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33

Preface

This eleventh edition of Digital Fundamentals continues a long tradition of presenting 
a strong foundation in the core fundamentals of digital technology. This text 
provides basic concepts reinforced by plentiful illustrations, examples, exercises, 
and applications. Applied Logic features, Implementation features, troubleshooting 
sections, programmable logic and PLD programming, integrated circuit technologies, 
and the special topics of signal conversion and processing, data transmission, and data 
processing and control are included in addition to the core fundamentals. New topics 
and features have been added to this edition, and many other topics have been enhanced.

The approach used in Digital Fundamentals allows students to master the all-important 
fundamental concepts before getting into more advanced or optional topics. The range 
of topics provides the flexibility to accommodate a variety of program requirements. 
For example, some of the design-oriented or application-oriented topics may not be 
appropriate in some courses. Some programs may not cover programmable logic and 
PLD programming, while others may not have time to include data transmission or data 
processing. Also, some programs may not cover the details of “inside-the-chip” circuitry. 
These and other areas can be omitted or lightly covered without affecting the coverage of 
the fundamental topics. A background in transistor circuits is not a prerequisite for this 
textbook, and the coverage of integrated circuit technology (inside-the-chip circuits) is 
optionally presented.

New in This Edition
•	 New page layout and design for better visual appearance and ease of use

•	 Revised and improved topics

•	 Obsolete devices have been deleted.

•	 The Applied Logic features (formerly System Applications) have been revised and 
new topics added. Also, the VHDL code for PLD implementation is introduced and 
illustrated.

•	 A new boxed feature, entitled Implementation, shows how various logic functions 
can be implemented using fixed-function devices or by writing a VHDL program for 
PLD implementation.

•	 Boolean simplification coverage now includes the Quine-McCluskey method and the 
Espresso method is introduced.

•	 A discussion of Moore and Mealy state machines has been added.

•	 The chapter on programmable logic has been modified and improved.

•	 A discussion of memory hierarchy has been added.

•	 A new chapter on data transmission, including an extensive coverage of standard 
busses has been added.

•	 The chapter on computers has been completely revised and is now entitled “Data 
Processing and Control.”

•	 A more extensive coverage and use of VHDL. There is a tutorial on the website at 
www.pearsonglobaleditions.com/floyd

•	 More emphasis on D flip-flops
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4	 Preface

Standard Features
•	 Full-color format

•	 Core fundamentals are presented without being intermingled with advanced or 
peripheral topics.

•	 InfoNotes are sidebar features that provide interesting information in a condensed 
form.

•	 A chapter outline, chapter objectives, introduction, and key terms list appear on the 
opening page of each chapter.

•	 Within the chapter, the key terms are highlighted in color boldface. Each key term is 
defined at the end of the chapter as well as in the comprehensive glossary at the end 
of the book. Glossary terms are indicated by black boldface in the text.

•	 Reminders inform students where to find the answers to the various exercises and 
problems throughout each chapter.

•	 Section introduction and objectives are at the beginning of each section within a 
chapter.

•	 Checkup exercises conclude each section in a chapter with answers at the end of the 
chapter.

•	 Each worked example has a Related Problem with an answer at the end of the 
chapter.

•	 Hands-On Tips interspersed throughout provide useful and practical information.

•	 Multisim files (newer versions) on the website provide circuits that are referenced in 
the text for optional simulation and troubleshooting.

•	 The operation and application of test instruments, including the oscilloscope, logic 
analyzer, function generator, and DMM, are covered.

•	 Troubleshooting sections in many chapters

•	 Introduction to programmable logic

•	 Chapter summary

•	 True/False quiz at end of each chapter

•	 Multiple-choice self-test at the end of each chapter

•	 Extensive sectionalized problem sets at the end of each chapter with answers to odd- 
numbered problems at the end of the book.

•	 Troubleshooting, applied logic, and special design problems are provided in many 
chapters.

•	 Coverage of bipolar and CMOS IC technologies. Chapter 15 is designed as a “floating 
chapter” to provide optional coverage of IC technology (inside-the-chip circuitry) at 
any point in the course. Chapter 15 is online at www.pearsonglobaleditions.com/floyd

Accompanying Student Resources
•	 Multisim Circuits. The MultiSim files on the website includes selected circuits from 

the text that are indicated by the icon in Figure P-1.

Other student resources available on the website:

	 1.	 Chapter 15, “Integrated Circuit Technologies”

	 2.	 VHDL tutorial

Figure P-1
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	 Preface	 5

	 3.	 Verilog tutorial

	 4.	 MultiSim tutorial

	 5.	 Altera Quartus II tutorial

	 6.	 Xilinx ISE tutorial

	 7.	 Five-variable Karnaugh map tutorial

	 8.	 Hamming code tutorial

	 9.	 Quine-McCluskey method tutorial

	10.	 Espresso algorithm tutorial

11.	 Selected VHDL programs for downloading

12.	 Programming the elevator controller using Altera Quartus II

Using Website VHDL Programs

VHDL programs in the text that have a corresponding VHDL file on the website are indi-
cated by the icon in Figure P-2. These website VHDL files can be downloaded and used 
in conjunction with the PLD development software (Altera Quartus II or Xilinx ISE) to 
implement a circuit in a programmable logic device.

Instructor Resources
•	 Image Bank  This is a download of all the images in the text.

•	 Instructor’s Resource Manual  Includes worked-out solutions to chapter problems, 
solutions to Applied Logic Exercises, and a summary of Multisim simulation results.

•	 TestGen This computerized test bank contains over 650 questions.

•	 Download Instructor Resources from the Instructor Resource Center
	 To access supplementary materials online, instructors need to request an instructor 

access code. Go to www.pearsonglobaleditions.com/floyd to register for an instruc-
tor access code. Within 48 hours of registering, you will receive a confirming e-mail 
including an instructor access code. Once you have received your code, locate your 
text in the online catalog and click on the Instructor Resources button on the left side 
of the catalog product page. Select a supplement, and a login page will appear. Once 
you have logged in, you can access instructor material for all Pearson textbooks. If 
you have any difficulties accessing the site or downloading a supplement, please 
contact Customer Service at http://247pearsoned.custhelp.com/.

Illustration of Book Features
Chapter Opener  Each chapter begins with an opener, which includes a list of the sections 
in the chapter, chapter objectives, introduction, a list of key terms, and a website reference 
for chapter study aids. A typical chapter opener is shown in Figure P-3.

Section Opener  Each section in a chapter begins with a brief introduction that includes a 
general overview and section objectives. An illustration is shown in Figure P-4.

Section Checkup	Each section ends with a review consisting of questions or exercises that 
emphasize the main concepts presented in the section. This feature is shown in Figure P-4. 
Answers to the Section Checkups are at the end of the chapter.

Worked Examples and Related Problems  There is an abundance of worked out examples 
that help to illustrate and clarify basic concepts or specific procedures. Each example ends 

Figure P-2 
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6	 Preface

Figure P-3 
111

Chapter Outline

3–1 The Inverter 
3–2 The AND Gate 
3–3 The OR Gate 
3–4 The NAND Gate 
3–5 The NOR Gate 
3–6 The Exclusive-OR and Exclusive-NOR Gates 
3–7 Programmable Logic 
3–8 Fixed-Function Logic Gates 
3–9 Troubleshooting 

Chapter ObjeCtives

■ Describe the operation of the inverter, the AND 
gate, and the OR gate

■ Describe the operation of the NAND gate and the 
NOR gate

■ Express the operation of NOT, AND, OR, NAND, 
and NOR gates with Boolean algebra

■ Describe the operation of the exclusive-OR and 
exclusive-NOR gates

■ Use logic gates in simple applications

■ Recognize and use both the distinctive shape logic 
gate symbols and the rectangular outline logic gate 
symbols of ANSI/IEEE Standard 91-1984/Std.  
91a-1991

■ Construct timing diagrams showing the proper time 
relationships of inputs and outputs for the various 
logic gates

■ Discuss the basic concepts of programmable logic

■ Make basic comparisons between the major IC 
technologies—CMOS and bipolar (TTL)

■ Explain how the different series within the CMOS 
and bipolar (TTL) families differ from each other

■ Define propagation delay time, power dissipation, 
speed-power product, and fan-out in relation to 
logic gates

visit the Website

Study aids for this chapter are available at  
http://www.pearsonhighered.com/careersresources/

intrOduCtiOn

The emphasis in this chapter is on the operation, 
 application, and troubleshooting of logic gates. The 
relationship of input and output waveforms of a gate 
using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates 
are in accordance with ANSI/IEEE Standard 91-1984/ 
Std. 91a-1991. This standard has been adopted by 
private industry and the military for use in internal 
documentation as well as published literature.

■ Inverter

■ Truth table

■ Boolean algebra

■ Complement

■ AND gate

■ OR gate

■ NAND gate

■ NOR gate

■ Exclusive-OR gate

■ Exclusive-NOR gate

■ AND array

■ Fuse

■ Antifuse

■ EPROM

■ EEPROM

■ Flash

■ SRAM

■ Target device

■ JTAG

■ VHDL

■ CMOS

■ Bipolar

■ Propagation delay 
time

■ Fan-out

■ Unit load

■ List specific fixed-function integrated circuit devices 
that contain the various logic gates

■ Troubleshoot logic gates for opens and shorts by 
using the oscilloscope

Key terms

Key terms are in order of appearance in the chapter.

Logic Gates

3Chapter 
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Figure P-4 

Implementing Combinational Logic  253

SEcTIon 5–1 CheCKup

Answers are at the end of the chapter.

 1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the 
following input conditions:

(a) A = 1, B = 0, C = 1, D = 0  (b) A = 1, B = 1, C = 0, D = 1

(c) A = 0, B = 1, C = 1, D = 1

 2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input 
conditions:

(a) A = 1, B = 0 (b) A = 1, B = 1

(c) A = 0, B = 1 (d) A = 0, B = 0

 3. Develop the truth table for a certain 3-input logic circuit with the output expression 
X = ABC + ABC + A B C + ABC + ABC.

 4. Draw the logic diagram for an exclusive-NOR circuit.

For every Boolean expression there 
is a logic circuit, and for every logic 
circuit there is a Boolean expression.

5–2 Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a 
Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-
ered in Chapter 4 is also included.

After completing this section, you should be able to

u Implement a logic circuit from a Boolean expression

u Implement a logic circuit from a truth table

u Minimize a logic circuit

From a Boolean Expression to a Logic Circuit

Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE, 
with a domain of five variables. The first term is formed by ANDing A with B, and the 
second term is formed by ANDing C, D, and E. The two terms are then ORed to form the 
output X. These operations are indicated in the structure of the expression as  follows:

 AND

X = AB + CDE

 OR

Note that in this particular expression, the AND operations forming the two individual 
terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term 
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then 
required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

infonote

Many control programs require 
logic operations to be performed 
by a computer. A driver program 
is a control program that is used 
with computer peripherals. For 
example, a mouse driver requires 
logic tests to determine if a button 
has been pressed and further 
logic operations to determine if 
it has moved, either horizontally 
or vertically. Within the heart of a 
microprocessor is the arithmetic 
logic unit (ALU), which performs 
these logic operations as directed 
by program instructions. All of the 
logic described in this chapter can 
also be performed by the ALU, 
given the proper instructions.
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	 Preface	 7

Figure P-5 

268  Combinational Logic Analysis

solution

All the intermediate waveforms and the final output waveform are shown in the timing 
diagram of Figure 5–34(c).

related problem

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.

EXaMPlE 5–15

Determine the output waveform X for the circuit in Example 5–14, Figure 5–34(a), directly from the output expression.

solution

The output expression for the circuit is developed in Figure 5–35. The SOP form indicates that the output is HIGH when A 
is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A
B

C
D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

fg05_03500

FIGURE 5–35 

The result is shown in Figure 5–36 and is the same as the one obtained by the intermediate-waveform method in Example 
5–14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A

B

C

D

BC

AC AC
CD

X = AC + BC + CD

fg05_03600

FIGURE 5–36 

related problem

Repeat this example if all the input waveforms are inverted.

SEcTIon 5–5 CheCKup

 1. One pulse with tW = 50 ms is applied to one of the inputs of an exclusive-OR cir-
cuit. A second positive pulse with tW = 10 ms is applied to the other input beginning 
15 ms after the leading edge of the first pulse. Show the output in relation to the 
inputs.

 2. The pulse waveforms A and B in Figure 5–31 are applied to the exclusive-NOR cir-
cuit in Figure 5–32. Develop a complete timing diagram.
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with a Related Problem that reinforces or expands on the example by requiring the student 
to work through a problem similar to the example. A typical worked example with Related 
Problem is shown in Figure P-5.

Troubleshooting Section  Many chapters include a troubleshooting section that relates to 
the topics covered in the chapter and that emphasizes troubleshooting techniques and the 
use of test instruments and circuit simulation. A portion of a typical troubleshooting section 
is illustrated in Figure P-6.

Figure P-6 

 Troubleshooting 413

SEcTIon 7–6 CheCKup

 1. Explain the difference in operation between an astable multivibrator and a monosta-
ble multivibrator.

 2. For a certain astable multivibrator, tH = 15 ms and T = 20 ms. What is the duty 
cycle of the output?

7–7 Troubleshooting

It is standard practice to test a new circuit design to be sure that it is operating as specified. 
New fixed-function designs are “breadboarded” and tested before the design is finalized. 
The term breadboard refers to a method of temporarily hooking up a circuit so that its 
operation can be verified and any design flaws worked out before a prototype unit is built.

After completing this section, you should be able to

u Describe how the timing of a circuit can produce erroneous glitches

u Approach the troubleshooting of a new design with greater insight and awareness 
of potential problems

The circuit shown in Figure 7–61(a) generates two clock waveforms (CLK A and CLK B) 
that have an alternating occurrence of pulses. Each waveform is to be one-half the fre-
quency of the original clock (CLK), as shown in the ideal timing diagram in part (b).

CLK

CLK B

CLK A

CLK A

CLK B

CLK

Q

(a)

D

C

Q

Q

Q

(b)

FIGURE 7–61 Two-phase clock generator with ideal waveforms. Open file F07-61 and 
verify the operation.

When the circuit is tested with an oscilloscope or logic analyzer, the CLK A and CLK B 
waveforms appear on the display screen as shown in Figure 7–62(a). Since glitches occur 
on both waveforms, something is wrong with the circuit either in its basic design or in the 
way it is connected. Further investigation reveals that the glitches are caused by a race 
condition between the CLK signal and the Q and Q signals at the inputs of the AND gates. 
As displayed in Figure 7–62(b), the propagation delays between CLK and Q and Q create 
a short-duration coincidence of HIGH levels at the leading edges of alternate clock pulses. 
Thus, there is a basic design flaw.

The problem can be corrected by using a negative edge-triggered flip-flop in place of 
the positive edge-triggered device, as shown in Figure 7–63(a). Although the propaga-
tion delays between CLK and Q and Q still exist, they are initiated on the trailing edges 
of the clock (CLK), thus eliminating the glitches, as shown in the timing diagram of 
Figure 7–63(b).
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414 Latches, Flip-Flops, and Timers

CLK A

CLK B

(a) Oscilloscope display of CLK A and CLK B waveforms with
glitches indicated by the “spikes”.

CLK

Q

CLK A

(b) Oscilloscope display showing propagation delay that creates
glitch on CLK A waveform

tPHL

fg07_06300

FIGURE 7–62 Oscilloscope displays for the circuit in Figure 7–61.

Q

CLK

CLK B

CLK A

CLK A

CLK

Q

(b)

CLK B

(a)

Q

Q

D

C

FIGURE 7–63 Two-phase clock generator using negative edge-triggered flip-flop to 
eliminate glitches. Open file F07-63 and verify the operation.

SEctIon 7–7 CheCkup

 1. Can a negative edge-triggered J-K flip-flop be used in the circuit of Figure 7–63?

 2. What device can be used to provide the clock for the circuit in Figure 7–63?

Glitches that occur in digital systems are very fast (extremely short in duration) and can be difficult to 
see on an oscilloscope, particularly at lower sweep rates. A logic analyzer, however, can show a glitch 
easily. To look for glitches using a logic analyzer, select “latch” mode or (if available) transitional 
sampling. In the latch mode, the analyzer looks for a voltage level change. When a change occurs, 
even if it is of extremely short duration (a few nanoseconds), the information is “latched” into the 
analyzer’s memory as another sampled data point. When the data are displayed, the glitch will show 
as an obvious change in the sampled data, making it easy to identify.
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8	 Preface

Applied Logic  Appearing at the end of many chapters, this feature presents a practical 
application of the concepts and procedures covered in the chapter. In most chapters, this 
feature presents a “real-world” application in which analysis, troubleshooting, design, 
VHDL programming, and simulation are implemented. Figure P-7 shows a portion of a 
typical Applied Logic feature.

Figure P-7

End of Chapter

The following features are at the end of each chapter:

•	 Summary

•	 Key term glossary

•	 True/false quiz

•	 Self-test

•	 Problem set that includes some or all of the following categories in addition to core prob-
lems: Troubleshooting, Applied Logic, Design, and Multisim Troubleshooting Practice.

•	 Answers to Section Checkups

•	 Answers to Related Problems for Examples

•	 Answers to True/False quiz

•	 Answers to Self-Test

End of Book

The following features are at the end of the book.

•	 Answers to selected odd-numbered problems	

•	 Comprehensive glossary

•	 Index

608 Programmable Logic

Applied Logic
Elevator Controller: Part 2

In this section, the elevator controller that was introduced in the Applied Logic in Chap-
ter 9 will be programmed for implementation in a PLD. Refer to Chapter 9 to review the 
elevator operation. The logic diagram is repeated in Figure 10–62 with labels changed to 
facilitate programming.

CallCode

Floor
Counter

CALL/REQ FF
Q

J K

1

FlrCodeIn

CALL/REQ Code Register

FLRCALL/FLRCNT
Comparator

7-Segment
Decoder

7-segment
display of

floor number

Timer
Enable

QOut

Sensor
(Floorpulse)

CLK

FlrCodeCall

FlrCodeCnt

H0
H1

a-g

H2

FLRCODE

STOP/OPEN

CLOSE

SetCount
Sys Clk Clk

FRCLOUT

FRCNT

UP

DOWN

UP DOWN

PanelCode

FRIN

Request

CLK

CLK

CallEn

Not CallEn

Call
FlrCodeOut

FIGURE 10–62 Programming model of the elevator controller.

The VHDL program code for the elevator controller will include component definitions 
for the Floor Counter, the FLRCALL/FLRCNT Comparator, the Code Register, the Timer, 
the Seven-Segment Decoder, and the CALL/REQ Flip-Flop. The VHDL program codes 
for these six components are as follows. (Blue annotated notes are not part of the program.)
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 Applied Logic 595

Floor Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity FLOORCOUNTER is

 port (UP, DOWN, Sensor: in std_logic;

     FLRCODE: out std_logic_vector(2 downto 0));

end entity FLOORCOUNTER;

architecture LogicOperation of FLOORCOUNTER is

signal FloorCnt: unsigned(2 downto 0) := “000”;

begin

process(UP, DOWN, Sensor, FloorCnt)

begin

FLRCODE 6= std_logic_vector(FloorCnt);

if (Sensor’EVENT and Sensor = ‘1’) then

if UP = ‘1’ and DOWN = ‘0’ then

FloorCnt 6= FloorCnt + 1;

elsif Up = ‘0’ and DOWN = ‘1’ then

FloorCnt 6= FloorCnt - 1;

end if;

end if;

end process;

end architecture LogicOperation;

FLRCALL/FLRCNT Comparator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity FLRCALLCOMPARATOR is

 port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

UP, DOWN, STOP: inout std_logic;

end entity FLRCALLCOMPARATOR;

architecture LogicOperation of FLRCALLCOMPARATOR is

begin

STOP 6= ‘1’ when (FlrCodeCall = FlrCodeCnt) else ‘0’;

UP 6= ‘1’ when (FlrCodeCall 7 FlrCodeCnt) else ‘0’;

DOWN 6= ‘1’ when (FlrCodeCall 6 FlrCodeCnt) else ‘0’;

end architecture LogicOperation;

ieee.numeric_std_all is included to enable  casting of 
unsigned identifier. Unsigned FloorCnt is  converted to 
std_logic_vector.

Floor count is initialized to 000.

Numeric unsigned FloorCnt is con-
verted to std_logic_vector data type 
and sent to std_logic_vector output 
FLRCODE.

Sensor event high pulse causes the 
floor count to increment when UP 
is set high or decrement by one 
when DOWN is set low.

UP, DOWN: Floor count 
 direction signals
Sensor: Elevator car floor 
sensor
FLRCODE: 3-digit floor 
count

¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

FlrCodeCall, FlrCodeCnt: 
Compared values
UP, DOWN, STOP: Output 
control signals

STOP, UP, and DOWN 
signals are set or reset 
based on =, 7, and 6 
relational comparisons.

¸̋
˛

¸
˚
˚
˝
˚
˚
˛
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	 Preface	 9

To the Student
Digital technology pervades almost everything in our daily lives. For example, cell phones 
and other types of wireless communications, television, radio, process controls, automotive 
electronics, consumer electronics, aircraft navigation— to name only a few applications— 
depend heavily on digital electronics.

A strong grounding in the fundamentals of digital technology will prepare you for 
the highly skilled jobs of the future. The single most important thing you can do is to 
understand the core fundamentals. From there you can go anywhere.

In addition, programmable logic is important in many applications and that topic in 
introduced in this book and example programs are given along with an online tutorial. 
Of course, efficient troubleshooting is a skill that is also widely sought after by potential 
employers. Troubleshooting and testing methods from traditional prototype testing to more 
advanced techniques such as boundary scan are covered.

To the Instructor
Generally, time limitations or program emphasis determines the topics to be covered in a 
course. It is not uncommon to omit or condense topics or to alter the sequence of certain 
topics in order to customize the material for a particular course. This textbook is specifi-
cally designed to provide great flexibility in topic coverage.

Certain topics are organized in separate chapters, sections, or features such that if they are 
omitted the rest of the coverage is not affected. Also, if these topics are included, they flow 
seamlessly with the rest of the coverage. The book is organized around a core of fundamental 
topics that are, for the most part, essential in any digital course. Around this core, there are other 
topics that can be included or omitted, depending on the course emphasis and/or other factors. 
Even within the core, selected topics can be omitted. Figure P-8 illustrates this concept.

Core
Fundamentals

Programmable Logic
and

PLD programming

Troubleshooting Applied Logic

Integrated
Circuit

Technologies 

Special Topics

Figure P-8 

◆	Core Fundamentals  The fundamental topics of digital technology should be cov-
ered in all programs. Linked to the core are several “satellite” topics that may be 
considered for omission or inclusion, depending on your course goals. All topics 
presented in this text are important in digital technology, but each block surrounding 
the core can be omitted, depending on your particular goals, without affecting the 
core fundamentals.

◆	Programmable Logic and PLD Programming  Although they are important topics, 
programmable logic and VHDL can be omitted; however, it is highly recommended 
that you cover this topic if at all possible. You can cover as little or as much as you 
consider appropriate for your program.
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◆	Troubleshooting  Troubleshooting sections appear in many chapters and include 
the application and operation of laboratory instruments.

◆	Applied Logic  Selected real-world applications appear in many chapters.

◆	Integrated Circuit Technologies  Chapter 15 is an online chapter. Some or all of the 
topics in Chapter 15 can be covered at selected points if you wish to discuss details of 
the circuitry that make up digital integrated circuits. Chapter 15 can be omitted with-
out any impact on the rest of the book.

◆	Special Topics  These topics are Signal Interfacing and Processing, Data Transmis-
sion, and Data Processing and Control in Chapters 12, 13, and 14 respectively, as 
well as selected topics in other chapters. These are topics that may not be essential 
for your course or are covered in another course. Also, within each block in Figure 
P-8 you can choose to omit or deemphasize some topics because of time constraints 
or other priorities in your particular program. For example in the core fundamentals, 
the Quine-McCluskey method, cyclic redundancy code, carry look-ahead adders, or 
sequential logic design could possibly be omitted. Additionally, any or all of Multi-
sim features throughout the book can be treated as optional. Other topics may also be 
candidates for omission or light coverage. Whether you choose a minimal coverage 
of only core fundamentals, a full-blown coverage of all the topics, or anything in 
between, this book can be adapted to your needs.
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Chapter Objectives

■	 Explain the basic differences between digital and 
analog quantities

■	 Show how voltage levels are used to represent 
digital quantities

■	 Describe various parameters of a pulse waveform 
such as rise time, fall time, pulse width, frequency, 
period, and duty cycle

■	 Explain the basic logic functions of NOT, AND, 
and OR

■	 Describe several types of logic operations and 
explain their application in an example system

■	 Describe programmable logic, discuss the 
various types, and describe how PLDs are 
programmed

■	 Identify fixed-function digital integrated circuits 
according to their complexity and the type of circuit 
packaging

■	 Identify pin numbers on integrated circuit packages

■	 Recognize various instruments and understand 
how they are used in measurement and 
troubleshooting digital circuits and systems

■	 Describe basic troubleshooting methods

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

The term digital is derived from the way operations 
are performed, by counting digits. For many years, 
applications of digital electronics were confined 
to computer systems. Today, digital technology is 
applied in a wide range of areas in addition to com-
puters. Such applications as television, communi-
cations systems, radar, navigation and guidance 
systems, military systems, medical instrumentation, 
industrial process control, and consumer electron-
ics use digital techniques. Over the years digital 
technology has progressed from vacuum-tube circuits 

■	 Analog

■	 Digital

■	 Binary

■	 Bit

■	 Pulse

■	 Duty cycle

■	 Clock

■	 Timing diagram

■	 Data

■	 Serial

■	 Parallel

■	 Logic

■	 Input

■	 Output

■	 Gate

■	 NOT

■	 Inverter

■	 AND

■	 OR

■	 Programmable logic

■	 SPLD

■	 CPLD

■	 FPGA

■	 Microcontroller

■	 Embedded system

■	 Compiler

■	 Integrated circuit (IC)

■	 Fixed-function logic

■	 Troubleshooting

Key Terms

Key terms are in order of appearance in the chapter.

Introductory Concepts

1 CHAPTER 
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16	 Introductory Concepts

1–1  Digital and Analog Quantities

Electronic circuits can be divided into two broad categories, digital and analog. Digital 
electronics involves quantities with discrete values, and analog electronics involves quan-
tities with continuous values. Although you will be studying digital fundamentals in this 
book, you should also know something about analog because many applications require 
both; and interfacing between analog and digital is important.

After completing this section, you should be able to

u	 Define analog

u	 Define digital

u	 Explain the difference between digital and analog quantities

u	 State the advantages of digital over analog

u	 Give examples of how digital and analog quantities are used in electronics

An analog* quantity is one having continuous values. A digital quantity is one having 
a discrete set of values. Most things that can be measured quantitatively occur in nature in 
analog form. For example, the air temperature changes over a continuous range of values. 
During a given day, the temperature does not go from, say, 70� to 71� instantaneously; it 
takes on all the infinite values in between. If you graphed the temperature on a typical sum-
mer day, you would have a smooth, continuous curve similar to the curve in Figure 1–1. 
Other examples of analog quantities are time, pressure, distance, and sound.

to discrete transistors to complex integrated circuits, 
many of which contain millions of transistors, and 
many of which are programmable.

This chapter introduces you to digital electronics 
and provides a broad overview of many important 
concepts, components, and tools.

*All bold terms are important and are defined in the end-of-book glossary. The blue bold terms are key terms 
and are included in a Key Term glossary at the end of each chapter.
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fg01_00100

FIGURE 1–1  Graph of an analog quantity (temperature versus time).

Rather than graphing the temperature on a continuous basis, suppose you just take a 
temperature reading every hour. Now you have sampled values representing the temperature 
at discrete points in time (every hour) over a 24-hour period, as indicated in Figure 1–2. 
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	 Digital and Analog Quantities	 17

You have effectively converted an analog quantity to a form that can now be digitized by 
representing each sampled value by a digital code. It is important to realize that Figure 1–2 
itself is not the digital representation of the analog quantity.

The Digital Advantage

Digital representation has certain advantages over analog representation in electronics applica-
tions. For one thing, digital data can be processed and transmitted more efficiently and reli-
ably than analog data. Also, digital data has a great advantage when storage is necessary. For 
example, music when converted to digital form can be stored more compactly and reproduced 
with greater accuracy and clarity than is possible when it is in analog form. Noise (unwanted 
voltage fluctuations) does not affect digital data nearly as much as it does analog signals.

An Analog System

A public address system, used to amplify sound so that it can be heard by a large audience, is 
one simple example of an application of analog electronics. The basic diagram in Figure 1–3 
illustrates that sound waves, which are analog in nature, are picked up by a microphone and 
converted to a small analog voltage called the audio signal. This voltage varies continuously as 
the volume and frequency of the sound changes and is applied to the input of a linear amplifier. 
The output of the amplifier, which is an increased reproduction of input voltage, goes to the 
speaker(s). The speaker changes the amplified audio signal back to sound waves that have a 
much greater volume than the original sound waves picked up by the microphone.

1

100
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95

90

85

80

75

70

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
P.M.

Time of day

Temperature
(°F)

fg01_00200

FIGURE 1–2  Sampled-value representation (quantization) of the analog quantity in 
Figure 1–1. Each value represented by a dot can be digitized by representing it as a digital 
code that consists of a series of 1s and 0s.

Audio signal

Amplified audio signal

Speaker

Microphone

Original sound waves

Reproduced
sound waves

Linear amplifier

FIGURE 1–3  A basic audio public address system.
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18	 Introductory Concepts

Mechatronics

Both digital and analog electronics are used in the control of various mechanical systems. 
The interdisciplinary field that comprises both mechanical and electronic components is 
known as mechatronics.

Mechatronic systems are found in homes, industry, and transportation. Most home appliances 
consist of both mechanical and electronic components. Electronics controls the operation of a 
washing machine in terms of water flow, temperature, and type of cycle. Manufacturing indus-
tries rely heavily on mechatronics for process control and assembly. In automotive and other 
types of manufacturing, robotic arms perform precision welding, painting, and other functions 
on the assembly line. Automobiles themselves are mechatronic machines; a digital computer 
controls functions such as braking, engine parameters, fuel flow, safety features, and monitoring.

Figure 1–5(a) is a basic block diagram of a mechatronic system. A simple robotic arm is 
shown in Figure 1–5(b), and robotic arms on an automotive assembly line are shown in part (c). 

Digital data

CD drive

10110011101

Analog
reproduction
of music audio
signal

Speaker

Sound
waves

Digital-to-analog
converter

Linear amplifier

FIGURE 1–4  Basic block diagram of a CD player. Only one channel is shown.

Electromechanical
interface

Robotic unit

Electronic controls

(a) Mechatronic system block diagram

FIGURE 1–5  Example of a mechatronic system and application.  Part (b) Beawolf/Fotolia; 
Part (c) Small Town Studio/Fotolia.

(b) Robotic arm (c) Automotive assembly line

A System Using Digital and Analog Methods

The compact disk (CD) player is an example of a system in which both digital and analog 
circuits are used. The simplified block diagram in Figure 1–4 illustrates the basic principle. 
Music in digital form is stored on the compact disk. A laser diode optical system picks up 
the digital data from the rotating disk and transfers it to the digital-to-analog converter 
(DAC). The DAC changes the digital data into an analog signal that is an electrical repro-
duction of the original music. This signal is amplified and sent to the speaker for you to 
enjoy. When the music was originally recorded on the CD, a process, essentially the reverse 
of the one described here, using an analog-to-digital converter (ADC) was used.
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Section 1–1  Checkup

Answers are at the end of the chapter.

	 1.	Define analog.

	 2.	Define digital.

	 3.	Explain the difference between a digital quantity and an analog quantity.

	 4.	Give an example of a system that is analog and one that is a combination of both 
digital and analog. Name a system that is entirely digital.

	 5.	What does a mechatronic system consist of?

1–2  Binary Digits, Logic Levels, and Digital Waveforms

Digital electronics involves circuits and systems in which there are only two possible 
states. These states are represented by two different voltage levels: A HIGH and a LOW. 
The two states can also be represented by current levels, bits and bumps on a CD or DVD, 
etc. In digital systems such as computers, combinations of the two states, called codes, are 
used to represent numbers, symbols, alphabetic characters, and other types of information. 
The two-state number system is called binary, and its two digits are 0 and 1. A binary digit 
is called a bit.

After completing this section, you should be able to

u	 Define binary

u	 Define bit

u	 Name the bits in a binary system

u	 Explain how voltage levels are used to represent bits

u	 Explain how voltage levels are interpreted by a digital circuit

u	 Describe the general characteristics of a pulse

u	 Determine the amplitude, rise time, fall time, and width of a pulse

u	 Identify and describe the characteristics of a digital waveform

u	 Determine the amplitude, period, frequency, and duty cycle of a digital waveform

u	 Explain what a timing diagram is and state its purpose

u	 Explain serial and parallel data transfer and state the advantage and disadvantage 
of each

Binary Digits

Each of the two digits in the binary system, 1 and 0, is called a bit, which is a contraction 
of the words binary digit. In digital circuits, two different voltage levels are used to repre-
sent the two bits. Generally, 1 is represented by the higher voltage, which we will refer to 
as a HIGH, and a 0 is represented by the lower voltage level, which we will refer to as a 
LOW. This is called positive logic and will be used throughout the book.

HIGH � 1 and LOW � 0

The movement of the arm in any quadrant and to any specified position is accomplished with 
some type of digital control such as a microcontroller.  

InfoNote

The concept of a digital computer 
can be traced back to Charles 
Babbage, who developed a crude 
mechanical computation device in 
the 1830s. John Atanasoff was the 
first to apply electronic processing 
to digital computing in 1939. In 
1946, an electronic digital compu-
ter called ENIAC was implemented 
with vacuum-tube circuits. Even 
though it took up an entire room, 
ENIAC didn’t have the computing 
power of your handheld calculator.

M01_FLOY5983_11_GE_C01.indd Page 19  11/11/14  10:26 AM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



20	 Introductory Concepts

Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is 
called negative logic.

Groups of bits (combinations of 1s and 0s), called codes, are used to represent numbers, 
letters, symbols, instructions, and anything else required in a given application.

Logic Levels

The voltages used to represent a 1 and a 0 are called logic levels. Ideally, one voltage level 
represents a HIGH and another voltage level represents a LOW. In a practical digital circuit, 
however, a HIGH can be any voltage between a specified minimum value and a specified 
maximum value. Likewise, a LOW can be any voltage between a specified minimum and a 
specified maximum. There can be no overlap between the accepted range of HIGH levels 
and the accepted range of LOW levels.

Figure 1–6 illustrates the general range of LOWs and HIGHs for a digital circuit. The 
variable VH(max) represents the maximum HIGH voltage value, and VH(min) represents the 
minimum HIGH voltage value. The maximum LOW voltage value is represented by VL(max), 
and the minimum LOW voltage value is represented by VL(min). The voltage values between 
VL(max) and VH(min) are unacceptable for proper operation. A voltage in the unacceptable 
range can appear as either a HIGH or a LOW to a given circuit. For example, the HIGH 
input values for a certain type of digital circuit technology called CMOS may range from 
2 V to 3.3 V and the LOW input values may range from 0 V to 0.8 V. If a voltage of 2.5 V 
is applied, the circuit will accept it as a HIGH or binary 1. If a voltage of 0.5 V is applied, 
the circuit will accept it as a LOW or binary 0. For this type of circuit, voltages between 
0.8 V and 2 V are unacceptable.

Digital Waveforms

Digital waveforms consist of voltage levels that are changing back and forth between the 
HIGH and LOW levels or states. Figure 1–7(a) shows that a single positive-going pulse 
is generated when the voltage (or current) goes from its normally LOW level to its HIGH 
level and then back to its LOW level. The negative-going pulse in Figure 1–7(b) is gener-
ated when the voltage goes from its normally HIGH level to its LOW level and back to its 
HIGH level. A digital waveform is made up of a series of pulses.

HIGH
(binary 1)

LOW
(binary 0)

VH(max)

VH(min)

VL(max)

VL (min)

Unacceptable

fg01_00500

FIGURE 1–6  Logic level ranges 
of voltage for a digital circuit.

Falling or
leading edge

(b) Negative–going pulse

HIGH

Rising or
trailing edge

LOW

(a) Positive–going pulse

HIGH

Rising or
leading edge

Falling or
trailing edge

LOW
t0 t1 t0 t1

fg01_00600

FIGURE 1–7  Ideal pulses.

The Pulse

As indicated in Figure 1–7, a pulse has two edges: a leading edge that occurs first at time t0 
and a trailing edge that occurs last at time t1. For a positive-going pulse, the leading edge 
is a rising edge, and the trailing edge is a falling edge. The pulses in Figure 1–7 are ideal 
because the rising and falling edges are assumed to change in zero time (instantaneously). 
In practice, these transitions never occur instantaneously, although for most digital work 
you can assume ideal pulses.

Figure 1–8 shows a nonideal pulse. In reality, all pulses exhibit some or all of these 
characteristics. The overshoot and ringing are sometimes produced by stray inductive and 
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capacitive effects. The droop can be caused by stray capacitive and circuit resistance, form-
ing an RC circuit with a low time constant.

The time required for a pulse to go from its LOW level to its HIGH level is called the 
rise time (tr), and the time required for the transition from the HIGH level to the LOW level 
is called the fall time (tf). In practice, it is common to measure rise time from 10% of the 
pulse amplitude (height from baseline) to 90% of the pulse amplitude and to measure the 
fall time from 90% to 10% of the pulse amplitude, as indicated in Figure 1–8. The bottom 
10% and the top 10% of the pulse are not included in the rise and fall times because of 
the nonlinearities in the waveform in these areas. The pulse width (tW) is a measure of the 
duration of the pulse and is often defined as the time interval between the 50% points on 
the rising and falling edges, as indicated in Figure 1–8.

Waveform Characteristics

Most waveforms encountered in digital systems are composed of series of pulses, some-
times called pulse trains, and can be classified as either periodic or nonperiodic. A periodic 
pulse waveform is one that repeats itself at a fixed interval, called a period (T ). The 
frequency ( f ) is the rate at which it repeats itself and is measured in hertz (Hz). A non-
periodic pulse waveform, of course, does not repeat itself at fixed intervals and may be 
composed of pulses of randomly differing pulse widths and/or randomly differing time 
intervals between the pulses. An example of each type is shown in Figure 1–9.

90%

50%

10%

Base line

Pulse width

Rise time Fall time

Amplitude tW

tr tf

Undershoot

Ringing

Overshoot

Ringing
Droop
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FIGURE 1–8  Nonideal pulse characteristics.

T1

Period  =  T1  =  T2  =  T3  =  . . .  =  Tn

T2 T3

Frequency =  1
T

(a) Periodic (square wave) (b) Nonperiodic

fg01_00800

FIGURE 1–9  Examples of digital waveforms.

The frequency ( f ) of a pulse (digital) waveform is the reciprocal of the period. The 
relationship between frequency and period is expressed as follows:

	 f �
1
T

	 Equation 1–1

	 T �
1
f

	 Equation 1–2
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22	 Introductory Concepts

An important characteristic of a periodic digital waveform is its duty cycle, which is the 
ratio of the pulse width (tW) to the period (T ). It can be expressed as a percentage.

	 Duty cycle � ¢ tW
T
≤100%	 Equation 1–3

EXAMPLE 1–1

A portion of a periodic digital waveform is shown in Figure 1–10. The measurements 
are in milliseconds. Determine the following:

(a)	 period    (b)   frequency    (c)   duty cycle

10 10 11
t (ms)

T
tW

fg01_00900

FIGURE 1–10 

Solution

(a)	 The period (T ) is measured from the edge of one pulse to the corresponding edge 
of the next pulse. In this case T is measured from leading edge to leading edge, as 
indicated. T equals 10 ms.

(b)	 f =
1

T
=

1

10 ms
= 100 Hz

(c)	 Duty cycle = ¢ tW
T
≤100% = ¢ 1 ms

10 ms
≤100% = 10%

Related Problem*

A periodic digital waveform has a pulse width of 25 ms and a period of 150 ms. Deter-
mine the frequency and the duty cycle.

*Answers are at the end of the chapter.

A Digital Waveform Carries Binary Information

Binary information that is handled by digital systems appears as waveforms that represent 
sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform 
is LOW, a binary 0 is present. Each bit in a sequence occupies a defined time interval called 
a bit time.

The Clock

In digital systems, all waveforms are synchronized with a basic timing waveform called the 
clock. The clock is a periodic waveform in which each interval between pulses (the period) 
equals the time for one bit.

An example of a clock waveform is shown in Figure 1–11. Notice that, in this case, each 
change in level of waveform A occurs at the leading edge of the clock waveform. In other 
cases, level changes occur at the trailing edge of the clock. During each bit time of the 
clock, waveform A is either HIGH or LOW. These HIGHs and LOWs represent a sequence 

InfoNote

The speed at which a computer 
can operate depends on the type 
of microprocessor used in the 
system. The speed specifica-
tion, for example 3.5 GHz, of 
a computer is the maximum 
clock frequency at which the 
microprocessor can run.
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of bits as indicated. A group of several bits can contain binary information, such as a num-
ber or a letter. The clock waveform itself does not carry information.

Timing Diagrams

A timing diagram is a graph of digital waveforms showing the actual time relationship of 
two or more waveforms and how each waveform changes in relation to the others. By look-
ing at a timing diagram, you can determine the states (HIGH or LOW) of all the waveforms 
at any specified point in time and the exact time that a waveform changes state relative 
to the other waveforms. Figure 1–12 is an example of a timing diagram made up of four 
waveforms. From this timing diagram you can see, for example, that the three waveforms 
A, B, and C are HIGH only during bit time 7 (shaded area) and they all change back LOW 
at the end of bit time 7.

Bit
time

Bit sequence
represented by

waveform A

1

0

0

1
A

1 1 1 1 1 0

Clock

00000

fg01_01000

FIGURE 1–11  Example of a clock waveform synchronized with a waveform representation 
of a sequence of bits.

Clock

A

B

C

1 2 3 4 5 6 7 8

A, B, and C HIGH

fg01_01100

FIGURE 1–12  Example of a timing diagram.
InfoNote

Universal Serial Bus (USB) is a 
serial bus standard for device 
interfacing. It was originally devel-
oped for the personal computer 
but has become widely used on 
many types of handheld and 
mobile devices. USB is expected 
to replace other serial and parallel 
ports. USB operated at 12 Mbps 
(million bits per second) when 
first introduced in 1995, but it now 
provides transmission speeds of 
up to 5 Gbps.

Data Transfer

Data refers to groups of bits that convey some type of information. Binary data, which 
are represented by digital waveforms, must be transferred from one device to another 
within a digital system or from one system to another in order to accomplish a given 
purpose. For example, numbers stored in binary form in the memory of a computer must 
be transferred to the computer’s central processing unit in order to be added. The sum of 
the addition must then be transferred to a monitor for display and/or transferred back to 
the memory. As illustrated in Figure 1–13, binary data are transferred in two ways: serial 
and parallel.

When bits are transferred in serial form from one point to another, they are sent one bit 
at a time along a single line, as illustrated in Figure 1–13(a). During the time interval from 
t0 to t1, the first bit is transferred. During the time interval from t1 to t2, the second bit is 
transferred, and so on. To transfer eight bits in series, it takes eight time intervals.
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24	 Introductory Concepts

When bits are transferred in parallel form, all the bits in a group are sent out on separate 
lines at the same time. There is one line for each bit, as shown in Figure 1–13(b) for the 
example of eight bits being transferred. To transfer eight bits in parallel, it takes one time 
interval compared to eight time intervals for the serial transfer.

To summarize, an advantage of serial transfer of binary data is that a minimum of only 
one line is required. In parallel transfer, a number of lines equal to the number of bits to be 
transferred at one time is required. A disadvantage of serial transfer is that it takes longer to 
transfer a given number of bits than with parallel transfer at the same clock frequency. For 
example, if one bit can be transferred in 1 ms, then it takes 8 ms to serially transfer eight 
bits but only 1 ms to parallel transfer eight bits. A disadvantage of parallel transfer is that it 
takes more lines than serial transfer.

Sending
device

1 0 1 1 0 0 1 0

t0 t1 t2 t3 t4 t5 t6 t7

0

t0 t1

1

0

0

1

1

0

1

t0 to t1 is first.(a) Serial transfer of 8 bits of binary data. Interval The beginning time is t0.(b) Parallel transfer of 8 bits of binary data.

Receiving
device

Receiving
device

Sending
device

FIGURE 1–13  Illustration of serial and parallel transfer of binary data. Only the data lines 
are shown.

EXAMPLE 1–2

(a)	 Determine the total time required to serially transfer the eight bits contained in 
waveform A of Figure 1–14, and indicate the sequence of bits. The left-most bit is 
the first to be transferred. The 1 MHz clock is used as reference.

(b)	 What is the total time to transfer the same eight bits in parallel?

Clock

A

fg01_01300

FIGURE 1–14 

Solution

(a)	 Since the frequency of the clock is 1 MHz, the period is

T =
1

f
=

1

1 MHz
= 1 ms

	 It takes 1 ms to transfer each bit in the waveform. The total transfer time for 8 bits is

8 * 1 ms = 8 Ms
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	 To determine the sequence of bits, examine the waveform in Figure 1–14 during 
each bit time. If waveform A is HIGH during the bit time, a 1 is transferred. If 
waveform A is LOW during the bit time, a 0 is transferred. The bit sequence is 
illustrated in Figure 1–15. The left-most bit is the first to be transferred.

1 0 0 1 0 01 1

fg01_01400

FIGURE 1–15 

(b)	 A parallel transfer would take 1 Ms for all eight bits.

Related Problem

If binary data are transferred on a USB at the rate of 480 million bits per second 
(480 Mbps), how long will it take to serially transfer 16 bits?

Section 1–2  Checkup

	 1.	Define binary.

	 2.	What does bit mean?

	 3.	What are the bits in a binary system?

	 4.	How are the rise time and fall time of a pulse measured?

	 5.	Knowing the period of a waveform, how do you find the frequency?

	 6.	Explain what a clock waveform is.

	 7.	What is the purpose of a timing diagram?

	 8.	What is the main advantage of parallel transfer over serial transfer of binary data?

1–3  Basic Logic Functions

In its basic form, logic is the realm of human reasoning that tells you a certain proposi-
tion (declarative statement) is true if certain conditions are true. Propositions can be 
classified as true or false. Many situations and processes that you encounter in your 
daily life can be expressed in the form of propositional, or logic, functions. Since such 
functions are true/false or yes/no statements, digital circuits with their two-state char-
acteristics are applicable.

After completing this section, you should be able to

u	 List three basic logic functions

u	 Define the NOT function

u	 Define the AND function

u	 Define the OR function

Several propositions, when combined, form propositional, or logic, functions. For exam-
ple, the propositional statement “The light is on” will be true if “The bulb is not burned out” 
is true and if “The switch is on” is true. Therefore, this logical statement can be made: The 
light is on only if the bulb is not burned out and the switch is on. In this example the first 
statement is true only if the last two statements are true. The first statement (“The light is on”) 
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is then the basic proposition, and the other two statements are the conditions on which the 
proposition depends.

In the 1850s, the Irish logician and mathematician George Boole developed a math-
ematical system for formulating logic statements with symbols so that problems can be 
written and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known 
today, is applied in the design and analysis of digital systems and will be covered in detail 
in Chapter 4.

The term logic is applied to digital circuits used to implement logic functions. Several 
kinds of digital logic circuits are the basic elements that form the building blocks for such 
complex digital systems as the computer. We will now look at these elements and discuss 
their functions in a very general way. Later chapters will cover these circuits in detail.

Three basic logic functions (NOT, AND, and OR) are indicated by standard distinctive 
shape symbols in Figure 1–16. Alternate standard symbols for these logic functions will be 
introduced in Chapter 3. The lines connected to each symbol are the inputs and outputs. 
The inputs are on the left of each symbol and the output is on the right. A circuit that per-
forms a specified logic function (AND, OR) is called a logic gate. AND and OR gates can 
have any number of inputs, as indicated by the dashes in the figure.

NOT ORAND

fg01_01500

FIGURE 1–16  The basic logic functions and symbols.

In logic functions, the true/false conditions mentioned earlier are represented by a 
HIGH (true) and a LOW (false). Each of the three basic logic functions produces a unique 
response to a given set of conditions.

NOT

The NOT function changes one logic level to the opposite logic level, as indicated in 
Figure 1–17. When the input is High (1), the output is Low (0). When the input is Low, 
the output is High. In either case, the output is not the same as the input. The Not func-
tion is implemented by a logic circuit known as an inverter.

HIGH (1) LOW (0) HIGH (1)LOW (0)

fg01_01600

FIGURE 1–17  The NOT function.

AND

The AND function produces a HIGH output only when all the inputs are HIGH, as indi-
cated in Figure 1–18 for the case of two inputs. When one input is HIGH and the other 
input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW. 
The AND function is implemented by a logic circuit known as an AND gate.

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)
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FIGURE 1–18  The AND function.
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OR

The OR function produces a HIGH output when one or more inputs are HIGH, as indicated 
in Figure 1–19 for the case of two inputs. When one input is HIGH or the other input is 
HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the output 
is LOW. The OR function is implemented by a logic circuit known as an OR gate.

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
HIGH (1)

fg01_01800

FIGURE 1–19  The OR function.

Section 1–3  Checkup

	 1.	When does the NOT function produce a HIGH output?

	 2.	When does the AND function produce a HIGH output?

	 3.	When does the OR function produce a HIGH output?

	 4.	What is an inverter?

	 5.	What is a logic gate?

1–4  Combinational and Sequential Logic Functions

The three basic logic functions AND, OR, and NOT can be combined to form various other 
types of more complex logic functions, such as comparison, arithmetic, code conversion, 
encoding, decoding, data selection, counting, and storage. A digital system is an arrange-
ment of the individual logic functions connected to perform a specified operation or pro-
duce a defined output. This section provides an overview of important logic functions and 
illustrates how they can be used in a specific system.

After completing this section, you should be able to

u	 List several types of logic functions

u	 Describe comparison and list the four arithmetic functions

u	 Describe code conversion, encoding, and decoding

u	 Describe multiplexing and demultiplexing

u	 Describe the counting function

u	 Describe the storage function

u	 Explain the operation of the tablet-bottling system

The Comparison Function

Magnitude comparison is performed by a logic circuit called a comparator, covered in 
Chapter 6. A comparator compares two quantities and indicates whether or not they are 
equal. For example, suppose you have two numbers and wish to know if they are equal 
or not equal and, if not equal, which is greater. The comparison function is represented in 
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Figure 1–20. One number in binary form (represented by logic levels) is applied to input A, and 
the other number in binary form (represented by logic levels) is applied to input B. The 
outputs indicate the relationship of the two numbers by producing a HIGH level on the 
proper output line. Suppose that a binary representation of the number 2 is applied to input 
A and a binary representation of the number 5 is applied to input B. (The binary represen-
tation of numbers and symbols is discussed in Chapter 2.) A HIGH level will appear on 
the A 6 B (A is less than B) output, indicating the relationship between the two numbers 
(2 is less than 5). The wide arrows represent a group of parallel lines on which the bits are 
transferred.

The Arithmetic Functions
Addition

Addition is performed by a logic circuit called an adder, covered in Chapter 6. An adder 
adds two binary numbers (on inputs A and B with a carry input Cin) and generates a sum 
(�) and a carry output (Cout), as shown in Figure 1–21(a). Figure 1–21(b) illustrates the 
addition of 3 and 9. You know that the sum is 12; the adder indicates this result by pro-
ducing 2 on the sum output and 1 on the carry output. Assume that the carry input in this 
example is 0.

Two
binary
numbers

Outputs

A

B
A < B

A = B

A > B
Comparator

A

B
A < B

A = B

A > B
Comparator

(a) Basic magnitude comparator

Binary
code for 2

HIGH

LOW

(b) Example: A is less than B (2 < 5) as indicated by

LOW

Binary
code for 5

the HIGH output (A < B)

FIGURE 1–20  The comparison function.

Binary
code for 2

Binary 1

Binary
code for 12

Adder
Binary

code for 3

Binary
code for 9

Binary 0

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

Sum

(a) Basic adder

Σ

Adder

A

B
Cout

Cin

Σ

(b) Example: A plus B (3 + 9 = 12)

FIGURE 1–21  The addition function.

InfoNote

In a microprocessor, the arith-
metic logic unit (ALU) performs 
the operations of add, subtract, 
multiply, and divide as well as the 
logic operations on digital data as 
directed by a series of instructions. 
A typical ALU is constructed of 
many thousands of logic gates.

Subtraction

Subtraction is also performed by a logic circuit. A subtracter requires three inputs: the 
two numbers that are to be subtracted and a borrow input. The two outputs are the differ-
ence and the borrow output. When, for instance, 5 is subtracted from 8 with no borrow 
input, the difference is 3 with no borrow output. You will see in Chapter 2 how subtrac-
tion can actually be performed by an adder because subtraction is simply a special case 
of addition.
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Multiplication

Multiplication is performed by a logic circuit called a multiplier. Numbers are always mul-
tiplied two at a time, so two inputs are required. The output of the multiplier is the product. 
Because multiplication is simply a series of additions with shifts in the positions of the 
partial products, it can be performed by using an adder in conjunction with other circuits.

Division

Division can be performed with a series of subtractions, comparisons, and shifts, and thus it 
can also be done using an adder in conjunction with other circuits. Two inputs to the divider 
are required, and the outputs generated are the quotient and the remainder.

The Code Conversion Function

A code is a set of bits arranged in a unique pattern and used to represent specified informa-
tion. A code converter changes one form of coded information into another coded form. 
Examples are conversion between binary and other codes such as the binary coded decimal 
(BCD) and the Gray code. Various types of codes are covered in Chapter 2, and code con-
verters are covered in Chapter 6.

The Encoding Function

The encoding function is performed by a logic circuit called an encoder, covered in Chap-
ter 6. The encoder converts information, such as a decimal number or an alphabetic char-
acter, into some coded form. For example, one certain type of encoder converts each of the 
decimal digits, 0 through 9, to a binary code. A HIGH level on the input corresponding to 
a specific decimal digit produces logic levels that represent the proper binary code on the 
output lines.

Figure 1–22 is a simple illustration of an encoder used to convert (encode) a calculator 
keystroke into a binary code that can be processed by the calculator circuits.

Binary
code for 9

Encoder9

8 9

4 5 6

1 2 3

0 . +/–

7

Calculator keypad

8
7
6
5
4
3
2
1
0

HIGH

FIGURE 1–22  An encoder used to encode a calculator keystroke into a binary code 
for storage or for calculation.

The Decoding Function

The decoding function is performed by a logic circuit called a decoder, covered in Chapter 6. 
The decoder converts coded information, such as a binary number, into a noncoded form, 
such as a decimal form. For example, one particular type of decoder converts a 4-bit binary 
code into the appropriate decimal digit.

Figure 1–23 is a simple illustration of one type of decoder that is used to activate a 
7-segment display. Each of the seven segments of the display is connected to an output 
line from the decoder. When a particular binary code appears on the decoder inputs, the 
appropriate output lines are activated and light the proper segments to display the decimal 
digit corresponding to the binary code.
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The Data Selection Function

Two types of circuits that select data are the multiplexer and the demultiplexer. The multi-
plexer, or mux for short, is a logic circuit that switches digital data from several input lines 
onto a single output line in a specified time sequence. Functionally, a multiplexer can be 
represented by an electronic switch operation that sequentially connects each of the input 
lines to the output line. The demultiplexer (demux) is a logic circuit that switches digital 
data from one input line to several output lines in a specified time sequence. Essentially, 
the demux is a mux in reverse.

Multiplexing and demultiplexing are used when data from several sources are to be 
transmitted over one line to a distant location and redistributed to several destinations. Fig-
ure 1–24 illustrates this type of application where digital data from three sources are sent 
out along a single line to three terminals at another location.

Decoder

Binary-coded input

7-segment display

FIGURE 1–23  A decoder used to convert a special binary code into a 7-segment 
decimal readout.

Multiplexer
A

Switching
sequence

control input

B

C

∆t2

∆t3

∆t1

∆t2

∆t3

∆t1

Demultiplexer
D

E

F

Data from
 A to D

Data from
B to E

Data from
C to F

Data from
A to D

∆t1 ∆t2 ∆t3 ∆t1

Switching
sequence

control input

FIGURE 1–24  Illustration of a basic multiplexing/demultiplexing application.

InfoNote

The internal computer memories, 
RAM and ROM, as well as the 
smaller caches are semiconduc-
tor memories. The registers in a 
microprocessor are constructed of 
semiconductor flip-flops. Opto-
magnetic disk memories are used 
in the internal hard drive and for 
the CD-ROM.

In Figure 1–24, data from input A are connected to the output line during time interval �t1 
and transmitted to the demultiplexer that connects them to output D. Then, during interval 
�t2, the multiplexer switches to input B and the demultiplexer switches to output E. During 
interval �t3, the multiplexer switches to input C and the demultiplexer switches to output F.

To summarize, during the first time interval, input A data go to output D. During the 
second time interval, input B data go to output E. During the third time interval, input C 
data go to output F. After this, the sequence repeats. Because the time is divided up among 
several sources and destinations where each has its turn to send and receive data, this pro-
cess is called time division multiplexing (TDM).

The Storage Function

Storage is a function that is required in most digital systems, and its purpose is to retain binary 
data for a period of time. Some storage devices are used for short-term storage and some 
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are used for long-term storage. A storage device can “memorize” a bit or a group of bits and 
retain the information as long as necessary. Common types of storage devices are flip-flops, 
registers, semiconductor memories, magnetic disks, magnetic tape, and optical disks (CDs).

Flip-flops

A flip-flop is a bistable (two stable states) logic circuit that can store only one bit at a time, 
either a 1 or a 0. The output of a flip-flop indicates which bit it is storing. A HIGH output 
indicates that a 1 is stored and a LOW output indicates that a 0 is stored. Flip-flops are 
implemented with logic gates and are covered in Chapter 7.

Registers

A register is formed by combining several flip-flops so that groups of bits can be stored. 
For example, an 8-bit register is constructed from eight flip-flops. In addition to storing 
bits, registers can be used to shift the bits from one position to another within the register 
or out of the register to another circuit; therefore, these devices are known as shift registers. 
Shift registers are covered in Chapter 8.

The two basic types of shift registers are serial and parallel. The bits are stored in a serial shift 
register one at a time, as illustrated in Figure 1–25. A good analogy to the serial shift register 
is loading passengers onto a bus single file through the door. They also exit the bus single file.

fg01_02400

0 0 0 00101
Initially, the register contains only invalid
data or all zeros as shown here.

1 0 0 0010
First bit (1) is shifted serially into the
register.

0 1 0 001
Second bit (0) is shifted serially into
register and first bit is shifted right.

1 0 1 00
Third bit (1) is shifted into register and
the first and second bits are shifted right.

0 1 0 1
Fourth bit (0) is shifted into register and
the first, second, and third bits are shifted
right. The register now stores all four bits
and is full.

Serial bits
on input line

FIGURE 1–25  Example of the operation of a 4-bit serial shift register. Each block 
represents one storage “cell” or flip-flop.

fg01_02500

0 0 0 0
Initially, the register is empty,
containing only nondata zeros.

0 1 0 1
All bits are shifted in and
stored simultaneously.

0 1 0 1Parallel bits
on input lines

FIGURE 1–26  Example of the operation of a 4-bit parallel shift register.

The bits are stored in a parallel register simultaneously from parallel lines, as shown in 
Figure 1–26. For this case, a good analogy is loading and unloading passengers on a roller 
coaster where they enter all of the cars in parallel and exit in parallel.
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Semiconductor Memories

Semiconductor memories are devices typically used for storing large numbers of bits. In 
one type of memory, called the read-only memory or ROM, the binary data are perma-
nently or semipermanently stored and cannot be readily changed. In the random-access 
memory or RAM, the binary data are temporarily stored and can be easily changed. Memo-
ries are covered in Chapter 11.

Magnetic Memories

Magnetic disk memories are used for mass storage of binary data. An example is a com-
puter’s internal hard disk. Magnetic tape is still used to some extent in memory applications 
and for backing up data from other storage devices.

Optical Memories

CDs, DVDs, and Blu-ray Discs are storage devices based on laser technology. Data are 
represented by pits and lands on concentric tracks. A laser beam is used to store the data on 
the disc and to read the data from the disc.

The Counting Function

The counting function is important in digital systems. There are many types of digital 
counters, but their basic purpose is to count events represented by changing levels or 
pulses. To count, the counter must “remember” the present number so that it can go to 
the next proper number in sequence. Therefore, storage capability is an important charac-
teristic of all counters, and flip-flops are generally used to implement them. Figure 1–27 
illustrates the basic idea of counter operation. Counters are covered in Chapter 9.

Counter

Parallel
output lines

1 2 3 4 5

Input pulses Sequence of binary codes that represent
the number of input pulses counted.

Binary
code
for 1

Binary
code
for 2

Binary
code
for 3

Binary
code
for 4

Binary
code
for 5

FIGURE 1–27  Illustration of basic counter operation.

A Process Control System

A system for bottling vitamin tablets is shown in the block diagram of Figure 1–28. This 
example system shows how the various logic functions that have been introduced can be 
used together to form a total system. To begin, the tablets are fed into a large funnel-type 
hopper. The narrow neck of the hopper creates a serial flow of tablets into a bottle on 
the conveyor belt below. Only one tablet at a time passes the sensor, so the tablets can 
be counted. The system controls the number of tablets into each bottle and displays a 
continually updated readout of the total number of tablets bottled.

General Operation

The maximum number of tablets per bottle is entered from the keypad, changed to a code 
by the Encoder, and stored in Register A. Decoder A changes the code stored in the register 
to a form appropriate for turning on the display. Code converter A changes the code to a 
binary number and applies it to the A input of the Comparator (Comp).

An optical sensor in the neck of the hopper detects each tablet that passes and produces 
a pulse. This pulse goes to the Counter and advances it by one count; thus, any time during 
the filling of a bottle, the binary state of the counter represents the number of tablets in the 
bottle. The binary count is transferred from the counter to the B input of the comparator 
(Comp). The A input of the comparator is the binary number for the maximum tablets per 
bottle. Now, let’s say that the present number of tablets per bottle is 50. When the binary 
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number in the counter reaches 50, the A = B output of the comparator goes HIGH, indicat-
ing that the bottle is full.

The HIGH output of the comparator causes the valve in the neck of the hopper to close and 
stop the flow of tablets. At the same time, the HIGH output of the comparator activates the 
conveyor, which moves the next empty bottle into place under the hopper. When the bottle is in 
place, the conveyor control issues a pulse that resets the counter to zero. As a result, the output 
of the comparator goes back LOW and causes the hopper valve to restart the flow of tablets.

For each bottle filled, the maximum binary number in the counter is transferred to the 
A input of the Adder. The B input of the adder comes from Register B that stores the total 
number of tablets bottled up through the last bottle filled. The adder produces a new cumu-
lative sum that is then stored in register B, replacing the previous sum. This keeps a running 
total of the tablets bottled during a given run.

The cumulative sum stored in register B goes to Decoder B, which detects when Regis-
ter B has reached its maximum capacity and enables the MUX, which converts the binary 
from parallel to serial form for transmission to the remote DEMUX. The DEMUX converts 
the data back to parallel form for storage.

Binary code for
actual number of
tablets in bottle

HIGH causes new
sum to be stored.

8 9

4 5 6

1 2 3

0 . #

7

Binary code for preset number
of tablets per bottle

Number of
tablets per bottleKeypad for entering

number of tablets

per bottle

HIGH closes valve
and advances
conveyor. LOW
keeps valve open.

One pulse
from sensor
for each tablet
advances
counter by 1.

New total
sum

The binary code representing the number of tablets bottled each time

Register B has reached the maximum accumulated count.

Current total sum

Valve

Sensor

To computer for accumulation and storage of total

number of tablets bottled over time

Pulse resets counter to zero
when next bottle is in place.

DEMUX

Comp
A

B
A = B

Adder

A

B Cout

Σ

Encoder

Code
converter

A

Decoder
B

MUX

Counter

Conveyor
control

Switching sequence
control input

Register
A

Tablets / bottle

Decoder
A

Register
B

fg01_04500

FIGURE 1–28  Block diagram of a tablet-bottling system.
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1–5  Introduction to Programmable Logic

Programmable logic requires both hardware and software. Programmable logic devices 
can be programmed to perform specified logic functions and operations by the manu-
facturer or by the user. One advantage of programmable logic over fixed-function logic 
(covered in Section 1–6) is that the devices use much less board space for an equiva-
lent amount of logic. Another advantage is that, with programmable logic, designs can 
be readily changed without rewiring or replacing components. Also, a logic design can 
generally be implemented faster and with less cost with programmable logic than with 
fixed-function logic. To implement small segments of logic, it may be more efficient to 
use fixed-function logic.

After completing this section, you should be able to

u	 State the major types of programmable logic and discuss the differences

u	 Discuss the programmable logic design process

Programmable Logic Devices (PLDs)

Many types of programmable logic are available, ranging from small devices that can 
replace a few fixed-function devices to complex high-density devices that can replace 
thousands of fixed-function devices. Two major categories of user-programmable logic are 
PLD (programmable logic device) and FPGA (field-programmable gate array), as indi-
cated in Figure 1–29. PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).

Section 1–4  Checkup

	 1.	What does a comparator do?

	 2.	What are the four basic arithmetic operations?

	 3.	Describe encoding and give an example.

	 4.	Describe decoding and give an example.

	 5.	Explain the basic purpose of multiplexing and demultiplexing.

	 6.	Name four types of storage devices.

	 7.	What does a counter do?

SPLDs CPLDs

PLDs FPGAs

Programmable logic

FIGURE 1–29  Programmable logic hierarchy.
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Simple Programmable Logic Device (SPLD)

The SPLD was the original PLD and is still available for small-scale applications. Generally, 
an SPLD can replace up to ten fixed-function ICs and their interconnections, depending 
on the type of functions and the specific SPLD. Most SPLDs are in one of two categories: 
PAL and GAL. A PAL (programmable array logic) is a device that can be programmed one 
time. It consists of a programmable array of AND gates and a fixed array of OR gates, as 
shown in Figure 1–30(a). A GAL (generic array logic) is a device that is basically a PAL 
that can be reprogrammed many times. It consists of a reprogrammable array of AND gates 
and a fixed array of OR gates with programmable ouputs, as shown in Figure 1–30(b). A 
typical SPLD package is shown in Figure 1–31 and generally has from 24 to 28 pins.

Complex Programmable Logic Device (CPLD)

As technology progressed and the amount of circuitry that could be put on a chip (chip 
density) increased, manufacturers were able to put more than one SPLD on a single chip 
and the CPLD was born. Essentially, the CPLD is a device containing multiple SPLDs and 
can replace many fixed-function ICs. Figure 1–32 shows a basic CPLD block diagram with 
four logic array blocks (LABs) and a programmable interconnection array (PIA). Depend-
ing on the specific CPLD, there can be from two to sixty-four LABs. Each logic array block 
is roughly equivalent to one SPLD.

(a) PAL

Fixed OR
array and

output logic

Programmable
AND array

Fixed OR
array and

programmable
output logic

Reprogrammable
AND array

(b) GAL

FIGURE 1–30  Block diagrams of simple programmable logic devices (SPLDs).

fg01_05200

FIGURE 1–31  A typical SPLD 
package.

PIA

LAB LAB

LAB LAB

FIGURE 1–32  General block diagram of a CPLD.

Generally, CPLDs can be used to implement any of the logic functions discussed ear-
lier, for example, decoders, encoders, multiplexers, demultiplexers, and adders. They are 
available in a variety of configurations, typically ranging from 44 to 160 pin packages. 
Examples of CPLD packages are shown in Figure 1–33.
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Field-Programmable Gate Array (FPGA)

An FPGA is generally more complex and has a much higher density than a CPLD, 
although their applications can sometimes overlap. As mentioned, the SPLD and the CPLD 
are closely related because the CPLD basically contains a number of SPLDs. The FPGA, 
however, has a different internal structure (architecture), as illustrated in Figure 1–34. The 
three basic elements in an FPGA are the logic block, the programmable interconnections, 
and the input/output (I/O) blocks.

fg01_05400

(a) 80-pin PQFP (b) 128-pin PQFP

FIGURE 1–33  Typical CPLD plastic quad flat packages (PQFP).
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FIGURE 1–34  Basic structure of an FPGA.

The logic blocks in an FPGA are not as complex as the logic array blocks (LABs) in a 
CPLD, but generally there are many more of them. When the logic blocks are relatively 
simple, the FPGA architecture is called fine-grained. When the logic blocks are larger and 
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more complex, the architecture is called coarse-grained. The I/O blocks are on the outer 
edges of the structure and provide individually selectable input, output, or bidirectional 
access to the outside world. The distributed programmable interconnection matrix provides 
for interconnection of the logic blocks and connection to inputs and outputs. Large FPGAs 
can have tens of thousands of logic blocks in addition to memory and other resources. A 
typical FPGA ball-grid array package is shown in Figure 1–35. These types of packages 
can have over 1000 input and output pins.

The Programming Process

An SPLD, CPLD, or FPGA can be thought of as a “blank slate” on which you implement a 
specified circuit or system design using a certain process. This process requires a software 
development package installed on a computer to implement a circuit design in the program-
mable chip. The computer must be interfaced with a development board or programming 
fixture containing the device, as illustrated in Figure 1–36.

fg01_05600

(a) Top view (b) Bottom view

FIGURE 1–35  A typical ball-grid array (BGA) package.

fg03_06900

 

PLD development board

Programmable logic device

FIGURE 1–36  Basic setup for programming a PLD or FPGA. Graphic entry of a logic 
circuit is shown for illustration. Text entry such as VHDL can also be used.  (Photo courtesy 
of Digilent, Inc.)

Several steps, called the design flow, are involved in the process of implementing a digi-
tal logic design in a programmable logic device. A block diagram of a typical programming 
process is shown in Figure 1–37. As indicated, the design flow has access to development 
software.
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Design Entry

This is the first programming step. The circuit or system design must be entered into the 
design application software using text-based entry, graphic entry (schematic capture), or 
state diagram description. Design entry is device independent. Text-based entry is accom-
plished with a hardware description language (HDL) such as VHDL, Verilog, or AHDL. 
Graphic (schematic) entry allows prestored logic functions to be selected, placed on the 
screen, and then interconnected to create a logic design. State-diagram entry requires spec-
ification of both the states through which a sequential logic circuit progresses and the 
conditions that produce each state change. VHDL will be used in this textbook to illustrate 
text-based entry of a digital design. A VHDL tutorial is available on the website.

Once a design has been entered, it is compiled. A compiler is a program that controls 
the design flow process and translates source code into object code in a format that can be 
logically tested or downloaded to a target device. The source code is created during design 
entry, and the object code is the final code that actually causes the design to be imple-
mented in the programmable device.

Functional Simulation

The entered and compiled design is simulated by software to confirm that the logic circuit 
functions as expected. The simulation will verify that correct outputs are produced for a 
specified set of inputs. A device-independent software tool for doing this is generally called 
a waveform editor. Any flaws demonstrated by the simulation would be corrected by going 
back to design entry and making appropriate changes.

Synthesis

Synthesis is where the design is translated into a netlist, which has a standard form and is 
device independent.

Download

Development
software

Compiler

Design entry
HDL or graphic

Functional
simulation

Synthesis

Implementation

Timing
simulation

FIGURE 1–37  Basic programmable logic design flow block diagram.
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Implementation

Implementation is where the logic structures described by the netlist are mapped into the 
actual structure of the specific device being programmed. The implementation process is 
called fitting or place and route and results in an output called a bitstream, which is device 
dependent.

Timing Simulation

This step comes after the design is mapped into the specific device. The timing simula-
tion is basically used to confirm that there are no design flaws or timing problems due to 
propagation delays.

Download

Once a bitstream has been generated for a specific programmable device, it has to be down-
loaded to the device to implement the software design in hardware. Some programmable 
devices have to be installed in a special piece of equipment called a device programmer or 
on a development board. Other types of devices can be programmed while in a system—
called in-system programming (ISP)—using a standard JTAG (Joint Test Action Group) 
interface. Some devices are volatile, which means they lose their contents when reset or 
when power is turned off. In this case, the bitstream data must be stored in a memory and 
reloaded into the device after each reset or power-off. Also, the contents of an ISP device 
can be manipulated or upgraded while it is operating in a system. This is called “on-the-
fly” reconfiguration.

The Microcontroller

A microcontroller is different than a PLD. The internal circuits of a microcontroller are 
fixed, and a program (series of instructions) directs the microcontroller operation in order 
to achieve a specific outcome. The internal circuitry of a PLD is programmed into it, and 
once programmed, the circuitry performs required operations. Thus, a program determines 
microcontroller operation, but in a PLD a program determines the logic function. Micro-
controllers are generally programmed with either the C language or the BASIC language.

A microcontroller is basically a special-purpose small computer. Microcontrollers are 
generally used for embedded system applications. An embedded system is a system that is 
designed to perform one or a few dedicated functions within a larger system. By contrast, 
a general-purpose computer, such as a laptop, is designed to perform a wide range of func-
tions and applications.

Embedded microcontrollers are used in many common applications. The embedded 
microcontroller is part of a complete system, which may include additional electronics and 
mechanical parts. For example, a microcontroller in a television set displays the input from 
the remote unit on the screen and controls the channel selection, audio, and various menu 
adjustments like brightness and contrast. In an automobile a microcontroller takes engine 
sensor inputs and controls spark timing and fuel mixture. Other applications include home 
appliances, thermostats, cell phones, and toys.

Section 1–5  Checkup

	 1.	List three major categories of programmable logic devices and specify their 
acronyms.

	 2.	How does a CPLD differ from an SPLD?

	 3.	Name the steps in the programming process.

	 4.	Briefly explain each step named in question 3.

	 5.	What are the two main functional characteristics of a microcontroller?

M01_FLOY5983_11_GE_C01.indd Page 39  11/11/14  10:27 AM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



40	 Introductory Concepts

1–6  Fixed-Function Logic Devices

All the logic elements and functions that have been discussed are generally available in 
integrated circuit (IC) form. Digital systems have incorporated ICs for many years because 
of their small size, high reliability, low cost, and low power consumption. Despite the trend 
toward programmable logic, fixed-function logic continues to be used although on a more 
limited basis in specific applications. It is important to be able to recognize the IC pack-
ages and to know how the pin connections are numbered, as well as to be familiar with 
the way in which circuit complexities and circuit technologies determine the various IC 
classifications.

After completing this section, you should be able to

u	 Recognize the difference between through-hole devices and surface-mount 
fixed-function devices

u	 Identify dual in-line packages (DIP)

u	 Identify small-outline integrated circuit packages (SOIC)

u	 Identify plastic leaded chip carrier packages (PLCC)

u	 Identify leadless ceramic chip carrier packages (LCC)

u	 Determine pin numbers on various types of IC packages

u	 Explain the complexity classifications for fixed-function ICs

A monolithic integrated circuit (IC) is an electronic circuit that is constructed entirely 
on a single small chip of silicon. All the components that make up the circuit—transistors, 
diodes, resistors, and capacitors—are an integral part of that single chip. Fixed-function 
logic and programmable logic are two broad categories of digital ICs. In fixed-function 
logic devices, the logic functions are set by the manufacturer and cannot be altered.

Figure 1–38 shows a cutaway view of one type of fixed-function IC package with the 
circuit chip shown within the package. Points on the chip are connected to the package pins 
to allow input and output connections to the outside world.

Plastic
case

Pins

Chip

fg01_02800

FIGURE 1–38  Cutaway view of one type of fixed-function IC package (dual in-line 
package) showing the chip mounted inside, with connections to input and output pins.

IC Packages

Integrated circuit (IC) packages are classified according to the way they are mounted on 
printed circuit boards (PCBs) as either through-hole mounted or surface mounted. The 
through-hole type packages have pins (leads) that are inserted through holes in the PCB 
and can be soldered to conductors on the opposite side. The most common type of through-
hole package is the dual in-line package (DIP) shown in Figure 1–39(a).
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Another type of IC package uses surface-mount technology (SMT). Surface mounting 
is a space-saving alternative to through-hole mounting. The holes through the PCb are 
unnecessary for SMT. The pins of surface-mounted packages are soldered directly to con-
ductors on one side of the board, leaving the other side free for additional circuits. Also, for 
a circuit with the same number of pins, a surface-mounted package is much smaller than a 
dual in-line package because the pins are placed closer together. An example of a surface-
mounted package is the small-outline integrated circuit (SOIC) shown in Figure 1–39(b).

Various types of SMT packages are available in a range of sizes, depending on the 
number of leads (more leads are required for more complex circuits and lead configura-
tions). Examples of several types are shown in Figure 1–40. As you can see, the leads of the 
SSOP (shrink small-outline package) are formed into a “gull-wing” shape. The leads of the 
PLCC (plastic-leaded chip carrier) are turned under the package in a J-type shape. Instead 
of leads, the LCC (leadless ceramic chip) has metal contacts molded into its ceramic body. 
The LQFP (low-profile quad flat package) also has gull-wing leads. Both the CSP (chip 
scale package) and the FBGA (fine-pitch ball grid array) have contacts embedded in the 
bottom of the package.

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

fg01_02900

FIGURE 1–39  Examples of through-hole and surface-mounted devices. The DIP is larger 
than the SOIC with the same number of leads. This particular DIP is approximately 0.785 in. 
long, and the SOIC is approximately 0.385 in. long.

(c) LCC (350 � 350 mils)(a) SSOP (153 � 193 mils) (b) PLCC (350 � 350 mils)

(d) LQFP (7 � 7 mm) (e) Laminate CSP bottom view
     (3.5 � 3.5 mm)

(f) FBGA bottom view
     (4 � 4 mm)

fg01_04000FIGURE 1–40  Examples of SMT package configurations.  Parts (e) and (f) show bottom 
views.
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Pin Numbering

All IC packages have a standard format for numbering the pins (leads). The dual in-
line packages (DIPs) and the shrink small-outline packages (SSOP) have the numbering 
arrangement illustrated in Figure 1–41(a) for a 16-pin package. Looking at the top of the 
package, pin 1 is indicated by an identifier that can be either a small dot, a notch, or a bev-
eled edge. The dot is always next to pin 1. Also, with the notch oriented upward, pin 1 is 
always the top left pin, as indicated. Starting with pin 1, the pin numbers increase as you 
go down, then across and up. The highest pin number is always to the right of the notch or 
opposite the dot.

The PLCC and LCC packages have leads arranged on all four sides. Pin 1 is indicated by 
a dot or other index mark and is located at the center of one set of leads. The pin numbers 
increase going counterclockwise as viewed from the top of the package. The highest pin 
number is always to the right of pin 1. Figure 1–41(b) illustrates this format for a 20-pin 
PLCC package.

