin
wilt) = OF,
—sat(e./e) —=— otherwise
0 on |
(b) F; is concave
0 if e. >0
i = - F —F .
i —sat(e,/€) max [Fi -F, - 0 (f— i) otherwise
hmax - hmin
OF; .
sat(e./e) — if e >0
oh |;
Wj(l) = F !
—sat(e./e) —m——mn otherwise

hmax - hmin
By examining equation (9.85), it is apparent that fz cannot be arbitrarily small.
This requirement is satisfied by disabling the adaptation when the magnitude
of f, reaches a certain threshold. The adaptive controller defined by equations
(9.85)—(9.90) guarantees the stability of the magnetic bearing system as shown
by the simulations results in [11].

9.6 Conclusions

In this chapter we have addressed the adaptive control problem when unknown
parameters occur nonlinearly. We have shown that the traditional gradient
algorithm fails to stabilize the system in such a case and that new solutions are
needed. We present an adaptive controller that achieves global stabilization by
incorporating two tuning functions which are selected by solving a min—max
optimization scheme. It is shown that this can be accomplished on-line by
providing closed-form solutions for the optimization problem. The forms of
these tuning functions are simple when the underlying parametrization is
concave or convex for all values of the unknown parameter and more complex
when the parametrization is a general one.

The proposed approach is applicable to discrete-time systems as well. How
stable adaptive estimation can be carried out for NLP-systems has been
addressed in [12]. Unlike the manner in which the tuning functions are
introduced in continuous-time systems considered in this chapter, in discrete-
time systems, the tuning function g is not included in the control input, but
takes the form of a variable step-size p, in the adaptive-law itself. It is once
again shown that a min—max procedure can be used to determine p, as well as
the sensitivity function w, at each time instant. As in the solutions presented
here, w, coincides with the gradient algorithm for half of the error space.
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The class of NLP adaptive systems that was addressed in this chapter is of
the form of (9.1). It can be seen that one of the striking features of this class is
that it satisfies the matching conditions [17]. Our preliminary investigations [18]
show that this can be relaxed as well by judicious choice of the composite scalar
error in the system, thereby expanding the class of NLP adaptive systems that
are globally stabilizable to include all systems that have a triangular structure
[19].

Appendix Proof of lemmas

Proof of Lemma 3.1
We establish (9.14) and (9.15) by considering two cases: (a) Gf is convex, and
(b) Bf is concave, separately.

(a) Bf is convex. Since wf0 is linear in 6, in this case, the function J(w, #) given
by ) X
J(w,6) = B[/~ +wlb-0)] (A1)

is convex in 6. Therefore, J(w, #) attains its maximum at either 6, or €.y OF
both. The above optimization problem then becomes

min max {ﬂ{ nin —f + w(é — Gmm)}, ﬂ{ nax —f + w(é — omax):| } (A.2)

weR

or equivalently it can be converted to a constrained linear programming
problem as follows:
min z
(w,2)eR?

subject to

ﬂ|: min _f + w(@ - emin):| S z

R R (A.3)
/6|: max _f + w(e - emax):| S z

By adding slack variables £ > 0 and &, > 0, the inequality constraints in (A.3)
can be further converted into equality constraints

ﬂ[ min —f + w(é - 9min)] +e=z (A.4)
B fws — + (0~ )] +e2 =2 (A.5)

Solving for w in equation (A.4) and substituting into equation (A.5), we
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have

7= ﬁf;nill(emax - 9) _ ﬁfr.nax(emin - 9) _ ,Bf + €1 (emax - 9) + 52(9 - emin)

emax - amin emax - amin

(A.6)

omax - omin emax - emin

The optimal solution can now be derived by considering three distinct cases:
(1) emin << emax: (11) 0= emax and (111) 0= 9min~

(1) Opin < 0 < Omax: Since the last two terms in equation (A.6) are positive for
g1 > 0and e; > 0, minimum z is attained when ¢; = €; = 0 and is given by
Zopt - 6 fmin _f + M (é - emin) (A7)
amax - omin
The corresponding optimal w can be determined by substituting equation
(A.7) in equation (A.4) and is given by
_ f;nax _f;nin

Wopt = 0

(A.8)

max —_ omin

(i) 0 = Onax: €quation (A.6) can be simplified as
Z =&
and thus minimum z is obtained when €, = 0 or zop = 0. The correspond-
ing optimal w using equation (A.4) is given by
w _ ﬁ(fmax _fmin) — &1
L=

o ﬁ(emax - emin)

Thus, wept 18 nonunique. However, for simplicity and continuity, if we

choose £1 = 0, wopt Is once again given by equation (A.8).
(iii)) 6 = O, Here equation (A.6) reduces to

(A.9)

zZ=¢£€]

Hence minimum z corresponds to €y =0 or zyp = 0. Using equation
(A.5), it follows that wep is given by

w — ﬂ(fmax - min) + &
ot ﬁ(amax - amin)

Again, wep is nonunique but can be made equal to equation (A.8) by
choosing e, = 0.

(A.10)

(b) Bf is concave. Here, we prove Lemma 3.1 by showing that (i) the absolute
minimum value for ay = 0, and (ii) this value can be realized when w = wj as in
(9.17).

(i) For any w, we have that
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Blf—f+w@—0)| >0, forsomede®O

since 6 € ©. Hence, for any w

max J(w,0) >0
0cO

and as a result )
min max J(w,6) >0
weR 0O

Hence, aq attains the absolute minimum of zero for some # and some w.

(i) We now show that when w = wy, ap = 0, where wy is given by (9.17). Since
Bf is concave, J is concave as well. Using the concavity property in (9.12),
we have

Blr =7+ p0-0) <0
That is, . .
max ﬂ{f—f+vhfé(efe)] ~0 (A.11)
Equation (A.11) implies that if we choose w = Vf;, then

min max J(w,0) =0
weR 0e0

which proves Lemma 3.1.

Proof of Lemma 3.2
We note that

ap sign(x) sat<z> = ap, V|x|>c¢
€

by definition of the sat(-) function. If @y and wy are chosen as in (9.16) and
(9.17) respectively, then

ay = Igle%xﬂ[f —f+wo(d— 9)}
which implies that for any 6 € O,
[sign(x) (f —f—(6- é)wo) — ag sign(x) sat (g)} <0

since [ = sign(x). Inequality (9.18) therefore follows.

Proof of Lemma 3.3
When gf is convex, J(w, 8)is also convex and the min—max problem

min max J(w,d) = min max ﬂ[f —f—wl(0-0) (A.12)

weR™ 0Oy weR" 0By

can be converted into a constrained LP problem involving the (m + 1) vertices
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of the simplex Og. Defining maxpeco, J(w,6) = z, (A.12) can now be expressed

as:
min z
(zaw)er™! (A.13)
subject to:  g(w,0s;) = J(w,0s;) —2<0, i=1,...,(m+1)

We solve (A.13) by converting into an unconstrained problem as follows.
Rewriting the constraints in matrix form as

Hx)=Gx—-b<0

where x = [z ] and

—-1 BO—0s1)" B — fs1)
_ 00T p

G .1 B( 'sz) b ﬂ(f.fsz) (A14)
—1 B0 —Osn1)" B(f = foms1)

we have that V. H(x) = G and G is full rank since f; are distinct vertices of Og
and S is nonzero. Defining the Lagrangian function by

(x,\) =z + ATH(x) (A.15)

where A = [A;, Ay, ..., )\mH}T, and \;,i =1,...,m+ 1 are the Lagrange multi-
pliers, the Kuhn Tucker theorem states that

V. (x*, ) -3 0 (A.16)
x X s = m ~ = .
| S B0~ Osi)
MVap(x*,A) = AT (Gx* —b) =0 (A.17)
where x* is the optimal solution. From (A.16), we have
Ai(Osmr1 — Osi) = Osmer — 0 (A.18)

i=1

Three cases of 6 will now be considered: (a) 6 is in the interior of Og, (b) 6 is
on the boundary of ©g, (¢) 6 coincides with one of the vertices,
Osii=1,...,m+1.

Case (a) This implies that
m+1

m+1
0=> aifls, with > a;=1, 0<a; <1
i=1

i=1



250 Stable adaptive systems in the presence of nonlinear parametrization

Substituting into equation (A.18), we have

m
Z /\ - az 95‘171+1 - 0S1) =0

i=1
Since (Osmy1 —0Osi),i=1,...,m are m independent vectors, it follows that
AN—a;=0o0r N\ =a; 1 =1—>", o Thus \; > 0 for all i. Therefore,
from equation (A.17), we require Gx* — b = 0 and thus the optimal solution is
given by x* = G~'b or ay = (G~'b), where (A), refers to the ijth element of a
matrix 4.

Case (b) 6 is on the boundary of Og. In this case, 6 is a linear combination of
at most m vertices. Suppose

r

é:Z Oéies,', ZO(,‘ZI, 0<Oé,‘<17 1<r<m
i=1 i=1

where, for convenience, we have reordered the vertices such that 0 is a linear
combination of the first r vertices. From (A.18), we have that

r

> (A= i) (st — Osi) =0

i=1
Thus, \j=a;,i=1,...,r and Ay = N2 =... =)\, =0. Equation (A.17)
requires that

D N(Bfsi— B + 80— 0s) w—2)=0
i=1

= Z NifSfsi — Bf + B(0 Z Alsi) w—z=0
since > _; A; = I. Since the term within the parentheses is zero, we have that
r
z=ay=Y_ NBfsi—Bf (A.19)
i=1

While equation (A.19) gives a nice closed form solution, this optimal solution is
not so readily computable because we require the values of the Lagrange
multipliers which in turn can only be computed by decomposing the estimate 6
in terms of the m + 1 vertices. We avoid this by showing that the optimal
solution in (A.19) coincides onces again with (G~'b) |

Let G be partitioned as

—1 B —6s)" .
Em><1 Amxm ’

G =

B(f — fs1)
Bm><1
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Then
Gl = [—)\1 (=X = X3+ =X 0---0)

ME M
. -1
where M = {Eﬁ(G — )" + A} and hence (G7'b),; =0 \iBfsi—
Bf = a.
Case (c) 0 coincides with one of the vertices, Og;, for some 1 <j<m+1:

From (A.18), A =aj =1,\i = a; =0,Vi#j,1 <i<m+ 1. In order to satisty
equation (A.17), we require that

Bfg—Bf +B0—0g) w—z=0 (A.20)

Since § = 0sj, (A.20) implies that the optimal solution is z = ay = 0. We can
show that a9 = (G™'b),, in this case as well as in what follows.

Rewriting G such that the jth constraint corresponding to 6 = fg; is the first
constraint, we have that

-1 O1><m [0
G= b=
mel Amxm _Bm><l

and hence its inverse is given by

G,l . -1 lem_
AT'E A"

Hence, (G~'b),, = 0 = ap.
The proof for the case when gf is concave is the same as part (b) in the proof
of Lemma 3.1.

Proof of Lemma 3.4

(1) For 6 € 0., F(0) = 8(f —f) and is concave since f is concave on 8. For
6 € 0, F(0) is linear in ¢ and thus is also concave. At 0, i=0,1,....n+1,
F(0") = B(f"—f). Thus F(6) is a continuous concave function on ©. In
addition, for 6 € 67,

00

-0

Since 0 < A <1 and ff is not concave on each 67, it follows that

Bf(0) < ABf7 + (1 — \)Bf" for all 0 in each 67 and hence

F(0) > B(f — ), Y0 € 0.
(2) We first consider the expression

J(w,0) = B[/~ +wld-0)]

F(0) =B +1=N/f"=1), A
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For any 3, w € R and e O, there exists some A € © such that J > 0,
implying that

min max J(w,6) > 0. (A.21)
weR #eO

(A.21) implies that the absolute minimum for the min—max problem is zero.
Now, if

o(f —f) < B(wh +¢), for some w and ¢

then we have that R
J(w,0) < B(wh + ¢)

Hence, for some w and c,

max J(w,0) = B(wh + ¢)

6cO
Therefore,
i w,C é ]
i max J(w,6) = min ,Ae[R B(wh + ¢) (A.22)
weR 9O subject to  B(f —f) < B(wh + ¢)

We have thus converted the min—max problem into a constrained linear-

problem in (A.22). We can now establish (9.27) by considering the equiva-

lent problem in (A.22) for two cases of 0: (a) 6 € 6., and (b) 6 € 6.
(a) f€b.: By the definition of 6., we have that

B0 —0)>6(f—f), Voe®© (A.23)

which satisfies the constraints in (A.22) if we choose w= Vf; and
¢ = —Vf;0. For these choices of w and ¢, it follows that

min Bwd+c)=0
Since 6 € 6., F(A) = 0 and hence the min-max problems in (9.14) and (9.15)

have solutions .
- 0
CIOZF(H):O, w():a—éA
]

(b) 6 e, Suppose

6 € 67 for some i, j (A.24)
From (A.22), we have

min max ﬂ{f —erw(GA— 0)

weR e
_ Aminw B(wh + ¢) (A.25)
st. B(f—f)<pBwhd+c), VOO
< min, . B(wh + ¢) (A.26)

s.t. F(0) <pBwd+c), VO0c©O
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since F(0) > B(f —f). However, since F(0) is concave on ©, we have
F(0) < VFu(0—0")+F("), Vv0,0'cO (A.27)

Since from (9.295),
F(0) = B0+ M), vo e (A.28)

for any 6' € 6, it follows that VFy = . Therefore, (A.27) can be
rewritten as

F(0) < B0+, voeceo (A.29)
(A.28) and (A.29) imply that

F(0) < B0+ K, vo¢ oM (A.30)
since the intervals 6 Vk, [ are unique and equality only holds for the
interval 0. Therefore, the optimization problem in (A.26) can be further

transformed as follows: .
A min, . B(wd + ¢)
i w,C 9 .
min,, . B(wd + ¢) < st F(O) = ﬂ(wk/Q—‘rck/), g e okl
st. F(0) <pBwd+c), VOO
F(6) < B(wklﬁ + ck’), 99%0“

(A.31)

Since the active constraints on the right-hand side of (A.31) occur only in
the set 6, the optimal solution of (A.31) is simply given by B(w*0 + ).
We note that the expansion of the constraint in (A.26) into constraints in
(A.31) is not unique since the choice of k and / are arbitrary. Hence, the
optimal solution of (A.26) has to be the minimum of all possible solutions
of (A.26) derived from considering all the possible sets of constraints that
can be derived from the single constraint in (A.26). In other words
min, . B(wd + ¢) _ mill{ﬂ(wk/é+ckl)7 kel = 1,...,n}

st. F(O) <Bwh+c), V9ecO

(A.32)
With i, j chosen as in (A.24), using equation (A.28), we obtain that

F(8) = B0 + V)
since 6 € 0¥ When i # k,j # I, since 6¢6¥, inequality (A.30) implies that
F(0) < B+ &y, Vi £i, 14

That is, the minimum solution in (A.32) occurs when k=i [/ =j and
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therefore,

min,, . 6(wé +¢)

st FO) <ot 0TI (A33)

The corresponding optimal w is given by wy = w¥. We next show how the
inequality in (A.26) is actually attained with equality by establishing that if
the concave cover F(0) was constructed such that it is strictly greater than
B(f —f), then the corresponding optimal solution will be larger. On the
other hand, if F(6) was constructed such that it is less than B(f — f) for
some 6, the corresponding optimal solution will be smaller. Hence if
F(0) > B(f —f), the two solutions will be equal. This is established for-
mally below.
From (A.26) and (A.33), we have that

min,, . ﬂ(wé +¢) - min,, . ﬁ(wé +¢)
st. B(f—f)<Bwh+c) st F(O) <Bwd+c)
= B0 + 7).
Suppose we perturb F() as F'(0) = F(0) +& > B(f —f) +¢, € > 0, then
minw,f B(wh + ¢) < min, . B(wd + ¢) (A34)
st. B(f—f)<Bwh+c) st F(0)<pwld+c)
_ min, . B(wh + c) (A35)

s.t. F(O) <Bwld+c)—¢
Let ¢ = ¢ —¢/0 in (A.35). Then the optimal solution of (A.35) is given by
min, .« B(wd+¢) +e
st.  F(0) <pB(wd+ )
following the result in (A.33).
On the other hand, suppose that F'(§) = F(6) —e. This implies that

F'(0) < B(f —f) for some 6. Using the same arguments as in (A.34)—
(A.36), we obtain that

=B+ e (A.36)

min,, . ﬂ(wé +¢) - min,, ﬂ(wé +¢)
st. B(f—f)<Bwh+c¢) st F'(0) <Bwh+c)

Hence, we have

= B0+ ) —e.

B+ ) — e < mitee O] gigy e (A37)

st B(f —f) <Bwh+c)



Adaptive Control Systems 255

Since the concave cover, F(0), was constructed as a tight bound over
B(f —f)ie F(0) > p(f—f), we have that £ = 0 in (A.37), and hence

min, . B(wh + c)
st B(f /) < Bwh+0)
= F(0) (A.38)

= ﬁ(w’f"é + ci/)

for a corresponding optimal w given by wy = w’. Therefore, statement (2)
in Lemma 3.4 holds.

Proof of Lemma 4.1
Suppose we choose a Lyapunov candidate given by

V=1 +0) (A.39)
where 6 = 6 — 6. Then taking the derivative of V' with respect to time yields
V=eb.+00 (A.40)

Let y = ¢2. Since the discontinuity at |e.| = ¢ is of the first kind and since e. = 0
when |e.| < e, it follows that the derivative V exists for all e., and is given by

V=0 when|e|<e (A.41)
When |e.| > €, substituting (9.32) and (9.33) into (A.40), we have
. A e
V =—e.e.+e. (f — f + Owy — ag sat (?)) (A.42)

Equation (A.42) can be simplified, by the choice of e. as
7 < —e? —f 4 Owy — G .
V< eE—&—eE{f f+ 0wy aosat(sﬂ (A.43)

If ap and wy are chosen as in (9.16) and (9.17) for concave-convex functions and
(9.27) and (9.28) for nonconcave—convex functions, from Lemmas 3.2 and 3.5,
it follows that o .

ec{f—f—l—&uo - a@at(;‘)} <0

Since
Sign(ec) = sign(e.), V ‘ecl > €

it follows that o e
e: {f —f 40wy — ag sat(g‘)} <0
As a result, equation (A.43) reduces to
V< —eg <0, for |e|>¢ (A.44)
(A.41) and (A.44) imply that V' is indeed a Lyapunov function which leads to
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global boundedness of ¢. and 0. From the definition of e., it follows that e, is
also bounded.

Proof of Corollary 4.1
To account for the projection terms in equation (9.3’), we modify our
Lyapunov function candidate as

V=1 (eg 402 4 20(5 — é)) (A.45)

From the definition of § and 4, it follows that V' is positive definite and radially
unbounded with respect to e., 6 and 0 [20]. Equations (A.45) and (9.33’) yield a
time derivative

V= —eg +e. [f —f 40w — ay sat(%)} + m(@, )
where R . R . A
m(0,0) = (0 —0)(0 —0) +~,'0(0—0)

If m <0 for all § and 0, then we can obtain an expression for V similar to
(A.43). We show this by considering the following three cases: (a) 6 € ©,
(b) 0 > Opax, (€) 0 < Opypy. In case (a), § = 6 and hence m = 0. In both cases

(b) and (¢), 6 =0, and by the choice of 6 and 6 and since 6 € O, it follows that
m < 0. As a result,

V<= telf =7+ 0 —ansa()]

Also, the algorithm in equation (9.33’) ensures that 6(7) € © for all 1 > f.
Therefore, the same arguments following equation (A.43) in the proof of
Lemma 4.1 can be used to conclude that

V<0, Ve,

Therefore, V' is a Lyapunov function, which leads to the boundedness of e., §
and 0, [20]. By the definition of e., e. is also bounded, thus proving Corollary
4.1.

Proof of Lemma 4.2
Let the characteristic polynomial of 4,, be

a(s) = (s + k)R(s)
where R(s) is a Hurwitz polynomial. By the choice of A4,,, we have that
a(s)(sI — Ap)~'b = P(s) (A.46)

where P(s) is an nx 1 matrix whose elements are polynomials with
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degrees <n — 1. Denoting S =1, s,. ..,s”’l]T, we have, from the control-

lability of (A,,,b) that ) )
P(s) = MS where M is nonsingular

We choose /1 as |
h=(M")"p (A.47)

where p is an n-dimensional vector such that p7.S = R(s). Therefore,
a()h (sI — A,)"'b=h"MS
= R(s) using equation (A.47)

As a result, we have

1
W (sl — A,,)"'b = A.48
(5T = )b = (A48)
and it follows by the choice of e, that
é. = —ke.+v
(1) Since R(s) is a Hurwitz polynomial, we have that
— 0. o0 f o0
R(S)ELEE if e,el
Since from (A.48) { {
——v=——ec, A.49
ats)' TR (A.49)

we have that )
1

a(s)

and therefore, since (4, b) is controllable, it follows that E € £°°. (ii) follows
using the same arguments.

veL® ife.ec L™

Proof of Lemma 4.3
Let the Lyapunov candidate be chosen as

V =1(e2 +0|6* + |0|6* + |0]|a?)

For |e.| <e, V =0, and for |e.| > &,

V < e.lol|sien(o)(f — f + fup) — 2 ||m|“a at<e )} (A.50)

With ay, wy and (§ as in Lemma 4.3, it follows that

dy = max sign(oe.) [f —f+ Hwo}
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In addition, for any 0 e ©, there exists some # € © such that
sign(oe.) |/ =/ + | 2 0
implying that ay > 0 and therefore

ao [T > sign(oe,) {f —f+ éwo}
o]

Hence, from (A.50), we have that ¥ <0 for all e., thus proving the

boundedness of e., 6, & and &.
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Adaptive inverse for actuator
compensation

G. Tao

Abstract

A general adaptive inverse approach is developed for control of plants with
actuator imperfections caused by nonsmooth nonlinearities such as dead zone,
backlash, hysteresis and other piecewise-linear characteristics. An adaptive
inverse is employed for cancelling the effect of an actuator nonlinearity with
unknown parameters, and a linear feedback control law is used for controlling
the dynamics of a linear or smooth nonlinear part following the actuator
nonlinearity. State feedback and output feedback control designs are presented
which all lead to linearly parametrized error models suitable for developing
adaptive laws to update the inverse parameters. This approach suggests that
control systems with commonly used linear or nonlinear feedback controllers
such as those with model reference, PID, pole placement or other dynamic
compensation designs can be combined with an adaptive inverse for improving
system tracking performance despite the presence of actuator imperfections.

10.1 Introduction

Adaptive control is a control methodology which provides adaptation mech-
anisms to adjust controllers for systems with parametric, structural and
environmental uncertainties to achieve desired system performance. Payload
variation or component ageing causes parametric uncertainties, component
failure leads to structural uncertainties and external noises are typical environ-
mental uncertainties. Such uncertainties often appear in control systems such
as those in electrical, mechanical, chemical, aeronautical and biomedical
engineering.
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Adaptive control of linear systems has been extensively studied. Systematic
design procedures have been developed for model reference adaptive control,
pole placement control, self-tuning regulators and multivariable adaptive
control. Robustness of adaptive control schemes with respect to modelling
errors such as unmodelled dynamics, parameter variations and external
disturbances has been a hot research topic. Recently adaptive controllers
have been developed for nonlinear systems such as pure-feedback systems
and feedback linearizable systems under the assumption that the nonlinearities
are sufficiently smooth.

Nonsmooth nonlinear characteristics such as dead zones, backlash and
hysteresis are common in actuators, such as mechanical connections, hydraulic
servo-valves, piezoelectric translators and electric servomotors, and also
appear in biomedical systems [3, 5, 7, 8, 10, 18]. They are usually poorly
known and may vary with time. They often severely limit system performance,
giving rise to undesirable inaccuracy or oscillations or even leading to
instability. The development of adaptive control schemes for systems with
actuator imperfections has been a task of major practical interest.

Recently, an adaptive inverse approach was proposed to deal with systems
with nonsmooth actuator nonlinearities [10, 12]. The control scheme of [10]
consists of an adaptive inverse for cancelling the effect of an unknown actuator
nonlinearity such as a dead zone or a two-segment piecewise linearity and a
linear state or output feedback design for a linear dynamics. In [12], the
adaptive inverse approach is unified for adaptive output feedback control of
linear systems with unknown actuator or/and sensor dead zone, backlash and
hysteresis, based on a model reference control method for systems with stable
ZET0s.

In this chapter, we describe how such an adaptive inverse approach can be
combined with other control methods such as pole placement, PID, and how it
may be applied to multivariable or nonlinear dynamics with actuator non-
linearities. In Section 10.2, we present a general parametrized actuator non-
linearity model illustrated by a dead-zone characteristic. In Section 10.3, we
propose a parametrized inverse for cancelling the actuator nonlinearity,
illustrated by a dead-zone inverse. In Section 10.4, we design state feedback
adaptive inverse control schemes, while in Section 10.5, we develop a general
output feedback adaptive inverse control scheme. In Section 10.6, we present
three output feedback designs: model reference, pole placement, and PID (as
illustrated by a backlash compensation example with simulation results), as
examples of the general control scheme of Section 10.5. We also present
feedback adaptive inverse control schemes in Section 10.7 for multivariable
linear plants with actuator nonlinearities, using adaptive parameter update
laws based on a coupled estimation error model or a Lyapunov design, and in
Section 10.8 for smooth nonlinear dynamics with nonsmooth actuator non-
linearities, using an adaptive backstepping design.
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10.2 Plants with actuator nonlinearities

Consider the plant with a nonlinearity N(-), with unknown parameters, at the
input of a known linear part G(D):

2(1) = GD)[ul(r), (1) = N(v(1)) (10.1)

where N(-) represents an actuator uncertainty such as a dead zone, backlash,
hysteresis or piecewise-linear characteristic, v(¢) is the applied control, u(z) is
not accessible for either control or measurement and G(D) is a rational transfer
function either in continuous time (when D = s denotes cither the Laplace
transform variable or the time differentiation operator: s[x](f) = x(¢)) or in
discrete time (when D = z denotes cither the z-transform variable or the time
advance operator: z[x](z) = x(t + 1)), for a unified presentation.

The control objective is to design an adaptive compensator to cancel the
effect of the uncertain actuator nonlinearity N(-) so that a commonly-used
control scheme for the linear part G(D) can be used to ensure desired system
performance. To achieve such an objective, there are two key tasks: one is the
clarification of the class of actuator nonlinearities for which such compensators
can be developed, and the other is the design of adaptive laws which can
effectively update the compensator parameters. In this section, we fulfil the first
task by presenting a parametrized nonlinearity model suitable for adaptive
compensation schemes to be developed in the next sections.

Nonlinearity model. Dead-zone, backlash, hysteresis, and piecewise-linear
characteristics are representatives of an actuator nonlinearity N(-). These
nonlinear characteristics have break points so that they are nondifferentiable
(nonsmooth) but they can be parametrized [10, 12, 15]. The parametrized
models of these nonlinearities can be unified as

N0 0(1)) = —0°Tw" (1) + @ (1) (10.2)

<
—
~
~
Il
=
<
—~
~
~
~
Il

where 6* € R (ng > 1) is an unknown parameter vector, and w*(¢) € R™ and
a*(t) € R whose components are determined by the signal motion in the
nonlinear characteristic N(-) and therefore are also unknown.

A dead-zone example. To illustrate the nonlinearity model (10.2), let us
consider a dead-zone characteristic DZ(-) with the input-output relationship:

m(v(t) — b,) if v(t) > b,
u(t)=N(v(2)) =DZ(w(t)) =< 0 if by < (1) < b, (10.3)
Wl[(l)(l) — b[) if U(l) < b

where m, >0, m; >0, b, >0, and b; <0 are dead zone parameters.
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Introducing the indicator function x[X] of the event X:

Y] = { 1 if X is true (10.4)
MEZ0  otherwise )
we define the dead-zone indicator functions
Xr(1) = x[u(r) > 0] (10.5)
xi(t) = x[u(r) < 0] (10.6)
Then, introducing the dead-zone parameter vector and its regressor
0* = (my,m,by, my, mb;)" (10.7)
W (1) = (=xe()0(0), X (1), =x0(D)o(2), x0(1) " (10.8)

we obtain (10.2) with a*(¢) = 0 for the dead-zone characteristic (10.3).
For a parametrized nonlinearity N(-) in (10.2), we will develop an adaptive
inverse as a compensator for cancelling N(-) with unknown parameters.

10.3 Parametrized inverses

The essence of the adaptive inverse approach is to employ an inverse
v(1) = NI(uq(1)) (10.9)

to cancel the effect of the unknown nonlinearity N(-), where the inverse
characteristic NI (1) is parametrized by an estimate 6 of 6*, and u,(¢) is a
desired control signal from a feedback law. The key requirement for such an
inverse is that its parameters can be updated from an adaptive law and should
stay in a prespecified region needed for implementation of an inverse. In our
designs, such an adaptive law is developed based on a linearly parametrized
error model and the parameter boundaries are ensured by parameter projec-
tion.

Inverse model. A desirable inverse (10.9) should be parametrizable as
ug(t) = =07 (Hw(t) + a(t) (10.10)

for some known signals w(7) € R" and a(7) € R whose components are
determined by the signal motion in the nonlinearity inverse NI(-) such that
v(t), w(t) and a(r) are bounded if u,(¢) is. The error signal (due to an uncertain
N()
©) d,(1) = 0T (w(t) — (1)) + a* (1) — a(t) (10.11)
should satisfy the conditions that d,() is bounded, 7 > 0, and that d,(7) =0,
1> 1, if (1) = 6%, t > 19, and NI(-) is correctly initialized: d,(¢y) = 0.
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Inverse examples. As shown in [10, 12, 15], the inverses for a dead zone,
backlash, hysteresis and piecewise linearity have such desired properties. Here
we use the dead-zone inverse as an illustrative example. Let the estimates of
m,b,, m,, myb;, m; be m,b,, m,, m;b;, my, respectively. Then the inverse for the
dead-zone characteristic (10.3) is described by

—

7”‘1@%””"’ if ug(£) > 0
v(t) = NI(ug(1)) = DI(uy(1)) = 0 if ug(r) =0 (10.12)
wa(t) +mby ug(t) < 0
my

For the dead zone inverse (10.12), to arrive at the desired form (10.10), we
introduce the inverse indicator functions

Xr(1) = x[v(r) > 0] (10.13)
xi(t) = x[v(r) < 0] (10.14)
and the inverse parameter vector and regressor
9: (@,ﬂr,ﬁl,nﬁ/)T (1015)
w(1) = (= (0)o(1), X (1), =)o (o), (1) (10.16)

Then, the dead-zone inverse (12) is
ua(t) = ;% (1)0(1) = mybe (1) + Si(1)o(e) = mibii(1)
= —0Tw(r)

that is, a(f) = 0 in (10.10). It follows from (10.7), (10.8), (10.11) and (10.16)
that
(1) = 0T w(t)x[u(r) = 0]

= —m,x[0 < v(t) < b,)(v(t) — by) — myx[b; < v(r) < O0](v(t) —b;) (10.18)
which has the desired properties that d,(¢) is bounded for all # > 0 and that

dy,(t) =0 whenever 6= 6*. Furthermore, d,(t) =0 whenever v(¢) > b, or
v(t) < by, that is, when u(¢) and v(¢) are outside the dead zone, which is the

(10.17)

~ b, b
case when b, & m,\ > b, and b; & % < by, see [12].
r 1

Control error. It is important to see that the inverse (10.10), when applied to
the nonlinearity (10.2), results in the control error

u(t) — ug(t) = (0 — 0 w(1) + dy(1) (10.19)
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which is suitable for developing an adaptive inverse compensator. For the
adaptive designs to be presented in the next sections, we assume that the
inverse block (10.9) has the form (10.10) and d,(¢) in (11) has the stated
properties. We should note that the signals a*(7) in (10.2) and «(¢) in (10.10) are
non zero if the nonlinearity N(-) and its inverse NI(-) have inner loops as in the
hysteresis case [12].

10.4 State feedback designs

Consider the plant (10.1), where G(D) has a controllable state variable

realization
D[x|(t) = Ax(t) + Bu(t)

y(1) = Cx(1)

for some known constant matrices 4 € R, Be R™! and C € R, n > 0,
that is, G(D) = C(DI — A)"'B, and r(¢) is a bounded reference input signal.

In the presence of an actuator nonlinearity u(¢) = N(v(¢)) parametrizable as
in (10.2), we propose the control scheme shown in Figure 10.1, which consists
of the inverse v(¢) = NI(uy(f)) parametrizable as in (10.10) and the state

feedback 1
ceaback Taw wa(t) = Kx(t) + (1) (10.21)

where K € R" is a constant gain vector such that the eigenvalues of 4 + BK
are equal to some desired closed loop system poles. The choice of such a K can
be made from a pole placement or linear quadratic optimal control design. A
pole placement design can be used to match the closed loop transfer function
C(DI — A — BK)™"'B to a reference model if the zeros of G(D) have good
stability.