(a) DIP or SSOP

Notch

Pin 1
identifier

Pin 1
identifier

3 19

9 13

14

18

8

4

(b) PLCC or LCC

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

fg01_03100

FIGURE 1–41  Pin numbering for two examples of standard types of IC packages. 
Top views are shown.

Complexity Classifications for Fixed-Function ICs

Fixed-function digital ICs are classified according to their complexity. They are listed here 
from the least complex to the most complex. The complexity figures stated here for SSI, 
MSI, LSI, VLSI, and ULSI are generally accepted, but definitions may vary from one 
source to another.

•	 Small-scale integration (SSI) describes fixed-function ICs that have up to ten equiv-
alent gate circuits on a single chip, and they include basic gates and flip-flops.

•	 Medium-scale integration (MSI) describes integrated circuits that have from 10 to 
100 equivalent gates on a chip. They include logic functions such as encoders, decoders, 
counters, registers, multiplexers, arithmetic circuits, small memories, and others.

•	 Large-scale integration (LSI) is a classification of ICs with complexities of from 
more than 100 to 10,000 equivalent gates per chip, including memories.

•	 Very large-scale integration (VLSI) describes integrated circuits with complexities 
of from more than 10,000 to 100,000 equivalent gates per chip.

•	 Ultra large-scale integration (ULSI) describes very large memories, larger micro-
processors, and larger single-chip computers. Complexities of more than 100,000 
equivalent gates per chip are classified as ULSI.

Integrated Circuit Technologies

The types of transistors with which all integrated circuits are implemented are either MOSFETs 
(metal-oxide semiconductor field-effect transistors) or bipolar junction transistors. A circuit 

M01_FLOY5983_11_GE_C01.indd Page 42  11/11/14  10:28 AM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Test and Measurement Instruments	 43

technology that uses MOSFETs is CMOS (complementary MOS). One type of fixed-
function digital circuit technology uses bipolar junction transistors and is sometimes 
called TTL (transistor-transistor logic). BiCMOS uses a combination of both CMOS 
and bipolar.

All gates and other functions can be implemented with either type of circuit technology. 
SSI and MSI circuits are generally available in both CMOS and bipolar. LSI, VLSI, and 
ULSI are generally implemented with CMOS because it requires less area on a chip and 
consumes less power. There is more on these integrated technologies in Chapter 3. Refer to 
Chapter 15 Integrated Circuit Technologies on the website for a thorough coverage.

Section 1–6  Checkup

	 1.	What is an integrated circuit?

	 2.	Define the terms DIP, SMT, SOIC, SSI, MSI, LSI, VLSI and ULSI.

	 3.	Generally, in what classification does a fixed-function IC with the following number 
of equivalent gates fall?

(a)	 10

(b)	 75
(c)	 500
(d)	 15,000
(e)	 200,000

1–7  Test and Measurement Instruments

A variety of instruments are available for use in troubleshooting and testing. Some common 
types of instruments are introduced and discussed in this section.

After completing this section, you should be able to

u	 Distinguish between an analog and a digital oscilloscope

u	 Recognize common oscilloscope controls

u	 Determine amplitude, period, and frequency of a pulse waveform with an oscilloscope

u	 Discuss the logic analyzer and some common formats

u	 Describe the purpose of the digital multimeter (DMM), the dc power supply, the 
logic probe, and the logic pulser

The Oscilloscope

The oscilloscope (scope for short) is one of the most widely used instruments for general 
testing and troubleshooting. The scope is basically a graph-displaying device that traces 
the graph of a measured electrical signal on its screen. In most applications, the graph 
shows how signals change over time. The vertical axis of the display screen represents 
voltage, and the horizontal axis represents time. Amplitude, period, and frequency of a 
signal can be measured using the oscilloscope. Also, the pulse width, duty cycle, rise 
time, and fall time of a pulse waveform can be determined. Most scopes can display 
at least two signals on the screen at one time, enabling their time relationship to be 
observed. A typical digital oscilloscopes with a voltage probe connected is shown in 
Figure 1–42.

InfoNote

The analog scope was the earli-
est type of oscilloscope, but it has 
largely been replaced by the digital 
scope although analog scopes may 
still occasionally be found. The 
analog scope used a cathode ray 
tube (CRT) to display waveforms by 
sweeping an electron beam across 
the screen and controlling its up 
and down motion according to the 
measured waveform. Analog scopes 
were more limited in features than 
digital scopes in terms of storing 
and displaying waveform details.
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FIGURE 1–42  Typical digital oscilloscope with voltage probe.  Used with permission from 
Tektronix, Inc.

fg01_04300

Vertical circuits

Trigger circuits Horizontal circuits

Oscilloscope

Probe

Board under test

1010011010

ADC

Processor

Acquisition circuits

Reconstruction
and display

circuits

1010011010

Memory

FIGURE 1–43  Block diagram of a digital oscilloscope.  (Photo courtesy of Digilent, Inc.)

A digital scope converts the measured waveform to digital information by a sampling 
process in an analog-to-digital converter (ADC). The digital information is then used to 
reconstruct the waveform on the screen. Figure 1–43 shows a basic block diagram for a 
digital oscilloscope.
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Oscilloscope Controls

A front panel view of a typical four-channel digital oscilloscope is shown in Figure 1–44 
(Some scopes have only two channels). Instruments vary depending on model and manu-
facturer, but most have certain common features. For example, each of the four vertical 
sections contain a Position control, a channel menu button, and a scale (volts/div) control. 
The horizontal section also contains a scale (sec/div) control.

Some of the main oscilloscope controls are now discussed. Refer to the user manual for 
complete details of your particular scope.

Vertical Controls

In the vertical section of the scope in Figure 1–44, there are identical controls for each 
of the four channels (1, 2, 3, and 4). The Position control lets you position a displayed 
waveform up or down vertically on the screen. The buttons on the right side of the screen 
provide for the selection of several items that appear on the screen, such as the coupling 
modes (ac, dc, or ground), coarse or fine adjustment for the scale (volts/div), signal inver-
sion, and other parameters. The volts/div control adjusts the number of volts represented 
by each vertical division on the screen. The volts/div setting for each channel is displayed 
on the bottom of the screen.

Trigger controls

Horizontal controls

Vertical controls

Channel inputs

FIGURE 1–44  A typical digital oscilloscope front panel. Numbers below screen indicate 
the values for each division on the vertical (voltage) and horizontal (time) scales and can 
be varied using the vertical and horizontal controls on the scope.  Used with permission from 
Tektronix, Inc.

Horizontal Controls

In the horizontal section, the controls apply to all channels. The Position control lets you 
move a displayed waveform left or right horizontally on the screen. The Menu buttons 
provide for the selection of several items that appear on the screen such as the main time 
base, expanded view of a portion of a waveform, and other parameters. The sec/div control 
adjusts the time represented by each horizontal division or main time base. The sec/div set-
ting is displayed at the bottom of the screen.

Trigger Controls

In the Trigger control section, the Level control determines the point on the triggering 
waveform where triggering occurs to initiate the sweep to display input waveforms. The 
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Trig Menu button provides for the selection of several items that appear on the screen, 
including edge or slope triggering, trigger source, trigger mode, and other parameters. 
There is also an input for an external trigger signal.

Triggering stabilizes a waveform on the screen or properly triggers on a pulse that 
occurs only one time or randomly. Also, it allows you to observe time delays between two 
waveforms. Figure 1–45 compares a triggered to an untriggered signal. The untriggered 
signal tends to drift across the screen, producing what appears to be multiple waveforms.

(a) Untriggered waveform display (b) Triggered waveform display

fg01_03700

FIGURE 1–45  Comparison of an untriggered and a triggered waveform on an 
oscilloscope.

Coupling a Signal into the Scope

Coupling is the method used to connect a signal voltage to be measured into the oscil-
loscope. DC and AC coupling are usually selected from the Vertical menu on a scope. DC 
coupling allows a waveform including its dc component to be displayed. AC coupling 
blocks the dc component of a signal so that you see the waveform centered at 0 V. The 
Ground mode allows you to connect the channel input to ground to see where the 0 V 
reference is on the screen. Figure 1–46 illustrates the result of DC and AC coupling using 
a pulse waveform that has a dc component.

0 V

(a) DC coupled waveform

0 V

(b) AC coupled waveform

fg01_03800

FIGURE 1–46  Displays of the same waveform having a dc component.

The voltage probe, shown connected to the oscilloscope in Figure 1–42, is essential for 
connecting a signal to the scope. Since all instruments tend to affect the circuit being mea-
sured due to loading, most scope probes provide a high series resistance to minimize load-
ing effects. Probes that have a series resistance ten times larger than the input resistance of 
the scope are called *  10 probes. Probes with no series resistance are called *  1 probes. 
The oscilloscope adjusts its calibration for the attenuation of the type of probe being used. 
For most measurements, the *  10 probe should be used. However, if you are measuring 
very small signals, a *  1 may be the best choice.

The probe has an adjustment that allows you to compensate for the input capacitance of 
the scope. Most scopes have a probe compensation output that provides a calibrated square 
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wave for probe compensation. Before making a measurement, you should make sure that 
the probe is properly compensated to eliminate any distortion introduced. Typically, there 
is a screw or other means of adjusting compensation on a probe. Figure 1–47 shows scope 
waveforms for three probe conditions: properly compensated, undercompensated, and 
overcompensated. If the waveform appears either over- or undercompensated, adjust the 
probe until the properly compensated square wave is achieved.

Properly compensated Undercompensated Overcompensated

fg01_04000

FIGURE 1–47  Probe compensation conditions.

EXAMPLE 1–3

Based on the readouts, determine the amplitude and the period of the pulse waveform on 
the screen of a digital oscilloscope as shown in Figure 1–48. Also, calculate the frequency.

Ch1 10    s1 V

fg01_04100

FIGURE 1–48 

Solution

The volts/div setting is 1 V. The pulses are three divisions high. Since each division 
represents 1 V, the pulse amplitude is

Amplitude = (3 div)(1 V/div) = 3 V

The sec/div setting is 10 ms. A full cycle of the waveform (from beginning of one pulse 
to the beginning of the next) covers four divisions; therefore, the period is

Period = (4 div)(10 ms/div) = 40 Ms

The frequency is calculated as

f =
1

T
=

1

40 ms
= 25 kHz

Related Problem

For a volts/div setting of 4 V and sec/div setting of 2 ms, determine the amplitude and 
period of the pulse shown on the screen in Figure 1–48.
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Oscilloscope Specifications

Several key specifications define the performance of a digital oscilloscope.

Bandwidth

The bandwidth describes the frequency range of an input signal that can be processed 
by the oscilloscope without being significantly distorted. Bandwidth is the frequency at 
which a sinusoidal input signal is attenuated to 70.7 percent of its original amplitude. As 
a rule of thumb, use a scope with a minimum bandwidth of at least twice the highest fre-
quency component in the input signal.

Pulse signals have sharp rising and falling edges and are composed of high-frequency 
harmonics. For example, a 10 MHz pulse waveform such as a square wave contains a 
10 MHz sine wave (fundamental) and a large number of significant higher-frequency sine 
waves called harmonics. In order to accurately capture the shape of the signal, the oscillo-
scope must have a bandwidth to capture several of these harmonics. If a sufficient number 
of harmonics are not captured, the resulting signal will be distorted and an incorrect mea-
surement will result.

Sampling Rate

The sampling rate is the rate at which the analog-to-digital converter (ADC) in the oscil-
loscope is clocked to digitize the incoming signal. The sampling rate and bandwidth are not 
directly related, but the sampling rate should be at least five times the bandwidth. Figure 1–49 
illustrates the difference between a low sampling rate and a much higher sampling rate. Part 
(a) shows how a sampling rate that is too low distorts the shape of the rising edge. In part (b), 
the higher sampling rate results in a much more accurate representation of the rising edge. 
When the sampling rate is sufficiently high, the signal can be precisely reproduced.

(a) Low sampling rate

t

(b) Higher sampling rate

t

FIGURE 1–49  Example of sampling a waveform. The dashed lines represent the clock 
(sampling) rate. The incoming signal is black and the resulting representation is blue. 
The red dots are the points at which the waveform values are sampled.

Record Length

The record length is the number of samples (data points) that the oscilloscope can capture 
and store. The capacity of acquisition memory determines the maximum record length. 
The memory must be able to store all the data points that are sampled during a certain time 
interval. The relationship between acquisition time, sampling rate, and record length is

Acquisition time =
Record length

Sampling rate

Both the acquisition time (length of time that samples are taken) and/or sampling rate 
are limited by the record length of the oscilloscope. For example, if the record length is 
1 Msample (1 million samples) and the sampling rate is 200 Msample/s, the oscilloscope 
acquisition time is 1 Msample , 200 Msample/s = 5 ms. Therefore, one 5 ms segment of 
the sampled signal can be captured and stored at a time.
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Resolution

The resolution is the number of bits used to digitally represent a sampled value. The num-
ber of discrete voltage levels used to represent a signal is defined as 2x, where x is the reso-
lution in bits. For example, if the resolution is four bits, 24

= 16 levels can be represented. 
If the resolution is eight bits, 28

= 256 levels can be represented. The more levels that are 
used to represent a signal, the higher the resolution and thus a more accurate representation 
is obtained. Also, the higher the resolution, the smaller the signal that can be measured.

Vertical Sensitivity

The vertical sensitivity indicates how much the oscilloscope’s vertical amplifier can amplify 
a signal. Vertical sensitivity is usually given in volts, millivolts (mV), or microvolts (mV) 
per vertical division on the screen.

Horizontal Accuracy

The horizontal accuracy or time base indicates how accurately the horizontal system can 
display the timing of a signal, usually expressed as a percentage. The time base is shown 
on the horizontal axis of the screen in units of seconds per division.

The Logic Analyzer

Logic analyzers are used for measurements of multiple digital signals and measurement 
situations with difficult trigger requirements. Basically, the logic analyzer came about as 
a result of microprocessors in which troubleshooting or debugging required many more 
inputs than an oscilloscope offered. Many oscilloscopes have two input channels and some 
are available with four. Logic analyzers are typically available with from 16 to 136 input 
channels. Generally, an oscilloscope is used either when amplitude, frequency, and other 
timing parameters of a few signals at a time or when parameters such an rise and fall times, 
overshoot, and delay times need to be measured. The logic analyzer is used when the logic 
levels of a large number of signals need to be determined and for the correlation of simul-
taneous signals based on their timing relationships. A typical logic analyzer is shown in 
Figure 1–50, and a simplified block diagram is in Figure 1–51.

FIGURE 1–50  Typical logic analyzer.  Used with permission from Tektronix, Inc.

M01_FLOY5983_11_GE_C01.indd Page 49  11/11/14  10:30 AM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



50	 Introductory Concepts

Data Acquisition

The large number of signals that can be acquired at one time is a major factor that distin-
guishes a logic analyzer from an oscilloscope. Generally, the two types of data acquisition 
in a logic analyzer are the timing acquisition and the state acquisition. Timing acquisi-
tion is used primarily when the timing relationships among the various signals need to be 
determined. State acquisition is used when you need to view the sequence of states as they 
appear in a system under test.

It is often helpful to have correlated timing and state data, and most logic analyzers can 
simultaneously acquire that data. For example, a problem may initially be detected as an 
invalid state. However, the invalid condition may be caused by a timing violation in the 
system under test. Without both types of information available at the same time, isolating 
the problem could be very difficult.

Channel Count and Memory Depth

Logic analyzers contain a real-time acquisition memory in which sampled data from all 
the channels are stored as they occur. Two features that are of primary importance are the 
channel count and the memory depth. The acquisition memory can be thought of as having 
a width equal to the number of channels and a depth that is the number of bits that can be 
captured by each channel during a certain time interval.

Channel count determines the number of signals that can be acquired simultaneously. 
In certain types of systems, a large number of signals are present, such as on the data bus 
in a microprocessor-based system. The depth of the acquisition memory (record length) 
determines the amount of data from a given channel that you can view at any given time.

Analysis and Display

Once data has been sampled and stored in the acquisition memory, it can typically be used 
in several different display and analysis modes. The waveform display is much like the 
display on an oscilloscope where you can view the time relationship of multiple signals. 
The listing display indicates the state of the system under test by showing the values of the 
input waveforms (1s and 0s) at various points in time (sample points). Typically, this data 
can be displayed in hexadecimal or other formats. Figure 1–52 shows simplified versions 
of these two display modes. The listing display samples correspond to the sampled points 
shown in red on the waveform display. You will study binary and hexadecimal (hex) num-
bers in the next chapter.

Two more modes that are useful in computer and microprocessor-based system testing 
are the instruction trace and the source code debug. The instruction trace determines and 
displays instructions that occur, for example, on the data bus in a microprocessor-based 
system. In this mode the op-codes and the mnemonics (English-like names) of instructions 

Clock
circuits

Input buffer
and

sampling

Acquisition
memory

Trigger logic
and memory

control

Channel
inputs

Analysis
and

display

FIGURE 1–51  Simplified block diagram of a logic analyzer.
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are generally displayed as well as their corresponding memory address. Many logic ana-
lyzers also include a source code debug mode, which essentially allows you to see what is 
actually going on in the system under test when a program instruction is executed.

Probes

Three basic types of probes are used with logic analyzers. One is a multichannel probe, as 
shown in Figure 1–53, that can be attached to points on a circuit board under test. Another 
type of multichannel probe, similar to the one shown, plugs into dedicated sockets mounted 
on a circuit board. A third type is a single-channel clip-on probe.

1

(a) Waveform display (b) Listing display

2 3 4 5 6 7 8

Sample

1
2
3
4
5
6
7
8

Binary

1111
1110
1101
1100
1011
1010
1001
1000

Hex

F
E
D
C
B
A
9
8

Time

1 ns
10 ns
20 ns
30 ns
40 ns
50 ns
60 ns
70 ns

fg01_04400

FIGURE 1–52  Two logic analyzer display modes.

FIGURE 1–53  A typical multichannel logic analyzer probe.  Used with permission from 
Tektronix, Inc.

Signal Generators
Logic Signal Source

These instruments are also known as pulse generators and function generators. They are 
specifically designed to generate digital signals with precise edge placement and ampli-
tudes and to produce the streams of 1s and 0s needed to test computer buses, microproces-
sors, and other digital systems.
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Arbitrary Waveform Generators and Function Generators

The arbitrary waveform generator can be used to generate standard signals like sine waves, 
triangular waves, and pulses as well as signals with various shapes and characteristics. 
Waveforms can be defined by mathematical or graphical input. A typical arbitrary wave-
form generator is shown in Figure 1–54(a).

(a) Arbitrary waveform generator (b) Function generator 

FIGURE 1–54  Typical signal generators.  Used with permission from Tektronix, Inc.

The function generator, shown in part (b), provides pulse, sine, and triangular wave-
forms, often with programmable capability. Signal generators have logic-compatible out-
puts to provide the proper level and drive for inputs to digital circuits.

The Digital Multimeter (DMM)

The digital multimeter (DMM) is a versatile instrument found on virtually all workbenches. 
All DMMs can make basic ac and dc voltage, current, and resistance measurements. Volt-
age and resistance measurements are the principal quantities measured with DMMs. For 
current measurements, the leads are switched to a separate set of jacks and placed in series 
with the current path. In this mode, the meter acts like a short circuit, so serious problems 
can occur if the meter is incorrectly placed in parallel.

In addition to the basic measurements, most DMMs can also test diodes and capacitors and 
frequently will have other capabilities such as frequency measurements. Most new DMMs 
have an autoranging feature, meaning that the user is not required to select a range for making 
a measurement. If the range is not set automatically, the user needs to set the range switch for 
voltage measurements higher than the expected reading to avoid damage to the meter.

In digital circuits, DMMs are the preferred instrument for setting dc power supply volt-
ages or checking the supply voltage on various points in the circuit. Because digital signals 
are nonsinusoidal, the DMM is generally not used for measurements of digital signals 
(although the average or rms value can be determined in some cases). For signal measure-
ments, the oscilloscope is the preferred instrument.

In addition, DMMs are used in digital circuits for testing continuity between points in 
a circuit and checking resistors with the ohmmeter function. For checking a circuit path or 
looking for a short, DMMs are the instrument of choice. Many DMMs sound a beep or tone 
when there is continuity between the leads, making it handy to trace paths without having 
to look at the display. If the DMM is not equipped with a continuity test, the ohmmeter 
function can be used instead. Measurements of continuity or resistance are never done in 
“live” circuits, as any circuit voltage will disrupt the readings and can be dangerous.

Typical test bench and handheld DMMs are shown in Figure 1–55.

The DC Power Supply

This instrument is an indispensable instrument on any test bench. The power supply con-
verts ac power from the standard wall outlet into regulated dc voltage. All digital circuits 
require dc voltage. Most logic circuits require from 1.2 V to 5 V to operate. The power 
supply is used to power circuits during design, development, and troubleshooting when in-
system power is not available. A typical test bench dc power supply is shown in Figure 1–56.
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(a) Bench-type DMM   (b) Handheld DMM

FIGURE 1–55  Typical DMMs.  Used with permission from (a) B  +  K Precision®; (b) Fluke

FIGURE 1–56  Typical bench-type dc power supply.  Used with permission from Tektronix, Inc.

The Logic Probe and Logic Pulser

The logic probe is a convenient, inexpensive handheld tool that provides a means of trou-
bleshooting a digital circuit by sensing various conditions at a point in a circuit. A probe 
can detect high-level voltage, low-level voltage, single pulses, repetitive pulses, and opens 
on a PCb. The probe lamp indicates the condition that exists at a certain point, as indicated 
in the figure.

The logic pulser produces a repetitive pulse waveform that can be applied to any point 
in a circuit. You can apply pulses at one point in a circuit with the pulser and check another 
point for resulting pulses with a logic probe.

Section 1–7  Checkup

	 1.	What is the basic function of an oscilloscope?

	 2.	Name two main differences between an oscilloscope and a logic analyzer?

	 3.	What does the volts/div control on an oscilloscope do?

	 4.	What does the sec/div control on an oscilloscope do?

	 5.	What is record length in relation to a digital oscilloscope?

	 6.	What is the purpose of a function generator?
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1–8  Introduction to Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure 
in a system. To be an effective troubleshooter, you must understand how the system works 
and be able to recognize incorrect performance. Troubleshooting can be at the system level, 
the circuit board level, or the component level. Today, troubleshooting down to the board 
level is usually sufficient. Once a board is determined to be defective, it is usually replaced 
with a new one. However, if the circuit board is to be saved, component-level troubleshoot-
ing may be necessary.

After completing this section, you should be able to

u	 Describe the steps in a troubleshooting procedure

u	 Discuss the half-splitting method

u	 Discuss the signal-tracing method

Basic Hardware Troubleshooting Methods

Troubleshooting at a system level requires good detective work. When a problem occurs, 
the list of potential causes is usually quite large. You must gather a sufficient amount of 
detailed information and systematically narrow the list of potential causes to determine the 
problem. As a general guide to troubleshooting a system, the following steps should be 
followed:

	 1.	 Gather information on the problem.

	 2.	 Identify the symptoms and possible failures.

	 3.	 Isolate point(s) of failure.

	 4.	 Apply proper tools to determine the cause of the problem.

	 5.	 Fix the problem.

Check the Obvious

After collecting information on the problem, make sure to first check for obvious faults: 
absence of DC power, blown fuses, tripped circuit breakers, faulty burned out indica-
tors such as lamps, loose connectors, broken or loose wires, switches in the wrong 
position, physical damages, boards not properly inserted, wire fragments or solder 
splashes shorting components, and poor quality contacts on printed circuit boards. For 
any troubleshooting task, you must have a system/circuit diagram. Other useful docu-
ments are a table of signal characteristics and a prewritten troubleshooting guide for 
the specific system.

Proper grounding is important when you set up to take measurements or work on a system. Properly 
grounding the oscilloscope protects you from shock, and grounding yourself protects circuits from 
damage. Grounding the oscilloscope means to connect it to earth ground by plugging the three-
prong power cord into a grounded outlet. Grounding yourself means using a wrist-type grounding 
strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value 
resistor between the strap and ground for protection against accidental contact with a voltage source.

For accurate measurements, make sure that the ground in the circuit you are testing is the same 
as the scope ground. This can be done by connecting the ground lead on the scope probe to a known 
ground point in the circuit, such as the metal chassis or a ground point on the circuit.
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Replacement

Assume that a given system has multiple circuit boards. The simplest and quickest way to fix 
a problem is by replacing the circuit boards one by one with a known good board until the 
problem is corrected. This approach, of course, requires that duplicate boards be available. 
Another drawback to this approach is that an outside source may be causing the fault, such 
as a short in a connector; and by replacing the board, the fault is transferred to the new board.

Reproducing the Symptoms

Once the symptoms of a faulty system are identified, find a way to reproduce the problem. 
If the problem can be reproduced, it can be isolated and resolved. In some systems, the 
symptom may be self-evident, but in others it may have to be induced by application of a 
level or signal at a given point. Once this is done, then a systematic approach can be used 
to isolate the cause or causes of a problem. You should always consider the possibility that 
there is more than one fault.

If the symptoms are intermittent, the task of troubleshooting becomes more difficult. 
For example, in some cases a component may be temperature sensitive and fail only when 
the temperature is too high or too low. In these cases, the temperature can be varied by the 
simple process of blowing cool air on the component of concern to lower the temperature 
or using a heat gun to raise it, while monitoring the operation of the system.

Half-Splitting Method

In this procedure, you check for the presence or absence of a signal at a point halfway 
between input and output. If the signal is present, you know the fault is in the second half. If 
the signal is absent, you know the fault is in the first half. Then you split the defective half 
in half and check for a signal. The process is continued until a certain area of the system has 
been isolated. This may be a single circuit board in a system with many circuit boards or a 
component on a given circuit board. In a large system, this procedure can save a lot of time 
over moving down the line checking each block or stage as you go. This method is usually 
best applied in large complex systems. Figure 1–57 is a simple illustration of this method. 
The system is represented with the four green blocks. Additional steps are added to left or 
right for additional blocks.

Starting point

Signal missing
or incorrect?

A B

TP 1

C D

YES NOSignal missing
or incorrect?

YES NO

Signal missing
or incorrect?

YES NO

Fault is in
Block B.

Fault is in
Block C.

fg03_07700

FIGURE 1–57  Concept of the half-splitting method. The blue arrows indicate the test points.

Signal-Tracing Method

Signal tracing is the procedure of tracking signals as they progress through a system from 
input to output. Signal tracing can be used with half-splitting, where you check for a signal 
at each point from where the absence of a signal was detected. Signal tracing can also begin 
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at the output where there is an incorrect or absent signal and go back toward the input from 
point to point until a correct signal is found. Also, you can begin at the input and check the 
signal and move toward the output from point to point until the correct signal is lost. In 
both cases, the fault would be between the point and the output. Of course, you must know 
what the signal is supposed to look like in order to know if anything is wrong. Figure 1–58 
illustrates the concept of signal tracing.

Signal Substitution and Injection

Signal substitution is used when the system being tested has been separated from its signal 
source. A generator signal is used to replace the normal signal that comes from the source 
when the system or portion of a system is recombined with the part that normally produces 
the input signal. Signal injection can be used to insert a signal at certain points in the system 
using the half-splitting approach.

Starting point

Signal missing
or incorrect?

A B

TP 1

C D

YES NO Signal missing
or incorrect?

YES NO

Signal missing
or incorrect?

YES NO

Signal missing
or incorrect?

YES NO

Fault is in
Block A.

Check
input
source.

Fault is in
Block B.

Fault is in
Block C.

Fault is in
Block D.

Symptom:
No output

fg03_07800
FIGURE 1–58  Concept of the signal-tracing method. Input to output is shown. The same 
applies if you start at the output and go toward the input.

Section 1–8  Checkup

	 1.	List five steps in the troubleshooting procedure.

	 2.	Name two troubleshooting methods.

	 3.	List five obvious things to look for in a failed system.

	 4.	 Is it important to know about the relationship between a cause and a symptom?

Summary

•	 An analog quantity has continuous values.

•	 A digital quantity has a discrete set of values.

•	 A binary digit is called a bit.

•	 A pulse is characterized by rise time, fall time, pulse width, and amplitude.

•	 The frequency of a periodic waveform is the reciprocal of the period. The formulas relating 
frequency and period are

f =
1

T
 and T =

1

f
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•	 The duty cycle of a pulse waveform is the ratio of the pulse width to the period, expressed by 
the following formula as a percentage:

Duty cycle = ¢ tW
T
≤100%

•	 A timing diagram is an arrangement of two or more waveforms showing their relationship with 
respect to time.

•	 Three basic logic operations are NOT, AND, and OR. The standard symbols for these are given 
in Figure 1–59.

NOT ORAND

fg01_05900

FIGURE 1–59 

•	 The basic logic functions are comparison, arithmetic, code conversion, decoding, encoding, data 
selection, storage, and counting.

•	 Two types of SPLDs (simple programmable logic devices) are PAL (programmable array logic) 
and GAL (generic array logic).

•	 The CPLD (complex programmable logic device) contains multiple SPLDs with programmable 
interconnections.

•	 The FPGA (field-programmable gate array) has a different internal structure than the CPLD and 
is generally used for more complex circuits and systems.

•	 The two broad physical categories of IC packages are through-hole mounted and surface mounted.

•	 Three families of fixed-function integrated circuits are CMOS, bipolar, and BiCMOS.

•	 Bipolar is also known as TTL (transistor-transistor logic).

•	 The categories of ICs in terms of circuit complexity are SSI (small-scale integration), MSI 
(medium-scale integration), LSI, VLSI, and ULSI (large-scale, very large-scale, and ultra large-
scale integration).

•	 Common instruments used in testing and troubleshooting digital circuits are the oscilloscope, 
logic analyzer, arbitrary waveform generator, data pattern generator, function generator, dc 
power supply, digital multimeter, logic probe, and logic pulser.

•	 Two basic methods of troubleshooting are the half-splitting method and the signal-tracing method.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Analog  Being continuous or having continuous values.

AND  A basic logic operation in which a true (HIGH) output occurs only when all the input con-
ditions are true (HIGH).

Binary  Having two values or states; describes a number system that has a base of two and utilizes 
1 and 0 as its digits.

Bit  A binary digit, which can be either a 1 or a 0.

Clock  The basic timing signal in a digital system; a periodic waveform used to synchronize operation.

Compiler  A program that controls the design flow process and translates source code into object 
code in a format that can be logically tested or downloaded to a target device.

CPLD  A complex programmable logic device that consists basically of multiple SPLD arrays 
with programmable interconnections.

Data  Information in numeric, alphabetic, or other form.

Digital  Related to digits or discrete quantities; having a set of discrete values.

Duty cycle  The ratio of the pulse width to the period of a digital waveform, expressed as a percentage.
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True/False Quiz

Answers are at the end of the chapter.

	 1.	 An analog quantity is one having continuous values.

	 2.	 A digital quantity has no discrete values.

	 3.	 There are two digits in the binary system.

	 4.	 The term bit is short for binary digit.

	 5.	 In positive logic, a LOW level represents a binary 1.

	 6.	 A periodic wave repeats itself at a fixed interval.

	 7.	 A timing diagram shows the timing relationship of two or more digital waveforms.

	 8.	 An AND function is implemented by a logic circuit known as an inverter.

	 9.	 A flip-flop is a bistable logic circuit that can store only two bits at a time.

	10.	 Two broad types of digital integrated circuits are fixed-function and programmable.

Self-Test

Answers are at the end of the chapter.

	 1.	 A quantity having discrete numerical values is
(a)	 an analog quantity	 (b)	 a digital quantity
(c)	 a binary quantity	 (d)	 a natural quantity

Embedded system  Generally, a single-purpose system, such as a processor, built into a larger 
system for the purpose of controlling the system.

Fixed-function logic  A category of digital integrated circuits having functions that cannot be altered.

FPGA  Field-programmable gate array.

Gate  A logic circuit that performs a basic logic operation such as AND or OR.

Input  The signal or line going into a circuit.

Integrated circuit (IC)  A type of circuit in which all of the components are integrated on a single 
chip of semiconductive material of extremely small size.

Inverter  A NOT circuit; a circuit that changes a HIGH to a LOW or vice versa.

Logic  In digital electronics, the decision-making capability of gate circuits, in which a HIGH 
represents a true statement and a LOW represents a false one.

Microcontroller  An integrated circuit consisting of a complete computer on a single chip and 
used for specified control functions.

NOT  A basic logic operation that performs inversions.

OR  A basic logic operation in which a true (HIGH) output occurs when one or more of the input 
conditions are true (HIGH).

Output  The signal or line coming out of a circuit.

Parallel  In digital systems, data occurring simultaneously on several lines; the transfer or 
processing of several bits simultaneously.

Programmable logic  A category of digital integrated circuits capable of being programmed to 
perform specified functions.

Pulse  A sudden change from one level to another, followed after a time, called the pulse width, by 
a sudden change back to the original level.

Serial  Having one element following another, as in a serial transfer of bits; occurring in sequence 
rather than simultaneously.

SPLD  Simple programmable logic device.

Timing diagram  A graph of digital waveforms showing the time relationship of two or more 
waveforms.

Troubleshooting  The technique or process of systematically identifying, isolating, and 
correcting a fault in a circuit or system.
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	 2.	 The term bit means
(a)	 a small amount of data	 (b)	 a 1 or a 0
(c)	 binary digit	 (d)	 both answers (b) and (c)

	 3.	 The time interval between the 50% points on the rising and falling edges is
(a)	 rise time	 (b)	 fall time
(c)	 pulse width	 (d)	 period

	 4.	 A pulse in a certain waveform has a frequency of 50 Hz. It repeats itself every
(a)	 1 ms	 (b)  20 ms	 (c)  50 ms	 (d)  100 ms

	 5.	 In a certain digital waveform, the period is four times the pulse width. The duty cycle is
(a)	 25%	 (b)  50%	 (c)  75%	 (d)  100%

	 6.	 An inverter
(a)	 performs the NOT operation	 (b)	 changes a HIGH to a LOW
(c)	 changes a LOW to a HIGH	 (d)	 does all of the above

	 7.	 The output of an OR gate is LOW when
(a)	 any input is HIGH	 (b)	 all inputs are HIGH
(c)	 no inputs are HIGH	 (d)	 Both (a) and (b)

	 8.	 The output of an AND gate is LOW when
(a)	 any input is LOW	 (b)	 all inputs are HIGH
(c)	 no inputs are HIGH	 (d)	 Both (a) and (c)

	 9.	 The device used to convert a binary number to a 7-segment display format is the
(a)	 multiplexer	 (b)	 encoder
(c)	 decoder	 (d)	 register

	10.	 An example of a data storage device is
(a)	 the logic gate	 (b)	 the flip-flop	 (c)	 the comparator
(d)	 the register	 (e)	 both answers (b) and (d)

	11.	 VHDL is a
(a)	 logic device	 (b)	 PLD programming language
(c)	 computer language	 (d)	 very high density logic

	12.	 A CPLD is a
(a)	 controlled program logic device	 (b)	 complex programmable logic driver
(c)	 complex programmable logic device	 (d)	 central processing logic device

	13.	 An FPGA is a
(a)	 field-programmable gate array	 (b)	 fast programmable gate array
(c)	 field-programmable generic array	 (d)	 flash process gate application

	14.	 A fixed-function IC package containing four AND gates is an example of
(a)	 MSI	 (b)  SMT	 (c)  SOIC	 (d)  SSI

	15.	 An LSI device has a circuit complexity of from
(a)	 10 to 100 equivalent gates	 (b)	 more than 100 to 10,000 equivalent gates
(c)	 2000 to 5000 equivalent gates	 (d)	 more than 10,000 to 100,000 equivalent gates

Problems

Answers to odd-numbered problems are at the end of the book.

Section 1–1	Digital and Analog Quantities
	 1.	 Name two advantages of digital data as compared to analog data.

	 2.	 Which quantities are more affected by noise: analog or digital?

	 3.	 List any three common products that measure analog quantities.

Section 1–2	Binary Digits, Logic Levels, and Digital Waveforms
	 4.	 Can a digital system exist over a complete interval of time? Why or why not?

	 5.	 Define the sequence of bits (1s and 0s) represented by each of the following sequences of levels:

(a)	 HIGH, HIGH, LOW, LOW, LOW, LOW, HIGH, HIGH
(b)	 HIGH, LOW, HIGH, LOW, HIGH, LOW, HIGH, LOW
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	 6.	 List the sequence of levels (HIGH and LOW) that represent each of the following bit sequences:

(a)  1 0 0 0 0 1 0 1		  (b)  1 1 1 1 0 0 1 1

	 7.	 For the pulse shown in Figure 1–60, graphically determine the following:

(a)  rise time	 (b)  fall time	 (c)  pulse width	 (d)  amplitude

Volts

10

5

0
0 1 2 3 4

t (   s)µ

fg01_06000

FIGURE 1–60 

	 8.	 Can the digital waveform in  Figure 1–61 be called a pulse train?

	 9.	 What is the frequency of the waveform in Figure 1–61?

	10.	 Is the pulse waveform in Figure 1–61 periodic or nonperiodic?

	11.	 Determine the duty cycle of the waveform in Figure 1–61.

1
t (ms)0

V

3 5 7 9 11 13 15 17

fg01_06100
FIGURE 1–61 

	12.	 Determine the bit sequence represented by the waveform in Figure 1–62. A bit time is 1 ms in 
this case.

	13.	 What is the total serial transfer time for the eight bits in Figure 1–62? What is the total parallel 
transfer time?

	14.	 What is the period if the clock frequency is 4 kHz?

8   s0 1   s 2   s 3   s 4   s 5   s 6   s 7   s µµµµµµµµ

fg01_06200

FIGURE 1–62 

Section 1–3	Basic Logic Functions
	15.	 Form a single logical statement from the following information:

(a)  The light is ON if SW1 is closed.
(b)  The light is ON if SW2 is closed.
(c)  The light is OFF if both SW1 and SW2 are open.

	16.	 The output of a logic gate is an inversion of the input. What type of logic gate is it?

	17.	 A basic 2-input logic circuit has a HIGH on one input and a LOW on the other, and the output is 
HIGH. Identify the circuit.

	18.	 A basic 3-input logic circuit has a LOW on one input and a HIGH on the other two inputs, and 
the output is LOW. What type of logic circuit is it?
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FIGURE 1–63 

Section 1–4	Combinational and Sequential Logic Functions
	19.	 Name the logic function of each block in Figure 1–63 based on your observation of the inputs 

and outputs.

	20.	 A pulse waveform with a frequency of 20 kHz is applied to the input of a counter. During 40 ms, 
how many pulses are counted?

	21.	 Consider a register that can store eight bits. Assume that it has been reset so that it contains 
zeros in all positions. If you transfer four alternating bits (0101) serially into the register, begin-
ning with a 1 and shifting to the right, what will the total content of the register be as soon as 
the fourth bit is stored?

Section 1–5	Introduction to Programmable Logic
	22.	 Describe each of the following programming steps:

(a)  Synthesis	 (b)  Implementation	 (c)  Compiler

	23.	 What do each of the following stand for?

(a)  SPLD	 (b)  CPLD	 (c)  HDL	 (d)  FPGA	 (e)  GAL

	24.	 Define each of the following PLD programming terms:

(a)  design entry	 (b)  simulation	 (c)  compilation	 (d)  download

	25.	 Describe the process of place-and-route.

Section 1–6	Fixed-Function Logic Devices
	26.	 How are integrated circuit packages classified?

	27.	 What are LSI circuits?

	28.	 Label the pin numbers on the packages in Figure 1–64. Top views are shown.

(a) (b)

fg01_06400

FIGURE 1–64 

Section 1–7	Test and Measurement Instruments
	29.	 A pulse is displayed on the screen of an oscilloscope, and you measure the base line as 2 V and 

the top of the pulse as 10 V. What is the amplitude?

	30.	 A waveform is measured on the oscilloscope and its amplitude covers two vertical divisions. If 
the vertical control is set at 1 V/div, what is the total amplitude of the waveform?

	31.	 The period of a pulse waveform measures four horizontal divisions on an oscilloscope. If the 
time base is set at 2 ms/div, what is the frequency of the waveform?
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	32.	 What record length is required if an oscilloscope has a sampling rate of 12 Msamples/s and the 
input waveform is sampled for 2 ms?

Section 1–8	Introduction to Troubleshooting
	33.	 Define troubleshooting.

	34.	 Explain the half-splitting method of troubleshooting.

	35.	 Explain the signal-tracing method of troubleshooting.

	36.	 Discuss signal substitution and injection.

	37.	 Give some examples of the type of information that you look for when a system is reported to 
have failed.

	38.	 If the symptom in a particular system is no output, name two possible general causes.

	39.	 If the symptom of a particular system is an incorrect output, name two possible causes.

	40.	 What obvious things should you look for before starting the troubleshooting process?

	41.	 How would you isolate a fault in a system?

	42.	 Name two common instruments used in troubleshooting.

	43.	 Assume that you have isolated the problem down to a specific circuit board. What are your 
options at this point?

Answers

Section Checkups
Section 1–1	Digital and Analog Quantities
	 1.	 Analog means continuous.

	 2.	 Digital means discrete.

	 3.	 A digital quantity has a discrete set of values and an analog quantity has continuous values.

	 4.	 A public address system is analog. A CD player is analog and digital. A computer is all digital.

	 5.	 A mechatronic system consists of both mechanical and electronic components.

Section 1–2	Binary Digits, Logic Levels, and Digital Waveforms
	 1.	 Binary means having two states or values.

	 2.	 A bit is a binary digit.

	 3.	 The bits are 1 and 0.

	 4.	 Rise time: from 10% to 90% of amplitude. Fall time: from 90% to 10% of amplitude.

	 5.	 Frequency is the reciprocal of the period.

	 6.	 A clock waveform is a basic timing waveform from which other waveforms are derived.

	 7.	 A timing diagram shows the time relationship of two or more waveforms.

	 8.	 Parallel transfer is faster than serial transfer.

Section 1–3	Basic Logic Functions
	 1.	 When the input is LOW

	 2.	 When all inputs are HIGH

	 3.	 When any or all inputs are HIGH

	 4.	 An inverter is a NOT circuit.

	 5.	 A logic gate is a circuit that performs a logic operation (AND, OR).

Section 1–4	Combinational and Sequential Logic Functions
	 1.	 A comparator compares the magnitudes of two input numbers.

	 2.	 Add, subtract, multiply, and divide
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	 3.	 Encoding is changing a familiar form such as decimal to a coded form such as binary.

	 4.	 Decoding is changing a code to a familiar form such as binary to decimal.

	 5.	 Multiplexing puts data from many sources onto one line. Demultiplexing takes data from one 
line and distributes it to many destinations.

	 6.	 Flip-flops, registers, semiconductor memories, magnetic disks

	 7.	 A counter counts events with a sequence of binary states.

Section 1–5	Introduction to Programmable Logic
	 1.	 Simple programmable logic device (SPLD), complex programmable logic device (CPLD), and 

field-programmable gate array (FPGA)

	 2.	 A CPLD is made up of multiple SPLDs.

	 3.	 Design entry, functional simulation, synthesis, implementation, timing simulation, and 
download

	 4.	 Design entry: The logic design is entered using development software. Functional 
simulation: The design is software simulated to make sure it works logically. Synthesis: 
The design is translated into a netlist. Implementation: The logic developed by the netlist is 
mapped into the programmable device. Timing simulation: The design is software simu-
lated to confirm that there are no timing problems. Download: The design is placed into the 
programmable device.

	 5.	 The microcontroller has fixed internal circuits and its operation is directed by a program.

Section 1–6	Fixed-Function Logic Devices
	 1.	 An IC is an electronic circuit with all components integrated on a single silicon chip.

	 2.	 DIP—dual in-line package; SMT—surface-mount technology; 
SOIC—small-outline integrated circuit; SSI—small-scale integration; MSI—medium-scale 
integration; LSI—large-scale integration; VLSI—very large-scale integration; ULSI—ultra 
large-scale integration

	 3.	 (a)  SSI

(b)  MSI

(c)  LSI

(d)  VLSI

(e)  ULSI

Section 1–7	Test and Measurement Instruments
	 1.	 The oscilloscope measures, processes, and displays electrical waveforms.

	 2.	 The logic analyzer has more channels than the oscillosope and has more than one data display 
format.

	 3.	 The volts/div control sets the voltage for each division on the screen.

	 4.	 The sec/div control sets the time for each division on the screen.

	 5.	 The function generator produces various types of waveforms.

	 6.	 The record length is the maximum number of samples that can be acquired during a given time 
interval.

Section 1–8	Introduction to Troubleshooting
	 1.	 Gather information, identify symptoms and possible causes, isolate point(s) of failure, apply 

proper tools to determine cause, and fix problem.

	 2.	 Half-splitting and signal tracing

	 3.	 Blown fuse, absence of DC power, loose connections, broken wires, loosely connected circuit 
board

	 4.	 Yes
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Related Problems for Examples
1–1	 f = 6.67 kHz; Duty cycle = 16.7%

1–2	 Serial transfer: 3.33 ns

1–3	 Amplitude = 12 V; T = 8 ms

True/False Quiz
	 1.	 T  2.  F  3.  T  4.  T  5.  F  6.  T  7.  T  8.  F  9.  F  10.  T

Self-Test
	 1.	 (b)    2.  (c)    3.  (a)    4.  (b)    5.  (a)    6.  (d)  7.  (b)  8.  (a)  9.  (d)

	10.	 (e)  11.  (c)  12.  (a)  13.  (d)  14.  (d)  15.  (b)
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Chapter Outline
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2–8	 Hexadecimal Numbers 
2–9	 Octal Numbers 
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2–11	 Digital Codes 
2–12	 Error Codes 

Chapter Objectives

■	 Review the decimal number system

■	 Count in the binary number system

■	 Convert from decimal to binary and from binary 
to decimal

■	 Apply arithmetic operations to binary numbers

■	 Determine the 1’s and 2’s complements of a binary 
number

■	 Express signed binary numbers in sign-magnitude, 
1’s complement, 2’s complement, and floating-point 
format

■	 Carry out arithmetic operations with signed binary 
numbers

■	 Convert between the binary and hexadecimal 
number systems

■	 Add numbers in hexadecimal form

■	 Convert between the binary and octal number 
systems

■	 Express decimal numbers in binary coded decimal 
(BCD) form

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

The binary number system and digital codes are 
fundamental to computers and to digital electronics 
in general. In this chapter, the binary number system 
and its relationship to other number systems such as 
decimal, hexadecimal, and octal are presented. Arith-
metic operations with binary numbers are covered to 
provide a basis for understanding how computers and 
many other types of digital systems work. Also, digital 
codes such as binary coded decimal (BCD), the Gray 
code, and the ASCII are covered. The parity method 
for detecting errors in codes is introduced. The TI-36X 
calculator is used to illustrate certain operations. The 
procedures shown may vary on other types.

■	 LSB

■	 MSB

■	 Byte

■	 Floating-point number

■	 Hexadecimal

■	 Octal

■	 BCD

■	 Alphanumeric

■	 ASCII

■	 Parity

■	 Cyclic redundancy 
check (CRC)

■	 Add BCD numbers

■	 Convert between the binary system and the Gray 
code

■	 Interpret the American Standard Code for 
Information Interchange (ASCII)

■	 Explain how to detect code errors

■	 Discuss the cyclic redundancy check (CRC)

Key Terms

Key terms are in order of appearance in the chapter.

Number Systems,  
Operations, and Codes

2CHAPTER 
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66	 Number Systems, Operations, and Codes

2–1  Decimal Numbers

You are familiar with the decimal number system because you use decimal numbers every 
day. Although decimal numbers are commonplace, their weighted structure is often not 
understood. In this section, the structure of decimal numbers is reviewed. This review 
will help you more easily understand the structure of the binary number system, which is 
important in computers and digital electronics.

After completing this section, you should be able to

u	 Explain why the decimal number system is a weighted system

u	 Explain how powers of ten are used in the decimal system

u	 Determine the weight of each digit in a decimal number

In the decimal number system each of the ten digits, 0 through 9, represents a certain 
quantity. As you know, the ten symbols (digits) do not limit you to expressing only ten 
different quantities because you use the various digits in appropriate positions within a 
number to indicate the magnitude of the quantity. You can express quantities up through 
nine before running out of digits; if you wish to express a quantity greater than nine, you 
use two or more digits, and the position of each digit within the number tells you the mag-
nitude it represents. If, for example, you wish to express the quantity twenty-three, you use 
(by their respective positions in the number) the digit 2 to represent the quantity twenty and 
the digit 3 to represent the quantity three, as illustrated below.

The digit 2 has a weight of 	 The digit 3 has a weight
10 in this position.	 of 1 in this position.

	 2	 3

	 2 * 10 	 + 	 3 * 1

	 20 	 + 	 3

	 23

The position of each digit in a decimal number indicates the magnitude of the quantity 
represented and can be assigned a weight. The weights for whole numbers are positive 
powers of ten that increase from right to left, beginning with 100

= 1.

c 105 104 103 102 101 100

For fractional numbers, the weights are negative powers of ten that decrease from left to 
right beginning with 10-1.

102 101 100.10-1 10-2 10-3 c

	  Decimal point

The value of a decimal number is the sum of the digits after each digit has been multi-
plied by its weight, as Examples 2–1 and 2–2 illustrate.

The decimal number system has 
ten digits.

The decimal number system has 
a base of 10.

The value of a digit is determined by 
its position in the number.
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EXAMPLE 2–1

Express the decimal number 47 as a sum of the values of each digit.

Solution

The digit 4 has a weight of 10, which is 101, as indicated by its position. The digit 7 has 
a weight of 1, which is 100, as indicated by its position.

 47 = (4 * 101)  + (7 * 100)

 = (4 * 10)  + (7 * 1) = 40 � 7

Related Problem* 

Determine the value of each digit in 939.

*Answers are at the end of the chapter.

Calculator Session

Powers of Ten

Find the value of 103.

TI-36X	 Step 1:	 1   0   yx

	 Step 2:	 3   =

	 1000

EXAMPLE 2–2

Express the decimal number 568.23 as a sum of the values of each digit.

Solution

The whole number digit 5 has a weight of 100, which is 102, the digit 6 has a weight of 10, 
which is 101, the digit 8 has a weight of 1, which is 100, the fractional digit 2 has a weight 
of 0.1, which is 10-1, and the fractional digit 3 has a weight of 0.01, which is 10-2.

 568.23 = (5 * 102)  + (6 * 101) + (8 * 100) + (2 * 10-1) + (3 * 10-2)

 = (5 * 100)  + (6 * 10)  + (8 * 1)  + (2 * 0.1)  + (3 * 0.01)

 =   500  �   60  �   8  �   0.2  �   0.03

Related Problem

Determine the value of each digit in 67.924.

Section 2–1  Checkup

Answers are at the end of the chapter.

	 1.	What weight does the digit 7 have in each of the following numbers?

(a)  1370    (b)  6725    (c)  7051    (d)  58.72

	 2.	Express each of the following decimal numbers as a sum of the products obtained by 
multiplying each digit by its appropriate weight:

(a)  51    (b)  137    (c)  1492    (d)  106.58

2–2  Binary Numbers

The binary number system is another way to represent quantities. It is less complicated than 
the decimal system because the binary system has only two digits. The decimal system with 
its ten digits is a base-ten system; the binary system with its two digits is a base-two system. 
The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates 
its weight, or value within the number, just as the position of a decimal digit determines the 
value of that digit. The weights in a binary number are based on powers of two.
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68	 Number Systems, Operations, and Codes

After completing this section, you should be able to

u	 Count in binary

u	 Determine the largest decimal number that can be represented by a given number 
of bits

u	 Convert a binary number to a decimal number

Counting in Binary

To learn to count in the binary system, first look at how you count in the decimal system. 
You start at zero and count up to nine before you run out of digits. You then start another 
digit position (to the left) and continue counting 10 through 99. At this point you have 
exhausted all two-digit combinations, so a third digit position is needed to count from 100 
through 999.

A comparable situation occurs when you count in binary, except that you have only two 
digits, called bits. Begin counting: 0, 1. At this point you have used both digits, so include 
another digit position and continue: 10, 11. You have now exhausted all combinations of 
two digits, so a third position is required. With three digit positions you can continue to 
count: 100, 101, 110, and 111. Now you need a fourth digit position to continue, and so on. 
A binary count of zero through fifteen is shown in Table 2–1. Notice the patterns with 
which the 1s and 0s alternate in each column.

The binary number system has two 
digits (bits).

The binary number system has 
a base of 2.

InfoNote

In processor operations, there 
are many cases where adding 
or subtracting 1 to a number 
stored in a counter is necessary. 
Processors have special 
instructions that use less time 
and generate less machine code 
than the ADD or SUB instructions. 
For the Intel processors, the INC 
(increment) instruction adds 1 
to a number. For subtraction, the 
corresponding instruction is DEC 
(decrement), which subtracts 1 
from a number.

As you have seen in Table 2–1, four bits are required to count from zero to 15. In general, 
with n bits you can count up to a number equal to 2n - 1.

Largest decimal number = 2n - 1

For example, with five bits (n = 5) you can count from zero to thirty-one.

25 - 1 = 32 - 1 = 31

With six bits (n = 6) you can count from zero to sixty-three.

26 - 1 = 64 - 1 = 63

The value of a bit is determined by 
its position in the number.

Calculator Session

Powers of Two

Find the value of 25.

TI-36X	 Step 1:	 2   yx

	 Step 2:	 5   =

	 32

TABLE 2–1

Decimal 
Number Binary Number

  0 0 0 0 0
  1 0 0 0 1
  2 0 0 1 0
  3 0 0 1 1
  4 0 1 0 0
  5 0 1 0 1
  6 0 1 1 0
  7 0 1 1 1
  8 1 0 0 0
  9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
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An Application

Learning to count in binary will help you to basically understand how digital circuits can 
be used to count events. Let’s take a simple example of counting tennis balls going into a 
box from a conveyor belt. Assume that nine balls are to go into each box.

The counter in Figure 2–1 counts the pulses from a sensor that detects the passing of a 
ball and produces a sequence of logic levels (digital waveforms) on each of its four par-
allel outputs. Each set of logic levels represents a 4-bit binary number (HIGH = 1 and 
LOW = 0), as indicated. As the decoder receives these waveforms, it decodes each set of 
four bits and converts it to the corresponding decimal number in the 7-segment display. 
When the counter gets to the binary state of 1001, it has counted nine tennis balls, the dis-
play shows decimal 9, and a new box is moved under the conveyor belt. Then the counter 
goes back to its zero state (0000), and the process starts over. (The number 9 was used only 
in the interest of single-digit simplicity.)

Counter Decoder

1st ball
2nd ball

9th ball
1 0 1 0 1 0 1 0 10

0 1 1 0 0 1 1 0 00

0 0 0 1 1 1 1 0 00

0 0 0 0 0 0 0 1 10

Ball count 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

FIGURE 2–1  Illustration of a simple binary counting application.

The Weighting Structure of Binary Numbers

A binary number is a weighted number. The right-most bit is the LSB (least significant bit) 
in a binary whole number and has a weight of 20

= 1. The weights increase from right to 
left by a power of two for each bit. The left-most bit is the MSB (most significant bit); its 
weight depends on the size of the binary number.

Fractional numbers can also be represented in binary by placing bits to the right of the 
binary point, just as fractional decimal digits are placed to the right of the decimal point. 
The left-most bit is the MSB in a binary fractional number and has a weight of 2-1

= 0.5. 
The fractional weights decrease from left to right by a negative power of two for each bit.

The weight structure of a binary number is

2n-1 c 23 22 21 20  .  2-1 2-2 c 2-n

	   Binary point

where n is the number of bits from the binary point. Thus, all the bits to the left of the 
binary point have weights that are positive powers of two, as previously discussed for whole 
numbers. All bits to the right of the binary point have weights that are negative powers of 
two, or fractional weights.

The powers of two and their equivalent decimal weights for an 8-bit binary whole num-
ber and a 6-bit binary fractional number are shown in Table 2–2. Notice that the weight 
doubles for each positive power of two and that the weight is halved for each negative 
power of two. You can easily extend the table by doubling the weight of the most signifi-
cant positive power of two and halving the weight of the least significant negative power of 
two; for example, 29

= 512 and 2-7
= 0.0078125.

The weight or value of a bit increases 
from right to left in a binary number.

InfoNote

Processors use binary numbers 
to select memory locations. Each 
location is assigned a unique 
number called an address. Some 
microprocessors, for example, 
have 32 address lines which can 
select 232 (4,294,967,296) unique 
locations.
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70	 Number Systems, Operations, and Codes

TABLE 2–2

Binary weights.

Positive Powers of Two  
(Whole Numbers)

Negative Powers of Two  
(Fractional Number)

28 27 26 25 24 23 22 21 20 221 222 223 224 225 226

256 128 64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 1/64
0.5 0.25 0.125 0.625 0.03125 0.015625

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that 
are 1 and discarding the weights of all bits that are 0.

Add the weights of all 1s in a binary 
number to get the decimal value.

EXAMPLE 2–3

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1, and then find the sum of the weights to get 
the decimal number.

 Weight: 26  25  24  23  22  21  20 

 Binary number: 1  1  0  1  1  0  1

 1101101 = 26 + 25 + 23 + 22 + 20 

 = 64 + 32 + 8 + 4 + 1 = 109

Related Problem

Convert the binary number 10010001 to decimal.

EXAMPLE 2–4

Convert the fractional binary number 0.1011 to decimal.

Solution

Determine the weight of each bit that is a 1, and then sum the weights to get the decimal 
fraction.

 Weight:  2-1  2-2  2-3  2-4

 Binary number: 0 .  1  0  1  1

 0.1011 = 2-1 + 2-3 + 2-4

 = 0.5 + 0.125 + 0.0625 = 0.6875

Related Problem

Convert the binary number 10.111 to decimal.

Section 2–2  Checkup

	 1.	What is the largest decimal number that can be represented in binary with eight bits?

	 2.	Determine the weight of the 1 in the binary number 10000.

	 3.	Convert the binary number 10111101.011 to decimal.

M02_FLOY5983_11_GE_C02.indd Page 70  17/11/14  4:50 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Decimal-to-Binary Conversion	 71

Repeated Division-by-2 Method

A systematic method of converting whole numbers from decimal to binary is the repeated 
division-by-2 process. For example, to convert the decimal number 12 to binary, begin by 
dividing 12 by 2. Then divide each resulting quotient by 2 until there is a 0 whole-number 
quotient. The remainders generated by each division form the binary number. The first 
remainder to be produced is the LSB (least significant bit) in the binary number, and the 

2–3  Decimal-to-Binary Conversion

In Section 2–2 you learned how to convert a binary number to the equivalent decimal num-
ber. Now you will learn two ways of converting from a decimal number to a binary number.

After completing this section, you should be able to

u	 Convert a decimal number to binary using the sum-of-weights method

u	 Convert a decimal whole number to binary using the repeated division-by-2 
method

u	 Convert a decimal fraction to binary using the repeated multiplication-by-2 
method

Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is to deter-
mine the set of binary weights whose sum is equal to the decimal number. An easy way 
to remember binary weights is that the lowest is 1, which is 20, and that by doubling any 
weight, you get the next higher weight; thus, a list of seven binary weights would be 64, 32, 
16, 8, 4, 2, 1 as you learned in the last section. The decimal number 9, for example, can be 
expressed as the sum of binary weights as follows:

9 = 8 + 1 or 9 = 23 + 20

Placing 1s in the appropriate weight positions, 23 and 20, and 0s in the 22 and 21 positions 
determines the binary number for decimal 9.

 23  22  21  20

 1  0  0  1  Binary number for decimal 9

To get the binary number for a given 
decimal number, find the binary 
weights that add up to the decimal 
number.

EXAMPLE 2–5

Convert the following decimal numbers to binary:

(a)	 12    (b)	 25

(c)	 58    (d)	 82

Solution

(a)	 12 = 8 + 4 = 23 + 22 	 1100

(b)	 25 = 16 + 8 + 1 = 24 + 23 + 20 	 11001

(c)	 58 = 32 + 16 + 8 + 2 = 25 + 24 + 23 + 21 	 111010

(d)	 82 = 64 + 16 + 2 = 26 + 24 + 21 	 1010010

Related Problem

Convert the decimal number 125 to binary.

To get the binary number for a given 
decimal number, divide the decimal 
number by 2 until the quotient is 0. 
Remainders form the binary number.
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72	 Number Systems, Operations, and Codes

last remainder to be produced is the MSB (most significant bit). This procedure is illus-
trated as follows for converting the decimal number 12 to binary.

 

Remainder

0

0

1

1

Stop when the
whole-number quotient is 0.

1 1 0 0

MSB LSB

 
1

2
= 0

 
3

2
= 1

 
6

2
= 3

 
12

2
= 6

EXAMPLE 2–6

	

Related Problem

Convert decimal number 39 to binary.

Calculator Session

Conversion of a Decimal 
Number to a Binary Number

Convert decimal 57 to binary.
	 DEC

TI-36X	 Step 1:	 3rd   EE

	 Step 2:	 5   7

	 BIN
	 Step 3:	 3rd   X

	 111001  

Convert the following decimal numbers to binary:

(a)	 19    (b)   45

Solution

(a)		  Remainder

 
19
2

= 9	 1

 
9
2

= 4	 1

 
4
2

= 2	 0

 
2
2

= 1	 0

 
1
2

= 0	 1

	 1	 0	 0	 1	 1

	 MSB	 LSB

(b)	 Remainder

 
45
2

= 22	 1

 
22
2

= 11	 0

 
11
2

= 5	 1

 
5
2

= 2	 1

 
2
2

= 1	 0

 
1
2

= 0 	 1

	 1	 0	 1	 1	 0	 1

	 MSB	 LSB
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Converting Decimal Fractions to Binary

Examples 2–5 and 2–6 demonstrated whole-number conversions. Now let’s look at 
fractional conversions. An easy way to remember fractional binary weights is that the 
most significant weight is 0.5, which is 2-1, and that by halving any weight, you get 
the next lower weight; thus a list of four fractional binary weights would be 0.5, 0.25, 
0.125, 0.0625.

Sum-of-Weights

The sum-of-weights method can be applied to fractional decimal numbers, as shown in the 
following example:

0.625 = 0.5 + 0.125 = 2-1 + 2-3
= 0.101

There is a 1 in the 2-1 position, a 0 in the 2-2 position, and a 1 in the 2-3 position.

Repeated Multiplication by 2

As you have seen, decimal whole numbers can be converted to binary by repeated divi-
sion by 2. Decimal fractions can be converted to binary by repeated multiplication by 2. 
For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying 
0.3125 by 2 and then multiplying each resulting fractional part of the product by 2 until 
the fractional product is zero or until the desired number of decimal places is reached. 
The carry digits, or carries, generated by the multiplications produce the binary number. 
The first carry produced is the MSB, and the last carry is the LSB. This procedure is 
illustrated as follows:

{
{

{
{

0

1

0

1

MSB LSB

Carry

0.3125 � 2 � 0.625

0.625 � 2 � 1.25

0.25 � 2 � 0.50

0.50 � 2 � 1.00

Continue to the desired number of decimal places
or stop when the fractional part is all zeros.

.0 1 0 1

Section 2–3  Checkup

	 1.	Convert each decimal number to binary by using the sum-of-weights method:

(a)  23    (b)  57    (c)  45.5

	 2.	Convert each decimal number to binary by using the repeated division-by-2 method 
(repeated multiplication-by-2 for fractions):

(a)  14    (b)  21    (c)  0.375
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2–4  Binary Arithmetic

Binary arithmetic is essential in all digital computers and in many other types of digital 
systems. To understand digital systems, you must know the basics of binary addition, sub-
traction, multiplication, and division. This section provides an introduction that will be 
expanded in later sections.

After completing this section, you should be able to

u	 Add binary numbers

u	 Subtract binary numbers

u	 Multiply binary numbers

u	 Divide binary numbers

Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = 10 Sum of 0 with a carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the addition of two 
1s yields a binary two (10). When binary numbers are added, the last condition creates a 
sum of 0 in a given column and a carry of 1 over to the next column to the left, as illustrated 
in the following addition of 11 + 1:

	 Carry	 Carry

	 1	 1

	 0	 1	 1

	 + 0	 0	 1

	 1	 0	 0

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middle 
column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to the left. In the left column, 
1 + 0 + 0 = 1.

When there is a carry of 1, you have a situation in which three bits are being added (a bit 
in each of the two numbers and a carry bit). This situation is illustrated as follows:

Carry bits

 1 + 0 + 0 = 01  Sum of 1 with a carry of 0

 1 + 1 + 0 = 10  Sum of 0 with a carry of 1

 1 + 0 + 1 = 10  Sum of 0 with a carry of 1

 1 + 1 + 1 = 11  Sum of 1 with a carry of 1

In binary 1 � 1 � 10, not 2.

EXAMPLE 2–7

Add the following binary numbers:

(a)	 11 + 11  	   (b)   100 + 10

(c)	 111 + 11  	  (d)   110 + 100
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Binary Subtraction

The four basic rules for subtracting bits are as follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1  0 - 1 with a borrow of 1

When subtracting numbers, you sometimes have to borrow from the next column to the 
left. A borrow is required in binary only when you try to subtract a 1 from a 0. In this case, 
when a 1 is borrowed from the next column to the left, a 10 is created in the column being 
subtracted, and the last of the four basic rules just listed must be applied. Examples 2–8 
and 2–9 illustrate binary subtraction; the equivalent decimal subtractions are also shown.

In binary 10 � 1 � 1, not 9.

EXAMPLE 2–8

Perform the following binary subtractions:

(a)	 11 - 01	 (b)	 11 - 10

Solution

(a)

	

11

-01

10
  

3

-1

2

	

(b)

	

11

-10

01
  

3

-2

1
No borrows were required in this example. The binary number 01 is the same as 1.

Related Problem

Subtract 100 from 111.

Solution

The equivalent decimal addition is also shown for reference.

(a)
	

11
+  11
110

    

3

+  3
6

	
(b)

	
100

+  10
110

    
4

+  2
6

(c)
	

111
+  11
1010

    
7

+  3
10

	
(d)

	
110

+  100
1010

    
6

+  4
10

Related Problem

Add 1111 and 1100.

EXAMPLE 2–9

Subtract 011 from 101.

Solution

101

-011

010
  

5

-3

2
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Binary Division

Division in binary follows the same procedure as division in decimal, as Example 2–11 
illustrates. The equivalent decimal divisions are also given.

Let’s examine exactly what was done to subtract the two binary numbers since a borrow 
is required. Begin with the right column.

Left column: Middle column:
When a 1 is borrowed, Borrow 1 from next column
a 0 is left, so 0 � 0 � 0. to the left, making a 10 in 

this column, then 10 � 1 � 1.

1
0
101 Right column:

�0 11 1 � 1 � 0
0 10

↓

↓

↓

Related Problem

Subtract 101 from 110.

Binary Multiplication

The four basic rules for multiplying bits are as follows:

 0 * 0 = 0

 0 * 1 = 0

 1 * 0 = 0

 1 * 1 = 1

Multiplication is performed with binary numbers in the same manner as with decimal num-
bers. It involves forming partial products, shifting each successive partial product left one 
place, and then adding all the partial products. Example 2–10 illustrates the procedure; the 
equivalent decimal multiplications are shown for reference.

Binary multiplication of two bits is 
the same as multiplication of the 
decimal digits 0 and 1.

EXAMPLE 2–10

Perform the following binary multiplications:

(a)	 11 * 11	 (b)	 101 * 111

Solution
(a)

	

11

* 11

11

+11

1001

  

3

* 3

9
	

(b)

	

    111

* 101

111

000

   +111    

100011

  

7

* 5

35

Related Problem

Multiply 1101 * 1010.

Partial  
products

u Partial 
productsµ

A calculator can be used to perform 
arithmetic operations with binary 
numbers as long as the capacity of 
the calculator is not exceeded. EXAMPLE 2–11

Perform the following binary divisions:

(a)	 110 , 11        (b)	 110 , 10
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Section 2–4  Checkup

	 1.	Perform the following binary additions:

(a)  1101 + 1010	 (b)  10111 + 01101

	 2.	Perform the following binary subtractions:

(a)  1101 2 0100	 (b)  1001 2 0111

	 3.	Perform the indicated binary operations:

(a)  110 * 111	 (b)  1100 , 011

2–5  Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important because 
they permit the representation of negative numbers. The method of 2’s complement arith-
metic is commonly used in computers to handle negative numbers.

After completing this section, you should be able to

u	 Convert a binary number to its 1’s complement

u	 Convert a binary number to its 2’s complement using either of two methods

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s, 
as illustrated below:

1 0 1 1 0 0 1 0   Binary number

T T T T T T T T

0 1 0 0 1 1 0 1   1>s complement

The simplest way to obtain the 1’s complement of a binary number with a digital circuit 
is to use parallel inverters (NOT circuits), as shown in Figure 2–2 for an 8-bit binary number.

Change each bit in a number to get 
the 1’s complement.

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

fg02_00200

FIGURE 2–2  Example of inverters used to obtain the 1’s complement of a binary number.

Solution

(a)
	

10
11�110

11  

000

   

2

3�6
6

0

	
(b)

	

11
10�110

10  

10

 

3

2�6
6

0

	
10

00

Related Problem

Divide 1100 by 100.
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An alternative method of finding the 2’s complement of a binary number is as follows:

	 1.	 Start at the right with the LSB and write the bits as they are up to and including the 
first 1.

	 2.	 Take the 1’s complements of the remaining bits.

Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement.

2>s complement = (1>s complement) + 1

Add 1 to the 1’s complement to get 
the 2’s complement.

Change all bits to the left of the least 
significant 1 to get 2’s complement.

The 2’s complement of a negative binary number can be realized using inverters and an 
adder, as indicated in Figure 2–3. This illustrates how an 8-bit number can be converted to 
its 2’s complement by first inverting each bit (taking the 1’s complement) and then adding 
1 to the 1’s complement with an adder circuit.

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Adder

Negative number

1’s complement

Input bits

Output bits (sum)

2’s complement

Carry

in

1

(add 1)

fg02_00300

Figure 2–3  Example of obtaining the 2’s complement of a negative binary number.

EXAMPLE 2–12

Find the 2’s complement of 10110010.

Solution

10110010

01001101

+        1

01001110

Binary number

1>s complement

Add 1

2>s complement

Related Problem

Determine the 2’s complement of 11001011.

EXAMPLE 2–13

Find the 2’s complement of 10111000 using the alternative method.

Solution

10111000  Binary number

01001000  2>s complement

Related Problem

Find the 2’s complement of 11000000.

e e

These bits stay the same.c
1’s complements 
of original bits c
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To convert from a 1’s or 2’s complement back to the true (uncomplemented) binary form, 
use the same two procedures described previously. To go from the 1’s complement back to 
true binary, reverse all the bits. To go from the 2’s complement form back to true binary, 
take the 1’s complement of the 2’s complement number and add 1 to the least significant bit.

Section 2–5  Checkup

	 1.	Determine the 1’s complement of each binary number:

(a)  00011010 	 (b)  11110111	 (c)  10001101

	 2.	Determine the 2’s complement of each binary number:

	(a)  00010110	 (b)  11111100	 (c)  10010001

2–6  Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative 
numbers. A signed binary number consists of both sign and magnitude information. The 
sign indicates whether a number is positive or negative, and the magnitude is the value of 
the number. There are three forms in which signed integer (whole) numbers can be repre-
sented in binary: sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s 
complement is the most important and the sign-magnitude is the least used. Noninteger and 
very large or small numbers can be expressed in floating-point format.

After completing this section, you should be able to

u	 Express positive and negative numbers in sign-magnitude

u	 Express positive and negative numbers in 1’s complement

u	 Express positive and negative numbers in 2’s complement

u	 Determine the decimal value of signed binary numbers

u	 Express a binary number in floating-point format

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the 
number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign 
bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-
mented) binary for both positive and negative numbers. For example, the decimal number 
+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

00011001

Sign bit	 Magnitude bits

The decimal number 225 is expressed as

10011001

Notice that the only difference between +25 and 225 is the sign bit because the magnitude 
bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits as the 
corresponding positive number but the sign bit is a 1 rather than a zero.

u

c c
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The Decimal Value of Signed Numbers
Sign-magnitude

Decimal values of positive and negative numbers in the sign-magnitude form are determined 
by summing the weights in all the magnitude bit positions where there are 1s and ignoring 
those positions where there are zeros. The sign is determined by examination of the sign bit.

1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive 
sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the cor-
responding positive numbers. For example, using eight bits, the decimal number 225 is 
expressed as the 1’s complement of +25 (00011001) as

11100110

In the 1’s complement form, a negative number is the 1’s complement of the cor-
responding positive number.

2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the sign-
magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the 
corresponding positive numbers. Again, using eight bits, let’s take decimal number 225 and 
express it as the 2’s complement of +25 (00011001). Inverting each bit and adding 1, you get

-25 = 11100111

In the 2’s complement form, a negative number is the 2’s complement of the cor-
responding positive number.

Infonote

Processors use the 2’s 
complement for negative integer 
numbers in arithmetic operations. 
The reason is that subtraction 
of a number is the same as 
adding the 2’s complement of 
the number. Processors form the 
2’s complement by inverting the 
bits and adding 1, using special 
instructions that produce the same 
result as the adder in Figure 2–3.

EXAMPLE 2–14

Express the decimal number 239 as an 8-bit number in the sign-magnitude, 1’s com-
plement, and 2’s complement forms.

Solution

First, write the 8-bit number for +39.

00100111

In the sign-magnitude form, 239 is produced by changing the sign bit to a 1 and 
leaving the magnitude bits as they are. The number is

10100111

In the 1’s complement form, 239 is produced by taking the 1’s complement of +39 
(00100111).

11011000

In the 2’s complement form, 239 is produced by taking the 2’s complement of +39 
(00100111) as follows:

11011000 1>s complement
+    1 

 11011001 2>s complement

Related Problem

Express +19 and 219 as 8-bit numbers in sign-magnitude, 1’s complement, and 2’s 
complement.
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EXAMPLE 2–15

Determine the decimal value of this signed binary number expressed in sign-magnitude: 
10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:

26 25 24 23 22 21 20

0 0 1 0 1 0 1

Summing the weights where there are 1s,

16 + 4 + 1 = 21

The sign bit is 1; therefore, the decimal number is 221.

Related Problem

Determine the decimal value of the sign-magnitude number 01110111.

1’s Complement

Decimal values of positive numbers in the 1’s complement form are determined by sum-
ming the weights in all bit positions where there are 1s and ignoring those positions where 
there are zeros. Decimal values of negative numbers are determined by assigning a nega-
tive value to the weight of the sign bit, summing all the weights where there are 1s, and 
adding 1 to the result.

EXAMPLE 2–16

Determine the decimal values of the signed binary numbers expressed in 1’s complement:

(a)	 00010111	 (b)	 11101000

Solution

(a)	 The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 0 0 1 0 1 1 1

	 Summing the weights where there are 1s,

16 + 4 + 2 + 1 = �23

(b)	 The bits and their powers-of-two weights for the negative number are as follows. 
Notice that the negative sign bit has a weight of 227 or 2128.

-27 26 25 24 23 22 21 20

1 1 1 0 1 0 0 0

	 Summing the weights where there are 1s,

-128 + 64 + 32 + 8 = -24

	 Adding 1 to the result, the final decimal number is

-24 + 1 = �23

Related Problem

Determine the decimal value of the 1’s complement number 11101011.
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From these examples, you can see why the 2’s complement form is preferred for rep-
resenting signed integer numbers: To convert to decimal, it simply requires a summation 
of weights regardless of whether the number is positive or negative. The 1’s complement 
system requires adding 1 to the summation of weights for negative numbers but not for 
positive numbers. Also, the 1’s complement form is generally not used because two repre-
sentations of zero (00000000 or 11111111) are possible.

Range of Signed Integer Numbers

We have used 8-bit numbers for illustration because the 8-bit grouping is common in most 
computers and has been given the special name byte. With one byte or eight bits, you can 
represent 256 different numbers. With two bytes or sixteen bits, you can represent 65,536 
different numbers. With four bytes or 32 bits, you can represent 4.295 * 109 different 
numbers. The formula for finding the number of different combinations of n bits is

Total combinations = 2n

For 2’s complement signed numbers, the range of values for n-bit numbers is

Range = -(2n-1) to +(2n-1 - 1)

where in each case there is one sign bit and n 2 1 magnitude bits. For example, with four bits 
you can represent numbers in 2’s complement ranging from 2(23) = 28 to 23 2 1 = +7. 
Similarly, with eight bits you can go from 2128 to +127, with sixteen bits you can go from 

2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are deter-
mined by summing the weights in all bit positions where there are 1s and ignoring those 
positions where there are zeros. The weight of the sign bit in a negative number is given a 
negative value.

EXAMPLE 2–17

Determine the decimal values of the signed binary numbers expressed in 2’s complement:

(a)	 01010110	 (b)	 10101010

Solution

(a)	 The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 1 0 1 0 1 1 0

	 Summing the weights where there are 1s,

64 + 16 + 4 + 2 = �86

(b)	 The bits and their powers-of-two weights for the negative number are as follows. 
Notice that the negative sign bit has a weight of 227

= 2128.

-27 26 25 24 23 22 21 20

1 0 1 0 1 0 1 0

	 Summing the weights where there are 1s,

-128 + 32 + 8 + 2 = �86

Related Problem

Determine the decimal value of the 2’s complement number 11010111.

The range of magnitude values 
represented by binary numbers 
depends on the number of bits (n).
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232,768 to +32,767, and so on. There is one less positive number than there are negative 
numbers because zero is represented as a positive number (all zeros).

Floating-Point Numbers

To represent very large integer (whole) numbers, many bits are required. There is also a 
problem when numbers with both integer and fractional parts, such as 23.5618, need to be 
represented. The floating-point number system, based on scientific notation, is capable of 
representing very large and very small numbers without an increase in the number of bits 
and also for representing numbers that have both integer and fractional components.

A floating-point number (also known as a real number) consists of two parts plus a 
sign. The mantissa is the part of a floating-point number that represents the magnitude of 
the number and is between 0 and 1. The exponent is the part of a floating-point number 
that represents the number of places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in understanding the basic concept of floating-point 
numbers. Let’s consider a decimal number which, in integer form, is 241,506,800. The 
mantissa is .2415068 and the exponent is 9. When the integer is expressed as a floating-
point number, it is normalized by moving the decimal point to the left of all the digits so 
that the mantissa is a fractional number and the exponent is the power of ten. The floating-
point number is written as

0.2415068 * 109

For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985 
in three forms: single-precision, double-precision, and extended-precision. These all have the 
same basic formats except for the number of bits. Single-precision floating-point numbers 
have 32 bits, double-precision numbers have 64 bits, and extended-precision numbers have 80 
bits. We will restrict our discussion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers

In the standard format for a single-precision binary number, the sign bit (S) is the left-most 
bit, the exponent (E) includes the next eight bits, and the mantissa or fractional part (F) 
includes the remaining 23 bits, as shown next.

  32 bits 

S Exponent (E) Mantissa (fraction, F)

	 1 bit	 8 bits	 23 bits

In the mantissa or fractional part, the binary point is understood to be to the left of  
the 23 bits. Effectively, there are 24 bits in the mantissa because in any binary number the 
left-most (most significant) bit is always a 1. Therefore, this 1 is understood to be there 
although it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-
ing 127 to the actual exponent. The purpose of the bias is to allow very large or very 
small numbers without requiring a separate sign bit for the exponents. The biased exponent 
allows a range of actual exponent values from 2126 to +128.

To illustrate how a binary number is expressed in floating-point format, let’s use 
1011010010001 as an example. First, it can be expressed as 1 plus a fractional binary num-
ber by moving the binary point 12 places to the left and then multiplying by the appropriate 
power of two.

1011010010001 = 1.011010010001 * 212

Assuming that this is a positive number, the sign bit (S) is 0. The exponent, 12, is expressed 
as a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is 
expressed as the binary number 10001011. The mantissa is the fractional part (F) of the 
binary number, .011010010001. Because there is always a 1 to the left of the binary point 

Infonote

In addition to the CPU (central 
processing unit), computers 
use coprocessors to perform 
complicated mathematical 
calculations using floating-point 
numbers. The purpose is to increase 
performance by freeing up the CPU 
for other tasks. The mathematical 
coprocessor is also known as the 
floating-point unit (FPU).
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in the power-of-two expression, it is not included in the mantissa. The complete floating-
point number is

	 S	 E	 F

0 10001011 01101001000100000000000

Next, let’s see how to evaluate a binary number that is already in floating-point format. 
The general approach to determining the value of a floating-point number is expressed by 
the following formula:

Number = (-1)S(1 + F)(2E-127)

To illustrate, let’s consider the following floating-point binary number:
	 S	 E	 F

1 10010001 10001110001000000000000

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

 Number = (-1)1 (1.10001110001)(2145-127)

 = (-1)(1.10001110001)(218) = -1100011100010000000

This floating-point binary number is equivalent to 2407,688 in decimal. Since the expo-
nent can be any number between 2126 and +128, extremely large and small numbers can 
be expressed. A 32-bit floating-point number can replace a binary integer number having 
129 bits. Because the exponent determines the position of the binary point, numbers con-
taining both integer and fractional parts can be represented.

There are two exceptions to the format for floating-point numbers: The number 0.0 is repre-
sented by all 0s, and infinity is represented by all 1s in the exponent and all 0s in the mantissa.

EXAMPLE 2–18

Convert the decimal number 3.248 * 104 to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary.

3.248 * 104
= 32480 = 1111110111000002 = 1.11111011100000 * 214

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-
tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased 
exponent is

14 + 127 = 141 = 100011012

The complete floating-point number is

0 10001101 11111011100000000000000

Related Problem

Determine the binary value of the following floating-point binary number:

0 10011000 10000100010100110000000

Section 2–6  Checkup

	 1.	Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.

	 2.	Express the decimal number 233 as an 8-bit binary number in the 1’s complement 
system.

	 3.	Express the decimal number 246 as an 8-bit binary number in the 2’s complement 
system.

	 4.	List the three parts of a signed, floating-point number.
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2–7  Arithmetic Operations with Signed Numbers

In the last section, you learned how signed numbers are represented in three different forms. In 
this section, you will learn how signed numbers are added, subtracted, multiplied, and divided. 
Because the 2’s complement form for representing signed numbers is the most widely used 
in computers and microprocessor-based systems, the coverage in this section is limited to 2’s 
complement arithmetic. The processes covered can be extended to the other forms if necessary.

After completing this section, you should be able to

u	 Add signed binary numbers

u	 Define overflow

u	 Explain how computers add strings of numbers

u	 Subtract signed binary numbers

u	 Multiply signed binary numbers using the direct addition method

u	 Multiply signed binary numbers using the partial products method

u	 Divide signed binary numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum. 
There are four cases that can occur when two signed binary numbers are added.

	 1.	 Both numbers positive

	 2.	 Positive number with magnitude larger than negative number

	 3.	 Negative number with magnitude larger than positive number

	 4.	 Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples. The equivalent decimal 
numbers are shown for reference.

Both numbers positive:
	

00000111

+ 00000100

00001011

  

7

+ 4

11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111

 + 11111010

1    00001001

  

15

+ -6

9

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented) 
binary.

Negative number with magnitude larger than positive number:

00010000

+ 11101000

11111000

 

16

 + -24

-8

The sum is negative and therefore in 2’s complement form.

Both numbers negative:
	

11111011

+ 11110111

1    11110010

  

-5

+ -9

-14

The final carry bit is discarded. The sum is negative and therefore in 2’s complement form.

Addition of two positive numbers 
yields a positive number.

Addition of a positive number and 
a smaller negative number yields a 
positive number.

Addition of a positive number and 
a larger negative number or two 
negative numbers yields a negative 
number in 2’s complement.

Discard carry 

Discard carry 
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Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend) 
from +9 (the minuend) is equivalent to adding 26 to +9. Basically, the subtraction opera-
tion changes the sign of the subtrahend and adds it to the minuend. The result of a subtrac-
tion is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s 
complement.

In a computer, the negative numbers are stored in 2’s complement form so, as you can 
see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds 
the number of bits in the two numbers, an overflow results as indicated by an incorrect sign 
bit. An overflow can occur only when both numbers are positive or both numbers are nega-
tive. If the sign bit of the result is different than the sign bit of the numbers that are added, 
overflow is indicated. The following 8-bit example will illustrate this condition.

01111101 125

 +  00111010 + 58

10110111 183

Sign incorrect 
Magnitude incorrect 

In this example the sum of 183 requires eight magnitude bits. Since there are seven mag-
nitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which pro-
duces the overflow indication.

Numbers Added Two at a Time

Now let’s look at the addition of a string of numbers, added two at a time. This can be accom-
plished by adding the first two numbers, then adding the third number to the sum of the first 
two, then adding the fourth number to this result, and so on. This is how computers add strings 
of numbers. The addition of numbers taken two at a time is illustrated in Example 2–19.

•
EXAMPLE 2–19

Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011

95 01011111

+ 14 + 00001110

109 01101101

+ 18 + 00010010

127 01111111

  

 

Add 1st two numbers

1st sum

Add 3rd number

2nd sum

Add 4th number

Final sum

Related Problem

Add 00110011, 10111111, and 01100011. These are signed numbers.

Subtraction is addition with the sign 
of the subtrahend changed.
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For example, when you take the 2’s complement of the positive number 00000100 
(+ 4), you get 11111100, which is 24 as the following sum-of-weights evaluation 
shows:

-128 + 64 + 32 + 16 + 8 + 4 = -4

As another example, when you take the 2’s complement of the negative number 11101101 
(219), you get 00010011, which is +19 as the following sum-of-weights evaluation 
shows:

16 + 2 + 1 = 19

Since subtraction is simply an addition with the sign of the subtrahend changed, the 
process is stated as follows:

To subtract two signed numbers, take the 2’s complement of the subtrahend and 
add. Discard any final carry bit.

Example 2–20 illustrates the subtraction process.

When you subtract two binary 
numbers with the 2’s complement 
method, it is important that both 
numbers have the same number  
of bits.

EXAMPLE 2–20

Perform each of the following subtractions of the signed numbers:

(a)	 00001000 2 00000011	 (b)	 00001100 2 11110111

(c)	 11100111 2 00010011	 (d)	 10001000 2 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a)	 In this case, 8 2 3 = 8 +  (23) = 5.

00001000

+ 11111101

1 00000101
  

Minuend (+8)

2>s complement of subtrahend (-3)

Difference (+5)

(b)	 In this case, 12 2 (29) = 12 +  9 = 21.

00001100

+ 00001001

00010101

  

Minuend (+12)

2>s complement of subtrahend (+9)

Difference (+21)

(c)	 In this case, 225 2 (+19) = 225 +  (219) = 244.

11100111

+ 11101101

1 11010100
  

Minuend (-25)

2>s complement of subtrahend (-19)

Difference (-44)

(d)	 In this case, 2120 2 (230) = 2120 +  30 = 290.

10001000

+ 00011110

10100110
  

Minuend (-120)

2>s complement of subtrahend (+30)

Difference (-90)

Related Problem

Subtract 01000111 from 01011000.

Discard carry 

Discard carry 
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Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product. 
These are illustrated in the following decimal multiplication:

8

* 3

24

  

Multiplicand

Multiplier

Product

The multiplication operation in most computers is accomplished using addition. As you have 
already seen, subtraction is done with an adder; now let’s see how multiplication is done.

Direct addition and partial products are two basic methods for performing multiplica-
tion using addition. In the direct addition method, you add the multiplicand a number of 
times equal to the multiplier. In the previous decimal example (8 * 3), three multiplicands 
are added: 8 +  8 +  8 = 24. The disadvantage of this approach is that it becomes very 
lengthy if the multiplier is a large number. For example, to multiply 350 * 75, you must 
add 350 to itself 75 times. Incidentally, this is why the term times is used to mean multiply.

When two binary numbers are multiplied, both numbers must be in true (uncomple-
mented) form. The direct addition method is illustrated in Example 2–21 adding two binary 
numbers at a time.

Multiplication is equivalent to 
adding a number to itself a number 
of times equal to the multiplier.

EXAMPLE 2–21

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier) 
using the direct addition method.

Solution

Since both numbers are positive, they are in true form, and the product will be positive. The 
decimal value of the multiplier is 4, so the multiplicand is added to itself four times as follows:

01001101  1st time

+  01001101  2nd time

10011010  Partial sum

+  01001101  3rd time

11100111  Partial sum

+  01001101  4th time

100110100  Product

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the 
bits in the product are magnitude bits.

Related Problem

Multiply 01100001 by 00000110 using the direct addition method.

The partial products method is perhaps the more common one because it reflects 
the way you multiply longhand. The multiplicand is multiplied by each multiplier digit 
beginning with the least significant digit. The result of the multiplication of the multi-
plicand by a multiplier digit is called a partial product. Each successive partial product 
is moved (shifted) one place to the left and when all the partial products have been pro-
duced, they are added to get the final product. Here is a decimal example.

239

* 123

717

478 

+  239 

29,397

  

Multiplicand

Multiplier

1st partial product (3 * 239)

2nd partial product (2 * 239)

3rd partial product (1 * 239)

Final product
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The sign of the product of a multiplication depends on the signs of the multiplicand and 
the multiplier according to the following two rules:

•	 If the signs are the same, the product is positive.

•	 If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as follows:

Step 1:	 Determine if the signs of the multiplicand and multiplier are the same or differ-
ent. This determines what the sign of the product will be.

Step 2:	 Change any negative number to true (uncomplemented) form. Because most 
computers store negative numbers in 2’s complement, a 2’s complement oper-
ation is required to get the negative number into true form.

Step 3:	 Starting with the least significant multiplier bit, generate the partial products. 
When the multiplier bit is 1, the partial product is the same as the multiplicand. 
When the multiplier bit is 0, the partial product is zero. Shift each successive 
partial product one bit to the left.

Step 4:	 Add each successive partial product to the sum of the previous partial products 
to get the final product.

Step 5:	 If the sign bit that was determined in step 1 is negative, take the 2’s comple-
ment of the product. If positive, leave the product in true form. Attach the sign 
bit to the product.

EXAMPLE 2–22

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Solution

Step 1:  The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The 
sign bit of the product will be 1 (negative).

Step 2:  Take the 2’s complement of the multiplier to put it in true form.

11000101 h 00111011

Step 3 and 4:  The multiplication proceeds as follows. Notice that only the magnitude 
bits are used in these steps.

1010011

*  0111011

1010011

+  1010011 

11111001

+  0000000 

011111001

+  1010011  

1110010001

+  1010011  

100011000001

+  1010011   

1001100100001

+  0000000   

1001100100001

  

Multiplicand

Multiplier

1st partial product

2nd partial product

Sum of 1st and 2nd

3rd partial product

Sum

4th partial product

Sum

5th partial product

Sum

6th partial product

Sum

7th partial product

Final product
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Division

The numbers in a division are the dividend, the divisor, and the quotient. These are illus-
trated in the following standard division format.

dividend

divisor
= quotient

The division operation in computers is accomplished using subtraction. Since subtraction 
is done with an adder, division can also be accomplished with an adder.

The result of a division is called the quotient; the quotient is the number of times that 
the divisor will go into the dividend. This means that the divisor can be subtracted from the 
dividend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21
-   7

14
-   7

7
-   7

0

  

Dividend
1st subtraction of divisor
1st partial remainder
2nd subtraction of divisor
2nd partial remainder
3rd subtraction of divisor
Zero remainder

In this simple example, the divisor was subtracted from the dividend three times before a 
remainder of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according 
to the following two rules:

•	 If the signs are the same, the quotient is positive.

•	 If the signs are different, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented) 
form. The basic steps in a division process are as follows:

Step 1:	 Determine if the signs of the dividend and divisor are the same or different. This 
determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2:	 Subtract the divisor from the dividend using 2’s complement addition to get 
the first partial remainder and add 1 to the quotient. If this partial remainder is 
positive, go to step 3. If the partial remainder is zero or negative, the division 
is complete.

Step 3:	 Subtract the divisor from the partial remainder and add 1 to the quotient. If the 
result is positive, repeat for the next partial remainder. If the result is zero or 
negative, the division is complete.

Continue to subtract the divisor from the dividend and the partial remainders until there is 
a zero or a negative result. Count the number of times that the divisor is subtracted and you 
have the quotient. Example 2–23 illustrates these steps using 8-bit signed binary numbers.

Step 5:  Since the sign of the product is a 1 as determined in step 1, take the 2’s com-
plement of the product.

1001100100001 h 0110011011111
Attach the sign bit 

1  0110011011111

Related Problem

Verify the multiplication is correct by converting to decimal numbers and performing 
the multiplication.
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EXAMPLE 2–23

Divide 01100100 by 00011001.

Solution

Step 1:	 The signs of both numbers are positive, so the quotient will be positive. The 
quotient is initially zero: 00000000.

Step 2:	 Subtract the divisor from the dividend using 2’s complement addition 
(remember that final carries are discarded).

01100100
+  11100111

01001011
  

Dividend
2>s complement of divisor
Positive 1st partial remainder

	 Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3:	 Subtract the divisor from the 1st partial remainder using 2’s complement 
addition.

01001011
+  11100111

00110010
  

1st partial remainder
2>s complement of divisor
Positive 2nd partial remainder

	 Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4:	 Subtract the divisor from the 2nd partial remainder using 2’s complement 
addition.

00110010
+  11100111

00011001
  

2nd partial remainder
2>s complement of divisor
Positive 3rd partial remainder

	 Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5:	 Subtract the divisor from the 3rd partial remainder using 2’s complement 
addition.

00011001
+  11100111

00000000
  

3rd partial remainder
2>s complement of divisor
Zero remainder

	 Add 1 to quotient: 00000011 + 00000001 = 00000100 (final quotient). The 
process is complete.

Related Problem

Verify that the process is correct by converting to decimal numbers and performing the 
division.

Section 2–7  Checkup

	 1.	List the four cases when numbers are added.

	 2.	Add the signed numbers 00100001 and 10111100.

	 3.	Subtract the signed numbers 00110010 from 01110111.

	 4.	What is the sign of the product when two negative numbers are multiplied?

	 5.	Multiply 01111111 by 00000101.

	 6.	What is the sign of the quotient when a positive number is divided by a negative number?

	 7.	Divide 00110000 by 00001100.
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92	 Number Systems, Operations, and Codes

2–8  Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a compact 
way of displaying or writing binary numbers because it is very easy to convert between 
binary and hexadecimal. As you are probably aware, long binary numbers are difficult to 
read and write because it is easy to drop or transpose a bit. Since computers and micropro-
cessors understand only 1s and 0s, it is necessary to use these digits when you program in 
“machine language.” Imagine writing a sixteen bit instruction for a microprocessor system 
in 1s and 0s. It is much more efficient to use hexadecimal or octal; octal numbers are covered 
in Section 2–9. Hexadecimal is widely used in computer and microprocessor applications.

After completing this section, you should be able to

u	 List the hexadecimal characters

u	 Count in hexadecimal

u	 Convert from binary to hexadecimal

u	 Convert from hexadecimal to binary

u	 Convert from hexadecimal to decimal

u	 Convert from decimal to hexadecimal

u	 Add hexadecimal numbers

u	 Determine the 2’s complement of a hexadecimal number

u	 Subtract hexadecimal numbers

The hexadecimal number system has a base of sixteen; that is, it is composed of 16 
numeric and alphabetic characters. Most digital systems process binary data in groups 
that are multiples of four bits, making the hexadecimal number very convenient because 
each hexadecimal digit represents a 4-bit binary number (as listed in Table 2–3).

The hexadecimal number system 
consists of digits 0–9 and letters A–F.

TABLE 2–3

Decimal Binary Hexadecimal

  0 0000 0
  1 0001 1
  2 0010 2
  3 0011 3
  4 0100 4
  5 0101 5
  6 0110 6
  7 0111 7
  8 1000 8
  9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Ten numeric digits and six alphabetic characters make up the hexadecimal number sys-
tem. The use of letters A, B, C, D, E, and F to represent numbers may seem strange at 
first, but keep in mind that any number system is only a set of sequential symbols. If 
you understand what quantities these symbols represent, then the form of the symbols 
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themselves is less important once you get accustomed to using them. We will use the sub-
script 16 to designate hexadecimal numbers to avoid confusion with decimal numbers. 
Sometimes you may see an “h” following a hexadecimal number.

Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with another col-
umn and continue as follows:

c, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, c

With two hexadecimal digits, you can count up to FF16, which is decimal 255. To count 
beyond this, three hexadecimal digits are needed. For instance, 10016 is decimal 256, 10116 
is decimal 257, and so forth. The maximum 3-digit hexadecimal number is FFF16, or deci-
mal 4095. The maximum 4-digit hexadecimal number is FFFF16, which is decimal 65,535.

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break 
the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit 
group with the equivalent hexadecimal symbol.

InfoNote

With memories in the gigabyte 
(GB) range, specifying a memory 
address in binary is quite 
cumbersome. For example, it takes 
32 bits to specify an address in  
a 4 GB memory. It is much easier  
to express a 32-bit code using  
8 hexadecimal digits.

EXAMPLE 2–24

Convert the following binary numbers to hexadecimal:

(a)	 1100101001010111      (b)	 111111000101101001

Solution

(a)	 1100101001010111	 (b)	 00111111000101101001

	 C	 A	 5	 7	 = CA5716	 3	 F	 1	 6	 9	 = 3F16916

	 Two zeros have been added in part (b) to complete a 4-bit group at the left.

Related Problem

Convert the binary number 1001111011110011100 to hexadecimal.

e ee ee ee e e

T TT TT TT T T

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process and replace 
each hexadecimal symbol with the appropriate four bits.

Hexadecimal is a convenient way  
to represent binary numbers.

EXAMPLE 2–25

Determine the binary numbers for the following hexadecimal numbers:

(a)	 10A416    (b)  CF8E16    (c)  974216

Solution

(a)	 1	 0	 A	 4	 (b)   C	 F	 8	 E	 (c)  9	 7	 4	 2

		  1000010100100	 1100111110001110	 1001011101000010

	 In part (a), the MSB is understood to have three zeros preceding it, thus forming a 
4-bit group.

Related Problem

Convert the hexadecimal number 6BD3 to binary.

f f fT T T f f f fT T T T f f f fT T T T
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94	 Number Systems, Operations, and Codes

It should be clear that it is much easier to deal with a hexadecimal number than with the 
equivalent binary number. Since conversion is so easy, the hexadecimal system is widely 
used for representing binary numbers in programming, printouts, and displays.

Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert the 
hexadecimal number to binary and then convert from binary to decimal.

Conversion between hexadecimal 
and binary is direct and easy.

EXAMPLE 2–26

Convert the following hexadecimal numbers to decimal:

(a)	 1C16      (b)  A8516

Solution

Remember, convert the hexadecimal number to binary first, then to decimal.

(a)		  1	 C

00011100 = 24 + 23 + 22
= 16 + 8 + 4 = 2810

(b)		  A	 8	 5

101010000101 = 211 + 29 + 27 + 22 + 20
= 2048 + 512 + 128 + 4 + 1 = 269310

Related Problem

Convert the hexadecimal number 6BD to decimal.

f f fT T T

f fT T

EXAMPLE 2–27

Convert the following hexadecimal numbers to decimal:

(a)	 E516      (b)  B2F816

Solution

Recall from Table 2–3 that letters A through F represent decimal numbers 10 through 
15, respectively.

(a)	 E516 = (E * 16) + (5 * 1) = (14 * 16) + (5 * 1) = 224 + 5 = 22910

(b)	  B2F816 = (B * 4096)  + (2 * 256) + (F * 16)  + (8 * 1)

	  = (11 * 4096) + (2 * 256) + (15 * 16) + (8 * 1)

	  = 45,056  + 512  +   240  +   8 = 45,81610

Related Problem

Convert 60A16 to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply 
the decimal value of each hexadecimal digit by its weight and then take the sum of these 
products. The weights of a hexadecimal number are increasing powers of 16 (from right to 
left). For a 4-digit hexadecimal number, the weights are

163 162 161 160

4096 256 16 1

A calculator can be used to 
perform arithmetic operations with 
hexadecimal numbers.

Calculator Session

Conversion of a Hexadecimal 
Number to a Decimal Number

Convert hexadecimal 28A to 
decimal.
	 HEX

TI-36X	 Step 1:	 3rd   (

	 A
	 Step 2:	 2   8   3rd   1/x

	 DEC
	 Step 3:	 3rd   EE

	 650  
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Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal 
number, formed by the remainders of the divisions. The first remainder produced is the least 
significant digit (LSD). Each successive division by 16 yields a remainder that becomes a 
digit in the equivalent hexadecimal number. This procedure is similar to repeated division 
by 2 for decimal-to-binary conversion that was covered in Section 2–3. Example 2–28 
illustrates the procedure. Note that when a quotient has a fractional part, the fractional part 
is multiplied by the divisor to get the remainder.

EXAMPLE 2–28

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution
Hexadecimal 
remainder

� 40 0.625 � 16 � 10 �

� 2 0.5 � 16 � 8 �

� 0 0.125 � 16 � 2 �

Stop when whole number Hexadecimal number
quotient is zero.

MSD LSD

2 8 A

.125
2

16

.5
40

16

.625
650

16
A

8

2

Related Problem

Convert decimal 2591 to hexadecimal.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadeci-
mal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits 
A through F are equivalent to decimal numbers 10 through 15. When adding two hexadeci-
mal numbers, use the following rules. (Decimal numbers are indicated by a subscript 10.)

	 1.	 In any given column of an addition problem, think of the two hexadecimal digits in 
terms of their decimal values. For instance, 516 = 510 and C16 = 1210.

	 2.	 If the sum of these two digits is 1510 or less, bring down the corresponding hexa-
decimal digit.

	 3.	 If the sum of these two digits is greater than 1510, bring down the amount of the sum 
that exceeds 1610 and carry a 1 to the next column.

Calculator Session

Conversion of a Decimal 
Number to a Hexadecimal 
Number

Convert decimal 650 to hexadecimal.

	 DEC

TI-36X	 Step 1:	 3rd   EE

	 Step 2:	 6   5   0

	 HEX
	 Step 3:	 3rd   (

	 28A
EXAMPLE 2–29

Add the following hexadecimal numbers:

(a)	 2316 + 1616    (b)  5816 + 2216    (c)  2B16 + 8416    (d)  DF16 + AC16

Solution

(a)
	

2316
+  1616

3916

	right column:	 316 + 616 = 310 + 610 = 910 = 916
	 left column:	 216 + 116 = 210 + 110 = 310 = 316

M02_FLOY5983_11_GE_C02.indd Page 95  17/11/14  4:53 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



96	 Number Systems, Operations, and Codes

Related Problem

Add 4C16 and 3A16.

(b)
	

5816
+  2216

7A16

	right column:	 816 + 216 = 810 + 210 = 1010 = A16
	 left column:	 516 + 216 = 510 + 210 = 710 = 716

(c)
	

2B16
+  8416

AF16

	right column:	 B16 + 416 = 1110 + 410 = 1510 = F16
	 left column:	 216 + 816 = 210 + 810 = 1010 = A16

(d)
	

DF16
+  AC16

18B16

	right column:	 F16 + C16 = 1510 + 1210 = 2710
		  2710 2 1610 = 1110 = B16 with a 1 carry

	 left column:	 D16 + A16 + 116 = 1310 + 1010 + 110 = 2410
		  2410 2 1610 = 810 = 816 with a 1 carry

Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary numbers. 
Since a hexadecimal number can be used to represent a binary number, it can also be used 
to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 is 
the most common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1: � Convert the hexadecimal number to binary. Take the 2’s complement of 
the binary number. Convert the result to hexadecimal. This is illustrated 
in Figure 2–4.

Example:

2’s complement
in hexadecimal

2’s complement
in binary

BinaryHexadecimal

D611010110001010102A

fg02_00400

FIGURE 2–4  Getting the 2’s complement of a hexadecimal number, Method 1.

Example:

2’s complement
in hexadecimal

1’s complement
in hexadecimal

plus 1

Subtract from
maximum

Hexadecimal

D6D5 + 1FF – 2A2A

fg02_00500

FIGURE 2–5  Getting the 2’s complement of a hexadecimal number, Method 2.

Method 2: � Subtract the hexadecimal number from the maximum hexadecimal 
number and add 1. This is illustrated in Figure 2–5.
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Method 3: � Write the sequence of single hexadecimal digits. Write the sequence in 
reverse below the forward sequence. The 1’s complement of each hex 
digit is the digit directly below it. Add 1 to the resulting number to get the 
2’s complement. This is illustrated in Figure 2–6.

Example:

2’s complement
in hexadecimal

D6

1’s complement
in hexadecimal

plus 1

D5 + 1
2
D

3
C

4
B

0
F

Hexadecimal

2A

1
E

2
D

3
C

4
B

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

0
F

1
E

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

fg02_00600

FIGURE 2–6  Getting the 2’s complement of a hexadecimal number, Method 3.

EXAMPLE 2–30

Subtract the following hexadecimal numbers:

(a)	 8416 - 2A16    (b)  C316 - 0B16

Solution

(a)	 2A16 = 00101010

	 2’s complement of 2A16 = 11010110 = D616	 (using Method 1)

8416
+  D616
15A16

  
 
Add
Drop carry, as in 2>s complement addition

	 The difference is 5A16.

(b)	 0B16 = 00001011

	 2’s complement of 0B16 = 11110101 = F516	 (using Method 1)

C316
+  F516
1B816

  
 
Add
Drop carry

	 The difference is B816.

Related Problem

Subtract 17316 from BCD16.

Section 2–8  Checkup

	 1.	Convert the following binary numbers to hexadecimal:

(a)  10110011    (b)  110011101000

	 2.	Convert the following hexadecimal numbers to binary:

(a)  5716    (b)  3A516    (c)  F80B16

	 3.	Convert 9B3016 to decimal.

	 4.	Convert the decimal number 573 to hexadecimal.
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	 5.	Add the following hexadecimal numbers directly:

(a)  1816 + 3416    (b)  3F16 + 2A16

	 6.	Subtract the following hexadecimal numbers:

(a)  7516 - 2116    (b)  9416 - 5C16

2–9  Octal Numbers

Like the hexadecimal number system, the octal number system provides a convenient way 
to express binary numbers and codes. However, it is used less frequently than hexadecimal 
in conjunction with computers and microprocessors to express binary quantities for input 
and output purposes.

After completing this section, you should be able to

u	 Write the digits of the octal number system

u	 Convert from octal to decimal

u	 Convert from decimal to octal

u	 Convert from octal to binary

u	 Convert from binary to octal

The octal number system is composed of eight digits, which are

0, 1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, c

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not 
used. To distinguish octal numbers from decimal numbers or hexadecimal numbers, we 
will use the subscript 8 to indicate an octal number. For instance, 158 in octal is equivalent 
to 1310 in decimal and D in hexadecimal. Sometimes you may see an “o” or a “Q” follow-
ing an octal number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, each successive digit position is an 
increasing power of eight, beginning in the right-most column with 80. The evaluation of 
an octal number in terms of its decimal equivalent is accomplished by multiplying each 
digit by its weight and summing the products, as illustrated here for 23748.

 Weight: 83 82 81 80

 Octal number: 2   3  7  4

 23748 = (2 * 83)  + (3 * 82)  + (7 * 81) + (4 * 80)

 = (2 * 512) + (3 * 64) + (7 * 8)  + (4 * 1)

 =  1024  +  192  +  56  +   4 = 127610

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-
by-8 method, which is similar to the method used in the conversion of decimal numbers to 
binary or to hexadecimal. To show how it works, let’s convert the decimal number 359 to 

The octal number system has a  
base of 8.
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octal. Each successive division by 8 yields a remainder that becomes a digit in the equiva-
lent octal number. The first remainder generated is the least significant digit (LSD).

7

4

5

Remainder
� 44 0.875 � 8 �

� 5 0.5 � 8 �

� 0 0.625 � 8 �

Stop when whole number Octal number
quotient is zero.

MSD LSD

5 4 7

.625
5

8

.5
44

8

.875
359

8

Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very easy to 
convert from octal to binary. Each octal digit is represented by three bits as shown in 
Table 2–4.

Calculator Session

Conversion of a Decimal 
Number to an Octal Number

Convert decimal 439 to octal.

	 DEC

TI-36X	 Step 1:	 3rd   EE

	 Step 2:	 4   3   9

	 OCT
	 Step 3:	 3rd   )

	 667  

Octal is a convenient way to 
represent binary numbers, but 
it is not as commonly used as 
hexadecimal.

TABLE 2–4

Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit with the 
appropriate three bits.

EXAMPLE 2–31

Convert each of the following octal numbers to binary:

(a)	 138    (b)   258    (c)   1408    (d)   75268

Solution

(a)		  1	 3	 (b)   2	 5	 (c)   1	 4	 0	 (d)   7	 5	 2	 6

	 001011	 010101	 001100000	 111101010110

Related Problem

Convert each of the binary numbers to decimal and verify that each value agrees with 
the decimal value of the corresponding octal number.

V VT T V VT T V V VT T T V V V VT T T T

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary 
conversion. The procedure is as follows: Start with the right-most group of three bits and, 
moving from right to left, convert each 3-bit group to the equivalent octal digit. If there 
are not three bits available for the left-most group, add either one or two zeros to make a 
complete group. These leading zeros do not affect the value of the binary number.
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U U

T T

U U U

T T T

U U U U

T T T T

U U U U

T T T T

EXAMPLE 2–32

Convert each of the following binary numbers to octal:

(a)	 110101    (b)   101111001    (c)   100110011010    (d)   11010000100

Solution

(a)	 110101	 (b)   101111001

		  6	 5 = 658	 5	 7	 1 = 5718

(c)	 100110011010	 (d)   011010000100

		  4	 6	 3	 2 = 46328	 3	 2	 0	 4 = 32048

Related Problem

Convert the binary number 1010101000111110010 to octal.

Section 2–9  Checkup

	 1.	Convert the following octal numbers to decimal:

(a)  738	 (b)  1258

	 2.	Convert the following decimal numbers to octal:

(a)  9810	 (b)  16310

	 3.	Convert the following octal numbers to binary:

(a)  468	 (b)  7238	 (c)  56248

	 4.	Convert the following binary numbers to octal:

(a)  110101111	 (b)  1001100010	 (c)  10111111001

2–10  Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary 
code. There are only ten code groups in the BCD system, so it is very easy to convert 
between decimal and BCD. Because we like to read and write in decimal, the BCD code 
provides an excellent interface to binary systems. Examples of such interfaces are keypad 
inputs and digital readouts.

After completing this section, you should be able to

u	 Convert each decimal digit to BCD

u	 Express decimal numbers in BCD

u	 Convert from BCD to decimal

u	 Add BCD numbers

The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means 
that each decimal digit, 0 through 9, is represented by a binary code of four bits. The desig-
nation 8421 indicates the binary weights of the four bits (23, 22, 21, 20). The ease of conver-
sion between 8421 code numbers and the familiar decimal numbers is the main advantage 

In BCD, 4 bits represent each 
decimal digit.
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of this code. All you have to remember are the ten binary combinations that represent the 
ten decimal digits as shown in Table 2–5. The 8421 code is the predominant BCD code, and 
when we refer to BCD, we always mean the 8421 code unless otherwise stated.

TABLE 2–5

Decimal/BCD conversion.

Decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes

You should realize that, with four bits, sixteen numbers (0000 through 1111) can be repre-
sented but that, in the 8421 code, only ten of these are used. The six code combinations that 
are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the 
appropriate 4-bit code, as shown by Example 2–33.

EXAMPLE 2–33

Convert each of the following decimal numbers to BCD:

(a)	 35    (b)   98    (c)   170    (d)   2469

Solution

(a)		  3	 5	 (b)	 9	 8

	 00110101	 10011000

(c)		  1	 7	 0	 (d)	 2	 4	 6	 9

	 000101110000	 0010010001101001

Related Problem

Convert the decimal number 9673 to BCD.

f fT T f fT T

f f fT T T f f f fT T T T

Convert each of the following BCD codes to decimal:

(a)	 10000110    (b)   001101010001    (c)   1001010001110000

Solution

(a)	 10000110	 (b)   001101010001	 (c)   1001010001110000

		  8	 6	 3	 5	 1	 9	 4	 7	 0

Related Problem

Convert the BCD code 10000010001001110110 to decimal.

e e e e

T T T T

e e

T T

e e e

T T T

EXAMPLE 2–34

It is equally easy to determine a decimal number from a BCD number. Start at the 
right-most bit and break the code into groups of four bits. Then write the decimal digit 
represented by each 4-bit group.
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Applications

Digital clocks, digital thermometers, digital meters, and other devices with seven-segment 
displays typically use BCD code to simplify the displaying of decimal numbers. BCD is 
not as efficient as straight binary for calculations, but it is particularly useful if only limited 
processing is required, such as in a digital thermometer.

BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the most 
important operation because the other three operations (subtraction, multiplication, and 
division) can be accomplished by the use of addition. Here is how to add two BCD 
numbers:

Step 1:	 Add the two BCD numbers, using the rules for binary addition in Section 2–4.

Step 2:	 If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3:	 If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, 
it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six 
invalid states and return the code to 8421. If a carry results when 6 is added, 
simply add the carry to the next 4-bit group.

Example 2–35 illustrates BCD additions in which the sum in each 4-bit column is equal 
to or less than 9, and the 4-bit sums are therefore valid BCD numbers. Example 2–36 illus-
trates the procedure in the case of invalid sums (greater than 9 or a carry).

An alternative method to add BCD numbers is to convert them to decimal, perform the 
addition, and then convert the answer back to BCD.

InfoNote

BCD is sometimes used for 
arithmetic operations in processors. 
To represent BCD numbers in 
a processor, they usually are 
“packed,” so that eight bits have 
two BCD digits. Normally, a 
processor will add numbers as if 
they were straight binary. Special 
instructions are available for 
computer programmers to correct 
the results when BCD numbers 
are added or subtracted. For 
example, in Assembly Language, 
the programmer will include a 
DAA (Decimal Adjust for Addition) 
instruction to automatically correct 
the answer to BCD following an 
addition.

EXAMPLE 2–35

Add the following BCD numbers:

(a)	 0011 + 0100	 (b)   00100011 + 00010101

(c)	 10000110 + 00010011	 (d)   010001010000 + 010000010111

Solution

The decimal number additions are shown for comparison.

(a)
	

0011
+  0100

0111
  

3
+  4

7
	

(b)
   

0010
+  0001

0011

0011
 0101

1000
  

23
+  15

38

(c)
	

1000
+  0001

1001

0110
 0011

1001
  

86
+  13

99
	

(d)
   

0100
+  0100

1000

0101
 0001

0110

0000
 0111

0111
  

450
+  417

867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are 
valid BCD numbers.

Related Problem

Add the BCD numbers: 1001000001000011 + 0000100100100101.

EXAMPLE 2–36

Add the following BCD numbers:

(a)	 1001 + 0100	 (b)   1001 + 1001

(c)	 00010110 + 00010101	 (d)   01100111 + 01010011
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Solution

The decimal number additions are shown for comparison.

(a)	 	 1001	 9
	 1 0100		  14
	 1101	 Invalid BCD number (.9)          13
                  1 0110		 Add 6
	 0001        0011	 Valid BCD number

	 T 	 T

	 1	 3

(b)	 	 1001	 9
	 1 1001		  1 9
	 1	 0010	 Invalid because of carry                18
                  1 0110		 Add 6
	 0001        1000	 Valid BCD number

	 T 	 T

	 1	 8

(c)	 	 0001        0110	 16
	 1 0001        0101		  1 15
	 0010        1011	 Right group is invalid (.9),          31
		      left group is valid.
 	 1 0110	 Add 6 to invalid code. Add
	               	                    carry, 0001, to next group.
	 0011        0001	 Valid BCD number

	 T 	 T

	 3	 1

(d)	 	 0110	 0111	 67
	 1 0101	 0011		  1 53
	 1011	 1010	 Both groups are invalid (.9)          120

	           1 0110        1 0110   	   Add 6 to both groups 
	 0001      0010	 0000	 Valid BCD number

	 T 	 T 	 T

	 1	 2	 0

Related Problem

Add the BCD numbers: 01001000 + 00110100.

ee

ee

ee

ee e

Section 2–10  Checkup

	 1.  What is the binary weight of each 1 in the following BCD numbers?

(a)  0010    (b)  1000    (c)  0001    (d)  0100

	 2.  Convert the following decimal numbers to BCD:

(a)  6    (b)  15    (c)  273    (d)  849

	 3.  What decimal numbers are represented by each BCD code?

(a)  10001001    (b)  001001111000    (c)  000101010111  

	 4.  In BCD addition, when is a 4-bit sum invalid?
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2–11  Digital Codes

Many specialized codes are used in digital systems. You have just learned about the BCD 
code; now let’s look at a few others. Some codes are strictly numeric, like BCD, and oth-
ers are alphanumeric; that is, they are used to represent numbers, letters, symbols, and 
instructions. The codes introduced in this section are the Gray code, the ASCII code, and 
the Unicode.

After completing this section, you should be able to

u	 Explain the advantage of the Gray code

u	 Convert between Gray code and binary

u	 Use the ASCII code

u	 Discuss the Unicode

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific 
weights assigned to the bit positions. The important feature of the Gray code is that it 
exhibits only a single bit change from one code word to the next in sequence. This property 
is important in many applications, such as shaft position encoders, where error suscepti-
bility increases with the number of bit changes between adjacent numbers in a sequence.

Table 2–6 is a listing of the 4-bit Gray code for decimal numbers 0 through 15. Binary 
numbers are shown in the table for reference. Like binary numbers, the Gray code can have 
any number of bits. Notice the single-bit change between successive Gray code words. 
For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to 
0110, while the binary code changes from 0011 to 0100, a change of three bits. The only 
bit change in the Gray code is in the third bit from the right: the other bits remain the same.

The single bit change characteristic 
of the Gray code minimizes the 
chance for error.

TABLE 2–6

Four-bit Gray code.

Decimal Binary Gray Code Decimal Binary Gray Code

0 0000 0000   8 1000 1100

1 0001 0001   9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules 
explain how to convert from a binary number to a Gray code word:

	 1.	 The most significant bit (left-most) in the Gray code is the same as the corresponding 
MSB in the binary number.

	 2.	 Going from left to right, add each adjacent pair of binary code bits to get the next 
Gray code bit. Discard carries.
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For example, the conversion of the binary number 10110 to Gray code is as follows:

1-  + S 0-  + S 1-  + S 1-  + S 0	 Binary
T	 T	 T	 T	 T

1	 1	 1	 0	 1	 Gray

The Gray code is 11101.

Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are some differ-
ences. The following rules apply:

	 1.	 The most significant bit (left-most) in the binary code is the same as the correspond-
ing bit in the Gray code.

	 2.	 Add each binary code bit generated to the Gray code bit in the next adjacent position. 
Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1	 1	 0	 1	 1	 Gray

1	 0	 0	 1	 0	 Binary

The binary number is 10010.

� ↓
↓

� ↓
↓

� ↓
↓

� ↓↓
↓

↓� ↓
↓

�

↓
↓� ↓

↓
� ↓

↓
� ↓

↓
�

↓
↓�

↓
↓

EXAMPLE 2–37

(a)	 Convert the binary number 11000110 to Gray code.

(b)	 Convert the Gray code 10101111 to binary.

Solution

(a)	 Binary to Gray code:

1-  + S 1-  + S 0-  + S 0-  + S 0-  + S 1-  + S 1-  + S 0
	 T	 T	 T	 T	 T	 T	 T	 T

	 1	 0	 1	 0	 0	 1	 0	 1

(b)	 Gray code to binary:

1	 0	 1	 0	 1	 1	 1	 1

1	 1	 0	 0	 1	 0	 1	 0

Related Problem

(a)	 Convert binary 101101 to Gray code.

(b)	 Convert Gray code 100111 to binary.

� ↓
↓

� ↓
↓

� ↓
↓

� ↓↓
↓

↓� ↓
↓

�

↓
↓� ↓

↓
� ↓

↓
� ↓

↓
�

↓
↓�

↓
↓

An Application

The concept of a 3-bit shaft position encoder is shown in Figure 2–7. Basically, there are 
three concentric rings that are segmented into eight sectors. The more sectors there 
are, the more accurately the position can be represented, but we are using only eight 
to illustrate. Each sector of each ring is either reflective or nonreflective. As the rings 
rotate with the shaft, they come under an IR emitter that produces three separate IR 
beams. A 1 is indicated where there is a reflected beam, and a 0 is indicated where 
there is no reflected beam. The IR detector senses the presence or absence of reflected 
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(a) Binary code (b) Gray code

000

001

111110

101

100

011 010

1

1
0

000

001

100101

111

110

010 011

1

1
1IR

emitter/detector

IR beams

Reflected Nonreflected

IR
emitter/detector

FIGURE 2–7  A simplified illustration of how the Gray code solves the error problem in 
shaft position encoders. Three bits are shown to illustrate the concept, although most shaft 
encoders use more than 10 bits to achieve a higher resolution.

beams and produces a corresponding 3-bit code. The IR emitter/detector is in a fixed 
position. As the shaft rotates counterclockwise through 360°, the eight sectors move 
under the three beams. Each beam is either reflected or absorbed by the sector surface 
to represent a binary or Gray code number that indicates the shaft position.

In Figure 2–7(a), the sectors are arranged in a straight binary pattern, so that the detector 
output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a reflective 
sector, the output is 1; when a beam is aligned over a nonreflective sector, the output is 0. If 
one beam is slightly ahead of the others during the transition from one sector to the next, an 
erroneous output can occur. Consider what happens when the beams are on the 111 sector and 
about to enter the 000 sector. If the MSB beam is slightly ahead, the position would be incor-
rectly indicated by a transitional 011 instead of a 111 or a 000. In this type of application, it 
is virtually impossible to maintain precise mechanical alignment of the IR emitter/detector 
beams; therefore, some error will usually occur at many of the transitions between sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code. 
As shown in Figure 2–7(b), the Gray code assures that only one bit will change between 
adjacent sectors. This means that even though the beams may not be in precise alignment, 
there will never be a transitional error. For example, let’s again consider what happens when 
the beams are on the 111 sector and about to move into the next sector, 101. The only two 
possible outputs during the transition are 111 and 101, no matter how the beams are aligned. 
A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also letters and other symbols. In 
the strictest sense, alphanumeric codes are codes that represent numbers and alphabetic 
characters (letters). Most such codes, however, also represent other characters such as sym-
bols and various instructions necessary for conveying information.

At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of the 
alphabet, for a total of 36 items. This number requires six bits in each code combination because 
five bits are insufficient (25

= 32). There are 64 total combinations of six bits, so there are 
28 unused code combinations. Obviously, in many applications, symbols other than just num-
bers and letters are necessary to communicate completely. You need spaces, periods, colons, 
semicolons, question marks, etc. You also need instructions to tell the receiving system what to 
do with the information. With codes that are six bits long, you can handle decimal numbers, the 
alphabet, and 28 other symbols. This should give you an idea of the requirements for a basic 
alphanumeric code. The ASCII is a common alphanumeric code and is covered next.
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ASCII

ASCII is the abbreviation for American Standard Code for Information Interchange. Pro-
nounced “askee,” ASCII is a universally accepted alphanumeric code used in most comput-
ers and other electronic equipment. Most computer keyboards are standardized with the 
ASCII. When you enter a letter, a number, or control command, the corresponding ASCII 
code goes into the computer.

ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually, 
ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00 
through 7F in hexadecimal. The first thirty-two ASCII characters are nongraphic com-
mands that are never printed or displayed and are used only for control purposes. Examples 
of the control characters are “null,” “line feed,” “start of text,” and “escape.” The other 
characters are graphic symbols that can be printed or displayed and include the letters of 
the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs, and other 
commonly used symbols.

Table 2–7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary 
representations for each character and symbol. The left section of the table lists the names 
of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed 
in the rest of the table (20 through 7F hexadecimal).

Infonote

A computer keyboard has a 
dedicated microprocessor that 
constantly scans keyboard 
circuits to detect when a key has 
been pressed and released. A 
unique scan code is produced by 
computer software representing 
that particular key. The scan 
code is then converted to an 
alphanumeric code (ASCII) for  
use by the computer.

EXAMPLE 2–38

Use Table 2–7 to determine the binary ASCII codes that are entered from the compu-
ter’s keyboard when the following C language program statement is typed in. Also 
express each code in hexadecimal.

if (x 7 5)

Solution

The ASCII code for each symbol is found in Table 2–7.

Symbol Binary Hexadecimal

i 1101001 6916

f 1100110 6616

Space 0100000 2016

( 0101000 2816

x 1111000 7816

> 0111110 3E16

5 0110101 3516

) 0101001 2916

Related Problem

Use Table 2–7 to determine the sequence of ASCII codes required for the following 
C program statement and express each code in hexadecimal:

if (y 6 8)

The ASCII Control Characters

The first thirty-two codes in the ASCII table (Table 2–7) represent the control characters. 
These are used to allow devices such as a computer and printer to communicate with each 
other when passing information and data. The control key function allows a control char-
acter to be entered directly from an ASCII keyboard by pressing the control key (CTRL) 
and the corresponding symbol.
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Extended ASCII Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that 
were adopted by IBM for use in their PCs (personal computers). Because of the popularity 
of the PC, these particular extended ASCII characters are also used in applications other 
than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal 
80 to hexadecimal FF and can be grouped into the following general categories: foreign 
(non-English) alphabetic characters, foreign currency symbols, Greek letters, mathematical 
symbols, drawing characters, bar graphing characters, and shading characters.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages 
of the world by assigning each character a unique numeric value and name utilizing the 
universal character set (UCS). It is applicable in computer applications dealing with multi-
lingual text, mathematical symbols, or other technical characters.

Unicode has a wide array of characters, and their various encoding forms are used in many 
environments. While ASCII basically uses 7-bit codes, Unicode uses relatively abstract “code 
points”—non-negative integer numbers—that map sequences of one or more bytes, using 
different encoding forms and schemes. To permit compatibility, Unicode assigns the first 128 
code points to the same characters as ASCII. One can, therefore, think of ASCII as a 7-bit 
encoding scheme for a very small subset of Unicode and of the UCS.

Unicode consists of about 100,000 characters, a set of code charts for visual reference, 
an encoding methodology and set of standard character encodings, and an enumeration 
of character properties such as uppercase and lowercase. It also consists of a number of 
related items, such as character properties, rules for text normalization, decomposition, 
collation, rendering, and bidirectional display order (for the correct display of text contain-
ing both right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).

Section 2–11  Checkup

	 1.	Convert the following binary numbers to the Gray code:

(a)  1100    (b)  1010    (c)  11010

	 2.	Convert the following Gray codes to binary:

(a)  1000    (b)  1010    (c)  11101

	 3.	What is the ASCII representation for each of the following characters? Express each 
as a bit pattern and in hexadecimal notation.

	(a)  K  	  (b)  r    (c)  $    (d)  1

2–12  Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error are dis-
cussed. The parity method of error detection is introduced, and the cyclic redundancy 
check is discussed. Also, the Hamming code for error detection and correction is presented.

After completing this section, you should be able to

u	 Determine if there is an error in a code based on the parity bit

u	 Assign the proper parity bit to a code

u	 Explain the cyclic redundancy (CRC) check

u	 Describe the Hamming code
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Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain 
either an even or an odd number of 1s. A parity bit is attached to a group of bits to make 
the total number of 1s in a group always even or always odd. An even parity bit makes the 
total number of 1s even, and an odd parity bit makes the total odd.

A given system operates with even or odd parity, but not both. For instance, if a system 
operates with even parity, a check is made on each group of bits received to make sure the 
total number of 1s in that group is even. If there is an odd number of 1s, an error has occurred.

As an illustration of how parity bits are attached to a code, Table 2–8 lists the parity bits 
for each BCD number for both even and odd parity. The parity bit for each BCD number is in 
the P column.

A parity bit tells if the number of 1s 
is odd or even.

TABLE 2–8

The BCD code with parity bits.

Even Parity Odd Parity

P BCD P BCD

0 0000 1 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending 
on system design. Notice that the total number of 1s, including the parity bit, is always even 
for even parity and always odd for odd parity.

Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of errors, which 
is very unlikely) but cannot check for two errors in one group. For instance, let’s assume that 
we wish to transmit the BCD code 0101. (Parity can be used with any number of bits; we are 
using four for illustration.) The total code transmitted, including the even parity bit, is

 
Even parity bit

00101

 BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

 
Even parity bit

00001

 Bit error

When this code is received, the parity check circuitry determines that there is only a single 
1 (odd number), when there should be an even number of 1s. Because an even number of 
1s does not appear in the code when it is received, an error is indicated.

An odd parity bit also provides in a similar manner for the detection of a single error in 
a given group of bits.

e
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EXAMPLE 2–39

Assign the proper even parity bit to the following code groups:

(a)	 1010	 (b)	 111000	 (c)	 101101

(d)	 1000111001001	 (e)	 101101011111

Solution

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. The 
parity bit will be the left-most bit (color).

(a)	 01010	 (b)	 1111000	 (c)	 0101101

(d)	 0100011100101	 (e)	 1101101011111

Related Problem

Add an even parity bit to the 7-bit ASCII code for the letter K.

EXAMPLE 2–40

An odd parity system receives the following code groups: 10110, 11010, 110011, 
110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of 1s is incorrect. The 
following groups are in error: 110011 and 1100010101010.

Related Problem

The following ASCII character is received by an odd parity system: 00110111. Is it correct?

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a widely used code used for detecting one- and 
two-bit transmission errors when digital data are transferred on a communication link. 
The communication link can be between two computers that are connected to a network 
or between a digital storage device (such as a CD, DVD, or a hard drive) and a PC. If it is 
properly designed, the CRC can also detect multiple errors for a number of bits in sequence 
(burst errors). In CRC, a certain number of check bits, sometimes called a checksum, are 
appended to the data bits (added to end) that are being transmitted. The transmitted data 
are tested by the receiver for errors using the CRC. Not every possible error can be identi-
fied, but the CRC is much more efficient than just a simple parity check.

CRC is often described mathematically as the division of two polynomials to generate a 
remainder. A polynomial is a mathematical expression that is a sum of terms with positive 
exponents. When the coefficients are limited to 1s and 0s, it is called a univariate polynomial. 
An example of a univariate polynomial is 1x3 + 0x2 + 1x1 + 1x0 or simply x3 + x1 + x0, 
which can be fully described by the 4-bit binary number 1011. Most cyclic redundancy checks 
use a 16-bit or larger polynomial, but for simplicity the process is illustrated here with four bits.

Modulo-2 Operations

Simply put, CRC is based on the division of two binary numbers; and, as you know, division 
is just a series of subtractions and shifts. To do subtraction, a method called modulo-2 addi-
tion can be used. Modulo-2 addition (or subtraction) is the same as binary addition with the 
carries discarded, as shown in the truth table in Table 2–9. Truth tables are widely used to 
describe the operation of logic circuits, as you will learn in Chapter 3. With two bits, there 
is a total of four possible combinations, as shown in the table. This particular table describes 
the modulo-2 operation also known as exclusive-OR and can be implemented with a logic 

TABLE 2–9

Modulo-2 operation.

Input Bits Output Bit

0 0 0

0 1 1

1 0 1

1 1 0
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112	 Number Systems, Operations, and Codes

gate that will be introduced in Chapter 3. A simple rule for modulo-2 is that the output is 1 
if the inputs are different; otherwise, it is 0.

CRC Process

The process is as follows:

	 1.	 Select a fixed generator code; it can have fewer bits than the data bits to be checked. 
This code is understood in advance by both the sending and receiving devices and 
must be the same for both.

	 2.	 Append a number of 0s equal to the number of bits in the generator code to the data bits.

	 3.	 Divide the data bits including the appended bits by the generator code bits using 
modulo-2.

	 4.	 If the remainder is 0, the data and appended bits are sent as is.

	 5.	 If the remainder is not 0, the appended bits are made equal to the remainder bits in 
order to get a 0 remainder before data are sent.

	 6.	 At the receiving end, the receiver divides the incoming appended data bit code by 
the same generator code as used by the sender.

	 7.	 If the remainder is 0, there is no error detected (it is possible in rare cases for multi-
ple errors to cancel). If the remainder is not 0, an error has been detected in the trans-
mission and a retransmission is requested by the receiver.

Figure 2–8 illustrates the CRC process.

Remainder � 0

(a) Transmitting end of communication link

Remainder � 0

Append data
bits with

remainder
(initially

with x zeros).

Divide using
modulo-2

subtraction.

Send.

Check
remainder.

Data bits plus
appended bitsData bits plus appended bits

y data bits

x-bit generator code

Remainder � 0

(b) Receiving end of communication link

Remainder � 0

Divide using
modulo-2

subtraction.

Error(s).
Request

retransmission.

No errors.
Process the
data bits.

Check
remainder.

Data bits

x-bit generator code

Data bits plus appended bits

FIGURE 2–8  The CRC process.
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EXAMPLE 2–41

Determine the transmitted CRC for the following byte of data (D) and generator code 
(G). Verify that the remainder is 0.

D: 11010011

G: 1010

Solution

Since the generator code has four data bits, add four 0s (blue) to the data byte. The 
appended data (D9) is

D� = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation until 
all bits have been used.

D�

G
=

110100110000

1010

110100110000
1010
  1110
  1010
  1000
  1010
    1011
    1010
        1000
        1010
          100

Remainder = 0100. Since the remainder is not 0, append the data with the four 
remainder bits (blue). Then divide by the generator code (red). The transmitted CRC is 
110100110100.

110100110100
1010
1110
1010
1000
1010

1011
1010

1010
1010

00

Remainder = 0

Related Problem

Change the generator code to 1100 and verify that a 0 remainder results when the CRC 
process is applied to the data byte (11010011).
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EXAMPLE 2–42

During transmission, an error occurs in the second bit from the left in the appended data 
byte generated in Example 2–41. The received data is

D� = 100100110100

Apply the CRC process to the received data to detect the error using the same generator 
code (1010).

Solution

100100110100
1010
  1100
  1010
    1101
    1010
    1111
    1010
      1010
      1010
        0100

Remainder = 0100. Since it is not zero, an error is indicated.

Related Problem

Assume two errors in the data byte as follows: 10011011. Apply the CRC process to 
check for the errors using the same received data and the same generator code.

Hamming Code

The Hamming code is used to detect and correct a single-bit error in a transmitted code. 
To accomplish this, four redundancy bits are introduced in a 7-bit group of data bits. These 
redundancy bits are interspersed at bit positions 2n (n = 0, 1, 2, 3) within the original data 
bits. At the end of the transmission, the redundancy bits have to be removed from the data 
bits. A recent version of the Hamming code places all the redundancy bits at the end of the 
data bits, making their removal easier than that of the interspersed bits. A coverage of the 
classic Hamming code is available on the website.

Section 2–12  Checkup

	 1.	Which odd-parity code is in error?

(a)  1011    (b)  1110    (c)  0101    (d)  1000

	 2.	Which even-parity code is in error?

	(a)  11000110    	 (b)  00101000    (c)  10101010    (d)  11111011

	 3.	Add an even parity bit to the end of each of the following codes.

	(a)  1010100    (b)  0100000    (c)  1110111    (d)  1000110

	 4.	What does CRC stand for?

	 5.	Apply modulo-2 operations to determine the following:

	(a)  1 + 1    (b)  1 2 1    (c)  1 2 0    (d)  0 + 1
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Summary

•	 A binary number is a weighted number in which the weight of each whole number digit is 
a positive power of two and the weight of each fractional digit is a negative power of two. 
The whole number weights increase from right to left—from least significant digit to most 
significant.

•	 A binary number can be converted to a decimal number by summing the decimal values of the 
weights of all the 1s in the binary number.

•	 A decimal whole number can be converted to binary by using the sum-of-weights or the re-
peated division-by-2 method.

•	 A decimal fraction can be converted to binary by using the sum-of-weights or the repeated 
multiplication-by-2 method.

•	 The basic rules for binary addition are as follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

•	 The basic rules for binary subtraction are as follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1

•	 The 1’s complement of a binary number is derived by changing 1s to 0s and 0s to 1s.

•	 The 2’s complement of a binary number can be derived by adding 1 to the 1’s complement.

•	 Binary subtraction can be accomplished with addition by using the 1’s or 2’s complement 
method.

•	 A positive binary number is represented by a 0 sign bit.

•	 A negative binary number is represented by a 1 sign bit.

•	 For arithmetic operations, negative binary numbers are represented in 1’s complement or  
2’s complement form.

•	 In an addition operation, an overflow is possible when both numbers are positive or when 
both numbers are negative. An incorrect sign bit in the sum indicates the occurrence of an 
overflow.

•	 The hexadecimal number system consists of 16 digits and characters, 0 through 9 followed by 
A through F.

•	 One hexadecimal digit represents a 4-bit binary number, and its primary usefulness is in simpli-
fying bit patterns and making them easier to read.

•	 A decimal number can be converted to hexadecimal by the repeated division-by-16 method.

•	 The octal number system consists of eight digits, 0 through 7.

•	 A decimal number can be converted to octal by using the repeated division-by-8 method.

•	 Octal-to-binary conversion is accomplished by simply replacing each octal digit with its 3-bit 
binary equivalent. The process is reversed for binary-to-octal conversion.

•	 A decimal number is converted to BCD by replacing each decimal digit with the appropriate 
4-bit binary code.

•	 The ASCII is a 7-bit alphanumeric code that is used in computer systems for input and output of 
information.

•	 A parity bit is used to detect an error in a code.

•	 The CRC (cyclic redundancy check) is based on polynomial division using modulo-2 
operations.
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True/False Quiz

Answers are at the end of the chapter.

	 1.	 The octal number system is a weighted system with eight digits.

	 2.	 The binary number system is a weighted system with two digits.

	 3.	 MSB stands for most significant bit.

	 4.	 In hexadecimal, 9 1 1 = 10.

	 5.	 The 1’s complement of the binary number 1010 is 0101.

	 6.	 The 2’s complement of the binary number 1111 is 0000.

	 7.	 The right-most bit in a signed binary number is the sign bit.

	 8.	 The hexadecimal number system has 16 characters, six of which are alphabetic characters.

	 9.	 BCD stands for binary coded decimal.

	10.	 An error in a given code can be detected by verifying the parity bit.

	11.	 CRC stands for cyclic redundancy check.

	12.	 The modulo-2 sum of 11 and 10 is 100.

Self-Test

Answers are at the end of the chapter.

	 1.	 3 * 101 + 4 * 100 is
(a)  0.34	 (b)  3.4	 (c)  34	 (d)  340

	 2.	 The decimal equivalent of 1000 is
(a)  2	 (b)  4	 (c)  6	 (d)  8

	 3.	 The binary number 11011101 is equal to the decimal number
(a)  121	 (b)  221	 (c)  441	 (d)  256

	 4.	 The decimal number 21 is equivalent to the binary number
(a)  10101	 (b)  10001	 (c)  10000	 (d)  11111

	 5.	 The decimal number 250 is equivalent to the binary number
(a)  11111010	 (b)  11110110	 (c)  11111000	 (d)  11111011

	 6.	 The sum of 1111 1 1111 in binary equals
(a)  0000	 (b)  2222	 (c)  11110	 (d)  11111

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Alphanumeric  Consisting of numerals, letters, and other characters.

ASCII  American Standard Code for Information Interchange; the most widely used alphanumeric 
code.

BCD  Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9, is 
represented by a group of four bits.

Byte  A group of eight bits.

Cyclic redundancy check (CRC)  A type of error detection code.

Floating-point number  A number representation based on scientific notation in which the 
number consists of an exponent and a mantissa.

Hexadecimal  Describes a number system with a base of 16.

LSB  Least significant bit; the right-most bit in a binary whole number or code.

MSB  Most significant bit; the left-most bit in a binary whole number or code.

Octal  Describes a number system with a base of eight.

Parity  In relation to binary codes, the condition of evenness or oddness of the number of 1s in a 
code group.
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	 7.	 The difference of 1000 2 100 equals
(a)  100	 (b)  101	 (c)  110	 (d)  111

	 8.	 The 1’s complement of 11110000 is
(a)  11111111	 (b)  11111110	 (c)  00001111	 (d)  10000001

	 9.	 The 2’s complement of 11001100 is
(a)  00110011	 (b)  00110100	 (c)  00110101	 (d)  00110110

	10.	 The decimal number 1122 is expressed in the 2’s complement form as
(a)  01111010	 (b)  11111010	 (c)  01000101	 (d)  10000101

	11.	 The decimal number 234 is expressed in the 2’s complement form as
(a)  01011110	 (b)  10100010	 (c)  11011110	 (d)  01011101

	12.	 A single-precision floating-point binary number has a total of
(a)  8 bits	 (b)  16 bits	 (c)  24 bits	 (d)  32 bits

	13.	 In the 2’s complement form, the binary number 10010011 is equal to the decimal number
(a)  219	 (b)  +109	 (c)  +91	 (d)  2109

	14.	 The binary number 101100111001010100001 can be written in octal as
(a)  54712308	 (b)  54712418	 (c)  26345218	 (d)  231625018

	15.	 The binary number 10001101010001101111 can be written in hexadecimal as
(a)  AD46716	 (b)  8C46F16	 (c)  8D46F16	 (d)  AE46F16

	16.	 The binary number for F7A916 is
(a)  1111011110101001	 (b)  1110111110101001
(c)  1111111010110001	 (d)  1111011010101001

	17.	 The BCD number for decimal 473 is
(a)  111011010	 (b)  110001110011	 (c)  010001110011	 (d)  010011110011

	18.	 Refer to Table 2–7. The command STOP in ASCII is
(a)  1010011101010010011111010000	 (b)  1010010100110010011101010000
(c)  1001010110110110011101010001	 (d)  1010011101010010011101100100

	19.	 The code that has an even-parity error is
(a)  1010011	 (b)  1101000	 (c)  1001000	 (d)  1110111

	20.	 In the cyclic redundancy check, the absence of errors is indicated by
(a)  Remainder = generator code	 (b)  Remainder = 0
(c)  Remainder = 1	 (d)  Quotient = 0

Problems

Answers to odd-numbered problems are at the end of the book.

Section 2–1	Decimal Numbers
	 1.	 What is the weight of 7 in each of the following decimal numbers?

(a)  1947	 (b)  1799	 (c)  1979

	 2.	 Express each of the following decimal numbers as a power of ten:

(a)  1000	 (b)  10000000	 (c)  1000000000

	 3.	 Give the value of each digit in the following decimal numbers:

(a)  263	 (b)  5436	 (c)  234543

	 4.	 How high can you count with six decimal digits?

Section 2–2	Binary Numbers
	 5.	 Convert the following binary numbers to decimal:

(a)  001	 (b)  010	 (c)  101	 (d)  110
(e)  1010	 (f)  1011	 (g)  1110	 (h)  1111

	 6.	 Convert the following binary numbers into decimal:

(a)  100001	 (b)  100111	 (c)  101010	 (d)  111001
(e)  1100000	 (f)  11111101	 (g)  11110010	 (h)  11111111
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	 7.	 Convert each binary number to decimal:

(a)  110011.11	 (b)  101010.01	 (c)  1000001.111
(d)  1111000.101	 (e)  1011100.10101	 (f)  1110001.0001
(g)  1011010.1010	 (h)  1111111.11111

	 8.	 What is the highest decimal number that can be represented by each of the following numbers 
of binary digits (bits)?

(a)  two	 (b)  three	 (c)  four	 (d)  five	 (e)  six
(f)  seven	 (g)  eight	 (h)  nine	 (i)  ten	 (j)  eleven

	 9.	 How many bits are required to represent the following decimal numbers?

(a)  5	 (b)  10	 (c)  15	 (d)  20
(e)  100	 (f)  120	 (g)  140	 (h)  160

	10.	 Generate the binary sequence for each decimal sequence:

(a)  0 through 7	 (b)  8 through 15	 (c)  16 through 31
(d)  32 through 63	 (e)  64 through 75

Section 2–3	Decimal-to-Binary Conversion
	11.	 Convert each decimal number to binary by using the sum-of-weights method:

(a)  12	 (b)  15	 (c)  25	 (d)  50
(e)  65	 (f)  97	 (g)  127	 (h)  198

	12.	 Convert each decimal fraction to binary using the sum-of-weights method:

(a)  0.26	 (b)  0.762	 (c)  0.0975

	13.	 Convert each decimal number to binary using repeated division by 2:

(a)  13	 (b)  17	 (c)  23	 (d)  30
(e)  35	 (f)  40	 (g)  49	 (h)  60

	14.	 Convert each decimal fraction to binary using repeated multiplication by 2:

(a)  0.76	 (b)  0.456	 (c)  0.8732

Section 2–4	Binary Arithmetic
	15.	 Add the binary numbers:

(a)  10 + 10	 (b)  10 + 11	 (c)  100 + 11	
(d)  111 + 101	 (e)  1111 + 111	 (f)  1111 + 1111

	16.	 Use direct subtraction on the following binary numbers:

(a)  10 - 1	 (b)  100 - 11	 (c)  110 - 100
(d)  1111 - 11	 (e)  1101 - 101	 (f)  110000 - 1111

	17.	 Perform the following binary multiplications:

(a)  11 * 10	 (b)  101 * 11	 (c)  111 * 110
(d)  1100 * 101	 (e)  1110 * 1110	 (f)  1111 *  1100

	18.	 Divide the binary numbers as indicated:

(a)  110 , 11	 (b)  1010 , 10	 (c)  1111 , 101

Section 2–5	Complements of Binary Numbers
	19.	 What are two ways of representing zero in 1’s complement form?

	20.	 How is zero represented in 2’s complement form?

	21.	 Determine the 1’s complement of each binary number:

(a)  100	 (b)  111	 (c)  1100
(d)  10111011	 (e)  1001010	 (f)  10101010

	22.	 Determine the 2’s complement of each binary number using either method:

(a)  11	 (b)  110	 (c)  1010	 (d)  1001
(e)  101010	 (f)  11001	 (g)  11001100	 (h)  11000111
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Section 2–6	Signed Numbers
	23.	 Express each decimal number in binary as an 8-bit sign-magnitude number:

(a)  +29	 (b)  285	 (c)  +100	 (d)  2123

	24.	 Express each decimal number as an 8-bit number in the 1’s complement form:

(a)  234	 (b)  +57	 (c)  299	 (d)  +115

	25.	 Express each decimal number as an 8-bit number in the 2’s complement form:

(a)  +12	 (b)  268	 (c)  +101	 (d)  2125

	26.	 Determine the decimal value of each signed binary number in the sign-magnitude form:

(a)  10011001	 (b)  01110100	 (c)  10111111

	27.	 Determine the decimal value of each signed binary number in the 1’s complement form:

(a)  10011001	 (b)  01110100	 (c)  10111111

	28.	 Determine the decimal value of each signed binary number in the 2’s complement form:

(a)  10011001	 (b)  01110100	 (c)  10111111

	29.	 Express each of the following sign-magnitude binary numbers in single-precision floating-
point format:

(a)  0111110000101011	 (b)  100110000011000

	30.	 Determine the values of the following single-precision floating-point numbers:

(a)  1 10000001 01001001110001000000000
(b)  0 11001100 10000111110100100000000

Section 2–7	Arithmetic Operations with Signed Numbers
	31.	 Convert each pair of decimal numbers to binary and add using the 2’s complement form:

(a)  33 and 15    (b)  56 and 227    (c)  246 and 25    (d)  2110 and 284

	32.	 Perform each addition in the 2’s complement form:

(a)  00010110 + 00110011	 (b)  01110000 + 10101111

	33.	 Perform each addition in the 2’s complement form:

(a)  10001100 + 00111001	 (b)  11011001 + 11100111

	34.	 Perform each subtraction in the 2’s complement form:

(a)  00110011 2 00010000	 (b)  01100101 2 11101000

	35.	 Multiply 01101010 by 11110001 in the 2’s complement form.

	36.	 Divide 10001000 by 00100010 in the 2’s complement form.

Section 2–8	Hexadecimal Numbers
	37.	 Convert each hexadecimal number to binary:

(a)  4616	 (b)  5416	 (c)  B416	 (d)  1A316
(e)  FA16	 (f)  ABC16	 (g)  ABCD16

	38.	 Convert each binary number to hexadecimal:

(a)  1111	 (b)  1011	 (c)  11111
(d)  10101010	 (e)  10101100	 (f)  10111011

	39.	 Convert each hexadecimal number to decimal:

(a)  4216	 (b)  6416	 (c)  2B16	 (d)  4D16
(e)  FF16	 (f)  BC16	 (g)  6F116	 (h)  ABC16

	40.	 Convert each decimal number to hexadecimal:

(a)  10	 (b)  15	 (c)  32	 (d)  54
(e)  365	 (f)  3652	 (g)  7825	 (h)  8925

	41.	 Perform the following additions:

(a)  2516 + 3316	 (b)  4316 + 6216	 (c)  A416 + F516	 (d)  FC16 + AE16

	42.	 Perform the following subtractions:

(a)  6016 2 3916	 (b)  A516 2 9816	 (c)  F116 2 A616	 (d)  AC16 2 1016
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Section 2–9	Octal Numbers
	43.	 Convert each octal number to decimal:

(a)  148	 (b)  538	 (c)  678	 (d)  1748
(e)  6358	 (f)  2548	 (g)  26738	 (h)  77778

	44.	 Convert each decimal number to octal by repeated division by 8:

(a)  23	 (b)  45	 (c)  65	 (d)  84
(e)  124	 (f)  156	 (g)  654	 (h)  9999

	45.	 Convert each octal number into binary:

(a)  178	 (b)  268	 (c)  1458	 (d)  4568
(e)  6538	 (f)  7778

	46.	 Convert each binary number to octal:

(a)  100	 (b)  110	 (c)  1100
(d)  1111	 (e)  11001	 (f)  11110
(g)  110011	 (h)  101010	 (i)  10101111

Section 2–10	Binary Coded Decimal (BCD)
	47.	 Convert each of the following decimal numbers to 8421 BCD:

(a)  10	 (b)  13	 (c)  18	 (d)  21	 (e)  25	 (f)  36
(g)  44	 (h)  57	 (i)  69	 (j)  98	 (k)  125	 (l)  156

	48.	 Convert each of the decimal numbers in Problem 47 to straight binary, and compare the 
number of bits required with that required for BCD.

	49.	 Convert the following decimal numbers to BCD:

(a)  104	 (b)  128	 (c)  132	 (d)  150	 (e)  186
(f)  210	 (g)  359	 (h)  547	 (i)  1051

	50.	 Convert each of the BCD numbers to decimal:

(a)  0001	 (b)  0110	 (c)  1001
(d)  00011000	 (e)  00011001	 (f)  00110010
(g)  01000101	 (h)  10011000	 (i)  100001110000

	51.	 Convert each of the BCD numbers to decimal:

(a)  10000000	 (b)  001000110111
(c)  001101000110	 (d)  010000100001
(e)  011101010100	 (f)  100000000000
(g)  100101111000	 (h)  0001011010000011
(i)  1001000000011000	 (j)  0110011001100111

	52.	 Add the following BCD numbers:

(a)  0010 + 0001	 (b)  0101 + 0011
(c)  0111 + 0010	 (d)  1000 + 0001
(e)  00011000 + 00010001	 (f)  01100100 + 00110011
(g)  01000000 + 01000111	 (h)  10000101 + 00010011

	53.	 Add the following BCD numbers:

(a)  1000 + 0110	 (b)  0111 + 0101
(c)  1001 + 1000	 (d)  1001 + 0111
(e)  00100101 + 00100111	 (f)  01010001 + 01011000
(g)  10011000 + 10010111	 (h)  010101100001 + 011100001000

	54.	 Convert each pair of decimal numbers to BCD, and add as indicated:

(a)  4 + 3	 (b)  5 + 2	 (c)  6 + 4	 (d)  17 + 12
(e)  28 + 23	 (f)  65 + 58	 (g)  113 + 101	 (h)  295 + 157

Section 2–11	Digital Codes
	55.	 In a certain application a 4-bit binary sequence cycles from 1111 to 0000 periodically. There 

are four bit changes, and because of circuit delays, these changes may not occur at the same 
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instant. For example, if the LSB changes first, the number will appear as 1110 during the 
transition from 1111 to 0000 and may be misinterpreted by the system. Illustrate how the Gray 
code avoids this problem.

	56.	 Convert each binary number to Gray code:

(a)  11011	 (b)  1001010	 (c)  1111011101110

	57.	 Convert each Gray code to binary:

(a)  1010	 (b)  00010	 (c)  11000010001

	58.	 Convert each of the following decimal numbers to ASCII. Refer to Table 2–7.

(a)  1	 (b)  3	 (c)  6	 (d)  10	 (e)  18
(f)  29	 (g)  56	 (h)  75	 (i)  107

	59.	 Determine each ASCII character. Refer to Table 2–7.

(a)  0011000	 (b)  1001010	 (c)  0111101

(d)  0100011	 (e)  0111110	 (f)  1000010

	60.	 Decode the following ASCII coded message:

1001000 1100101 1101100 1101100 1101111 0101110
0100000 1001000 1101111 1110111 0100000 1100001
1110010 1100101 0100000 1111001 1101111 1110101
0111111

	61.	 Write the message in Problem 60 in hexadecimal.

	62.	 Convert the following statement to ASCII:

30 INPUT A, B

Section 2–12	Error Codes
	63.	 Determine which of the following even parity codes are in error:

(a)  100110010	 (b)  011101010	 (c)  10111111010001010

	64.	 Determine which of the following odd parity codes are in error:

(a)  11110110	 (b)  00110001	 (c)  01010101010101010

	65.	 Attach the proper even parity bit to each of the following bytes of data:

(a)  10100100	 (b)  00001001	 (c)  11111110

	66.	 Apply modulo-2 to the following:

(a)  1100 + 1011	 (b)  1111 + 0100	 (c)  10011001 + 100011100

	67.	 Verify that modulo-2 subtraction is the same as modulo-2 addition by adding the result of each 
operation in problem 66 to either of the original numbers to get the other number. This will 
show that the result is the same as the difference of the two numbers.

	68.	 Apply CRC to the data bits 10110010 using the generator code 1010 to produce the transmitted 
CRC code.

	69.	 Assume that the code produced in problem 68 incurs an error in the most significant bit during 
transmission. Apply CRC to detect the error.

Answers

Section Checkups
Section 2–1	Decimal Numbers
	 1.	 (a)  1370: 10    (b)  6725: 100    (c)  7051: 1000    (d)  58.72: 0.1

	 2.	 (a)  51 = (5 * 10) + (1 * 1)

(b)	137 = (1 * 100) + (3 * 10) + (7 * 1)

(c)	1492 = (1 * 1000) + (4 * 100) + (9 * 10) + (2 * 1)

(d)  106.58 = (1 * 100) + (0 * 10) + (6 * 1) + (5 * 0.1) + (8 * 0.01)
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Section 2–2	Binary Numbers
	 1.	 28 - 1 = 255

	 2.	 Weight is 16.

	 3.	 10111101.011 = 189.375

Section 2–3	Decimal-to-Binary Conversion
	 1.	 (a)  23 = 10111	 (b)  57 = 111001	 (c)  45.5 = 101101.1

	 2.	 (a)  14 = 1110	 (b)  21 = 10101	 (c)  0.375 = 0.011

Section 2–4	Binary Arithmetic
	 1.	 (a)  1101 + 1010 = 10111	 (b)  10111 + 01101 = 100100

	 2.	 (a)  1101 - 0100 = 1001	 (b)  1001 - 0111 = 0010

	 3.	 (a)  110 * 111 = 101010	 (b)  1100 , 011 = 100

Section 2–5	Complements of Binary Numbers
	 1.	 (a)  1’s comp of 00011010 = 11100101	 (b)  1’s comp of 11110111 = 00001000

(c)  1’s comp of 10001101 = 01110010

	 2.	 (a)  2’s comp of 00010110 = 11101010	 (b)  2’s comp of 11111100 = 00000100

(c)  2’s comp of 10010001 = 01101111

Section 2–6	Signed Numbers
	 1.	 Sign-magnitude: +9 = 00001001

	 2.	 1’s comp: -33 = 11011110

	 3.	 2’s comp: -46 = 11010010

	 4.	 Sign bit, exponent, and mantissa

Section 2–7	Arithmetic Operations with Signed Numbers
	 1.	 Cases of addition: positive number is larger, negative number is larger, both are positive, both 

are negative

	 2.	 00100001 + 10111100 = 11011101

	 3.	 01110111 - 00110010 = 01000101

	 4.	 Sign of product is positive.

	 5.	 00000101 * 01111111 = 01001111011

	 6.	 Sign of quotient is negative.

	 7.	 00110000 , 00001100 = 00000100

Section 2–8	Hexadecimal Numbers
	 1.	 (a)  10110011 = B316		  (b)  110011101000 = CE816

	 2.	 (a)  5716 = 01010111		 (b)  3A516 = 001110100101

(c)  F8OB16 = 1111100000001011

	 3.	 9B3016 = 39,72810

	 4.	 57310 = 23D16

	 5.	 (a)  1816 + 3416 = 4C16		 (b)  3F16 + 2A16 = 6916

	 6.	 (a)  7516 - 2116 = 5416		 (b)  9416 - 5C16 = 3816

Section 2–9	Octal Numbers
	 1.	 (a)  738 = 5910		 (b)  1258 = 8510

	 2.	 (a)  9810 = 1428		 (b)  16310 = 2438

M02_FLOY5983_11_GE_C02.indd Page 122  17/11/14  4:56 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Answers	 123

	 3.	 (a)  468 = 100110	 (b)  7238 = 111010011	 (c)  56248 = 101110010100

	 4.	 (a)  110101111 = 6578	 (b)  1001100010 = 11428	 (c)  10111111001 = 27718

Section 2–10	Binary Coded Decimal (BCD)
	 1.	 (a)  0010: 2	 (b)  1000: 8	 (c)  0001: 1	 (d)  0100: 4

	 2.	 (a)  610 = 0110	 (b)  1510 = 00010101	 (c)  27310 = 001001110011

(d)  84910 = 100001001001

	 3.	 (a)  10001001 = 8910	 (b)  001001111000 = 27810	 (c)  000101010111 = 15710

	 4.	 A 4-bit sum is invalid when it is greater than 910.

Section 2–11	Digital Codes
	 1.	 (a)  11002 = 1010 Gray	 (b)  10102 = 1111 Gray	 (c)  110102 = 10111 Gray

	 2.	 (a)  1000 Gray = 11112	 (b)  1010 Gray = 11002	 (c)  11101 Gray = 101102

	 3.	 (a)  K: 1001011 S 4B16	 (b)  r: 1110010 S 7216

(c)  $: 0100100 S 2416	 (d)  + : 0101011 S 2B16

Section 2–12	Error Codes
	 1.	 (c)  0101 has an error.