(10.20)

Error model. With the controller (10.21), the closed loop system is

2(6) = Wu(D)[F)(1) + Win(D)[(0 = )" w + d,](1) + (1) (10.22)
where 6(¢) is an exponentially decaying term due to initial conditions, and
Wm(D) = C(DI — A — BK)"'B (10.23)

The ideal system output is that of the closed loop system without the actuator
nonlinearity N(-) and its inverse NI(-), that is, with u(z) = u4(¢). In this case

y(1) = Wi (D)[r](1) + 6(1). (10.24)
In view of this output, we introduce the reference output
Ym(t) = Wi (D)[r](2). (10.25)

Ignoring the effect of 6(¢), introducing d(¢) = W,,(D)[d,](z) which is bounded
because d,(¢) in (10.11) is, and using (10.22) and (10.25), we have
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Uad | — v u x
r NI() > N(-) > D[x] = Ax + Bu o C >y

Figure 10.1 State feedback inverse control

Y(1) = ym(t) = Wn(D)[(0 = 67)" ] (1) + d(1)
= Wu(D)[07w)(t) — 0T W,(D)[w](1) +d()  (10.26)

In view of (10.26), we define the estimation error

e(t) = y(t) = ym(1) +&(1) (10.27)

where
&(1) = 07 (1)¢(1) — W(D)[07 w)(1) (10.28)
(1) = Wi(D)[w] (1) (10.29)

Using (10.26)—(10.29), we arrive at the error equation
e(t) = (0(t) = 0")7¢(1) + d(1) (10.30)

which is linear in the parameter error 6(¢) — 6%, with an additional bounded
error d(¢) due to the uncertainty of the nonlinearity N(-) in the plant (10.1).

A gradient projection adaptive law. The adaptive update law for 6(¢) =
(01(1),...,0,(1))" can be developed using a gradient projection algorithm to
minimize a cost function J(6). The related optimization problem is to find an
iterative algorithm to generate a sequence of 6 which will asymptotically

minimize J(6),s.t. ; € [09,6°], i=1,2,...,n (10.31)

1771

for some known parameter bounds 67 < ¢? such that 6; € [6¢,6%], i=

1,2,...,n9, for 6% =(05,..., HZH)T, and that for any set of 6; € [¢¢, 67,
i=1,2,...,p, the characteristic N(6;-) renders an actuator uncertainty
model in the same class to which the true model N(6*;-) belongs, for example,
for N(6*;-) being a dead zone of the form (10.3), N(6;-) should also be a dead-
zone of the form (10.3) with possibly different parameters. The constraint that
0; € (09,0, i=1,2,...,ny, is to ensure that the nonlinearity inverse ﬁ() is
implementable as an inverse for the type of nonlinearity N(-) under considera-

tion.
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In the dead-zone case, the parameter boundaries are m,; < m, < m,,,
my <my <mp, 0<b, <byy, —bjy<b <0, for some known positive con-
stants m,y, my, My, Mp, by, by. The above constraint condition, in terms of
0 = (m,.,m,,br,m;,mlb/)T as in (10.7), is 60F €[09,6°], i=1,2,3,4, for
0 =my, 05=0, 05=my, 0;=—mpbp, 0 =my, 05=mnobyg, 05=mp,
6% = 0. Then for any 6; € [0¢,60%], i =1,2,3,4, DZ(;-) is a dead-zone char-
acteristic.

For the formulated optimization problem, the gradient projection method

[4, 9, 12] suggests the adaptive update law for 6(z):
0(1)
0(r+ 1) —0(z)

where f(¢) is a parameter projection term, and

} = —Fg—‘;(z) +/(2) (10.32)

I = diag {v1,, v, } (10.33)
with ~; > 0 for a continuous-time design and 0 < 7; < 2for a discrete-time
design. To ensure 6; € [04,6°], i = 1,2,...,ny, we introduce

oJ
g9(t) = (91 (D), -, 9,,(0)) = 50 (10.34)
initialize the adaptive law (10.35) with
0:(0) € (04,67, i=1,2,...,n (10.35)

and set the ith component of the modification term f(¢) as

0 if 6;(r) € (04,07)

1771

fi(t) = i06:(0) = 87,4,(1) 2 0, 0r (10.36)
if 0;(1) =62,9,(t) <0
—g,;(t) otherwise
in a continuous-time design, or
0 if 0:(1) + g,(1) € 67, 07]
i) =3 02 —0:(1) — g;(1) if 0;(2) + g,(2) > 6” (10.37)
0f = 0i(1) — g:(2) if 0:(1) + g,(1) <6
in a discrete-time design, for i =1,2,... ny.
For the commonly used cost function
2

where e = (0 — °)"¢ + d (see (10.30)), and

m(t) = /14 ¢T(0)¢(1) (10.39)
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2
such that ;—mz is bounded if 6(7) is bounded, it follows that

9J e(n)¢(r)

%(,) = s (10.40)
Therefore, a desired adaptive update law for 6(z) is

0(r) _ Te()i(@) |,

8t + 1) — 600 } =" + /(1) (10.41)

initialized by (10.35) and projected with f(z) in (10.36) or (10.37) for

__Te(nd@)
g( ) - m2(1> .
This adaptive law ensures that 6;(1) € [0¢,60%], i = 1,2,...,np, and that %
. d(r) .
and 0(7) or 6(r + 1) — 6(¢) are bounded by m(r) in a mean square sense.

A continuous-time Lyapunov design. In continuous time, with () = 6(1) — 6%,
the closed loop system (10.20)—(10.21) is

%(1) = (A + BK)x(1) + Br(t) + B(O()w(1) + dy(1))
y(1) = Cx(1) (10.42)

The ideal system performance is that with u(f) =u4(t) which means
0(t)w(t) + d,(r) = 0. This motivates us to introduce the reference system

Xm(t) = (4 4+ BK)x,,(t) + Br(t)
Ym(1) = Cxp(1) (10.43)

Defining the state error vector X(¢) = x(f) — x,,(¢) and the output error
e(t) = y(t) — ym(1), from (10.42) and (10.43), we obtain

X(1) = (A + BK)X(1) + B(0(1)w(1) + dy(1))
e(t) = Cx(1) (10.44)
Consider the positive definite function
V(%,0) =1 (XTPx+07T10) (10.45)
where P € R™" with P = PT > 0 satisfying the Lyapunov equation
P(A+ BK)+ (4 + BK)'P= 20 (10.46)

for some nxn matrix Q =Q7 >0, and T = diag {y1,,7,,} with ~; >0,
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i=1,2,...,n9. With (10.44) and (10.46), the time derivative of V(X, 9~) is
. d ~
V() =—V(x,0
() =2 V(50)
— 5T (1)P3(1) + 67 (NT14(r)

— 3T (0)0%(1) + T (1) PBET (H)w(1) + dy(1)) + 67T (OT'6()  (10.47)

If d, (1) were absent, then the choice of é(t) = 0(1) = —Tw(0)XT (t)PB would
make V(1) = —x7(1)Qx(t) <0, as desired. In the presence of d,(¢) and with the
need of parameter projection, we choose the adaptive update law for 6(¢) as

0(1) = —Tw()XT (1)PB + £ (1) (10.48)
initialized by (10.35) and projected with f(z) in (10.36) for g(r) =
—Tw(t)xT (t)PB.

With the adaptive law (10.48), we have
V(1) = —xT(0)Qx(t) + 2x7 (t)PBd, (1) + 207 ()T~ £ (1) (10.49)
From the parameter projection algorithm (10.36), it follows that
0:(r) € [64,6°), i=1,2,...,n (10.50)
0:(r) = 07)fi(r) <0, i=1,2,... ;9 (10.51)

that is, 67 (/)T ~'f(r) < 0. Since Q = Q7 > 0 and d,() is bounded, we have,
from (10.49) and (10.51), the boundedness of X(¢), from (10.43), that of x,,(¢),
and in turn, from X(¢) = x(¢) — x,,(¢), that of x(z), from (10.21), that of u,(?),
and from (10), that of w(r), a(¢) and v(z). Thus all closed-loop signals are
bounded. Finally, from (10.48), (10.49) and (10.51), it can be verified that %(¢),
e(t) = y(1) — ym(7) and (1) are all bounded by d,(7) in a mean square sense.

10.5 Output feedback inverse control

When only the output y(7) of the plant (10.1) is available for measurement, we
need to use an output feedback control law to generate u,(¢) for the inverse
(10.9). As shown in Figure 10.2, such a controller structure is

ua(t) = Ci(D)w](1), w(t) = r(1) = Co(D) (1) (10.52)
where r(7) is a reference input, and C;(D) and C,(D) are linear blocks which

are designed as if the nonlinearity N(-) were absent, that is, when u(#) = u,(?).

Reference system. The desired reference output y,,(f) to be tracked by the
plant output y(¢) now is defined as the output of the closed loop system with
the controller (10.21) applied to the plant (10.1) without the actuator non-
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linearity N(-), that is, when u(f) = u,y(¢). With u(¢) = u,(t), the closed loop
output is

G(D)Ci(D)

t 10.53

T o)c )G Y (10.53)

Hence C;(D) and C,(D) should be chosen such that the transfer function
_ GD)a(D)

1+ G(D)Ci(D)Cy(D)

y(t) = ym(1) &

Won(D) (10.54)

has all its poles at some desired stable locations, and that the closed loop
system is internally stable when u(z) = u,(1).

Error model. To develop an adaptive law for updating the parameters of the
inverse NI(-), we express the closed loop system as

2(1) = ym(t) + W(D)[(0 — 0°) w](r) + d(1) (10.55)
where
_ G(D)
WD) =16y (D) O (D) (10.56)
d(1) = W(D)[d,) (1 (10.57)

To use (10.55) to derive a desirable error model, W (D) in (10.56) is required to
have all its poles located in a desired stable region of the complex plane. With
this requirement, the error signal d(¢) in (10.57) is bounded because d,(7) in

(10.11) is.
Similar to (10.26)—(10.28), in view of (10.55), we define the estimation error
e(t) = y(t) = ym(t) + £(1) (10.58)
where , ,
(1) = 07 (0)¢(1) — W(D)[0" w](2) (10.59)
(1) = W(D)[wl(1) (10.60)
w Ug _ v u
r Ci(D) NG —| N > G(D) >y
C(D) |

Figure 10.2 Output feedback inverse control
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Using (10.55), (10.58)—~(10.60), we arrive at the error equation
e(t) = (0 —0)7¢(r) +d(1) (10.61)
which has the same form as that in (10.30) for a state feedback design.

Adaptive law. Based on the linearly parametrized error equation (10.61) and

the gradient projection optimization method described in Section 10.4, similar
to that in (10.41), we choose the adaptive update law for 6(z):

o(t Te(£)¢(t

(0 _ L) py (10.62)

0(t+ 1) — 6(t) m?(1)

which is initialized by (10.35) and projected with f(¢) in (10.36) or (10.37) for

Te(t)((t

= TE0K0

e(1)
that 6;(¢) € [69,0%), i =1,2,...,np, and that the normalized error mn) and
parameter variation 6(z) or 6(r+ 1) — 6(z) are bounded by () in a mean

m(t)

, where T is given in (10.33). This adaptive law also ensures

sense.

Summary. An output feedback adaptive inverse control design for the plant
(10.1) with an actuator nonlinearity N(-) requires:
(i) N(-) should be parametrized by 6" = (07, .. ,Gze)T as in (10.2);
(ii) the nonlinearity inverse NI(-) in (10.9), as a compensator to cancel N(-),
should be parametrizable as (10.10) with the stated properties;
(iii) the true nonlinearity parameters ¢ € [6¢,6?] for some known constants

0 <6, i=1,2,...,np, such that for any set of 6 € [¢% 6],
i=1,2,..., ny, the characteristic N(6;-) renders a nonlinearity model of
the same type as that of the true nonlinearity model N(6*;-); and

(iv) the compensators C1(D) and C,(D) in the controller (10.52) should ensure
that both W,,(D) in (10.54) and W(D) in (10.56) have good stability

properties.

As a comparison, the conditions (i)—(iii) are also needed for a state feedback
adaptive inverse control design in Section 10.4, while the state feedback control
law (10.21) can always place the eigenvalues of 4+ BK at some desired
locations under the controllability condition on the system matrices (A4, B) in
(10.20).

10.6 Output feedback designs

Many existing control design methods for the plant (10.1) without the actuator



272 Adaptive inverse for actuator compensation

nonlinearity N(-) may be used to construct the compensators C; (D) and C,(D)
in the controller (10.52) to be incorporated in the adaptive inverse control
scheme developed in Section 10.5 for a plant with an actuator nonlinearity.
Those designs include model reference, PID and pole placement which will be
given in this section. To parametrize the linear output feedback controller

Z(D . .
(10.52), we express G(D) =k, %, where k), is a constant gain, and Z(D) and
P(D) are monic polynomials of degrees n and m, respectively. Using the
notation D, we present continuous- and discrete-time designs in a unified

framework.

Model reference design [12]. A model reference control design for (10.52) is

ug(t) = ¢ wi (1) + @3  wa(t) + Paor(t) + ¢ir(1) (10.63)
where w; (#), wa(¢) are the signals from two identical filters:
o) = (), n(t) = § R0 (10.64)

with a(D) = (1,D,...,D"2)" and A(D) being a stable polynomial of degree
n—1,and ¢; € "', ¢35 € R, ¢3 € R, ¢} € R satisfy ¢5 =k, " and

17a(D)P(D) + (¢5" a(D) + ¢3A(D))k, Z(D) = A(D)(P(D) — Z(D) Py (D))

(10.65)

where P, (D) is a stable polynomial of degree n — m.

In the form of the controller (10.52), we identify
_ ¢§ _ «T Cl(D) *
(D) = m7 Co(D) =k ¢3 AD) + b3 (10.66)
' A(D)
With this choice of C;(D) and C»2(D), we have
_ 1 __k .1 a(D)

WalD) = iy WD) = (1= (1067

It shows that both W, (D) and W (D) have good stability properties from that
of P,(D) and A(D) independent of G(D). For internal stability, the zero
polynomial Z(D) should be stable because model reference control cancels the
dynamics of Z(D) to lead to the closed loop system y(t) = W,,(D)[r](#) in the

absence of the nonlinearity N(-) and its inverse NI(-), that is, when
u(t) = uy(1).

Pole placement design [14]. A pole placement control design is similar:

uq(t) = o1 wi () + @37 wa(t) + Py (1) + d3r(1) (10.68)
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where w;(f) and wy(f) are the same as that defined in (10.64), and
¢r € R, 95 € R, 4% € R, ¢ € Rsatisfy ¢ =k, and

17a(D)P(D) + (45" a(D) + ¢3yA(D))k,Z(D) = A(D)(P(D) — Py(D))
(10.69)

where P;(D) is a stable polynomial of degree n which contains the desired
closed loop poles. In this design, C;(D) and Cy(D) are also expressed in (66)

but
W(D) = 2((%)) . W(D) = kI,;dZ((DD)) (1 — T Xi%) (10.70)

It also shows that both W,,(D) and W (D) have good stability properties from
that of P;(D) and A(D) independent of G(D). However, the reference output
Ym(t) = W, (D)[r](r) now depends on the plant zero polynomial Z(D) which is
allowed to be unstable. To solve (10.69) for an arbitrary but stable P,(D), it is
required that Z(D) and P(D) are co-prime.

PID design. A typical PID design (10.52) has C;(D) = C(D) and Cy(D) = I:
uqs(t) = C(D)[r — y)(2) (10.71)
where the PID controller C(D) has the form

C(D):C(s)za—&-g—i—'ys (10.72)

for a continuous-time design, and

CD)=Cz)=at b1 (10.73)
z—1 z
for a discrete-time design, where «, § and  are design parameters.

Unlike either a model reference design or a pole placement design, which can
be systematically done for a general nth-order plant G(D), a PID controller
only applies to certain classes of plants. In other words, given a linear plant
G(D), one needs to make sure that a choice of C(D) is able to ensure both
W, (D) in (10.54) and W (D) in (10.56) with good stability properties.

An illustrative example. Many simulation results for model reference and pole
placement designs were presented in [12, 14, 15], which indicate that control
systems with an adaptive inverse have significantly improved tracking per-
formance, in addition to closed-loop signal boundedness. As an additional
illustrative example, we now present a detailed PI design.

An example of systems with actuator backlash is a liquid tank where the
backlash is in the valve control mechanism. The liquid level y(¢) is described as

y(1) = G(s)[u)(1), u(t) = B(o(1)) (10.74)
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where u(¢) is the controlled flow, G(s) = k with k being a constant (k = 1 for
s

simplicity), B(-) represents the actuator backlash and v(z) is the control.

A simple version of the backlash characteristic u(¢z) = B(v(¢)) is described by
two parallel straight lines connected with inner horizontal line segments of
length 2¢ > 0. The upward line is active when both v(¢) and u(?) increase:

u(t)y=vo(t) —c, 0()>0, u(r)>0 (10.75)
the downward line is active when both v(¢) and u(¢) decrease:
u(t)=vo(t)+ec, (1) <0, u(r) <0 (10.76)
The motion on any inner segment is characterized by u(¢) = 0.
As shown in [12], in the presence of backlash, a proportional controller
v = —ae cannot reduce the error e(z) = y(¢t) — r to zero, and a PI controller
v(t) = —(e(t) + f(; e(T)dr) may lead to a limit cycle (e, v) trajectory.
To cancel the effects of backlash, we use an adaptive backlash inverse
v(1) = Bl (ug(1)) (10.77)

whose characteristic is described by two straight lines and vertical jumps
between the lines. With ¢(7) being the estimate of ¢, the downward side is

u(t) = ug(t) — (1), aa(t) <0 (10.78)
and the upward side is
o(t) = uq(t) + (1), uq(t) >0 (10.79)

Vertical jumps of v(f) occur whenever u,(f) changes its sign.
Introducing the backlash parameter and its estimate

0" =c, 6(r)=7c1) (10.80)
and defining the backlash inverse regressor

1 if v(2) = uy(t) + ¢(2)

. (10.81)
0 otherwise

W) = 2%(0) — 1, X(0) = {

we have the control error expression (10.19), where d,(¢) € [-2¢,2¢] and
d, () =0, t > 1y, if §=0" and the backlash inverse is/\correctly initialized:
u(to) = uq(t). In other words, the backlash inverse BI(-) has the desired

property:
uq(to) = B(BI(0%;uq(ty))) =  B(BI(0%;uq(1))) = uq(), Vi>1y (10.82)
Combined with the backlash inverse (10.77) is the PI controller

ug(t) = <a +§) =1, a>0, B>0 (10.83)
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which leads to the closed loop error system

H0 = ST = 6= el (1084
In view of (10.53), (10.55) and (10.84), we have
_ as+f3 _ s
Wnls) = v +p W e m s (10.85)

which have desired stability properties for some « and (. Then, we can update
0(¢) from the continuous-time adaptive law (10.62) with f(¢) chosen to ensure
c(1) € [c1,¢2] where 0 < ¢ < ¢ < ¢ with ¢; and ¢; being known constants.

For the same choice of « = =1, r = 10, and y(0) = 5 as those led to large
tracking error e() without a backlash inverse [12], what happens in the closed-
loop system with an adaptive backlash inverse BI(-) is shown in
Figure 10.3(a)—~(f) for ¢(0) = 0.5 (other choices of ¢(0) led to similar results).
These results clearly show that an adaptive backlash inverse is able to
adaptively cancel the effects of the unknown backlash so that the system
tracking performance is significantly improved: the tracking error
e(t) = y(t) — r reduces to very small values, and the limit cycle, which appeared
with a PI controller alone [12], is eliminated.

10.7 Designs for multivariable systems

Many control systems are multivariable. Coupling dynamics in a multivariable
system often make it more difficult to control than a single-variable system. In
this section, state feedback and output feedback adaptive inverse control
schemes are presented for compensation of unknown nonsmooth nonlinearities
at the input of a known multivariable linear plant, based on a multivariable
parameter estimation algorithm for coupled error models.

Consider a multivariable plant with actuator nonlinearities, described by

y(1) = G(D)[u(1), (1) = N(v(1)) (10.86)

where G(D) ={g;(D)} is an mxm strictly proper transfer matrix,
u(t) = (w1 (1), ..., um(2))" and v(t) = (v1(2),...,0m(1))" are the output and
input of the multivariable actuator nonlinearity N(-) = (N;(-),..., Nu(-))"
such that

u(t) = Ni(vi(2)), i=1,2,....,m (10.87)
The control problem is to design adaptive inverses for cancelling the non-
linearities N;(-), to be combined with commonly used multivariable control
schemes for the linear part G(D) for desired tracking performance. In this
problem, v(¢) is the control and u(f) is not accessible for either control or
measurement.
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Figure 10.3 Adaptive backlash inverse control system responses for ¢(0) = 0.5
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Nonlinearity model and its inverse. Similar to that in Section 10.2 for m =1,
we assume that each N;(-), which may be a dead-zone, backlash, hysteresis or
other piecewise-linear characteristic, can be parametrized as

Ll,'(t> = N,‘(Vj(l)) = N,(H;‘, Vi(t)) = —ijTw’f(l) + a;(l) (1088)

1

for some unknown parameter vectors 6; € R", n; > 1, i=1,...,m, and some
unknown regressor vector signals w;(f) € R" and scalar signals a(#).To cancel
such nonlinearities, we use a multivariable nonlinearity inverse

v(1) = NI(ug(1)) (10.89)

where uy(t) = (uar (1), .. ., ugm(1))” is a design vector signal to be generated for

A~

NY(-) = (NI, (-),...,NIL,(-))", that is, the inverse (10.89) is equivalent to
vi(t) = NL(ug (1)), i=1,....m (10.90)

We also assume that each ]VZ(-) can be parametrized as
ug(t) = —0] (wi(t) + ai(t), i=1,...,m (10.91)

where 6; € R" is an estimate of ¢}, and w;(¢) € R and a;(¢) are some known
signals, as in the case of an inverse for a dead zone, backlash or hysteresis.
The uncertainties in N;(-) causes a control error at each input channel:

ui(t) — uai(t) = 07 ()wi(£) + di(?) (10.92)
where ;(¢) = 6;(t) — 07, i = 1,2,...,m, and the unparametrized error is
(1) = 07 (wi() — w3 (1)) + (1) — (1) (10.93)

which should satisfy the same condition as that for d,(¢) in (10.11).
In the vector form, the control error (10.92) is

u(t) — ug(t) = 0T (t)w(t) + d, (1) (10.94)
where
ol 0 0
o7 (1) = 2 o) (10.95)
0 0 6
w(t) = (@] (1), wp(0)" (10.96)

dy(1) = (di (1), ..., dp(1)" (10.97)
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State feedback designs. Let the plant (10.86) be in the state variable form:
DI[x](t) = Ax(t) + Bu(r)
y(t) = Cx(1) (10.98)

where 4 € R, B€ R™" and C € R™", with (4, B) being controllable. To
generate u,(¢) for the the inverse (10.89), we use the state feedback controller

ug(1) = Kx(1) + (1) (10.99)

where K € R™" is such that the eigenvalues of 4 + BK are placed at some
desired locations, and r(r) is a bounded reference input signal.
Using (10.94), (10.98) and (10.99), we obtain

D[x](t) = (A + BK)x(t) + Br(t) + BOT (t)w(t) + Bd, (1)
y(1) = Cx(1)

The ideal system performance is that of (10.100) with ©7(£)w(1) + d, (1) = 0.
Hence, we can define the reference output y,,(¢) for y(¢) as

Im(t) = Win(D)[r](1) (10.101)

(10.100)

where
Wn(D) = C(DI — A — BK)"'B (10.102)

Then, with d(t) = W,,(D)[d,](¢), the output tracking error is
e(t) = (er(1),...,en(t)" = y(t) — ym(t) = W,u(D)[OT (1) +d(r) (10.103)

Since W, (D) is an m x m transfer matrix, the error equation (10.103) has
coupled dynamics, for which the parameter estimation algorithm of [13] can be
applied. To proceed, we define and the estimation errors

eit) = ei(t) + & (1) + ... + &m(1) (10.104)
where

&i(1) = 0] (1)¢;(1) — wy(D)[0] wl(1) (10.105)

Gj(2) = wi(D)lw] (1) (10.106)

with w; (D) being the (i,/)th element of W, (D), fori,j=1,2,...,m.
Substituting (10.103), (10.105), (10.106) in (10.104) gives

m

ei(t) =) (6;(0) = 67)" Gy(1) + di(0) (10.107)

J=1
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where d; is the ith component of d(7). Introducing

(1) = (07 (1),...,00 ()" (10.108)
o =@7,....00" (10.109)
G() = (¢F (0, ()T (10.110)
we express the error model (10.107) as
i(t) = (0(1) — 0 ¢(0) + di(r), i=1,2,....,m (10.111)

This is a set of linear error models with bounded ‘disturbances’ d;(z). One
important feature of these equations is that dynamic coupling in the multi-
variable error equation (10.103) leads to a set of m estimation errors which all
contain the overall parameter vectors 6(¢) and 6.

Introducing the cost function

J(O) =" = (10.112)
m*(1) = 1 +zm:¢f(z)g(z) (10.113)
i=1

and applying the gradient projection optimization technique of Section 10.4,
we have the adaptive law for 6(7):

9([) B _L m - - '
0(t+1) — 6(1) } TE0) ;51(1)@(1) + /(1) (10.114)

where (1) is for parameter projection and I is an adaptation gain matrix. Both
f(¢r) and T’ can be chosen similar to that in (10.36) or (10.37) and (10.33).
To develop the multivariable counterpart of the continuous-time adaptive
scheme (10.48), with the same notation as that in (10.42)—(10.46) except that
07 (1)w(r) is replaced by OT (1)w(r), we have the time derivative of V(%,6) in
(10.45) as
V(t) = —5T(1)03(1) + £7 (1) PB(OT (1)w(t) + dy()) + 67 ()T 6(r)  (10.115)
where 0(1) = 6(1) — 6 in (10.108) and (10.109). With the known signals
(1) = (%1(0), ..., Xm(1))" = GTPB)T (10.116)

o(1) = (F(DWl (1), ..., Zu(O)L ()" (10.117)

m

we express (10.115) as

V(1) = 5T (0)03(1) + 67 ()@(1) + 57 (1) PBdy (1) + §7(OT'6(1)  (10.118)
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which suggests the following adaptive law for 6(¢):

0(r) = —Ta(t) + £ (1) (10.119)
where f(¢) is for parameter projection and I" is diagonal and positive.
Output feedback designs. To develop a multivariable output feedback adap-
tive inverse control scheme, we assume that G(D) is nonsingular with the
observability index v and has the form: G(D) = Z(D)P~'(D), for some m x m

known polynomial matrices Z(D) and P(D).
The controller structure for u,(¢) is

ug(t) = @3 wi (1) + @5 wa (1) + B5p(2) + 3 (1) (10.120)

where A(D) A(D)
wl(t) = I’I(D) [le](l)7 WZ(I) = I’I(D) [.y](t) (10121)
A(D) = (1,DI,...,D"2I)" (10.122)

n(D) is a monic and stable polynomial of degree v — 1, and &% € R"(V=1xm,
@5 € Rv=1m @3 e R and &% € R™™ satisfy

©{"A(D)P(D) + (®3" A(D) + ®39n(D))A(D)N(D) = n(D)(P(D) — ®3P4(D))
(10.123)

for a given m x m stable polynomial matrix P,(D).

A model reference design needs a stable Z(D). The choice to meet (10.123) is:
Py(D) = &,(D)Z(D) and ®; = K,!, where &,(D) is a modified interactor
matrix (which is a stable polynomial matrix) of G(D) such that

lim &,(D)G(D) = K, (10.124)

is finite and nonsingular [11]. For a pole placement design which does not need
a stable Z(D), ®;P,(D) is chosen to have a structure similar to that of P(D) so
that (10.123) has a solution under the right co-primeness of Z(D) and P(D) [1].

With the controller (10.126) and the inverse (10.89), we have the error
equation

e(t) = y(t) — ym(t) = W(D)[OTw|(t) + d(t) (10.125)
where

ym(t) = Z(D)P;" (D)[r](1) (10.126)

W (D) = z(D)P;' (D)@} (1 — a7 %) (10.127)

and d(t) = W(D)|d,]() is bounded because d,(¢) is and W (D) is stable. Since
the error equation (10.125) has the same form as that in (10.89), similar to
(10.104)—(10.114), one can also develop an adaptive update law for 6;(¢),
i=1,...,m
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10.8 Designs for nonlinear dynamics

The adaptive inverse approach developed in Sections 10.4-10.6 can also be
applied to systems with nonsmooth nonlinearities at the inputs of smooth
nonlinear dynamics [16, 17]. State feedback and output feedback adaptive
inverse control schemes may be designed for some special cases of a nonlinear

plant
X(1) = f(x(1)) + g(x(0)u(r), u(t) = N(v())
y(1) = h(x(1)) (10.128)

where f(x) € R", g(x) € R", and /i(x) € R are smooth functions of x € R”,
N(-) represents an unknown nonsmooth actuator uncertainty as a dead-zone,
backlash, hysteresis or piecewise-linear characteristic, and v(¢) € R is the
control input, while u(f) is not accessible for either control or measurement.
The main idea for the control of such plants is to use an adaptive inverse

v(1) = NI(ug(1)) (10.129)

to cancel the effect of the unknown nonlinearity N(-) so that feedback control
schemes designed for (10.128) without N(-), with the help of NI(-), can be
applied to (10.128) with N(-), to achieve desired system performance. To
illustrate this idea, we present an adaptive inverse design [16] for a third-
order parametric-strict-feedback nonlinear plant [6] with an actuator non-
linearity N(-): .
X1 =x2+6;" p1(x1)

X2 = x5+ 0T 0 (x1, x2) (10.130)
X3 = @o(x) + 0; 703 (x) + Bo(xX)u, u= N(v)

where x = (xl,xz,x3)T, x;, i =1,2,3, are the state variables available for
measurement, 07 € R™ is a vector of unknown constant parameters with a
known upper bound M;: ||0%|, < M, for the Euclidean vector norm || - |,,
o € R, By € Rand p; € R, i =1,2,3, are known smooth nonlinear functions,
and by < |By(x)| < b,, for some positive constants by, b, and Vx € R>.

To develop an adaptive inverse controller for (10.130), we assume that the
nonlinearity N(-) is parametrized by 6 € R™ as in (10.2) and its inverse NI ()
is parametrized by 6 € R™, an estimate of %, as in (10.10), with the stated
properties. Then, the adaptive backstepping method [6] can be combined with
an adaptive inverse NI (+) to control the plant (10.130), in a three-step design:

Step 1: Let the desired output be r(7) to be tracked by the plant output y(¢),
with bounded derivatives r*)(f), k=1,2,3. Defining z; = x; —r and
zy = Xp — ay, Where «; is a design signal to be determined, we have

L=t +0To —F (10.131)
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to be stabilized by «; with respect to the partial Lyapunov function
V=12 4+10,-0)T,1 0, - 07) (10.132)

where 0,(7) € R™ is an estimate of the unknown parameter vector 6%, and
Iy =T7 > 0. The time derivative of V; is

Vi=zi(za+on + 0 o1 — )+ (6, — 6:) T (6, — Tyzi0) (10.133)
Choosing the first stabilizing function as
) =—ciz1 — 0 o) + 7 (10.134)
with ¢; > 0, and defining 7 = 'z, we obtain

Vi = fclz% +z122 + (05 — 9:)TI‘;1(9“V —-7) (10.135)

Step 2: Introducing z3 = x3 — ap with «a; to be determined, we have

. Oa Oay . Ooy . Oy ..
= 0Ty — — 0T o)) ——0y — —F — —F
=ntatbie-golettie) -Gt -5t -5

To derive ay, together with «; in (10.134), to stabilize (10.131) and (10.136)

with respect to V, = 1] +%z§, we express the time derivative of 1, as

(10.136)

Oovy % - Oay . Oog .

V) = —6’12% + 22 {21 +z3t+ o — >
8)61

O .
e | RO Al s (10.137)

19
a;:;lgpl). Suggested by (10.137), we choose the
1

second stabilizing function oy as

where m» =1 + 1z, (<p2 -

02 = —z1 — erz2 + Z%xz 4 % (2 — T (0,)6)
8a1 . 8041 . T 8a1
+W}’+W} 705 9027Tg01 (10138)
where ¢, > 0, and
0 it 0,1, < M,

£:(05) = { (10.139)

foll — e—co(l0L,=M)*  f 16,11, > M,

with fo > 0, ap > 0, and M, > ||0%||,. Then we can rewrite (10.137) as
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; 2 2 day [
Vy = —ciz] — c225 + 2223 — 250 <9x -7+ F&f\'(&s‘)&v)
B
+(0,— 0T (0 — ) (10.140)

Step 3: Choose the feedback control u,(¢) for (10.129) as

1

6@2 3 60(2 ,(k)
ud=%[—22—632z <po+za Xk + 500 0, +Zark

o a o
- <9‘YT—22 églrx) (sos = 8:);2 ) T, /i (6,)022 809”] (10.141)
s k=1"" N

where ¢; > 0, and the adaptive update law for 6,(¢) is

3
6'.3‘ =Ty Zzlwl - F\fs(as)ex (10142)
. aal 1
with w;(x1,...,x;,05) = p; — Oxp ——— i, fori=1,2,3 and oy = 0.
With this choice of uy, we thG
O
Z3=—z3 — 323 — (0, — Qj)Tw3 + 22%&(113 (10.143)
S

Then, the overall system Lyapunov function
V=0+1iZ+10-6)T"(6-0) (10.144)

with T being diagonal and positive, has the time derivative

Z cxzp — f5(05) (05 — 07) 705 + (0 — 0") ' T (0 + Tz3ow) + 2380,

(10.145)

where w(z) € R™ is the known vector signal describing the signal motion of the
inverse NI(+) in (10.10), and d,(¢) is the bounded unparametrized nonlinearity
error in (10.11). The expression (10.145), with the need of parameter projection
for (¢) for implementing an inverse NI(-), suggests the adaptive update law for
0(1):
) 6=-Tz6w+/ (10.146)
initialized by (10.35) and projected with f(¢) in (10.36) for g(¢) = —T'z35w.
This adaptive inverse control scheme consisting of (10.129), (10.141),
(10.142) and (10.146) has some desired properties. First, the modification
(10.139) ensures that —f(6 )(9 —0)76, <0, and the parameter projection
(10.36) ensure that (§ —6*)"T-'f <0 and 6;(r) € [64,6%], i=1,...,np, for

1771
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0(t) = (0,(1),...,0,,(1))" and ¢¢, 6" defined in (10.31). Then, from (10.145) and
(10.146), we have

3
V== ez —fi(0)(0, = 0) 0+ (0 — ) T7'f + z360d,  (10.147)
k=1

Since d, and [, are bounded, and f;(6;)(6; — 9§)T0S grows unboundedly if 6
grows unboundedly, it follows from (10.144) and (10.147) that 6,0 € L>°, and
zr € L, k=1,2,3. Since z; = x; — r is bounded, we have x; € L*and hence
w1(x1) € L. It follows from (10.134) that oy € L. By z; = x» — o1, we have
Xy € L™ and hence ¢y(x1,x;) € L™. Tt follows from (10.138) that o, € L™.
Similarly, x3 € L*, and uy; € L™ in (10.141). Finally, v(¢) in (10.129) and u(t)
in (10.128) are bounded. Therefore, all closed loop system signals are bounded.