	 2.	 (d)  11111011 has an error.

	 3.	 (a)  10101001    (b)  01000001    (c)  11101110    (d)  10001101

	 4.	 Cyclic redundancy check

	 5.	 (a)  0    (b)  0    (c)  1    (d)  1

Related Problems for Examples
	2–1	 9 has a value of 900, 3 has a value of 30, 9 has a value of 9.

	2–2	 6 has a value of 60, 7 has a value of 7, 9 has a value of 9/10 (0.9), 2 has a value of 2/100 
(0.02), 4 has a value of 4/1000 (0.004).

	2–3	 10010001 = 128 + 16 + 1 = 145

	2–4	 10.111 = 2 + 0.5 + 0.25 + 0.125 = 2.875

	2–5	 125 = 64 + 32 + 16 + 8 + 4 + 1 = 1111101

	2–6	 39 = 100111

	2–7	 1111 + 1100 = 11011

	2–8	 111 - 100 = 011

	2–9	 110 - 101 = 001

	2–10	 1101 * 1010 = 10000010

	2–11	 1100 , 100 = 11

	2–12	 00110101

	2–13	 01000000

	2–14	 See Table 2–10.

TABLE 2–10

Sign-Magnitude 1’s Comp 2’s Comp

+19 00010011 00010011 00010011
-19 10010011 11101100 11101101

	2–15	 01110111 = +11910

	2–16	 11101011 = -2010

	2–17	 11010111 = -4110
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	2–18	 11000010001010011000000000

	2–19	 01010101

	2–20	 00010001

	2–21	 1001000110

	2–22	 (83)(-59) = -4897 (10110011011111 in 2’s comp)

	2–23	 100 , 25 = 4 (0100)

	2–24	 4F79C16

	2–25	 01101011110100112

	2–26	 6BD16 = 011010111101 = 210 + 29 + 27 + 25 + 24 + 23 + 22 + 20

			        = 1024 + 512 + 128 + 32 + 16 + 8 + 4 + 1 = 172510

	2–27	 60A16 = (6 * 256) + (0 * 16) + (10 * 1) = 154610

	2–28	 259110 = A1F16

	2–29	 4C16 + 3A16 = 8616

	2–30	 BCD16 - 17316 = A5A16

	2–31	 (a)  0010112 = 1110 = 138	 (b)  0101012 = 2110 = 258

(c)  0011000002 = 9610 = 1408	 (d)  1111010101102 = 392610 = 75268

	2–32	 12507628

	2–33	 1001011001110011

	2–34	 82,27610

	2–35	 1001100101101000

	2–36	 10000010

	2–37	 (a)  111011 (Gray)    (b)  1110102

	2–38	 The sequence of codes for if (y < 8) is 691666162016281679163C1638162916

	2–39	 01001011

	2–40	 Yes

	2–41	 A 0 remainder results

	2–42	 Errors are indicated.

True/False Quiz
	 1.	 T      2.  T    3.  T    4.  F    5.  T    6.  F    7.  F    8.  T    9.  T    10.  T

	11.	 T    12.  F

Self-Test
	 1.	 (c)      2.  (d)      3.  (b)      4.  (a)      5.  (a)      6.  (c)      7.  (a)      8.  (c)

	 9.	 (b)    10.  (a)    11.  (c)    12.  (d)    13.  (d)    14.  (b)    15.  (c)    16.  (a)

	17.	 (c)    18.  (a)    19.  (b)    20.  (b)
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Chapter Outline
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3–2	 The AND Gate 
3–3	 The OR Gate 
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3–6	 The Exclusive-OR and Exclusive-NOR Gates 
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3–8	 Fixed-Function Logic Gates 
3–9	 Troubleshooting 

Chapter Objectives

■	 Describe the operation of the inverter, the AND 
gate, and the OR gate

■	 Describe the operation of the NAND gate and the 
NOR gate

■	 Express the operation of NOT, AND, OR, NAND, 
and NOR gates with Boolean algebra

■	 Describe the operation of the exclusive-OR and 
exclusive-NOR gates

■	 Use logic gates in simple applications

■	 Recognize and use both the distinctive shape logic 
gate symbols and the rectangular outline logic gate 
symbols of ANSI/IEEE Standard 91-1984/Std.  
91a-1991

■	 Construct timing diagrams showing the proper time 
relationships of inputs and outputs for the various 
logic gates

■	 Discuss the basic concepts of programmable logic

■	 Make basic comparisons between the major IC 
technologies—CMOS and bipolar (TTL)

■	 Explain how the different series within the CMOS 
and bipolar (TTL) families differ from each other

■	 Define propagation delay time, power dissipation, 
speed-power product, and fan-out in relation to 
logic gates

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

The emphasis in this chapter is on the operation, 
application, and troubleshooting of logic gates. The 
relationship of input and output waveforms of a gate 
using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates 
are in accordance with ANSI/IEEE Standard 91-1984/ 
Std. 91a-1991. This standard has been adopted by 
private industry and the military for use in internal 
documentation as well as published literature.

■	 Inverter

■	 Truth table

■	 Boolean algebra

■	 Complement

■	 AND gate

■	 OR gate

■	 NAND gate

■	 NOR gate

■	 Exclusive-OR gate

■	 Exclusive-NOR gate

■	 AND array

■	 Fuse

■	 Antifuse

■	 EPROM

■	 EEPROM

■	 Flash

■	 SRAM

■	 Target device

■	 JTAG

■	 VHDL

■	 CMOS

■	 Bipolar

■	 Propagation delay 
time

■	 Fan-out

■	 Unit load

■	 List specific fixed-function integrated circuit devices 
that contain the various logic gates

■	 Troubleshoot logic gates for opens and shorts by 
using the oscilloscope

Key Terms

Key terms are in order of appearance in the chapter.

Logic Gates

3CHAPTER 
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126	 Logic Gates

3–1  The Inverter

The inverter (NOT circuit) performs the operation called inversion or complementation. The 
inverter changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0 
and a 0 to a 1.

After completing this section, you should be able to

u	 Identify negation and polarity indicators

u	 Identify an inverter by either its distinctive shape symbol or its rectangular outline 
symbol

u	 Produce the truth table for an inverter

u	 Describe the logical operation of an inverter

Standard logic symbols for the inverter are shown in Figure 3–1. Part (a) shows the 
distinctive shape symbols, and part (b) shows the rectangular outline symbols. In this 
textbook, distinctive shape symbols are generally used; however, the rectangular outline 
symbols are found in many industry publications, and you should become familiar with 
them as well. (Logic symbols are in accordance with ANSI/IEEE Standard 91-1984 and 
its supplement standard 91a-1991.)

Both fixed-function logic and programmable 
logic are discussed in this chapter. Because inte-
grated circuits (ICs) are used in all applications, 
the logic function of a device is generally of greater 
importance to the technician or technologist than 
the details of the component-level circuit operation 
within the IC package. Therefore, detailed cover-

age of the devices at the component level can 
be treated as an optional topic. Digital integrated 
circuit technologies are discussed in Chapter 15 
on the website, all or parts of which may be intro-
duced at appropriate points throughout the text.

Suggestion: Review Section 1–3 before you start 
this chapter.

(a) Distinctive shape symbols
with negation indicators

(b) Rectangular outline symbols
with polarity indicators

1

1

fg03_00100

FIGURE 3–1  Standard logic symbols for the inverter (ANSI/IEEE Std. 91-1984/
Std. 91a-1991).

The Negation and Polarity Indicators

The negation indicator is a “bubble” ( ) that indicates inversion or complementation when 
it appears on the input or output of any logic element, as shown in Figure 3–1(a) for the 
inverter. Generally, inputs are on the left of a logic symbol and the output is on the right. 
When appearing on the input, the bubble means that a 0 is the active or asserted input state, 
and the input is called an active-LOW input. When appearing on the output, the bubble 
means that a 0 is the active or asserted output state, and the output is called an active-
LOW output. The absence of a bubble on the input or output means that a 1 is the active or 
asserted state, and in this case, the input or output is called active-HIGH.
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The polarity or level indicator is a “triangle” ( ) that indicates inversion when it 
appears on the input or output of a logic element, as shown in Figure 3–1(b). When appear-
ing on the input, it means that a LOW level is the active or asserted input state. When 
appearing on the output, it means that a LOW level is the active or asserted output state.

Either indicator (bubble or triangle) can be used both on distinctive shape symbols and 
on rectangular outline symbols. Figure 3–1(a) indicates the principal inverter symbols used 
in this text. Note that a change in the placement of the negation or polarity indicator does 
not imply a change in the way an inverter operates.

Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW level will appear on its output. 
When a LOW level is applied to its input, a HIGH will appear on its output. This operation 
is summarized in Table 3–1, which shows the output for each possible input in terms of 
levels and corresponding bits. A table such as this is called a truth table.

Inverter Operation

Figure 3–2 shows the output of an inverter for a pulse input, where t1 and t2 indicate the 
corresponding points on the input and output pulse waveforms.

When the input is LOW, the output is HIGH; when the input is HIGH, the output 
is LOW, thereby producing an inverted output pulse.

TABLE 3–1

Inverter truth table.

Input Output

LOW (0) HIGH (1)
HIGH (1) LOW (0)

HIGH (1) HIGH (1)

LOW (0)
t1 t2

Input pulse

LOW (0)
t1 t2

Output pulse

fg03_00200

FIGURE 3–2  Inverter operation with a pulse input. Open file F03-02 to verify inverter 
operation. A Multisim tutorial is available on the website.

Timing Diagrams

Recall from Chapter 1 that a timing diagram is basically a graph that accurately displays 
the relationship of two or more waveforms with respect to each other on a time basis. For 
example, the time relationship of the output pulse to the input pulse in Figure 3–2 can be 
shown with a simple timing diagram by aligning the two pulses so that the occurrences of 
the pulse edges appear in the proper time relationship. The rising edge of the input pulse 
and the falling edge of the output pulse occur at the same time (ideally). Similarly, the fall-
ing edge of the input pulse and the rising edge of the output pulse occur at the same time 
(ideally). This timing relationship is shown in Figure 3–3. In practice, there is a very small 
delay from the input transition until the corresponding output transition. Timing diagrams 
are especially useful for illustrating the time relationship of digital waveforms with mul-
tiple pulses.

A timing diagram shows how two or 
more waveforms relate in time.

t1 t2

Input

Output

fg03_00300

FIGURE 3–3  Timing diagram 
for the case in Figure 3–2.

EXAMPLE 3–1

A waveform is applied to an inverter in Figure 3–4. Determine the output waveform 
corresponding to the input and show the timing diagram. According to the placement of 
the bubble, what is the active output state?

 0
Input Output

1

fg03_00400

FIGURE 3–4 
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128	 Logic Gates

Logic Expression for an Inverter

In Boolean algebra, which is the mathematics of logic circuits and will be covered thor-
oughly in Chapter 4, a variable is generally designated by one or two letters although there 
can be more. Letters near the beginning of the alphabet usually designate inputs, while let-
ters near the end of the alphabet usually designate outputs. The complement of a variable 
is designated by a bar over the letter. A variable can take on a value of either 1 or 0. If a 
given variable is 1, its complement is 0 and vice versa.

The operation of an inverter (NOT circuit) can be expressed as follows: If the input vari-
able is called A and the output variable is called X, then

X = A

This expression states that the output is the complement of the input, so if A = 0, then X = 1, 
and if A = 1, then X = 0. Figure 3–6 illustrates this. The complemented variable A can 
be read as “A bar” or “not A.”

An Application

Figure 3–7 shows a circuit for producing the 1’s complement of an 8-bit binary number. 
The bits of the binary number are applied to the inverter inputs and the 1’s complement of 
the number appears on the outputs.

Solution

The output waveform is exactly opposite to the input (inverted), as shown in Figure 3–5, 
which is the basic timing diagram. The active or asserted output state is 0.

1

0
Input

1

0
Output

fg03_00500

FIGURE 3–5 

Related Problem*

If the inverter is shown with the negative indicator (bubble) on the input instead of the 
output, how is the timing diagram affected?

*Answers are at the end of the chapter.

Boolean algebra uses variables and 
operators to describe a logic circuit.

X = AA

fg03_00600

FIGURE 3–6  The inverter 
complements an input variable.

1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

0

Binary number

1’s complement

fg03_00700

FIGURE 3–7  Example of a 1’s complement circuit using inverters.
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Operation of an AND Gate

An AND gate produces a HIGH output only when all of the inputs are HIGH. When any 
of the inputs is LOW, the output is LOW. Therefore, the basic purpose of an AND gate is to 
determine when certain conditions are simultaneously true, as indicated by HIGH levels on 
all of its inputs, and to produce a HIGH on its output to indicate that all these conditions are 

Section 3–1  Checkup

Answers are at the end of the chapter.

	 1.	When a 1 is on the input of an inverter, what is the output?

	 2.	An active-HIGH pulse (HIGH level when asserted, LOW level when not) is required 
on an inverter input.

(a)  �Draw the appropriate logic symbol, using the distinctive shape and the negation 
indicator, for the inverter in this application.

(b)  �Describe the output when a positive-going pulse is applied to the input of an 
inverter.

3–2  The AND Gate

The AND gate is one of the basic gates that can be combined to form any logic func-
tion. An AND gate can have two or more inputs and performs what is known as logical 
multiplication.

After completing this section, you should be able to

u	 Identify an AND gate by its distinctive shape symbol or by its rectangular outline 
symbol

u	 Describe the operation of an AND gate

u	 Generate the truth table for an AND gate with any number of inputs

u	 Produce a timing diagram for an AND gate with any specified input waveforms

u	 Write the logic expression for an AND gate with any number of inputs

u	 Discuss examples of AND gate applications

The term gate was introduced in Chapter 1 and is used to describe a circuit that performs 
a basic logic operation. The AND gate is composed of two or more inputs and a single out-
put, as indicated by the standard logic symbols shown in Figure 3–8. Inputs are on the left, 
and the output is on the right in each symbol. Gates with two inputs are shown; however, 
an AND gate can have any number of inputs greater than one. Although examples of both 
distinctive shape symbols and rectangular outline symbols are shown, the distinctive shape 
symbol, shown in part (a), is used predominantly in this book.

InfoNote

Logic gates are one of the funda-
mental building blocks of digital 
systems. Most of the functions 
in a computer, with the exception 
of certain types of memory, are 
implemented with logic gates used 
on a very large scale. For example, 
a microprocessor, which is the 
main part of a computer, is made 
up of hundreds of thousands or 
even millions of logic gates.

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the
AND (&) qualifying symbol

&

fg03_00800

FIGURE 3–8  Standard logic symbols for the AND gate showing two inputs (ANSI/IEEE 
Std. 91-1984/Std. 91a-1991).

An AND gate can have more than 
two inputs.
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130	 Logic Gates

true. The inputs of the 2-input AND gate in Figure 3–8 are labeled A and B, and the output 
is labeled X. The gate operation can be stated as follows:

For a 2-input AND gate, output X is HIGH only when inputs A and B are HIGH; 
X is LOW when either A or B is LOW, or when both A and B are LOW.

Figure 3–9 illustrates a 2-input AND gate with all four possibilities of input combina-
tions and the resulting output for each.

AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all input combina-
tions with the corresponding outputs, as illustrated in Table 3–2 for a 2-input AND gate. The 
truth table can be expanded to any number of inputs. Although the terms HIGH and LOW tend 
to give a “physical” sense to the input and output states, the truth table is shown with 1s and 
0s; a HIGH is equivalent to a 1 and a LOW is equivalent to a 0 in positive logic. For any AND 
gate, regardless of the number of inputs, the output is HIGH only when all inputs are HIGH.

The total number of possible combinations of binary inputs to a gate is determined by 
the following formula:

	 N � 2n	 Equation 3–1

where N is the number of possible input combinations and n is the number of input vari-
ables. To illustrate,

For two input variables:	 N = 22
= 4 combinations

For three input variables:	 N = 23
= 8 combinations

For four input variables:	 N = 24
= 16 combinations

You can determine the number of input bit combinations for gates with any number of 
inputs by using Equation 3–1.

TABLE 3–2

Truth table for a 2-input  
AND gate.

Inputs Output

A B X

0 0 0
0 1 0
1 0 0
1 1 1

1 = HIGH, 0 = LOW

For an AND gate, all HIGH inputs 
produce a HIGH output.

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
LOW (0)

fg03_00900

FIGURE 3–9  All possible logic levels for a 2-input AND gate. Open file F03-09 to verify 
AND gate operation.

TABLE 3–3

Inputs Output

A B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

EXAMPLE 3–2

(a)	 Develop the truth table for a 3-input AND gate.

(b)	 Determine the total number of possible input combinations for a 4-input AND gate.

Solution

(a)	 There are eight possible input combinations (23
= 8) for a 3-input AND gate. The 

input side of the truth table (Table 3–3) shows all eight combinations of three bits. 
The output side is all 0s except when all three input bits are 1s.

(b)	 N = 24
= 16. There are 16 possible combinations of input bits for a 4-input 

AND gate.

Related Problem

Develop the truth table for a 4-input AND gate.
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And Gate Operation with Waveform Inputs

In most applications, the inputs to a gate are not stationary levels but are voltage waveforms 
that change frequently between HIGH and LOW logic levels. Now let’s look at the operation of 
AND gates with pulse waveform inputs, keeping in mind that an AND gate obeys the truth table 
operation regardless of whether its inputs are constant levels or levels that change back and forth.

Let’s examine the waveform operation of an AND gate by looking at the inputs with 
respect to each other in order to determine the output level at any given time. In Figure 3–10, 
inputs A and B are both HIGH (1) during the time interval, t1, making output X HIGH (1) 
during this interval. During time interval t2, input A is LOW (0) and input B is HIGH (1), 
so the output is LOW (0). During time interval t3, both inputs are HIGH (1) again, and 
therefore the output is HIGH (1). During time interval t4, input A is HIGH (1) and input B 
is LOW (0), resulting in a LOW (0) output. Finally, during time interval t5, input A is LOW 
(0), input B is LOW (0), and the output is therefore LOW (0). As you know, a diagram of 
input and output waveforms showing time relationships is called a timing diagram.

1A 0 1 1 0

1B 1 1 0 0

1X 0 1 0 0

t1 t2 t3 t4 t5

A

B
X

fg03_01000

FIGURE 3–10  Example of AND gate operation with a timing diagram showing input and 
output relationships.

EXAMPLE 3–3

If two waveforms, A and B, are applied to the AND gate inputs as in Figure 3–11, what 
is the resulting output waveform?

HIGH
LOW

B

A

B
X

HIGH
LOW

HIGH
LOW

A and B are both HIGH during these four time intervals;
therefore, X is HIGH.

A

X

fg03_01100

FIGURE 3–11 

Solution

The output waveform X is HIGH only when both A and B waveforms are HIGH as 
shown in the timing diagram in Figure 3–11.

Related Problem

Determine the output waveform and show a timing diagram if the second and fourth 
pulses in waveform A of Figure 3–11 are replaced by LOW levels.
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132	 Logic Gates

Remember, when analyzing the waveform operation of logic gates, it is important to 
pay careful attention to the time relationships of all the inputs with respect to each other 
and to the output.

EXAMPLE 3–4

For the two input waveforms, A and B, in Figure 3–12, show the output waveform with 
its proper relation to the inputs.

A
HIGH
LOW

Inputs

B
HIGH
LOW

HIGH
LOW

Output

A

B
X

X

fg03_01200

FIGURE 3–12 

Solution

The output waveform is HIGH only when both of the input waveforms are HIGH as 
shown in the timing diagram.

Related Problem

Show the output waveform if the B input to the AND gate in Figure 3–12 is always 
HIGH.

EXAMPLE 3–5

For the 3-input AND gate in Figure 3–13, determine the output waveform in relation to 
the inputs.

 B

 A

 C

 X

A

C
XB

fg03_01300

FIGURE 3–13 

Solution

The output waveform X of the 3-input AND gate is HIGH only when all three input 
waveforms A, B, and C are HIGH.

Related Problem

What is the output waveform of the AND gate in Figure 3–13 if the C input is always 
HIGH?
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Logic Expressions for an AND Gate

The logical AND function of two variables is represented mathematically either by placing 
a dot between the two variables, as A # B, or by simply writing the adjacent letters without 
the dot, as AB. We will normally use the latter notation.

EXAMPLE 3–6

Use Multisim to simulate a 3-input AND gate with input waveforms that cycle through binary numbers 0 through 9.

Solution

Use the Multisim word generator in the up counter mode to provide the combination of waveforms representing the binary 
sequence, as shown in Figure 3–14. The first three waveforms on the oscilloscope display are the inputs, and the bottom 
waveform is the output.

Related Problem

Use Multisim software to create the setup and simulate the 3-input AND gate as illustrated in this example.

fg03_01400

FIGURE 3–14 
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134	 Logic Gates

Boolean multiplication follows the same basic rules governing binary multiplication, 
which were discussed in Chapter 2 and are as follows:

 0 # 0 = 0

 0 # 1 = 0

 1 # 0 = 0

 1 # 1 = 1

Boolean multiplication is the same as the AND function.

The operation of a 2-input AND gate can be expressed in equation form as follows: If one 
input variable is A, if the other input variable is B, and if the output variable is X, then the 
Boolean expression is

X = AB

Figure 3–15(a) shows the AND gate logic symbol with two input variables and the output 
variable indicated.

InfoNote

Processors can utilize all of the 
basic logic operations when it is 
necessary to selectively manipulate 
certain bits in one or more bytes 
of data. Selective bit manipulations 
are done with a mask. For exam-
ple, to clear (make all 0s) the right 
four bits in a data byte but keep 
the left four bits, ANDing the data 
byte with 11110000 will do the 
job. Notice that any bit ANDed with 
zero will be 0 and any bit ANDed 
with 1 will remain the same. If 
10101010 is ANDed with the mask 
11110000, the result is 10100000.

When variables are shown together 
like ABC, they are ANDed. X = AB

A

B

(a)

ABX = C
A

C

(b)

B X = ABCD
A

C

(c)

B

D

fg03_01500

FIGURE 3–15  Boolean expressions for AND gates with two, three, and four inputs.

To extend the AND expression to more than two input variables, simply use a new letter 
for each input variable. The function of a 3-input AND gate, for example, can be expressed 
as X = ABC, where A, B, and C are the input variables. The expression for a 4-input AND 
gate can be X = ABCD, and so on. Parts (b) and (c) of Figure 3–15 show AND gates with 
three and four input variables, respectively.

You can evaluate an AND gate operation by using the Boolean expressions for the output. 
For example, each variable on the inputs can be either a 1 or a 0; so for the 2-input AND 
gate, make substitutions in the equation for the output, X = AB, as shown in Table 3–4. This 
evaluation shows that the output X of an AND gate is a 1 (HIGH) only when both inputs are 
1s (HIGHs). A similar analysis can be made for any number of input variables.

Applications
The AND Gate as an Enable/Inhibit Device

A common application of the AND gate is to enable (that is, to allow) the passage of a 
signal (pulse waveform) from one point to another at certain times and to inhibit (prevent) 
the passage at other times.

A simple example of this particular use of an AND gate is shown in Figure 3–16, where 
the AND gate controls the passage of a signal (waveform A) to a digital counter. The pur-
pose of this circuit is to measure the frequency of waveform A. The enable pulse has a 
width of precisely 1 ms. When the enable pulse is HIGH, waveform A passes through the 
gate to the counter; and when the enable pulse is LOW, the signal is prevented from passing 
through the gate (inhibited).

During the 1 millisecond (1 ms) interval of the enable pulse, pulses in waveform A pass 
through the AND gate to the counter. The number of pulses passing through during the 
1 ms interval is equal to the frequency of waveform A. For example, Figure 3–16 shows 
six pulses in one millisecond, which is a frequency of 6 kHz. If 1000 pulses pass through 
the gate in the 1 ms interval of the enable pulse, there are 1000 pulses/ms, or a frequency 
of 1 MHz.

TABLE 3–4

A B AB � X

0 0 0 # 0 = 0
0 1 0 # 1 = 0
1 0 1 # 0 = 0
1 1 1 # 1 = 1
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The counter counts the number of pulses per second and produces a binary output 
that goes to a decoding and display circuit to produce a readout of the frequency. The 
enable pulse repeats at certain intervals and a new updated count is made so that if 
the frequency changes, the new value will be displayed. Between enable pulses, the 
counter is reset so that it starts at zero each time an enable pulse occurs. The current 
frequency count is stored in a register so that the display is unaffected by the resetting 
of the counter.

A Seat Belt Alarm System

In Figure 3–17, an AND gate is used in a simple automobile seat belt alarm system to 
detect when the ignition switch is on and the seat belt is unbuckled. If the ignition switch 
is on, a HIGH is produced on input A of the AND gate. If the seat belt is not properly 
buckled, a HIGH is produced on input B of the AND gate. Also, when the ignition switch 
is turned on, a timer is started that produces a HIGH on input C for 30 s. If all three con-
ditions exist—that is, if the ignition is on and the seat belt is unbuckled and the timer 
is running—the output of the AND gate is HIGH, and an audible alarm is energized to 
remind the driver.

Reset to zero
between enable pulses.

A

Enable

1 ms

1 ms

Counter

Register,
decoder,

and
frequency

display

fg03_01600

FIGURE 3–16  An AND gate performing an enable/inhibit function for a frequency 
counter.

Ignition
switch

Seat
belt

Ignition on = HIGH for 30 s

A

B
C

HIGH
LOW

HIGH
LOW

= On
= Off

= Unbuckled
= Buckled

Audible
alarm
circuit

Timer

HIGH activates
alarm.

fg03_01700

FIGURE 3–17  A simple seat belt alarm circuit using an AND gate.

Section 3–2  Checkup

	 1.	When is the output of an AND gate HIGH?

	 2.	When is the output of an AND gate LOW?

	 3.	Describe the truth table for a 5-input AND gate.
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3–3  The OR Gate

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the

≥ 1

OR (≥ 1) qualifying symbol

fg03_01800

FIGURE 3–18  Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE 
Std. 91-1984/Std. 91a-1991).

The OR gate is another of the basic gates from which all logic functions are constructed. 
An OR gate can have two or more inputs and performs what is known as logical addition.

After completing this section, you should be able to

u	 Identify an OR gate by its distinctive shape symbol or by its rectangular outline 
symbol

u	 Describe the operation of an OR gate

u	 Generate the truth table for an OR gate with any number of inputs

u	 Produce a timing diagram for an OR gate with any specified input waveforms

u	 Write the logic expression for an OR gate with any number of inputs

u	 Discuss an OR gate application

An OR gate has two or more inputs and one output, as indicated by the standard logic 
symbols in Figure 3–18, where OR gates with two inputs are illustrated. An OR gate can 
have any number of inputs greater than one. Although both distinctive shape and rectangular 
outline symbols are shown, the distinctive shape OR gate symbol is used in this textbook.

An OR gate can have more than two 
inputs.

Operation of an OR Gate

An OR gate produces a HIGH on the output when any of the inputs is HIGH. The output is 
LOW only when all of the inputs are LOW. Therefore, an OR gate determines when one or 
more of its inputs are HIGH and produces a HIGH on its output to indicate this condition. 
The inputs of the 2-input OR gate in Figure 3–18 are labeled A and B, and the output is 
labeled X. The operation of the gate can be stated as follows:

For a 2-input OR gate, output X is HIGH when either input A or input B is HIGH, 
or when both A and B are HIGH; X is LOW only when both A and B are LOW.

The HIGH level is the active or asserted output level for the OR gate. Figure 3–19 illus-
trates the operation for a 2-input OR gate for all four possible input combinations.

For an OR gate, at least one HIGH 
input produces a HIGH output.

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

fg03_01900

FIGURE 3–19  All possible logic levels for a 2-input OR gate. Open file F03-19 to verify 
OR gate operation.
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OR Gate Truth Table

The operation of a 2-input OR gate is described in Table 3–5. This truth table can be 
expanded for any number of inputs; but regardless of the number of inputs, the output is 
HIGH when one or more of the inputs are HIGH.

Or Gate Operation with Waveform Inputs

Now let’s look at the operation of an OR gate with pulse waveform inputs, keeping in 
mind its logical operation. Again, the important thing in the analysis of gate operation 
with pulse waveforms is the time relationship of all the waveforms involved. For example, 
in Figure 3–20, inputs A and B are both HIGH (1) during time interval t1, making output X 
HIGH (1). During time interval t2, input A is LOW (0), but because input B is HIGH (1), the 
output is HIGH (1). Both inputs are LOW (0) during time interval t3, so there is a LOW 
(0) output during this time. During time interval t4, the output is HIGH (1) because input 
A is HIGH (1).

TABLE 3–5

Truth table for a 2-input  
OR gate.

Inputs Output

A B X

0 0 0
0 1 1
1 0 1
1 1 1

1 = HIGH, 0 = LOW

1A 0 0 1

1B 1 0 0

1X 1 0 1

t1 t2 t3 t4

A

B
X

fg03_02000

FIGURE 3–20  Example of OR gate operation with a timing diagram showing input and 
output time relationships.

In this illustration, we have applied the truth table operation of the OR gate to each of 
the time intervals during which the levels are nonchanging. Examples 3–7 through 3–9 
further illustrate OR gate operation with waveforms on the inputs.

EXAMPLE 3–7

If the two input waveforms, A and B, in Figure 3–21 are applied to the OR gate, what is 
the resulting output waveform?

Input B

A

B
X

Input A

Output X

When either input or both inputs are HIGH,
the output is HIGH.

fg03_02100

FIGURE 3–21 
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Solution

The output waveform X of a 2-input OR gate is HIGH when either or both input wave-
forms are HIGH as shown in the timing diagram. In this case, both input waveforms are 
never HIGH at the same time.

Related Problem

Determine the output waveform and show the timing diagram if input A is changed 
such that it is HIGH from the beginning of the existing first pulse to the end of the exist-
ing second pulse.

Solution

When either or both input waveforms are HIGH, the output is HIGH as shown by the 
output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if the middle pulse of 
input A is replaced by a LOW level.

EXAMPLE 3–8

For the two input waveforms, A and B, in Figure 3–22, show the output waveform with 
its proper relation to the inputs.

 B
Inputs

 A

Output

A

B
X

 X

fg03_02200

FIGURE 3–22 

EXAMPLE 3–9

For the 3-input OR gate in Figure 3–23, determine the output waveform in proper time 
relation to the inputs.

 B

 A

 C

 X

A

C
XB

fg03_02300

FIGURE 3–23 

Solution

The output is HIGH when one or more of the input waveforms are HIGH as indicated 
by the output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input C is always LOW.
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Logic Expressions for an OR Gate

The logical OR function of two variables is represented mathematically by a + between 
the two variables, for example, A + B. The plus sign is read as “OR.”

Addition in Boolean algebra involves variables whose values are either binary 1 or 
binary 0. The basic rules for Boolean addition are as follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

Boolean addition is the same as the OR function.

Notice that Boolean addition differs from binary addition in the case where two 1s are 
added. There is no carry in Boolean addition.

The operation of a 2-input OR gate can be expressed as follows: If one input variable is 
A, if the other input variable is B, and if the output variable is X, then the Boolean expres-
sion is

X = A + B

Figure 3–24(a) shows the OR gate logic symbol with two input variables and the output 
variable labeled.

When variables are separated by , 
they are ORed.

X = A + B
A

B

(a)

A

C
B

(b)

X = A + B + C
A

C

(c)

B

D
X = A + B + C  +  D

fg03_02400

FIGURE 3–24  Boolean expressions for OR gates with two, three, and four inputs.

To extend the OR expression to more than two input variables, a new letter is used for 
each additional variable. For instance, the function of a 3-input OR gate can be expressed 
as X = A + B + C. The expression for a 4-input OR gate can be written as X = A +  
B + C + D, and so on. Parts (b) and (c) of Figure 3–24 show OR gates with three and four 
input variables, respectively.

OR gate operation can be evaluated by using the Boolean expressions for the output X 
by substituting all possible combinations of 1 and 0 values for the input variables, as shown 
in Table 3–6 for a 2-input OR gate. This evaluation shows that the output X of an OR gate 
is a 1 (HIGH) when any one or more of the inputs are 1 (HIGH). A similar analysis can be 
extended to OR gates with any number of input variables.

An Application

A simplified portion of an intrusion detection and alarm system is shown in Figure 
3–25. This system could be used for one room in a home—a room with two windows 
and a door. The sensors are magnetic switches that produce a HIGH output when open 
and a LOW output when closed. As long as the windows and the door are secured, 
the switches are closed and all three of the OR gate inputs are LOW. When one of the 
windows or the door is opened, a HIGH is produced on that input to the OR gate and 
the gate output goes HIGH. It then activates and latches an alarm circuit to warn of the 
intrusion.

InfoNote

A mask operation that is used in 
computer programming to selec-
tively make certain bits in a data 
byte equal to 1 (called setting) while 
not affecting any other bit is done 
with the OR operation. A mask is 
used that contains a 1 in any posi-
tion where a data bit is to be set. For 
example, if you want to force the 
sign bit in an 8-bit signed number 
to equal 1, but leave all other bits 
unchanged, you can OR the data 
byte with the mask 10000000.

TABLE 3–6

A B A � B � X

0 0 0 + 0 = 0
0 1 0 + 1 = 1
1 0 1 + 0 = 1
1 1 1 + 1 = 1
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= Open
= Closed

HIGH
LOW

Open door/window
sensors

Alarm
circuit

HIGH activates
alarm.

fg03_02500

FIGURE 3–25  A simplified intrusion detection system using an OR gate.

Section 3–3  Checkup

	 1.	When is the output of an OR gate HIGH?

	 2.	When is the output of an OR gate LOW?

	 3.	Describe the truth table for a 3-input OR gate.

3–4  The NAND Gate

The NAND gate is a popular logic element because it can be used as a universal gate; that 
is, NAND gates can be used in combination to perform the AND, OR, and inverter opera-
tions. The universal property of the NAND gate will be examined thoroughly in Chapter 5.

After completing this section, you should be able to

u	 Identify a NAND gate by its distinctive shape symbol or by its rectangular outline 
symbol

u	 Describe the operation of a NAND gate

u	 Develop the truth table for a NAND gate with any number of inputs

u	 Produce a timing diagram for a NAND gate with any specified input waveforms

u	 Write the logic expression for a NAND gate with any number of inputs

u	 Describe NAND gate operation in terms of its negative-OR equivalent

u	 Discuss examples of NAND gate applications

The term NAND is a contraction of NOT-AND and implies an AND function with a 
complemented (inverted) output. The standard logic symbol for a 2-input NAND gate and 
its equivalency to an AND gate followed by an inverter are shown in Figure 3–26(a), where 
the symbol K means equivalent to. A rectangular outline symbol is shown in part (b).

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NAND gate and its (b) Rectangular outline, 2-input NAND

&

NOT/AND equivalent gate with polarity indicator

fg03_02600

FIGURE 3–26  Standard NAND gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

The NAND gate is the same as the 
AND gate except the output is 
inverted.
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Operation of a NAND Gate

A NAND gate produces a LOW output only when all the inputs are HIGH. When any 
of the inputs is LOW, the output will be HIGH. For the specific case of a 2-input NAND 
gate, as shown in Figure 3–26 with the inputs labeled A and B and the output labeled X, the 
operation can be stated as follows:

For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH; 
X is HIGH when either A or B is LOW, or when both A and B are LOW.

This operation is opposite that of the AND in terms of the output level. In a NAND gate, 
the LOW level (0) is the active or asserted output level, as indicated by the bubble on the 
output. Figure 3–27 illustrates the operation of a 2-input NAND gate for all four input 
combinations, and Table 3–7 is the truth table summarizing the logical operation of the 
2-input NAND gate.

TABLE 3–7

Truth table for a 2-input 
NAND gate.

Inputs Output

A B X

0 0 1
0 1 1
1 0 1
1 1 0

1 = HIGH, 0 = LOW.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
LOW (0)

fg03_02700

FIGURE 3–27  Operation of a 2-input NAND gate. Open file F03-27 to verify NAND gate 
operation.

Nand Gate Operation with Waveform Inputs

Now let’s look at the pulse waveform operation of a NAND gate. Remember from the truth 
table that the only time a LOW output occurs is when all of the inputs are HIGH.

EXAMPLE 3–10

If the two waveforms A and B shown in Figure 3–28 are applied to the NAND gate 
inputs, determine the resulting output waveform.

B

A

B
X

A

X

Bubble indicates
an active-LOW
output.

A and B are both HIGH during these
four time intervals; therefore, X is LOW.

fg03_02800

FIGURE 3–28 

Solution

Output waveform X is LOW only during the four time intervals when both input wave-
forms A and B are HIGH as shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform B is 
inverted.
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Negative-OR Equivalent Operation of a NAND Gate

Inherent in a NAND gate’s operation is the fact that one or more LOW inputs produce a 
HIGH output. Table 3–7 shows that output X is HIGH (1) when any of the inputs, A and 
B, is LOW (0). From this viewpoint, a NAND gate can be used for an OR operation that 
requires one or more LOW inputs to produce a HIGH output. This aspect of NAND opera-
tion is referred to as negative-OR. The term negative in this context means that the inputs 
are defined to be in the active or asserted state when LOW.

For a 2-input NAND gate performing a negative-OR operation, output X is HIGH 
when either input A or input B is LOW, or when both A and B are LOW.

When a NAND gate is used to detect one or more LOWs on its inputs rather than all 
HIGHs, it is performing the negative-OR operation and is represented by the standard 
logic symbol shown in Figure 3–30. Although the two symbols in Figure 3–30 represent 
the same physical gate, they serve to define its role or mode of operation in a particular 
application, as illustrated by Examples 3–12 and 3–13.

EXAMPLE 3–11

Show the output waveform for the 3-input NAND gate in Figure 3–29 with its proper 
time relationship to the inputs.

B
A

C
X

A

X

B

C

fg03_02900

FIGURE 3–29 

Solution

The output waveform X is LOW only when all three input waveforms are HIGH as 
shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform A is 
inverted.

NAND Negative-OR

fg03_03000

FIGURE 3–30  ANSI/IEEE 
standard symbols representing 
the two equivalent operations of 
a NAND gate.

EXAMPLE 3–12

Two tanks store certain liquid chemicals that are required in a manufacturing process. Each 
tank has a sensor that detects when the chemical level drops to 25% of full. The sensors 
produce a HIGH level of 5 V when the tanks are more than one-quarter full. When the vol-
ume of chemical in a tank drops to one-quarter full, the sensor puts out a LOW level of 0 V.

It is required that a single green light-emitting diode (LED) on an indicator panel 
show when both tanks are more than one-quarter full. Show how a NAND gate can be 
used to implement this function.

Solution

Figure 3–31 shows a NAND gate with its two inputs connected to the tank level sensors 
and its output connected to the indicator panel. The operation can be stated as follows: 
If tank A and tank B are above one-quarter full, the LED is on.
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As long as both sensor outputs are HIGH (5 V), indicating that both tanks are more 
than one-quarter full, the NAND gate output is LOW (0 V). The green LED circuit is 
connected so that a LOW voltage turns it on. The resistor limits the LED current.

Related Problem

How can the circuit of Figure 3–31 be modified to monitor the levels in three tanks 
rather than two?

Level sensor

HIGH

Level sensor

HIGH

Green light
indicates both
tanks are
greater than
1/4 full.

LOW

+V

Tank A

Tank B

fg03_03100

FIGURE 3–31 

EXAMPLE 3–13

For the process described in Example 3–12 it has been decided to have a red LED dis-
play come on when at least one of the tanks falls to the quarter-full level rather than 
have the green LED display indicate when both are above one quarter. Show how this 
requirement can be implemented.

Solution

Figure 3–32 shows a NAND gate operating as a negative-OR gate to detect the occurrence 
of at least one LOW on its inputs. A sensor puts out a LOW voltage if the volume in its tank 
goes to one-quarter full or less. When this happens, the gate output goes HIGH. The red 
LED circuit in the panel is connected so that a HIGH voltage turns it on. The operation can 
be stated as follows: If tank A or tank B or both are below one-quarter full, the LED is on.

Red light
indicates
one or both
tanks are less
than 1/4 full.

HIGH

LOW

HIGH

Tank A

Tank B

fg03_03200

FIGURE 3–32 
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Notice that, in this example and in Example 3–12, the same 2-input NAND gate is 
used, but in this example it is operating as a negative-OR gate and a different gate sym-
bol is used in the schematic. This illustrates the different way in which the NAND and 
equivalent negative-OR operations are used.

Related Problem

How can the circuit in Figure 3–32 be modified to monitor four tanks rather than two?

Solution

The output waveform X is HIGH any time an input waveform is LOW as shown in the 
timing diagram.

Related Problem

Determine the output waveform if input waveform A is inverted before it is applied to 
the gate.

EXAMPLE 3–14

For the 4-input NAND gate in Figure 3–33, operating as a negative-OR gate, determine 
the output with respect to the inputs.

A

C

D

X

B A
B
C
D

X

Bubbles indicate
active-LOW inputs.

fg03_03300

FIGURE 3–33 

Logic Expressions for a NAND Gate

The Boolean expression for the output of a 2-input NAND gate is

X = AB

This expression says that the two input variables, A and B, are first ANDed and then 
complemented, as indicated by the bar over the AND expression. This is a description 
in equation form of the operation of a NAND gate with two inputs. Evaluating this 
expression for all possible values of the two input variables, you get the results shown 
in Table 3–8.

Once an expression is determined for a given logic function, that function can be evalu-
ated for all possible values of the variables. The evaluation tells you exactly what the 
output of the logic circuit is for each of the input conditions, and it therefore gives you 
a complete description of the circuit’s logic operation. The NAND expression can be 
extended to more than two input variables by including additional letters to represent the 
other variables.

TABLE 3–8

A B AB � X

0 0 0 # 0 = 0 = 1
0 1 0 # 1 = 0 = 1
1 0 1 # 0 = 0 = 1
1 1 1 # 1 = 1 = 0

A bar over a variable or variables 
indicates an inversion.
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Section 3–4  Checkup

	 1.	When is the output of a NAND gate LOW?

	 2.	When is the output of a NAND gate HIGH?

	 3.	Describe the functional differences between a NAND gate and a negative-OR gate. 
Do they both have the same truth table?

	 4.	Write the output expression for a NAND gate with inputs A, B, and C.

3–5  The NOR Gate

The NOR gate, like the NAND gate, is a useful logic element because it can also be used 
as a universal gate; that is, NOR gates can be used in combination to perform the AND, 
OR, and inverter operations. The universal property of the NOR gate will be examined 
thoroughly in Chapter 5.

After completing this section, you should be able to

u	 Identify a NOR gate by its distinctive shape symbol or by its rectangular outline 
symbol

u	 Describe the operation of a NOR gate

u	 Develop the truth table for a NOR gate with any number of inputs

u	 Produce a timing diagram for a NOR gate with any specified input waveforms

u	 Write the logic expression for a NOR gate with any number of inputs

u	 Describe NOR gate operation in terms of its negative-AND equivalent

u	 Discuss examples of NOR gate applications

The term NOR is a contraction of NOT-OR and implies an OR function with an inverted 
(complemented) output. The standard logic symbol for a 2-input NOR gate and its equiva-
lent OR gate followed by an inverter are shown in Figure 3–34(a). A rectangular outline 
symbol is shown in part (b).

The NOR is the same as the OR 
except the output is inverted.

Operation of a NOR Gate

A NOR gate produces a LOW output when any of its inputs is HIGH. Only when all of its 
inputs are LOW is the output HIGH. For the specific case of a 2-input NOR gate, as shown 
in Figure 3–34 with the inputs labeled A and B and the output labeled X, the operation can 
be stated as follows:

For a 2-input NOR gate, output X is LOW when either input A or input B is 
HIGH, or when both A and B are HIGH; X is HIGH only when both A and B are 
LOW.

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NOR gate and its NOT/OR
      equivalent

(b) Rectangular outline, 2-input
NOR gate with polarity indicator

≥1

fg03_03400

FIGURE 3–34  Standard NOR gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).
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TABLE 3–9

Truth table for a 2-input  
NOR gate.

Inputs Output

A B X

0 0 1
0 1 0
1 0 0
1 1 0

1 = HIGH, 0 = LOW.

This operation results in an output level opposite that of the OR gate. In a NOR gate, the 
LOW output is the active or asserted output level as indicated by the bubble on the output. 
Figure 3–35 illustrates the operation of a 2-input NOR gate for all four possible input com-
binations, and Table 3–9 is the truth table for a 2-input NOR gate.

Nor Gate Operation with Waveform Inputs

The next two examples illustrate the operation of a NOR gate with pulse waveform inputs. 
Again, as with the other types of gates, we will simply follow the truth table operation to 
determine the output waveforms in the proper time relationship to the inputs.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
LOW (0)

fg03_03500

FIGURE 3–35  Operation of a 2-input NOR gate. Open file F03-35 to verify NOR gate 
operation.

EXAMPLE 3–15

If the two waveforms shown in Figure 3–36 are applied to a NOR gate, what is the 
resulting output waveform?

A

B

X

A

B
X

fg03_03600

FIGURE 3–36 

Solution

Whenever any input of the NOR gate is HIGH, the output is LOW as shown by the 
output waveform X in the timing diagram.

Related Problem

Invert input B and determine the output waveform in relation to the inputs.

EXAMPLE 3–16

Show the output waveform for the 3-input NOR gate in Figure 3–37 with the proper 
time relation to the inputs.

A

X

A

C
XB

C

B

fg03_03700

FIGURE 3–37 
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Solution

The output X is LOW when any input is HIGH as shown by the output waveform X in 
the timing diagram.

Related Problem

With the B and C inputs inverted, determine the output and show the timing diagram.

Negative-AND Equivalent Operation of the NOR Gate

A NOR gate, like the NAND, has another aspect of its operation that is inherent in the way 
it logically functions. Table 3–9 shows that a HIGH is produced on the gate output only 
when all of the inputs are LOW. From this viewpoint, a NOR gate can be used for an AND 
operation that requires all LOW inputs to produce a HIGH output. This aspect of NOR 
operation is called negative-AND. The term negative in this context means that the inputs 
are defined to be in the active or asserted state when LOW.

For a 2-input NOR gate performing a negative-AND operation, output X is HIGH 
only when both inputs A and B are LOW.

When a NOR gate is used to detect all LOWs on its inputs rather than one or more 
HIGHs, it is performing the negative-AND operation and is represented by the standard 
symbol in Figure 3–38. Remember that the two symbols in Figure 3–38 represent the same 
physical gate and serve only to distinguish between the two modes of its operation. The 
following three examples illustrate this.

NOR Negative-AND

fg03_03800

FIGURE 3–38  Standard 
symbols representing the two 
equivalent operations of a  
NOR gate.

EXAMPLE 3–18

As part of an aircraft’s functional monitoring system, a circuit is required to indicate the sta-
tus of the landing gears prior to landing. A green LED display turns on if all three gears are 
properly extended when the “gear down” switch has been activated in preparation for land-
ing. A red LED display turns on if any of the gears fail to extend properly prior to landing. 
When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is 
retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

Solution

Power is applied to the circuit only when the “gear down” switch is activated. Use a NOR 
gate for each of the two requirements as shown in Figure 3–40. One NOR gate operates as 
a negative-AND to detect a LOW from each of the three landing gear sensors. When all 
three of the gate inputs are LOW, the three landing gears are properly extended and the 

LOW

LOW
HIGH

fg03_03900

FIGURE 3–39 

EXAMPLE 3–17

A device is needed to indicate when two LOW levels occur simultaneously on its inputs 
and to produce a HIGH output as an indication. Specify the device.

Solution

A 2-input NOR gate operating as a negative-AND gate is required to produce a HIGH 
output when both inputs are LOW, as shown in Figure 3–39.

Related Problem

A device is needed to indicate when one or two HIGH levels occur on its inputs and to 
produce a LOW output as an indication. Specify the device.
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Related Problem

What type of gate should be used to detect if all three landing gears are retracted after 
takeoff, assuming a LOW output is required to activate an LED display?

resulting HIGH output from the negative-AND gate turns on the green LED display. The 
other NOR gate operates as a NOR to detect if one or more of the landing gears remain 
retracted when the “gear down” switch is activated. When one or more of the landing 
gears remain retracted, the resulting HIGH from the sensor is detected by the NOR gate, 
which produces a LOW output to turn on the red LED warning display.

+V

Red LED
Gear retracted

Green LED
All gear extended

Landing gear sensors
Extended = LOW
Retracted = HIGH

fg03_04000

FIGURE 3–40 

When driving a load such as an LED with a logic gate, consult the manufacturer’s data sheet for 
maximum drive capabilities (output current). A regular IC logic gate may not be capable of handling 
the current required by certain loads such as some LEDs. Logic gates with a buffered output, such 
as an open-collector (OC) or open-drain (OD) output, are available in many types of IC logic gate 
configurations. The output current capability of typical IC logic gates is limited to the mA or relatively 
low mA range. For example, standard TTL can handle output currents up to 16 mA but only when the 
output is LOW. Most LEDs require currents in the range of about 10 mA to 50 mA.

EXAMPLE 3–19

For the 4-input NOR gate operating as a negative-AND in Figure 3–41, determine the 
output relative to the inputs.

B

D
X

A

C

A

B

C

D

X

fg03_04100

FIGURE 3–41 
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Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as

X = A + B

This equation says that the two input variables are first ORed and then complemented, as 
indicated by the bar over the OR expression. Evaluating this expression, you get the results 
shown in Table 3–10. The NOR expression can be extended to more than two input vari-
ables by including additional letters to represent the other variables.

Solution

Any time all of the input waveforms are LOW, the output is HIGH as shown by output 
waveform X in the timing diagram.

Related Problem

Determine the output with input D inverted and show the timing diagram.

TABLE 3–10

A B A � B � X

0 0 0 + 0 = 0 = 1
0 1 0 + 1 = 1 = 0
1 0 1 + 0 = 1 = 0
1 1 1 + 1 = 1 = 0

Section 3–5  Checkup

	 1.	When is the output of a NOR gate HIGH?

	 2.	When is the output of a NOR gate LOW?

	 3.	Describe the functional difference between a NOR gate and a negative-AND gate. 
Do they both have the same truth table?

	 4.	Write the output expression for a 3-input NOR with input variables A, B, and C.

3–6  The Exclusive-OR and Exclusive-NOR Gates

Exclusive-OR and exclusive-NOR gates are formed by a combination of other gates already 
discussed, as you will see in Chapter 5. However, because of their fundamental importance 
in many applications, these gates are often treated as basic logic elements with their own 
unique symbols.

After completing this section, you should be able to

u	 Identify the exclusive-OR and exclusive-NOR gates by their distinctive shape 
symbols or by their rectangular outline symbols

u	 Describe the operations of exclusive-OR and exclusive-NOR gates

u	 Show the truth tables for exclusive-OR and exclusive-NOR gates

u	 Produce a timing diagram for an exclusive-OR or exclusive-NOR gate with any 
specified input waveforms

u	 Discuss examples of exclusive-OR and exclusive-NOR gate applications

The Exclusive-OR Gate

Standard symbols for an exclusive-OR (XOR for short) gate are shown in Figure 3–42. 
The XOR gate has only two inputs. The exclusive-OR gate performs modulo-2 addition 
(introduced in Chapter 2). The output of an exclusive-OR gate is HIGH only when the two 

InfoNote

Exclusive-OR gates connected to 
form an adder circuit allow a proc-
essor to perform addition, subtrac-
tion, multiplication, and division in 
its Arithmetic Logic Unit (ALU). An 
exclusive-OR gate combines basic 
AND, OR, and NOT logic.
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inputs are at opposite logic levels. This operation can be stated as follows with reference to 
inputs A and B and output X:

For an exclusive-OR gate, output X is HIGH when input A is LOW and input B is 
HIGH, or when input A is HIGH and input B is LOW; X is LOW when A and B 
are both HIGH or both LOW.

The four possible input combinations and the resulting outputs for an XOR gate are 
illustrated in Figure 3–43. The HIGH level is the active or asserted output level and occurs 
only when the inputs are at opposite levels. The operation of an XOR gate is summarized 
in the truth table shown in Table 3–11.

A
B

X
A
B

X
= 1

(b) Rectangular outline(a) Distinctive shape

fg03_04200
FIGURE 3–42  Standard logic symbols for the exclusive-OR gate.

For an exclusive-OR gate, opposite 
inputs make the output HIGH.

TABLE 3–11

Truth table for an exclusive-
OR gate.

Inputs Output

A B X

0 0 0
0 1 1
1 0 1
1 1 0

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
LOW (0)

fg03_04300

FIGURE 3–43  All possible logic levels for an exclusive-OR gate. Open file F03-43 to 
verify XOR gate operation.

EXAMPLE 3–20

A certain system contains two identical circuits operating in parallel. As long as both are 
operating properly, the outputs of both circuits are always the same. If one of the circuits 
fails, the outputs will be at opposite levels at some time. Devise a way to monitor and 
detect that a failure has occurred in one of the circuits.

Solution

The outputs of the circuits are connected to the inputs of an XOR gate as shown in 
Figure 3–44. A failure in either one of the circuits produces differing outputs, which 
cause the XOR inputs to be at opposite levels. This condition produces a HIGH on the 
output of the XOR gate, indicating a failure in one of the circuits.

HIGH

LOW
HIGH (indicates failure)

Circuit A

Circuit B

fg03_04400

FIGURE 3–44 

Related Problem

Will the exclusive-OR gate always detect simultaneous failures in both circuits of 
Figure 3–44? If not, under what condition?
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The Exclusive-NOR Gate

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Figure 3–45. Like the 
XOR gate, an XNOR has only two inputs. The bubble on the output of the XNOR symbol 
indicates that its output is opposite that of the XOR gate. When the two input logic levels 
are opposite, the output of the exclusive-NOR gate is LOW. The operation can be stated as 
follows (A and B are inputs, X is the output):

For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is 
HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both 
HIGH or both LOW.

A
B

X
A
B

X
= 1

(b) Rectangular outline(a) Distinctive shape

fg03_04500

FIGURE 3–45  Standard logic symbols for the exclusive-NOR gate.

The four possible input combinations and the resulting outputs for an XNOR gate are 
shown in Figure 3–46. The operation of an XNOR gate is summarized in Table 3–12. 
Notice that the output is HIGH when the same level is on both inputs.

TABLE 3–12

Truth table for an exclusive-
NOR gate.

Inputs Output

A B X

0 0 1
0 1 0
1 0 0
1 1 1

Operation with Waveform Inputs

As we have done with the other gates, let’s examine the operation of XOR and XNOR 
gates with pulse waveform inputs. As before, we apply the truth table operation during 
each distinct time interval of the pulse waveform inputs, as illustrated in Figure 3–47 for 
an XOR gate. You can see that the input waveforms A and B are at opposite levels during 
time intervals t2 and t4. Therefore, the output X is HIGH during these two times. Since both 
inputs are at the same level, either both HIGH or both LOW, during time intervals t1 and t3, 
the output is LOW during those times as shown in the timing diagram.

A
B X

A

B

X

1 0 0 1

1 1 0 0

0 1 0 1

t1 t2 t3 t4

fg03_04700

FIGURE 3–47  Example of exclusive-OR gate operation with pulse waveform inputs.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
HIGH (1)

fg03_04600

FIGURE 3–46  All possible logic levels for an exclusive-NOR gate. Open file F03-46 
to verify XNOR gate operation.
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An Application

An exclusive-OR gate can be used as a two-bit modulo-2 adder. Recall from Chapter 2 that 
the basic rules for binary addition are as follows: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 
1 + 1 = 10. An examination of the truth table for an XOR gate shows that its output is the 
binary sum of the two input bits. In the case where the inputs are both 1s, the output is the 
sum 0, but you lose the carry of 1. In Chapter 6 you will see how XOR gates are combined 
to make complete adding circuits. Table 3–13 illustrates an XOR gate used as a modulo-2 
adder. It is used in CRC systems to implement the division process that was described in 
Chapter 2.

EXAMPLE 3–21

Determine the output waveforms for the XOR gate and for the XNOR gate, given the 
input waveforms, A and B, in Figure 3–48.

A

B

XOR

XNOR

A
B

fg03_04800

FIGURE 3–48 

Solution

The output waveforms are shown in Figure 3–48. Notice that the XOR output is HIGH 
only when both inputs are at opposite levels. Notice that the XNOR output is HIGH 
only when both inputs are the same.

Related Problem

Determine the output waveforms if the two input waveforms, A and B, are inverted.

Input Bits Output (Sum)

A B g
0 0 0
0 1 1
1 0 1

TABLE 3–13

An XOR gate used to add two bits.

INPUT BITS OUTPUT (SUM)

A B

0

0

1

1

0

1

0

1

0

1

1

0 (without  
the 1 carry bit)

tb03_01300
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Section 3–6  Checkup

	 1.	When is the output of an XOR gate HIGH?

	 2.	When is the output of an XNOR gate HIGH?

	 3.	How can you use an XOR gate to detect when two bits are different?

3–7  Programmable Logic

Programmable logic was introduced in Chapter 1. In this section, the basic concept of 
the programmable AND array, which forms the basis for most programmable logic, is 
discussed, and the major process technologies are covered. A programmable logic device 
(PLD) is one that does not initially have a fixed-logic function but that can be programmed 
to implement just about any logic design. As you have learned, two types of PLD are the 
SPLD and CPLD. In addition to the PLD, the other major category of programmable logic 
is the FPGA. Also, basic VHDL programming is introduced.

After completing this section, you should be able to

u	 Describe the concept of a programmable AND array

u	 Discuss various process technologies for programming a PLD

u	 Discuss downloading a design to a programmable logic device

u	 Discuss text entry and graphic entry as two methods for programmable logic design

u	 Explain in-system programming

u	 Write VHDL descriptions of logic gates

The AND Array

Most types of PLDs use some form of AND array. Basically, this array consists of AND 
gates and a matrix of interconnections with a programmable link at each cross point, as 
shown in Figure 3–49(a). Programmable links allow a connection between a row line and 
a column line in the interconnection matrix to be opened or left intact. For each input to an 
AND gate, only one programmable link is left intact in order to connect the desired variable 
to the gate input. Figure 3–49(b) illustrates an array after it has been programmed.

BBAA

X1

X2

X3

BBAA

X1 = AB

X2 = AB

X3 = AB

(b) Programmed(a) Unprogrammed

Programmable link

fg03_06200

FIGURE 3–49  Concept of a programmable AND array.
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Related Problem

How many rows, columns, and AND gate inputs are required for three input variables 
in a 3-AND gate array?

BBAA

X1

X2

X3

fg03_06300

FIGURE 3–50 

EXAMPLE 3–22

Show the AND array in Figure 3–49(a) programmed for the following outputs: 
X1 = AB, X2 = AB, and X3 = A B

Solution

See Figure 3–50.

Programmable Link Process Technologies

A process technology is the physical method by which a link is made. Several different 
process technologies are used for programmable links in PLDs.

Fuse Technology

This was the original programmable link technology. It is still used in some SPLDs. The fuse 
is a metal link that connects a row and a column in the interconnection matrix. Before pro-
gramming, there is a fused connection at each intersection. To program a device, the selected 
fuses are opened by passing a current through them sufficient to “blow” the fuse and break the 
connection. The intact fuses remain and provide a connection between the rows and columns. 
The fuse link is illustrated in Figure 3–51. Programmable logic devices that use fuse technol-
ogy are one-time programmable (OTP).

(a) Fuse intact before
programming

(b) Programming
current

(c) Fuse open after
programming

fg03_06400

FIGURE 3–51  The programmable fuse link.

Antifuse Technology

An antifuse programmable link is the opposite of a fuse link. Instead of breaking the con-
nection, a connection is made during programming. An antifuse starts out as an open circuit 
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whereas the fuse starts out as a short circuit. Before programming, there are no connec-
tions between the rows and columns in the interconnection matrix. An antifuse is basically 
two conductors separated by an insulator. To program a device with antifuse technology, 
a programmer tool applies a sufficient voltage across selected antifuses to break down the 
insulation between the two conductive materials, causing the insulator to become a low-
resistance link. The antifuse link is illustrated in Figure 3–52. An antifuse device is also a 
one-time programmable (OTP) device.

(a) Antifuse is open before
programming.

Contacts

Insulator

(b) Programming voltage
breaks down insulation
layer to create contact.

+

(c) Antifuse is effectively
shorted after programming.

–

fg03_06500

FIGURE 3–52  The programmable antifuse link.

Eprom Technology

In certain programmable logic devices, the programmable links are similar to the memory 
cells in EPROMs (electrically programmable read-only memories). This type of PLD is pro-
grammed using a special tool known as a device programmer. The device is inserted into 
the programmer, which is connected to a computer running the programming software. Most 
EPROM-based PLDs are one-time programmable (OTP). However, those with windowed 
packages can be erased with UV (ultraviolet) light and reprogrammed using a standard PLD 
programming fixture. EPROM process technology uses a special type of MOS transistor, 
known as a floating-gate transistor, as the programmable link. The floating-gate device utilizes 
a process called Fowler-Nordheim tunneling to place electrons in the floating-gate structure.

In a programmable AND array, the floating-gate transistor acts as a switch to connect the 
row line to either a HIGH or a LOW, depending on the input variable. For input variables 
that are not used, the transistor is programmed to be permanently off (open). Figure 3–53 
shows one AND gate in a simple array. Variable A controls the state of the transistor in the 
first column, and variable B controls the transistor in the third column. When a transistor is 
off, like an open switch, the input line to the AND gate is at +V  (HIGH). When a transistor 
is on, like a closed switch, the input line is connected to ground (LOW). When variable A 

BBAA

X = AB

+V

+V

Transistor permanently
programmed off

Transistor turned on or off
by state of input A

Transistor turned on or off
by state of input B

fg03_06600

FIGURE 3–53  A simple AND array with EPROM technology. Only one gate in the array is 
shown for simplicity.
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or B is 0 (LOW), the transistor is on, keeping the input line to the AND gate LOW. When A 
or B is 1 (HIGH), the transistor is off, keeping the input line to the AND gate HIGH.

Eeprom Technology

Electrically erasable programmable read-only memory technology is similar to EPROM 
because it also uses a type of floating-gate transistor in E2CMOS cells. The difference 
is that EEPROM can be erased and reprogrammed electrically without the need for UV 
light or special fixtures. An E2CMOS device can be programmed after being installed on a 
printed circuit board (PCB), and many can be reprogrammed while operating in a system. 
This is called in-system programming (ISP). Figure 3–53 can also be used as an example 
to represent an AND array with EEPROM technology.

Flash Technology

Flash technology is based on a single transistor link and is both nonvolatile and reprogram-
mable. Flash elements are a type of EEPROM but are faster and result in higher density 
devices than the standard EEPROM link. A detailed discussion of the flash memory element 
can be found in Chapter 11.

SRAM Technology

Many FPGAs and some CPLDs use a process technology similar to that used in SRAMs 
(static random-access memories). The basic concept of SRAM-based programmable logic 
arrays is illustrated in Figure 3–54(a). A SRAM-type memory cell is used to turn a transis-
tor on or off to connect or disconnect rows and columns. For example, when the memory 
cell contains a 1 (green), the transistor is on and connects the associated row and column 
lines, as shown in part (b). When the memory cell contains a 0 (blue), the transistor is off 
so there is no connection between the lines, as shown in part (c).

BBAA

X = AB

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell 1

SRAM
cell 0

(b) Transistor on (c) Transistor off

(a) SRAM-based programmable array

fg03_06700

FIGURE 3–54  Concept of an AND array with SRAM technology.

InfoNote

Most system-level designs incor-
porate a variety of devices such 
as RAMs, ROMs, controllers, and 
processors that are interconnected 
by a large quantity of general-
purpose logic devices often 
referred to as “glue” logic. PLDs 
have come to replace many of the 
SSI and MSI “glue” devices. The 
use of PLDs provides a reduction 
in package count.

For example, in memory 
systems, PLDs can be used for 
memory address decoding and to 
generate memory write signals as 
well as other functions.
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SRAM technology is different from the other process technologies discussed because it 
is a volatile technology. This means that a SRAM cell does not retain data when power is 
turned off. The programming data must be loaded into a memory; and when power is turned 
on, the data from the memory reprograms the SRAM-based PLD.

The fuse, antifuse, EPROM, EEPROM, and flash process technologies are nonvolatile, 
so they retain their programming when the power is off. A fuse is permanently open, an 
antifuse is permanently closed, and floating-gate transistors used in EPROM and EEPROM-
based arrays can retain their on or off state indefinitely.

Device Programming

The general concept of programming was introduced in Chapter 1, and you have seen 
how interconnections can be made in a simple array by opening or closing the program-
mable links. SPLDs, CPLDs, and FPGAs are programmed in essentially the same way. 
The devices with OTP (one-time programmable) process technologies (fuse, antifuse, or 
EPROM) must be programmed with a special hardware fixture called a programmer. The 
programmer is connected to a computer by a standard interface cable. Development soft-
ware is installed on the computer, and the device is inserted into the programmer socket. 
Most programmers have adapters that allow different types of packages to be plugged in.

EEPROM, flash, and SRAM-based programmable logic devices are reprogrammable 
and can be reconfigured multiple times. Although a device programmer can be used for 
this type of device, it is generally programmed initially on a PLD development board, as 
shown in Figure 3–55. A logic design can be developed using this approach because any 
necessary changes during the design process can be readily accomplished by simply repro-
gramming the PLD. A PLD to which a software logic design can be downloaded is called a 
target device. In addition to the target device, development boards typically provide other 
circuitry and connectors for interfacing to the computer and other peripheral circuits. Also, 
test points and display devices for observing the operation of the programmed device are 
included on the development board.

 

PLD development board

Programmable logic device

FIGURE 3–55  Programming setup for reprogrammable logic devices.  (Photo courtesy of 
Digilent, Inc.)

Design Entry

As you learned in Chapter 1, design entry is where the logic design is programmed into the 
development software. The two main ways to enter a design are by text entry or graphic 
(schematic) entry, and manufacturers of programmable logic provide software packages to 
support their devices that allow for both methods.
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Text entry in most development software, regardless of the manufacturer, supports two 
or more hardware development languages (HDLs). For example, all software packages 
support both IEEE standard HDLs, VHDL, and Verilog. Some software packages also sup-
port certain proprietary languages such as AHDL.

In graphic (schematic) entry, logic symbols such as AND gates and OR gates are 
placed on the screen and interconnected to form the desired circuit. In this method you 
use the familiar logic symbols, but the software actually converts each symbol and inter-
connections to a text file for the computer to use; you do not see this process. A simple 
example of both a text entry screen and a graphic entry screen for an AND gate is shown 
in Figure 3–56. As a general rule, graphic entry is used for less-complex logic circuits 
and text entry, although it can also be used for very simple logic, is used for larger, more 
complex implementation. 

(a) VHdL text entry

(b) Equivalent graphic (schematic) entry

FIGURE 3–56  Examples of design entry of an AND gate.

In-System Programming (ISP)

Certain CPLDs and FPGAs can be programmed after they have been installed on a system 
printed circuit board (PCB). After a logic design has been developed and fully tested on a 
development board, it can then be programmed into a “blank” device that is already soldered 
onto a system board in which it will be operating. Also, if a design change is required, the 
device on the system board can be reconfigured to incorporate the design modifications.

In a production situation, programming a device on the system board minimizes handling 
and eliminates the need for keeping stocks of preprogrammed devices. It also rules out the 
possibility of wrong parts being placed in a product. Unprogrammed (blank) devices can 
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be kept in the warehouse and programmed on-board as needed. This minimizes the capital 
a business needs for inventories and enhances the quality of its products.

JTAG

The standard established by the Joint Test Action Group is the commonly used name for 
IEEE Std. 1149.1. The JTAG standard was developed to provide a simple method, called 
boundary scan, for testing programmable devices for functionality as well as testing circuit 
boards for bad connections—shorted pins, open pins, bad traces, and the like. Also, JTAG 
has been used as a convenient way of configuring programmable devices in-system. As the 
demand for field-upgradable products increases, the use of JTAG as a convenient way of 
reprogramming CPLDs and FPGAs increases.

JTAG-compliant devices have internal dedicated hardware that interprets instructions 
and data provided by four dedicated signals. These signals are defined by the JTAG stan-
dard to be TDI (Test Data In), TDO (Test Data Out), TMS (Test Mode Select), and TCK 
(Test Clock). The dedicated JTAG hardware interprets instructions and data on the TDI and 
TMS signals, and drives data out on the TDO signal. The TCK signal is used to clock the 
process. A JTAG-compliant PLD is represented in Figure 3–57.

JTAG-compliant PLD

System PCB

TDO

TMS

TDI

TCK

JTAG
interface

JTAG hardware
inside the PLD

fg03_07100

FIGURE 3–57  Simplified illustration of in-system programming via a JTAG interface.

Embedded Processor

Another approach to in-system programming is the use of an embedded microprocessor 
and memory. The processor is embedded within the system along with the CPLD or FPGA 
and other circuitry, and it is dedicated to the purpose of in-system configuration of the 
programmable device.

As you have learned, SRAM-based devices are volatile and lose their programmed data 
when the power is turned off. It is necessary to store the programming data in a PROM (pro-
grammable read-only memory), which is nonvolatile. When power is turned on, the embedded 
processor takes control of transferring the stored data from the PROM to the CPLD or FPGA.

Also, an embedded processor is sometimes used for reconfiguration of a programmable 
device while the system is running. In this case, design changes are done with software, and 
the new data are then loaded into a PROM without disturbing the operation of the system. The 
processor controls the transfer of the data to the device “on-the-fly” at an appropriate time.

VHDL Descriptions of Logic Gates

Hardware description languages (HDLs) differ from software programming languages because 
HDLs include ways of describing logic connections and characteristics. An HDL implements 
a logic design in hardware (PLD), whereas a software programming language, such as C or 
BASIC, instructs existing hardware what to do. The two standard HDLs used for programming 
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160	 Logic Gates

PLDs are VHDL and Verilog. Both of these HDLs have their advocates, but VHDL will be used 
in this textbook. A VHDL tutorial is available on the website.

Figure 3–58 shows VHDL programs for gates described in this chapter. Two gates are 
left as Checkup exercises. VHDL has an entity/architecture structure. The entity defines 
the logic element and its inputs/outputs or ports; the architecture describes the logic oper-
ation. Keywords that are part of the VHDL syntax are shown bold for clarity.    

FIGURE 3–58  Logic gates described with VHDL.

X

X = A

A

entity Inverter is
	 port (A: in bit; X: out bit);
end entity Inverter;
architecture NOTfunction of Inverter is
begin
	 X 6=  not A;
end architecture NOTfunction;

(a) Inverter

A

B
X

X = AB

entity ANDgate is
	 port (A, B: in bit; X: out bit);
end entity ANDgate;
architecture ANDfunction of ANDgate is
begin
	 X 6=  A and B;
end architecture ANDfunction;

(b) AND gate

X 

X = A + B

A

B

entity ORgate is
	 port (A, B: in bit; X: out bit);
end entity ORgate;
architecture ORfunction of ORgate is
begin
	 X 6=  A or B;
end architecture ORfunction;

(c) OR gate

X = ABC

A

C
XB

entity NANDgate is
	 port (A, B, C: in bit; X: out bit);
end entity NANDgate;
architecture NANDfunction of NANDgate is
begin
	 X 6=  A nand B nand C;
end architecture NANDfunction;

(d) NAND gate

X = AB AB

A

B
X

+

entity XNORgate is
	 port (A, B: in bit; X: out bit);
end entity XNORgate;
architecture XNORfunction of XNORgate is
begin
	 X 6=  A xnor B;
end architecture XNORfunction;

(e) XNOR gate

Section 3–7  Checkup

	 1.	List six process technologies used for programmable links in programmable logic.

	 2.	What does the term volatile mean in relation to PLDs and which process technology 
is volatile?

	 3.	What are two design entry methods for programming PLDs and FPGAs?

	 4.	Define JTAG.

	 5.	Write a VHDL description of a 3-input NOR gate.

	 6.	Write a VHDL description of an XOR gate.

3–8  Fixed-Function Logic Gates

Fixed-function logic integrated circuits have been around for a long time and are avail-
able in a variety of logic functions. Unlike a PLD, a fixed-function IC comes with logic 
functions that cannot be programmed in and cannot be altered. The fixed-function logic 
is on a much smaller scale than the amount of logic that can be programmed into a PLD. 
Although the trend in technology is definitely toward programmable logic, fixed-function 
logic is used in specialized applications where PLDs are not the optimum choice. Fixed-
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function logic devices are sometimes called “glue logic” because of their usefulness in 
tying together larger units of logic such as PLDs in a system.

After completing this section, you should be able to

u	 List common 74 series gate logic functions

u	 List the major integrated circuit technologies and name some integrated circuit 
families

u	 Obtain data sheet information

u	 Define propagation delay time

u	 Define power dissipation

u	 Define unit load and fan-out

u	 Define speed-power product

All of the various fixed-function logic devices currently available are implemented in 
two major categories of circuit technology: CMOS (complementary metal-oxide semi-
conductor) and bipolar (also known as TTL, transistor-transistor logic). A type of bipo-
lar technology that is available in very limited devices is ECL (emitter-coupled logic). 
BiCMOS is another integrated circuit technology that combines both bipolar and CMOS. 
CMOS is the most dominant circuit technology.

74 Series Logic Gate Functions

The 74 series is the standard fixed-function logic devices. The device label format includes 
one or more letters that indentify the type of logic circuit technology family in the IC 
package and two or more digits that identify the type of logic function. For example, 
74HC04 is a fixed-function IC that has six inverters in a package as indicated by 04. The 
letters, HC, following the prefix 74 identify the circuit technology family as a type of 
CMOS logic.

Type of IC technology family

Type of logic function

74xxyy

AND Gate

Figure 3–59 shows three configurations of fixed-function AND gates in the 74 series. The 
74xx08 is a quad 2-input AND gate device, the 74xx11 is a triple 3-input AND gate device, 

VCC
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7
GND

1
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4
5

6

9
10

8

12
13

11

(a) 74xx08

FIGURE 3–59  74 series AND gate devices with pin numbers.
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(c) 74xx21

2

9

12
13

10
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162	 Logic Gates

and the 74xx21 is a dual 4-input AND gate device. The label xx can represent any of the 
integrated circuit technology families such as HC or LS. The numbers on the inputs and 
outputs are the IC package pin numbers.  

NAND Gate

Figure 3–60 shows four configurations of fixed-function NAND gates in the 74 series. The 
74xx00 is a quad 2-input NAND gate device, the 74xx10 is a triple 3-input NAND gate 
device, the 74xx20 is a dual 4-input NAND gate device, and the 74xx30 is a single 8-input 
NAND gate device.   
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7
GND

1
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9
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8

12
13
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(a) 74xx00

FIGURE 3–60  74 series NAND gate devices with package pin numbers.
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(b) 74xx10
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(c) 74xx20

2
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(d) 74xx30

2

5

12

11

6

8

 

OR Gate

Figure 3–61 shows a fixed-function OR gate in the 74 series. The 74xx32 is a quad 2-input 
OR gate device.

NOR Gate

Figure 3–62 shows two configurations of fixed-function NOR gates in the 74 series. The 
74xx02 is a quad 2-input NOR gate device, and the 74xx27 is a triple 3-input NOR gate 
device. 
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74xx32

FIGURE 3–61  74 series OR 
gate device.
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FIGURE 3–62  74 series NOR gate devices.
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XOR Gate

Figure 3–63 shows a fixed-function XOR (exclusive-OR) gate in the 74 series. The 74xx86 
is a quad 2-input XOR gate.

IC Packages

All of the 74 series CMOS are pin-compatible with the same types of devices in bipolar. 
This means that a CMOS digital IC such as the 74HC00 (quad 2-input NAND), which con-
tains four 2-input NAND gates in one IC package, has the identical package pin numbers for 
each input and output as does the corresponding bipolar device. Typical IC gate packages, 
the dual in-line package (DIP) for plug-in or feedthrough mounting and the small-outline 
integrated circuit (SOIC) package for surface mounting, are shown in Figure 3–64. In some 
cases, other types of packages are also available. The SOIC package is significantly smaller 
than the DIP. Packages with a single gate are known as little logic. Most logic gate func-
tions are available and are implemented in a CMOS circuit technology. Typically, the gates 
have only two inputs and have a different designation than multigate devices. For example, 
the 74xx1G00 is a single 2-input NAND gate.

VCC
14

7
GND
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3

4
5

6

9
10

8

12
13

11

74xx86

FIGURE 3–63  74 series XOR 
gate.

14 13 12 11 10 9 8

1 2 3 4 5 6 7

0.335 – 0.334 in.

0.228 – 0.244 in.

Lead no.1
identifier

14 13 12 11 10 9 8

1 2 3 4 5 6 7

0.740 – 0.770 in.

0.250 ± 0.010 in.

0.050 in. TYP

0.053 – 0.069 in.

0.014 – 0.020 in. TYP

(b) 14-pin small outline package (SOIC) for surface mounting

Pin no.1
identifiers

(dot or notch)

(a) 14-pin dual in-line package (DIP) for feedthrough mounting

0.145 – 0.200 in.

0.125 – 0.150 in.

0.014 – 0.023 in. TYP

0.060 in. TYP

0.100 ± 0.010 in. TYP

14

1

14

1

fg03_04900

FIGURE 3–64  Typical dual in-line (DIP) and small-outline (SOIC) packages showing pin 
numbers and basic dimensions.

Handling Precautions for CMOS
CMOS logic is very sensitive to static charge and can be damaged by ESD (electrostatic discharge) 
if not handled properly as follows:

1.	 Store and ship in conductive foam.

2.	 Connect instruments to earth ground.

3.	 Connect wrist to earth ground through a large series resistor.

4.	 Do not remove devices from circuit with power on.

5.	 Do not apply signal voltage when power is off.
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164	 Logic Gates

The type of integrated circuit technology has nothing to do with the logic function itself. 
For example, the 74HC00, 74HCT00, and 74LS00 are all quad 2-input NAND gates with 
identical package pin configurations. The differences among these three logic devices are 
in the electrical and performance characteristics such as power consumption, dc supply 
voltage, switching speed, and input/output voltage levels. CMOS and bipolar circuits are 
implemented with two different types of transistors. Figures 3–65 and 3–66 show partial 
data sheets for the 74HC00A quad 2-input NAND gate in CMOS and in bipolar technolo-
gies, respectively.

Performance Characteristics and Parameters

Several things define the performance of a logic circuit. These performance characteris-
tics are the switching speed measured in terms of the propagation delay time, the power 

74 Series Logic Circuit Families

Although many logic circuit families have become obsolete and some are rapidly on the 
decline, others are still very active and available. CMOS is the most available and most 
popular type of logic circuit technology, and the HC (high-speed CMOS) family is the 
most recommended for new projects. For bipolar, the LS (low-power schottky) family is 
the most widely used. The HCT, which a variation of the HC family, is compatible with 
bipolar devices such as LS.

Table 3–14 lists many logic circuit technology families. Because the active status of any 
given logic family is always in flux, check with a manufacturer, such as Texas Instruments, 
for information on active/nonactive status and availability for a logic function in a given 
circuit technology.

TABLE 3–14

74 series logic families based on circuit technology.

Circuit Type Description Circuit Technology

ABT Advanced BiCMOS BiCMOS
AC Advanced CMOS CMOS
ACT Bipolar compatible AC CMOS
AHC Advanced high-speed CMOS CMOS
AHCT Bipolar compatible AHC CMOS
ALB Advanced low-voltage BiCMOS BiCMOS
ALS Advanced low-power Schottky Bipolar
ALVC Advanced low-voltage CMOS CMOS
AUC Advanced ultra-low-voltage CMOS CMOS
AUP Advanced ultra-low-power CMOS CMOS
AS Advanced Schottky Bipolar
AVC Advanced very-low-power CMOS CMOS
BCT Standard BiCMOS BiCMOS
F Fast Bipolar
FCT Fast CMOS technology CMOS
HC High-speed CMOS CMOS
HCT Bipolar compatible HC CMOS
LS Low-power Schottky Bipolar
LV-A Low-voltage CMOS CMOS
LV-AT Bipolar compatible LV-A CMOS
LVC Low-voltage CMOS CMOS
LVT Low-voltage biCMOS BiCMOS
S Schottky Bipolar

High-speed logic has a short 
propagation delay time.
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•  Output Drive Capability: 10 LSTTL Loads
•  Outputs Directly Interface to CMOS, NMOS and TTL
•  Operating Voltage Range: 2 to 6 V
•  Low Input Current: 1  A
•  High Noise Immunity Characteristic of CMOS Devices
•  In Compliance With the JEDEC Standard No. 7A
   Requirements
•  Chip Complexity: 32 FETs or 8 Equivalent Gates

The MC54/74HC00A is identical in pinout to the LS00. The device inputs are compatible with Standard
CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

Power Dissipation Capacitance (Per Buffer)CPD

ParameterSymbol Condition
VCC

V –55 to 25°C Unit
1.50
2.10
3.15
4.20

Parameter Value UnitSymbol
DC Supply Voltage (Referenced to GND) – 0.5 to + 7.0 VVCC

DC Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 VVin

DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 VVout

DC Input Current, per Pin ± 20 mAIin

DC Output Current, per Pin ± 25 mAIout

DC Supply Current, VCC and GND Pins ± 50 mAICC

Power Dissipation in Still Air, Plastic or Ceramic DIP† 750
500
450

mWPD
SOIC Package†

TSSOP Package†
Storage Temperature °CTstg –65 to + 150

Lead Temperature, 1 mm from Case for 10 Seconds °CTL
260
300

Plastic DIP, SOIC or TSSOP Package
Ceramic DIP

* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

† Derating  — Plastic DIP: – 10 mW/°C from 65° to 125° C
Ceramic DIP: – 10 mW/°C from 100° to 125° C
SOIC Package: – 7 mW/°C from 65° to 125° C
TSSOP Package: – 6.1 mW/°C from 65° to 125° C

DC Supply Voltage (Referenced to GND) 6.0 VVCC 2.0

DC Input Voltage, Output Voltage (Referenced to GND) VVin, Vout VCC0

Operating Temperature, All Package Types °CTA +125–55

Input Rise and Fall Time VCC = 2.0 V
 VCC = 4.5 V

VCC = 6.0 V

nst r, t f 1000
500
400

0
0
0

Parameter Max UnitSymbol in

Minimum High-Level Input VoltageVIH Vout = 0.1V or VCC – 0.1V
 Iout ″  20 A

2.0
3.0
4.5
6.0

1.50
2.10
3.15
4.20

1.50
2.10
3.15
4.20

V

0.50
0.90
1.35
1.80

Maximum Low-Level Input VoltageVIL Vout = 0.1V or VCC – 0.1V
 Iout ″  20 A

2.0
3.0
4.5
6.0

0.50
0.90
1.35
1.80

0.50
0.90
1.35
1.80

V

1.9
4.4
5.9

Minimum High-Level Output VoltageVOH Vin = VIH or VIL

 Iout ″  20 A
2.0
4.5
6.0

1.9
4.4
5.9

1.9
4.4
5.9

V

2.20
3.70
5.20

Vin = VIH or VIL 3.0
4.5
6.0

2.48
3.98
5.48

2.34
3.84
5.34

 Iout ″  2.4mA
 Iout ″  4.0mA
 Iout ″  5.2mA

0.1
0.1
0.1

Maximum Low-Level Output VoltageVOL Vin = VIH or VIL

 Iout ″  20 A
2.0
4.5
6.0

0.1
0.1
0.1

0.1
0.1
0.1

V

0.40
0.40
0.40

Vin = VIH or VIL 3.0
4.5
6.0

0.26
0.26
0.26

0.33
0.33
0.33

 Iout ″  2.4mA
 Iout ″  4.0mA
 Iout ″  5.2mA

±1.0Maximum Input Leakage CurrentIin Vin = VCC or GND 6.0 ±0.1 ±1.0  A

40Maximum Quiescent Supply
Current (per Package)

ICC Vin = VCC or GND
Iout = 0 A

6.0 1.0 10  A

″85°C ″125°C
Guaranteed Limit

DC CHARACTERISTICS (Voltages Referenced to GND)

ParameterSymbol
VCC

V –55 to 25°C Unit
110
55
22
19

Maximum Propagation Delay, Input A or B to Output YtPLH,
tPHL

2.0
3.0
4.5
6.0

75
30
15
13

95
40
19
16

ns

″ 85°C ″125°C
Guaranteed Limit

AC CHARACTERISTICS (CL = 50 pF, Input tr = t f = 6 ns)

110
36
22
19

Maximum Output Transition Time, Any OutputtTLH,
tTHL

2.0
3.0
4.5
6.0

75
27
15
13

95
32
19
16

ns

10Maximum Input CapacitanceCin 10 10 pF

22

Typical @ 25°C, VCC = 5.0 V, VEE = 0 V

pF

MAXIMUM RATINGS*

RECOMMENDED OPERATING CONDITIONS

Quad 2-Input NAND Gate  High-Performance Silicon–Gate CMOS

MC54/74HC00A

J SUFFIX
CERAMIC PACKAGE

CASE 632-08

N SUFFIX
PLASTIC PACKAGE

CASE 646-06

D SUFFIX
SOIC PACKAGE
CASE 751A-03

DT SUFFIX
TSSOP PACKAGE

CASE 948G-01

ORDERING INFORMATION

MC54HCXXAJ Ceramic
MC74HCXXAN Plastic
MC74HCXXAD SOIC
MC74HCXXADT TSSOP

14

1

14

1

14

1

14

1

FUNCTION TABLE

Inputs Output

A

L
L
H
H

B

L
H
L
H

Y

H
H
H
L

Y1
3A1 1

B1
2

Y2
6A2 4

B2
5

Y3
8A3 9

B3
10

Y4
11A4 12

B4
13

Y = AB

PIN 14 = VCC

PIN 7 = GND

LOGIC DIAGRAM

14
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13
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12

A4

11

Y4

10

B3

9

A3

8

Y3

1

A1 B1 Y1 A2 B2 Y2 GND

2 3 4 5 6 7

Pinout: 14–Load Packages (Top View)

MC54/74HC00A

µ

µ

µ

µ

µ

µ

µ
µ

≥

≥

≥

≥

≥
≥
≥

≥
≥
≥

≥ ≥

≥ ≥

fg03_05500

FIGURE 3–65  CMOS logic. Partial data sheet for a 54/74HC00A quad 2-input NAND 
gate. The 54 prefix indicates military grade and the 74 prefix indicates commercial grade.
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VCC = MAX, VIN = 2.7 V

V

V

QUAD 2-INPUT NAND GATE

QUAD 2-INPUT NAND GATE
LOW POWER SCHOTTKY

J SUFFIX
CERAMIC

CASE 632-08

N SUFFIX
PLASTIC

CASE 646-06

D SUFFIX
SOIC

CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic
SN74LSXXN Plastic
SN74LSXXD SOIC

14

1

14

1

14

1

VCC

1

GND

2 3 4 5 6 7

ParameterSymbol Test ConditionsMin Unit

Input HIGH VoltageVIH Guaranteed Input HIGH Voltage for
All Inputs

2.0 V

NOTE 1: Not more than one output should be shorted at a time, nor for more than 1 second.

Typ Max

Limits

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

• ESD > 3500 Volts

14 13 12 11 10 9 8

SN54/74LS00

SN54/74LS00

0.7
Input LOW VoltageVIL

Guaranteed Input LOW Voltage for
All Inputs

V
54

0.874

Input Clamp Diode VoltageVIK VCC = MIN, IIN = –18 mAV–0.65 –1.5

Ouput HIGH VoltageVOH
VCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table

54

74

2.5

2.7

3.5

3.5

V

V
Ouput LOW VoltageVOL

IOL = 4.0 mA54, 74

74

0.25

0.35

0.4

0.5

VCC = VCC MIN, VIN = VIL

or VIH per Truth TableIOL = 8.0 mA

20
Input HIGH CurrentIIH

0.1

Input LOW CurrentIIL VCC = MAX, IN = 0.4 VmA–0.4

  A

mA VCC = MAX, VIN = 7.0 V

Short Circuit Current (Note 1)IOS VCC = MAXmA–100–20

1.6
Power Supply Current

Total, Output HIGHICC

4.4

mA VCC = MAX

Total, Output LOW

ParameterSymbol Test ConditionsMin Unit

Turn-Off Delay, Input to OutputtPLH VCC = 5.0 V
CL = 15 pF

9.0 ns

Typ Max

Limits

AC CHARACTERISTICS (TA = 25°C)

15

Turn-On Delay, Input to OutputtPHL 10 ns15

ParameterSymbol Min Unit

Supply VoltageVCC 4.5
4.75

V

Typ Max

GUARANTEED OPERATING RANGES

54
74

5.0
5.0

5.5
5.25

Operating Ambient
Temperature Range

TA –55
0

°C54
74

25
25

125
70

Output Current — HighIOH mA54, 74 –0.4

Output Current — LowIOL mA54
74

4.0
8.0

µ

fg03_05400

FIGURE 3–66  Bipolar logic. Partial data sheet for a 54/74LS00 quad 2-input NAND gate.

dissipation, the fan-out or drive capability, the speed-power product, the dc supply voltage, 
and the input/output logic levels.

Propagation Delay Time

This parameter is a result of the limitation on switching speed or frequency at which a logic 
circuit can operate. The terms low speed and high speed, applied to logic circuits, refer to 
the propagation delay time. The shorter the propagation delay, the higher the switching 
speed of the circuit and thus the higher the frequency at which it can operate.

Propagation delay time, tP, of a logic gate is the time interval between the transition 
of an input pulse and the occurrence of the resulting transition of the output pulse. There 
are two different measurements of propagation delay time associated with a logic gate that 
apply to all the types of basic gates:

•	 tPHL: The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing from 
the HIGH level to the LOW level (HL).

•	 tPLH: The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing from 
the LOW level to the HIGH level (LH).

For the HCT family CMOS, the propagation delay is 7 ns, for the AC family it is 5 ns, 
and for the ALVC family it is 3 ns. For standard-family bipolar (TTL) gates, the typical 
propagation delay is 11 ns and for F family gates it is 3.3 ns. All specified values are depen-
dent on certain operating conditions as stated on a data sheet.
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Related Problem

One type of logic gate has a specified maximum tPLH and tPHL of 10 ns. For another 
type of gate the value is 4 ns. Which gate can operate at the highest frequency?

EXAMPLE 3–23

Show the propagation delay times of an inverter.

Solution

An input/output pulse of an inverter is shown in Figure 3–67, and the propagation delay 
times, tPHL and tPLH, are indicated. In this case, the delays are measured between the 
50% points of the corresponding edges of the input and output pulses. The values of 
tPHL and tPLH are not necessarily equal but in many cases they are the same.

tPHL tPHL

50%

50%

Input

H

L

Output

H

L

fg03_05200

FIGURE 3–67 

DC Supply Voltage (VCC)

The typical dc supply voltage for CMOS logic is either 5 V, 3.3 V, 2.5 V, or 1.8 V, depend-
ing on the category. An advantage of CMOS is that the supply voltages can vary over a 
wider range than for bipolar logic. The 5 V CMOS can tolerate supply variations from 2 V 
to 6 V and still operate properly although propagation delay time and power dissipation 
are significantly affected. The 3.3 V CMOS can operate with supply voltages from 2 V to 
3.6 V. The typical dc supply voltage for bipolar logic is 5.0 V with a minimum of 4.5 V and 
a maximum of 5.5 V.

Power Dissipation

The power dissipation, PD, of a logic gate is the product of the dc supply voltage and 
the average supply current. Normally, the supply current when the gate output is LOW is 
greater than when the gate output is HIGH. The manufacturer’s data sheet usually desig-
nates the supply current for the LOW output state as ICCL and for the HIGH state as ICCH. 
The average supply current is determined based on a 50% duty cycle (output LOW half the 
time and HIGH half the time), so the average power dissipation of a logic gate is

	 PD � VCC a
ICCH � ICCL

2
b 	 Equation 3–2

CMOS gates have very low power dissipations compared to the bipolar family. How-
ever, the power dissipation of CMOS is dependent on the frequency of operation. At zero 
frequency the quiescent power is typically in the microwatt/gate range, and at the maximum 
operating frequency it can be in the low milliwatt range; therefore, power is sometimes 
specified at a given frequency. The HC family, for example, has a power of 2.75 mW/gate at 
0 Hz (quiescent) and 600 mW/gate at 1 MHz.

A lower power dissipation means less 
current from the dc supply.
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Power dissipation for bipolar gates is independent of frequency. For example, the ALS 
family uses 1.4 mW/gate regardless of the frequency and the F family uses 6 mW/gate.

Input and Output Logic Levels

VIL is the LOW level input voltage for a logic gate, and VIH is the HIGH level input volt-
age. The 5 V CMOS accepts a maximum voltage of 1.5 V as VIL and a minimum voltage 
of 3.5 V as VIH. Bipolar logic accepts a maximum voltage of 0.8 V as VIL and a minimum 
voltage of 2 V as VIH.

VOL is the LOW level output voltage and VOH is the HIGH level output voltage. For 
5 V CMOS, the maximum VOL is 0.33 V and the minimum VOH is 4.4 V. For bipolar 
logic, the maximum VOL is 0.4 V and the minimum VOH is 2.4 V. All values depend on 
operating conditions as specified on the data sheet.

Speed-Power Product (SPP)

This parameter (speed-power product) can be used as a measure of the performance of a 
logic circuit taking into account the propagation delay time and the power dissipation. It is 
especially useful for comparing the various logic gate series within the CMOS and bipolar 
technology families or for comparing a CMOS gate to a TTL gate.

The SPP of a logic circuit is the product of the propagation delay time and the power 
dissipation and is expressed in joules (J), which is the unit of energy. The formula is

	 SPP � tpPD	 Equation 3–3

EXAMPLE 3–24

A certain gate has a propagation delay of 5 ns and ICCH = 1 mA and ICCL = 2.5 mA 
with a dc supply voltage of 5 V. Determine the speed-power product.

Solution

 PD = VCC ¢ ICCH + ICCL

2
≤ = 5 V ¢ 1 mA + 2.5 mA

2
≤ = 5 V(1.75 mA) = 8.75 mW

 SPP = (5 ns) (8.75 mW) = 43.75 pJ

Related Problem

If the propagation delay of a gate is 15 ns and its SPP is 150 pJ, what is its average 
power dissipation?

Fan-Out and Loading

The fan-out of a logic gate is the maximum number of inputs of the same series in an 
IC family that can be connected to a gate’s output and still maintain the output voltage 
levels within specified limits. Fan-out is a significant parameter only for bipolar logic 
because of the type of circuit technology. Since very high impedances are associated 
with CMOS circuits, the fan-out is very high but depends on frequency because of 
capacitive effects.

Fan-out is specified in terms of unit loads. A unit load for a logic gate equals one input 
to a like circuit. For example, a unit load for a 74LS00 NAND gate equals one input to 
another logic gate in the 74LS family (not necessarily a NAND gate). Because the current 
from a LOW input (IIL) of a 74LS00 gate is 0.4 mA and the current that a LOW output 
(IOL) can accept is 8.0 mA, the number of unit loads that a 74LS00 gate can drive in the 
LOW state is

Unit loads =
IOL

IIL
=

8.0 mA

0.4 mA
= 20

A higher fan-out means that a gate 
output can be connected to more 
gate inputs.
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Figure 3–68 shows LS logic gates driving a number of other gates of the same circuit 
technology, where the number of gates depends on the particular circuit technology. For 
example, as you have seen, the maximum number of gate inputs (unit loads) that a 74LS 
family bipolar gate can drive is 20.

Driving gate

1

2

20

Load gate

fg03_05300

FIGURE 3–68  The LS family NAND gate output fans out to a maximum of 20 LS family 
gate inputs.

Unused gate inputs for bipolar (TTL) and CMOS should be connected to the appropriate logic level 
(HIGH or LOW). For AND/NAND, it is recommended that unused inputs be connected to VCC (through 
a 1.0 kV resistor with bipolar) and for OR/NOR, unused inputs should be connected to ground.

Bipolar (TTL) CMOS/BipolarCMOS

+VCC

Unused
Used inputs

+VCC

Used

Unused

Section 3–8  Checkup

	 1.	How is fixed-function logic different than PLD logic?

	 2.	List the two types of IC technologies that are the most widely used.

	 3.	 Identify the following IC logic designators:

(a)  LS    (b)  HC    (c)  HCT

	 4.	Which IC technology generally has the lowest power dissipation?

	 5.	What does the term hex inverter mean? What does quad 2-input NAND mean?

	 6.	A positive pulse is applied to an inverter input. The time from the leading edge of the 
input to the leading edge of the output is 10 ns. The time from the trailing edge of the input 
to the trailing edge of the output is 8 ns. What are the values of tPLH and tPHL?

	 7.	A certain gate has a propagation delay time of 6 ns and a power dissipation of 3 mW. 
Determine the speed-power product?

	 8.	Define ICCL and ICCH.

	 9.	Define VIL and VIH.

	 10.	Define VOL and VOH.
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Conditions for Testing Gates

When testing a NAND gate or an AND gate, always make sure that the inputs that are not 
being pulsed are HIGH to enable the gate. When checking a NOR gate or an OR gate, 
always make sure that the inputs that are not being pulsed are LOW. When checking an 
XOR or XNOR gate, the level of the nonpulsed input does not matter because the pulses on 
the other input will force the inputs to alternate between the same level and opposite levels.

Troubleshooting an Open Input

Troubleshooting this type of failure is easily accomplished with an oscilloscope and func-
tion generator, as demonstrated in Figure 3–70 for the case of a quad 2-input NAND gate 
package. When measuring digital signals with a scope, always use dc coupling.

3–9  Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure 
in a circuit or system. To be an effective troubleshooter, you must understand how the 
circuit or system is supposed to work and be able to recognize incorrect performance. For 
example, to determine whether or not a certain logic gate is faulty, you must know what the 
output should be for given inputs.

After completing this section, you should be able to

u	 Test for internally open inputs and outputs in IC gates

u	 Recognize the effects of a shorted IC input or output

u	 Test for external faults on a PCB board

u	 Troubleshoot a simple frequency counter using an oscillosope

Internal Failures of IC Logic Gates

Opens and shorts are the most common types of internal gate failures. These can occur on 
the inputs or on the output of a gate inside the IC package. Before attempting any trouble-
shooting, check for proper dc supply voltage and ground.

Effects of an Internally Open Input

An internal open is the result of an open component on the chip or a break in the tiny 
wire connecting the IC chip to the package pin. An open input prevents a signal on that 
input from getting to the output of the gate, as illustrated in Figure 3–69(a) for the case 
of a 2-input NAND gate. An open TTL (bipolar) input acts effectively as a HIGH level, 
so pulses applied to the good input get through to the NAND gate output as shown in 
Figure 3–69(b).

HIGH

Open input

No pulses

(a) Application of pulses to the open input will produce no pulses

Open input

(b) Application of pulses to the good input will produce output pulses for
bipolar NAND and AND gates because an open input typically acts as a
HIGH. It is uncertain for CMOS.

on the output.

fg03_05600

FIGURE 3–69  The effect of an open input on a NAND gate.
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The first step in troubleshooting an IC that is suspected of being faulty is to make sure 
that the dc supply voltage (VCC) and ground are at the appropriate pins of the IC. Next, 
apply continuous pulses to one of the inputs to the gate, making sure that the other input is 
HIGH (in the case of a NAND gate). In Figure 3–70(a), start by applying a pulse waveform 
to pin 13, which is one of the inputs to the suspected gate. If a pulse waveform is indicated 
on the output (pin 11 in this case), then the pin 13 input is not open. By the way, this also 
proves that the output is not open. Next, apply the pulse waveform to the other gate input 
(pin 12), making sure the other input is HIGH. There is no pulse waveform on the output at 
pin 11 and the output is LOW, indicating that the pin 12 input is open, as shown in Figure 
3–70(b). The input not being pulsed must be HIGH for the case of a NAND gate or AND 
gate. If this were a NOR gate, the input not being pulsed would have to be LOW.

Effects of an Internally Open Output

An internally open gate output prevents a signal on any of the inputs from getting to the 
output. Therefore, no matter what the input conditions are, the output is unaffected. The 
level at the output pin of the IC will depend upon what it is externally connected to. It could 
be either HIGH, LOW, or floating (not fixed to any reference). In any case, there will be no 
signal on the output pin.

Troubleshooting an Open Output

Figure 3–71 illustrates troubleshooting an open NOR gate output. In part (a), one of the 
inputs of the suspected gate (pin 11 in this case) is pulsed, and the output (pin 13) has no 
pulse waveform. In part (b), the other input (pin 12) is pulsed and again there is no pulse 
waveform on the output. Under the condition that the input that is not being pulsed is at a 
LOW level, this test shows that the output is internally open.

Shorted Input or Output

Although not as common as an open, an internal short to the dc supply voltage, ground, 
another input, or an output can occur. When an input or output is shorted to the supply volt-
age, it will be stuck in the HIGH state. If an input or output is shorted to ground, it will be 

+VCC

GND

Scope
probeScope

probe
HIGH

GND

+VCC

(a) Pin 13 input and pin 11 output OK (b) Pin 12 input is open.

Scope
probeScope

probe

Square wave
from function

generator

Square wave
from function

generator

HIGH

fg03_05700
FIGURE 3–70  Troubleshooting a NAND gate for an open input.
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172	 Logic Gates

stuck in the LOW state (0 V). If two inputs or an input and an output are shorted together, 
they will always be at the same level.

External Opens and Shorts

Many failures involving digital ICs are due to faults that are external to the IC package. 
These include bad solder connections, solder splashes, wire clippings, improperly etched 
printed circuit boards (PCBs), and cracks or breaks in wires or printed circuit intercon-
nections. These open or shorted conditions have the same effect on the logic gate as the 
internal faults, and troubleshooting is done in basically the same ways. A visual inspection 
of any circuit that is suspected of being faulty is the first thing a technician should do.

LOW

+VCC

GND

(a) Pulse input on pin 11. No pulse output.

Scope
probeScope

probe

+VCC

GND

(b) Pulse input on pin 12. No pulse output.

Scope
probeScope

probe LOW

Square wave
from function

generator

Square wave
from function

generator

fg03_05800

FIGURE 3–71  Troubleshooting a NOR gate for an open output.

EXAMPLE 3–25

You are checking a 74LS10 triple 3-input NAND gate IC that is one of many ICs 
located on a PCB. You have checked pins 1 and 2 and they are both HIGH. Now you 
apply a pulse waveform to pin 13, and place your scope probe first on pin 12 and then 
on the connecting PCB trace, as indicated in Figure 3–72. Based on your observation of 
the scope screen, what is the most likely problem?

Solution

The waveform with the probe in position 1 shows that there is pulse activity on the gate 
output at pin 12, but there are no pulses on the PCB trace as indicated by the probe in 
position 2. The gate is working properly, but the signal is not getting from pin 12 of the 
IC to the PCB trace.

Most likely there is a bad solder connection between pin 12 of the IC and the PCB, 
which is creating an open. You should resolder that point and check it again.

Related Problem

If there are no pulses at either probe position 1 or 2 in Figure 3–72, what fault(s) does 
this indicate?
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In most cases, you will be troubleshooting ICs that are mounted on PCBs or proto-
type assemblies and interconnected with other ICs. As you progress through this book, 
you will learn how different types of digital ICs are used together to perform system 
functions. At this point, however, we are concentrating on individual IC gates. This 
limitation does not prevent us from looking at the system concept at a very basic and 
simplified level.

To continue the emphasis on systems, Examples 3–26 and 3–27 deal with troubleshoot-
ing the frequency counter that was introduced in Section 3–2.

+VCC

GND

Input from
function

generator

HIGH
HIGH

2

1

Input

Output
on pin 12

Input

Output
on trace

fg03_05900

FIGURE 3–72 

EXAMPLE 3–26

After trying to operate the frequency counter shown in Figure 3–73, you find that it 
constantly reads out all 0s on its display, regardless of the input frequency. Determine 
the cause of this malfunction. The enable pulse has a width of 1 ms.

Figure 3–73(a) gives an example of how the frequency counter should be working 
with a 12 kHz pulse waveform on the input to the AND gate. Part (b) shows that the 
display is improperly indicating 0 Hz.

Solution

Three possible causes are

	 1.	 A constant active or asserted level on the counter reset input, which keeps the 
counter at zero.

	 2.	 No pulse signal on the input to the counter because of an internal open or short in 
the counter. This problem would keep the counter from advancing after being 
reset to zero.
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	 3.	 No pulse signal on the input to the counter because of an open AND gate output 
or the absence of input signals, again keeping the counter from advancing from 
zero.

The first step is to make sure that VCC and ground are connected to all the right 
places; assume that they are found to be okay. Next, check for pulses on both inputs to 
the AND gate. The scope indicates that there are proper pulses on both of these inputs. 
A check of the counter reset shows a LOW level which is known to be the unasserted 
level and, therefore, this is not the problem. The next check on pin 3 of the 74LS08 
shows that there are no pulses on the output of the AND gate, indicating that the gate 
output is open. Replace the 74LS08 IC and check the operation again.

Related Problem

If pin 2 of the 74LS08 AND gate is open, what indication should you see on the fre-
quency display?

2

1
3

+5 V

14

74LS08
7

1
4

2

1
3

+5 V

14

74LS08
7

1
4

Reset pulse

Input signal

Enable input

(b) The counter is not measuring a frequency.

Reset pulse

Input signal

Enable input

(a) The counter is working properly.

fg03_06000

Frequency
counter

kHz

Frequency
counter

Hz

FIGURE 3–73 
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Solution

Recall from Section 3–2 that the input pulses were allowed to pass through the AND 
gate for exactly 1 ms. The number of pulses counted in 1 ms is equal to the frequency in 
hertz. Therefore, the 1 ms interval, which is produced by the enable pulse on pin 2 of 
the AND gate, is very critical to an accurate frequency measurement. The enable pulses 
are produced internally by a precision oscillator circuit. The pulse must be exactly 1 ms 
in width and in this case it occurs every 3 ms to update the count. Just prior to each 
enable pulse, the counter is reset to zero so that it starts a new count each time.

Since the counter appears to be counting more pulses than it should to produce a 
frequency readout that is too high, the enable pulse is the primary suspect. Exact time-
interval measurements must be made on the oscilloscope.

An input pulse waveform of exactly 10 kHz is applied to pin 1 of the AND gate and 
the frequency counter incorrectly shows 12 kHz. The first scope measurement, on the 
output of the AND gate, shows that there are 12 pulses for each enable pulse. In the 
second scope measurement, the input frequency is verified to be precisely 10 kHz 
(period = 100 ms). In the third scope measurement, the width of the enable pulse is 
found to be 1.2 ms rather than 1 ms.

The conclusion is that the enable pulse is out of calibration for some reason.

Related Problem

What would you suspect if the readout were indicating a frequency less than it should be?

EXAMPLE 3–27

The frequency counter shown in Figure 3–74 appears to measure the frequency of input 
signals incorrectly. It is found that when a signal with a precisely known frequency is 
applied to pin 1 of the AND gate, the oscilloscope display indicates a higher frequency. 
Determine what is wrong. The readings on the screen indicate time per division.

fg03_06100
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FIGURE 3–74 
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Proper grounding is very important when setting up to take measurements or work on a circuit. 
Properly grounding the oscilloscope protects you from shock and grounding yourself protects your 
circuits from damage. Grounding the oscilloscope means to connect it to earth ground by plugging the 
three-prong power cord into a grounded outlet. Grounding yourself means using a wrist-type ground-
ing strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value 
resistor between the strap and ground for protection against accidental contact with a voltage source.

Also, for accurate measurements, make sure that the ground in the circuit you are testing is the 
same as the scope ground. This can be done by connecting the ground lead on the scope probe to a 
known ground point in the circuit, such as the metal chassis or a ground point on the PCB. You can 
also connect the circuit ground to the GND jack on the front panel of the scope.

Section 3–9  Checkup

	 1.	What are the most common types of failures in ICs?

	 2.	 If two different input waveforms are applied to a 2-input bipolar NAND gate and the 
output waveform is just like one of the inputs, but inverted, what is the most likely 
problem?

	 3.	Name two characteristics of pulse waveforms that can be measured on the oscilloscope.

Summary

•	 The inverter output is the complement of the input.

•	 The AND gate output is HIGH only when all the inputs are HIGH.

•	 The OR gate output is HIGH when any of the inputs is HIGH.

•	 The NAND gate output is LOW only when all the inputs are HIGH.

•	 The NAND can be viewed as a negative-OR whose output is HIGH when any input is LOW.

•	 The NOR gate output is LOW when any of the inputs is HIGH.

•	 The NOR can be viewed as a negative-AND whose output is HIGH only when all the inputs are 
LOW.

•	 The exclusive-OR gate output is HIGH when the inputs are not the same.

•	 The exclusive-NOR gate output is LOW when the inputs are not the same.

•	 Distinctive shape symbols and truth tables for various logic gates (limited to 2 inputs) are shown 
in Figure 3–75.
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FIGURE 3–75 
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•	 Most programmable logic devices (PLDs) are based on some form of AND array.

•	 Programmable link technologies are fuse, antifuse, EPROM, EEPROM, flash, and SRAM.

•	 A PLD can be programmed in a hardware fixture called a programmer or mounted on a  
development printed circuit board.

•	 PLDs have an associated software development package for programming.

•	 Two methods of design entry using programming software are text entry (HDL) and graphic 
(schematic) entry.

•	 ISP PLDs can be programmed after they are installed in a system, and they can be repro-
grammed at any time.

•	 JTAG stands for Joint Test Action Group and is an interface standard (IEEE Std. 1149.1) used 
for programming and testing PLDs.

•	 An embedded processor is used to facilitate in-system programming of PLDs.

•	 In PLDs, the circuit is programmed in and can be changed by reprogramming.

•	 The average power dissipation of a logic gate is

PD = VCC ¢ ICCH + ICCL

2
≤

•	 The speed-power product of a logic gate is

SPP = tpPD

•	 As a rule, CMOS has a lower power consumption than bipolar.

•	 In fixed-function logic, the circuit cannot be altered.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

AND array  An array of AND gates consisting of a matrix of programmable interconnections.

AND gate  A logic gate that produces a HIGH output only when all of the inputs are HIGH.

Antifuse  A type of PLD nonvolatile programmable link that can be left open or can be shorted 
once as directed by the program.

Bipolar  A class of integrated logic circuits implemented with bipolar transistors; also known as TTL.

Boolean algebra  The mathematics of logic circuits.

CMOS  Complementary metal-oxide semiconductor; a class of integrated logic circuits that is 
implemented with a type of field-effect transistor.

Complement  The inverse or opposite of a number. LOW is the complement of HIGH, and 0 is 
the complement of 1.

EEPROM  A type of nonvolatile PLD reprogrammable link based on electrically erasable 
programmable read-only memory cells and can be turned on or off repeatedly by programming.

EPROM  A type of PLD nonvolatile programmable link based on electrically programmable 
read-only memory cells and can be turned either on or off once with programming.

Exclusive-NOR (XNOR) gate  A logic gate that produces a LOW only when the two inputs are at 
opposite levels.

Exclusive-OR (XOR) gate  A logic gate that produces a HIGH output only when its two inputs 
are at opposite levels.

Fan-out  The number of equivalent gate inputs of the same family series that a logic gate can drive.

Flash  A type of PLD nonvolatile reprogrammable link technology based on a single transistor cell.

Fuse  A type of PLD nonvolatile programmable link that can be left shorted or can be opened once 
as directed by the program.

Inverter  A logic circuit that inverts or complements its input.

JTAG  Joint Test Action Group; an interface standard designated IEEE Std. 1149.1.

NAND gate  A logic gate that produces a LOW output only when all the inputs are HIGH.
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NOR gate  A logic gate in which the output is LOW when one or more of the inputs are HIGH.

OR gate  A logic gate that produces a HIGH output when one or more inputs are HIGH.

Propagation delay time  The time interval between the occurrence of an input transition and the 
occurrence of the corresponding output transition in a logic circuit.

SRAM  A type of PLD volatile reprogrammable link based on static random-access memory cells 
and can be turned on or off repeatedly with programming.

Target device  A PLD mounted on a programming fixture or development board into which a 
software logic design is to be downloaded.

Truth table  A table showing the inputs and corresponding output(s) of a logic circuit.

Unit load  A measure of fan-out. One gate input represents one unit load to the output of a gate 
within the same IC family.

VHDL  A standard hardware description language that describes a function with an entity/
architecture structure.

True/False Quiz

Self-Test

Answers are at the end of the chapter.

	 1.	 When the input to an inverter is LOW (0), the output is
(a)	 HIGH or 0	 (b)  LOW or 0	 (c)  HIGH or 1	 (d)  LOW or 1

	 2.	 An inverter performs an operation known as
(a)	 complementation	 (b)  assertion	 (c)  inversion	 (d)  both answers (a) and (c)

	 3.	 The output of an AND gate with inputs A, B and C is 0 (LOW) when
(a)	 A = 0, B = 0, C = 0	 (b)  A = 0, B = 1, C = 1	 (c)  both answers (a) and (b)

	 4.	 The output of an OR gate with inputs A, B and C is 0 (LOW) when
(a)	 A = 0, B = 0, C = 0	 (b)  A = 0, B = 1, C = 1	 (c)  both answers (a) and (b)

	 5.	 A pulse is applied to each input of a 2-input NAND gate. One pulse goes HIGH at t = 0 and 
goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at 
t = 3 ms. The output pulse can be described as follows:
(a)	 It goes LOW at t = 0 and back HIGH at t = 3 ms.
(b)	 It goes LOW at t = 0.8 ms and back HIGH at t = 3 ms.
(c)	 It goes LOW at t = 0.8 ms and back HIGH at t = 1 ms.
(d)	 It goes LOW at t = 0.8 ms and back LOW at t = 1 ms.

	 6.	 A pulse is applied to each input of a 2-input NOR gate. One pulse goes HIGH at t = 0 and 
goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at 
t = 3 ms. The output pulse can be described as follows:
(a)	 It goes LOW at t = 0 and back HIGH at t = 3 ms.
(b)	 It goes LOW at t = 0.8 ms and back HIGH at t = 3 ms.
(c)	 It goes LOW at t = 0.8 ms and back HIGH at t = 1 ms.
(d)	 It goes HIGH at t = 0.8 ms and back LOW at t = 1 ms.

Answers are at the end of the chapter.

	 1.	 An inverter performs a NOT operation.

	 2.	 A NOT gate cannot have more than one input.

	 3.	 If any input to an OR gate is zero, the output is zero.

	 4.	 If all inputs to an AND gate are 1, the output is 0.

	 5.	 A NAND gate can be considered as an AND gate followed by a NOT gate.

	 6.	 A NOR gate can be considered as an OR gate followed by an inverter.

	 7.	 The output of an exclusive-OR is 0 if the inputs are opposite.

	 8.	 Two types of fixed-function logic integrated circuits are bipolar and NMOS.

	 9.	 Once programmed, PLD logic can be changed.

	10.	 Fan-out is the number of similar gates that a given gate can drive.
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	 7.	 A pulse is applied to each input of an exclusive-OR gate. One pulse goes HIGH at t = 0 and 
goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at 
t = 3 ms. The output pulse can be described as follows:
(a)	 It goes HIGH at t = 0 and back LOW at t = 3 ms.
(b)	 It goes HIGH at t = 0 and back LOW at t = 0.8 ms.
(c)	 It goes HIGH at t = 1 ms and back LOW at t = 3 ms.
(d)	 both answers (b) and (c)

	 8.	 A positive-going pulse is applied to an inverter. The time interval from the leading edge of the 
input to the leading edge of the output is 7 ns. This parameter is
(a)	 speed-power product	 (b)  propagation delay, tPHL
(c)	 propagation delay, tPLH	 (d)  pulse width

	 9.	 Most PLDs utilize an array of
(a)	 NOT gates
(b)	 NOR gates
(c)	 OR gates
(d)	 AND gates

	10.	 The rows and columns of the interconnection matrix in an SPLD are connected using
(a)	 fuses	 (b)  switches
(c)	 gates	 (d)  transistors

	11.	 An antifuse is formed using
(a)	 two insulators separated by a conductor	 (b)  two conductors separated by an insulator
(c)	 an insulator packed beside a conductor	 (d)  two conductors connected in a series

	12.	 An EPROM can be programmed using
(a)	 transistors	 (b)  diodes
(c)	 a multiprogrammer	 (d)  a device programmer

	13.	 Two ways to enter a logic design using PLD development software are
(a)	 text and numeric	 (b)  text and graphic
(c)	 graphic and coded	 (d)  compile and sort

	14.	 JTAG stands for
(a)	 Joint Test Action Group	 (b)  Java Top Array Group
(c)	 Joint Test Array Group	 (d)  Joint Time Analysis Group

	15.	 In-system programming of a PLD typically utilizes
(a)	 an embedded clock generator	 (b)  an embedded processor
(c)	 an embedded PROM	 (d)  both (a) and (b)
(e)	 both (b) and (c)

	16.	 To measure the period of a pulse waveform, you must use
(a)	 a DMM	 (b)  a logic probe
(c)	 an oscilloscope	 (d)  a logic pulser

	17.	 Once you measure the period of a pulse waveform, the frequency is found by
(a)	 using another setting	 (b)  measuring the duty cycle
(c)	 finding the reciprocal of the period	 (d)  using another type of instrument

Problems

Answers to odd-numbered problems are at the end of the book.

Section 3–1	The Inverter
	 1.	 The input waveform shown in Figure 3–76 is applied to a system of two inverters connected in 

a series. Draw the output waveform across each inverter in proper relation to the input.

HIGH

LOW
 VIN

fg03_07400

FIGURE 3–76 
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	 2.	 A combination of inverters is shown in Figure 3–77. If a LOW is applied to point A, determine 
the net output at points E and F.

A
B C D

E

F

fg03_07500

FIGURE 3–77 

	 3.	 If the waveform in Figure 3–76 is applied to point A in Figure 3–77, determine the waveforms 
at points B through F.

Section 3–2	The and Gate
	 4.	 Draw the rectangular outline symbol for a 3-input AND gate.

	 5.	 Determine the output, X, for a 2-input AND gate with the input waveforms shown in Figure 
3–78. Show the proper relationship of output to inputs with a timing diagram.

A

B
X

fg03_07600

FIGURE 3–78 

	 6.	 The waveforms in Figure 3–79 are applied to points A and B of a 2-input AND gate followed 
by an inverter. Draw the output waveform.

A

B

fg03_07700

FIGURE 3–79 

	 7.	 The input waveforms applied to a 3-input AND gate are as indicated in Figure 3–80. Show the 
output waveform in proper relation to the inputs with a timing diagram.

B
C

X

A

B

C

A

fg03_07800

FIGURE 3–80 

	 8.	 The input waveforms applied to a 4-input AND gate are as indicated in Figure 3–81. The 
output of the AND gate is fed to an inverter. Draw the net output waveform of this system.

B

D

X

A

C

fg03_07900

FIGURE 3–81 
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Section 3–3	The OR Gate
	 9.	 Draw the rectangular outline symbol for a 3-input OR gate.

	10.	 Write the expression for a 4-input OR gate with inputs A, B, C, D, and output X.

	11.	 Determine the output for a 2-input OR gate when the input waveforms are as in Figure 3–79 
and draw a timing diagram.

	12.	 Repeat Problem 7 for a 3-input OR gate.

	13.	 Repeat Problem 8 for a 4-input OR gate.

	14.	 For the waveforms given in Figure 3–82, A and B are ANDed with output F, D and E are ANDed 
with output G, and C, F, and G are ORed. Draw the net output waveform.

fg03_08000

A

B

C

D

E

FIGURE 3–82 

	15.	 Draw the rectangular outline symbol for a 4-input OR gate.

	16.	 Show the truth table for a system of a 3-input OR gate followed by an inverter.

Section 3–4	The NAND Gate
	17.	 For the set of input waveforms in Figure 3–83, determine the output for the gate shown and 

draw the timing diagram.

A

B
X

fg03_08100

FIGURE 3–83 

	18.	 Determine the gate output for the input waveforms in Figure 3–84 and draw the timing 
diagram.

A

B

C

A

C
X B

fg03_08200

FIGURE 3–84 

	19.	 Determine the output waveform in Figure 3–85.

B

D

A

C

A

B

C

 D

X 

fg03_08300

FIGURE 3–85 
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182	 Logic Gates

	20.	 As you have learned, the two logic symbols shown in Figure 3–86 represent equivalent 
operations. The difference between the two is strictly from a functional viewpoint. For the 
NAND symbol, look for two HIGHs on the inputs to give a LOW output. For the negative-
OR, look for at least one LOW on the inputs to give a HIGH on the output. Using these 
two functional viewpoints, show that each gate will produce the same output for the given 
inputs.

A

B

A

B
X 

A

B
X 

fg03_08400

FIGURE 3–86 

Section 3–5	The NOR Gate
	21.	 Repeat Problem 17 for a 2-input NOR gate.

	22.	 Determine the output waveform in Figure 3–87 and draw the timing diagram.

A

C

A

C
X BB

fg03_08500

FIGURE 3–87 

	23.	 Repeat Problem 19 for a 4-input NOR gate.

	24.	 The NAND and the negative-OR symbols represent equivalent operations, but they are func-
tionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a 
LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH 
output. Using these two functional points of view, show that both gates in Figure 3–88 will 
produce the same output for the given inputs.

A

B

A

B
X 

A

B
X 

fg03_08600

FIGURE 3–88 

Section 3–6	The Exclusive-OR and Exclusive-NOR Gates
	25.	 How does an exclusive-OR gate differ from an OR gate in its logical operation?

	26.	 Repeat Problem 17 for an exclusive-OR gate.

	27.	 Repeat Problem 17 for an exclusive-NOR gate.

	28.	 Determine the output of an exclusive-NOR gate for the inputs shown in Figure 3–79 and draw 
a timing diagram.
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Section 3–7	Programmable Logic
	29.	 In the simple programmed AND array with programmable links in Figure 3–89, determine the 

Boolean output expressions.

BBAA

X1

X2

X3

fg03_09100

FIGURE 3–89 

	30.	 Determine by row and column number which fusible links must be blown in the program-
mable AND array of Figure 3–90 to implement each of the following product terms: 
X1 = ABC, X2 = ABC, X3 = ABC.

BBAA

X1

CC

1 2 3 4 5 6

X2

X3

1

2

3

4

5

6

7

8

9

fg03_09200

FIGURE 3–90 

	31.	 Describe a 4-input AND gate using VHDL.

	32.	 Describe a 5-input NOR gate using VHDL.
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Section 3–8	Fixed-Function Logic Gates
	33.	 In the comparison of certain logic devices, it is noted that the power dissipation for one particular 

type increases as the frequency increases. Is the device bipolar or CMOS?

	34.	 Using the data sheets in Figures 3–65 and 3–66, determine the following:

(a)	 74LS00 power dissipation at maximum supply voltage and a 50% duty cycle
(b)	 Minimum HIGH level output voltage for a 74LS00
(c)	 Maximum propagation delay for a 74LS00
(d)	 Maximum LOW level output voltage for a 74HC00A
(e)	 Maximum propagation delay for a 74HC00A

	35.	 Determine tPLH and tPHL from the oscilloscope display in Figure 3–91. The readings indicate 
volts/div and sec/div for each channel.

Ch1 2 V

Input

Output

5 nsCh2 2 V

fg03_08700

FIGURE 3–91 

	36.	 Gate A has tPLH = tPHL = 6 ns. Gate B has tPLH = tPHL = 10 ns. Which gate can be operated 
at a higher frequency?

	37.	 If a logic gate operates on a dc supply voltage of 15 V and draws an average current of 4 mA, 
what is its power dissipation?

	38.	 The variable ICCH represents the dc supply current from VCC when all outputs of an IC are 
HIGH. The variable ICCL represents the dc supply current when all outputs are LOW. For a 
74LS00 IC, determine the typical power dissipation when all four gate outputs are HIGH.  
(See data sheet in Figure 3–66.)

Section 3–9	Troubleshooting
	39.	 Examine the conditions indicated in Figure 3–92, and identify the faulty gates.

(f)

0

(a)

0
1
1 1

1

0

(b)

1

(c)

0

0

(d)

0

0
0
0
1

0
1
0

(e)

0
1
1

fg03_08800

FIGURE 3–92 

	40.	 Determine the faulty gates in Figure 3–93 by analyzing the timing diagrams.

(a)

A

B

X

(b)

A

B

X

(c)

A

B

X

(d)

A

B

X

fg03_08900

FIGURE 3–93 
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	41.	 Using an oscilloscope, you make the observations indicated in Figure 3–94. For each observa-
tion determine the most likely gate failure.

GND

(b)

+VCC

InputHIGHHIGH

GND

+VCC

InputHIGH

GND

CC

HIGH

+V

Input

+VCC

Input
HIGH

GND

(a)

FIGURE 3–94 

	42.	 The seat belt alarm circuit in Figure 3–17 has malfunctioned. You find that when the ignition 
switch is turned on and the seat belt is unbuckled, the alarm comes on and will not go off. What 
is the most likely problem? How do you troubleshoot it?

	43.	 Every time the ignition switch is turned on in the circuit of Figure 3–17, the alarm comes on 
for thirty seconds, even when the seat belt is buckled. What is the most probable cause of this 
malfunction?

	44.	 What failure(s) would you suspect if the output of a 3-input NAND gate stays HIGH no matter 
what the inputs are?
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Special Design Problems
	45.	 Modify the frequency counter in Figure 3–16 to operate with an enable pulse that is active-

LOW rather than HIGH during the 1 ms interval.

	46.	 Assume that the enable signal in Figure 3–16 has the waveform shown in Figure 3–95. Assume 
that waveform B is also available. Devise a circuit that will produce an active-HIGH reset pulse 
to the counter only during the time that the enable signal is LOW.

Enable

B

fg03_09300

FIGURE 3–95 

	47.	 Design a circuit to fit in the beige block of Figure 3–96 that will cause the headlights of an 
automobile to be turned off automatically 15 s after the ignition switch is turned off, if the light 
switch is left on. Assume that a LOW is required to turn the lights off.

Ignition
switch

HIGH = On
LOW = Off

Light
switch

HIGH = On
LOW = Off

LOW turns off the lights.

Headlight
control

fg03_09400

FIGURE 3–96 

	48.	 Modify the logic circuit for the intrusion alarm in Figure 3–25 so that two additional rooms, 
each with two windows and one door, can be protected.

	49.	 Further modify the logic circuit from Problem 48 for a change in the input sensors where 
Open = LOW and Closed = HIGH.

	50.	 Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a 
vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is 
exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure 
or the temperature is excessive. Design a circuit for this application.

	51.	 In a certain automated manufacturing process, electrical components are automatically inserted 
in a PCB. Before the insertion tool is activated, the PCB must be properly positioned, and 
the component to be inserted must be in the chamber. Each of these prerequisite conditions is 
indicated by a HIGH voltage. The insertion tool requires a LOW voltage to activate it. Design a 
circuit to implement this process.

Multisim Troubleshooting Practice
	52.	 Open file P03-52. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

	53.	 Open file P03-53. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	54.	 Open file P03-54. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	55.	 Open file P03-55. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

Answers

Section Checkups
Section 3–1	The Inverter
	 1.	 When the inverter input is 1, the output is 0.

	 2.	 (a) 

ua03_00200

(b)	 A negative-going pulse is on the output (HIGH to LOW and back HIGH).
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Section 3–2	The AND Gate
	 1.	 An AND gate output is HIGH only when all inputs are HIGH.

	 2.	 An AND gate output is LOW when one or more inputs are LOW.

	 3.	 Five-input AND: X = 1 when ABCDE = 11111, and X = 0 for all other combinations of 
ABCDE.

Section 3–3	The OR Gate
	 1.	 An OR gate output is HIGH when one or more inputs are HIGH.

	 2.	 An OR gate output is LOW only when all inputs are LOW.

	 3.	 Three-input OR: X = 0 when ABC = 000, and X = 1 for all other combinations of ABC.

Section 3–4	The NAND Gate
	 1.	 A NAND gate output is LOW only when all inputs are HIGH.

	 2.	 A NAND gate output is HIGH when one or more inputs are LOW.

	 3.	 NAND: active-LOW output for all HIGH inputs; negative-OR: active-HIGH output for one or 
more LOW inputs. They have the same truth tables.

	 4.	 X = ABC

Section 3–5	The NOR Gate
	 1.	 A NOR gate output is HIGH only when all inputs are LOW.

	 2.	 A NOR gate output is LOW when one or more inputs are HIGH.

	 3.	 NOR: active-LOW output for one or more HIGH inputs; negative-AND: active-HIGH output 
for all LOW inputs. They have the same truth tables.

	 4.	 X = A + B + C

Section 3–6	The Exclusive-OR and Exclusive-NOR Gates
	 1.	 An XOR gate output is HIGH when the inputs are at opposite levels.

	 2.	 An XNOR gate output is HIGH when the inputs are at the same levels.

	 3.	 Apply the bits to the XOR gate inputs; when the output is HIGH, the bits are different.

Section 3–7	Programmable Logic
	 1.	 Fuse, antifuse, EPROM, EEPROM, flash, and SRAM

	 2.	 Volatile means that all the data are lost when power is off and the PLD must be reprogrammed; 
SRAM-based

	 3.	 Text entry and graphic entry

	 4.	 JTAG is Joint Test Action Group; the IEEE Std. 1149.1 for programming and test interfacing.

	 5.	 entity NORgate is
		 port (A, B, C: in bit; X: out bit);

		  end entity NORgate;
		  architecture NORfunction of NORgate is 

begin
		 X <=  A nor B nor C;

		  end architecture NORfunction;

	 6.	 entity XORgate is
		 port (A, B: in bit; X: out bit);

		  end entity XORgate;
		  architecture XORfunction of XORgate is 

begin
		 X <=  A xor B;

		  end architecture XORfunction;

Section 3–8	Fixed-Function Logic Gates
	 1.	 Fixed-function logic cannot be changed. PLDs can be programmed for any logic function.

	 2.	 CMOS and bipolar (TTL)
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	 3.	 (a)	 LS—Low-power Schottky

(b)	 HC—High-speed CMOS

(c)	 HCT—HC CMOS TTL compatible

	 4.	 Lowest power—CMOS

	 5.	 Six inverters in a package; four 2-input NAND gates in a package

	 6.	 tPLH = 10 ns; tPHL = 8 ns

	 7.	 18 pJ

	 8.	 ICCL—dc supply current for LOW output state; ICCH—dc supply current for HIGH output state

	 9.	 VIL—LOW input voltage; VIH—HIGH input voltage

	10.	 VOL—LOW output voltage; VOH—HIGH output voltage

Section 3–9	Troubleshooting
	 1.	 Opens and shorts are the most common failures.

	 2.	 An open input which effectively makes input HIGH

	 3.	 Amplitude and period

Related Problems for Examples
	3–1	 The timing diagram is not affected.

	3–2	 See Table 3–15.

TABLE 3–15

Inputs Output Inputs Output

ABCD X ABCD X

0000 0 1000 0
0001 0 1001 0
0010 0 1010 0
0011 0 1011 0
0100 0 1100 0
0101 0 1101 0
0110 0 1110 0
0111 0 1111 1

	3–3	 See Figure 3–97.

A

B

X

fg03_09500

FIGURE 3–97

	3–4	 The output waveform is the same as input A.

	3–5	 See Figure 3–98.

	3–6	 Results are the same as example.

	3–7	 See Figure 3–99.

A

B

C

X

C = HIGH

fg03_09600

FIGURE 3–98

A

B

X

fg03_09700

FIGURE 3–99
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	3–8	 See Figure 3–100.

	3–9	 See Figure 3–101.

A

B

X

fg03_09800

FIGURE 3–100

A

B

C

X

C = LOW

fg03_09900

FIGURE 3–101

	3–10	 See Figure 3–102.

	3–11	 See Figure 3–103.

A

B

X

fg03_10000

FIGURE 3–102

A

B

X

C

fg03_10100

FIGURE 3–103

	3–12	 Use a 3-input NAND gate.

	3–13	 Use a 4-input NAND gate operating as a negative-OR gate.

	3–14	 See Figure 3–104.

A

B

C

D

X

fg03_10200

FIGURE 3–104

	3–15	 See Figure 3–105.

	3–16	 See Figure 3–106.

A

B

X

fg03_10300

FIGURE 3–105

A

B

C

X

fg03_10400

FIGURE 3–106
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	3–17	 Use a 2-input NOR gate.

	3–18	 A 3-input NAND gate.

	3–19	 The output is always LOW. The output is a straight line.

	3–20	 The exclusive-OR gate will not detect simultaneous failures if both circuits produce the 
same outputs.

	3–21	 The outputs are unaffected.

	3–22	 6 columns, 9 rows, and 3 AND gates with three inputs each

	3–23	 The gate with 4 ns tPLH and tPHL can operate at the highest frequency.

	3–24	 10 mW

	3–25	 The gate output or pin 13 input is internally open.

	3–26	 The display will show an erratic readout because the counter continues until reset.

	3–27	 The enable pulse is too short or the counter is reset too soon.

True/False Quiz
	 1.	 T    2.  T    3.  F    4.  F      5.  T

	 6.	 T    7.  F    8.  F    9.  T    10.  T

Self-Test
	 1.	 (c)    2.  (d)    3.  (c)    4.  (a)    5.  (c)    6.  (a)    7.  (d)    8.  (b)    9.  (d)

	10.	 (a)    11.  (b)    12.  (d)    13.  (b)    14.  (a)    15.  (d)    16.  (c)    17.  (c)
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Chapter Objectives

■	 Apply the basic laws and rules of Boolean algebra

■	 Apply DeMorgan’s theorems to Boolean expressions

■	 Describe gate combinations with Boolean 
expressions

■	 Evaluate Boolean expressions

■	 Simplify expressions by using the laws and rules of 
Boolean algebra

■	 Convert any Boolean expression into a sum-
of-products (SOP) form

■	 Convert any Boolean expression into a product 
of-sums (POS) form

■	 Relate a Boolean expression to a truth table

■	 Use a Karnaugh map to simplify Boolean expressions

■	 Use a Karnaugh map to simplify truth table functions

■	 Utilize “don’t care” conditions to simplify logic functions

■	 Use the Quine-McCluskey method to simplify 
Boolean expressions

■	 Write a VHDL program for simple logic

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

In 1854, George Boole published a work titled An 
Investigation of the Laws of Thought, on Which Are 
Founded the Mathematical Theories of Logic and 
Probabilities. It was in this publication that a “logi-
cal algebra,” known today as Boolean algebra, was 
formulated. Boolean algebra is a convenient and 
systematic way of expressing and analyzing the 
operation of logic circuits. Claude Shannon was 
the first to apply Boole’s work to the analysis and 
design of logic circuits. In 1938, Shannon wrote a 
thesis at MIT titled A Symbolic Analysis of Relay 
and Switching Circuits.

This chapter covers the laws, rules, and theorems 
of Boolean algebra and their application to digital cir-
cuits. You will learn how to define a given circuit with 
a Boolean expression and then evaluate its operation. 
You will also learn how to simplify logic circuits using 
the methods of Boolean algebra, Karnaugh maps, 
and the Quine-McCluskey method.

Boolean expressions using the hardware descrip-
tion language VHDL are also covered.

■	 Variable

■	 Complement

■	 Sum term

■	 Product term

■	 Sum-of-products (SOP)

■	 Product-of-sums 
(POS)

■	 Karnaugh map

■	 Minimization

■	 “Don’t care”

■	 Apply Boolean algebra and the Karnaugh map 
method in an application

Key Terms

Key terms are in order of appearance in the chapter.

Boolean Algebra and 
Logic Simplification

 4CHAPTER
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192	 Boolean Algebra and Logic Simplification

4–1  Boolean Operations and Expressions

Boolean algebra is the mathematics of digital logic. A basic knowledge of Boolean algebra 
is indispensable to the study and analysis of logic circuits. In the last chapter, Boolean 
operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and 
NOR gates were introduced.

After completing this section, you should be able to

u	 Define variable

u	 Define literal

u	 Identify a sum term

u	 Evaluate a sum term

u	 Identify a product term

u	 Evaluate a product term

u	 Explain Boolean addition

u	 Explain Boolean multiplication

Variable, complement, and literal are terms used in Boolean algebra. A variable is a sym-
bol (usually an italic uppercase letter or word) used to represent an action, a condition, or 
data. Any single variable can have only a 1 or a 0 value. The complement is the inverse of a 
variable and is indicated by a bar over the variable (overbar). For example, the complement 
of the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The complement of the 
variable A is read as “not A” or “A bar.” Sometimes a prime symbol rather than an overbar is 
used to denote the complement of a variable; for example, B indicates the complement of B. 
In this book, only the overbar is used. A literal is a variable or the complement of a variable.

Boolean Addition

Recall from Chapter 3 that Boolean addition is equivalent to the OR operation. The basic 
rules are illustrated with their relation to the OR gate in Figure 4–1.

InfoNote

In a microprocessor, the 
arithmetic logic unit (ALU) 
performs arithmetic and Boolean 
logic operations on digital 
data as directed by program 
instructions. Logical operations 
are equivalent to the basic gate 
operations that you are familiar 
with but deal with a minimum 
of 8 bits at a time. Examples 
of Boolean logic instructions 
are AND, OR, NOT, and XOR, 
which are called mnemonics. 
An assembly language program 
uses the mnemonics to specify 
an operation. Another program 
called an assembler translates the 
mnemonics into a binary code 
that can be understood by the 
microprocessor.

 0 + 0 = 0  0 + 1 = 1 1 + 0 = 1 1 + 1 = 1

ua04_00100

FIGURE 4–1 

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is pro-
duced by an OR operation with no AND operations involved. Some examples of sum terms 
are A + B, A + B, A + B + C, and A + B + C + D.

A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term 
is equal to 0 only if each of the literals is 0.

The OR operation is the Boolean 
equivalent of addition.

EXAMPLE 4–1

Determine the values of A, B, C, and D that make the sum term A + B + C + D equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0, 
B = 1 so that B = 0, C = 0, and D = 1 so that D = 0.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0
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Related Problem*

Determine the values of A and B that make the sum term A + B equal to 0.

*Answers are at the end of the chapter.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND operation. 
The basic rules are illustrated with their relation to the AND gate in Figure 4–2.

The AND operation is the Boolean 
equivalent of multiplication.

 0 • 0 = 0  0 • 1 = 0 1 • 0 = 0  1 • 1 = 1

ua04_00200

FIGURE 4–2 

In Boolean algebra, a product term is the product of literals. In logic circuits, a product 
term is produced by an AND operation with no OR operations involved. Some examples of 
product terms are AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product term 
is equal to 0 when one or more of the literals are 0.

EXAMPLE 4–2

Determine the values of A, B, C, and D that make the product term ABCD equal to 1.

Solution

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1, 
B = 0 so that B = 1, C = 1, and D = 0 so that D = 1.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

Related Problem

Determine the values of A and B that make the product term A B equal to 1.

Section 4–1  Checkup

Answers are at the end of the chapter.

	 1.	 If A = 0, what does A equal?

	 2.	Determine the values of A, B, and C that make the sum term A + B + C equal to 0.

	 3.	Determine the values of A, B, and C that make the product term ABC equal to 1.

4–2  Laws and Rules of Boolean Algebra

As in other areas of mathematics, there are certain well-developed rules and laws that must 
be followed in order to properly apply Boolean algebra. The most important of these are 
presented in this section.

After completing this section, you should be able to

u	 Apply the commutative laws of addition and multiplication

u	 Apply the associative laws of addition and multiplication

u	 Apply the distributive law

u	 Apply twelve basic rules of Boolean algebra
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194	 Boolean Algebra and Logic Simplification

Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and multiplication, 
the associative laws for addition and multiplication, and the distributive law—are the same 
as in ordinary algebra. Each of the laws is illustrated with two or three variables, but the 
number of variables is not limited to this.

Commutative Laws

The commutative law of addition for two variables is written as

	 A � B � B � A	 Equation 4–1

This law states that the order in which the variables are ORed makes no difference. Remember, 
in Boolean algebra as applied to logic circuits, addition and the OR operation are the same. 
Figure 4–3 illustrates the commutative law as applied to the OR gate and shows that it doesn’t 
matter to which input each variable is applied. (The symbol K means “equivalent to.”)

A

B
 B + A

B
 A + B

A

fg04_00100

FIGURE 4–3  Application of commutative law of addition.

The commutative law of multiplication for two variables is

	 AB � BA	 Equation 4–2

This law states that the order in which the variables are ANDed makes no difference. 
Figure 4–4 illustrates this law as applied to the AND gate. Remember, in Boolean algebra 
as applied to logic circuits, multiplication and the AND function are the same.

A

B
BA

B
AB

A

fg04_00200

FIGURE 4–4  Application of commutative law of multiplication.

Associative Laws

The associative law of addition is written as follows for three variables:

	 A � (B � C) � (A � B) � C	 Equation 4–3

This law states that when ORing more than two variables, the result is the same regardless of 
the grouping of the variables. Figure 4–5 illustrates this law as applied to 2-input OR gates.

B + C
B

C

A + (B + C)
A

A + B
B

C
(A + B) + C

A

fg04_00300

FIGURE 4–5  Application of associative law of addition. Open file F04-05 to verify. 
A Multisim tutorial is available on the website.

The associative law of multiplication is written as follows for three variables:

	 A(BC) � (AB)C	 Equation 4–4

This law states that it makes no difference in what order the variables are grouped when AND-
ing more than two variables. Figure 4–6 illustrates this law as applied to 2-input AND gates.
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Distributive Law

The distributive law is written for three variables as follows:

	 A(B � C) � AB � AC	 Equation 4–5

This law states that ORing two or more variables and then ANDing the result with a single 
variable is equivalent to ANDing the single variable with each of the two or more variables 
and then ORing the products. The distributive law also expresses the process of factoring in 
which the common variable A is factored out of the product terms, for example, AB + AC =

A(B + C). Figure 4–7 illustrates the distributive law in terms of gate implementation.

BC
B

C

A(BC)
A

AB
B

C
(AB)C

A

fg04_00400

FIGURE 4–6  Application of associative law of multiplication. Open file F04-06 to verify.

B + C
C

A
X

B

 X = A(B + C)

AB
B

X

A

C

A
AC

 X = AB + AC

fg04_00500

FIGURE 4–7  Application of distributive law. Open file F04-07 to verify.

Rules of Boolean Algebra

Table 4–1 lists 12 basic rules that are useful in manipulating and simplifying Boolean 
expressions. Rules 1 through 9 will be viewed in terms of their application to logic gates. 
Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously 
discussed.

TABLE 4–1

Basic rules of Boolean algebra.

1.  A + 0 = A   7.  A # A = A
2.  A + 1 = 1   8.  A # A = 0

3.  A # 0 = 0   9.  A = A
4.  A # 1 = A 10.  A + AB = A
5.  A + A = A 11.  A + AB = A + B
6.  A + A = 1 12.  (A + B)(A + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.

Rule 1: A 1 0 5 A    A variable ORed with 0 is always equal to the variable. If the input 
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which 
is also equal to A. This rule is illustrated in Figure 4–8, where the lower input is fixed at 0.

 X = A + 0 = A

X = 0
 A = 0

 0
X = 1

 A = 1

 0

fg04_00600

FIGURE 4–8 
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196	 Boolean Algebra and Logic Simplification

Rule 2: A 1 1 5 1    A variable ORed with 1 is always equal to 1. A 1 on an input to an 
OR gate produces a 1 on the output, regardless of the value of the variable on the other 
input. This rule is illustrated in Figure 4–9, where the lower input is fixed at 1.

 X = A + 1 = 1

X = 1
 A = 0

 1
X = 1

 A = 1

 1

fg04_00700

FIGURE 4–9 

 X = A • 0 = 0

X = 0
 A = 1

 0
X = 0

 A = 0

 0

fg04_00800

FIGURE 4–10 

Rule 3: A ~ 0 5 0    A variable ANDed with 0 is always equal to 0. Any time one input to 
an AND gate is 0, the output is 0, regardless of the value of the variable on the other input. 
This rule is illustrated in Figure 4–10, where the lower input is fixed at 0.

Rule 4: A ~ 1 5 A    A variable ANDed with 1 is always equal to the variable. If A is 0, the 
output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs 
are now 1s. This rule is shown in Figure 4–11, where the lower input is fixed at 1.

 X = A • 1 = A

X = 0
 A = 0

 1
X = 1

 A = 1

 1

fg04_00900

FIGURE 4–11 

Rule 5: A 1 A 5 A    A variable ORed with itself is always equal to the variable. If A is 0, 
then 0 + 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Figure 4–12, where both 
inputs are the same variable.

 X = A + A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

fg04_01000

FIGURE 4–12 

Rule 6: A 1 A
–
 5 1    A variable ORed with its complement is always equal to 1. If A is 

0, then 0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. See Figure 4–13, where 
one input is the complement of the other.

 X = A + A = 1

X = 1
 A = 1

 A = 0
X = 1

 A = 0

 A = 1

fg04_01100

FIGURE 4–13 
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Rule 7: A ~ A 5 A    A variable ANDed with itself is always equal to the variable. If 
A = 0, then 0 #0 = 0; and if A = 1, then 1 #1 = 1. Figure 4–14 illustrates this rule.

 X = A • A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

fg04_01200

FIGURE 4–14 

Rule 8: A ~ A
–
 5 0    A variable ANDed with its complement is always equal to 0. Either A 

or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will 
be 0 also. Figure 4–15 illustrates this rule.

 A = 1
A = 0

A = 1 A = 0
A = 1

A = 0

A = A

fg04_01400

FIGURE 4–16 

X = 0
 A = 1

 A = 0
X = 0

 A = 0

 A = 1

 X = A • A = 0

fg04_01300

FIGURE 4–15 

Rule 9: A
––
 5 A    The double complement of a variable is always equal to the variable. If 

you start with the variable A and complement (invert) it once, you get A. If you then take 
A and complement (invert) it, you get A, which is the original variable. This rule is shown 
in Figure 4–16 using inverters.

Rule 10: A 1 AB 5 A    This rule can be proved by applying the distributive law, rule 2, 
and rule 4 as follows:

 A + AB = A # 1 + AB = A(1 + B)  Factoring (distributive law)

 = A # 1  Rule 2: (1 + B) = 1

 = A  Rule 4: A # 1 = A

The proof is shown in Table 4–2, which shows the truth table and the resulting logic circuit 
simplification.

B

A

A
straight connection

A

0

0

1

1

B

0

1

0

1

AB

0

0

0

1

A � AB

0

0

1

1

equal

tb04_00200

TABLE 4–2

Rule 10: A + AB = A. Open file T04-02 to verify.
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198	 Boolean Algebra and Logic Simplification

Rule 11: A 1 A
–
B 5 A 1 B    This rule can be proved as follows:

 A + AB = (A + AB) + AB  Rule 10: A = A + AB

 = (AA + AB) + AB  Rule 7: A = AA

 = AA + AB + AA + AB  Rule 8: adding AA = 0

 = (A + A)(A + B)  Factoring

 = 1 # (A + B)  Rule 6: A + A = 1

 = A + B  Rule 4: drop the 1

The proof is shown in Table 4–3, which shows the truth table and the resulting logic 
circuit simplification.

Rule 12: (A 1 B)(A 1 C) 5 A 1 BC    This rule can be proved as follows:

 (A + B)(A + C) = AA + AC + AB + BC  Distributive law

 = A + AC + AB + BC  Rule 7: AA = A

 = A(1 + C) + AB + BC  Factoring (distributive law)

 = A # 1 + AB + BC  Rule 2: 1 + C = 1

 = A(1 + B) + BC  Factoring (distributive law)

 = A # 1 + BC  Rule 2: 1 + B = 1

 = A + BC  Rule 4: A # 1 = A

The proof is shown in Table 4–4, which shows the truth table and the resulting logic circuit 
simplification.

B

A

A

B

A

0

0

1

1

B

0

1

0

1

A + B

0

1

1

1

equal

AB

0

1

0

0

A + AB

0

1

1

1

tb04_00300

TABLE 4–3

Rule 11: A + AB = A + B. Open file T04-03 to verify.

B
A

C

C
B
A

equal

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

tb04_00400

A B C (A + B)(A + C)A + B A + C BC A + BC

TABLE 4–4

Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify.
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Section 4–2  Checkup

	 1.	Apply the associative law of addition to the expression A + (B + C + D).

	 2.	Apply the distributive law to the expression A(B + C + D).

4–3  DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important 
part of Boolean algebra. In practical terms, DeMorgan’s theorems provide mathematical 
verification of the equivalency of the NAND and negative-OR gates and the equivalency of 
the NOR and negative-AND gates, which were discussed in Chapter 3.

After completing this section, you should be able to

u	 State DeMorgan’s theorems

u	 Relate DeMorgan’s theorems to the equivalency of the NAND and negative-OR 
gates and to the equivalency of the NOR and negative-AND gates

u	 Apply DeMorgan’s theorems to the simplification of Boolean expressions

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements 
of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the 
complements of the individual variables.

The formula for expressing this theorem for two variables is

	 XY � X � Y	 Equation 4–6

DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements 
of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the 
complements of the individual variables.

The formula for expressing this theorem for two variables is

	 X � Y � X Y	 Equation 4–7

Figure 4–17 shows the gate equivalencies and truth tables for Equations 4–6 
and 4–7.

As stated, DeMorgan’s theorems also apply to expressions in which there are more than 
two variables. The following examples illustrate the application of DeMorgan’s theorems 
to 3-variable and 4-variable expressions.

To apply DeMorgan’s theorem, break 
the bar over the product of variables 
and change the sign from AND to 
OR.
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200	 Boolean Algebra and Logic Simplification

Each variable in DeMorgan’s theorems as stated in Equations 4–6 and 4–7 can also repre-
sent a combination of other variables. For example, X can be equal to the term AB + C, and Y 
can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two variables 
as stated by XY = X + Y to the expression (AB + C)(A + BC), you get the following result:

(AB + C)(A + BC) = (AB + C) + (A + BC)

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of 
which you can again apply DeMorgan’s theorem X + Y = X Y  individually, as follows:

(AB + C) + (A + BC) = (AB)C + A(BC)

fg04_01500

X + Y
X

Y
XY

X

Y

NAND Negative-OR

XY
X

Y
X + Y

X

Y

NOR Negative-AND

Output

XY X + Y

0

0

1

1

0

1

0

1

1

1

1

0

1

1

1

0

Inputs

X Y

0

0

1

1

0

1

0

1

Output

X YX + Y

1

0

0

0

1

0

0

0

Inputs

X Y

FIGURE 4–17  Gate equivalencies and the corresponding truth tables that illustrate 
DeMorgan’s theorems. Notice the equality of the two output columns in each table. This 
shows that the equivalent gates perform the same logic function.

EXAMPLE 4–3

Apply DeMorgan’s theorems to the expressions XYZ and X + Y + Z.

Solution

 XYZ = X + Y + Z

 X + Y + Z = X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression X + Y + Z.

EXAMPLE 4–4

Apply DeMorgan’s theorems to the expressions WXYZ and W + X + Y + Z.

Solution

 WXYZ = W + X + Y + Z

 W + X + Y + Z = W X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression W X Y Z.
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Notice that you still have two terms in the expression to which DeMorgan’s theorem can 
again be applied. These terms are AB and BC. A final application of DeMorgan’s theorem 
gives the following result:

(AB)C + A(BC) = (A + B)C + A(B + C)

Although this result can be simplified further by the use of Boolean rules and laws, 
DeMorgan’s theorems cannot be used any more.

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean 
algebra to the specific expression

A + BC + D(E + F)

Step 1:	 Identify the terms to which you can apply DeMorgan’s theorems, and think of 

each term as a single variable. Let A + BC = X and D(E + F) = Y.

Step 2:	 Since X + Y = X Y,

(A + BC) + (D(E + F)) = (A + BC)(D(E + F))

Step 3:	 Use rule 9 (A = A) to cancel the double bars over the left term (this is not part 
of DeMorgan’s theorem).

(A + BC)(D(E + F)) = (A + BC)(D(E + F))

Step 4:	 Apply DeMorgan’s theorem to the second term.

(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Step 5:	 Use rule 9 (A = A) to cancel the double bars over the E + F part of the term.

(A + BC)(D + E + F) = (A + BC)(D + E + F)

The following three examples will further illustrate how to use DeMorgan’s theorems.

EXAMPLE 4–5

Apply DeMorgan’s theorems to each of the following expressions:

(a)	 (A + B + C)D

(b)	 ABC + DEF

(c)	 AB + CD + EF

Solution

(a)	 Let A + B + C = X and D = Y. The expression (A + B + C)D is of the form 
XY = X + Y  and can be rewritten as

(A + B + C)D = A + B + C + D

	 Next, apply DeMorgan’s theorem to the term A + B + C.

A + B + C + D = A B C + D

(b)	 Let ABC = X and DEF = Y. The expression ABC + DEF is of the form 
X + Y = X Y  and can be rewritten as

ABC + DEF = (ABC)(DEF)

	 Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.

(ABC)(DEF) = (A + B + C)(D + E + F)
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(c)	 Let AB = X, CD = Y, and EF = Z. The expression AB + CD + EF is of the 
form X + Y + Z = X Y Z and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)

	 Next, apply DeMorgan’s theorem to each of the terms AB, CD, and EF.

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Related Problem

Apply DeMorgan’s theorems to the expression ABC + D + E.

EXAMPLE 4–6

Apply DeMorgan’s theorems to each expression:

(a)	 (A + B) + C

(b)	 (A + B) + CD

(c)	 (A + B)C D + E + F

Solution

(a)	 (A + B) + C = (A + B)C = (A + B)C

(b)	 (A + B) + CD = (A + B)CD = (A B)(C + D) = AB(C + D)

(c)	 (A + B)C D + E + F = ((A + B)C D)(E + F) = (A B + C + D)EF

Related Problem

Apply DeMorgan’s theorems to the expression AB(C + D) + E.

EXAMPLE 4–7

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting 
point, use DeMorgan’s theorems and any other rules or laws that are applicable to 
develop an expression for the exclusive-NOR gate.

Solution

Start by complementing the exclusive-OR expression and then applying DeMorgan’s 
theorems as follows:

AB + AB = (AB)(AB) = (A + B)(A + B) = (A + B)(A + B)

Next, apply the distributive law and rule 8 (A # A = 0).

(A + B)(A + B) = AA + A B + AB + BB = A B + AB

The final expression for the XNOR is A B + AB. Note that this expression equals 1 any 
time both variables are 0s or both variables are 1s.

Related Problem

Starting with the expression for a 4-input NAND gate, use DeMorgan’s theorems to 
develop an expression for a 4-input negative-OR gate.
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Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that 
shows the output for all possible values of the input variables can be developed. The proce-
dure requires that you evaluate the Boolean expression for all possible combinations of values 
for the input variables. In the case of the circuit in Figure 4–18, there are four input variables 
(A, B, C, and D) and therefore sixteen (24

= 16) combinations of values are possible.

Evaluating the Expression

To evaluate the expression A(B + CD), first find the values of the variables that make the 
expression equal to 1, using the rules for Boolean addition and multiplication. In this case, 
the expression equals 1 only if A = 1 and B + CD = 1 because

A(B + CD) = 1 # 1 = 1

Section 4–3  Checkup

	 1.	Apply DeMorgan’s theorems to the following expressions:

(a)  ABC + (D + E)    (b)  (A + B)C    (c)  A + B + C + DE

4–4  Boolean Analysis of Logic Circuits

Boolean algebra provides a concise way to express the operation of a logic circuit formed 
by a combination of logic gates so that the output can be determined for various combina-
tions of input values.

After completing this section, you should be able to

u	 Determine the Boolean expression for a combination of gates

u	 Evaluate the logic operation of a circuit from the Boolean expression

u	 Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left-most 
inputs and work toward the final output, writing the expression for each gate. For the example 
circuit in Figure 4–18, the Boolean expression is determined in the following three steps:

	 1.	 The expression for the left-most AND gate with inputs C and D is CD.

	 2.	 The output of the left-most AND gate is one of the inputs to the OR gate and B is the 
other input. Therefore, the expression for the OR gate is B + CD.

	 3.	 The output of the OR gate is one of the inputs to the right-most AND gate and A is the 
other input. Therefore, the expression for this AND gate is A(B + CD), which is the 
final output expression for the entire circuit.

A combinational logic circuit can be 
described by a Boolean equation.

CD
D

B
B + CD

C

A
A(B + CD)

fg04_01600

FIGURE 4–18  A combinational logic circuit showing the development of the Boolean 
expression for the output.