Similarly, an output feedback adaptive inverse control scheme can be
developed for the nonlinear plant (10.128) in an output-feedback canonical
form with actuator nonlinearities [17]. For such a control scheme, a state
observer [6] is needed to obtain a state estimate for implementing a feedback
control law to generate u,(f) as the input to an adaptive inverse:
v(1) = NI(uy(1)), to cancel an actuator nonlinearity: u(¢) = N(u()).

10.9 Concluding remarks

Thus far, we have presented a general adaptive inverse approach for control of
plants with unknown nonsmooth actuator nonlinearities such as dead zone,
backlash, hysteresis and other piecewise-linear characteristics. This approach
combines an adaptive inverse with a feedback control law. The adaptive inverse
is to cancel the effect of the actuator nonlinearity, while the feedback control
law can be designed as if the actuator nonlinearity were absent. For
parametrizable actuator nonlinearities which have parametrizable inverses,
state or output feedback adaptive inverse controllers were developed which
led to linearly parametrized error models suitable for the developments of
gradient projection or Lyapunov adaptive laws for updating the inverse
parameters.

The adaptive inverse approach can be viewed as an algorithm-based
compensation approach for cancelling unknown actuator nonlinearities
caused by component imperfections. As shown in this chapter, this approach
can be incorporated with existing control designs such as model reference, PID,
pole placement, linear quadratic, backstepping and other dynamic compensa-
tion techniques. An adaptive inverse can be added into a control system loop
without the need to change a feedback control design for a known linear or
nonlinear dynamics following the actuator nonlinearity.

Improvements of system tracking performance by an adaptive inverse have
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been shown by simulation results. Some signal boundedness properties of
adaptive laws and closed loop systems have been established. However, despite
the existence of a true inverse which completely cancels the actuator non-
linearity, an analytical proof of a tracking error convergent to zero with an
adaptive inverse is still not available for a general adaptive inverse control
design. Moreover, adaptive inverse control designs for systems with unknown
multivariable or more general nonlinear dynamics are still open issues under
investigation.
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Stable multi-input multi-
output adaptive fuzzy/neural
control

R. Ordonez and K. M. Passino

Abstract

In this chapter, stable direct and indirect adaptive controllers are presented
which use Takagi—Sugeno fuzzy systems, conventional fuzzy systems, or a class
of neural networks to provide asymptotic tracking of a reference signal vector
for a class of continuous time multi-input multi-output (MIMO) square
nonlinear plants with poorly understood dynamics. The direct adaptive
scheme allows for the inclusion of a priori knowledge about the control
input in terms of exact mathematical equations or linguistics, while the indirect
adaptive controller permits the explicit use of equations to represent portions
of the plant dynamics. We prove that with or without such knowledge the
adaptive schemes can ‘learn’ how to control the plant, provide for bounded
internal signals, and achieve asymptotically stable tracking of the reference
inputs. We do not impose any initialization conditions on the controllers, and
guarantee convergence of the tracking error to zero.

11.1 Introduction

Fuzzy systems and neural networks-based control methodologies have
emerged in recent years as a promising way to approach nonlinear control
problems. Fuzzy control, in particular, has had an impact in the control
community because of the simple approach it provides to use heuristic control
knowledge for nonlinear control problems. However, in the more complicated
situations where the plant parameters are subject to perturbations, or when the
dynamics of the system are too complex to be characterized reliably by an
explicit mathematical model, adaptive schemes have been introduced that
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gather data from on-line operation and use adaptation heuristics to auto-
matically determine the parameters of the controller. See, for example, the
techniques in [1]-[7]; to date, no stability conditions have been provided for
these approaches. Recently, several stable adaptive fuzzy control schemes have
been introduced [8]-[12]. Moreover, closely related neural control approaches
have been studied [13}H18].

In the above techniques, emphasis is placed on control of single-input single-
output (SISO) plants (except for [4], which can be readily applied to MIMO
plants as it is done in [5, 6], but lacks a stability analysis). In [19], adaptive
control of MIMO systems using multilayer neural networks is studied. The
authors consider feedback linearizable, continuous-time systems with general
relative degree, and utilize neural networks to develop an indirect adaptive
scheme. These results are further studied and summarized in [20]. The scheme
in [19] requires the assumptions that the tracking and neural network param-
eter errors are initially bounded and sufficiently small, and they provide
convergence results for the tracking errors to fixed neighbourhoods of the
origin.

In this chapter we present direct [21] and indirect [22] adaptive controllers for
MIMO plants with poorly understood dynamics or plants subjected to param-
eter disturbances, which are based on the results in [8]. We use Takagi—Sugeno
fuzzy systems or a class of neural networks with two hidden layers as the basis
of our control schemes. We consider a general class of square MIMO systems
decouplable via static nonlinear state feedback and obtain asymptotic con-
vergence of the tracking errors to zero, and boundedness of the parameter
errors, as well as state boundedness provided the zero dynamics of the plant are
exponentially attractive. The stability results do not depend on any initializa-
tion conditions, and we allow for the inclusion in the control algorithm of
a priori heuristic or mathematical knowledge about what the control input
should be, in the direct case, or about the plant dynamics, in the indirect case.
Note that while the indirect approach is a fairly simple extension of the
corresponding single-input single-output case in [8], the direct adaptive case
is not. The direct adaptive method turns out to require more restrictive
assumptions than the indirect case, but is perhaps of more interest because,
as far as we are aware, no other direct adaptive methodology with stability
proof for the class of MIMO systems we consider here has been presented in
the literature. The results in this chapter are nonlocal in the sense that they are
global whenever the change of coordinates involved in the feedback lineariza-
tion of the MIMO system is global.

The chapter is organized as follows. In Section 11.2 we introduce the MIMO
direct adaptive controller and give a proof of the stability results. In Section
11.3 we outline the MIMO indirect adaptive controller, giving just a short
sketch of the proof, since it is a relatively simple extension of the results in [§].
In Section 11.4 we present simulation results of the direct adaptive method



Adaptive Control Systems 289

applied, first, to a nonlinear differential equation that satisfies all controller
assumptions, as an illustration of the method, and then to a two-link robot.
The robot is an interesting practical application, and it is of special interest here
because it does not satisfy all assumptions of the controller; however, we show
how the method can be made to work in spite of this fact. In Section 11.5 we
provide the concluding remarks.

11.2 Direct adaptive control

Consider the MIMO square nonlinear plant (i.e. a plant with as many inputs as
outputs [23, 24]) given by

X =f(X)+g,(X)us + ...+ g,(X)u,

= mh(X)
(11.1)

yp = hp(X)
where X = [x1,...,x,]T € R" is the state vector, U := [ul,...,u,,]T € R? is the
control input vector, Y :=[pi,...,,|T € R’ is the output vector, and
fyg9;,hi,i=1,..., pare smooth functions. If the system is feedback linearizable
[24] by static state feedback and has a well-defined vector relative degree
r:=[r1,...,r,) T, where the r;’s are the smallest integers such that at least one of

the inputs appears in y,(-"’), input—output differential equations of the system are
given by
‘ P
2= Lok Ly (L b (11.2)
J=1
with at least one of the Lg/(L}"flhi) # 0 (note that LyA(X) : R” — R is the Lie
derivative of & with respect to f, given by Lyh(X) =2%f(X)). Define, for
convenience, «;(X) := Li'h; and f;;(X) = Lg/_(Lf""lh,»). In this way, we may
rewrite the plant’s input—output equation as

yirl) a B - By u
ol S i R : (11.3)
Y 1(:/,) Qp Bpt = Byp up
D e ——
Y (1) AX1) B(X,1) u(s)
Consider the ideal feedback linearizing control law, U* = [u}, ..., u*]T,
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U'=B'(-A+v) (11.4)

(note that, for convenience, we are dropping the references to the independent
variables except where clarification is required), where the term
v=[v,...,1,]T is an input to the linearized plant dynamics. In order for U*
to be well defined, we need the following assumption:

(P1) Plant Assumption
The matrix B as defined above is nonsingular, i.e. B~! exists and has
bounded norm for all X € S,,7 > 0, where S, € R” is some compact set
of allowable state trajectories. This is equivalent to assuming

Up(B) > Omin > 0 (115)
B, = 01(B) < omax < 00 (11.6)

where 0,(B) and o,(B) are, respectively, the smallest and largest singular
values of B.

In addition, in order to be able to guarantee state boundedness under state
feedback linearization, we require:

(P2) Plant Assumption
The plant is feedback linearizable by static state feedback; it has a general
vector relative degree r = [ry,...,r,]T, and its zero dynamics are exponen-
tially attractive (please refer to [24] for a review on the concept of zero
dynamics and static state feedback of square MIMO systems). We also
assume the state vector X to be available for measurement.

Our goal is to identify the unknown control function (11.4) using fuzzy
systems. Here we will use generalized Takagi—Sugeno (T-S) fuzzy systems with
centre average defuzzification. To briefly present the notation, take a fuzzy
system denoted by f (X, W) (in our context, X could be thought of as the state
vector, and W as a vector of possibly exogenous signals). Then,

R
(X, W) = Z’Rilcxh Here, singleton fuzzification of the input vectors
i=1 Hi
X =[x1,..., %), W=[wy,...,w,]T is assumed; the fuzzy system has R
rules, and p; is the value of the membership function for the premise of the
ith rule given the inputs X, W. It is assumed that the fuzzy system is
constructed in such a way that 0 < ui <1 and > %, u; #0 for all X € R",
W € R9. The parameter ¢; is the consequent of the ith rule, which in this
chapter will be taken as a linear combination of Lipschitz continuous
functions, z(X) e R,k=1,...,m—1, so that ¢;=a;0+a1z1(X)+---+
aiym,lzm,l(X),i = 17 ey R. Define
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ro1
| T g W) (X W)
: ’ f;lﬂi(xaw) ’
Lzm—1(X)
(a0 arp - arm—1
T @o axyi v dam-d
Laro ari - Arm-1

Then, the nonlinear equation that describes the fuzzy system can be written as
F(X, W) = zT(X)A¢(X, W) (notice that standard fuzzy systems may be treated
as special cases of this more general representation). It was shown in [8] that
the T-S model can represent a class of two-layer neural networks and many
standard fuzzy systems. Note that while ¢ may depend on both X and W and is
bounded for any value they may take, z depends on X only. This allows us to
impose no restrictions on W to guarantee boundedness of the fuzzy system.

We will represent the ith component of the ideal control (11.4), i=1,...,p,
as

wi (X, W, 1) = 21 (X) 41 G(X, W) 4 di(X, W) + wy, (1) (11.7)

where A7 € R™>Ri i3 assumed to exist, and is defined by

A} = arg min sup |2} AiGi + u, — u| (11.8)
4i€Qi | XeS, WeS,,,1>0

and the representation error using optimal parameters (which arises because of
the finite number of basis functions used) is bounded, i.e. d;(X, W) < D;(X, W),
where D; is a known bounding function. We define Q; as a compact set within
which the matrix of coefficients estimates, A4;(¢), is allowed to lie, S, C R” as
the subspace through which the state trajectory may travel under closed loop
control, and S,, C RY is the subset where the vector W may lie (notice that we
do not restrict the sizes of S, and S,,; however, the sup in (11.8) is assumed to
exist). As a result of the proof we will be able to determine that X actually
remains within a compact subset of Sy. Note that the ideal control law (11.4) is
a function not only of the states, but also of v, which may depend on variables
other than the states (as will be described below). The vector W is provided to
account for this dependence. The term uy, represents a known part of the ideal
control input, which may be available to the designer through knowledge of the
plant or expertise. If it is not available, this term may be set equal to zero with
all the properties of the adaptive controller still holding. The only restriction on
uy, 1s that it must be bounded. Note that an appropriate use of u;, may help to
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significantly improve the performance of the controller, even though in
principle it has no effect on stability. Thus, the fuzzy system approximation
of u} is given by

(X, W, 1) =z (X)A4:(0) (X, W) + uy, (1) (11.9)

The matrix 4;(z) is to be adjusted adaptively on-line in order to try to improve
the approximation. We define the parameter error matrix, @;(z) := A4;(r) — A;.
Let U:= [iy,..., i)

Our objective is to have the plant outputs track a vector of reference
trajectories, Ym = [Vinys- - -5 ymp]T, on which we make the following assumption:

(R1) Reference Input Assumption
The desired reference trajectories y,,, are r; times continuously differentiable,
with y,,, ... ,y%ji) measurable and bounded, for i =1,...,p.

We define the output errors e,, := y,,, — »;. Define also the error signals

es, = ko, ... kL 5 (e, .. el el )T

» Y0, Y0,
and . . . ot
és,- = é.y,- - eg)’l_’> = [k6, e ak:‘,—Z] [é()m e eg;’[i7 )]
The coefficients of
1 1

Li(s) Ty ki _os"i=2 4.+ kis+kf’

i=1,...,p, are picked so that the transfer functions are stable. Let the ith
component of the parameter v in (11.4) be given by v; := yfﬁ) + nies, + &,
where 7; > 0 is a constant. Consider the control law

U=U+U, (11.10)

where Ug := [ug,, ..., udp]T is a control term required to ensure stability that
will be defined later.
From (11.3) and (11.4) we can derive an expression for the plant output

YO =A+BU=A+B(U-U")+BU* =v+B(U-U (11.11)
Then, using the previous definitions, the ith component of the output error
dynamics is given by

p »

el = yi) — » = o — v — Z Bij(wj — uj) = —njes, — &, — Zﬂij(uj - u;)

J=1 Jj=1
(11.12)

so that
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?

—Mnies, — Z Bij(u; — u;) (11.13)
j=1

Before proceeding we need to introduce another set of assumptions on the
plant and formalize our assumptions about the control term U.

(P3) Plant Assumption
Each entry of B, besides those on the main diagonal, is bounded by known
constants, |3;(X)| < Bi,i,j =1,...,p,i #j. We require that the entries in
the main diagonal satisfy 0 < 3; < 3;(X) < i < 00,i=1,...,p, and their
derivatives be defined and satisfy |6;(X)| < Mu(X),i = 1,...,p, where 3,
Bii and M;(X) are known bounds. Furthermore, the bounds have to sati_sfy

1 4
o Z i=1,...,p. (11.14)

j=1yj

(C1) Direct Adaptive Control Assumption
Bounding functions U;(X, W) such that |zF(X)®(6)¢(X, W)| < Ui(X, W),
i=1,...,p,X€ S, WeS,, are known and they are continuous functions.
Furthermore, the fuzzy systems or neural networks that define the control
term U, are defined so that the bounding functions of the representation
errors, D;(X,W),i=1,...,p, are continuous.

Note that in (P3) the entries of the main diagonal of B are all assumed
positive. This is only to simplify the analysis; the diagonal entries may have any
sign, as long as they are bounded away from zero, and the stability analysis
requires only slight modifications to accommodate such a case. In (Cl),
knowledge of the bounding function U;(X, W) is reasonable, since both z;(X)
and (;(X, W) are known: a projection algorithm may be employed to guarantee
that A;(¢) stays within the compact set Q; of allowable parameters. Then, an
upper estimate of ||®;(7)|| can be computed, and U; can be defined.

Consider the function

Vi=—-¢, +itr(®70, ) (11.15)

2/3”

with Q,, € R™>™ positive definite and diagonal. This function quantifies both
the tracking error for the ith plant output and the approximation error for the
parameter estimates of the ith term of (11.4).