A combinational logic circuit can be 
described by a truth table.
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Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1 
or CD = 1 or if both B and CD equal 1 because

 B + CD = 1 + 0 = 1

 B + CD = 0 + 1 = 1

 B + CD = 1 + 1 = 1

The term CD = 1 only if C = 1 and D = 1.
To summarize, the expression A(B + CD) = 1 when A = 1 and B = 1 regardless of 

the values of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of B. 
The expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table Format

The first step is to list the sixteen input variable combinations of 1s and 0s in a binary 
sequence as shown in Table 4–5. Next, place a 1 in the output column for each combination 
of input variables that was determined in the evaluation. Finally, place a 0 in the output 
column for all other combinations of input variables. These results are shown in the truth 
table in Table 4–5.

TABLE 4–5

Truth table for the logic circuit in Figure 4–18.

Inputs Output

A B C D A(B � CD)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

EXAMPLE 4–8

Use Multisim to generate the truth table for the logic circuit in Figure 4–18.

Solution

Construct the circuit in Multisim and connect the Multisim Logic Converter to the inputs and output, as shown in Figure 4–19. 
Click on the 

ua04_00300

 conversion bar, and the truth table appears in the display as shown.
You can also generate the simplified Boolean expression from the truth table by clicking on 

ua04_00400

.
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Section 4–4  Checkup

	 1.	Replace the AND gates with OR gates and the OR gate with an AND gate in Figure 4–18. 
Determine the Boolean expression for the output.

	 2.	Construct a truth table for the circuit in Question 1.

4–5  Logic Simplification Using Boolean Algebra

A logic expression can be reduced to its simplest form or changed to a more convenient form 
to implement the expression most efficiently using Boolean algebra. The approach taken in 
this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and 
simplify an expression. This method depends on a thorough knowledge of Boolean algebra 
and considerable practice in its application, not to mention a little ingenuity and cleverness.

After completing this section, you should be able to

u	 Apply the laws, rules, and theorems of Boolean algebra to simplify general 
expressions

A simplified Boolean expression uses the fewest gates possible to implement a given 
expression. Examples 4–9 through 4–12 illustrate Boolean simplification.

 

Truth table

Boolean expression

fg04_01700

FIGURE 4–19 

Related Problem

Open Multisim. Create the setup and do the conversions shown in this example.

EXAMPLE 4–9

Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C)
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Solution

The following is not necessarily the only approach.

Step 1:	 Apply the distributive law to the second and third terms in the expression, as 
follows:

AB + AB + AC + BB + BC

Step 2:	 Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC

Step 3:	 Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4:	 Apply rule 10 (B + BC = B) to the last two terms.

AB + AC + B

Step 5:	 Apply rule 10 (AB + B = B) to the first and third terms.

B + AC

At this point the expression is simplified as much as possible. Once you gain experience 
in applying Boolean algebra, you can often combine many individual steps.

Related Problem

Simplify the Boolean expression AB + A(B + C) + B(B + C).

Figure 4–20 shows that the simplification process in Example 4–9 has significantly 
reduced the number of logic gates required to implement the expression. Part (a) shows that 
five gates are required to implement the expression in its original form; however, only two 
gates are needed for the simplified expression, shown in part (b). It is important to realize 
that these two gate circuits are equivalent. That is, for any combination of levels on the A, 
B, and C inputs, you get the same output from either circuit.

Simplification means fewer gates for 
the same function.

B

C

A

AB + A(B + C) + B(B + C)

C

B + AC

A

B

(a) (b)
These two circuits are equivalent.

fg04_01800

FIGURE 4–20  Gate circuits for Example 4–9. Open file F04-20 to verify equivalency.

EXAMPLE 4–10

Simplify the following Boolean expression:

[AB(C + BD) + A B]C

Note that brackets and parentheses mean the same thing: the term inside is multiplied 
(ANDed) with the term outside.
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Solution

Step 1:	 Apply the distributive law to the terms within the brackets.

(ABC + ABBD + A B)C

Step 2:	 Apply rule 8 (BB = 0) to the second term within the parentheses.

(ABC + A # 0 # D + A B)C

Step 3:	 Apply rule 3 (A # 0 # D = 0) to the second term within the parentheses.

(ABC + 0 + A B)C

Step 4:	 Apply rule 1 (drop the 0) within the parentheses.

(ABC + A B)C

Step 5:	 Apply the distributive law.

ABCC + A BC

Step 6:	 Apply rule 7 (CC = C) to the first term.

ABC + A BC

Step 7:	 Factor out BC.

BC(A + A)

Step 8:	 Apply rule 6 (A + A = 1).

BC # 1

Step 9:	 Apply rule 4 (drop the 1).

BC

Related Problem

Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4–11

Simplify the following Boolean expression:

ABC + AB C + A B C + ABC + ABC

Solution

Step 1:	 Factor BC out of the first and last terms.

BC(A + A) + AB C + A B C + ABC

Step 2:	 Apply rule 6 (A + A = 1) to the term in parentheses, and factor AB from the 
second and last terms.

BC # 1 + AB(C + C) + A B C

Step 3:	 Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term 
in parentheses.

BC + AB # 1 + A B C

Step 4:	 Apply rule 4 (drop the 1) to the second term.

BC + AB + A B C
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Step 5:	 Factor B from the second and third terms.

BC + B(A + A C)

Step 6:	 Apply rule 11 (A + A C = A + C) to the term in parentheses.

BC + B(A + C)

Step 7:	 Use the distributive and commutative laws to get the following expression:

BC + AB + B C

Related Problem

Simplify the Boolean expression ABC + A BC + ABC + A B C.

EXAMPLE 4–12

Simplify the following Boolean expression:

AB + AC + A BC

Solution

Step 1:	 Apply DeMorgan’s theorem to the first term.

(AB)(AC) + A BC

Step 2:	 Apply DeMorgan’s theorem to each term in parentheses.

(A + B)(A + C) + A BC

Step 3:	 Apply the distributive law to the two terms in parentheses.

A A + A C + A B + B C + A BC

Step 4:	 Apply rule 7 (A A = A) to the first term, and apply rule 10 
[A B + A BC = A B(1 + C) = A B] to the third and last terms.

A + A C + A B + B C

Step 5:	 Apply rule 10 [A + A C = A(1 + C) = A] to the first and second terms.

A + A B + B C

Step 6:	 Apply rule 10 [A + A B = A(1 + B) = A] to the first and second terms.

A + B C

Related Problem

Simplify the Boolean expression AB + AC + A B C.

EXAMPLE 4–13

Use Multisim to perform the logic simplification shown in Figure 4–20.

Solution

Step 1:	 Connect the Multisim Logic Converter to the circuit as shown in Figure 4–21.

Step 2:	 Generate the truth table by clicking on 

ua04_00500

.

Step 3:	 Generate the simplified Boolean expression by clicking on 

ua04_00600

.

Step 4:	 Generate the simplified logic circuit by clicking on 

ua04_00700

.
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Section 4–5  Checkup

	 1.	Simplify the following Boolean expressions:

(a)  A + AB + ABC    (b)  (A + B)C + ABC    (c)  ABC(BD + CDE) + AC

	 2.	 Implement each expression in Question 1 as originally stated with the appropriate logic 
gates. Then implement the simplified expression, and compare the number of gates.

4–6  Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of two stan-
dard forms: the sum-of-products form or the product-of-sums form. Standardization makes 
the evaluation, simplification, and implementation of Boolean expressions much more sys-
tematic and easier.

After completing this section, you should be able to

u	 Identify a sum-of-products expression

u	 Determine the domain of a Boolean expression

u	 Convert any sum-of-products expression to a standard form

u	 Evaluate a standard sum-of-products expression in terms of binary values

u	 Identify a product-of-sums expression

fg04_01900
FIGURE 4–21 

Related Problem

Open Multisim. Create the setup and perform the logic simplification illustrated in this 
example.
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u	 Convert any product-of-sums expression to a standard form

u	 Evaluate a standard product-of-sums expression in terms of binary values

u	 Convert from one standard form to the other

The Sum-of-Products (SOP) Form

A product term was defined in Section 4–1 as a term consisting of the product (Boolean 
multiplication) of literals (variables or their complements). When two or more product 
terms are summed by Boolean addition, the resulting expression is a sum-of-products 
(SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC

Also, an SOP expression can contain a single-variable term, as in A + A BC + BCD. 
Refer to the simplification examples in the last section, and you will see that each of the 
final expressions was either a single product term or in SOP form. In an SOP expression, a 
single overbar cannot extend over more than one variable; however, more than one variable 
in a term can have an overbar. For example, an SOP expression can have the term A B C 
but not ABC.

Domain of a Boolean Expression

The domain of a general Boolean expression is the set of variables contained in the expres-
sion in either complemented or uncomplemented form. For example, the domain of the 
expression AB + ABC is the set of variables A, B, C and the domain of the expression 
ABC + CDE + BCD is the set of variables A, B, C, D, E.

AND/OR Implementation of an SOP Expression

Implementing an SOP expression simply requires ORing the outputs of two or more AND 
gates. A product term is produced by an AND operation, and the sum (addition) of two or 
more product terms is produced by an OR operation. Therefore, an SOP expression can 
be implemented by AND-OR logic in which the outputs of a number (equal to the number 
of product terms in the expression) of AND gates connect to the inputs of an OR gate, as 
shown in Figure 4–22 for the expression AB + BCD + AC. The output X of the OR gate 
equals the SOP expression.

An SOP expression can be 
implemented with one OR gate and 
two or more AND gates.

A

B

X = AB + BCD + AC
B

D

A

C

C

fg04_02000

FIGURE 4–22  Implementation of the SOP expression AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression

NAND gates can be used to implement an SOP expression. By using only NAND gates, 
an AND/OR function can be accomplished, as illustrated in Figure 4–23. The first level 
of NAND gates feed into a NAND gate that acts as a negative-OR gate. The NAND and 
negative-OR inversions cancel and the result is effectively an AND/OR circuit.
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Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-
niques. For example, the expression A(B + CD) can be converted to SOP form by applying 
the distributive law:

A(B + CD) = AB + ACD

A

B

X = AB + BCD + AC
B

D

A

C

C

fg04_02100

FIGURE 4–23  This NAND/NAND implementation is equivalent to the AND/OR in 
Figure 4–22.

EXAMPLE 4–14

Convert each of the following Boolean expressions to SOP form:

(a)	 AB + B(CD + EF)    (b)   (A + B)(B + C + D)    (c)   (A + B) + C

Solution

(a)	 AB + B(CD + EF) = AB + BCD + BEF

(b)	 (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD

(c)	 (A + B) + C = (A + B)C = (A + B)C = AC + BC

Related Problem

Convert ABC + (A + B)(B + C + AB) to SOP form.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not con-
tain all of the variables in the domain of the expression. For example, the expression 
ABC + ABD + ABCD has a domain made up of the variables A, B, C, and D. However, 
notice that the complete set of variables in the domain is not represented in the first two 
terms of the expression; that is, D or D is missing from the first term and C or C is missing 
from the second term.

A standard SOP expression is one in which all the variables in the domain appear in 
each product term in the expression. For example, ABCD + A BCD + ABC D is a stan-
dard SOP expression. Standard SOP expressions are important in constructing truth tables, 
covered in Section 4–7, and in the Karnaugh map simplification method, which is covered 
in Section 4–8. Any nonstandard SOP expression (referred to simply as SOP) can be con-
verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the 
domain can be expanded to standard form to include all variables in the domain and their 
complements. As stated in the following steps, a nonstandard SOP expression is converted 
into standard form using Boolean algebra rule 6 (A + A = 1) from Table 4–1: A variable 
added to its complement equals 1.

Step 1:	 Multiply each nonstandard product term by a term made up of the sum of a 
missing variable and its complement. This results in two product terms. As you 
know, you can multiply anything by 1 without changing its value.
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Step 2:	 Repeat Step 1 until all resulting product terms contain all variables in the 
domain in either complemented or uncomplemented form. In converting a 
product term to standard form, the number of product terms is doubled for each 
missing variable, as Example 4–15 shows.

EXAMPLE 4–15

Convert the following Boolean expression into standard SOP form:

ABC + A B + ABCD

Solution

The domain of this SOP expression is A, B, C, D. Take one term at a time. The first term, ABC, is missing variable D or D, 
so multiply the first term by D + D as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result.
The second term, A B, is missing variables C or C and D or D, so first multiply the second term by C + C as follows:

A B = A B(C + C) = A BC + A B C

The two resulting terms are missing variable D or D, so multiply both terms by D + D as follows:

 A B = A BC + A B C = A BC(D + D) + A B C(D + D)

 = A BCD + A BCD + A B CD + A B C D

In this case, four standard product terms are the result.
The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

ABC + A B + ABCD = ABCD + ABCD + A BCD + A BCD + A B CD + A B C D + ABCD

Related Problem

Convert the expression WXY + XYZ + WXY  to standard SOP form.

Binary Representation of a Standard Product Term

A standard product term is equal to 1 for only one combination of variable values. For 
example, the product term ABCD is equal to 1 when A = 1, B = 0, C = 1, D = 0, as 
shown below, and is 0 for all other combinations of values for the variables.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

In this case, the product term has a binary value of 1010 (decimal ten).
Remember, a product term is implemented with an AND gate whose output is 1 only if each 

of its inputs is 1. Inverters are used to produce the complements of the variables as required.

An SOP expression is equal to 1 only if one or more of the product terms in the 
expression is equal to 1.

EXAMPLE 4–16

Determine the binary values for which the following standard SOP expression is equal to 1:

ABCD + AB CD + A B C D

Solution

The term ABCD is equal to 1 when A = 1, B = 1, C = 1, and D = 1.

ABCD = 1 # 1 # 1 # 1 = 1
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The term AB CD is equal to 1 when A = 1, B = 0, C = 0, and D = 1.

AB CD = 1 # 0 # 0 # 1 = 1 # 1 # 1 # 1 = 1

The term A B C D is equal to 1 when A = 0, B = 0, C = 0, and D = 0.

A B C D = 0 # 0 # 0 # 0 = 1 # 1 # 1 # 1 = 1

The SOP expression equals 1 when any or all of the three product terms is 1.

Related Problem

Determine the binary values for which the following SOP expression is equal to 1:

XYZ + XYZ + XYZ + XYZ + XYZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4–1 as a term consisting of the sum (Boolean addition) 
of literals (variables or their complements). When two or more sum terms are multiplied, 
the resulting expression is a product-of-sums (POS). Some examples are

 (A + B)(A + B + C)

 (A + B + C)(C + D + E)(B + C + D)

 (A + B)(A + B + C)(A + C)

A POS expression can contain a single-variable term, as in A(A + B + C)(B + C + D). 
In a POS expression, a single overbar cannot extend over more than one variable; however, 
more than one variable in a term can have an overbar. For example, a POS expression can 
have the term A + B + C but not A + B + C.

Implementation of a POS Expression

Implementing a POS expression simply requires ANDing the outputs of two or more OR 
gates. A sum term is produced by an OR operation, and the product of two or more sum 
terms is produced by an AND operation. Therefore, a POS expression can be implemented by 
logic in which the outputs of a number (equal to the number of sum terms in the expression) 
of OR gates connect to the inputs of an AND gate, as Figure 4–24 shows for the expression  
(A + B)(B + C + D)(A + C). The output X of the AND gate equals the POS expression.

A

B

X = (A + B)(B + C + D)(A + C)
B

D

A

C

C

fg04_02200

FIGURE 4–24  Implementation of the POS expression (A + B)(B + C + D)(A + C).

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all 
of the variables in the domain of the expression. For example, the expression

(A + B + C)(A + B + D)(A + B + C + D)

has a domain made up of the variables A, B, C, and D. Notice that the complete set of vari-
ables in the domain is not represented in the first two terms of the expression; that is, D or 
D is missing from the first term and C or C is missing from the second term.
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A standard POS expression is one in which all the variables in the domain appear in 
each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as 
POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in the domain can 
be expanded to standard form to include all variables in the domain and their complements. 
As stated in the following steps, a nonstandard POS expression is converted into standard 
form using Boolean algebra rule 8 (A # A = 0) from Table 4–1: A variable multiplied by 
its complement equals 0.

Step 1:	 Add to each nonstandard product term a term made up of the product of the 
missing variable and its complement. This results in two sum terms. As you 
know, you can add 0 to anything without changing its value.

Step 2:	 Apply rule 12 from Table 4–1: A + BC = (A + B)(A + C)

Step 3:	 Repeat Step 1 until all resulting sum terms contain all variables in the domain 
in either complemented or uncomplemented form.

EXAMPLE 4–17

Convert the following Boolean expression into standard POS form:

(A + B + C)(B + C + D)(A + B + C + D)

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time. The first term, A + B + C, is missing variable 
D or D, so add DD and apply rule 12 as follows:

A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D)

The second term, B + C + D, is missing variable A or A, so add AA and apply rule 12 as follows:

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D)

The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:

(A + B + C)(B + C + D)(A + B + C + D) =

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Related Problem

Convert the expression (A + B)(B + C) to standard POS form.

Binary Representation of a Standard Sum Term

A standard sum term is equal to 0 for only one combination of variable values. For exam-
ple, the sum term A + B + C + D is 0 when A = 0, B = 1, C = 0, and D = 1, as 
shown below, and is 1 for all other combinations of values for the variables.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term 
is implemented with an OR gate whose output is 0 only if each of its inputs is 0. Inverters 
are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the expres-
sion is equal to 0.
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Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present 
in the equivalent standard POS expression. Also, the binary values that are not represented 
in the SOP expression are present in the equivalent POS expression. Therefore, to convert 
from standard SOP to standard POS, the following steps are taken:

Step 1:	 Evaluate each product term in the SOP expression. That is, determine the 
binary numbers that represent the product terms.

Step 2:	 Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3:	 Write the equivalent sum term for each binary number from Step 2 and express 
in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4–18

Determine the binary values of the variables for which the following standard POS 
expression is equal to 0:

(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The term A + B + C + D is equal to 0 when A = 0, B = 0, C = 0, and D = 0.

A + B + C + D = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 0, B = 1, C = 1, and D = 0.

A + B + C + D = 0 + 1 + 1 + 0 = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 1, B = 1, C = 1, and D = 1.

A + B + C + D = 1 + 1 + 1 + 1 = 0 + 0 + 0 + 0 = 0

The POS expression equals 0 when any of the three sum terms equals 0.

Related Problem

Determine the binary values for which the following POS expression is equal to 0:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

Is this a standard POS expression?

EXAMPLE 4–19

Convert the following SOP expression to an equivalent POS expression:

A B C + ABC + ABC + ABC + ABC

Solution

The evaluation is as follows:

000 + 010 + 011 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of eight 
(23) possible combinations. The SOP expression contains five of these combinations, so 
the POS must contain the other three which are 001, 100, and 110. Remember, these are 
the binary values that make the sum term 0. The equivalent POS expression is

(A + B + C)(A + B + C)(A + B + C)
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Related Problem

Verify that the SOP and POS expressions in this example are equivalent by substituting 
binary values into each.

Section 4–6  Checkup

	 1.	 Identify each of the following expressions as SOP, standard SOP, POS, or standard 
POS:

(a)  AB + ABD + ACD	 (b)  (A + B + C)(A + B + C)

(c)  ABC + ABC	 (d)  (A + C)(A + B)

	 2.	Convert each SOP expression in Question 1 to standard form.

	 3.	Convert each POS expression in Question 1 to standard form.

4–7  Boolean Expressions and Truth Tables

All standard Boolean expressions can be easily converted into truth table format using 
binary values for each term in the expression. The truth table is a common way of present-
ing, in a concise format, the logical operation of a circuit. Also, standard SOP or POS 
expressions can be determined from a truth table. You will find truth tables in data sheets 
and other literature related to the operation of digital circuits.

After completing this section, you should be able to

u	 Convert a standard SOP expression into truth table format

u	 Convert a standard POS expression into truth table format

u	 Derive a standard expression from a truth table

u	 Properly interpret truth table data

Converting SOP Expressions to Truth Table Format

Recall from Section 4–6 that an SOP expression is equal to 1 only if at least one of the 
product terms is equal to 1. A truth table is simply a list of the possible combinations of 
input variable values and the corresponding output values (1 or 0). For an expression with a 
domain of two variables, there are four different combinations of those variables (22

= 4). 
For an expression with a domain of three variables, there are eight different combinations 
of those variables (23

= 8). For an expression with a domain of four variables, there are 
sixteen different combinations of those variables (24

= 16), and so on.
The first step in constructing a truth table is to list all possible combinations of binary 

values of the variables in the expression. Next, convert the SOP expression to standard 
form if it is not already. Finally, place a 1 in the output column (X) for each binary value 
that makes the standard SOP expression a 1 and place a 0 for all the remaining binary values. 
This procedure is illustrated in Example 4–20.

EXAMPLE 4–20

Develop a truth table for the standard SOP expression A BC + AB C + ABC.

Solution

There are three variables in the domain, so there are eight possible combinations of 
binary values of the variables as listed in the left three columns of Table 4–6. The 
binary values that make the product terms in the expressions equal to 1 are 
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Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to 
0. To construct a truth table from a POS expression, list all the possible combinations of 
binary values of the variables just as was done for the SOP expression. Next, convert the 
POS expression to standard form if it is not already. Finally, place a 0 in the output column 
(X) for each binary value that makes the expression a 0 and place a 1 for all the remaining 
binary values. This procedure is illustrated in Example 4–21.

A BC: 001; AB C: 100; and ABC: 111. For each of these binary values, place a 1 in the 
output column as shown in the table. For each of the remaining binary combinations, 
place a 0 in the output column.

Related Problem

Create a truth table for the standard SOP expression ABC + ABC.

Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 1 A BC
0 1 0 0
0 1 1 0
1 0 0 1 AB C
1 0 1 0
1 1 0 0
1 1 1 1 ABC

TABLE 4–6

EXAMPLE 4–21

Determine the truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Solution

There are three variables in the domain and the eight possible binary values are listed in 
the left three columns of Table 4–7. The binary values that make the sum terms in the 
expression equal to 0 are A + B + C: 000; A + B + C: 010; A + B + C: 011;
A + B + C: 101; and A + B + C: 110. For each of these binary values, place a 0 in 
the output column as shown in the table. For each of the remaining binary combina-
tions, place a 1 in the output column.

Inputs Output

Sum TermA B C X

0 0 0 0 (A + B + C)
0 0 1 1
0 1 0 0 (A + B + C)
0 1 1 0 (A + B + C)
1 0 0 1
1 0 1 0 (A + B + C)
1 1 0 0 (A + B + C)
1 1 1 1

TABLE 4–7
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Notice that the truth table in this example is the same as the one in Example 4–20. 
This means that the SOP expression in the previous example and the POS expression in 
this example are equivalent.

Related Problem

Develop a truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)

Determining Standard Expressions from a Truth Table

To determine the standard SOP expression represented by a truth table, list the binary val-
ues of the input variables for which the output is 1. Convert each binary value to the corre-
sponding product term by replacing each 1 with the corresponding variable and each 0 with 
the corresponding variable complement. For example, the binary value 1010 is converted 
to a product term as follows:

1010 h ABCD

If you substitute, you can see that the product term is 1:

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

To determine the standard POS expression represented by a truth table, list the binary 
values for which the output is 0. Convert each binary value to the corresponding sum term 
by replacing each 1 with the corresponding variable complement and each 0 with the cor-
responding variable. For example, the binary value 1001 is converted to a sum term as 
follows:

1001 h A + B + C + D

If you substitute, you can see that the sum term is 0:

A + B + C + D = 1 + 0 + 0 + 1 = 0 + 0 + 0 + 0 = 0

EXAMPLE 4–22

From the truth table in Table 4–8, determine the standard SOP expression and the 
equivalent standard POS expression.

Inputs Output

A B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

TABLE 4–8
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Solution

There are four 1s in the output column and the corresponding binary values are 011, 
100, 110, and 111. Convert these binary values to product terms as follows:

011 h ABC

100 h AB C

110 h ABC

111 h ABC

The resulting standard SOP expression for the output X is

X = ABC + AB C + ABC + ABC

For the POS expression, the output is 0 for binary values 000, 001, 010, and 101. 
Convert these binary values to sum terms as follows:

000 h A + B + C

001 h A + B + C

010 h A + B + C

101 h A + B + C

The resulting standard POS expression for the output X is

X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Related Problem

By substitution of binary values, show that the SOP and the POS expressions derived in 
this example are equivalent; that is, for any binary value each SOP and POS term should 
either both be 1 or both be 0, depending on the binary value.

Section 4–7  Checkup

	 1.	 If a certain Boolean expression has a domain of five variables, how many binary 
values will be in its truth table?

	 2.	 In a certain truth table, the output is a 1 for the binary value 0110. Convert this binary 
value to the corresponding product term using variables W, X, Y, and Z.

	 3.	 In a certain truth table, the output is a 0 for the binary value 1100. Convert this binary 
value to the corresponding sum term using variables W, X, Y, and Z.

4–8  The Karnaugh Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and, 
if properly used, will produce the simplest SOP or POS expression possible, known as 
the minimum expression. As you have seen, the effectiveness of algebraic simplification 
depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on 
your ability to apply them. The Karnaugh map, on the other hand, provides a “cookbook” 
method for simplification. Other simplification techniques include the Quine-McCluskey 
method and the Espresso algorithm.

After completing this section, you should be able to

u	 Construct a Karnaugh map for three or four variables

u	 Determine the binary value of each cell in a Karnaugh map

u	 Determine the standard product term represented by each cell in a Karnaugh map

u	 Explain cell adjacency and identify adjacent cells

M04_FLOY5983_11_GE_C04.indd Page 219  17/11/14  5:10 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



220	 Boolean Algebra and Logic Simplification

A Karnaugh map is similar to a truth table because it presents all of the possible values 
of input variables and the resulting output for each value. Instead of being organized into 
columns and rows like a truth table, the Karnaugh map is an array of cells in which each 
cell represents a binary value of the input variables. The cells are arranged in a way so 
that simplification of a given expression is simply a matter of properly grouping the cells. 
Karnaugh maps can be used for expressions with two, three, four, and five variables, but we 
will discuss only 3-variable and 4-variable situations to illustrate the principles. A discus-
sion of 5-variable Karnaugh maps is available on the website.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table, 
is equal to the total number of possible input variable combinations. For three variables, the 
number of cells is 23

= 8. For four variables, the number of cells is 24
= 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells, as shown in Figure 4–25(a). In this 
case, A, B, and C are used for the variables although other letters could be used. Binary 
values of A and B are along the left side (notice the sequence) and the values of C are across 
the top. The value of a given cell is the binary values of A and B at the left in the same row 
combined with the value of C at the top in the same column. For example, the cell in the 
upper left corner has a binary value of 000 and the cell in the lower right corner has a binary 
value of 101. Figure 4–25(b) shows the standard product terms that are represented by each 
cell in the Karnaugh map.

The purpose of a Karnaugh map is to 
simplify a Boolean expression.
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(a) (b)

AB
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C

ABC ABC

ABC ABC

ABC ABC

ABC ABC

fg04_02300

FIGURE 4–25  A 3-variable Karnaugh map showing Boolean product terms for each cell.

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure 4–26(a). 
Binary values of A and B are along the left side and the values of C and D are across the 
top. The value of a given cell is the binary values of A and B at the left in the same row 
combined with the binary values of C and D at the top in the same column. For example, 
the cell in the upper right corner has a binary value of 0010 and the cell in the lower right 
corner has a binary value of 1010. Figure 4–26(b) shows the standard product terms that 
are represented by each cell in the 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-variable change 
between adjacent cells. Adjacency is defined by a single-variable change. In the 3-variable 
map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110 cell. The 010 cell is 
not adjacent to the 001 cell, the 111 cell, the 100 cell, or the 101 cell.

Physically, each cell is adjacent to the cells that are immediately next to it on any of 
its four sides. A cell is not adjacent to the cells that diagonally touch any of its corners. 
Also, the cells in the top row are adjacent to the corresponding cells in the bottom row and 

Cells that differ by only one variable 
are adjacent.

Cells with values that differ by more 
than one variable are not adjacent.
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the cells in the outer left column are adjacent to the corresponding cells in the outer right 
column. This is called “wrap-around” adjacency because you can think of the map as wrap-
ping around from top to bottom to form a cylinder or from left to right to form a cylinder. 
Figure 4–27 illustrates the cell adjacencies with a 4-variable map, although the same rules 
for adjacency apply to Karnaugh maps with any number of cells.
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FIGURE 4–26  A 4-variable Karnaugh map.
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FIGURE 4–27  Adjacent cells on a Karnaugh map are those that differ by only one 
variable. Arrows point between adjacent cells.

The Quine-McCluskey Method

Minimizing Boolean functions using Karnaugh maps is practical only for up to four or five 
variables. Also, the Karnaugh map method does not lend itself to be automated in the form 
of a computer program.

The Quine-McCluskey method is more practical for logic simplification of functions 
with more than four or five variables. It also has the advantage of being easily implemented 
with a computer or programmable calculator.

The Quine-McCluskey method is functionally similar to Karnaugh mapping, but the 
tabular form makes it more efficient for use in computer algorithms, and it also gives a way 
to check that the minimal form of a Boolean function has been reached. This method is 
sometimes referred to as the tabulation method. An introduction to the Quine-McCluskey 
method is provided in Section 4–11.

Espresso Algorithm

Although the Quine-McCluskey method is well suited to be implemented in a computer 
program and can handle more variables than the Karnaugh map method, the result is still 
far from efficient in terms of processing time and memory usage. Adding a variable to 
the function will roughly double both of these parameters because the truth table length 
increases exponentially with the number of variables. Functions with a large number of 
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variables have to be minimized with other methods such as the Espresso logic minimizer, 
which has become the de facto world standard. An Espresso algorithm tutorial is available 
on the website.

Compared to the other methods, Espresso is essentially more efficient in terms of reduc-
ing memory usage and computation time by several orders of magnitude. There is essen-
tially no restrictions to the number of variables, output functions, and product terms of a 
combinational logic function. In general, tens of variables with tens of output functions can 
be handled by Espresso.

The Espresso algorithm has been incorporated as a standard logic function minimiza-
tion step in most logic synthesis tools for programmable logic devices. For implementing 
a function in multilevel logic, the minimization result is optimized by factorization and 
mapped onto the available basic logic cells in the target device, such as an FPGA (Field-
Programmable Gate Array).

Section 4–8  Checkup

	 1.	 In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol-
lowing locations:

(a)  upper left corner	 (b)  lower right corner

(c)  lower left corner	 (d)  upper right corner

	 2.	What is the standard product term for each cell in Question 1 for variables X, Y, and Z?

	 3.	Repeat Question 1 for a 4-variable map.

	 4.	Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z.

4–9  Karnaugh Map SOP Minimization

As stated in the last section, the Karnaugh map is used for simplifying Boolean expressions 
to their minimum form. A minimized SOP expression contains the fewest possible terms 
with the fewest possible variables per term. Generally, a minimum SOP expression can be 
implemented with fewer logic gates than a standard expression. In this section, Karnaugh 
maps with up to four variables are covered.

After completing this section, you should be able to

u	 Map a standard SOP expression on a Karnaugh map

u	 Combine the 1s on the map into maximum groups

u	 Determine the minimum product term for each group on the map

u	 Combine the minimum product terms to form a minimum SOP expression

u	 Convert a truth table into a Karnaugh map for simplification of the represented 
expression

u	 Use “don’t care” conditions on a Karnaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for each 
product term in the expression. Each 1 is placed in a cell corresponding to the value of 
a product term. For example, for the product term ABC, a 1 goes in the 101 cell on a 
3-variable map.
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When an SOP expression is completely mapped, there will be a number of 1s on the 
Karnaugh map equal to the number of product terms in the standard SOP expression. The 
cells that do not have a 1 are the cells for which the expression is 0. Usually, when working 
with SOP expressions, the 0s are left off the map. The following steps and the illustration 
in Figure 4–28 show the mapping process.

Step 1:	 Determine the binary value of each product term in the standard SOP expres-
sion. After some practice, you can usually do the evaluation of terms mentally.

Step 2:	 As each product term is evaluated, place a 1 on the Karnaugh map in the cell 
having the same value as the product term.
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11
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AB
C

ABC  +  ABC  +  ABC  +  ABC

1

1

1 1
000 001 110 100
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FIGURE 4–28  Example of mapping a standard SOP expression.

EXAMPLE 4–23

Map the following standard SOP expression on a Karnaugh map:

A BC + ABC + ABC + ABC

Solution

Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in 
Figure 4–29 for each standard product term in the expression.

A BC + ABC + ABC + ABC

0 0 1 0 1 0 1 1 0 1 1 1

0 1

00

01

11

10

AB
C

1

1

1

1

ABC

ABC

ABC

ABC
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FIGURE 4–29 

Related Problem

Map the standard SOP expression ABC + ABC + AB C on a Karnaugh map.
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Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a Karnaugh map. If an 
expression is not in standard form, then it must be converted to standard form by the proce-
dure covered in Section 4–6 or by numerical expansion. Since an expression should be eval-
uated before mapping anyway, numerical expansion is probably the most efficient approach.

Numerical Expansion of a Nonstandard Product Term

Recall that a nonstandard product term has one or more missing variables. For example, 
assume that one of the product terms in a certain 3-variable SOP expression is AB. This 
term can be expanded numerically to standard form as follows. First, write the binary value 
of the two variables and attach a 0 for the missing variable C: 100. Next, write the binary 
value of the two variables and attach a 1 for the missing variable C: 101. The two resulting 
binary numbers are the values of the standard SOP terms AB C and ABC.

As another example, assume that one of the product terms in a 3-variable expression is 
B (remember that a single variable counts as a product term in an SOP expression). This 
term can be expanded numerically to standard form as follows. Write the binary value of 
the variable; then attach all possible values for the missing variables A and C as follows:

B
010
011
110
111

EXAMPLE 4–24

Map the following standard SOP expression on a Karnaugh map:

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

Solution

Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in 
Figure 4–30 for each standard product term in the expression.

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0

00 01 11 10
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1 1
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ABCDABCD

ABCD
ABCD
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FIGURE 4–30 

Related Problem

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABC D + ABCD
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The four resulting binary numbers are the values of the standard SOP terms ABC, 
 ABC, ABC, and ABC.

EXAMPLE 4–25

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

Solution

The SOP expression is obviously not in standard form because each product term does not 
have three variables. The first term is missing two variables, the second term is missing 
one variable, and the third term is standard. First expand the terms numerically as follows:

A + AB + ABC

000 100 110

001 101

010

011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 
3-variable Karnaugh map in Figure 4–31.
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FIGURE 4–31 

Related Problem

Map the SOP expression BC + A C on a Karnaugh map.

EXAMPLE 4–26

Map the following SOP expression on a Karnaugh map:

B C + AB + ABC + ABCD + A B CD + ABCD

Solution

The SOP expression is obviously not in standard form because each product term does 
not have four variables. The first and second terms are both missing two variables, the 
third term is missing one variable, and the rest of the terms are standard. First expand the 
terms by including all combinations of the missing variables numerically as follows:

B C  + AB  +   ABC  +  ABCD +  A B CD +  ABCD

0 0 0 0   1 0 0 0  1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1

0 0 0 1  1 0 0 1  1 1 0 1

1 0 0 0  1 0 1 0

1 0 0 1  1 0 1 1
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Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the few-
est possible variables is called minimization. After an SOP expression has been mapped, 
a minimum SOP expression is obtained by grouping the 1s and determining the minimum 
SOP expression from the map.

Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those 
adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize 
the number of groups.

	 1.	 A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the 
case of a 3-variable map, 23

= 8 cells is the maximum group.

	 2.	 Each cell in a group must be adjacent to one or more cells in that same group, but all 
cells in the group do not have to be adjacent to each other.

	 3.	 Always include the largest possible number of 1s in a group in accordance with rule 1.

	 4.	 Each 1 on the map must be included in at least one group. The 1s already in a group can 
be included in another group as long as the overlapping groups include noncommon 1s.

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 
4-variable Karnaugh map in Figure 4–32. Notice that some of the values in the expanded 
expression are redundant.
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FIGURE 4–32 

Related Problem

Map the expression A + CD + ACD + ABCD on a Karnaugh map.

EXAMPLE 4–27

Group the 1s in each of the Karnaugh maps in Figure 4–33.
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FIGURE 4–33 
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Solution

The groupings are shown in Figure 4–34. In some cases, there may be more than one way to group the 1s to form maximum 
groupings.

Wrap-around adjacency

CD
AB

(d)
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1

1

1

1

fg04_03200

FIGURE 4–34 

Related Problem

Determine if there are other ways to group the 1s in Figure 4–34 to obtain a minimum number of maximum 
groupings.

Determining the Minimum SOP Expression from the Map

When all the 1s representing the standard product terms in an expression are properly 
mapped and grouped, the process of determining the resulting minimum SOP expression 
begins. The following rules are applied to find the minimum product terms and the mini-
mum SOP expression:

	 1.	 Group the cells that have 1s. Each group of cells containing 1s creates one product 
term composed of all variables that occur in only one form (either uncomple-
mented or complemented) within the group. Variables that occur both uncomple-
mented and complemented within the group are eliminated. These are called 
contradictory variables.

	 2.	 Determine the minimum product term for each group.
(a)  For a 3-variable map:

	 (1)  A 1-cell group yields a 3-variable product term
	 (2)  A 2-cell group yields a 2-variable product term
	 (3)  A 4-cell group yields a 1-variable term
	 (4)  An 8-cell group yields a value of 1 for the expression

(b)  For a 4-variable map:
	 (1)  A 1-cell group yields a 4-variable product term
	 (2)  A 2-cell group yields a 3-variable product term
	 (3)  A 4-cell group yields a 2-variable product term
	 (4)  An 8-cell group yields a 1-variable term
	 (5)  A 16-cell group yields a value of 1 for the expression

	 3.	 When all the minimum product terms are derived from the Karnaugh map, they are 
summed to form the minimum SOP expression.
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EXAMPLE 4–28

Determine the product terms for the Karnaugh map in Figure 4–35 and write the result-
ing minimum SOP expression.
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FIGURE 4–35 

Solution

Eliminate variables that are in a grouping in both complemented and uncomplemented 
forms. In Figure 4–35, the product term for the 8-cell group is B because the cells 
within that group contain both A and A, C and C, and D and D, which are eliminated. 
The 4-cell group contains B, B, D, and D, leaving the variables A and C, which form the 
product term AC. The 2-cell group contains B and B, leaving variables A, C, and D 
which form the product term ACD. Notice how overlapping is used to maximize the 
size of the groups. The resulting minimum SOP expression is the sum of these product 
terms:

B + AC + ACD

Related Problem

For the Karnaugh map in Figure 4–35, add a 1 in the lower right cell (1010) and deter-
mine the resulting SOP expression.

EXAMPLE 4–29

Determine the product terms for each of the Karnaugh maps in Figure 4–36 and write the resulting minimum SOP expression.
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FIGURE 4–36 
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Solution

The resulting minimum product term for each group is shown in Figure 4–36. The minimum SOP expressions for each of 
the Karnaugh maps in the figure are

(a)	 AB + BC + A B C

(b)	 B + A C + AC

(c)	 AB + A C + ABD

(d)	 D + ABC + BC

Related Problem

For the Karnaugh map in Figure 4–36(d), add a 1 in the 0111 cell and determine the resulting SOP expression.

EXAMPLE 4–30

Use a Karnaugh map to minimize the following standard SOP expression:

ABC + ABC + A BC + A B C + AB C

Solution

The binary values of the expression are

101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells as shown in Figure 4–37.
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fg04_03500

FIGURE 4–37 

Notice the “wrap around” 4-cell group that includes the top row and the bottom row 
of 1s. The remaining 1 is absorbed in an overlapping group of two cells. The group of 
four 1s produces a single variable term, B. This is determined by observing that within 
the group, B is the only variable that does not change from cell to cell. The group of two 
1s produces a 2-variable term AC. This is determined by observing that within the 
group, A and C do not change from one cell to the next. The product term for each 
group is shown. The resulting minimum SOP expression is

B + AC

Keep in mind that this minimum expression is equivalent to the original standard expression.

Related Problem

Use a Karnaugh map to simplify the following standard SOP expression:

XYZ + XYZ + XYZ + XYZ + XY Z + XYZ
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Mapping Directly from a Truth Table

You have seen how to map a Boolean expression; now you will learn how to go directly 
from a truth table to a Karnaugh map. Recall that a truth table gives the output of a Boolean 
expression for all possible input variable combinations. An example of a Boolean expres-
sion and its truth table representation is shown in Figure 4–39. Notice in the truth table that 
the output X is 1 for four different input variable combinations. The 1s in the output column 
of the truth table are mapped directly onto a Karnaugh map into the cells corresponding to 
the values of the associated input variable combinations, as shown in Figure 4–39. In the 
figure you can see that the Boolean expression, the truth table, and the Karnaugh map are 
simply different ways to represent a logic function.

“Don’t Care” Conditions

Sometimes a situation arises in which some input variable combinations are not allowed. 
For example, recall that in the BCD code covered in Chapter 2, there are six invalid 
combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states 

EXAMPLE 4–31

Use a Karnaugh map to minimize the following SOP expression:

B C D + ABC D + ABC D + A BCD + ABCD + A BCD + ABCD + ABCD + ABCD

Solution

The first term B C D must be expanded into AB C D and A B C D to get the standard 
SOP expression, which is then mapped; the cells are grouped as shown in Figure 4–38.

CD
AB 00 01 11 10

00
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11
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D
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1

1

11

11

1 1

1

1

fg04_03600
FIGURE 4–38 

Notice that both groups exhibit “wrap around” adjacency. The group of eight is 
formed because the cells in the outer columns are adjacent. The group of four is formed 
to pick up the remaining two 1s because the top and bottom cells are adjacent. The 
product term for each group is shown. The resulting minimum SOP expression is

D + BC

Keep in mind that this minimum expression is equivalent to the original standard 
expression.

Related Problem

Use a Karnaugh map to simplify the following SOP expression:

W X Y Z + WXYZ + WX YZ + WYZ + WX Y Z
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FIGURE 4–39  Example of mapping directly from a truth table to a Karnaugh map.

will never occur in an application involving the BCD code, they can be treated as “don’t 
care” terms with respect to their effect on the output. That is, for these “don’t care” terms 
either a 1 or a 0 may be assigned to the output; it really does not matter since they will 
never occur.

The “don’t care” terms can be used to advantage on the Karnaugh map. Figure 4–40 
shows that for each “don’t care” term, an X is placed in the cell. When grouping the 1s, the 
Xs can be treated as 1s to make a larger grouping or as 0s if they cannot be used to advan-
tage. The larger a group, the simpler the resulting term will be.

Inputs Output
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A B C D Y

FIGURE 4–40  Example of the use of “don’t care” conditions to simplify an expression.

The truth table in Figure 4–40(a) describes a logic function that has a 1 output only 
when the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t cares” are used as 
1s, the resulting expression for the function is A + BCD, as indicated in part (b). If the 
“don’t cares” are not used as 1s, the resulting expression is AB C + ABCD; so you can see 
the advantage of using “don’t care” terms to get the simplest expression.
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EXAMPLE 4–32

In a 7-segment display, each of the seven segments is activated for various digits. For 
example, segment a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in 
Figure 4–41. Since each digit can be represented by a BCD code, derive an SOP expres-
sion for segment a using the variables ABCD and then minimize the expression using a 
Karnaugh map.

Segment a

b

c

f

e

d

g

fg04_03900

FIGURE 4–41  7-segment display.

Solution

The expression for segment a is

a = A B C D + A BCD + A BCD + ABCD + ABCD + ABCD + AB C D + AB CD

Each term in the expression represents one of the digits in which segment a is used. The 
Karnaugh map minimization is shown in Figure 4–42. X’s (don’t cares) are entered for 
those states that do not occur in the BCD code.
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XX X X

1 XX

BD

fg04_04000
FIGURE 4–42 

From the Karnaugh map, the minimized expression for segment a is

a = A + C + BD + B  D

Related Problem

Draw the logic diagram for the segment-a logic.

Section 4–9   Checkup

	 1.	Lay out Karnaugh maps for three and four variables.

	 2.	Group the 1s and write the simplified SOP expression for the Karnaugh map in 
Figure 4–29.

	 3.	Write the original standard SOP expressions for each of the Karnaugh maps in Fig-
ure 4–36.
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4–10  Karnaugh Map POS Minimization

In the last section, you studied the minimization of an SOP expression using a Karnaugh 
map. In this section, we focus on POS expressions. The approaches are much the same 
except that with POS expressions, 0s representing the standard sum terms are placed on the 
Karnaugh map instead of 1s.

After completing this section, you should be able to

u	 Map a standard POS expression on a Karnaugh map

u	 Combine the 0s on the map into maximum groups

u	 Determine the minimum sum term for each group on the map

u	 Combine the minimum sum terms to form a minimum POS expression

u	 Use the Karnaugh map to convert between POS and SOP

Mapping a Standard POS Expression

For a POS expression in standard form, a 0 is placed on the Karnaugh map for each sum 
term in the expression. Each 0 is placed in a cell corresponding to the value of a sum term. 
For example, for the sum term A + B + C, a 0 goes in the 010 cell on a 3-variable map.

When a POS expression is completely mapped, there will be a number of 0s on the 
Karnaugh map equal to the number of sum terms in the standard POS expression. The cells 
that do not have a 0 are the cells for which the expression is 1. Usually, when working with 
POS expressions, the 1s are left off. The following steps and the illustration in Figure 4–43 
show the mapping process.

Step 1:	 Determine the binary value of each sum term in the standard POS expression. 
This is the binary value that makes the term equal to 0.

Step 2:	 As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-
sponding cell.

0 1

00

01

11

10

AB
C

(A + B + C)(A + B + C)(A + B + C)(A + B + C)

000 010 110 101

0

0

0

0

FIGURE 4–43  Example of mapping a standard POS expression.

EXAMPLE 4–33

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh map in Figure 4–44 for each standard 
sum term in the expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

1100 1011 0010 1111 0011
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Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an SOP expres-
sion except that you group 0s to produce minimum sum terms instead of grouping 1s to 
produce minimum product terms. The rules for grouping the 0s are the same as those for 
grouping the 1s that you learned in Section 4–9.
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CD
AB

0

0

0

0

0

A + B + C + D

A + B + C + D

A + B + C + D

A + B + C + DA + B + C + D

FIGURE 4–44 

Related Problem

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

EXAMPLE 4–34

Use a Karnaugh map to minimize the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Also, derive the equivalent SOP expression.

Solution

The combinations of binary values of the expression are

(0 + 0 + 0)(0 + 0 + 1)(0 + 1 + 0)(0 + 1 + 1)(1 + 1 + 0)

Map the standard POS expression and group the cells as shown in Figure 4–45.
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FIGURE 4–45 
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Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in 
the 4-cell group. The sum term for each blue group is shown in the figure and the result-
ing minimum POS expression is

A(B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard 
POS expression.

Grouping the 1s as shown by the gray areas yields an SOP expression that is equiva-
lent to grouping the 0s.

AC + AB = A(B + C)

Related Problem

Use a Karnaugh map to simplify the following standard POS expression:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

EXAMPLE 4–35

Use a Karnaugh map to minimize the following POS expression:

(B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The first term must be expanded into A + B + C + D and A + B + C + D to get a standard POS expression, which is 
then mapped; and the cells are grouped as shown in Figure 4–46. The sum term for each group is shown and the resulting 
minimum POS expression is

(C + D)(A + B + D)(A + B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard POS expression.
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0

0

0

0

0

FIGURE 4–46 

Related Problem

Use a Karnaugh map to simplify the following POS expression:

(W + X + Y + Z )(W + X + Y + Z )(W + X + Y + Z )(W + X + Z )

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the equivalent SOP form 
directly from the Karnaugh map. Also, given a mapped SOP expression, an equivalent POS 
expression can be derived directly from the map. This provides a good way to compare 
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both minimum forms of an expression to determine if one of them can be implemented 
with fewer gates than the other.

For a POS expression, all the cells that do not contain 0s contain 1s, from which the SOP 
expression is derived. Likewise, for an SOP expression, all the cells that do not contain 
1s contain 0s, from which the POS expression is derived. Example 4–36 illustrates this 
conversion.

EXAMPLE 4–36

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP 
expression, and a minimum SOP expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The 0s for the standard POS expression are mapped and grouped to obtain the minimum POS expression in Figure 4–47(a). 
In Figure 4–47(b), 1s are added to the cells that do not contain 0s. From each cell containing a 1, a standard product term is 
obtained as indicated. These product terms form the standard SOP expression. In Figure 4–47(c), the 1s are grouped and a 
minimum SOP expression is obtained.
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(a)  Minimum POS: (A + B + C)(B + C + D)(B + C + D)
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FIGURE 4–47 

Related Problem

Use a Karnaugh map to convert the following expression to minimum SOP form:

(W + X + Y + Z )(W + X + Y + Z )(W + X + Y + Z )(W + X + Z )
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Section 4–10   Checkup

	 1.	What is the difference in mapping a POS expression and an SOP expression?

	 2.	What is the standard sum term for a 0 in cell 1011?

	 3.	What is the standard product term for a 1 in cell 0010?

4–11  The Quine-McCluskey Method

For Boolean functions up to four variables, the Karnaugh map method is a powerful minimi-
zation method. When there are five variables, the Karnaugh map method is difficult to apply 
and completely impractical beyond five. The Quine-McCluskey method is a formal tabular 
method for applying the Boolean distributive law to various terms to find the minimum sum 
of products by eliminating literals that appear in two terms as complements. (For example, 
ABCD + ABC D = ABC). A Quine-McCluskey method tutorial is available on the website.

After completing this section, you should be able to

u	 Describe the Quine-McCluskey method

u	 Reduce a Boolean expression using the Quine-McCluskey method

Unlike the Karnaugh mapping method, Quine-McCluskey lends itself to the computer-
ized reduction of Boolean expressions, which is its principal use. For simple expressions, 
with up to four or perhaps even five variables, the Karnaugh map is easier for most people 
because it is a graphic method.

To apply the Quine-McCluskey method, first write the function in standard minterm 
(SOP) form. To illustrate, we will use the expression

X = A B CD + A BCD + AB C D + A B CD +  ABC D + AB C D + AB CD + ABCD

and represent it as binary numbers on the truth table shown in Table 4–9. The minterms that 
appear in the function are listed in the right column.

TABLE 4–9

ABCD X Minterm

0000 0
0001 1 m1
0010 0
0011 1 m3
0100 1 m4
0101 1 m5
0110 0
0111 0
1000 0
1001 0
1010 1 m10
1011 0
1100 1 m12
1101 1 m13
1110 0
1111 1 m15

The second step in applying the Quine-McCluskey method is to arrange the minterms in 
the original expression in groups according to the number of 1s in each minterm, as shown 
in Table 4–10. In this example, there are four groups of minterms. (Note that if m0 had been 
in the original expression, there would be five groups.)
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In Table 4–11, minterm m4 and minterm m12 are identical except for the A position. Both 
minterms are checked and x100 is entered in the First level column . Follow this proce-
dure for groups 2 and 3. In these groups, m5 and m13 are combined and so are m12 and m13 
(notice that m12 was previously used with m4 and is used again). For groups 3 and 4, both 
m13 and m15 are added to the list in the First level column .

In this example, minterm m10 does not have a check mark because no other minterm 
meets the requirement of being identical except for one position. This term is called an 
essential prime implicant, and it must be included in our final reduced expression.

The terms listed in the First level have been used to form a reduced table (Table 4–12) 
with one less group than before. The number of 1s remaining in the First level are counted 
and used to form three new groups.

Terms in the new groups are compared against terms in the adjacent group down. You 
need to compare these terms only if the x is in the same relative position in adjacent groups; 
otherwise go on. If the two expressions differ by exactly one position, a check mark is 

Third, compare adjacent groups, looking to see if any minterms are the same in every 
position except one. If they are, place a check mark by those two minterms, as shown in 
Table 4–11. You should check each minterm against all others in the following group, but 
it is not necessary to check any groups that are not adjacent. In the column labeled First 
level, you will have a list of the minterm names and the binary equivalent with an x as the 
placeholder for the literal that differs. In the example, minterm m1 in Group 1 (0001) is 
identical to m3 in Group 2 (0011) except for the C position, so place a check mark by these 
two minterms and enter 00x1 in the column labeled First level. Minterm m4 (0100) is iden-
tical to m5 (0101) except for the D position, so check these two minterms and enter 010x in 
the last column. If a given term can be used more than once, it should be. In this case, notice 
that m1 can be used again with m5 in the second row with the x now placed in the B position.

TABLE 4–10

Number of 1s Minterm ABCD

1 m1 0001

m4 0100

2 m3 0011

m5 0101

m10 1010

m12 1100

3 m13 1101

4 m15 1111

TABLE 4–11

Number of 1s  
in Minterm Minterm ABCD First Level

1 m1 0001 ✓ (m1, m3) 00x1

m4 0100 ✓ (m1, m5) 0x01

2 m3 0011 ✓ (m4, m5) 010x

m5 0101 ✓ (m4, m12) x100

m10 1010 (m5, m13) x101

m12 1100 ✓ (m12, m13) 110x

3 m13 1101 ✓ (m13, m15) 11x1

4 m15 1111 ✓
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TABLE 4–12

First Level Number of 1s in First Level Second Level

(m1, m3) 00x1 1 (m4, m5, m12, m13) x10x

(m1, m5) 0x01 (m4, m5, m12, m13) x10x

(m4, m5) 010x ✓

(m4, m12) x100 ✓

(m5, m13) x101 ✓ 2

(m12, m13) 110x ✓

(m13, m15) 11x1 3

placed next to both terms as before and all of the minterms are listed in the Second level 
list. As before, the one position that has changed is entered as an x in the Second level.

For our example, notice that the third term in Group 1 and the second term in Group 2 
meet this requirement, differing only with the A literal. The fourth term in Group 1 also can 
be combined with the first term in Group 2, forming a redundant set of minterms. One of 
these can be crossed off the list and will not be used in the final expression.

With complicated expressions, the process described can be continued. For our exam-
ple, we can read the Second level expression as BC. The terms that are unchecked will 
form other terms in the final reduced expression. The first unchecked term is read as A BD. 
The next one is read as A CD. The last unchecked term is ABD. Recall that m10 was an 
essential prime implicant, so is picked up in the final expression. The reduced expression 
using the unchecked terms is:

X = BC + A BD + A CD + ABD + ABCD

Although this expression is correct, it may not be the minimum possible expression. 
There is a final check that can eliminate any unnecessary terms. The terms for the expres-
sion are written into a prime implicant table, with minterms for each prime implicant 
checked, as shown in Table 4–13.

TABLE 4–13

Minterms

Prime Implicants m1 m3 m4 m5 m10 m12 m13 m15

B C (m4, m5, m12, m13) ✓ ✓ ✓ ✓

A B D (m1, m3) ✓ ✓

A  C   D (m1, m5) ✓ ✓

ABD (m13, m15) ✓ ✓

ABC  D (m10) ✓

If a minterm has a single check mark, then the prime implicant is essential and must 
be included in the final expression. The term ABD must be included because m15 is only 
covered by it. Likewise m10 is only covered by ABCD, so it must be in the final expression. 
Notice that the two minterms in A CD are covered by the prime implicants in the first two 
rows, so this term is unnecessary. The final reduced expression is, therefore,

X = BC + A BD + ABD + ABCD

Section 4–11  Checkup

	 1.	What is a minterm?

	 2.	What is an essential prime implicant?
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4–12  Boolean Expressions with VHDL

The ability to create simple and compact code is important in a VHDL program. By 
simplifying a Boolean expression for a given logic function, it is easier to write and 
debug the VHDL code; in addition, the result is a clearer and more concise program. 
Many VHDL development software packages contain tools that automatically optimize 
a program when it is compiled and converted to a downloadable file. However, this does 
not relieve you from creating program code that is clear and concise. You should not 
only be concerned with the number of lines of code, but you should also be concerned 
with the complexity of each line of code. In this section, you will see the difference in 
VHDL code when simplification methods are applied. Also, three levels of abstraction 
used in the description of a logic function are examined. A VHDL tutorial is available 
on the website.

After completing this section, you should be able to

u	 Write VHDL code to represent a simplified logic expression and compare it to the 
code for the original expression

u	 Relate the advantages of optimized Boolean expressions as applied to a target device

u	 Understand how a logic function can be described at three levels of abstraction

u	 Relate VHDL approaches to the description of a logic function to the three levels 
of abstraction

Boolean Algebra in VHDL Programming

The basic rules of Boolean algebra that you have learned in this chapter should be applied 
to any applicable VHDL code. Eliminating unnecessary gate logic allows you to create 
compact code that is easier to understand, especially when someone has to go back later 
and update or modify the program.

In Example 4–37, DeMorgan’s theorems are used to simplify a Boolean expression, 
and VHDL programs for both the original expression and the simplified expression are 
compared.

EXAMPLE 4–37

First, write a VHDL program for the logic described by the following Boolean expres-
sion. Next, apply DeMorgan’s theorems and Boolean rules to simplify the expression. 
Then write a program to reflect the simplified expression.

X = (AC + BC + D) + BC

Solution

The VHDL program for the logic represented by the original expression is

entity OriginalLogic is
  port (A, B, C, D: in bit; X: out bit);
end entity OriginalLogic;
architecture Expression1 of OriginalLogic is
begin
 � X ,5 not((A and C) or not(B and not C) or D)  or not(not(B and C));
end architecture Expression1;

Four inputs and one output are 
described.

The original logic contains four 
inputs, 3 AND gates, 2 OR 
gates, and 3 inverters.
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By selectively applying DeMorgan’s theorem and the laws of Boolean algebra, you 
can reduce the Boolean expression to its simplest form.

 (AC + BC + D) + BC = (AC)(BC)D + BC	 Apply DeMorgan
 = (AC)(BC)D + BC	 Cancel double complements
 = (A + C )BC D + BC	 Apply DeMorgan and factor
 = ABC D + BC D + BC	 Distributive law
 = BC D(1 + A) + BC	 Factor
 = BC D + BC	 Rule: 1 + A = 1

The VHDL program for the logic represented by the reduced expression is

entity ReducedLogic is
  port (B, C, D: in bit; X: out bit);
end entity ReducedLogic;
architecture Expression2 of ReducedLogic is
begin
  X ,5 (B and not C and not D) or ( B and C);
end architecture Expression2;

3 inputs and 1 output are described.

The simplified logic contains 
three inputs, 3 AND gates,  
1 OR gate, and 2 inverters.

As you can see, Boolean simplification is applicable to even simple VHDL programs.

Related Problem

Write the VHDL architecture statement for the expression X = (A + B + C)D as 
stated. Apply any applicable Boolean rules and rewrite the VHDL statement.

Example 4–38 demonstrates a more significant reduction in VHDL code complexity, 
using a Karnaugh map to reduce an expression.

EXAMPLE 4–38

(a)	 Write a VHDL program to describe the following SOP expression.

(b)	 Minimize the expression and show how much the VHDL program is simplified.

X = A B C D + A B C D + A B C D + ABC D + A BC D + AB C D

+ A BC D + ABC D + ABC D + AB C D + AB CD + AB CD

Solution

(a)	 The VHDL program for the SOP expression without minimization is large and 
hard to follow as you can see in the following VHDL code. Code such as this is 
subject to error. The VHDL program for the original SOP expression is as follows:

entity OriginalSOP is
  port (A, B, C, D: in bit; X: out bit);
end entity OriginalSOP; 
architecture Equation1 of OriginalSOP is
begin

X ,5 (not A and not B and not C and not D) or
     (not A and not B and not C and D) or
     (not A and B and not C and not D) or
     (not A and B and C and not D) or
     (not A and not B and C and not D) or
     (A and not B and not C and not D) or
     (A and not B and C and not D) or
     (A and B and C and not D) or
     (A and B and not C and not D) or
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As you have seen, the simplification of Boolean logic is important in the design of 
any logic function described in VHDL. Target devices have finite capacity and therefore 
require the creation of compact and efficient program code. Throughout this chapter, you 
have learned that the simplification of complex Boolean logic can lead to the elimination 
of unnecessary logic as well as the simplification of VHDL code.

Levels of Abstraction

A given logic function can be described at three different levels. It can be described by a 
truth table or a state diagram, by a Boolean expression, or by its logic diagram (schematic). 

     (A and not B and not C and D) or
     (not A and B and not C and D) or
     (A and B and not C and D);

end architecture Equation1;

(b)	 Now, use a four-variable Karnaugh map to reduce the original SOP expression to a 
minimum form. The original SOP expression is mapped in Figure 4–48.

CD
AB 00 01 11 10

00

01

11

10

D

C

1

1

11

1

1

1

1

1

1

1 1

FIGURE 4–48 

The original SOP Boolean expression that is plotted on the Karnaugh map in Figure 
4–48 contains twelve 4-variable terms as indicated by the twelve 1s on the map. Recall 
that only the variables that do not change within a group remain in the expression for 
that group. The simplified expression taken from the map is developed next.

Combining the terms from the Karnaugh map, you get the following simplified 
expression, which is equivalent to the original SOP expression.

X = C + D

Using the simplified expression, the VHDL code can be rewitten with fewer terms, 
making the code more readable and easier to modify. Also, the logic implemented in a 
target device by the reduced code consumes much less space in the PLD. The VHDL 
program for the simplified SOP expression is as follows:

entity SimplifiedSOP is
  port (A, B, C, D: in bit; X: out bit);
end entity SimplifiedSOP;
architecture Equation2 of SimplifiedSOP is
begin

X ,5 not C or not D
end architecture Equation2;

Related Problem

Write a VHDL architecture statement to describe the logic for the expression

X = A(BC + D)
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The truth table and state diagram are the most abstract ways to describe a logic function. 
A Boolean expression is the next level of abstraction, and a schematic is the lowest level 
of abstraction. This concept is illustrated in Figure 4–49 for a simple logic circuit. VHDL 
provides three approaches for describing functions that correspond to the three levels of 
abstraction.

•	 The data flow approach is analogous to describing a logic function with a Boolean 
expression. The data flow approach specifies each of the logic gates and how the data 
flows through them. This approach was applied in Examples 4–37 and 4–38.

•	 The structural approach is analogous to using a logic diagram or schematic to 
describe a logic function. It specifies the gates and how they are connected, rather 
than how signals (data) flow through them. The structural approach is used to develop 
VHDL code for describing logic circuits in Chapter 5.

•	 The behavioral approach is analogous to describing a logic function using a state 
diagram or truth table. However, this approach is the most complex; it is usually 
restricted to logic functions whose operations are time dependent and normally 
require some type of memory.

Section 4–12   Checkup

	 1.	What are the advantages of Boolean logic simplification in terms of writing a VHDL 
program?

	 2.	How does Boolean logic simplification benefit a VHDL program in terms of the 
target device?

	 3.	Name the three levels of abstraction for a combinational logic function and state the 
corresponding VHDL approaches for describing a logic function.      

Logic function

0
0

0
0

0
0

0
0

0
1

A B C XD

1 1 1 11

The truth table or state diagramHighest level:

The Boolean expression, which can be
derived from a truth table or schematic

Middle level:

A

B
X

C

D

X = AB + CD

The logic diagram (schematic)Lowest level:

000

010

110101

001

100

FIGURE 4–49  Illustration of the three levels of abstraction for describing a logic function.
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Applied Logic
Seven-Segment Display

Seven-segment displays are used in many types of products that you see every day. A 
7-segment display was used in the tablet-bottling system that was introduced in Chap-
ter 1. The display in the bottling system is driven by logic circuits that decode a binary 
coded decimal (BCD) number and activate the appropriate digits on the display. BCD-
to-7-segment decoder/drivers are readily available as single IC packages for activating 
the ten decimal digits.

In addition to the numbers from 0 to 9, the 7-segment display can show certain letters. 
For the tablet-bottling system, a requirement has been added to display the letters A, b, C, 
d, and E on a separate common-anode 7-segment display that uses a hexadecimal keypad 
for both the numerical inputs and the letters. These letters will be used to identify the type 
of vitamin tablet that is being bottled at any given time. In this application, the decoding 
logic for displaying the five letters is developed.

The 7-Segment Display

Two types of 7-segment displays are the LED and the LCD. Each of the seven segments in 
an LED display uses a light-emitting diode to produce a colored light when there is current 
through it and can be seen in the dark. An LCD or liquid-crystal display operates by polar-
izing light so that when a segment is not activated by a voltage, it reflects incident light and 
appears invisible against its background; however, when a segment is activated, it does not 
reflect light and appears black. LCD displays cannot be seen in the dark.

The seven segments in both LED and LCD displays are arranged as shown in Figure 4–50 
and labeled a, b, c, d, e, f, and g as indicated in part (a). Selected segments are activated to 
create each of the ten decimal digits as well as certain letters of the alphabet, as shown in part 
(b). The letter b is shown as lowercase because a capital B would be the same as the digit 8. 
Similarly, for d, a capital letter would appear as a 0.

9:00

(b) Formation of the ten digits
     and certain letters

(a) Segment arrangement

b

c

f

e

d

g

a

fg04_04600
FIGURE 4–50  Seven-segment display.

Exercise

1.	 List the segments used to form the digit 2.
2.	 List the segments used to form the digit 5.
3.	 List the segments used to form the letter A.
4.	 List the segments used to form the letter E.
5.	 Is there any one segment that is common to all digits?
6.	 Is there any one segment that is common to all letters?
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Display Logic

The segments in a 7-segment display can be used in the formation of various letters as 
shown in Figure 4–50(b). Each segment must be activated by its own decoding circuit that 
detects the code for any of the letters in which that segment is used. Because a common-
anode display is used, the segments are turned on with a LOW (0) logic level and turned 
off with a HIGH (1) logic level. The active segments are shown for each of the letters re-
quired for the tablet-bottling system in Table 4–14. Even though the active level is LOW 
(lighting the LED), the logic expressions are developed exactly the same way as discussed 
in this chapter, by mapping the desired output (1, 0, or X) for every possible input, group-
ing the 1s on the map, and reading the SOP expression from the map. In effect, the reduced 
logic expression is the logic for keeping a given segment OFF. At first, this may sound 
confusing, but it is simple in practice and it avoids an output current capability issue with 
bipolar (TTL) logic (discussed in Chapter 15 on the website).

TABLE 4–14

Active segments for each of the five 
letters used in the system display.

Letter Segments Activated

A a, b, c, e, f, g
b c, d, e, f, g
C a, d, e, f
d b, c, d, e, g
E a, d, e, f, g

A block diagram of a 7-segment logic and display for generating the five letters is 
shown in Figure 4–51(a), and the truth table is shown in part (b). The logic has four hexa-
decimal inputs and seven outputs, one for each segment. Because the letter F is not used as 
an input, we will show it on the truth table with all outputs set to 1 (OFF).

Hexadecimal-
to-7-segment

decoder

(a) (b)

a
b
c
d
e
f
g

H3
H2
H1
H0

Hexadecimal Inputs

Letter

A
b
C
d
E
F

1
1
1
1
1
1

H3

0
0
1
1
1
1

H2

1
1
0
0
1
1

H1

0
1
0
1
0
1

H0

Segment Ouputs

0
1
0
1
0
1

a

0
1
1
0
1
1

b

0
0
1
0
1
1

c

1
0
0
0
0
1

d

0
0
0
0
0
1

e

0
0
0
1
0
1

f

0
0
1
0
0
1

g

fg04_04700
FIGURE 4–51  Hexadecimal-to-7-segment decoder for letters A through E, used in the 
system.

Karnaugh Maps and the Invalid BCD Code Detector

To develop the simplified logic for each segment, the truth table information in Figure 
4–51 is mapped onto Karnaugh maps. Recall that the BCD numbers will not be shown on 
the letter display. For this reason, an entry that represents a BCD number will be entered 
as an “X” (“don’t care”) on the K-maps. This makes the logic much simpler but would put 
some strange outputs on the display unless steps are taken to eliminate that possibility. 
Because all of the letters are invalid BCD characters, the display is activated only when 
an invalid BCD code is entered into the keypad, thus allowing only letters to be displayed.
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Expressions for the Segment Logic

Using the table in 4–51(b), a standard SOP expression can be written for each segment and 
then minimized using a K-map. The desired outputs from the truth table are entered in the 
appropriate cells representing the hex inputs. To obtain the minimum SOP expressions for 
the display logic, the 1s and Xs are grouped.

Segment a    Segment a is used for the letters A, C, and E. For the letter A, the hexadecimal 
code is 1010 or, in terms of variables, H3H2H1H0. For the letter C, the hexadecimal code is 
1100 or H3H2H1H0. For the letter E, the code is 1110 or H3H2H1H0. The complete standard 
SOP expression for segment a is

a = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

Because a LOW is the active output state for each segment logic circuit, a 0 is entered on 
the Karnaugh map in each cell that represents the code for the letters in which the segment 
is on. The simplification of the expression for segment a is shown in Figure 4–52(a) after 
grouping the 1s and Xs.

Segment b    Segment b is used for the letters A and d. The complete standard SOP expres-
sion for segment b is

b = H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment b is shown in Figure 4–52(b).

Segment c    Segment c is used for the letters A, b, and d. The complete standard SOP ex-
pression for segment c is

c = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment c is shown in Figure 4–52(c).

fg04_04800
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0
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0
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X

1

X
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FIGURE 4–52  Minimization of the expressions for segments a, b, and c.

Exercise

  7.	 Develop the minimum expression for segment d.
  8.	 Develop the minimum expression for segment e.
  9.	 Develop the minimum expression for segment f.
10.	 Develop the minimum expression for segment g.

The Logic Circuits

From the minimum expressions, the logic circuits for each segment can be implemented. 
For segment a, connect the H0 input directly (no gate) to the a segment on the display. The 
segment b and segment c logic are shown in Figure 4–53 using AND or OR gates. Notice 
that two of the terms (H2H1 and H1H0) appear in the expressions for both b and c logic so 
two of the AND gates can be used in both, as indicated.
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Exercise

11.	 Show the logic for segment d.
12.	 Show the logic for segment e.
13.	 Show the logic for segment f.
14.	 Show the logic for segment g.

fg04_04900

cb

H2

H1

H0

FIGURE 4–53  Segment-b and 
segment-c logic circuits.

Describing the Decoding Logic with VHDL

The 7-segment decoding logic can be described using VHDL for implementation in a pro-
grammable logic device (PLD). The logic expressions for segments a, b, and c of the 
display are as follows:

 a = H0

 b = H1H0 + H1H0 + H2H1

 c = H1H0 + H2H1

u  The VHDL code for segment a is

entity SEGLOGIC is
  port (H0: in bit; SEGa: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin
  SEGa ,5 H0;
end architecture LogicFunction;

u  The VHDL code for segment b is

entity SEGLOGIC is
  port (H0, H1, H2: in bit; SEGb: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin
  SEGb ,5 (not H1 and not H0) or (H1 and H0) or (H2 and H1);
end architecture LogicFunction;

u  The VHDL code for segment c is

entity SEGLOGIC is
  port (H0, H1, H2: in bit; SEGc: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin
  SEGc ,5 (not H1 and not H0) or (H2 and H1);
end architecture LogicFunction;
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FIGURE 4–54  Multisim circuit screen for decoder and display.

Exercise

15.	 Write the VHDL code for segments d, e, f, and g.

Simulation

The decoder simulation using Multisim is shown in Figure 4–54 with the letter E selected. 
Subcircuits are used for the segment logic to be developed as activities or in the lab. The 
purpose of simulation is to verify proper operation of the circuit.

Open file AL04 in the Applied Logic folder on the website. Run the simulation of 
the decoder and display using your Multisim software. Observe the operation for the 
specified letters.

Summary

•	 Gate symbols and Boolean expressions for the outputs of an inverter and 2-input gates are 
shown in Figure 4–55.

A A
A

B
AB

A

B
AB

A

B
A + B

A

B
A + B

fg04_05100

FIGURE 4–55 

Putting Your Knowledge to Work

How would you modify the decoder for a common-cathode 7-segment display?
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•	 Commutative laws:	 A + B = B + A

		  AB = BA

•	 Associative laws:	 A + (B + C) = (A + B) + C

		  A(BC) = (AB)C

•	 Distributive law:  A(B + C) = AB + AC

•	 Boolean rules:  1.	 A + 0 = A

2.	 A + 1 = 1

3.	 A #0 = 0

4.	 A #1 = A

5.	 A + A = A

6.	 A + A = 1

  7.	 A #A = A

  8.	 A # A = 0

  9.	 A = A

10.	 A + AB = A

11.	 A + AB = A + B

12.	 (A + B)(A + C) = A + BC

•	 DeMorgan’s theorems:

1.	 The complement of a product is equal to the sum of the complements of the terms in the product.

XY = X + Y

2.	 The complement of a sum is equal to the product of the complements of the terms in the sum.

X + Y = X Y

•	 Karnaugh maps for 3 variables have 8 cells and for 4 variables have 16 cells.

•	 Quinn-McCluskey is a method for simplification of Boolean expressions.

•	 The three levels of abstraction in VHDL are data flow, structural, and behavioral.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Complement  The inverse or opposite of a number. In Boolean algebra, the inverse function, 
expressed with a bar over a variable. The complement of a 1 is 0, and vice versa.

“Don’t care”  A combination of input literals that cannot occur and can be used as a 1 or a 0 on 
a Karnaugh map for simplification.

Karnaugh map  An arrangement of cells representing the combinations of literals in a Boolean 
expression and used for a systematic simplification of the expression.

Minimization  The process that results in an SOP or POS Boolean expression that contains the 
fewest possible literals per term.

Product-of-sums (POS)  A form of Boolean expression that is basically the ANDing of ORed terms.

Product term  The Boolean product of two or more literals equivalent to an AND operation.

Sum-of-products (SOP)  A form of Boolean expression that is basically the ORing of ANDed terms.

Sum term  The Boolean sum of two or more literals equivalent to an OR operation.

Variable  A symbol used to represent an action, a condition, or data that can have a value of 
1 or 0, usually designated by an italic letter or word.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 Variable, complement, and literal are all terms used in Boolean algebra.

	 2.	 Addition in Boolean algebra is equivalent to the NOR function.

	 3.	 Multiplication in Boolean algebra is equivalent to the AND function.

	 4.	 The commutative law, associative law, and distributive law are all laws in Boolean algebra.

	 5.	 The complement of 0 is 0 itself.

	 6.	 When a Boolean variable is multiplied by its complement, the result is the variable.
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250	 Boolean Algebra and Logic Simplification

	 7.	 “The complement of a product of variables is equal to the sum of the complements of each 
variable” is a statement of DeMorgan’s theorem.

	 8.	 SOP means sum-of-products.

	 9.	 Karnaugh maps can be used to simplify Boolean expressions.

	10.	 A 3-variable Karnaugh map has six cells.

	11.	 VHDL is a type of hardware definition language.

	12.	 A VHDL program consists of an entity and an architecture.

Self-Test

Answers are at the end of the chapter.

	 1.	 A variable is a symbol in Boolean algebra used to represent
(a)	 data	 (b)	 a condition
(c)	 an action	 (d)	 answers (a), (b), and (c)

	 2.	 The Boolean expression A + B + C is
(a)	 a sum term	 (b)	 a literal term
(c)	 an inverse term	 (d)	 a product term

	 3.	 The Boolean expression ABCD is
(a)	 a sum term	 (b)	 a literal term
(c)	 an inverse term	 (d)	 a product term

	 4.	 The domain of the expression ABCD + AB + CD + B is
(a)	 A and D	 (b)	 B only
(c)	 A, B, C, and D	 (d)	 none of these

	 5.	 According to the associative law of addition,
(a)	 A + B = B + A	 (b)	 A = A + A
(c)	 (A + B) + C = A + (B + C )	 (d)	 A + 0 = A

	 6.	 According to commutative law of multiplication,
(a)	 AB = BA	 (b)	 A = AA
(c)	 (AB)C = A(BC )	 (d)	 A0 = A

	 7.	 According to the distributive law,
(a)	 A(B + C) = AB + AC	 (b)	 A(BC) = ABC
(c)	 A(A + 1) = A	 (d)	 A + AB = A

	 8.	 Which one of the following is not a valid rule of Boolean algebra?
(a)	 A + 1 = 1	 (b)	 A = A
(c)	 AA = A	 (d)	 A + 0 = A

	 9.	 Which of the following rules states that if one input of an AND gate is always 1, the output is 
equal to the other input?
(a)	 A + 1 = 1	 (b)	 A + A = A
(c)	 A #A = A	 (d)	 A #1 = A

	10.	 According to DeMorgan’s theorems, the complement of a product of variables is equal to
(a)	 the complement of the sum	 (b)	 the sum of the complements
(c)	 the product of the complements	 (d)	 answers (a), (b), and (c)

	11.	 The Boolean expression X = (A + B)(C + D) represents
(a)	 two ORs ANDed together	 (b)	 two ANDs ORed together
(c)	 A 4-input AND gate	 (d)	 a 4-input OR gate

	12.	 An example of a sum-of-products expression is
(a)	 A + B(C + D)	 (b)	 AB + AC + ABC
(c)	 (A + B + C)(A + B + C)	 (d)	 both answers (a) and (b)

	13.	 An example of a product-of-sums expression is
(a)	 A(B + C) + AC	 (b)	 (A + B)(A + B + C)
(c)	 A + B + BC	 (d)	 both answers (a) and (b)

	14.	 An example of a standard SOP expression is
(a)	 AB + ABC + ABD	 (b)	 ABC + ACD
(c)	 AB + AB + AB	 (d)	 ABCD + AB + A
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	15.	 A 4-variable Karnaugh map has 
(a)	 four cells	 (b)	 eight cells
(c)	 sixteen cells	 (d)	 thirty-two cells

	16.	 In a 4-variable Karnaugh map, a 2-variable product term is produced by
(a)	 a 2-cell group of 1s	 (b)	 an 8-cell group of 1s
(c)	 a 4-cell group of 1s	 (d)	 a 4-cell group of 0s

	17.	 The Quine-McCluskey method can be used to
(a)	 replace the Karnaugh map method	 (b)	 simplify expressions with 5 or more variables
(c)	 both (a) and (b)	 (d)	 none of the above

	18.	 VHDL is a type of
(a)	 programmable logic	 (b)	 hardware description language
(c)	 programmable array	 (d)	 logical mathematics

	19.	 In VHDL, a port is
(a)	 a type of entity	 (b)	 a type of architecture
(c)	 an input or output	 (d)	 a type of variable

	20.	 Using VDHL, a logic circuit’s inputs and outputs are described in the
(a)	 architecture	 (b)	 component
(c)	 entity	 (d)	 data flow

Problems

Answers to odd-numbered problems are at the end of the book.

Section 4–1	Boolean Operations and Expressions
	 1.	 Using Boolean notation, write an expression that is a 0 only when all of its variables (A, B, C, 

and D) are 0s.