Taking the derivative of (11.15) yields
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y 1 . T ¥ 6 2

Vi= EC)S,‘eSi + tl’((I)l- Quiq)i) - ﬁ”%es, (1116>
1 Bi
= 5ol m,Zm )+ (@08 —5gzer (IL1T)

Define the adaptation law for the T-S fuzzy system or neural network as
Ai=0,"z(Te, (11.18)

so that, applying the properties of the trace operator and the fact that &; = A;,
we obtain tr(®]Q,,®;) = z]1 ®;¢;e,,. Noting that u; — u} = ug, + 2} ®,(; — d;, we
get

. e p Bi
Vf:_f BS Zﬁuud +Zﬂu > 51::'2;‘1’;9]—#65 (11.19)
L=l J=1j#i ii
21 P 2 0
Bij Bij T |ﬂu| 2
VS__e _eSiudf+|eS/ Z_ Z 2 |ud|+|z q)jCjD 5 €
Bii* j=1 @ ./=1,/9é1§ 206;
(11.20)
Define ~ ~
_ S ﬂljD - ﬂz] =
o _Zg_ i+ Z B j
j=1 i =1 #i 2
M;(X
pL= e( 2122.)
Given these definitions, let
p B
ug, = sgn(ey) [ or+ > 2 Unax | +pi (11.21)
g B

where we need to derive an expression for Upax such that |ug| < Umax,
i=1,...,p. From (11.21) we have

-
tal = bl + i+ U >~ 52 < U (11.22)
J=Lj#i =
It follows that if we choose
Unax (1) > o+ lol (11.23)
i=l.p |1 — P Bij

j=ij#1 Bii
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and if (P3) holds, then in fact |uy| < Unax,i =1,...,p. Using (11.21) we can
now establish ) T
%é—jé (11.24)
ii

We are now ready to present our main result and give its proof.

Theorem 2.1 Stability and tracking results using MIMO direct adaptive
control
If the reference input assumption (R1) holds, the plant assumptions (P1),
(P2) and (P3) hold, and the control law is defined by (11.10) with the
control assumption (C1) and the adaptive laws (11.18) are used,
Then the following holds:

(1) The plant states, as well as its outputs and their derivatives, y;, ..., y,(r"71>,

i=1,...,p, are bounded.
(2) The control signals are bounded, i.e. ||U|| € Lo(Lo = {&(?) : sup,|p()]

< 00}).
(3) The magnitudes of the output errors, e,,, decrease at least asymptotically
to zero, i.e. lim,_o0ep, =0,i=1,...,p.

Proof To show part 1, consider the Lyapunov candidate
»
V=YV (11.25)
i=1

The above analysis guarantees

P

V<Y L2 (11.26)
i=1 ﬁii

so V is a positive definite function with negative semidefinite derivative. This

implies that V; € L; therefore, ey, &, € Lo and ||®]| € L for i=1,...,p

(notice that this analysis alone does not guarantee 4; € ), for all time; rather, a

projection algorithm should be used to achieve this). From the definition of e,

we have e(O{) = G'(s)es,, where G/(s):=s//Li(s),j=0,...,r;— 1. Since, by
definition, Gi is stable, e,(,{) €Ly, j=0,...,r;,— 1, and since by ?ssumption

(R1) the signals y,(fq) are bounded, we conclude that y;,...,y; D¢ Lo,
i=1,...,p.

With the outputs bounded, and together with assumption (P2) we have that
the states x1,...,x, are bounded [23], which implies that the state trajectories
are limited to a bounded subset of S,. Let S, be the compact ball of minimum
radius that contains the bounded subset of state trajectories. Since (; is
continuous and z; is Lipschitz continuous by definition in Sy, then they are
uniformly continuous, and therefore bounded, on S, and given that u, is

bounded, we have i; € L,,i=1,...,p. Since U; is defined as a continuous
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function, and D; is assumed continuous for all X € S,,W € §,,, both are
bounded on Sy, s0 0; € L, and p; € L, because e, € L., from part 1. This
implies Upax € Lo, 80 Ug € Loo,i=1,...,p by construction. Hence,
|lU|| € L. To prove part 3 we notice that, from (11.26)

oo P i 00
J Z—’efdtg—J vt (11.27)
0o =B 0

=V (0) — V(0) < o0 (11.28)

This establishes that e € Lo,i=1,...,p(Ly ={o(1): [;° ¢*(1) di < o0}).
Having determined that e, € Loo,j=1,...,r,— 1, it follows that é; € L,
s0 ey, 18 uniformly continuous. Since e;, € £, N L and é;, € L, by Barbalat’s
lemma we have asymptotic stability of e, (i.e. lim, . e; = 0), which implies
asymptotic stability of e, (i.e. lim, e, =0), for i=1,...,p. Notice that
although assumption (P1) is not used explicitly in the proof, it is still necessary
in order to guarantee the existence of U*, without which the argument is not
sound.

Remark 2.1 Note that, although in principle the choice of the vector W is
arbitrary, a typical choice may be an error vector, i.e. W =Y — Y, or some
other function of the plant outputs and the reference model outputs. In this
way, as a result of the proof, we also obtain that W remains within a bounded
subset of S,,.

11.3 Indirect adaptive control
Here we consider, again, the class of plants defined in (11.1). If assumptions

(P1) and (P2) of Section 11.2 are satisfied, then we may rewrite the input—
output form of the plant as

i o+ oy, BB - B, + B | [wm
y;)rﬂ) ap + Oépk ﬁpl + ﬁplk e ﬂp[? + BPPk Jﬁ_/
AK.0) B(X,) u(@)

where o, (¢) and f;;, () are known components of the plant’s dynamics (that
may depend on the state) or exogenous time dependent signals, with the only
constraint that they have to be bounded for all > 0. Throughout the
following analysis they may be set equal to zero for all #; however, as in the
direct adaptive case, a good choice of these known functions may help improve
the performance of the controller. The functions «;(X) and 5;;(X) represent
unknown nonlinear dynamics of the plant.
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Again consider the ideal feedback linearizing control law (11.4), where the
term v will be redefined below. Our goal is to identify the unknown functions «;
and 3;; using fuzzy systems (or neural networks) in order to indirectly
approximate the ideal control law U*. Let the fuzzy system be a Takagi—
Sugeno (T-S) form with centre average defuzzification as in Section 11.2. We
rewrite

ai(X) =z A} Co, + do,(X) (11.30)
3i(X) =z}, A}, Cs, + d, (X) (11.31)
where A7, € R"*Pe and A} € R™™ " are defined by
A} :=arg min {sup|zz,AaiCa[ — oz[|] (11.32)
' “ieQ“i XeS, '
* . T . A,
A/ij = arg A,;;flelggl/ [iggzﬂn“ldﬁg’w ﬂlj@ (1 1'33)

Note that we are assuming the ability to specify fuzzy systems in such a way
that the representation errors using optimal parameters (which arise because of
the finite number of basis functions used) are bounded, i.e. d,,(X) < D,,(X),
ds,(X) < Dg,(X), where D, (X) and Dg, (X) are known bounding functions.
We require the representation errors Dy, (X) to be small (later we will provide
an explicit condition as to how small they have to be), which means that the
matrix B can, ideally, be well approximated by our fuzzy systems (or neural
networks) using optimal parameters. Our adaptive controller’s stability will
not, however, depend on its ability to identify these optimal parameters.

The compact set S, € R” is defined as before, and €2, {25, are compact sets
within which the parameter matrices estimates, 4,,(f) and A4, (), are allowed
to lie. Thus, the fuzzy system approximations of ¢;(X) and ;;(X) are given by

Gi(X) =z} A4, (11.34)
Bi(X) := 25, A3, Cs, (11.35)

The matrices 4,,(¢) and A4g, (¢) are to be adjusted adaptively on line in order to
try to improve the approximation.

We define the output errors e,, and error signals e, and é;, as in Section 11.2.
Consider the control law U := Ug, where Uge = [Uee,, - . ,ua,p]AT is a certainty
equivalence control term. Define the matrix B :=[§;(X)+ 5 (1)),
i,j=1,...,p. B is an approximation of the ideal and unknown matrix B.
Furthermore, let [b;;] := B!, ij=1,...,p be a matrix of the elements of the
inverse. We need to ensure that B! exists for all X € S, and 7 > 0. If the sets
(2, are constructed such that
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Ul’(ﬁ) > Omin (1136)
o1(B) < Omax (11.37)

for all X €Sy, then, as long as the matrices Ag, remain within €,
respectively, we can guarantee that B! exists (this can be achieved using a
projection algorithm). Note that if we knew the matrix B to be, for instance,
strictly diagonally dominant (as required by the Levy-Desplanques theorem
(see [25] for an explanation of this and other invertibility results)) with known
lower bounds for the main diagonal entries, we could relax the conditions on
the sets 25, by applying instead a projection algorithm that kept B in a strictly
diagonally dominant form similar to B to ensure it is invertible. In order to
cancel the unknown parameter errors we use the following adaptive laws:

1 -1
Ao, = _Qa,- Za;Coys;

, " (11.38)
Ap, = _Qﬂi/ 2,8y Csitee,
with Q,, € """ Qp € R™i" ™% positive definite and diagonal.
Now we can write an expression for U,
Ue =B (—A +) (11.39)
where A := [&) + ay,..., &, + ap]T. Here v(r) = [ (1), ...,v,(1)]T is chosen

to provide stable tracking and to allow for robustness to parameter uncer-
tainty. Namely, let

)4
vi(1) 1=y + mies, + &, + Do, (X) sgn(ey,) + Uman(X) sgn(eg) > Dy, (X)
i1

(11.40)

where 7; > 0 is a design parameter, and Upax(X) is a function chosen so that
ltce;| < Umax(X),i=1,...,p. It can be shown that the choice

a,»(X)
max (X) > — 11.41
Unmax ( )_i{r}f}fil —c,-(X)] (11.41)
satisfies the requirement, where a;(X) := 377, |b;l[|Gy] + |a; | + |y£,'1;)\ + 75le,|

+leg | + Doy and ¢i(X) := 377, byl 371, Dy, It should be noted that for many
classes of plants, each ;; is a smooth function easily represented by a fuzzy
system. For example, if each (3;; may be expressed as a constant, then Dj, =0
for all 7,; since a fuzzy system may exactly represent a constant on a compact
set. This would remove the need for the Upax(X) term to be included in (11.40).

At this point we need to formalize our general assumption about the
controller:



Adaptive Control Systems 299

(C2) Indirect Adaptive Control Assumption
The fuzzy systems, or neural networks, that define the approximations
(11.34) and (11.35), are defined so that D, (X) € Lo, D, (X) € L, for all
XeS, CR"i,j=1,...,p. Furthermore, the ideal representation errors
Dj,(X) are small enough, so that we have 0 <¢(X) <1, for all
XeS,i=1,...,p.

Notice that the maximum sizes of Dy, that satisfy (C2) can be found, since
from (11.36) we have |b;(X)| < |B™!||, < -1, and as long as assumption (C2)
is satisfied, we ensure that |uc,| < Umax(X),mz"": 1,...,p as desired.

We have completely specified the signals that compose the control vector U,
and now we state our main result; its proof is omitted, but follows ideas used in
Section 11.2 and [8].

Theorem 3.1 Stability and tracking results using MIMO indirect adaptive
control
If the reference input assumption (R1) holds, the plant assumptions (P1)
and (P2) hold, and the control law is defined by (11.39) with the control
assumption (C2),
Then the following holds:

(1) The plant states, as well as its outputs and their derivatives,
Vi, yiiDii=1,...,p, are bounded.

(2) The control signals are bounded, i.e. U, € Loo,i=1,...,p.

(3) The magnitudes of the output errors, e,,, decrease at least asymptotically
to zero, i.e. lim, e, =0,i=1,...,p.

11.4 Applications

11.4.1 Illustrative example
Consider the nonlinear differential equation given by

).Cl X2 0
X | = X1 +x%+X3 + 3up + uy (11.42)
X3 X1+ 2x 4+ 3x3x4 Ui —|—2(2—|—0.5 Sin(x]))uz

Notice that these are coupled nonlinear dynamics. The B matrix is not
constant, but contains a bounded function of the states. We are interested in
the outputs y; = x; and y, = x3. It is easily verified that this system has a
vector relative degree of [2, 1]T. We define the error equations as ey, = e,, + é,,
and e, = e,,, with the output errors defined appropriately. We want the

outputs of the system to track the reference vector [Y,(s), Y, (s)]T =

[’W Rz“‘)r, where Ri(s) = £{ri(t)} and Ra(s) = L{r (1)} (£{-} is the

(s+1)27 s+1
Laplace transform operator). Thus, é,, is computed from y,, and x;.
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Table 11.1 Rule base

Fl ! FF F.  F. F F! F, F)
o4 4 4 4 g d g g
F% c’f c’f cf c’f 0/2‘ c’§ ¢ ﬁ clg c/g
F2 ck ck k & ck ck ck ck ck
Fg c'l‘ c'z‘ cﬁ' c'§ c'g c17‘ clg c';
F2 & ck ck ck ck b ck ck ck
F% 0'3‘ c’j c'§ clg 017‘ clg (’9‘ c’g clg‘
F2 ck ck ck ck ck ck ck ck ck
Fg c’s‘ c’g c’7‘ clg 019" clg c’9‘ c’9‘ 619‘

We use two T-S fuzzy systems to produce i, and i, and we set the ‘known’
controller terms u, = 0,7 = 1,2. Both fuzzy systems have ¢,, and e,, as their
inputs (so here W = [e,,,e,,]T), and we let z] = [1,x], x5, x3],k = 1,2. Both
fuzzy systems have nine triangular membership functions for each of the two
input universes of discourse, uniformly distributed over the interval [—1,1]
with 50% overlap (we use scaling gains to normalize the inputs to this interval).
We saturate the outermost membership functions, and the output is computed
using centre average defuzzification. Both systems’ coefficient matrices, 4, and
Ay, are initialized with zeroes, and they utilize the rule base shown in Table
11.1. The labels F’l: denote the ith fuzzy set for the jth input, where i =1
corresponds to the leftmost, and i = 9 to the rightmost fuzzy set. Each entry of
the table corresponds to one output function ¢¥,i=1,...,9, where ¢¥ = zTa¥,
and gf‘ is the ith column of 4,k = 1,2. As an example, consider the rule for cg“
that is inside a box in the table

If e, is F} and e,, is F'% then ¢} = z] d}

where we evaluate the and operation using minimum. Note that p;,i =1,...,9,
is the result of evaluating the premise of the ith rule.

~ From the plant’s equation we choose the bounds B = 33,8, =27,
B = 5.3,@22 = 2.7@21 = 1.3,@12 = 1.3, M, =0.0, and M, = x; (these two
bounds are obtained by differentiating the diagonal entries of the matrix B).
Also, the fuzzy system approximation error bounds are chosen as
Dy =0.1,D, =0.1 (note that this choice is not readily apparent from the
definitions of the fuzzy systems; rather, the bounds are found through a trial
and error procedure). Since we know the vectors z] and ¢}, k = 1,2, an easy
way to compute the bounding functions U; and Us is to use fuzzy systems that
have the same structure as the ones used for #; and ;. Initially we chose the
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entries in their coefficient matrices to be large, so that they would bound the
values taken by the #; and @, fuzzy systems. We found, however, that this
created high amplitude and high frequency oscillations of the control signals
(due to the term Uy), which are undesirable. After some tuning we determined
that setting the U; and U, fuzzy system’s coefficients to 0.1 gave us stable
behaviour, good tracking and much smoother control signals. Finally, the
adaptation gains were chosen as Q,, = Q,, = 2.41, where [ is a 2 x 2 identity
matrix.

In Figure 11.1 we observe the results for direct adaptive control on this
system. We used a fourth order Runge—Kutta numerical approximation to the
differential equation solution, with a step size of 0.001. The reference inputs
ri1(¢) and rp(¢) are chosen as square waves, and the corresponding reference
model outputs are plotted in Figure 11.1(a) with dashed lines, but are hard to
see since x| and x3 track them closely. In Figure 11.1(b) we observe the applied
control inputs.

11.4.2 Application to a two-link robot arm

Next, we consider direct adaptive control of a two-degree of freedom robot
arm. This system does not satisfy assumption (P3) because, as we will see, the
matrix multiplying the input vector U contains functions of the states (similar
to the example in the previous section). However, in some regions the bounds
for the entries do not satisfy the diagonal dominance condition. Nevertheless,
our simulation results show that the method seems to be able to provide stable
tracking with adequate performance; furthermore, the controller is able to
compensate for an ‘unknown’ change in system parameters, which represents
the situation where the robot picks up an object after some time of nominal
operation (i.e. when the robot is not holding any object).

The robot arm consists of two links, the first one mounted on a rigid base by
means of a frictionless hinge, and the second mounted at the end of link one by
means of a frictionless ball bearing. The inputs to the system are the torques 7;
and 7 applied at the joints. The outputs are the joint angles #; and 6,. A
mathematical model of this system can be derived using Lagrangian equations,
and is given by

Hy Hp [6 —h6y —hfy — 6,76
| AR D | AR A R R
Hy Hx] |6, ho, 0 6, 9> )

H

where
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Figure 11.1 (a) System states (solid lines) and reference model outputs (dashed
lines). (b) Control inputs
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Hy=1+0L+ mllglmz[l% + li + 211, cos(8,)] + M3(l% + l% + 21115 cos(6)]
Hy =L+ mzlf2 + m3l§
Ho=Hy=5L+ mz[lgz + ll,, cos(62)] + mﬂl% + L1, cos(6,)]
h =myll,, sin(6,)
g, = myl., g cos(0) + mag|l., cos(0; + 65) + 1 cos(6)]
gr = male,g cos(0) + 6,)

The matrix H can be shown to be positive definite, and therefore always
invertible. In our simulation we use the following parameter values:
m; = 1.0kg, mass of link one; m, = 1.0kg, mass of link two; /; =1.0m,
length of link one; , = 1.0m, length of link two; /, = 0.5m, distance from
the joint of link one to its centre of gravity; /., = 0.5m, distance from the joint
of link two to its centre of gravity; I; = 0.2kgm?, lengthwise centroidal inertia
of link one; and I, = 0.2kgm?, lengthwise centroidal inertia of link two. The
mass mj, initially set equal to zero, represents the mass of an object at the end
of the link. After 100 seconds of operation, the robot ‘picks up’ an object of
mass m3 = 3.0kg.
We can rewrite the system dynamics in input output form

|:91:| . 1 H: H22h92(291 + 92) + lehé% — Hy»g, + Hizg,
0, HyHy — HipHyy || —Hh02(20, + 65) — Hy1ho? + Hyg, — Hi g,

N { Hx —le} {ﬂ”
—Hy Hpy L7

We observe that the input vector is multiplied by H~!, which contains the
function cos(g,). For some values of 6, H! is not diagonally dominant, and
thus does not satisfy assumption (P3) (note, e.g., that for some 6, values,
H>, < |H13]). However, we found that not only was it possible to make the
direct adaptive method work, but also that is offered relatively good perform-
ance and the ability to handle system parameter changes.

We would like the outputs 6, and 6, to track desired reference angles, which
are cz)btained grom tThe reference model vector  [Yy, (s), Yo, (5)]T =

?S7+5 0R7l5(;z , (135+ ’fzs(jz , where Ri(s) = L{ri ()} and Ry(s) = L{r(1)}.
Clearly, the system has a vector relative degree [2,2]T, so, letting
€o, =Ym — 01 and e, =ym — 06, we define the error equations
es, =€, + 6, and ey, = e, + é,. The error derivatives are available, since
the reference inputs are twice differentiable, and the angle derivatives 6, and 6,
are plant states.

When designing our fuzzy systems we assumed that there is no strong cross-
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coupling between the inputs and outputs, which greatly simplifies the design:
we chose ¢,, and é,, as inputs to the fuzzy system for 7y (so for this fuzzy system
W [e(,l,eol]T), and e,, and é,, as inputs for 7,. Both fuzzy systems have

=1, 91,91,92,92] and are otherwise structurally identical to the systems
deﬁned in Section 11.4.1. Here, also, we initialized the coefficient matrices of
both systems with zeroes. Since, as mentioned before, the system does not
satisfy assumption (P3) for all #,, the way to choose the bounds for the H™!
matrix entries is not clear. In view of this we took a pragmatic approach, where
we first picked bounds that were as close as possible to the real bounds, and yet
satisfied assumption (P3): letting B = H~', substitution of the numerical values
of the parameters shows that, taking into account both values of
my, 1.1 < B11 < 1.2,2.3 < B12,621 < 2.5, and 0.7 < By < 7.3. Thus, we picked
B =13 B, =11 B2 = 23,82 =2.5,2 = 2.3, and B> = 2.3. This choice
resulted in somewhat acceptable behaviour, but with highly oscillatory control
signals. Therefore, we decided to tune these bounds, even though the theo-
retical assumptions were violated. We found that reducing the size of the
bounds while meeting the diagonal dominance condition yielded satisfactory
results: the magnitude of the control signals’ oscillations was drastically
reduced, and at the same time we obtained adequate tracking and apparent
robustness to the plant parameter change we investigated. We finally chose the
bounds as ﬁ]] :gll = 1.2,522 :szz 1.2, and QZI =g1220.3.
Differentation of the diagonal entries of B yields M;; =0.0, and
M>, = 3.16,. We picked the fuzzy system approximation error bounds as
Dy, =0.1,D, = 0.1 (again this is the result of a tuning process). The bounding
functions U, and U, were picked in a way similar to Section 11.4.1, where the
matrix coefficients are first chosen large, and then decreased until adequate
performance is achieved; setting the coefficients to 0.1 gave us the best results.
Finally, the adaptation gains were set to Q,, = Q,, = 4.71/, where I isa 2 x 2
identity matrix.

We observe the control results on Figure 11.2. We let ri(z) and ry(z) be
square waves. Initially the controller has some difficulties, and tracking is not
perfect: at this point, the T-S coefficient matrices are moving away from zero
and possibly adapting towards values that allow for better tracking. After the
first period of the square wave reference inputs we note that tracking improves
significantly. At time ¢ = 100 seconds, when the system dynamics change as the
robot ‘picks up’ an object, we find the outputs exhibit virtually no transient
overshoot, and tracking continues to be adequate. However, at this point we
observe a high peak in 7, as the controller tries to compensate for the increase
in the load of link two. The peaks recur at the transition points, where the
references step up or down, but they tend to decrease in magnitude (we let the
simulation run for 12000 seconds, and found this pattern to hold).
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Figure 11.2 (a) System states (solid lines) and reference model outputs (dashed

lines). (b) Control inputs
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11,5 Conclusions

In this chapter we have developed direct and indirect adaptive MIMO control
schemes which use Takagi—Sugeno fuzzy systems or a class of neural networks.
We have proven stability of the methods and shown that they guarantee
asymptotic convergence of the tracking errors to zero, as well as boundedness
of all the signals and parameter errors, regardless of any initialization
constraints. Both methods allow for the inclusion of previous knowledge or
expertise in form of linguistics regarding what the control input should be, in
the direct case, or what the plant dynamics are, in the indirect case. We show
that with or without such knowledge the stability and tracking properties of the
controllers hold, and present two simulations for direct adaptive control that
illustrate the method.
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Adaptive robust control
scheme with an application
to PM synchronous motors

J.-X. Xu, Q.-W. Jia and T.-H. Lee

Abstract

This chapter presents a new adaptive robust control scheme for a class of
nonlinear uncertain dynamical systems. To reduce the robust control gain and
widen the application scope of adaptive techniques, the system uncertainties
are classified into two different categories: the structured and non-structured
uncertainties. The structured uncertainty can be separated and expressed as the
product of known functions of states and a set of unknown constants. The
upper bounding functions of the non structured uncertainties to be addressed
in this chapter is only partially known with unknown parameters. Moreover,
the bounding function is convex to the set of unknown parameters, i.e. the
bounding function is no longer linear in parameters. The structured uncer-
tainty is estimated with adaptation and compensated. Meanwhile, the adaptive
robust method is applied to deal with the non structured uncertainty by
estimating unknown parameters in the upper bounding function. The pu-
modification scheme [1] is used to cease parameter adaptation in accordance
with the adaptive robust control law. The backstepping method [2] is also
adopted in this chapter to deal with a system not in the parametric—pure
feedback form, which is usually necessary for the application of backstepping
control scheme. The new control scheme guarantees the uniform boundedness
of the system and at the same time, the tracking error enters an arbitrarily
designated zone in a finite time. The effectiveness of the proposed method is
demonstrated by the application to PM synchronous motors.
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12.1 Introduction

Numerous adaptive robust control algorithms for systems containing uncer-
tainties have been developed [1]-[11]. In [3] variable structure control with an
adaptive law is developed for an uncertain input—output linearizable nonlinear
system, where linearity-in-parameter condition for uncertainties is assumed.
The unknown gain of the upper bounding function is estimated and updated by
adaptation law so that the sliding condition can be met and the error state
reaches the sliding surface and stays on it. To deal with a class of nonlinear
systems with partially known uncertainties, in [4] an adaptive law using a dead
zone and a hysteresis function is proposed to guarantee both the uniform
boundedness of all the closed loop signals and uniform ultimate boundedness
of the system states. In both control schemes, it is assumed that the system
uncertainties are bounded by a bounding function which is a product of a set of
known functions and unknown positive constants. The objective of adaptation
is to estimate these unknown constants.

In [1], a new adaptive robust control scheme is developed for a class of
nonlinear uncertain systems with both parameter uncertainties and exogenous
disturbances. Including the categories of system uncertainties in [3] and [4] as
its subsets, it is assumed that the disturbances are bounded by a known upper
bounding function. Furthermore, the input distribution matrix is assumed to
be constant but unknown.

In this chapter we proposed a continuous adaptive robust control scheme
which is the extension of [1] in the sense that more general classes of nonlinear
uncertain dynamical systems are under consideration. The unknown input
distribution matrix of the system input can be state dependent here instead of
being a constant matrix in [1]. To reduce the robust control gain and widen the
application scope of adaptive techniques, the system uncertainties are supposed
to be composed of two different categories: the first can be separated and
expressed as the product of known function of states and a set of unknown
constants, and the other category is not separable but with partially known
bounding functions. It is further assumed that the bounding function is convex
to the set of unknown parameters, i.e. the bounding function is no longer linear
in parameters. The first category of uncertainties is dealt with by means of the
well-used adaptive control method. Meanwhile an adaptive robust method is
applied to deal with the second category of uncertainties, where the unknown
parameters in the upper bounding function are estimated with adaptation. It
should also be noted that the backstepping method [2] is adopted in this
chapter to deal with a system not in the parametric—pure feedback form, which
is usually necessary for the application of a backstepping control scheme.

The proposed method is further applied to a permanent magnet synchronous
(PMS) motor, which is a typical nonlinear control system. The dynamics of the
PM synchronous motor can be presented by a dynamic electrical subsystem
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and a mechanical subsystem, which are nonlinear differential equations.
Strictly speaking, most control methods for permanent magnet synchronous
motors are only locally stable because the d-axis current is assumed to be zero
and the design procedure is based on the reduced model. In this chapter,
instead of only zeroing d-axis current, the extra d-axis control input voltage is
used to deal with the nonlinear coupling part of the dynamics as well.

This chapter is organized as follows. Section 12.2 describes the class of
nonlinear uncertain systems to be controlled. Section 12.3 gives the design
procedure of the adaptive robust control and the stability analysis. Section 12.4
describes the application of the proposed control method to the PM synchro-
nous motors.

12.2 Problem formulation

Consider a class of uncertain dynamical system described by

X0 = fo(2) + Bo(p)[go (P 1) + X1 + Agy (X, P, w, 1)X2] (12.1)
Xi =11(x,0) + Bi(p){[/ + Er(x,p, 0)]wi (¢) + g, (x,p,7) + Ag (X, p,w, 1)} (12.2)
X2 = f5(x, 1) + Bo(p){[/ + E2(x, p, )]z (1) + 85(X, p, 1) + Agy(x, p,w, 1)} (12.3)

where x; = [x;1, Xi, . . . ,x,-,,,.]T e R", i=0,1,2, are the measurable state vec-
tors of the system, where ny = n; and ng +n; +n, = n; x € R" is defined as
X = [Xg,X[{,Xy ] ;W= [uj,up,...,up] € R™, i=1,2, are the control inputs

of the system; p € P is an unknown system parameter vector and P is the set of
admissible system parameters; f; € R™, i=0,1,2, are nonlinear function
vectors; g, € R ,i=0,1,2, and Ag, € R™*™, Ag, € R", i = 1,2, are non-
linear uncertain function vectors of the state x, unknown parameter p, time ¢ as
well as a set of random variables w. Here we make the following assumptions:

(A1) fo(7), fi(x,7) and fy(x,¢) are known nonlinear function vectors. The
matrices B;(p), i =0, 1,2, are unknown but positive definite.
(A2) For E; e R"™",i=1,2

Vte[0,00) VxeD VpeP
Fmax; = )\(%El +%E,T) > Finy > —1 (124)

where A(-) indicates the eigenvalues of ‘.
(A3) The structured uncertainty g; € R"™, i =0,1,2, are nonlinear function
vectors which can be expressed as
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go(p, 1) = ©0(p)&o(2)
g1(x,p,7) = O (p)] (x, 1)
2 (X, p, 1) = O2(p)&a(x, 1)
©; = diag (0, ...,0,,)

&=, &), i=0,1,2 (12.5)

where 0y, ©) and ©, are unknown parameter matrices and &, & and & are
known function vectors. The nonstructured uncertainty Ag;(X,p,w,1?),
i =0,1,2, are bounded such that

VieR" VxeD VpeP
||Agi(xapa w, t)” < pdi(x7qi7 t) (126)

where || - || represents the Euclidean norm for vectors and the spectral norm for
matrices; D is a compact subset of R” in which the solution of (12.1)-(12.3)
uniquely exists with respect to the given desired state trajectory x,(f).
pd;(X,q;, 1), i =0, 1,2, are upper bounding functions with unknown parameter
vectors q; € P. Here pg. (X, q;, ) is differentiable and convex to q;, that is

Tapd
aqi qi1

P, (X, Q25 1) — pa (X, 451, 1) < (Qp — Q1) (12.7)

The control objective is to find suitable control inputs u; and u; for the state
Xo to track the desired trajectory x,(f) € R™, where x, is continuously
differentiable.

Remark 2.1 The sub system (12.1) has x; as its input. However, it is not in the
parametric—pure feedback form due to the existence of the nonlinear uncertain
term Agy(X,p,w,?)X2. Thus the well-used backstepping design needs to be
revised to deal with the dynamical system (12.1)—(12.3).

Remark 2.2 It should be noted that g;(x,p,7) can be absorbed into
Ag;(x,p,w,t). However, it is obviously more conservative. This can be clearly
shown through the following example. Assume that the structured uncertainty
is g = 01§ + 0,§ with actual values ©; = a, ©, = —a and « is an unknown
constant. Assume that the nonlinear function & =& + AE, where
Iagl < llall. Then gl < lO41- &l +11©a]] - [|2]l = 77Iél,.  where
v =[Ol 1021 = [lall, llal]” and I¢], = [l&ll.li€2I}" . The upperbound
parameter to be estimated is v = [||a||,||a||]". This implies that the actual
uncertainty g =a/A¢ has been amplified to its normed product
llal| - [|&]] + llal| - [|& + Ag]|,  which is  obviously much larger than
[lal| - ||AE|| even if the estimates converge to the true values. On the contrary,
if the uncertainty is expressed by (12.5), the unknown parameters to be
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estimated is [z, —a] . This means that, when the estimated parameters are near
the true values, the estimated uncertainty of g will be able to approach the
actual uncertainty aA&.

12.3 Adaptive robust control with u-modification

The adaptive robust technique is combined with backstepping method in this
section to develop a controller which guarantees the global boundedness of the
system. The design procedures are presented in detail as follows.

Define the measured state tracking error vector as

ey = Xo — Xy (12.8)
and the parameter matrices as
®;2B7', i=0,1,2 (12.9)

-
We further denote zg = ey, z; = x; — X', 2, = x,, z= [z} ,z],z)| , and the
auxiliary control x!*! is defined as

X = — Kozp — Oo&o — Po(fo — X4y) (12.10)

where Kj is a gain matrix. ©y and ¥, are the estimates of ©, and @,
respectively. The first order derivative of xI*f is derived as follows:

X = — Koig — ©p&y — Ooly — o (fo — x4) — Po(fo — %4,)

— 1] - 0} (12.11)
where R . R o
| = Kofy + ©0& + O0&o + Po(fo — X4) + Po(fy) — X4)
fo =1fo— x4
0, = [KoByOy, Ko By
& = [€0, 21 + X" (12.12)
Then the plant (12.1)—(12.3) can be rearranged as follows:
iy = £,(1) + Bo(p)[2o(p, 1) + Dgo(z, p, X[, w, )22 + 21 + X] (12.13)
i =1 (z, X", 0) + Bup){[ + Ei(z,p, X7, 0)]wi (1) + ) (2, p, X7, 1)
+ Agl(zapaxiefawv t)} (1214)

7, = f1(z, xrlef, 1)+ By(p){[I + Ex(z,p, xrlef, Ny (1) + g,(z, p, xrlef7 1)
+ Agy(z,p X w, 1)} (12.15)
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where
f, =1 +f
g1 =016
0, = [0, B; ']
& =16.61" (12.16)
The adaptive robust control law. Define the parameter error matrices as
q=q;—4q; (12.17)
0,=0,-6, (12.18)
b, =d,—d;, i=0,1,2 (12.19)

where ¢;, (:),-, d; are the estimates of q;,0;, 9,1 =0,1,2, respectively.
The control law u;, i = 1,2, are chosen to be

U =u, +u, (12.20)
U, = —K,‘Z,' + (l — 2)Z() — é,’fi — (i),f; — Vg, — (l — I)Vdo
2
. = — rrznax[HuCi | Z;
K (1 + Fmin,) (Fmax, 127 0 || + €,
\ ﬁé’
di = <~ -1 - 4
Pallzi|| + €4,
~2 2
z
I 1 .