	 2.	 Write an expression that is a 1 when one or more of its variables (A, B, C, D, and E) are 0s.

	 3.	 Write an expression that is a 0 when one or more of its variables (A, B, and C) are 0s.

	 4.	 Evaluate the following operations:

(a)	 0 + 0 + 0 + 0	 (b)  0 + 0 + 0 + 1	 (c)  1 + 1 + 1 + 1
(d)	 1 # 1 + 0 # 0 + 1	 (e)  1 # 0 # 1 # 0	 (f)  1 # 0 + 1 # 0 + 0 # 1 + 0 # 1

	 5.	 Find the values of the variables that make each product term 1 and each sum term 0.

(a)	 ABC	 (b)  A + B + C	 (c)  A B C	 (d)  A + B + C

(e)	 A + B + C	 (f)  A + B + C	

	 6.	 Find the value of X for all possible values of the variables.

(a)	 X = A + B + C	 (b)  X = (A + B)C	 (c)  X = (A + B)(B + C )

(d)	 X = (A + B) + (AB + BC )	 (e)  X = ( A + B )(A + B)

Section 4–2	Laws and Rules of Boolean Algebra
	 7.	 Identify the law of Boolean algebra upon which each of the following equalities is based:

(a)	 A + AB + ABC + ABCD = ABCD + ABC + AB + A

(b)	 A + AB + ABC + ABCD = DCBA + CBA + BA + A

(c)	 AB(CD + CD + EF + EF ) = ABCD + ABCD + ABEF + ABEF

	 8.	 Identify the Boolean rule(s) on which each of the following equalities is based:

(a)	 AB + CD + EF = AB + CD + EF	 (b)  AAB + ABC + ABB = ABC

(c)	 A(BC + BC) + AC = A(BC) + AC	 (d)  AB(C + C) + AC = AB + AC

(e)	 AB + ABC = AB	 (f)  ABC + AB + ABCD = ABC + AB + D

Section 4–3	DeMorgan’s Theorems
	 9.	 Apply DeMorgan’s theorems to each expression:

(a)	 A + B	 (b)  AB	 (c)  A + B + C	 (d)  ABC

(e)	 A(B + C)	 (f)  AB + CD	 (g)  AB + CD	 (h)  (A + B)(C + D)
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252	 Boolean Algebra and Logic Simplification

	10.	 Apply DeMorgan’s theorems to each expression:

(a)	 AB(C + D)	 (b)  AB(CD + EF)

(c)	 (A + B + C + D) + ABCD	 (d)  (A + B + C + D)(AB CD)

(e)	 AB(CD + EF)(AB + CD)

	11.	 Apply DeMorgan’s theorems to the following:

(a)	 (ABC)(EFG) + (HIJ)(KlM)	 (b)  (A + BC + CD) + BC

(c)	 (A + B)(C + D)(E + F)(G + H)

Section 4–4	Boolean Analysis of Logic Circuits
	12.	 Write the Boolean expression for each of the logic gates in Figure 4–56.

A

C
B

(d)

X X
A

B

(c)

XA

(b)

X
A

B

(a)

fg04_05300

FIGURE 4–56 

	13.	 Write the Boolean expression for each of the logic circuits in Figure 4–57.
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(c)

A

B
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FIGURE 4–57 

	14.	 Draw the logic circuit represented by each of the following expressions:

(a)	 A + B + C + D	 (b)  ABCD
(c)	 A + BC	 (d)  ABC + D

	15.	 Draw the logic circuit represented by each expression:

(a)	 AB + AB	 (b)  ABCD
(c)	 A + BC	 (d)  ABC + D

	16.	 (a)	� Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs, 
ASSERT and READY, are both LOW.

(b)	 Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input, 
LOAD, is LOW and the input, READY, is HIGH.

	17.	 Develop the truth table for each of the circuits in Figure 4–58.

fg04_05500

(a) (b)

CAMI

VCR

Record

RDY

ENABLE

RTS

SEND

BUSY

FIGURE 4–58 

	18.	 Construct a truth table for each of the following Boolean expressions:

(a)	 A + B + C	 (b)  ABC	 (c)  AB + BC + CA
(d)	 (A + B)(B + C)(C + A)	 (e)  AB + BC + CA

Section 4–5	Logic Simplification Using Boolean Algebra
	19.	 Using Boolean algebra techniques, simplify the following expressions as much as possible:

(a)	 A(A + B)	 (b)  A(A + AB)	 (c)  BC + BC
(d)	 A(A + AB)	 (e)  ABC + ABC + A BC
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	20.	 Using Boolean algebra, simplify the following expressions:

(a)	 (A + B)(A + C)	 (b)  AB + ABC + ABCD + ABCDE
(c)	 BC + BCD + B	 (d)  (B + B)(BC + BCD)
(e)	 BC + (B + C)D + BC

	21.	 Using Boolean algebra, simplify the following expressions:

(a)	 CE + C(E + F ) + E(E + G )	 (b)   B CD + (B + C + D) + B C DE
(c)	 (C + CD)(C + CD)(C + E )	 (d)  BCDE + BC(DE) + (BC)DE
(e)	 BCD[BC + D(CD + BD)]

	22.	 Determine which of the logic circuits in Figure 4–59 are equivalent.
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B

A
B

B

D
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FIGURE 4–59 

Section 4–6	Standard Forms of Boolean Expressions
	23.	 Convert the following expressions to sum-of-product (SOP) forms:

(a)	 (C + D)(A + D)	 (b)  A (AD + C )	 (c)  (A + C)(CD + AC )

	24.	 Convert the following expressions to sum-of-product (SOP) forms:

(a)	 BC + DE(BC + DE)	 (b)  BC(C D + CE )	 (c)  B + C[BD + (C + D )E ]
	25.	 Define the domain of each SOP expression in Problem 23 and convert the expression to stand-

ard SOP form.

	26.	 Convert each SOP expression in Problem 24 to standard SOP form.

	27.	 Determine the binary value of each term in the standard SOP expressions from Problem 25.

	28.	 Determine the binary value of each term in the standard SOP expressions from Problem 26.

	29.	 Convert each standard SOP expression in Problem 25 to standard POS form.

	30.	 Convert each standard SOP expression in Problem 26 to standard POS form.

Section 4–7	Boolean Expressions and Truth Tables
	31.	 Develop a truth table for each of the following standard SOP expressions:

(a)	 ABC + A BC + ABC    (b)  X Y Z + X Y  Z + X YZ + XYZ + XYZ

	32.	 Develop a truth table for each of the following standard SOP expressions:

(a)	 A BCD + ABC D + A B  CD + A   B  C   D

(b)	 WXYZ + WXYZ + W XYZ + W XYZ + WXY Z

	33.	 Develop a truth table for each of the SOP expressions:

(a)	 AB + ABC + A C + ABC    (b)  X + YZ + WZ + XYZ
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	34.	 Develop a truth table for each of the standard POS expressions:

(a)	 (A + B + C )(A + B + C )(A + B + C )

(b)	 (A + B + C + D )( A + B + C + D)(A + B + C + D )( A + B + C + D)

	35.	 Develop a truth table for each of the standard POS expressions:

(a)	 (A + B)(A + C)(A + B + C)

(b)	 (A + B)(A + B + C)(B + C + D)(A + B + C + D)

	36.	 For each truth table in Table 4–15, derive a standard SOP and a standard POS expression.

Section 4–8	The Karnaugh Map
	37.	 Draw a 3-variable Karnaugh map and label each cell according to its binary value.

	38.	 Draw a 4-variable Karnaugh map and label each cell according to its binary value.

	39.	 Write the standard product term for each cell in a 3-variable Karnaugh map.

Section 4–9	Karnaugh Map SOP Minimization
	40.	 Use a Karnaugh map to find the minimum SOP form for each expression:

(a)	 A B C + A BC + ABC	 (b)  AC(B + C)

(c)	 A(BC + BC) + A(BC + BC)	 (d)  A B C + AB C + ABC + ABC

	41.	 Use a Karnaugh map to simplify each expression to a minimum SOP form:

(a)	 A B C + ABC + ABC + ABC	 (b)  AC[B + B(B + C)]

(c)	 DEF + DEF + D E F

	42.	 Expand each expression to a standard SOP form:

(a)	 AB + ABC + ABC	 (b)  A + BC

(c)	 AB CD + ACD + BCD + ABCD	 (d)  AB + AB CD + CD + BCD + ABCD

	43.	 Minimize each expression in Problem 42 with a Karnaugh map.

	44.	 Use a Karnaugh map to reduce each expression to a minimum SOP form:

(a)	 A + BC + CD

(b)	 A B C D + A B CD + ABCD + ABCD

(c)	 AB(C D + CD) + AB(C D + CD) + AB CD

(d)	 (A B + AB)(CD + CD)
(e)	 A B + AB + C D + CD

X

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

1

0

1

1

0

1

0

0

0

1

1

0

0

1

(d)

A B C DX

(c)

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1

1

0

1

0

1

1

0

0

1

0

0

1

0

0

0

(a)

A B C     X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1
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1 1 1

0

1

0

0

1

1

0

1

(b)

A B C     X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

0

0

1

1

1

TABLE 4–15 
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	45.	 Reduce the function specified in truth Table 4–16 to its minimum SOP form by using a 
Karnaugh map.

	46.	 Use the Karnaugh map method to implement the minimum SOP expression for the logic 
function specified in truth Table 4–17.

	47.	 Solve Problem 46 for a situation in which the last six binary combinations are not allowed.
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TABLE 4–16 
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1

1

0
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TABLE 4–17 

Section 4–10	Karnaugh Map POS Minimization
	48.	 Use a Karnaugh map to find the minimum POS for each expression:

(a)	 (A + B + C)(A + B + C)(A + B + C)

(b)	 (X + Y)(X + Z)(X + Y + Z)(X + Y + Z)

(c)	 A(B + C)(A + C)(A + B + C)(A + B + C)

	49.	 Use a Karnaugh map to simplify each expression to minimum POS form:

(a)	 (A + B + C + D)(A + B + C + D)(A + B + C + D)

(b)	 (X + Y)(W + Z)(X + Y + Z)(W + X + Y + Z)

	50.	 For the function specified in Table 4–16, determine the minimum POS expression using a 
Karnaugh map.

	51.	 Determine the minimum POS expression for the function in Table 4–17.

	52.	 Convert each of the following POS expressions to minimum SOP expressions using a 
Karnaugh map:

(a)	 (A + B)(A + C)(A + B + C)

(b)	 (A + B)(A + B + C)(B + C + D)(A + B + C + D)

Section 4–11	The Quine-McCluskey Method
	53.	 List the minterms in the expression

X = ABC + A BC + ABC + ABC + ABC

	54.	 List the minterms in the expression

X = A B C D + A B CD + AB CD + ABC D + ABCD + ABCD + AB CD

	55.	 Create a table for the number of 1s in the minterms for the expression in Problem 54 (similar to 
Table 4–10).

	56.	 Create a table of first level minterms for the expression in Problem 54 (similar to Table 4–11).
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256	 Boolean Algebra and Logic Simplification

	57.	 Create a table of second level minterms for the expression in Problem 54 (similar to Table 4–12).

	58.	 Create a table of prime implicants for the expression in Problem 54 (similar to Table 4–13).

	59.	 Determine the final reduced expression for the expression in Problem 54.

Section 4–12	Boolean Expressions with VHDL
	60.	 Write a VHDL program for the logic circuit in Figure 4–60.
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FIGURE 4–60 

	61.	 Write a program in VHDL for the expression

Y = ABC + A BC + AB C + ABC

Applied Logic
	62.	 If you are required to choose a type of digital display for low light conditions, will you select 

LED or LCD 7-segment displays? Why?

	63.	 Explain the purpose of the invalid code detector.

	64.	 For segment c, how many fewer gates and inverters does it take to implement the minimum 
SOP expression than the standard SOP expression?

	65.	 Repeat Problem 64 for the logic for segments d through g.

Special Design Problems
	66.	 The logic for segments b and c in Figure 4–53 produces LOW outputs to activate the segments. 

If a type of 7-segment display is used that requires a HIGH to activate a segment, modify the 
logic accordingly.

	67.	 Redesign the logic for segment a in the Applied Logic to include the letter F in the display.

	68.	 Repeat Problem 67 for segments b through g.

	69.	 Design the invalid code detector.

Multisim Troubleshooting Practice
	70.	 Open file P04-70. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

	71.	 Open file P04-71. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	72.	 Open file P04-72. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

Answers

Section Checkups
Section 4–1	Boolean Operations and Expressions
	 1.	 A = 0 = 1

	 2.	 A = 1, B = 1, C = 0; A + B + C = 1 + 1 + 0 = 0 + 0 + 0 = 0

	 3.	 A = 1, B = 0, C = 1; ABC = 1 # 0 # 1 = 1 # 1 # 1 = 1

Section 4–2 Laws and Rules of Boolean Algebra
	 1.	 A + (B + C + D) = (A + B + C) + D

	 2.	 A(B + C + D) = AB + AC + AD
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Section 4–3	DeMorgan’s Theorems
	 1.	 (a)	 ABC + (D + E) = A + B + C + DE    (b)  (A + B)C = A B + C

(c)	 A + B + C + DE = A B C + D + E

Section 4–4	Boolean Analysis of Logic Circuits
	 1.	 (C + D)B + A

	 2.	 Abbreviated truth table: The expression is a 1 when A is 1 or when B and C are 1s or when B 
and D are 1s. The expression is 0 for all other variable combinations.

Section 4–5	Logic Simplification Using Boolean Algebra
	 1.	 (a)	 A + AB + ABC = A    (b)  (A + B)C + ABC = C(A + B)

(c)	 ABC(BD + CDE) + AC = A(C + BDE)

	 2.	 (a)	 Original: 2 AND gates, 1 OR gate, 1 inverter; Simplified: No gates (straight connection)

(b)	 Original: 2 OR gates, 2 AND gates, 1 inverter; Simplified: 1 OR gate, 1 AND gate, 1 inverter

(c)	 Original: 5 AND gates, 2 OR gates, 2 inverters; Simplified: 2 AND gates, 1 OR gate, 
2 inverters

Section 4–6	Standard Forms of Boolean Expressions
	 1.	 (a)	 SOP    (b)  standard POS    (c)  standard SOP    (d)  POS

	 2.	 (a)	 ABC D + ABCD + ABCD + ABCD + ABCD + ABCD + A BCD + ABCD

(c)	 Already standard

	 3.	 (b)	 Already standard

(d)	 (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Section 4–7	Boolean Expressions and Truth Tables
	 1.	 25

= 32    2.  0110 h WXYZ    3.  1100 h W + X + Y + Z

Section 4–8	The Karnaugh Map
	 1.	 (a)	 upper left cell: 000 	  (b)	 lower right cell: 101

(c)	 lower left cell: 100	 (d)	 upper right cell: 001

	 2.	 (a)	 upper left cell: X Y Z	 (b)	 lower right cell: XYZ

(c)	 lower left cell: XY Z	 (d)	 upper right cell: X YZ

	 3.	 (a)	 upper left cell: 0000	 (b)	 lower right cell: 1010

(c)	 lower left cell: 1000	 (d)	 upper right cell: 0010

	 4.	 (a)	 upper left cell: W X Y Z	 (b)	 lower right cell: WXYZ

(c)	 lower left cell: WX Y Z	 (d)	 upper right cell: W XYZ

Section 4–9	Karnaugh Map SOP Minimization
	 1.	 8-cell map for 3 variables; 16-cell map for 4 variables

	 2.	 AB + BC + A BC

	 3.	 (a)	 A B C + ABC + ABC + ABC

(b)	 A B C + A BC + ABC + ABC + AB C + ABC

(c)	 A B C D + A B CD + ABC D + ABCD + ABCD + ABCD + AB CD + ABCD

(d)	 A B C D + ABC D + ABC D + AB C D + ABCD + ABCD + ABCD + A BCD +

ABCD + ABCD + ABCD

Section 4–10	Karnaugh Map POS Minimization
	 1.	 In mapping a POS expression, 0s are placed in cells whose value makes the standard sum term 

zero; and in mapping an SOP expression 1s are placed in cells having the same values as the 
product terms.
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258	 Boolean Algebra and Logic Simplification

	 2.	 0 in the 1011 cell: A + B + C + D

	 3.	 1 in the 0010 cell: A BCD

Section 4–11	The Quine-McCluskey Method
	 1.	 A minterm is a product term in which each variable appears once, either complemented or 

uncomplemented.

	 2.	 An essential prime implicant is a product term that cannot be further simplified by combining 
with other terms.

Section 4–12	Boolean Expressions with VHDL
	 1.	 Simplification can make a VHDL program shorter, easier to read, and easier to modify.

	 2.	 Code simplification results in less space used in a target device, thus allowing capacity for 
more complex circuits.

	 3.	 Truth table: Behavioral
		  Boolean expression: Data flow
		  Logic diagram: Structural

Related Problems for Examples
	4–1	 A + B = 0 when A = 1 and B = 0.

	4–2	 A B = 1 when A = 0 and B = 0.

	4–3	 XYZ

	4–4	 W + X + Y + Z

	4–5	 ABCD E

	4–6	 (A + B + CD)E

	4–7	 ABCD = A + B + C + D

	4–8	 Results should be same as example.

	4–9	 AB

	4–10	 CD

	4–11	 ABC + AC + A B

	4–12	 A + B + C

	4–13	 Results should be same as example.

	4–14	 ABC + AB + AC + AB + B C

	4–15	 WXYZ + WXYZ + WXYZ + W XYZ + WXYZ + WXY Z

	4–16	 011, 101, 110, 010, 111. Yes

	4–17	 (A + B + C)(A + B + C)(A + B + C)(A + B + C)

	4–18	 010, 100, 001, 111, 011. Yes

	4–19	 SOP and POS expressions are equivalent.

	4–20	 See Table 4–18.

	4–21	 See Table 4–19.

TABLE 4–18

A B C X

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

TABLE 4–19

A B C X

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0
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	4–22	 The SOP and POS expressions are equivalent.

	4–23	 See Figure 4–61.

	4–24	 See Figure 4–62.
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FIGURE 4–61
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FIGURE 4–62
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FIGURE 4–63
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FIGURE 4–64

	4–25	 See Figure 4–63.

	4–26	 See Figure 4–64.

	4–27	 No other ways

	4–28	 X = B + AC + ACD + CD

	4–29	 X = D + ABC + BC + AB

	4–30	 Q = X + Y

	4–31	 Q = X Y Z + WXZ + WYZ

	4–32	 See Figure 4–65.

	4–33	 See Figure 4–66.
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FIGURE 4–66
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260	 Boolean Algebra and Logic Simplification

	4–34	 (X + Y  )(X + Z )(X + Y + Z )

	4–35	 (X + Y + Z)(W + X + Z)(W + X + Y + Z)(W + X + Y + Z)

	4–36	 Y Z + X Z + W Y + X YZ

	4–37	 architecture RelProb_1 of Example4_37 is
begin
  X ,5 (not A or B or C) and D;
end architecture RelProb_1;

architecture RelProb_2 of Example4_37 is
begin
  X ,5 (not A and D or B and D or C and D);
end architecture RelProb_2;

	4–38	 architecture RelProb of Example4_38 is
begin
  X ,5 not(A and ((B and C) or not D))
end architecture RelProb;

True/False Quiz
	 1.	 T    2.  F    3.  T      4.  T      5.  F      6.  F

	 7.	 T    8.  T    9.  T    10.  F    11.  F    12.  T

Self-Test
	 1.	 (d)      2.  (a)      3.  (d)      4.  (c)      5.  (c)      6.  (a)      7.  (a)

	 8.	 (b)      9.  (d)    10.  (b)    11.  (a)    12.  (b)    13.  (b)    14.  (c)

	15.	 (c)    16.  (c)    17.  (c)    18.  (b)    19.  (c)    20.  (c)
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Chapter Outline

5–1	 Basic Combinational Logic Circuits 
5–2	 Implementing Combinational Logic 
5–3	 The Universal Property of NAND and 

NOR Gates 
5–4	 Combinational Logic Using NAND and 

NOR Gates 
5–5	 Pulse Waveform Operation 
5–6	 Combinational Logic with VHDL 
5–7	 Troubleshooting 
	 Applied Logic 

Chapter Objectives

■	 Analyze basic combinational logic circuits, such 
as AND-OR, AND-OR-Invert, exclusive-OR, and 
exclusive-NOR

■	 Use AND-OR and AND-OR-Invert circuits to 
implement sum-of-products (SOP) and product-of-
sums (POS) expressions

■	 Write the Boolean output expression for any 
combinational logic circuit

■	 Develop a truth table from the output expression for 
a combinational logic circuit

■	 Use the Karnaugh map to expand an output 
expression containing terms with missing variables 
into a full SOP form

■	 Design a combinational logic circuit for a given 
Boolean output expression

■	 Design a combinational logic circuit for a given 
truth table

■	 Simplify a combinational logic circuit to its minimum 
form

■	 Use NAND gates to implement any combinational 
logic function

Visit the Website

Study aids for this chapter are available at 
http://www.pearsonglobaleditions.com/floyd

Introduction

In Chapters 3 and 4, logic gates were discussed on an 
individual basis and in simple combinations. You were 
introduced to SOP and POS implementations, which 
are basic forms of combinational logic. When logic gates 
are connected together to produce a specified output for 
certain specified combinations of input variables, with no 
storage involved, the resulting circuit is in the category 
of combinational logic. In combinational logic, the out-
put level is at all times dependent on the combination 
of input levels. This chapter expands on the material 
introduced in earlier chapters with a coverage of the 
analysis, design, and troubleshooting of various combi-
national logic circuits. The VHDL structural approach is 
introduced and applied to combinational logic.

■	 Universal gate

■	 Negative-OR

■	 Negative-AND

■	 Component

■	 Signal

■	 Node

■	 Signal tracing

■	 Use NOR gates to implement any combinational 
logic function

■	 Analyze the operation of logic circuits with pulse inputs

■	 Write VHDL programs for simple logic circuits

■	 Troubleshoot faulty logic circuits

■	 Troubleshoot logic circuits by using signal tracing 
and waveform analysis

■	 Apply combinational logic to an application

Key Terms

Key terms are in order of appearance in the chapter.

Combinational  
Logic Analysis

5CHAPTER 
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262    Combinational Logic Analysis

5–1  Basic Combinational Logic Circuits

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each 
product term and one OR gate for summing all of the product terms. As you know, this SOP 
implementation is called AND-OR logic and is the basic form for realizing standard Boolean 
functions. In this section, the AND-OR and the AND-OR-Invert are examined; the exclusive-
OR and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

After completing this section, you should be able to

u	 Analyze and apply AND-OR circuits

u	 Analyze and apply AND-OR-Invert circuits

u	 Analyze and apply exclusive-OR gates

u	 Analyze and apply exclusive-NOR gates

AND-OR Logic

Figure 5–1(a) shows an AND-OR circuit consisting of two 2-input AND gates and one 
2-input OR gate; Figure 5–1(b) is the ANSI standard rectangular outline symbol. The Boolean 
expressions for the AND gate outputs and the resulting SOP expression for the output X are 
shown on the diagram. In general, an AND-OR circuit can have any number of AND gates, 
each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5–1. The interme-
diate AND gate outputs (the AB and CD columns) are also shown in the table.

AND-OR logic produces an SOP 
expression.

A

B

C

D CD

AB SOP
X = AB + CD

(a) Logic diagram (ANSI standard distinctive
shape symbols)

A

B

C

D

X

(b) ANSI standard rectangular outline symbol

&

&

≥1

fg05_00100

FIGURE 5–1  An example of AND-OR logic. Open file F05-01 to verify the operation. 
A multisim tutorial is available on the website.

Table 5–1

Truth table for the AND-OR logic in Figure 5–1.

Inputs Output
A B C D AB CD X

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1
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An AND-OR circuit directly implements an SOP expression, assuming the complements 
(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5–1 
is stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and 
input B are HIGH (1) or both input C and input D are HIGH (1).

EXAMPLE 5–1

In a certain chemical-processing plant, a liquid chemical is used in a manufacturing 
process. The chemical is stored in three different tanks. A level sensor in each tank 
produces a HIGH voltage when the level of chemical in the tank drops below a speci-
fied point.

Design a circuit that monitors the chemical level in each tank and indicates when the 
level in any two of the tanks drops below the specified point.

Solution

The AND-OR circuit in Figure 5–2 has inputs from the sensors on tanks A, B, and C as 
shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks tanks A 
and C, and gate G3 checks tanks B and C. When the chemical level in any two of the 
tanks gets too low, one of the AND gates will have HIGHs on both of its inputs, causing 
its output to be HIGH; and so the final output X from the OR gate is HIGH. This HIGH 
input is then used to activate an indicator such as a lamp or audible alarm, as shown in 
the figure.

fg05_00200

Low-level
indicator

X

G3

G2

G1

A B C

FIGURE 5–2 

Related Problem*

Write the Boolean SOP expression for the AND-OR logic in Figure 5–2.

*Answers are at the end of the chapter.

AND-OR-Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-
Invert circuit. Recall that AND-OR logic directly implements SOP expressions. POS expres-
sions can be implemented with AND-OR-Invert logic. This is illustrated as follows, starting 
with a POS expression and developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 5–3(a) shows an AND-OR-Invert circuit with four inputs 
and the development of the POS output expression. The ANSI standard rectangular outline 
symbol is shown in part (b). In general, an AND-OR-Invert circuit can have any number of 
AND gates, each with any number of inputs.
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264    Combinational Logic Analysis

The operation of the AND-OR-Invert circuit in Figure 5–3 is stated as follows:

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if both input 
A and input B are HIGH (1) or both input C and input D are HIGH (1).

A truth table can be developed from the AND-OR truth table in Table 5–1 by simply chang-
ing all 1s to 0s and all 0s to 1s in the output column.

fg05_00300

A

B

C

D CD

AB POS

AB + CD  =  (A + B)(C + D)

A

B

C

D

X

(b)

&

&

≥1

AB + CD

(a)

FIGURE 5–3  An AND-OR-Invert circuit produces a POS output. Open file F05-03 
to verify the operation.

EXAMPLE 5–2

The sensors in the chemical tanks of Example 5–1 are being replaced by a new model 
that produces a LOW voltage instead of a HIGH voltage when the level of the chemical 
in the tank drops below a critical point.

Modify the circuit in Figure 5–2 to operate with the different input levels and still 
produce a HIGH output to activate the indicator when the level in any two of the tanks 
drops below the critical point. Show the logic diagram.

Solution

The AND-OR-Invert circuit in Figure 5–4 has inputs from the sensors on tanks A, B, 
and C as shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks 
tanks A and C, and gate G3 checks tanks B and C. When the chemical level in any two 
of the tanks gets too low, each AND gate will have a LOW on at least one input, caus-
ing its output to be LOW and, thus, the final output X from the inverter is HIGH. This 
HIGH output is then used to activate an indicator.

X

G3

G2

G1

A B C

Low-level
indicator

fg05_00400

FIGURE 5–4 

Related Problem

Write the Boolean expression for the AND-OR-Invert logic in Figure 5–4 and show 
that the output is HIGH (1) when any two of the inputs A, B, and C are LOW (0).
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Exclusive-OR Logic

The exclusive-OR gate was introduced in Chapter 3. Although this circuit is considered a 
type of logic gate with its own unique symbol, it is actually a combination of two AND 
gates, one OR gate, and two inverters, as shown in Figure 5–5(a). The two ANSI standard 
exclusive-OR logic symbols are shown in parts (b) and (c).

The XOR gate is actually a 
combination of other gates.

A

X = AB + AB

(b) ANSI distinctive(a) Logic diagram

B
X

A

B
X

A

B

= 1

(c) ANSI rectangular
shape symbol outline symbol

fg05_00500FIGURE 5–5  Exclusive-OR logic diagram and symbols. Open file F05-05 to verify the 
operation.

The output expression for the circuit in Figure 5–5 is

X = AB + AB

Evaluation of this expression results in the truth table in Table 5–2. Notice that the output 
is HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-
tor � is often used, so the expression X = AB + AB can be stated as “X is equal to A 
exclusive-OR B” and can be written as

X = A � B

Exclusive-NOR Logic

As you know, the complement of the exclusive-OR function is the exclusive-NOR, which 
is derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = A B + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.
The exclusive-NOR can be implemented by simply inverting the output of an exclusive-

OR, as shown in Figure 5–6(a), or by directly implementing the expression A B + AB, as 
shown in part (b).

Table 5–2

Truth table for an exclusive-
OR.

A B X

0 0 0
0 1 1
1 0 1
1 1 0

A

B

X

XOR

(a) X = AB + AB

A

B X

AB

(b) X = AB + AB

AB

fg05_00600

FIGURE 5–6  Two equivalent ways of implementing the exclusive-NOR. Open files 
F05-06 (a) and (b) to verify the operation.
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Related Problem

How would you verify that a correct even-parity bit is generated for each combination 
of the four data bits?

EXAMPLE 5–3

Use exclusive-OR gates to implement an even-parity code generator for an original 
4-bit code.

Solution

Recall from Chapter 2 that a parity bit is added to a binary code in order to provide 
error detection. For even parity, a parity bit is added to the original code to make the 
total number of 1s in the code even. The circuit in Figure 5–7 produces a 1 output 
when there is an odd number of 1s on the inputs in order to make the total number of 
1s in the output code even. A 0 output is produced when there is an even number of 1s 
on the inputs.

A0

A1
Data bits Even parity bit

Data bits

A2

A3

fg05_00700

FIGURE 5–7  Even-parity generator.

EXAMPLE 5–4

Use exlusive-OR gates to implement an even-parity checker for the 5-bit code generated 
by the circuit in Example 5–3.

Solution

The circuit in Figure 5–8 produces a 1 output when there is an error in the five-bit code 
and a 0 when there is no error.

A0

A1
Data bits

Even parity bit
Error

A2

A3

fg05_00800
FIGURE 5–8  Even-parity checker.

Related Problem

How would you verify that an error is indicated when the input code is incorrect?
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Section 5–1  Checkup

Answers are at the end of the chapter.

	 1.	Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the 
following input conditions:

(a)  A = 1, B = 0, C = 1, D = 0    (b)  A = 1, B = 1, C = 0, D = 1

(c)  A = 0, B = 1, C = 1, D = 1

	 2.	Determine the output (1 or 0) of an exclusive-OR gate for each of the following input 
conditions:

(a)  A = 1, B = 0	 (b)  A = 1, B = 1

(c)  A = 0, B = 1	 (d)  A = 0, B = 0

	 3.	Develop the truth table for a certain 3-input logic circuit with the output expression 
X = ABC + ABC + A B C + ABC + ABC.

	 4.	Draw the logic diagram for an exclusive-NOR circuit.

For every Boolean expression there 
is a logic circuit, and for every logic 
circuit there is a Boolean expression.

5–2  Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a 
Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-
ered in Chapter 4 is also included.

After completing this section, you should be able to

u	 Implement a logic circuit from a Boolean expression

u	 Implement a logic circuit from a truth table

u	 Minimize a logic circuit

From a Boolean Expression to a Logic Circuit

Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE, 
with a domain of five variables. The first term is formed by ANDing A with B, and the 
second term is formed by ANDing C, D, and E. The two terms are then ORed to form the 
output X. These operations are indicated in the structure of the expression as follows:

	 AND

X = AB + CDE

	 OR

Note that in this particular expression, the AND operations forming the two individual 
terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term 
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then 
required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

InfoNote

Many control programs require 
logic operations to be performed 
by a computer. A driver program 
is a control program that is used 
with computer peripherals. For 
example, a mouse driver requires 
logic tests to determine if a button 
has been pressed and further 
logic operations to determine if 
it has moved, either horizontally 
or vertically. Within the heart of a 
microprocessor is the arithmetic 
logic unit (ALU), which performs 
these logic operations as directed 
by program instructions. All of the 
logic described in this chapter can 
also be performed by the ALU, 
given the proper instructions.
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fg05_00900
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X = AB + CDE
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FIGURE 5–9  Logic circuit for X 5 AB 1 CDE.
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 X = ABCD + ABEF

(b) Sum-of-products implementation of the circuit in part (a)(a)

fg05_01000
FIGURE 5–10  Logic circuits for X = AB(CD + EF ) = ABCD + ABEF.

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed. 
The term CD + EF is formed by first ANDing C and D and ANDing E and F, and 
then ORing these two terms. This structure is indicated in relation to the expression as 
follows:

	 AND

	 NOT

	 OR

X = AB(CD + EF)

	 AND

Before you can implement the final expression, you must create the sum term CD + EF; 
but before you can get this term; you must create the product terms CD and EF; but before 
you can get the term CD, you must create D. So, as you can see, the logic operations must 
be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

	 1.	 One inverter to form D

	 2.	 Two 2-input AND gates to form CD and EF

	 3.	 One 2-input OR gate to form CD + EF

	 4.	 One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 5–10(a). Notice that there is a 
maximum of four gates and an inverter between an input and output in this circuit (from 
input D to output). Often the total propagation delay time through a logic circuit is a major 
consideration. Propagation delays are additive, so the more gates or inverters between input 
and output, the greater the propagation delay time.

Unless an intermediate term, such as CD + EF in Figure 5–10(a), is required as an out-
put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to 
reduce the overall propagation delay time. The expression is converted to SOP as follows, 
and the resulting circuit is shown in Figure 5–10(b).

AB(CD + EF) = ABCD + ABEF
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Table 5–3

Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ABC
1 0 0 1 AB C
1 0 1 0
1 1 0 0
1 1 1 0

From a Truth Table to a Logic Circuit

If you begin with a truth table instead of an expression, you can write the SOP expression 
from the truth table and then implement the logic circuit. Table 5–3 specifies a logic function.

The Boolean SOP expression obtained from the truth table by ORing the product terms 
for which X 5 1 is

X = ABC + AB C

The first term in the expression is formed by ANDing the three variables A, B, and C. The 
second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters to 
form the A, B, and C variables; two 3-input AND gates to form the terms ABC and AB C; 
and one 2-input OR gate to form the final output function, ABC + AB C.

The implementation of this logic function is illustrated in Figure 5–11.

EXAMPLE 5–5

Design a logic circuit to implement the operation specified in the truth table of Table 5–4.

Table 5–4
Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ABC
1 0 0 0
1 0 1 1 ABC
1 1 0 1 ABC
1 1 1 0

A

B X = ABC + ABC

C

A
ABC

B

C
ABC

fg05_01100

FIGURE 5–11  Logic circuit for X = ABC + AB C. Open file F05-11 to verify the 
operation.

Solution

Notice that X 5 1 for only three of the input conditions. Therefore, the logic expression is

X = ABC + ABC + ABC
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EXAMPLE 5–6

Develop a logic circuit with four input variables that will only produce a 1 output when 
exactly three input variables are 1s.

Solution

Out of sixteen possible combinations of four variables, the combinations in which there are 
exactly three 1s are listed in Table 5–5, along with the corresponding product term for each.

Table 5–5

A B C D Product Term

0 1 1 1 ABCD
1 0 1 1 ABCD
1 1 0 1 ABCD
1 1 1 0 ABCD

The product terms are ORed to get the following expression:

X = ABCD + ABCD + ABCD + ABCD

This expression is implemented in Figure 5–13 with AND-OR logic.

A
ABC

ABC

A

ABC
X 

BC

BC

fg05_01200
Related Problem

Determine if the logic circuit of Figure 5–12 can be simplified.

FIGURE 5–12  Open file F05-12 to 
verify the operation.

ABCD

X

ABCD

ABCD

ABCD

D C B A

fg05_01300

FIGURE 5–13  Open file 
F05-13 to verify the operation.

The logic gates required are three inverters, three 3-input AND gates and one 3-input 
OR gate. The logic circuit is shown in Figure 5–12.
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EXAMPLE 5–8

Minimize the combinational logic circuit in Figure 5–16. Inverters for the comple-
mented variables are not shown.

Related Problem

Determine if the logic circuit of Figure 5–13 can be simplified.

X 

A

A
B
C

B
C
D

A
B
C
D

A
B
C
D

fg05_01600

FIGURE 5–16 

EXAMPLE 5–7

Reduce the combinational logic circuit in Figure 5–14 to a minimum form.

A

B

C

D

X

fg05_01400

FIGURE 5–14 
Open file F05-14 to 
verify that this circuit is 
equivalent to the gate  
in Figure 5–15.

Solution

The expression for the output of the circuit is

X = (A B C)C + A B C + D

Applying DeMorgan’s theorem and Boolean algebra,

 X = (A + B + C)C + A + B + C + D

 = AC + BC + CC + A + B + C + D

 = AC + BC + C + A + B + C + D

 = C(A + B + 1) + A + B + D

 X = A + B + C + D

The simplified circuit is a 4-input OR gate as shown in Figure 5–15.

A
B
C
D

X

fg05_01500

FIGURE 5–15 

Related Problem

Verify the minimized expression A 1 B 1 C 1 D using a Karnaugh map.
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Solution

The output expression is

X = AB C + ABC D + A B CD + A B C D

Expanding the first term to include the missing variables D and D,

 X = AB C(D + D) + ABC D + A B CD + A B C D

 = AB CD + AB C D + ABC D + A B CD + A B C D

This expanded SOP expression is mapped and simplified on the Karnaugh map in Fig- 
ure 5–17(a). The simplified implementation is shown in part (b). Inverters are not shown.

1

(a)

AB
CD

00 01 11 10

00

01

11

10

BC

ACD1

1

1

(b)

X

B

C

A
C
D

1

fg05_01700
FIGURE 5–17 

Related Problem

Develop the POS equivalent of the circuit in Figure 5–17(b). See Section 4–10.

Section 5–2   Checkup

	 1.	 Implement the following Boolean expressions as they are stated:

(a)  X = ABC + AB + AC    (b)  X = AB(C + DE)

	 2.	Develop a logic circuit that will produce a 1 on its output only when all three inputs 
are 1s or when all three inputs are 0s.

	 3.	Reduce the circuits in Question 1 to minimum SOP form.

5–3  The Universal Property of NAND and NOR Gates

Up to this point, you have studied combinational circuits implemented with AND gates, 
OR gates, and inverters. In this section, the universal property of the NAND gate and the 
NOR gate is discussed. The universality of the NAND gate means that it can be used as 
an inverter and that combinations of NAND gates can be used to implement the AND, 
OR, and NOR operations. Similarly, the NOR gate can be used to implement the inverter 
(NOT), AND, OR, and NAND operations.

After completing this section, you should be able to

u	 Use NAND gates to implement the inverter, the AND gate, the OR gate, and 
the NOR gate

u	 Use NOR gates to implement the inverter, the AND gate, the OR gate, and 
the NAND gate
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The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the AND, 
the OR, and the NOR functions. An inverter can be made from a NAND gate by connecting 
all of the inputs together and creating, in effect, a single input, as shown in Figure 5–18(a) 
for a 2-input gate. An AND function can be generated by the use of NAND gates alone, 
as shown in Figure 5–18(b). An OR function can be produced with only NAND gates, as 
illustrated in part (c). Finally, a NOR function is produced as shown in part (d).

AAA A

(a) One NAND gate used as an inverter

AB
A

B

A

B
AB = AB

(b) Two NAND gates used as an AND gate

AB

A + B
A

B

A

B

A

(c) Three NAND gates used as an OR gate

AB = A + B

B

G1

G2

G3

A + B
A

B

A

B

(d) Four NAND gates used as a NOR gate

A + B

A

B

G1

G2

G3 G4

AB = A + B

fg05_01800

FIGURE 5–18  Universal application of NAND gates. Open files F05-18(a), (b), (c), and 
(d) to verify each of the equivalencies.

In Figure 5–18(b), a NAND gate is used to invert (complement) a NAND output to form 
the AND function, as indicated in the following equation:

X = AB = AB

In Figure 5–18(c), NAND gates G1 and G2 are used to invert the two input variables 
before they are applied to NAND gate G3. The final OR output is derived as follows by 
application of DeMorgan’s theorem:

X = A B = A + B

In Figure 5–18(d), NAND gate G4 is used as an inverter connected to the circuit of part (c) 
to produce the NOR operation A + B.

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and 
NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting 
all of the inputs together to effectively create a single input, as shown in Figure 5–19(a) 
with a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated 
in Figure 5–19(b). An AND gate can be constructed by the use of NOR gates, as shown in 

Combinations of NAND gates can be 
used to produce any logic function.

Combinations of NOR gates can be 
used to produce any logic function.
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Figure 5–19(c). In this case the NOR gates G1 and G2 are used as inverters, and the final 
output is derived by the use of DeMorgan’s theorem as follows:

X = A + B = AB

Figure 5–19(d) shows how NOR gates are used to form a NAND function.

Section 5–3   Checkup

	 1.	Use NAND gates to implement each expression:

(a)  X = A + B    (b)  X = AB

	 2.	Use NOR gates to implement each expression:

(a)  X = A + B    (b)  X = AB

5–4  Combinational Logic Using NAND and NOR Gates

In this section, you will see how NAND and NOR gates can be used to implement a logic 
function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent opera-
tion called the negative-OR and that the NOR gate exhibits an equivalent operation called 
the negative-AND. You will see how the use of the appropriate symbols to represent the 
equivalent operations makes “reading” a logic diagram easier.

After completing this section, you should be able to

u	 Use NAND gates to implement a logic function

u	 Use NOR gates to implement a logic function

u	 Use the appropriate dual symbol in a logic diagram

AAA A

(a) One NOR gate used as an inverter

A

B
A + B

(b) Two NOR gates used as an OR gate

A + B
A

B

A + B

A

B

(c) Three NOR gates used as an AND gate

AB
A

B
A + B = AB

A

B

G1

G2

G3

A

B

A

B

(d) Four NOR gates used as a NAND gate

AB

A

B

AB

G1

G2

G4G3 AB

fg05_01900

FIGURE 5–19  Universal application of NOR gates. Open files F05-19(a), (b), (c), and (d) 
to verify each of the equivalencies.
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NAND Logic

As you have learned, a NAND gate can function as either a NAND or a negative-OR 
because, by DeMorgan’s theorem,

AB = A + B

NAND 	  negative-OR

Consider the NAND logic in Figure 5–20. The output expression is developed in the 
following steps:

 X = (AB)(CD)

 = (A + B)(C + D)

 = (A + B) + (C + D)

 = A B + C D

 = AB + CD

A

B

C

D

G2

G3

G1 X = AB + CD 

CD

AB

fg05_02000

FIGURE 5–20  NAND logic for X 5 AB 1 CD.

As you can see in Figure 5–20, the output expression, AB 1 CD, is in the form of two 
AND terms ORed together. This shows that gates G2 and G3 act as AND gates and that 
gate G1 acts as an OR gate, as illustrated in Figure 5–21(a). This circuit is redrawn in 
part (b) with NAND symbols for gates G2 and G3 and a negative-OR symbol for gate G1.

Notice in Figure 5–21(b) the bubble-to-bubble connections between the outputs of 
gates G2 and G3 and the inputs of gate G1. Since a bubble represents an inversion, two 

�
A G2B

G3
C
D

AB CD+

(c) AND-OR equivalent

G1

A G2B

G3
C
D

G1 AB CD+

(b) Equivalent NAND/Negative-OR logic diagram

Bubbles cancel

Bubbles cancel

A G2B

G3
C
D

G1

G2 acts as AND

AB CD+

G3 acts as AND

G1 acts as OR

(a) Original NAND logic diagram showing effective
gate operation relative to the output expression

fg05_02100
FIGURE 5–21  Development of the AND-OR equivalent of the circuit in Figure 5–20.
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connected bubbles represent a double inversion and therefore cancel each other. This 
inversion cancellation can be seen in the previous development of the output expres-
sion AB 1 CD and is indicated by the absence of barred terms in the output expres-
sion. Thus, the circuit in Figure 5–21(b) is effectively an AND-OR circuit, as shown in 
Figure 5–21(c).

NAND Logic Diagrams Using Dual Symbols

All logic diagrams using NAND gates should be drawn with each gate represented by 
either a NAND symbol or the equivalent negative-OR symbol to reflect the operation of the 
gate within the logic circuit. The NAND symbol and the negative-OR symbol are called 
dual symbols. When drawing a NAND logic diagram, always use the gate symbols in such 
a way that every connection between a gate output and a gate input is either bubble-to-
bubble or nonbubble-to-nonbubble. In general, a bubble output should not be connected to 
a nonbubble input or vice versa in a logic diagram.

Figure 5–22 shows an arrangement of gates to illustrate the procedure of using the 
appropriate dual symbols for a NAND circuit with several gate levels. Although using all 
NAND symbols as in Figure 5–22(a) is correct, the diagram in part (b) is much easier to 
“read” and is the preferred method. As shown in Figure 5–22(b), the output gate is repre-
sented with a negative-OR symbol. Then the NAND symbol is used for the level of gates 
right before the output gate and the symbols for successive levels of gates are alternated as 
you move away from the output.

(a) Several Boolean steps are required to arrive at final output expression.

D

E
F

C

A
B

=
=
=
=

AB
ABC

ABCD

EF

(ABCD)EF

(ABCD) + EF

ABCD + EF

(AB + C)D + EF

(AB + C)D + EF

D

E
F

(AB + C)D + EF

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

C

A
B

AND

AND

OR
AND

OR

(ABC)D

Bubble cancels bar

Bubble
cancels
bar

Bubble
cancels bar

Bubble adds
bar to C

EF

AB + C
AB

fg05_02200
FIGURE 5–22  Illustration of the use of the appropriate dual symbols in a NAND logic 
diagram.

The shape of the gate indicates the way its inputs will appear in the output expression 
and thus shows how the gate functions within the logic circuit. For a NAND symbol, the 
inputs appear ANDed in the output expression; and for a negative-OR symbol, the inputs 
appear ORed in the output expression, as Figure 5–22(b) illustrates. The dual-symbol dia-
gram in part (b) makes it easier to determine the output expression directly from the logic 
diagram because each gate symbol indicates the relationship of its input variables as they 
appear in the output expression.
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EXAMPLE 5–10

Implement each expression with NAND logic using appropriate dual symbols:

(a)	 ABC 1 DE	 (b)	 ABC + D + E

Solution

See Figure 5–25.

(b)

A
B
C

D
E

Bubble cancels bar

(a)

A
B
C

Bubbles add bars to D and E

D

E

ABC + DE

Bubble cancels bar

Bubble cancels bar

ABC

DE

ABC

ABC + D + E

fg05_02500

FIGURE 5–25 

Related Problem

Convert the NAND circuits in Figure 5–25(a) and (b) to equivalent AND-OR logic.

NOR Logic

A NOR gate can function as either a NOR or a negative-AND, as shown by DeMorgan’s theorem.

A + B = A B

NOR 	  negative-AND

EXAMPLE 5–9

Redraw the logic diagram and develop the output expression for the circuit in Figure 5–23 using the appropriate dual symbols.

B

A

C

D
E

F

X

G2

G1

G4
G5

G3

fg05_02300

FIGURE 5–23 

Solution

Redraw the logic diagram in Figure 5–23 with the use of equivalent negative-OR symbols as shown in Figure 5–24. Writing 
the expression for X directly from the indicated logic operation of each gate gives X = (A + B)C + (D + E )F.

B

A

C

D
E

F

A + B

D + E

(D + E)F

X = (A + B)C + (D + E)F

(A + B)CG2

G1

G4

G5

G3

fg05_02400

FIGURE 5–24 

Related Problem

Derive the output expression from Figure 5–23 and show it is equivalent to the expression in the solution.
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Consider the NOR logic in Figure 5–26. The output expression is developed as follows:

X = A + B + C + D = (A + B)(C + D) = (A + B)C + D)

As you can see in Figure 5–26, the output expression (A 1 B)(C 1 D) consists of two 
OR terms ANDed together. This shows that gates G2 and G3 act as OR gates and gate G1 
acts as an AND gate, as illustrated in Figure 5–27(a). This circuit is redrawn in part (b) with 
a negative-AND symbol for gate G1.

A

B
G2

C

D

(a)

acts as OR

acts as AND

acts as OR

G2

G1

G3

(A + B)(C + D)

A

B

C

D

(A + B)(C + D)

(b)

G1

Bubbles cancel

Bubbles cancel

G3

G1

G2

G3

fg05_02700
FIGURE 5–27 

NOR Logic Diagram Using Dual Symbols

As with NAND logic, the purpose for using the dual symbols is to make the logic diagram 
easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5–28. When the 
circuit in part (a) is redrawn with dual symbols in part (b), notice that all output-to-input 

D

E
F

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

(a) Final output expression is obtained after several Boolean steps.

C

A
B

OR

OR

AND
OR

AND

D

E
F

C

A
B

=
=
=
=

A + B + C
A + B + C + D

E + F

A + B + C + D + E + F

(A + B + C + D)(E + F)

(A + B + C + D)(E + F)

((A + B)C + D)(E + F)

((A + B)C + D)(E + F)

(A + B)C
(A + B)C + D

[(A + B)C + D](E + F)

E + F

A + B

A + B

Bubble adds bar to C

Bubble
cancels
bar

Bubble
cancels bar

Bubble cancels bar

fg05_02800
FIGURE 5–28  Illustration of the use of the appropriate dual symbols in a NOR logic 
diagram.

A

B
G2

C

D
G3

G1 X = (A + B)(C + D)

fg05_02600
FIGURE 5–26  NOR logic for X 5 (A 1 B)(C 1 D).
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connections between gates are bubble-to-bubble or nonbubble-to-nonbubble. Again, you 
can see that the shape of each gate symbol indicates the type of term (AND or OR) that it 
produces in the output expression, thus making the output expression easier to determine 
and the logic diagram easier to analyze.

EXAMPLE 5–11

Using appropriate dual symbols, redraw the logic diagram and develop the output 
expression for the circuit in Figure 5–29.

E

D

F

G5

X

B

A

C

G3

G4

G2

G1

fg05_02900

FIGURE 5–29 

Solution

Redraw the logic diagram with the equivalent negative-AND symbols as shown in Fig-
ure 5–30. Writing the expression for X directly from the indicated operation of each gate,

X = (A B + C)(D E + F)

B
A

C

D
E

F

AB

DE
DE + F

X = (AB + C)(DE + F) = (AB + C)(DE + F)

AB + C

G5

G3
G2

G1

G4

fg05_03000

FIGURE 5–30 

Related Problem

Prove that the output of the NOR circuit in Figure 5–29 is the same as for the circuit in 
Figure 5–30.

Section 5–4   Checkup

	 1.	 Implement the expression X = (A + B + C)DE by using NAND logic.

	 2.	 Implement the expression X = A B C + (D + E) with NOR logic.

5–5  Pulse Waveform Operation

General combinational logic circuits with pulse waveform inputs are examined in this sec-
tion. Keep in mind that the operation of each gate is the same for pulse waveform inputs as 
for constant-level inputs. The output of a logic circuit at any given time depends on the inputs 
at that particular time, so the relationship of the time-varying inputs is of primary importance.

After completing this section, you should be able to

u	 Analyze combinational logic circuits with pulse waveform inputs

u	 Develop a timing diagram for any given combinational logic circuit with specified 
inputs
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The operation of any gate is the same regardless of whether its inputs are pulsed or 
constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth 
table of a circuit. The examples in this section illustrate the analysis of combinational logic 
circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in analyzing com-
binational circuits with pulse waveform inputs:

	 1.	 The output of an AND gate is HIGH only when all inputs are HIGH at the same 
time.

	 2.	 The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

	 3.	 The output of a NAND gate is LOW only when all inputs are HIGH at the same 
time.

	 4.	 The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

EXAMPLE 5–12

Determine the final output waveform X for the circuit in Figure 5–31, with input wave-
forms A, B, and C as shown.

B

A

C

X = A(B + C) = AB + AC

X
B

C

X

A

Y

Y

Inputs

fg05_03100

FIGURE 5–31 

Solution

The output expression, AB + AC, indicates that the output X is LOW when both A and 
B are HIGH or when both A and C are HIGH or when all inputs are HIGH. The output 
waveform X is shown in the timing diagram of Figure 5–31. The intermediate wave-
form Y at the output of the OR gate is also shown.

Related Problem

Determine the output waveform if input A is a constant HIGH level.

EXAMPLE 5–13

Draw the timing diagram for the circuit in Figure 5–32 showing the outputs of G1, G2, 
and G3 with the input waveforms, A, and B, as indicated.

A

 X = AB + AB

B
G2

G3

G1

fg05_03200

FIGURE 5–32 
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Solution

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as 
shown in Figure 5–33. Notice that this is an exclusive-NOR circuit. The intermediate 
outputs of gates G2 and G3 are also shown in Figure 5–33.

A

B

X

G2 output

G3 output

fg05_03300

FIGURE 5–33 

Related Problem

Determine the output X in Figure 5–32 if input B is inverted.

EXAMPLE 5–14

Determine the output waveform X for the logic circuit in Figure 5–34(a) by first finding 
the intermediate waveform at each of points Y1, Y2, Y3, and Y4. The input waveforms are 
shown in Figure 5–34(b).

A
B

Y2

Y1

Y4

Y3

C
D

X

(a)

A

B

C

D

Y1

Y2

Y3

Y4

X

(b)

(c)
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FIGURE 5–34 
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Solution

All the intermediate waveforms and the final output waveform are shown in the timing 
diagram of Figure 5–34(c).

Related Problem

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.

EXAMPLE 5–15

Determine the output waveform X for the circuit in Example 5–14, Figure 5–34(a), directly from the output expression.

Solution

The output expression for the circuit is developed in Figure 5–35. The SOP form indicates that the output is HIGH when A 
is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A
B

C
D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

fg05_03500

FIGURE 5–35 

The result is shown in Figure 5–36 and is the same as the one obtained by the intermediate-waveform method in Example 
5–14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A

B

C

D

BC

AC AC
CD

X = AC + BC + CD

fg05_03600

FIGURE 5–36 

Related Problem

Repeat this example if all the input waveforms are inverted.

Section 5–5  Checkup

	 1.	One pulse with tW = 50 ms is applied to one of the inputs of an exclusive-OR cir-
cuit. A second positive pulse with tW = 10 ms is applied to the other input beginning 
15 ms after the leading edge of the first pulse. Show the output in relation to the 
inputs.

	 2.	The pulse waveforms A and B in Figure 5–31 are applied to the exclusive-NOR cir-
cuit in Figure 5–32. Develop a complete timing diagram.
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5–6  Combinational Logic with VHDL

The purpose of describing logic using VHDL is so that it can be programmed into a PLD. 
The data flow approach to writing a VHDL program was described in Chapter 4. In this 
section, both the data flow approach using Boolean expressions and the structural approach 
are used to develop VHDL code for describing logic circuits. The VHDL component is 
introduced and used to illustrate structural descriptions. Some aspects of software develop-
ment tools are discussed.

After completing this section, you should be able to

u	 Describe a VHDL component and discuss how it is used in a program

u	 Apply the structural approach and the data flow approach to writing VHDL code

u	 Describe two basic software development tools

Structural Approach to VHDL Programming

The structural approach to writing a VHDL description of a logic function can be com-
pared to installing IC devices on a circuit board and interconnecting them with wires. With 
the structural approach, you describe logic functions and specify how they are connected 
together. The VHDL component is a way to predefine a logic function for repeated use in 
a program or in other programs. The component can be used to describe anything from a 
simple logic gate to a complex logic function. The VHDL signal can be thought of as a way 
to specify a “wire” connection between components.

Figure 5–37 provides a simplified comparison of the structural approach to a hardware 
implementation on a circuit board.

Output defined
in port statement

Signals

VHDL
component

VHDL
component

VHDL
component

Inputs defined in port statementInterconnections

Inputs Output

(a) Hardware implementation with fixed-function logic (b) VHDL structural implementation

Logic
device

A

Logic
device

B

Logic
device

C

FIGURE 5–37  Simplified comparison of the VHDL structural approach to a hardware 
implementation. The VHDL signals correspond to the interconnections on the circuit 
board, and the VHDL components correspond to the 74 series IC devices.

VHDL Components

A VHDL component describes predefined logic that can be stored as a package declaration 
in a VHDL library and called as many times as necessary in a program. You can use compo-
nents to avoid repeating the same code over and over within a program. For example, you 
can create a VHDL component for an AND gate and then use it as many times as you wish 
without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. This 
is similar to having, for example, a storage bin of ICs available when you are constructing 
a circuit. Every time you need to use one in your circuit, you reach into the storage bin and 
place it on the circuit board.
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The VHDL program for any logic function can become a component and used whenever 
necessary in a larger program with the use of a component declaration of the following 
general form. Component is a VHDL keyword.

component name_of_component is

  port (port definitions);

end component name_of_component;

For simplicity, let’s assume that there are predefined VHDL descriptions of a 2-input AND 
gate with the entity name AND_gate and a 2-input OR gate with the entity name OR_gate, 
as shown in Figure 5–38.

X
A

B

entity AND_gate is
port (A, B: in bit; X: out bit);

end entity AND_gate;

architecture ANDfunction of AND_gate is
begin
   X <= A and B;
end architecture ANDfunction;

A

B
X

2-input AND gate

entity OR_gate is
port (A, B: in bit; X: out bit);

end entity OR_gate;

architecture ORfunction of OR_gate is
begin
   X <= A or B;
end architecture ORfunction;2-input OR gate

fg05_04400

FIGURE 5–38  Predefined programs for a 2-input AND gate and a 2-input OR gate 
to be used as components in the structural approach.

Using Components in a Program

Assume that you are writing a program for a logic circuit that has several AND gates. 
Instead of rewriting the program in Figure 5–38 over and over, you can use a component 
declaration to specify the AND gate. The port statement in the component declaration must 
correspond to the port statement in the entity declaration of the AND gate.

component AND_gate is

  port (A, B: in bit; X: out bit);

end component AND_gate;

To use a component in a program, you must write a component instantiation statement for 
each instance in which the component is used. You can think of a component instantiation 
as a request or call for the component to be used in the main program. For example, the 
simple SOP logic circuit in Figure 5–39 has two AND gates and one OR gate. Therefore, 
the VHDL program for this circuit will have two components and three component 
instantiations or calls.

OUT3

IN1
G1

IN2

IN3

IN4
G2

G3

OUT1

OUT2

fg05_04500

FIGURE 5–39 

M05_FLOY5983_11_GE_C05.indd Page 284  17/11/14  5:56 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



Combinational Logic with VHDL    285

Signals

In VHDL, signals are analogous to wires that interconnect components on a circuit board. 
The signals in Figure 5–39 are named OUT1 and OUT2. Signals are the internal connec-
tions in the logic circuit and are treated differently than the inputs and outputs. Whereas 
the inputs and outputs are declared in the entity declaration using the port statement, the 
signals are declared within the architecture using the signal statement. Signal is a VHDL 
keyword.

The Program

The program for the logic in Figure 5–39 begins with an entity declaration as follows:

entity AND_OR_Logic is

  port (IN1, IN2, IN3, IN4: in bit; OUT3: out bit);

end entity AND_OR_Logic;

The architecture declaration contains the component declarations for the AND gate and 
the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is

component AND_gate is

  port (A, B: in bit; X: out bit);

end component AND_gate;

component OR_gate is

  port (A, B: in bit; X: out bit);

end component OR_gate;

signal OUT1, OUT2: bit;

begin

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

G2: AND_gate port map (A 5. IN3, B 5. IN4, X 5. OUT2);

G3: OR_gate port map (A 5. OUT1, B 5. OUT2, X 5. OUT3);

end architecture LogicOperation;

Component Instantiations

Let’s look at the component instantiations. First, notice that the component instantia-
tions appear between the keyword begin and the end architecture statement. For 
each instantiation an identifier is defined, such as G1, G2, and G3 in this case. Then 
the component name is specified. The keyword port map essentially makes all the 
connections for the logic function using the operator 5.. For example, the first 
instantiation,

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

can be explained as follows: Input A of AND gate G1 is connected to input IN1, input B of the 
gate is connected to input IN2, and the output X of the gate is connected to the signal OUT1.

The three instantiation statements together completely describe the logic circuit in Fig-
ure 5–39, as illustrated in Figure 5–40.

Although the data flow approach using Boolean expressions would have been easier 
and probably the best way to describe this particular circuit, we have used this simple 
circuit to explain the concept of the structural approach. Example 5–16 compares the 
structural and data flow approaches to writing a VHDL program for an SOP logic circuit.

Component declaration for the 
AND gate

Component declaration for the 
OR gate

Signal declaration

Component instantiations describe 
how the three gates are connected.
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OUT3

IN1
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IN2

G2

G3

OUT1

OUT2

A => IN1

A

B
X

B => IN2

A

B
X

A => IN3

B => IN4 X => OUT2

X => OUT1

OUT1

OUT2

A

B
X

A => OUT1

B => OUT2IN3

IN4

X => OUT3
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FIGURE 5–40  Illustration of the instantiation statements and port mapping applied to the 
AND-OR logic. Signals are shown in red.

EXAMPLE 5–16

Write a VHDL program for the SOP logic circuit in Figure 5–41 using the structural 
approach and compare with the data flow approach. Assume that VHDL components 
for a 3-input NAND gate and for a 2-input NAND are available. Notice the NAND gate 
G4 is shown as a negative-OR.

OUT4

IN1
G1

IN3

OUT1
IN2

IN7
G3

IN8

IN4
G2

IN6
IN5

OUT2

OUT3

G4

fg05_04700

FIGURE 5–41 

Solution

The structural approach:

The components and component instantiations are highlighted. Lines preceded by two 
hyphens are comment lines and are not part of the program.

--Program for the logic circuit in Figure 5–41

entity SOP_Logic is

  port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

--component declaration for 3-input NAND gate

component NAND_gate3 is

  port (A, B, C: in bit X: out bit);

end component NAND_gate3;

--component declaration for 2-input NAND gate

component NAND_gate2 is

  port (A, B: in bit; X: out bit);

end component NAND_gate2;

signal OUT1, OUT2, OUT3: bit;
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begin

G1: NAND_gate3 port map    (A 5. IN1, B 5. IN2, C 5. IN3, X 5. OUT1);

G2: NAND_gate3 port map    (A 5. IN4, B 5. IN5, C 5. IN6, X 5. OUT2);

G3: NAND_gate2 port map    (A 5. IN7, B 5. IN8, X 5. OUT3);

G4: NAND_gate3 port map    (A 5. OUT1, B 5. OUT2, C 5. OUT3, X 5. OUT4);

end architecture LogicOperation;

The data flow approach:

the program for the logic circuit in Figure 5–41 using the data flow approach is 
written as follows:

entity SOP_Logic is

  port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

begin

  OUT4 ,5 (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and IN8);
end architecture LogicOperation;

As you can see, the data flow approach results in a much simpler code for this particu-
lar logic function. However, in situations where a logic function consists of many blocks 
of complex logic, the structural approach might have an advantage over the data flow 
approach.

Related Problem

If another NAND gate is added to the circuit in Figure 5–41 with inputs IN9 and IN10, 
write a component instantiation to add to the program.

Applying Software Development Tools

A software development package must be used to implement an HDL design in a target device. 
Once the logic has been described using an HDL and entered via a software tool called a code 
or text editor, it can be tested using a simulation to verify that it performs properly before actu-
ally programming the target device. Using software development tools allows for the design, 
development, and testing of combinational logic before it is committed to hardware.

Typical software development tools allow you to input VHDL code on a text-based 
editor specific to the particular development tool that you are using. The VHDL code for 
a combinational logic circuit has been written using a text-based editor for illustration 
and appears on the computer screen as shown in Figure 5–42. Many code editors provide 
enhanced features such as the highlighting of keywords.

After the program has been written into the text editor, it is passed to the compiler. The com-
piler takes the high-level VHDL code and converts it into a file that can be downloaded to the 
target device. Once the program has been compiled, you can create a simulation for testing. Sim-
ulated input values are inserted into the logic design and allow for verification of the output(s).

You specify the input waveforms on a software tool called a waveform editor, as shown in 
Figure 5–43. The output waveforms are generated by a simulation of the VHDL code that you 
entered on the text editor in Figure 5–42. The waveform simulation provides the resulting out-
puts X and Y for the inputs A, B, C, and D in all sixteen combinations from 0 0 0 02 to 1 1 1 12.

Recall from Chapter 3 that there are several performance characteristics of logic circuits 
to be considered in the creation of any digital system. Propagation delay, for example, 
determines the speed or frequency at which a logic circuit can operate. A timing simulation 
can be used to mimic the propagation delay through the logic design in the target device.
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Waveform Editor

Name:

D

50.0 ns 100.0 ns 150.0 ns 200.0 ns 250.0 ns 300.0 ns

C

B

A

Y
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1

1

0

0

1

1

FIGURE 5–43  A typical waveform editor tool showing the simulated waveforms for the 
logic circuit described by the VHDL code in Figure 5–42.

Section 5–6   Checkup

	 1.	What is a VHDL component?

	 2.	State the purpose of a component instantiation in a program architecture.

	 3.	How are interconnections made between components in VHDL?

	 4.	The use of components in a VHDL program represents what approach?

5–7  Troubleshooting

The preceding sections have given you some insight into the operation of combina-
tional logic circuits and the relationships of inputs and outputs. This type of under-
standing is essential when you troubleshoot digital circuits because you must know 
what logic levels or waveforms to look for throughout the circuit for a given set of 
input conditions.

In this section, an oscilloscope is used to troubleshoot a fixed-function logic circuit 
when a device output is connected to several device inputs. Also, an example of signal 
tracing and waveform analysis methods is presented using a scope or logic analyzer for 
locating a fault in a combinational logic circuit.

Text Editor

entity Combinational is
   port ( A, B, C, D: in bit; X, Y: out bit );
end entity Combinational;

architecture Example of Combinational is
begin
   X <= ( A and B ) or not C;
   Y <= C or not D;
end architecture Example;

File   Edit   View   Project   Assignments   Processing   Tools   Window

FIGURE 5–42  A VHDL program for a combinational logic circuit after entry on a generic 
text editor screen that is part of a software development tool.
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After completing this section, you should be able to

u	 Define a circuit node

u	 Use an oscilloscope to find a faulty circuit node

u	 Use an oscilloscope to find an open input or output

u	 Use an oscilloscope to find a shorted input or output

u	 Discuss how to use an oscilloscope or a logic analyzer for signal tracing in a 
combinational logic circuit

In a combinational logic circuit, the output of a driving device may be connected to two 
or more load devices as shown in Figure 5–44. The interconnecting paths share a common 
electrical point known as a node.

Driving
device

Load
device 1

Load
device 2

Load
device 3

Load
device n

Node

FIGURE 5–44  Illustration of a node in a logic circuit.

The driving device in Figure 5–44 is driving the node, and the other devices repre-
sent loads connected to the node. A driving device can drive a number of load device 
inputs up to its specified fan-out. Several types of failures are possible in this situa-
tion. Some of these failure modes are difficult to isolate to a single bad device because 
all the devices connected to the node are affected. Common types of failures are the 
following:

	 1.	 Open output in driving device. This failure will cause a loss of signal to all load 
devices.

	 2.	 Open input in a load device. This failure will not affect the operation of any of the 
other devices connected to the node, but it will result in loss of signal output from the 
faulty device.

	 3.	 Shorted output in driving device. This failure can cause the node to be stuck in the 
LOW state (short to ground) or in the HIGH state (short to VCC).

	 4.	 Shorted input in a load device. This failure can also cause the node to be stuck in the 
LOW state (short to ground) or in the HIGH state (short to VCC).
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Troubleshooting Common Faults
Open Output in Driving Device

In this situation there is no pulse activity on the node. With circuit power on, an open node 
will normally result in a “floating” level, as illustrated in Figure 5–45.

1 14

2 13

3 12

4 11

5 10

6 9

7 8

74HC00 pin diagram
from data sheet

Output pin of this
gate in IC1 is open

If there is no pulse activity at the output pin on IC1, there is an internal open. If
there is pulse activity directly on the output pin but not on the node interconnections,
the connection between the pin and the board is open.

IC1

74
H

C
00

IC2 IC3

74
H

C
00

74
H

C
00

fg05_03800

There are pulses on
one input with the
other input HIGH.

No pulse activity is indicated
at any point on the node. Scope
may indicate "floating" level.

HIGH

FIGURE 5–45  Open output in driving device. Assume a HIGH is on one input.

When troubleshooting logic circuits, begin with a visual check, looking for obvious problems. 
In addition to components, visual inspection should include connectors. Edge connectors are 
frequently used to bring power, ground, and signals to a circuit board. The mating surfaces of 
the connector need to be clean and have a good mechanical fit. A dirty connector can cause 
intermittent or complete failure of the circuit. Edge connectors can be cleaned with a common 
pencil eraser and wiped clean with a Q-tip soaked in alcohol. Also, all connectors should be 
checked for loose-fitting pins.

Open Input in a Load Device

If the check for an open driver output in IC1 is negative (there is pulse activity), then a 
check for an open input in a load device should be performed. Check the output of each 
device for pulse activity, as illustrated in Figure 5–46. If one of the inputs that is nor-
mally connected to the node is open, no pulses will be detected on that device’s output.

Output or Input Shorted to Ground

When the output is shorted to ground in the driving device or the input to a load device 
is shorted to ground, it will cause the node to be stuck LOW, as previously mentioned. 
A quick check with a scope probe will indicate this, as shown in Figure 5–47. A short 
to ground in the driving device’s output or in any load input will cause this symptom, 
and further checks must therefore be made to isolate the short to a particular device.

Signal Tracing and Waveform Analysis

Although the methods of isolating an open or a short at a node point are useful from time 
to time, a more general troubleshooting technique called signal tracing is of value in just 
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FIGURE 5–46  Open input in a load device.

about every troubleshooting situation. Waveform measurement is accomplished with an 
oscilloscope or a logic analyzer.

Basically, the signal tracing method requires that you observe the waveforms and their 
time relationships at all accessible points in the logic circuit. You can begin at the inputs 
and, from an analysis of the waveform timing diagram for each point, determine where an 
incorrect waveform first occurs. With this procedure you can usually isolate the fault to a 
specific device. A procedure beginning at the output and working back toward the inputs 
can also be used.

The general procedure for signal tracing starting at the inputs is outlined as follows:

•	 Within a system, define the section of logic that is suspected of being faulty.

•	 Start at the inputs to the section of logic under examination. We assume, for this dis-
cussion, that the input waveforms coming from other sections of the system have 
been found to be correct.
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00

1 14
2 13
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4 11
5 10
6 9
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There is a LOW level at all
points connected to the node.

FIGURE 5–47  Shorted output in the driving device or shorted input in a load.
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•	 For each device, beginning at the input and working toward the output of the logic 
circuit, observe the output waveform of the device and compare it with the input 
waveforms by using the oscilloscope or the logic analyzer.

•	 Determine if the output waveform is correct, using your knowledge of the logical 
operation of the device.

•	 If the output is incorrect, the device under test may be faulty. Pull the IC device that 
is suspected of being faulty, and test it out-of-circuit. If the device is found to be 
faulty, replace the IC. If it works correctly, the fault is in the external circuitry or in 
another IC to which the tested one is connected.

•	 If the output is correct, go to the next device. Continue checking each device until an 
incorrect waveform is observed.

Figure 5–48 is an example that illustrates the general procedure for a specific logic 
circuit in the following steps:

Step 1:	 Observe the output of gate G1 (test point 5) relative to the inputs. If it is 
correct, check the inverter next. If the output is not correct, the gate or its 

TP1

TP2

TP5

TP3

TP6

TP5

TP3

TP7

Step 1
If correct, go to step 2.
If incorrect, test IC2 and connections.

Step 2
If correct, go to step 3.
If incorrect, test IC1 and connections.

Step 3
If correct, go to step 4.
If incorrect, test IC2 and connections.

TP1
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Scope is externally triggered from test point 1 (TP1).

12
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Step 4
If correct, go to step 5.
If incorrect, test IC2 and connections.

Step 5
If correct, circuit is OK.
If incorrect, test IC2 and connections.
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FIGURE 5–48  Example of signal tracing and waveform analysis in a portion of a printed 
circuit board. TP indicates test point.
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connections are bad; or, if the output is LOW, the input to gate G2 may be 
shorted.

Step 2:	 Observe the output of the inverter (TP6) relative to the input. If it is correct, 
check gate G2 next. If the output is not correct, the inverter or its connections 
are bad; or, if the output is LOW, the input to gate G3 may be shorted.

Step 3:	 Observe the output of gate G2 (TP7) relative to the inputs. If it is correct, check 
gate G3 next. If the output is not correct, the gate or its connections are bad; or, 
if the output is LOW, the input to gate G4 may be shorted.

Step 4:	 Observe the output of gate G3 (TP8) relative to the inputs. If it is correct, check 
gate G4 next. If the output is not correct, the gate or its connections are bad; or, 
if the output is LOW, the input to gate G4 (TP7) may be shorted.

Step 5:	 Observe the output of gate G4 (TP9) relative to the inputs. If it is correct, the 
circuit is okay. If the output is not correct, the gate or its connections are bad.

EXAMPLE 5–17

Determine the fault in the logic circuit of Figure 5–49(a) by using waveform analysis. You have observed the waveforms 
shown in green in Figure 5–49(b). The red waveforms are correct and are provided for comparison.

A

B

C

D

(a)

G2

G3

A

B

C

D

G1 output

G2 output

G3 output

(b)

G4 output

Inverter
output

G4

G1

fg05_04200
FIGURE 5–49 

Solution

	 1.	 Determine what the correct waveform should be for each gate. The correct waveforms are shown in red, superim-
posed on the actual measured waveforms, in Figure 5–49(b).

	 2.	 Compare waveforms gate by gate until you find a measured waveform that does not match the correct waveform.

In this example, everything tested is correct until gate G3 is checked. The output of this gate is not correct as the differences in 
the waveforms indicate. An analysis of the waveforms indicates that if the D input to gate G3 is open and acting as a HIGH, you will 
get the output waveform measured (shown in red). Notice that the output of G4 is also incorrect due to the incorrect input from G3.

Replace the IC containing G3, and check the circuit’s operation again.

Related Problem

For the inputs in Figure 5–49(b), determine the output waveform for the logic circuit (output of G4) if the inverter has an 
open output.
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As you know, testing and troubleshooting logic circuits often require observing and comparing two 
digital waveforms simultaneously, such as an input and the output of a device, on an oscilloscope. 
For digital waveforms, the scope should always be set to DC coupling on each channel input to 
avoid “shifting” the ground level. You should determine where the 0 V level is on the screen for 
both channels.

To compare the timing of the waveforms, the scope should be triggered from only one channel 
(don’t use vertical mode or composite triggering). The channel selected for triggering should always 
be the one that has the lowest frequency waveform, if possible.

Section 5–7   Checkup

	 1.	List four common internal failures in logic gates.

	 2.	One input of a NOR gate is externally shorted to +VCC. How does this condition af-
fect the gate operation?

	 3.	Determine the output of gate G4 in Figure 5–49(a), with inputs as shown in part (b), 
for the following faults:

(a)  one input to G1 shorted to ground

(b)  the inverter input shorted to ground

(c)  an open output in G3      

Applied Logic
Tank Control

A storage tank system for a pancake syrup manufacturing company is shown in Figure 5–50. 
The control logic allows a volume of corn syrup to be preheated to a specified temperature 
to achieve the proper viscosity prior to being sent to a mixing vat where ingredients such as 
sugar, flavoring, preservative, and coloring are added. Level and temperature sensors in the 
tank and the flow sensor provide the inputs for the logic.

System Operation and Analysis

The tank holds corn syrup for use in a pancake syrup manufacturing process. In prepa-
ration for mixing, the temperature of the corn syrup when released from the tank into a 
mixing vat must be at a specified value for proper viscosity to produce required flow char-
acteristics. This temperature can be selected via a keypad input. The control logic main-
tains the temperature at this value by turning a heater on and off. The analog output from 
the temperature transducer (Tanalog) is converted to an 8-bit binary code by an analog-to-
digital converter and then to an 8-bit BCD code. A temperature controller detects when the 
temperature falls below the specified value and turns the heater on. When the temperature 
reaches the specified value, the heater is turned off.

The level sensors produce a HIGH when the corn syrup is at or above the minimum or at the 
maximum level. The valve control logic detects when the maximum level (Lmax) or minimum 
level (Lmin) has been reached and when mixture is flowing into the tank (Finlet). Based on these 
inputs, the control logic opens or closes each valve (Vinlet and Voutlet). New corn syrup can be 
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added to the tank via the inlet valve only when the minimum level is reached. Once the inlet 
valve is opened, the level in the tank must reach the maximum point before the inlet valve is 
closed. Also, once the outlet valve is opened, the level must reach the minimum point before 
the outlet valve is closed. New syrup is always cooler than the syrup in the tank. Syrup cannot 
be released from the tank while it is being filled or its temperature is below the specified value.

Inlet Valve Control    The conditions for which the inlet valve is open, allowing the tank 
to fill, are

u	 The solution level is at minimum (Lmin).
u	 The tank is filling (Finlet) but the maximum level has not been reached (Lmax).

Table 5–6 is the truth table for the inlet valve. A HIGH (1) is the active level for the 
inlet valve to be open (on).

Monitoring
and control

logic

Finlet
Vinlet

Voutlet

T
Lmax

Lmin

Tanalog

Outlet
valve

To mixing vat
Temperature
transducer

Level
sensors

Heater

Flow sensor

Inlet valve

fg05_05000
FIGURE 5–50  Tank with level and temperature sensors and controls.

Table 5–6

Truth table for inlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet Vinlet

0 0 0 1 Level below minimum. No inlet flow.
0 0 1 1 Level below minimum. Inlet flow.
0 1 0 0 Level above min and below max. No inlet flow.
0 1 1 1 Level above min and below max. Inlet flow.
1 0 0 X Invalid
1 0 1 X Invalid
1 1 0 0 Level at maximum. No inlet flow.
1 1 1 0 Level at maximum. Inlet flow.

Exercise

1.	 Explain why the two conditions indicated in the truth table are invalid.
2.	 Under how many input conditions is the inlet valve open?
3.	 Once the level drops below minimum and the tank starts refilling, when does the 

inlet valve turn off?
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From the truth table, an expression for the inlet valve control output can be written.

Vinlet = LmaxLminFinlet + LmaxLminFinlet + LmaxLminFinlet

The SOP expression for the inlet valve logic can be reduced to the following simplified 
expression using Boolean methods:

Vinlet = Lmin + LmaxFinlet

Exercise

4.	 Using a K-map, prove that the simplified expression is correct.
5.	 Using the simplified expression, draw the logic diagram for the inlet valve control.

Outlet Valve Control    The conditions for which the outlet valve is open allowing the tank 
to drain are

u	 The syrup level is above minimum and the tank is not filling.
u	 The temperature of the syrup is at the specified value.

Table 5–7 is the truth table for the outlet valve. A HIGH (1) is the active level for the 
outlet valve to be open (on). (Note: T is both an input and an output, T 5 Temp).

Table 5–7

Truth table for outlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet T Voutlet

0 0 0 0 0 Level below minimum. No inlet flow. Temp low.
0 0 0 1 0 Level below minimum. No inlet flow. Temp correct.
0 0 1 0 0 Level below minimum. Inlet flow. Temp low.
0 0 1 1 0 Level below minimum. Inlet flow. Temp correct.
0 1 0 0 0 Level above min and below max. No inlet flow. Temp low.
0 1 0 1 1 Level above min and below max. No inlet flow. Temp 

correct.
0 1 1 0 0 Level above min and below max. Inlet flow. Temp low.
0 1 1 1 0 Level above min and below max. Inlet flow. Temp 

correct
1 0 0 0 X Invalid
1 0 0 1 X Invalid
1 0 1 0 X Invalid
1 0 1 1 X Invalid
1 1 0 0 0 Level at maximum. No inlet flow. Temp low.
1 1 0 1 1 Level at maximum. No inlet flow. Temp correct.
1 1 1 0 0 Level at maximum. Inlet flow. Temp low.
1 1 1 1 0 Level at maximum. Inlet flow. Temp correct.