== 2
Pay||2ol[l[22]] + €4y

where K; € R">", i = 1,2, is a gain matrix; €,, i = 1,2, and g4, i = 0, 1,2, are
positive constants; f3£f,; p, = pdi(z,qi7x{°f,t); The corresponding adaptive
laws are defined as

0; =L (z:€] — 114 6;)
& = Tiled," — pp®]

Ipy,
q

a; = Tia(/J2]| —pi3q;) , 1=0,1,2 (12.22)

i 1§,

where I';;, j =1,2,3 are positive definite matrices chosen to be

Ty = diag (v, 75+, 75) (12.23)
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wi» 7 =1,2,3, which constitute the p-modification scheme, are defined as

zZ YA D
;= ij(eo = [[21l) 0 (12.24)
0 elsewhere
where kj;, i =0,1,2, j =1,2,3, are positive constants.
Eo2{e: |le]] < eo} (12.25)

where ¢ is a positive constant specifying the desired tracking error bound.

Convergence analysis. For the above adaptive robust controller, we have the
following theorem.

Theorem 3.1 By properly choosing the control gain matrix, the proposed
adaptive robust control law (12.20)—(12.24) ensures that the system trajectory
enters the set E; in a finite time. Moreover, the tracking errors as well as the
parameter estimation errors are bounded by the set

2
D= {17 0,9,q, i=012: z'z +Z(trace {60} + trace {®] ®,} +4, q,)

pry
P
<Lk [ Z(kileo trace {©] ©;} + kieg trace {®] ®;} + kizeoq, q;) + 25] }
i=0
(12.26)

where k' is defined to be

k—max{kl]7 l:07]727 J:17273}
K. = :

U k;; min {Amin (B; 1) mm( )}

" _ 2 min{Amin(K), k;6}

U max {Amax(B; 1), )\maX(F N}

Amax(A4) and Apin(A) indicate the maximum and minimum eigenvalues of the
matrix 4 respectively, and € and 6 are positive values to be defined later.

Proof The following positive definite function V is selected

V=Vi+Va+V, (12.27)
where

Vi

2] By'zo + Ltrace {6]T'00} + Ltrace {®) Ty Po} +1q7 T3 do, (12.28)
Vo =1z Bz + trace {6/1;/6,} +Ltrace {@ T @1} + 14/ Tq,, (12.29)
V3 =12] Bz, + Ltrace {©] T35/ 0,} + Ltrace {715, @} + 143 15q, (12.30)
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Take the derivatives of V', ¥, and V3 along the trajectory of the dynamic
system (12.13)—(12.15), we have (See Appendices A—C)

Vi = —z4 Kozo + 221 + pay||20]| - ||22]| — § pror trace {6760} — L ppotrace {@) o}

+ L portrace {©] Og} + 1 ppotrace {®g o} (12.31)
Va < —z] Kizi — 279 — Ly trace {6101} — Jpupptrace {] &1} — 111138/ G

+ 1y trace {0,701} + L pyatrace {7 @1} +Lp3q]q + 64 +24 (12.32)
Vs < =1 Kozo — 24, — S pyytrace {0 O} — S trace { @] B2} — 1115347 @

+ L pytrace {©] O} + 1 ppytrace {®] ©o} + L pp3a) @y + 20, + 20, (12.33)
Then we can easily get that
V=Vi+1V+V;

1< . s
= —2' Kz + pa,||20]| - ||zz|\—z;vd0+§z(;(—u,~1trace {6/ 6} — pntrace {®] ®;}
i

2
— iG] q; + pirtrace {0 0} + pptrace {®] &} + uiq/ q;) +Z(5”f +e4,)
i=1
2 20 112
Py ||2o] |22 |
Pay|120lll|22]| + €4y

. 1 <& .
= —2' Kz + pg||20|| - ||22]| — + 5;(—ui1tr306 {6/ 6}
— piptrace {®] ®;} —pui3q, @;+ partrace {©] O Juntrace {®; @} +uiq, q;)

2

+ Z(a’:‘ui + €di)

i=1

1 & o i o
=—2"Kz+ EZ(—;mtrace {@,-TG),-} — uptrace {<I>iT<I>,»} — ,u,~3qiTq[
=0

+ pptrace {00} + patrace {® ®;} + pisq q;) + ¢ (12.34)

where K = diag [Ky, Ki, K>], and € = Z?:o eq + 7 e
By choosing K such that

Ain(K) > E2C (12.35)
€0
where ¢ is an arbitrary positive constant, then from (12.24) we have
V<-2'Kz+e<—c, VZzeR"'—E (12.36)

Note that, in terms of the adaptive robust control law (12.20)~(12.24), V' is a
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continuous function. We can show that there exists a constant 0 < &, < ¢ such
that (see Appendix E)

VzeER"—E,, V<0 (12.37)

where Ej2{z: ||z|]| <e}} is a subset of Ej. Noting the relation Ej C E,
(12.37) implies that the system will enter the set £y in a finite time.
When z € E/, it is obvious that

kij(g0 — £5) <y <kgeo, i=0,1,2; j=1,2,3 (12.38)
Define § = g9 — g, > 0, then from (12.24), (12.34) and (12.38) we obtain

V< -z2'Kz+ %Z(—k”é trace {(:)T(:),} — kpé trace {@7@,} - kgé(ﬂ(]i

2
i=0

+ kieo trace {©] ©;} + ke trace {®; ©;} + kizeoq; q,) + €

1

2
< —k"V + Z(kilaotrace {0 ©;} + kpeotrace {®] ®;} + kineoq, q;) + ¢
=0

NS}

(12.39)

where

k' =min {k}, i=0,1,2; j=123}
" _ 2min {)\min(K)v kljé}
i max {)\max(Bil), )\max(ril)}

i i

By solving (12.39) we can establish that

1

Vi <e'V(t=0) Ry

2
[ (kieo trace {6?@,} + kpeg trace {<I>,T<I>,-}
i=0

+ kineoq, q;) + 25}

which implies that z, ©, ® and q converge exponentially to the residual set

2
D= {z, 0, ®,q, i=012: z'z+ Z(trace {60} + trace {®] @;} + 4, q,)
=0

=
< 5 { (kirgg trace {@I@i} + kpeg trace {<I>inI>,<} + k,gsoq,-Tqi) + 26} }
=0

1
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where
K =max{kl,, i=0,1,2; j=1,2,3}

i
k. = !
Y kg min {Amin(B; 1), Amin(T1) }

q

12.4 Application to PM synchronous motors

Model of permanent magnet synchronous motor. A permanent magnet syn-
chronous motor (PMSM) is described by the following subsystems: (1) a
dynamic mechanical subsystem, which for the purposes of this discussion
includes a single-link robot manipulator and the motor rotor; (2) a dynamic
electrical subsystem which includes all of the motor’s relevant electrical effects.

do

= (12.40)

do 1 .

- =73 {[(La = Ly)1s + ¢7]1; — Tsin 6} (12.41)

al; 1

7;{ = L_d (ud —|— WLqu - R]d) (1242)

ar, 1

b= (g — wLaly — Rl —wiy) (12.43)
q

where (12.40) and (12.41) present the dynamics of mechanical subsystem, and
(12.42) and (12.43) are the dynamic electrical subsystem. In those equations, u,
and uy are the input control voltages; I; and /, are the motor armature current;
R is the stator resistance; L; and L, are the self-inductances; J is the inertia
angular momentum; and ¢ is the flux due to permanent magnet. For the above
electromechanical model, we assume that the true states (i.e., 8, w, I; and 1) are
all measurable. This model is obtained by using circuits theory principles and a
particular dg reference frame. The control objective is to develop a link
position tracking controller for the electromechanical dynamics of (12.40)—
(12.43) despite parametric uncertainty. In this chapter we assume that all the
motor parameters are unknown.

Remark 4.1 In most existing control schemes for PM synchronous motors,
the controllers are designed based on the following reduced model
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do

it (12.44)
1
ii—u; =3 (¢r1, — T sin 6) (12.45)
dr, 1
7; =7 (g — RI; — wor) (12.46)
q

In this reduced model, component u, is adjusted to regulate current state I,
and it is supposed that I; exactly equals to zero. Based on this reduced model,
the position or velocity control is only directly related to the command voltage
uy. Obviously, based on the reduced model, the control design will result in
only a locally stable controller.

Control Design. For a given desired tracking state 6,(¢), define a quantity z,
to be

zo=ce+é, e=0—-04, c>0 (12.47)
where 6,(7) is at least twice continuously differentiable. Differentiating (12.47),
multiplying by J and substituting the mechanical subsystem dynamics of
(12.41), yields

Jig=Jeé+ [(La — Ly)la + ¢p]1y, — T sin — Juy (12.48)
Dividing (12.48) by ¢, and rearranging terms yield
Jiy=al @+ 1, + L', (12.49)
where « and ) are defined as
af =, =T, ¢ =][cé—wq, sinb] (12.50)
J', T' and L’ are defined as
J = i T = 1 L = M
¢ ¢ r

Denote z; = 1, — Igef, 2, = I, and the auxiliary reference current 1;ef is defined
as \

I = —a] o1 — kozo (12.51)
where ko is a positive constant gain. Then the PMSM model (12.40)—(12.43)
can be transformed into

zo=J""(afp1+ 21+ [+ L'I;z) (12.52)
2= L;l(uq +ay 2 + a5 p3) (12.53)
2y =L (o 4 + ug) (12.54)

where the unknown constant parameter vectors «;, a3 and a4 and the known
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regression vectors ¢, 3 and 4 are defined as (see Appendix E for the
derivation of oy, asz, vy and 3)

T ¢f L T
a, = |L, 'S e y Ly— 7 —Lq7
(p; (k] +CO£11) B (k1 —|—CO&11)Iqu7 (kl —|—C0411) sin 9]
O‘_;,r - Ld7 _R ¢f7 ]

L]

Q
ES
I

[
[~
o1 = [wly, Ls, w, ki(cé —wq) + 200, T7 1 + Ay
[R
[

<p4 = (I, wl]

where A, = —dy1(cwg + &y) + dipw cos 8. Comparing  (12.52)—(12.54) with
(12.13)—(12.15), it is obvious that PMSM dynamics is a particular case of the
general nonlinear uncertain dynamic system (12.13)—(12.15). Therefore all the
previous design and analysis can be applied directly.

Note that in practical applications, the parameters J and T are constants but
may vary in a wide range due to the variation of payload. On the other hand,
the unknown motor parameters have fewer deviations from its rated values
(nominal values) in comparison with that of load. Therefore, it would be more
appropriate for us to deal with the unknown parameters J and 7' by using
adaptive techniques and treat the bounded motor parameters by using robust
methods. In this way, referring to (12.20)—(12.24) the control inputs with the
corresponding adaptive laws are given as

Uy = —k121 —Zy — éézT(pz — Vg,
Ug = —k222 — Uqy — Vg,

Qa1 = Q120 — 1

Gp = p2Z] — 20

Lyl =0ll”

D,
o maxHIqZOZQH + &4 ?
2
by = afnax3||<p3” -
= 1
L omaxs [ @sllllz1l] + eq,
2 2
(0%
Vg = max4||‘p4H 2 (12.55)

Qmax, || palll122]] + €ay

where ||L'|| < Lyax, ||| < qmax, and ||aal] < aumay,- i, i = 1,2, are chosen to
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be

(12.56)
0 elsewhere

_ {eo —lzl[ lzl] < e
M =

where z = [Z(),Zl,ZQHT.

Simulation Study. The permanent magnet synchronous motor with the
following parameters is used to demonstrate the control performance

Ly=250x107H, L,=300x10"H, J=1625x10"Kg- m?
¢y =090N-m/A, R=50Q, T=22816Kg-A -m/N-s’
o) =[0.0018, —2.535]
The following control parameters
c=50, e =01, €4 =¢cq =¢€4=05 ki =k=k;=8.0

are used for the proposed control scheme. The desired trajectory is chosen as

0; = g (1 — e_o'”z)sin<§ l)

The initial states are 6(0) =0.1 rad, w(0)=0.1 rad/sec, 1,(0) =0.05 4,
1,(0) = 0.01 A. The initial values of all the parameter estimates are set zero.

The tracking error is shown in Figure 12.1. We can see that the proposed
control method yields very good tracking performance. Meanwhile, the control
inputs u,; and u, are very smooth as shown in Figure 12.2. Figure 12.3 (a)
shows the corresponding armature current /, compared with auxiliary refer-
ence current I;** while I, is shown in Figure 12.3 (b). It is easy to see that the
current /, asymptotically converges to I;Cf.

12,5 Conclusion

In this chapter, an adaptive robust control scheme is developed for a class of
uncertain systems with both unknown parameters and system disturbances.
The uncertainties are assumed to be composed of two categories: the structured
category and the nonstructured category with partially known bounding
functions. The structured uncertainty is estimated with the adaptive method.
Meanwhile, the adaptive robust method is applied to deal with the non-
structured uncertainty, where the unknown parameters in the upper bounding
function are estimated with adaptation. It is shown that the control scheme
developed here can guarantee the uniform boundedness of the system and
assure that the tracking error enters the arbitrarily designated zone in a finite
time. The effectiveness of the control scheme is verified by theoretical analysis,
as well as applications to a permanent magnet synchronous motor.
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Figure 12.1 (a) Position tracking error e. (b) Velocity tracking error w

Appendix A The derivative of };

Vi =12y By 'y — trace {(:)TFgll(i)} — trace {®) 'y <i>'0} — 4 T5ido
— 20 By [ + BolOoko + Agyzs + 21 + X} — trace {O] 5,10, }
— trace {&; T'y; &)0} — @ T3 o
=17, [O0& + 21 + X7 + Doff + Agyzs] — trace {Og (z0&] — 110,00)}
— trace {®g (zofy" — 1102%0)} — 4o T3 do
= —z, Kozo + 7, [©0o + 21 + Do) + Agyza] — zgéofo — 7 Dof),
.\ 7Opd,

321

— [|zol[(qp — o) a':d ~ +uortrace {©9 ©0} + poatrace { @) $o} + po3dg Gy

014,
< —1zq Kozo + 25 21 + pay||20]] - 22| = [|20]|(pay — Pa,)
+ portrace {(:)géo} + poatrace {‘i’g‘io} + Ho3qq Go
= —z) Kozo + 221 + pay||20|| - ||22]] + portrace {67 (09 — Op)}
+ poatrace {&g (®g — Do)} + 03l (4o — do)
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Figure 12.2 (a) Evolution of input voltage uq. (b) Evolution of input voltage uy

= —zy Kozo + 2,21 + py||20]| - ||22]] — portrace {© Oo} + o trace {©] O}
— poatrace {®) ®o} + pgatrace {®) Do} — p03dg Gy + 03dg o
— —2) Kot + 232 + g |120l - 22| — L puortrace {O] O} — Lputrace {B] o}
— 3 110390 Go } + 5 portrace {O] O} + 3 poatrace {Of Do} + 3103q0 4o} (A1)
In above derivation the following property of trace is used:
trace {Q 'vw'} =v' Ow (A.2)
where v e R"™!, we R™!, and Q0 € R"™.

Appendix B The derivative of /;

V,y = leBl’lil — trace {érffllél} — trace {@TI‘(Z@I} - q?r;;q’l
=z, Byt + Bi[(I + E))u; + O[¢&, + Ag,]} — trace {(:)lTFfllél}

— trace {®/ T} — 4/ T)}q,
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Figure 12.3 (a) Evolution of current I, (solid line) and I{ff (dot line). (b) Evolution
of current Iy
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Using the fact that
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it follows that
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Appendix C The derivative of /3
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Using the fact of (A.6) it follows that
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Appendix D

From (12.34), it can be seen that V < 0 if
1 &2
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i=0

then ef, can be easily determined by solving the following equation
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then equation (A.9) can be transformed to the following
12 ’ _
agy” +bey —c=0
The solutions of above equation are

,  —bx Vb2 +4ac

It is obvious that the solutions € R. Notice that g, is positive, hence the desired

solution is
,  —b+ Vb +4dac N

A o 0 (A.11)

Appendix E Definitions of «;, a3, 2 and o3
Differentiating z;, yields

H=1, - (A.12)
From (12.51), we have
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Multiplying (A.12) by L, and substituting (12.43), we obtain
qu'l = Uy — deId — Rld — quf

k
+ L, [Gltp;—rllsm + Oz(—)rgoo + A, + Ti (olegol + 1,4+ L'11,)
=ty + ay 2 + 03 93 (A.18)
where
¢ , L T
a) = [LqJ-, Ly7, —Ly5
(p; = [(k] + Cd]])lq, (k] + C@]])Id[q, (k] + Céél]) sin 9]
O[;r = [_Lda _R7 _¢f7 Lq]
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