Exercise

6.	 Why does the outlet valve control require four inputs and the inlet valve only three?
7.	 Under how many input conditions is the outlet valve open?
8.	 Once the level reaches maximum and the tank starts draining, when does the outlet 

valve turn off?

From the truth table, an expression for the outlet valve control can be written.

Voutlet = LmaxLminFinlet T + LmaxLminFinletT
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The SOP expression for the outlet valve logic can be reduced to the following simplified 
expression:

Voutlet = LminFinletT

Exercise

  9.	 Using a K-map, prove that the simplified expression is correct.
10.	 Using the simplified expression, draw the logic diagram for the outlet valve control.

Temperature Control    The temperature control logic accepts an 8-bit BCD code repre-
senting the measured temperature and compares it to the BCD code for the specified tem-
perature. A block diagram is shown in Figure 5–51.

Analog-to-
digital

converter

Binary-to-
BCD

converter

Temperature-
control logic

Tanalog T 

8-bit
binary code

8-bit BCD for
measured temperature

8-bit BCD for
specified temperature

fg05_05200
FIGURE 5–51  Block diagram for temperature control circuit.

When the measured temperature and the specified temperature are the same, the two 
BCD codes are equal and the T output is LOW (0). When the measured temperature falls 
below the specified value, there is a difference in the BCD codes and the T output is HIGH 
(1), which turns on the heater. The temperature control logic can be implemented with 
exclusive-OR gates, as shown in Figure 5–52. Each pair of corresponding bits from the two 

T 

BCD for specified
temperature (TS)

BCD for
measured

temperature
(TM)

fg05_05300
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FIGURE 5–52  Logic diagram of the temperature control logic.
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BCD codes is applied to an exclusive-OR gate. If the bits are the same, the output of the 
XOR gate is 0; and if they are different, the output of the XOR gate is 1. When one or more 
XOR outputs equal 1, the T output of the OR gate equals 1, causing the heater to turn on.

VHDL Code for Tank Control Logic

The control logic for the inlet valve, outlet valve, and temperature is described with VHDL 
using the data flow approach (which is based on the Boolean description of the logic). 
Exercise 11 requires the structural approach (which is based on the gates and how they are 
connected) for comparison.

entity TankControl is

  port (Finlet, Lmax, Lmin, TS1, TS2, TS3, TS4, TS5, TS6, TS7, TS8, TM1, TM2,

  TM3, TM4, TM5, TM6, TM7, TM8: in bit; Vinlet, Voutlet, T: out bit);

end entity TankControl;

architecture ValveTempLogic of Tank Control is

begin

  Vinlet ,5 not Lmin or (not Lmax and Finlet);

  Voutlet ,5 Lmin and not Finlet and T;

  T ,5 (TS1 xor TM1) or (TS2 xor TM2) or (TS3 xor TM3) or (TS4 xor TM4)

  or (TS5 xor TM5) or (TS6 xor TM6) or (TS7 xor TM7) or (TS8 xor TM8);

end architecture ValveTempLogic;

Exercise

11.  Write the VHDL code for the tank control logic using the structural approach.

Simulation of the Valve Control Logic

The inlet and outlet valve control logic simulation screen is shown in Figure 5–53. SPDT 
switches are used to represent the level and flow sensor inputs and the temperature indica-
tion. Probes are used to indicate the output states.

FIGURE 5–53  Multisim circuit screen for the valve control logic.
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Open file Al05 in the Applied Logic folder on the website. Run the simulation of the 
valve-control logic using your Multisim software and observe the operation. Create 
a new Multisim file, connect the temperature control logic, and run the simulation.

Putting Your Knowledge to Work

If the temperature of the syrup can never be more than 9°C below the specified value, can 
the temperature control circuit be simplified? If so, how?

Summary

•	 AND-OR logic produces an output expression in SOP form.

•	 AND-OR-Invert logic produces a complemented SOP form, which is actually a POS form.

•	 The operational symbol for exclusive-OR is � .  An exclusive-OR expression can be stated in 
two equivalent ways:

AB + AB = A � B

•	 To do an analysis of a logic circuit, start with the logic circuit, and develop the Boolean output 
expression or the truth table or both.

•	 Implementation of a logic circuit is the process in which you start with the Boolean output 
expressions or the truth table and develop a logic circuit that produces the output function.

•	 All NAND or NOR logic diagrams should be drawn using appropriate dual symbols so 
that bubble outputs are connected to bubble inputs and nonbubble outputs are connected to 
nonbubble inputs.

•	 When two negation indicators (bubbles) are connected, they effectively cancel each other.

•	 A VHDL component is a predefined logic function stored for use throughout a program or in 
other programs.

•	 A component instantiation is used to call for a component in a program.

•	 A VHDL signal effectively acts as an internal interconnection in a VHDL structural description.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Component  A VHDL feature that can be used to predefine a logic function for multiple use 
throughout a program or programs.

Negative-AND  The dual operation of a NOR gate when the inputs are active-LOW.

Negative-OR  The dual operation of a NAND gate when the inputs are active-LOW.

Node  A common connection point in a circuit in which a gate output is connected to one or more 
gate inputs.

Signal   A waveform; a type of VHDL object that holds data.

Signal tracing  A troubleshooting technique in which waveforms are observed in a step-by-step 
manner beginning at the input and working toward the output or vice versa. At each point the 
observed waveform is compared with the correct signal for that point.

Universal gate  Either a NAND gate or a NOR gate. The term universal refers to the property of 
a gate that permits any logic function to be implemented by that gate or by a combination of that 
kind.
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True/False Quiz

Answers are at the end of the chapter.

	 1.	 AND-OR logic can have only two 2-input AND gates.

	 2.	 AOI is an acronym for AND-OR-Invert.

	 3.	 If the inputs of an exclusive-OR gate are the same, the output is LOW (0).

	 4.	 If the inputs of an exclusive-NOR gate are different, the output is HIGH (1).

	 5.	 A parity generator cannot be implemented using exclusive-OR gates.

	 6.	 NAND gates can be used to produce the AND functions.

	 7.	 NOR gates cannot be used to produce the OR functions.

	 8.	 Any SOP expression can be implemented using only NAND gates.

	 9.	 The dual symbol for a NAND gate is a negative-AND symbol.

	10.	 Negative-OR is equivalent to NAND.

Self-Test

Answers are at the end of the chapter.

	 1.	 The output expression for an AND-OR circuit having one AND gate with inputs A, B and C 
and one AND gate with inputs D, E and F is
(a)	 ABCDEF	 (b)  A + B + C + D + E + F
(c)	 ABC + DEF	 (d)  (A + B + C )(D + E + F )

	 2.	 A logic circuit with an output X = AB + ABC consists of
(a)	 two AND gates and one OR gate
(b)	 two AND gates, one OR gate and an inverter
(c)	 two AND gates, two OR gates and two inverters
(d)	 two AND gates, one OR gate and three inverters

	 3.	 To implement the expression X  Y Z + X Y Z + X  Y Z + X YZ + X Y Z, it takes
(a)	 five AND gates, one OR gate, and eight inverters	
(b)  four AND gates, two OR gates, and six inverters
(c)	 five AND gates, three OR gates, and seven inverters	
(d)  five AND gates, one OR gate, and seven inverters

	 4.	 The expression ABCD + ABCD + AB CD
(a)	 cannot be simplified	 (b)  can be simplified to ABC + AB
(c)	 can be simplified to ABCD + ABC	 (d)  None of these answers is correct.

	 5.	 The output expression for an AND-OR-Invert circuit having one AND gate with inputs A, B, C 
and another AND gate with inputs D, E, F is
(a)	 ABC 1 DEF	 (b)  (A + B + C )(D + E + F )
(c)	 (A + B + C )(D + E + F )	 (d)  A + B + C + D + E + F

	 6.	 An exclusive-NOR function is expressed as
(a)	 A B + AB	 (b)  AB + AB
(c)	 (A + B)(A + B)	 (d)  (A + B)(A + B)

	 7.	 The AND operation can be produced with
(a)	 two NAND gates	 (b)  three NAND gates
(c)	 one NOR gate	 (d)  three NOR gates

	 8.	 The OR operation can be produced with
(a)	 two NOR gates	 (b)  three NAND gates
(c)	 four NAND gates	 (d)  both answers (a) and (b)

	 9.	 When using dual symbols in a logic diagram,
(a)	 bubble outputs are connected to bubble inputs
(b)	 the NAND symbols produce the AND operations
(c)	 the negative-OR symbols produce the OR operations
(d)	 All of these answers are true.
(e)	 None of these answers is true.
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	10.	 All Boolean expressions can be implemented with
(a)	 NAND gates only
(b)	 NOR gates only
(c)	 combinations of NAND and NOR gates
(d)	 combinations of AND gates, OR gates, and inverters
(e)	 any of these

	11.	 A VHDL component
(a)	 can be used once in each program
(b)	 is a predefined description of a logic function
(c)	 can be used multiple times in a program
(d)	 is part of a data flow description
(e)	 answers (b) and (c)

	12.	 A VHDL component is called for use in a program by using a
(a)	 signal	 (b)	 variable
(c)	 component instantiation	 (d)	 architecture declaration

Problems

Answers to odd-numbered problems are at the end of the book.

Section 5–1	Basic Combinational Logic Circuits
	 1.	 Draw the ANSI distinctive shape logic diagram for a 4-wide, 3-input AND-OR-Invert circuit. 

Also draw the ANSI standard rectangular outline symbol.

	 2.	 Write the output expression for each circuit in Figure 5–54.
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fg05_05400

FIGURE 5–54 
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FIGURE 5–55 

	 3.	 Write the output expression for each circuit as it appears in Figure 5–55.
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302    Combinational Logic Analysis

	 4.	 Write the output expression for each circuit as it appears in Figure 5–56 and then change each 
circuit to an equivalent AND-OR configuration.

	 5.	 Develop the truth table for each circuit in Figure 5–55.

	 6.	 Develop the truth table for each circuit in Figure 5–56.

	 7.	 Show that an exclusive-NOR circuit produces a POS output.

(a) (b)

(d)(c)

(e)

(f)
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FIGURE 5–56 

Section 5–2	Implementing Combinational Logic
	 8.	 Develop an AND-OR-Invert logic circuit for a power drive which switches on (logic 1) when 

the guard is in place (logic 1) and switches off (logic 0) when the motor is too hot (logic 0).

	 9.	 An AOI (AND-OR-Invert) logic chip has two 4-input AND gates connected to a 2-input NOR 
gate. Write the Boolean expression for the circuit (assume the inputs are labeled A through H).

	10.	 Use AND gates, OR gates, or combinations of both to implement the following logic 
expressions as stated:

(a)	 X = A + B + C
(b)	 X = ABC
(c)	 X = A + BC
(d)	 X = AB + CD
(e)	 X = (A + B)(C + D)
(f)	 X = A + BCD
(g)	 X = ABC + BCD + DEF
(h)	 X = ABC(D + E + F) + AC(C + D + E)
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	11.	 Use AND gates, OR gates, and inverters as needed to implement the following logic expres-
sions as stated:

(a)	 X = AB + BC
(b)	 X = A(B + C)
(c)	 X = AB + AB
(d)	 X = ABC + B(EF + G)
(e)	 X = A[BC(A + B + C + D)]
(f)	 X = B(CDE + EFG)(AB + C)

	12.	 Use NAND gates, NOR gates, or combinations of both to implement the following logic 
expressions as stated:

(a)	 X = AB + CD + (A + B)(ACD + BE)
(b)	 X = ABC D + DEF + AF
(c)	 X = A[B + C(D + E)]

	13.	 Implement a logic circuit for the truth table in Table 5–8.

Table 5–8

Inputs Output

A B C X

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

	14.	 Implement a logic circuit for the truth table in Table 5–9.

Table 5–9

Inputs Output

A B C D X

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1
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	15.	 Simplify the circuit in Figure 5–57 as much as possible, and verify that the simplified circuit is 
equivalent to the original by showing that the truth tables are identical.

	16.	 Repeat Problem 15 for the circuit in Figure 5–58.
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FIGURE 5–57 
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FIGURE 5–58 

	17.	 Minimize the gates required to implement the functions in each part of Problem 11 in SOP form.

	18.	 Minimize the gates required to implement the functions in each part of Problem 12 in SOP 
form.

	19.	 Minimize the gates required to implement the function of the circuit in each part of Figure 
5–56 in SOP form.

Section 5–3	The Universal Property of NAND and NOR Gates
	20.	 Implement the logic circuits in Figure 5–54 using only NAND gates.

	21.	 Implement the logic circuit in Figure 5–58 using only NAND gates.

	22.	 Repeat Problem 20 using only NOR gates.

	23.	 Repeat Problem 21 using only NOR gates.

Section 5–4	Combinational Logic Using NAND and NOR Gates
	24.	 Show how the following expressions can be implemented as stated using only NOR gates:

(a)	 X = ABC	 (b)  X = ABC	 (c)  X = A + B
(d)	 X = A + B + C	 (e)  X = AB + CD	 (f)  X = (A + B)(C + D)
(g)	 X = AB[C(DE + AB) + BCE]

	25.	 Repeat Problem 24 using only NAND gates.

	26.	 Implement each function in Problem 10 by using only NAND gates.

	27.	 Implement each function in Problem 11 by using only NAND gates.

Section 5–5	Pulse Waveform Operation
	28.	 The output of the logic circuit and input waveforms in Figure 5–59 is passed through an 

inverter. Draw the output waveform.

B X 

A
A

B
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FIGURE 5–59 

	29.	 For the logic circuit in Figure 5–60, draw the output waveform in proper relationship to the 
inputs.
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B
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B X 
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FIGURE 5–60 
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	30.	 For the input waveforms in Figure 5–61, what logic circuit will generate the output waveform 
shown?
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FIGURE 5–64 

	31.	 Repeat Problem 30 for the waveforms in Figure 5–62.

	32.	 For the circuit in Figure 5–63, draw the waveforms at the numbered points in the proper rela-
tionship to each other.
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FIGURE 5–62 

	33.	 Assuming a propagation delay through each gate of 10 nanoseconds (ns), determine if the 
desired output waveform X in Figure 5–64 (a pulse with a minimum tW 5 25 ns positioned as 
shown) will be generated properly with the given inputs.

Section 5–6	Combinational Logic with VHDL
	34.	 Describe a 2-input NAND gate with VHDL.

	35.	 Describe a 3-input AND gate with VHDL.

	36.	 Write a VHDL program using the data flow approach (Boolean expressions) to describe the 
logic circuit in Figure 5–54(b).

	37.	 Write VHDL programs using the data flow approach (Boolean expressions) for the logic 
circuits in Figure 5–55(e) and (f).
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306    Combinational Logic Analysis

	38.	 Write a VHDL program using the structural approach for the logic circuit in Figure 5–56(d). 
Assume component declarations for each type of gate are already available.

	39.	 Repeat Problem 38 for the logic circuit in Figure 5–56(f).

	40.	 Describe the logic represented by the truth table in Table 5–8 using VHDL by first converting it 
to SOP form.

	41.	 Develop a VHDL program for the logic in Figure 5–65, using both the data flow and the struc-
tural approach. Compare the resulting programs.

A

B
C

D

E

G2

G1

G4

G3

X

FIGURE 5–65 

G4

X

A
B

C

D

E

G2

G1

G3

G5

FIGURE 5–66 

	42.	 Develop a VHDL program for the logic in Figure 5–66, using both the data flow and the struc-
tural approach. Compare the resulting programs.

	43.	 Given the following VHDL program, create the truth table that describes the logic circuit.

entity CombLogic is

  port (A, B, C, D: in bit; X: out bit);

end entity CombLogic;

architecture Example of CombLogic is

  begin

    X ,5 not((not A and not B) or (not A and not C) or (not A and not D) or

            (not B and not C) or (not B and not D) or (not D and not C));

end architecture Example;

	44.	 Describe the logic circuit shown in Figure 5–67 with a VHDL program, using the data flow 
approach.

	45.	 Repeat Problem 44 using the structural approach.

X 

A1

A2

B1

B2

G1

G2

G3

G4

G5
G6

G7

fg05_07200

FIGURE 5–67 
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Section 5–7	Troubleshooting
	46.	 For the logic circuit and the input waveforms in Figure 5–68, the indicated output waveform is 

observed. Determine if this is the correct output waveform.

A

B

C

D

A

B

C

D

X

fg05_06500

FIGURE 5–68 
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B

C

D

E

X

A

B
C

D

E

G2

G1

G4

G3

fg05_06600

FIGURE 5–69 
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B

F

E

C

D

G1

G2

G3

G4 X

F

X

E

D

C

B

A

fg05_06700

FIGURE 5–70 

	47.	 The output waveform in Figure 5–69 is incorrect for the inputs that are applied to the circuit. 
Assuming that one gate in the circuit has failed, with its output either an apparent constant HIGH 
or a constant LOW, determine the faulty gate and the type of failure (output open or shorted).

	48.	 Repeat Problem 47 for the circuit in Figure 5–70, with input and output waveforms as shown.

	49.	 By examining the connections in Figure 5–71, determine the driving gate and load gate(s). 
Specify by device and pin numbers.

74HC0074HC001 2

fg05_06800
FIGURE 5–71 
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	50.	 Figure 5–72(a) is a logic circuit under test. Figure 5–72(b) shows the waveforms as observed 
on a logic analyzer. The output waveform is incorrect for the inputs that are applied to the cir-
cuit. Assuming that one gate in the circuit has failed, with its output either an apparent constant 
HIGH or a constant LOW, determine the faulty gate and the type of failure.

A

B

X

(b)

C

D

E

F

X

A
B
C
D
E
F

G1

G2

G3

G4

(a)

fg05_06900

FIGURE 5–72 
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D
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G4

X

A
B

C

D

E

G2

G1

G3

G5

fg05_07000

FIGURE 5–73 

A

B

X

C

D

E

F

TP

TP

A
B

C
D

E
F

fg05_07100

FIGURE 5–74 

	51.	 The logic circuit in Figure 5–73 has the input waveforms shown.

(a)	 Determine the correct output waveform in relation to the inputs.
(b)	 Determine the output waveform if the output of gate G3 is open.
(c)	 Determine the output waveform if the upper input to gate G5 is shorted to ground.

	52.	 The logic circuit in Figure 5–74 has only one intermediate test point available besides the output, 
as indicated. For the inputs shown, you observe the indicated waveform at the test point. Is this 
waveform correct? If not, what are the possible faults that would cause it to appear as it does?

Applied Logic
	53.	 Describe the function of each of the three sensors in the tank.

	54.	 Implement the inlet valve logic using NOR gates and inverters.

	55.	 Repeat Problem 54 for the outlet valve logic.

	56.	 Implement the temperature control logic using XNOR gates.

	57.	 Design a circuit to enable an additive to be introduced into the syrup through another inlet only 
when the temperature is at the specified value and the syrup level is at the low-level sensor.
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Special Design Problems
	58.	 (a)	� Design a logic circuit to produce a HIGH output only if the input, represented by a 4-bit 

binary number, is greater than twelve or less than three. First develop the truth table and 
then draw the logic diagram. 

(b)	 Describe the logic using VHDL.

	59.	 (a)	 Develop the logic circuit necessary to meet the following requirements:

A battery-powered lamp in a room is to be operated from two switches, one at the back 
door and one at the front door. The lamp is to be on if the front switch is on and the back 
switch is off, or if the front switch is off and the back switch is on. The lamp is to be off if 
both switches are off or if both switches are on. Let a HIGH output represent the on condi-
tion and a LOW output represent the off condition. 

(b)	 Describe the logic using VHDL.

	60.	 (a)	� Develop the NAND logic for a hexadecimal keypad encoder that will convert each key 
closure to binary.

(b)	 Describe the logic using VHDL.

Multisim Troubleshooting Practice
	61.	 Open file P05-61. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

	62.	 Open file P05-62. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	63.	 Open file P05-63. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	64.	 Open file P05-64. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

Answers

Section Checkups
Section 5–1	Basic Combinational Logic Circuits
	 1.	 (a)	 AB + CD = 1 # 0 + 1 # 0 = 1	 (b)	 AB + CD = 1 # 1 + 0 # 1 = 0

(c)	 AB + CD = 0 # 1 + 1 # 1 = 0

	 2.	 (a)	 AB + AB = 1 # 0 + 1 # 0 = 1	 (b)	 AB + AB = 1 # 1 + 1 # 1 = 0

(c)	 AB + AB = 0 # 1 + 0 # 1 = 1	 (d)	 AB + AB = 0 # 0 + 0 # 0 = 0

	 3.	 X = 1 when ABC = 000, 011, 101, 110, and 111; X = 0 when ABC = 001, 010, and 100

	 4.	 X = AB + A B; the circuit consists of two AND gates, one OR gate, and two inverters. See 
Figure 5–6(b) for diagram.

Section 5–2	Implementing Combinational Logic
	 1.	 (a)	 X = ABC + AB + AC: three AND gates, one OR gate

(b)	 X = AB(C + DE): three AND gates, one OR gate

	 2.	 X = ABC + A B C; two AND gates, one OR gate, and three inverters

	 3.	 (a)	 X = AB(C + 1) + AC = AB + AC

(b)	 X = AB(C + DE) = ABC + ABDE

Section 5–3	The Universal Property of NAND and NOR Gates
	 1.	 (a)	 X = A + B: a 2-input NAND gate with A and B on its inputs.

(b)	 X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an 
inverter.

	 2.	 (a)	� X = A + B: a 2-input NOR with inputs A and B, followed by one NOR used as an 
inverter.

(b)	 X = AB: a 2-input NOR with A and B on its inputs.
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310    Combinational Logic Analysis

Section 5–4	Combinational Logic Using NAND and NOR Gates
	 1.	 X = (A + B + C)DE: a 3-input NAND with inputs, A, B, and C, with its output connected to 

a second 3-input NAND with two other inputs, D and E

	 2.	 X = A B C + (D + E): a 3-input NOR with inputs A, B, and C, with its output connected to a 
second 3-input NOR with two other inputs, D and E

Section 5–5	Pulse Waveform Operation
	 1.	 The exclusive-OR output is a 15 ms pulse followed by a 25 ms pulse, with a separation of 10 ms 

between the pulses.

	 2.	 The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are 
LOW.

Section 5–6	Combinational Logic with VHDL
	 1.	 A VHDL component is a predefined program describing a specified logic function.

	 2.	 A component instantiation is used to call for a specified component in a program architecture.

	 3.	 Interconnections between components are made using VHDL signals.

	 4.	 Components are used in the structural approach.

Section 5–7	Troubleshooting
	 1.	 Common gate failures are input or output open; input or output shorted to ground.

	 2.	 Input shorted to VCC causes output to be stuck LOW.

	 3.	 (a)	 G4 output is HIGH until rising edge of seventh pulse, then it goes LOW.

(b)	 G4 output is the same as input D.

(c)	 G4 output is the inverse of the G2 output shown in Figure 5–49(b).

Related Problems for Examples
	5–1	 X = AB + AC + BC

	5–2	 X = AB + AC + BC

 If A = 0 and B = 0, X = 0 # 0 + 0 # 1 + 0 # 1 = 0 = 1

 If A = 0 and C = 0, X = 0 # 1 + 0 # 0 + 1 # 0 = 0 = 1

 If B = 0 and C = 0, X = 1 # 0 + 1 # 0 + 0 # 0 = 0 = 1

	5–3	 Determine the even-parity output for all 16 input combinations. Each combination should 
have an even number of 1s including the parity bit.

	5–4	 Apply codes with odd number of 1s and verify output is 1.

	5–5	 Cannot be simplified

	5–6	 Cannot be simplified

	5–7	 X = A + B + C + D is valid.

	5–8	 See Figure 5–75.

X = C (A + B)(B + D)

A
B

D
C

fg05_07300

FIGURE 5–75
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	5–11	 X = (A + B + C) + (D + E + F) = (A + B + C)(D + E + F) = (A B + C)(D E + F)

	5–12	 See Figure 5–77.

	5–13	 See Figure 5–78.

	5–9	 X = (ABC)(DEF) = (AB)C + (DE)F = (A + B)C + (D + E)F

	5–10	 See Figure 5–76.

ABC + DE

B
C

E

B

D

E

ABC + D + E
D

A

(b)

C

A

(a)

fg05_07400

FIGURE 5–76

AHIGH

B
C

X

fg05_07500

FIGURE 5–77

A

B

X

fg05_07600

FIGURE 5–78

	5–14	 See Figure 5–79.

	5–15	 See Figure 5–80.

A

B

C

D

Y1

X

Y2

Y3

Y4

fg05_07700

FIGURE 5–79

A

B

C

D

X

fg05_07800

FIGURE 5–80

	5–16	 G5: NAND_gate2 port map (A 5. IN9, B 5. IN10, X 5. OUT5);

	5–17	 See Figure 5–81.

A

B

C

D

G4

fg05_07900

FIGURE 5–81

M05_FLOY5983_11_GE_C05.indd Page 311  17/11/14  6:00 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



312    Combinational Logic Analysis

True/False Quiz
	 1.	 F    2.  T    3.  T    4.  F      5.  F

	 6.	 T    7.  F    8.  T    9.  F    10.  T

Self-Test
	 1.	 (c)      2.  (d)      3.  (a)      4.  (a)    5.  (c)    6.  (a)    7.  (a)    8.  (d)

	 9.	 (d)    10.  (e)    11.  (e)    12.  (c)
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Chapter Outline

6–1	 Half and Full Adders 
6–2	 Parallel Binary Adders 
6–3	 Ripple Carry and Look-Ahead Carry Adders 
6–4	 Comparators 
6–5	 Decoders 
6–6	 Encoders 
6–7	 Code Converters 
6–8	 Multiplexers (Data Selectors) 
6–9	 Demultiplexers 
6–10	 Parity Generators/Checkers 
6–11	 Troubleshooting 
	 Applied Logic 

Chapter Objectives

■	 Distinguish between half-adders and full-adders

■	 Use full-adders to implement multibit parallel binary 
adders

■	 Explain the differences between ripple carry and 
look-ahead carry parallel adders

■	 Use the magnitude comparator to determine the 
relationship between two binary numbers and use 
cascaded comparators to handle the comparison of 
larger numbers

■	 Implement a basic binary decoder

■	 Use BCD-to-7-segment decoders in display 
systems

■	 Apply a decimal-to-BCD priority encoder in a 
simple keyboard application

■	 Convert from binary to Gray code, and Gray code 
to binary by using logic devices

■	 Apply data selectors/multiplexers in multiplexed 
displays and as a function generator

■	 Use decoders as demultiplexers

■	 Explain the meaning of parity

■	 Use parity generators and checkers to detect bit 
errors in digital systems

■	 Describe a simple data communications system

■	 Write VHDL programs for several logic functions

■	 Identify glitches, common bugs in digital systems

Key Terms

Key terms are in order of appearance in the chapter.

Functions of  
Combinational Logic

6

■	 Half-adder

■	 Full-adder

■	 Cascading

■	 Ripple carry

■	 Look-ahead carry

■	 Comparator

■	 Decoder

■	 Encoder

■	 Priority encoder

■	 Multiplexer (MUX)

■	 Demultiplexer 
(DEMUX)

■	 Parity bit

■	 Glitch

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

In this chapter, several types of combinational 
logic functions are introduced including adders, 
comparators, decoders, encoders, code converters, 
multiplexers (data selectors), demultiplexers, and 
parity generators/checkers. VHDL implementation 
of each logic function is provided, and examples 
of fixed-function IC devices are included. Each 
device introduced may also be available in other 
logic families.

CHAPTER 
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6–1  Half and Full Adders

Adders are important in computers and also in other types of digital systems in which 
numerical data are processed. An understanding of the basic adder operation is funda-
mental to the study of digital systems. In this section, the half-adder and the full-adder are 
introduced.

After completing this section, you should be able to

u	 Describe the function of a half-adder

u	 Draw a half-adder logic diagram

u	 Describe the function of the full-adder

u	 Draw a full-adder logic diagram using half-adders

u	 Implement a full-adder using AND-OR logic

The Half-Adder

Recall the basic rules for binary addition as stated in Chapter 2.

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

The operations are performed by a logic circuit called a half-adder.

The half-adder accepts two binary digits on its inputs and produces two binary 
digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6–1.

A half-adder adds two bits and 
produces a sum and an output carry.

Σ
A

B Cout

Σ Sum

Carry

OutputsInput bits

fg06_00100

FIGURE 6–1  Logic symbol for a half-adder. Open file F06-01 to verify operation. 
A multisim tutorial is available on the website.

Half-Adder Logic

From the operation of the half-adder as stated in Table 6–1, expressions can be derived for 
the sum and the output carry as functions of the inputs. Notice that the output carry (Cout) 
is a 1 only when both A and B are 1s; therefore, Cout can be expressed as the AND of the 
input variables.

	 Cout � AB	 Equation 6–1

Now observe that the sum output (©) is a 1 only if the input variables, A and B, are not 
equal. The sum can therefore be expressed as the exclusive-OR of the input variables.

	 π � A ¢ B	 Equation 6–2

From Equations 6–1 and 6–2, the logic implementation required for the half-adder func-
tion can be developed. The output carry is produced with an AND gate with A and B on the 

TABLE 6–1

Half-adder truth table.

A B Cout π

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

© = sum
Cout = output carry
A and B = input variables (operands)
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inputs, and the sum output is generated with an exclusive-OR gate, as shown in Figure 6–2. 
Remember that the exclusive-OR can be implemented with AND gates, an OR gate, and 
inverters.

Cout = AB

Σ = A ⊕ B = AB + AB

A

B

fg06_00200

FIGURE 6–2  Half-adder logic diagram.

The Full-Adder

The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output 
and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an 
input carry. A logic symbol for a full-adder is shown in Figure 6–3, and the truth table in 
Table 6–2 shows the operation of a full-adder.

A full-adder has an input carry while 
the half-adder does not.

TABLE 6–2

Full-adder truth table.

A B Cin Cout π

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Cin = input carry, sometimes designated as CI
Cout = output carry, sometimes designated as CO
© = sum
A and B = input variables (operands)

Σ
A

Cin

Cout

Σ Sum

Output carry

Input
bits

B

Input carry

fg06_00300

FIGURE 6–3  Logic symbol for a full-adder. Open file F06-03 to verify operation.

Full-Adder Logic

The full-adder must add the two input bits and the input carry. From the half-adder you 
know that the sum of the input bits A and B is the exclusive-OR of those two variables, 
A � B. For the input carry (Cin) to be added to the input bits, it must be exclusive-ORed 
with A � B, yielding the equation for the sum output of the full-adder.

	 π � (A ¢ B) ¢ Cin	 Equation 6–3
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This means that to implement the full-adder sum function, two 2-input exclusive-OR gates 
can be used. The first must generate the term A � B, and the second has as its inputs the 
output of the first XOR gate and the input carry, as illustrated in Figure 6–4(a).

Cin

B
A

Σ = (A ⊕ B) ⊕ Cin

A ⊕ B

(a) Logic required to form the sum of three bits

Cin

B
A A ⊕ B

(A ⊕ B)Cin

AB

Cout = AB + (A ⊕ B)Cin

(b) Complete logic circuit for a full-adder (each half-adder is enclosed
by a shaded area)

Σ = (A ⊕ B) ⊕ Cin

fg06_00400

FIGURE 6–4  Full-adder logic. Open file F06-04 to verify operation.

(b) Full-adder logic symbol

Input
carry, Cin

AB

(a) Arrangement of two half-adders to form a full-adder

A ⊕ BΣ
A

B Cout

Σ Sum
(A ⊕ B) ⊕ Cin

Output carry, Cout

Σ
A

B Cout

Σ

Half-adder Half-adder

AB + (A ⊕ B)Cin

(A ⊕ B)Cin
Σ

A

Cin

Cout

Σ
B

A

B

fg06_00500

FIGURE 6–5  Full-adder implemented with half-adders.

The output carry is a 1 when both inputs to the first XOR gate are 1s or when both inputs 
to the second XOR gate are 1s. You can verify this fact by studying Table 6–2. The output 
carry of the full-adder is therefore produced by input A ANDed with input B and A � B 
ANDed with Cin. These two terms are ORed, as expressed in Equation 6–4. This function 
is implemented and combined with the sum logic to form a complete full-adder circuit, as 
shown in Figure 6–4(b).

	 Cout � AB � (A ¢ B)Cin	 Equation 6–4

Notice in Figure 6–4(b) there are two half-adders, connected as shown in the block 
diagram of Figure 6–5(a), with their output carries ORed. The logic symbol shown in Fig-
ure 6–5(b) will normally be used to represent the full-adder.

EXAMPLE 6–1

For each of the three full-adders in Figure 6–6, determine the outputs for the inputs shown.

(a)

Σ
A

Cin

Cout

Σ
B

1

0

0

(b)

Σ
A

Cin

Cout

Σ
B

1

0

1

(c)

Σ
A

Cin

Cout

Σ
B

1

1

0

fg06_00600

FIGURE 6–6 
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Solution

(a)	 The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry

	 Therefore, © = 1 and Cout = 0.

(b)	 The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1

	 Therefore, © = 0 and Cout = 1.

(c)	 The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1

	 Therefore, © = 0 and Cout = 1.

Related Problem*

What are the full-adder outputs for A = 1, B = 1, and Cin = 1?

*Answers are at the end of the chapter.

Section 6–1  Checkup

Answers are at the end of the chapter.

	 1.	Determine the sum (©) and the output carry (Cout) of a half-adder for each set of 
input bits:

(a)	 01	 (b)	 00	 (c)	 10	 (d)	 11

	 2.	A full-adder has Cin = 1. What are the sum (©) and the output carry (Cout) when 
A = 1 and B = 1?

6–2  Parallel Binary Adders

Two or more full-adders are connected to form parallel binary adders. In this section, 
you will learn the basic operation of this type of adder and its associated input and output 
functions.

After completing this section, you should be able to

u	 Use full-adders to implement a parallel binary adder

u	 Explain the addition process in a parallel binary adder

u	 Use the truth table for a 4-bit parallel adder

u	 Apply two 74HC283s for the addition of two 8-bit numbers

u	 Expand the 4-bit adder to accommodate 8-bit or 16-bit addition

u	 Use VHDL to describe a 4-bit parallel adder

As you learned in Section 6–1, a single full-adder is capable of adding two 1-bit num-
bers and an input carry. To add binary numbers with more than one bit, you must use 
additional full-adders. When one binary number is added to another, each column gener-
ates a sum bit and a 1 or 0 carry bit to the next column to the left, as illustrated here with 
2-bit numbers.

InfoNote

Addition is performed by 
processors on two numbers at a 
time, called operands. The source 
operand is a number that is to be 
added to an existing number called 
the destination operand, which is 
held in an ALU register, such as 
the accumulator. The sum of the 
two numbers is then stored back 
in the accumulator. Addition is 
performed on integer numbers or 
floating-point numbers using ADD 
or FADD instructions respectively.
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318	 Functions of Combinational Logic

To add two binary numbers, a full-adder (FA) is required for each bit in the numbers. So 
for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so 
on. The carry output of each adder is connected to the carry input of the next higher-order 
adder, as shown in Figure 6–7 for a 2-bit adder. Notice that either a half-adder can be used 
for the least significant position or the carry input of a full-adder can be made 0 (grounded) 
because there is no carry input to the least significant bit position.

1
1

1

+  01

100
In this case, the 
carry bit from 
second column 
becomes a sum bit.

Carry bit from right column

In Figure 6–7 the least significant bits (LSB) of the two numbers are represented by A1 
and B1. The next higher-order bits are represented by A2 and B2. The three sum bits are 
©1, ©2, and ©3. Notice that the output carry from the left-most full-adder becomes the 
most significant bit (MSB) in the sum, ©3.

A2 B2 A1 B1

0

(MSB) Σ2Σ3 Σ1 (LSB)

FA1FA2

General format, addition
of two 2-bit numbers:

A2A1
+ B2B1

Σ3Σ2Σ1

A

Σ

BA

Σ

B Cin Cin

Cout Cout

fg06_00700

FIGURE 6–7  Block diagram of a basic 2-bit parallel adder using two full-adders. 
Open file F06-07 to verify operation.

EXAMPLE 6–2

Determine the sum generated by the 3-bit parallel adder in Figure 6–8 and show the 
intermediate carries when the binary numbers 101 and 011 are being added.

1

Σ2 Σ1
0

1

0
Σ3Σ4
01

1001

11

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

FA1FA2FA3

fg06_00800

FIGURE 6–8 

M06_FLOY5983_11_GE_C06.indd Page 318  12/11/14  8:12 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Parallel Binary Adders	 319

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with 
four full-adder stages as shown in Figure 6–9. Again, the LSBs (A1 and B1) in each number 
being added go into the right-most full-adder; the higher-order bits are applied as shown 
to the successively higher-order adders, with the MSBs (A4 and B4) in each number being 
applied to the left-most full-adder. The carry output of each adder is connected to the carry 
input of the next higher-order adder as indicated. These are called internal carries.

Solution

The LSBs of the two numbers are added in the right-most full-adder. The sum bits and 
the intermediate carries are indicated in blue in Figure 6–8.

Related Problem

What are the sum outputs when 111 and 101 are added by the 3-bit parallel adder?

A2 B2 A1 B1

Σ2 Σ1

(LSB)FA1FA2

A3 B3A4 B4

Σ3Σ4

C4

(a) Block diagram 

C0

C1C2C3

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4
Output
carry

Binary
number A

Input
carry

4-bit
sum

(b) Logic symbol

Binary
number B

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

(MSB) FA4 FA3

fg06_00900

FIGURE 6–9  A 4-bit parallel adder.

In keeping with most manufacturers’ data sheets, the input labeled C0 is the input carry 
to the least significant bit adder; C4, in the case of four bits, is the output carry of the most 
significant bit adder; and ©1 (LSB) through ©4 (MSB) are the sum outputs. The logic 
symbol is shown in Figure 6–9(b).

In terms of the method used to handle carries in a parallel adder, there are two types: 
the ripple carry adder and the carry look-ahead adder. These are discussed in Section 6–3.

Truth Table for a 4-Bit Parallel Adder

Table 6–3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be called 
function tables or functional truth tables. The subscript n represents the adder bits and 
can be 1, 2, 3, or 4 for the 4-bit adder. Cn-1 is the carry from the previous adder. Carries 
C1, C2, and C3 are generated internally. C0 is an external carry input and C4 is an output. 
Example 6–3 illustrates how to use Table 6–3.

TABLE 6–3

Truth table for each stage of 
a 4-bit parallel adder.

Cn� 1 An Bn πn Cn

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

EXAMPLE 6–3

Use the 4-bit parallel adder truth table (Table 6–3) to find the sum and output carry for 
the addition of the following two 4-bit numbers if the input carry (Cn-1) is 0:

A4A3A2A1 = 1100 and B4B3B2B1 = 1100
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Solution

For n = 1: A1 = 0, B1 = 0, and Cn-1 = 0. From the 1st row of the table,

©1 = 0 and C1 = 0

For n = 2: A2 = 0, B2 = 0, and Cn-1 = 0. From the 1st row of the table,

©2 = 0 and C2 = 0

For n = 3: A3 = 1, B3 = 1, and Cn-1 = 0. From the 4th row of the table,

©3 = 0 and C3 = 1

For n = 4: A4 = 1, B4 = 1, and Cn-1 = 1. From the last row of the table,

©4 = 1 and C4 = 1

C4 becomes the output carry; the sum of 1100 and 1100 is 11000.

Related Problem

Use the truth table (Table 6–3) to find the result of adding the binary numbers 1011 
and 1010. 

Implementation: 4-Bit Parallel Adder

Fixed-Function Device    The 74HC283 and the 74LS283 are 4-bit parallel adders with 
identical package pin configurations. The logic symbol and package pin configuration are 
shown in Figure 6–10. Go to ti.com for data sheet information.
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Σ
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FIGURE 6–10  The 74HC283/74LS283 4-bit parallel adder.

Programmable Logic Device (PLD)    A 4-bit adder can be described using VHDL and 
implemented in a PLD. First, the data flow approach is used to describe the full adder, 
which is shown in Figure 6–4(b), for use as a component. (Blue text comments are not part 
of the program.)

entity FullAdder is

  port (A, B, CIN: in bit; SUM, COUT: out bit);

end entity FullAdder;

Inputs and outputs declared
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architecture LogicOperation of FullAdder is

begin

SUM 6= (A xor B) xor CIN;

COUT 6= ((A xor B) and CIN) or (A and B);

end architecture LogicOperation;

Next, the FullAdder program code is used as a component in a VHDL structural approach 
to the 4-bit full-adder in Figure 6–9(a).

entity 4BitFullAdder is
  port (A1, A2, A3, A4, B1, B2, B3, B4, C0: in bit; S1, S2, S3, S4, C4: out bit);
end entity 4bitFullAdder;

architecture LogicOperation of 4BitFullAdder is

  component FullAdder is

    port (A, B, CIN: in bit; SUM, COUT: out bit);

  end component FullAdder;

  signal Cl, C2, C3: bit;

begin

FA1: FullAdder port map (A =7 A1, B =7 B1, CIN =7 C0, SUM =7 S1, COUT =7 Cl);

FA2: FullAdder port map (A =7 A2, B =7 B2, CIN =7 C1, SUM =7 S2, COUT =7 C2);

FA3: FullAdder port map (A =7 A3, B =7 B3, CIN =7 C2, SUM =7 S3, COUT =7 C3);

FA4: FullAdder port map (A =7 A4, B =7 B4, CIN =7 C3, SUM =7 S4, COUT =7 C4);

end architecture LogicOperation;

Boolean expressions for 
the outputs¸

˝
˛

A1-A4: inputs
B1-B4: inputs
C0: carry input
S1-S4: sum outputs
C4: carry output

¸
˚
˝
˚
˛

Full-adder component 
declaration

Instantiations for each of 
the four full adders

¸
˚

˝
˚

˛

Adder Expansion

The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by 
using two 4-bit adders. The carry input of the low-order adder (C0) is connected to ground 
because there is no carry into the least significant bit position, and the carry output of the 
low-order adder is connected to the carry input of the high-order adder, as shown in Fig-
ure 6–11. This process is known as cascading. Notice that, in this case, the output carry is 
designated C8 because it is generated from the eighth bit position. The low-order adder is 

Adders can be expanded to handle 
more bits by cascading.

Σ8 Σ7 Σ6 Σ5

1234

C8

Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

Σ4 Σ3 Σ2 Σ1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ
AB

Σ

fg06_01200

FIGURE 6–11  Cascading of two 4-bit adders to form an 8-bit adder.
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322	 Functions of Combinational Logic

the one that adds the lower or less significant four bits in the numbers, and the high-order 
adder is the one that adds the higher or more significant four bits in the 8-bit numbers. 
Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers.

EXAMPLE 6–4

Show how two 74HC283 adders can be connected to form an 8-bit parallel adder. Show output bits for the following 8-bit 
input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

Solution

Two 74HC283 4-bit parallel adders are used to implement the 8-bit adder. The only connection between the two 74HC283s 
is the carry output (pin 9) of the low-order adder to the carry input (pin 7) of the high-order adder, as shown in Figure 6–12. 
Pin 7 of the low-order adder is grounded (no carry input).

The sum of the two 8-bit numbers is

©9©8©7©6©5©4©3©2©1 = 101010111
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FIGURE 6–12  Two 74HC283 adders connected as an 8-bit parallel adder (pin 
numbers are in parentheses).

Related Problem

Use 74HC283 adders to implement a 12-bit parallel adder.

An Application

An example of full-adder and parallel adder application is a simple voting system that 
can be used to simultaneously provide the number of “yes” votes and the number of “no” 
votes. This type of system can be used where a group of people are assembled and there is 
a need for immediately determining opinions (for or against), making decisions, or voting 
on certain issues or other matters.

In its simplest form, the system includes a switch for “yes” or “no” selection at each 
position in the assembly and a digital display for the number of yes votes and one for the 
number of no votes. The basic system is shown in Figure 6–13 for a 6-position setup, but it 
can be expanded to any number of positions with additional 6-position modules and addi-
tional parallel adder and display circuits.
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In Figure 6–13 each full-adder can produce the sum of up to three votes. The sum 
and output carry of each full-adder then goes to the two lower-order inputs of a parallel 
binary adder. The two higher-order inputs of the parallel adder are connected to ground 
(0) because there is never a case where the binary input exceeds 0011 (decimal 3). For 
this basic 6-position system, the outputs of the parallel adder go to a BCD-to-7-segment 
decoder that drives the 7-segment display. As mentioned, additional circuits must be 
included when the system is expanded.

The resistors from the inputs of each full-adder to ground assure that each input is LOW 
when the switch is in the neutral position (CMOS logic is used). When a switch is moved 
to the “yes” or to the “no” position, a HIGH level (VCC) is applied to the associated full-
adder input.
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FIGURE 6–13  A voting system using full-adders and parallel binary adders.
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Section 6–2  Checkup

	 1.	Two 4-bit numbers (1101 and 1011) are applied to a 4-bit parallel adder. The input 
carry is 1. Determine the sum (©) and the output carry.

	 2.	How many 74HC283 adders would be required to add two binary numbers each rep-
resenting decimal numbers up through 100010?

6–3  Ripple Carry and Look-Ahead Carry Adders

As mentioned in the last section, parallel adders can be placed into two categories based 
on the way in which internal carries from stage to stage are handled. Those categories are 
ripple carry and look-ahead carry. Externally, both types of adders are the same in terms of 
inputs and outputs. The difference is the speed at which they can add numbers. The look-
ahead carry adder is much faster than the ripple carry adder.

After completing this section, you should be able to

u	 Discuss the difference between a ripple carry adder and a look-ahead carry adder

u	 State the advantage of look-ahead carry addition

u	 Define carry generation and carry propagation and explain the difference

u	 Develop look-ahead carry logic

u	 Explain why cascaded 74HC283s exhibit both ripple carry and look-ahead carry 
properties

The Ripple Carry Adder

A ripple carry adder is one in which the carry output of each full-adder is connected to 
the carry input of the next higher-order stage (a stage is one full-adder). The sum and the 
output carry of any stage cannot be produced until the input carry occurs; this causes a time 
delay in the addition process, as illustrated in Figure 6–14. The carry propagation delay 
for each full-adder is the time from the application of the input carry until the output carry 
occurs, assuming that the A and B inputs are already present.

1
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1
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fg06_01500
FIGURE 6–14  A 4-bit parallel ripple carry adder showing “worst-case” carry propagation 
delays.

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is 
applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces 
an output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output 
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carry is produced by FA1 followed by an output carry from FA2, and so on. As you can 
see in Figure 6–14, the input carry to the least significant stage has to ripple through all the 
adders before a final sum is produced. The cumulative delay through all the adder stages is 
a “worst-case” addition time. The total delay can vary, depending on the carry bit produced 
by each full-adder. If two numbers are added such that no carries (0) occur between stages, 
the addition time is simply the propagation time through a single full-adder from the appli-
cation of the data bits on the inputs to the occurrence of a sum output; however, worst-case 
addition time must always be assumed.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required for the 
carries to propagate, or ripple, through all the stages of a parallel adder. One method of speed-
ing up the addition process by eliminating this ripple carry delay is called look-ahead carry 
addition. The look-ahead carry adder anticipates the output carry of each stage, and based on 
the inputs, produces the output carry by either carry generation or carry propagation.

Carry generation occurs when an output carry is produced (generated) internally by 
the full-adder. A carry is generated only when both input bits are 1s. The generated carry, 
Cg, is expressed as the AND function of the two input bits, A and B.

	 Cg � AB	 Equation 6–5

Carry propagation occurs when the input carry is rippled to become the output carry. 
An input carry may be propagated by the full-adder when either or both of the input bits are 
1s. The propagated carry, Cp, is expressed as the OR function of the input bits.

	 Cp � A � B	 Equation 6–6

The conditions for carry generation and carry propagation are illustrated in Figure 6–15. 
The three arrowheads symbolize ripple (propagation).
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FIGURE 6–15  Illustration of conditions for carry generation and carry propagation.

The output carry of a full-adder can be expressed in terms of both the generated carry 
(Cg) and the propagated carry (Cp). The output carry (Cout) is a 1 if the generated carry is 
a 1 OR if the propagated carry is a 1 AND the input carry (Cin) is a 1. In other words, we 
get an output carry of 1 if it is generated by the full-adder (A = 1 AND B = 1) or if the 
adder propagates the input carry (A = 1 OR B = 1) AND Cin = 1. This relationship is 
expressed as

	 Cout � Cg � CpCin	 Equation 6–7

Now let’s see how this concept can be applied to a parallel adder, whose individual 
stages are shown in Figure 6–16 for a 4-bit example. For each full-adder, the output carry is 
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Based on this analysis, we can now develop expressions for the output carry, Cout, of 
each full-adder stage for the 4-bit example.

Full-adder 1:  

Cout1 = Cg1 + Cp1Cin1

Full-adder 2:  

 Cin2 = Cout1

 Cout2 = Cg2 + Cp2Cin2 = Cg2 + Cp2Cout1 = Cg2 + Cp2(Cg1 + Cp1Cin1)

 = Cg2 + Cp2Cg1 + Cp2Cp1Cin1

Full-adder 3:  

Cin3 = Cout2

 Cout3 = Cg3 + Cp3Cin3 = Cg3 + Cp3Cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

= Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1

Full-adder 4:  

Cin4 = Cout3

Cout4 = Cg4 + Cp4Cin4 = Cg4 + Cp4Cout3

= Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

= Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1

Notice that in each of these expressions, the output carry for each full-adder stage is 
dependent only on the initial input carry (Cin1), the Cg and Cp functions of that stage, and 
the Cg and Cp functions of the preceding stages. Since each of the Cg and Cp functions can 
be expressed in terms of the A and B inputs to the full-adders, all the output carries are 
immediately available (except for gate delays), and you do not have to wait for a carry to 
ripple through all the stages before a final result is achieved. Thus, the look-ahead carry 
technique speeds up the addition process.

The Cout equations are implemented with logic gates and connected to the full-adders to 
create a 4-bit look-ahead carry adder, as shown in Figure 6–17.
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FIGURE 6–16  Carry generation and carry propagation in terms of the input bits to 
a 4-bit adder.

dependent on the generated carry (Cg), the propagated carry (Cp), and its input carry (Cin). 
The Cg and Cp functions for each stage are immediately available as soon as the input bits 
A and B and the input carry to the LSB adder are applied because they are dependent only 
on these bits. The input carry to each stage is the output carry of the previous stage.
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Combination Look-Ahead and Ripple Carry Adders

As with most fixed-function IC adders, the 74HC283 4-bit adder that was introduced in 
Section 6–2 is a look-ahead carry adder. When these adders are cascaded to expand their 
capability to handle binary numbers with more than four bits, the output carry of one adder 
is connected to the input carry of the next. This creates a ripple carry condition between 
the 4-bit adders so that when two or more 74HC283s are cascaded, the resulting adder is 
actually a combination look-ahead and ripple carry adder. The look-ahead carry operation 
is internal to each MSI adder and the ripple carry feature comes into play when there is a 
carry out of one of the adders to the next one.

A

Σ

B
Cin

A4 B4 A3 B3 A2 B2 A1 B1

Σ4(MSB) Σ1(LSB)

A

Σ

B
Cin

A

Σ

B
Cin

A

Σ

B
Cin Cin1

Cg4

Cp4

Cg3

Cp3

Cg2

Cp2

Cg1

Cp1

Cout3

Cout2

Cout1

Cout4

Σ3 Σ2

fg06_01800

FIGURE 6–17  Logic diagram for a 4-stage look-ahead carry adder.

Section 6–3  Checkup

	 1.	The input bits to a full-adder are A = 1 and B = 0. Determine Cg and Cp.

	 2.	Determine the output carry of a full-adder when Cin = 1, Cg = 0, and Cp = 1.

6–4  Comparators

The basic function of a comparator is to compare the magnitudes of two binary quantities 
to determine the relationship of those quantities. In its simplest form, a comparator circuit 
determines whether two numbers are equal.

After completing this section, you should be able to

u	 Use the exclusive-NOR gate as a basic comparator

u	 Analyze the internal logic of a magnitude comparator that has both equality and 
inequality outputs

u	 Apply the 74HC85 comparator to compare the magnitudes of two 4-bit numbers

u	 Cascade 74HC85s to expand a comparator to eight or more bits

u	 Use VHDL to describe a 4-bit magnitude comparator
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In order to compare binary numbers containing two bits each, an additional exclusive-
NOR gate is necessary. The two least significant bits (LSBs) of the two numbers are com-
pared by gate G1, and the two most significant bits (MSBs) are compared by gate G2, as 
shown in Figure 6–19. If the two numbers are equal, their corresponding bits are the same, 
and the output of each exclusive-NOR gate is a 1. If the corresponding sets of bits are not 
equal, a 0 occurs on that exclusive-NOR gate output.

Equality

As you learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator 
because its output is a 0 if the two input bits are not equal and a 1 if the input bits are equal. 
Figure 6–18 shows the exclusive-NOR gate as a 2-bit comparator.

0
1

0
The input bits are not equal.

1
1

1
The input bits are equal.

1
0

0
The input bits are equal.

0
0

1
The input bits are not equal.

fg06_01900

FIGURE 6–18  Basic comparator operation.

General format: Binary number A → A1A0
Binary number B → B1B0

A0

B0

A1

B1

A = B
HIGH indicates equality.

G1

G2MSBs

LSBs

FIGURE 6–19  Logic diagram for equality comparison of two 2-bit numbers. Open 
file F06-19 to verify operation.

In order to produce a single output indicating an equality or inequality of two numbers, 
an AND gate can be combined with XNOR gates, as shown in Figure 6–19. The output of 
each exclusive-NOR gate is applied to the AND gate input. When the two input bits for 
each exclusive-NOR are equal, the corresponding bits of the numbers are equal, producing 
a 1 on both inputs to the AND gate and thus a 1 on the output. When the two numbers are 
not equal, one or both sets of corresponding bits are unequal, and a 0 appears on at least 
one input to the AND gate to produce a 0 on its output. Thus, the output of the AND gate 
indicates equality (1) or inequality (0) of the two numbers. Example 6–5 illustrates this 
operation for two specific cases.

A comparator determines if two 
binary numbers are equal or 
unequal.

EXAMPLE 6–5

Apply each of the following sets of binary numbers to the comparator inputs in Figure 6–20, and determine the output by 
following the logic levels through the circuit.

(a)	 10 and 10	 (b)	 11 and 10

A0 = 1

B0 = 0

A1 = 1

B1 = 1

0 → not equal  

0

1

(b)

A0 = 0

B0 = 0

A1 = 1

B1 = 1

1 → equal 

1

1

(a)

FIGURE 6–20 
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As you know from Chapter 3, the basic comparator can be expanded to any number of 
bits. The AND gate sets the condition that all corresponding bits of the two numbers must 
be equal if the two numbers themselves are equal.

Inequality

In addition to the equality output, fixed-function comparators can provide additional out-
puts that indicate which of the two binary numbers being compared is the larger. That is, 
there is an output that indicates when number A is greater than number B (A 7 B) and an 
output that indicates when number A is less than number B (A 6 B), as shown in the logic 
symbol for a 4-bit comparator in Figure 6–21.

To determine an inequality of binary numbers A and B, you first examine the highest-
order bit in each number. The following conditions are possible:

	 1.	 If A3 = 1 and B3 = 0, number A is greater than number B.

	 2.	 If A3 = 0 and B3 = 1, number A is less than number B.

	 3.	 If A3 = B3, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general pro-
cedure used in a comparator is to check for an inequality in a bit position, starting with 
the highest-order bits (MSBs). When such an inequality is found, the relationship of the 
two numbers is established, and any other inequalities in lower-order bit positions must be 
ignored because it is possible for an opposite indication to occur; the highest-order indica-
tion must take precedence.

Solution

(a)	 The output is 1 for inputs 10 and 10, as shown in Figure 6–20(a).

(b)	 The output is 0 for inputs 11 and 10, as shown in Figure 6–20(b).

Related Problem

Repeat the process for binary inputs of 01 and 10.

InfoNote

In a computer, the cache is a very 
fast intermediate memory between 
the central processing unit (CPU) 
and the slower main memory. The 
CPU requests data by sending 
out its address (unique location) 
in memory. Part of this address 
is called a tag. The tag address 
comparator compares the tag from 
the CPU with the tag from the 
cache directory. If the two agree, 
the addressed data is already in the 
cache and is retrieved very quickly. 
If the tags disagree, the data 
must be retrieved from the main 
memory at a much slower rate.

A0

A1

A2

A3

B0

B1

B2

B3

A

0

3

B

0

3

COMP

A > B

A = B

A < B

fg06_02200

FIGURE 6–21  Logic symbol for 
a 4-bit comparator with inequality 
indication.

EXAMPLE 6–6

Determine the A = B, A 7 B, and A 6 B outputs for the input numbers shown on the 
comparator in Figure 6–22.

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

fg06_02300

FIGURE 6–22 

Solution

The number on the A inputs is 0110 and the number on the B inputs is 0011. The A + B 
output is HIGH and the other outputs are LOW.

Related Problem

What are the comparator outputs when A3A2A1A0 = 1001 and B3B2B1B0 = 1010?  
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A1

B1

A0

B0

(a) Pin diagram (b) Logic symbol

A

0

3

B

0

3

COMP

A > B
A = B
A < B

A > B
A = B
A < B

FIGURE 6–23  The 74HC85/74LS85 4-bit magnitude comparator.

A1
B1

A0
B0

A2
B2

A3
B3

A = B

FIGURE 6–24 

Implementation: 4-Bit Magnitude Comparator

Fixed-Function Device    The 74HC85/74LS85 pin diagram and logic symbol are 
shown in Figure 6–23. Notice that this device has all the inputs and outputs of the 
generalized comparator previously discussed and, in addition, has three cascading 
inputs: A 6 B, A = B, A . B. These inputs allow several comparators to be cascaded 
for comparison of any number of bits greater than four. To expand the comparator, 
the A 6 B, A = B, and A 7 B outputs of the lower-order comparator are connected 
to the corresponding cascading inputs of the next higher-order comparator. The low-
est-order comparator must have a HIGH on the A = B input and LOWs on the A 6 B 
and A 7 B inputs.

Programmable Logic Device (PLD)    A 4-bit magnitude comparator can be described 
using VHDL and implemented in a PLD. The following VHDL program uses the data flow 
approach to implement a simplified comparator (A = B output only) in Figure 6–24. (The 
blue comments are not part of the program.)

entity 4BitComparator is

  port (A0, A1, A2, A3, B0, B1, B2, B3: in bit; AequalB: out bit);

end entity 4BitComparator;

architecture LogicOperation of 4BitComparator is

begin

AequalB 6= (A0 xnor B0) and (A1 xnor B1) and

(A2 xnor B2) and (A3 xnor B);

end architecture LogicOperation;

Output in terms of a 
Boolean expression¸

˝
˛

Inputs and outputs declared
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EXAMPLE 6–7

Use 74HC85 comparators to compare the magnitudes of two 8-bit numbers. Show the 
comparators with proper interconnections.

Solution

Two 74HC85s are required to compare two 8-bit numbers. They are connected as 
shown in Figure 6–25 in a cascaded arrangement.

A

0

3

B

0

3

COMP

Outputs+5 V

A4

A5

A6

A7

B4

B5

B6

B7

A

0

3

B

0

3

COMP

A > B
A = B
A < B

A > B
A = B
A < B

A0

A1

A2

A3

B0

B1

B2

B3

LSBs MSBs

A > B
A = B
A < B

A > B
A = B
A < B

74HC8574HC85

fg06_02600

FIGURE 6–25  An 8-bit magnitude comparator using two 74HC85s.

Related Problem

Expand the circuit in Figure 6–25 to a 16-bit comparator.

Most CMOS devices contain protection circuitry to guard against damage from high static voltages or 
electric fields. However, precautions must be taken to avoid applications of any voltages higher than 
maximum rated voltages. For proper operation, input and output voltages should be between ground 
and VCC. Also, remember that unused inputs must always be connected to an appropriate logic level 
(ground or VCC). Unused outputs may be left open.

Section 6–4  Checkup

	 1.	The binary numbers A = 1011 and B = 1010 are applied to the inputs of a 74HC85. 
Determine the outputs.

	 2.	The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit 
comparator in Figure 6–25. Determine the states of the outputs on each comparator.

6–5  Decoders

A decoder is a digital circuit that detects the presence of a specified combination of bits 
(code) on its inputs and indicates the presence of that code by a specified output level. In 
its general form, a decoder has n input lines to handle n bits and from one to 2n output lines 
to indicate the presence of one or more n-bit combinations. In this section, three fixed-
function IC decoders are introduced. The basic principles can be extended to other types 
of decoders.
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After completing this section, you should be able to

u	 Define decoder

u	 Design a logic circuit to decode any combination of bits

u	 Describe the 74HC154 binary-to-decimal decoder

u	 Expand decoders to accommodate larger numbers of bits in a code

u	 Describe the 74HC42 BCD-to-decimal decoder

u	 Describe the 74HC47 BCD-to-7-segment decoder

u	 Discuss zero suppression in 7-segment displays

u	 Use VHDL to describe various types of decoders

u	 Apply decoders to specific applications

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-
cuit. An AND gate can be used as the basic decoding element because it produces a HIGH 
output only when all of its inputs are HIGH. Therefore, you must make sure that all of the 
inputs to the AND gate are HIGH when the binary number 1001 occurs; this can be done 
by inverting the two middle bits (the 0s), as shown in Figure 6–26.

1

1

(a)

1

0

0

1

1

A1

A2

(b)

A0

A1

A2

A3

(LSB)

(MSB)

X = A3A2A1A0

fg06_02600

FIGURE 6–26  Decoding logic for the binary code 1001 with an active-HIGH output.

InfoNote

An instruction tells the processor 
what operation to perform. 
Instructions are in machine 
code (1s and 0s) and, in order 
for the processor to carry out 
an instruction, the instruction 
must be decoded. Instruction 
decoding is one of the steps in 
instruction pipelining, which are as 
follows: Instruction is read from 
the memory (instruction fetch), 
instruction is decoded, operand(s) 
is (are) read from memory 
(operand fetch), instruction is 
executed, and result is written back 
to memory. Basically, pipelining 
allows the next instruction to begin 
processing before the current one 
is completed.

The logic equation for the decoder of Figure 6–26(a) is developed as illustrated in Figure 
6–26(b). You should verify that the output is 0 except when A0 = 1, A1 = 0, A2 = 0, and 
A3 = 1 are applied to the inputs. A0 is the LSB and A3 is the MSB. In the representation of 
a binary number or other weighted code in this book, the LSB is the right-most bit in a hori-
zontal arrangement and the topmost bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6–26, a LOW output will 
indicate the presence of the proper binary code, which is 1001 in this case.

EXAMPLE 6–8

Determine the logic required to decode the binary number 1011 by producing a HIGH 
level on the output.

Solution

The decoding function can be formed by complementing only the variables that appear 
as 0 in the desired binary number, as follows:

X = A3A2A1A0  (1011)

This function can be implemented by connecting the true (uncomplemented) variables 
A0, A1, and A3 directly to the inputs of an AND gate, and inverting the variable A2 
before applying it to the AND gate input. The decoding logic is shown in Figure 6–27.
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The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are 
required (24

= 16). This type of decoder is commonly called either a 4-line-to-16-line 
decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder because for 
any given code on the inputs, one of the sixteen outputs is activated. A list of the sixteen 
binary codes and their corresponding decoding functions is given in Table 6–4.

Related Problem

Develop the logic required to detect the binary code 10010 and produce an active-LOW 
output.

A2

A0

A1

A2

A3

X = A3A2A1A0

fg06_02700

FIGURE 6–27  Decoding logic for producing a HIGH output when 1011 is on the 
inputs.

TABLE 6–4

Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

Decimal
Digit

Binary Inputs Decoding
Function

Outputs

A3 A2 A1 A0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  0 0 0 0 0 A3A2A1A0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  1 0 0 0 1 A3A2A1A0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  2 0 0 1 0 A3A2A1A0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

  3 0 0 1 1 A3A2A1A0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

  4 0 1 0 0 A3A2A1A0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

  5 0 1 0 1 A3A2A1A0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

  6 0 1 1 0 A3A2A1A0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

  7 0 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

  8 1 0 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

  9 1 0 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

If an active-LOW output is required for each decoded number, the entire decoder can be 
implemented with NAND gates and inverters. In order to decode each of the sixteen binary 
codes, sixteen NAND gates are required (AND gates can be used to produce active-HIGH 
outputs).

A logic symbol for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs is 
shown in Figure 6–28. The BIN/DEC label indicates that a binary input makes the corre-
sponding decimal output active. The input labels 8, 4, 2, and 1 represent the binary weights 
of the input bits (23222120). 
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FIGURE 6–28  Logic symbol for a 4-line-to-16-line (1-of-16) decoder. Open file F06-28 to 
verify operation.

(a) Pin diagram (b) Logic symbol
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FIGURE 6–29  The 74HC154 1-of-16 decoder.

Implementation: 1-of-16 Decoder

Fixed-Function Device    The 74HC154 is a good example of a fixed-function IC decoder. 
The logic symbol is shown in Figure 6–29. There is an enable function (EN) provided on 
this device, which is implemented with a NOR gate used as a negative-AND. A LOW level 
on each chip select input, CS1 and CS2, is required in order to make the enable gate output 
(EN) HIGH. The enable gate output is connected to an input of each NAND gate in the 
decoder, so it must be HIGH for the NAND gates to be enabled. If the enable gate is not 
activated by a LOW on both inputs, then all sixteen decoder outputs (OUT) will be HIGH 
regardless of the states of the four input variables, A0, A1, A2, and A3.
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Programmable Logic Device (PLD)    The 1-of-16 decoder can be described using VHDL 
and implemented as hardware in a PLD. The decoder consists of sixteen 5-input NAND 
gates for decoding, a 2-input negative-AND for the enable function, and four inverters. 
The following VHDL program code uses the data flow approach. (Blue text comments are 
not part of the program.)

entity 1of16Decoder is

 � port (A0, A1, A2, A3, CS1, CS2: in bit; OUT0, OUT1, OUT2, 

 � OUT3, OUT4, OUT5, OUT6, OUT7, OUT8, OUT9, OUT10, 

  OUT11, OUT12, OUT13, OUT14, OUT15: out bit);

end entity 1of16Decoder;

architecture LogicOperation of 1of16Decoder is

signal EN: bit;

begin

  OUT0 6= not(not A0 and not A1 and not A2 and not A3 and EN);

  OUT1 6= not(A0 and not A1 and not A2 and not A3 and EN);

  OUT2 6= not(not A0 and A1 and not A2 and not A3 and EN);

  OUT3 6= not(A0 and A1 and not A2 and not A3 and EN);

  OUT4 6= not(not A0 and not A1 and A2 and not A3 and EN);

  OUT5 6= not(A0 and not A1 and A2 and not A3 and EN);

  OUT6 6= not(not A0 and A1 and A2 and not A3 and EN);

  OUT7 6= not(A0 and A1 and A2 and not A3 and EN);

  OUT8 6= not(not A0 and not A1 and not A2 and A3 and EN);

  OUT9 6= not(A0 and not A1 and not A2 and A3 and EN);

  OUT10 6= not(not A0 and A1 and not A2 and A3 and EN);

  OUT11 6= not(A0 and A1 and not A2 and A3 and EN);

  OUT12 6= not(not A0 and not A1 and A2 and A3 and EN);

  OUT13 6= not(A0 and not A1 and A2 and A3 and EN);

  OUT14 6= not(not A0 and A1 and A2 and A3 and EN);

  OUT15 6= not(A0 and A1 and A2 and A3 and EN);

  EN 6= not CS1 and not CS2;

end architecture LogicOperation;

Boolean 
expressions 
for the sixteen 
outputs

Inputs and outputs  
declared

EXAMPLE 6–9

A certain application requires that a 5-bit number be decoded. Use 74HC154 decoders 
to implement the logic. The binary number is represented by the format A4A3A2A1A0.

Solution

Since the 74HC154 can handle only four bits, two decoders must be used to form a 
5-bit expansion. The fifth bit, A4, is connected to the chip select inputs, CS1 and CS2, 
of one decoder, and A4 is connected to the CS1 and CS2 inputs of the other decoder, as 
shown in Figure 6–30. When the decimal number is 15 or less, A4 = 0, the low-order 
decoder is enabled, and the high-order decoder is disabled. When the decimal number 
is greater than 15, A4 = 1 so A4 = 0, the high-order decoder is enabled, and the low-
order decoder is disabled.

¸
˚
˝
˚
˛
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Related Problem

Determine the output in Figure 6–30 that is activated for the binary input 10110.
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FIGURE 6–30  A 5-bit decoder using 74HC154s.

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible deci-
mal digit indications. It is frequently referred as a 4-line-to-10-line decoder or a 1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously dis-
cussed, except that only ten decoding gates are required because the BCD code represents 
only the ten decimal digits 0 through 9. A list of the ten BCD codes and their corresponding 
decoding functions is given in Table 6–5. Each of these decoding functions is implemented 
with NAND gates to provide active-LOW outputs. If an active-HIGH output is required, 
AND gates are used for decoding. The logic is identical to that of the first ten decoding 
gates in the 1-of-16 decoder (see Table 6–4). 

TABLE 6–5

BCD decoding functions.

Decimal
Digit

BCD Code Decoding
FunctionA3 A2 A1 A0

0 0 0 0 0 A3A2A1A0

1 0 0 0 1 A3A2A1A0

2 0 0 1 0 A3A2A1A0

3 0 0 1 1 A3A2A1A0

4 0 1 0 0 A3A2A1A0

5 0 1 0 1 A3A2A1A0

6 0 1 1 0 A3A2A1A0

7 0 1 1 1 A3A2A1A0

8 1 0 0 0 A3A2A1A0

9 1 0 0 1 A3A2A1A0
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Implementation: BCD-to-Decimal Decoder

Fixed-Function Device    The 74HC42 is a fixed-function IC decoder with four BCD in-
puts and ten active-LOW decimal outputs. The logic symbol is shown in Figure 6–31.

BCD/DEC
OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

1

2

4

8

A0

A1

A2

A3

74HC42

(11)

(10)

(9)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(15)

(14)

(13)

(12)

FIGURE 6–31  The 74HC42 BCD-to-decimal decoder.

Programmable Logic Device (PLD)    The logic of the BCD-to-decimal decoder is similar 
to the 1-of-16 decoder except simpler. In this case, there are ten gates and four inverters 
instead of sixteen gates and four inverters. This decoder does not have an enable function. 
Using the data flow approach, the VHDL program code for the 1-of-16 decoder can be 
simplified to implement the BCD-to-decimal decoder.

entity BCDdecoder is

  port (A0, A1, A2, A3: in bit; OUT0, OUT1, OUT2, OUT3, 

  OUT4, OUT5, OUT6, OUT7, OUT8, OUT9: out bit);

end entity BCDdecoder;

architecture LogicOperation of BCDdecoder is

begin

  OUT0 6= not(not A0 and not A1 and not A2 and not A3);

  OUT1 6= not(A0 and not A1 and not A2 and not A3);

  OUT2 6= not(not A0 and A1 and not A2 and not A3);

  OUT3 6= not(A0 and A1 and not A2 and not A3);

  OUT4 6= not(not A0 and not A1 and A2 and not A3);

  OUT5 6= not(A0 and not A1 and A2 and not A3);

  OUT6 6= not(not A0 and A1 and A2 and not A3);

  OUT7 6= not(A0 and A1 and A2 and not A3);

  OUT8 6= not(not A0 and not A1 and not A2 and A3);

  OUT9 6= not(A0 and not A1 and not A2 and A3);

end architecture LogicOperation;

Boolean expressions 
for the ten outputs

Inputs and outputs  
declared

EXAMPLE 6–10

If the input waveforms in Figure 6–32(a) are applied to the inputs of the 74HC42, show 
the output waveforms.

¸
˝
˛
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The BCD-to-7-Segment Decoder

The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs 
to drive 7-segment display devices to produce a decimal readout. The logic diagram for a 
basic 7-segment decoder is shown in Figure 6–33. 

 A0

 A1

 A2

t1 t2 t3 t4 t5 t6 t7 t8 t9

 A3

t10t0

0

1

2

3

4

5

6

7

8

9

Decimal
outputs

(a)

(b)

BCD
inputs

fg06_03300

FIGURE 6–32 

Solution

The output waveforms are shown in Figure 6–32(b). As you can see, the inputs are 
sequenced through the BCD for digits 0 through 9. The output waveforms in the timing 
diagram indicate that sequence on the decimal-value outputs.

Related Problem

Construct a timing diagram showing input and output waveforms for the case where 
the BCD inputs sequence through the decimal numbers as follows: 0, 2, 4, 6, 8, 1, 3, 5, 
and 9.

A0

A1

A2

A3

1

2

4

8

a

b

c

d

e

f

g

BCD/7-seg

Output lines
connect to
7-segment
display device

BCD
input

fg06_03400

FIGURE 6–33  Logic symbol for a BCD-to-7-segment decoder/driver with active-LOW 
outputs. Open file F06-33 to verify operation.
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FIGURE 6–34  The 74HC47 BCD-to-7-segment decoder/driver.

Implementation: BCD-to-7-Segment Decoder/Driver

Fixed-Function Device    The 74HC47 is an example of an IC device that decodes a BCD 
input and drives a 7-segment display. In addition to its decoding and segment drive capabil-
ity, the 74HC47 has several additional features as indicated by the LT, RBI, BI /RBO func-
tions in the logic symbol of Figure 6–34. As indicated by the bubbles on the logic symbol, 
all of the outputs (a through g) are active-LOW as are the LT (lamp test), RBI (ripple blank-
ing input), and BI / RBO (blanking input/ripple blanking output) functions. The outputs can 
drive a common-anode 7-segment display directly. Recall that 7-segment displays were 
discussed in Chapter 4. In addition to decoding a BCD input and producing the appropriate 
7-segment outputs, the 74HC47 has lamp test and zero suppression capability.

Lamp Test  When a LOW is applied to the LT input and the BI>RBO is HIGH, all of the 
seven segments in the display are turned on. Lamp test is used to verify that no segments 
are burned out.

Zero Suppression  Zero suppression is a feature used for multidigit displays to blank 
out unnecessary zeros. For example, in a 6-digit display the number 6.4 may be displayed 
as 006.400 if the zeros are not blanked out. Blanking the zeros at the front of a number is 
called leading zero suppression and blanking the zeros at the back of the number is called 
trailing zero suppression. Keep in mind that only nonessential zeros are blanked. With zero 
suppression, the number 030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression in the 74HC47 is accomplished using the RBI and BI /RBO functions. 
RBI is the ripple blanking input and RBO is the ripple blanking output on the 74HC47; 
these are used for zero suppression. BI is the blanking input that shares the same pin with 
RBO; in other words, the BI /RBO pin can be used as an input or an output. When used as 
a BI (blanking input), all segment outputs are HIGH (nonactive) when BI is LOW, which 
overrides all other inputs. The BI function is not part of the zero suppression capability of 
the device.

All of the segment outputs of the decoder are nonactive (HIGH) if a zero code (0000) is 
on its BCD inputs and if its RBI is LOW. This causes the display to be blank and produces 
a LOW RBO.

Programmable Logic Device (PLD)    The VHDL program code is the same as for the 
74HC42 BCD-to-decimal decoder, except the 74HC47 has fewer outputs.
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340	 Functions of Combinational Logic

Zero Suppression for a 4-Digit Display

The logic diagram in Figure 6–35(a) illustrates leading zero suppression for a whole num-
ber. The highest-order digit position (left-most) is always blanked if a zero code is on its 
BCD inputs because the RBI of the most-significant decoder is made LOW by connecting 
it to ground. The RBO of each decoder is connected to the RBI of the next lowest-order 
decoder so that all zeros to the left of the first nonzero digit are blanked. For example, in 
part (a) of the figure the two highest-order digits are zeros and therefore are blanked. The 
remaining two digits, 3 and 0 are displayed.

Zero suppression results in leading 
or trailing zeros in a number not 
showing on a display.

Blanked

(a) Illustration of leading zero suppression

Blanked

(b) Illustration of trailing zero suppression

Blanked Blankeddp

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

BCD-to-7-segment
decoder/driver

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 1 1

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 0 1

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 1 1

8 4 2 1RBI LT

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

FIGURE 6–35  Examples of zero suppression using a BCD-to-7-segment decoder/driver.

The logic diagram in Figure 6–35(b) illustrates trailing zero suppression for a fractional 
number. The lowest-order digit (right-most) is always blanked if a zero code is on its BCD 
inputs because the RBI is connected to ground. The RBO of each decoder is connected to 
the RBI of the next highest-order decoder so that all zeros to the right of the first nonzero 
digit are blanked. In part (b) of the figure, the two lowest-order digits are zeros and there-
fore are blanked. The remaining two digits, 5 and 7 are displayed. To combine both leading 
and trailing zero suppression in one display and to have decimal point capability, additional 
logic is required.
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Section 6–5  Checkup

	 1.	A 3-line-to-8-line decoder can be used for octal-to-decimal decoding. When a binary 
101 is on the inputs, which output line is activated?

	 2.	How many 74HC154 1-of-16 decoders are necessary to decode a 6-bit binary 
number?

	 3.	Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive 
a common-cathode 7-segment LED display?

6–6  Encoders

An encoder is a combinational logic circuit that essentially performs a “reverse” decoder 
function. An encoder accepts an active level on one of its inputs representing a digit, such 
as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encod-
ers can also be devised to encode various symbols and alphabetic characters. The process 
of converting from familiar symbols or numbers to a coded format is called encoding.

After completing this section, you should be able to

u	 Determine the logic for a decimal-to-BCD encoder

u	 Explain the purpose of the priority feature in encoders

u	 Describe the 74HC147 decimal-to-BCD priority encoder

u	 Use VHDL to describe a decimal-to-BCD encoder

u	 Apply the encoder to a specific application

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs corre-
sponding to the BCD code, as shown in Figure 6–36. This is a basic 10-line-to-4-line encoder.

DEC/BCD
0

1

2

3

4

5

6

7

9

1

2

4

8

Decimal
input

BCD
output

8

fg06_03700

FIGURE 6–36  Logic symbol for a decimal-to-BCD encoder.

The BCD (8421) code is listed in Table 6–6. From this table you can determine the 
relationship between each BCD bit and the decimal digits in order to analyze the logic. For 
instance, the most significant bit of the BCD code, A3, is always a 1 for decimal digit 8 or 
9. An OR expression for bit A3 in terms of the decimal digits can therefore be written as

A3 = 8 + 9
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Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function 
as follows:

A2 = 4 + 5 + 6 + 7

Bit A1 is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as

A1 = 2 + 3 + 6 + 7

Finally, A0 is always a 1 for decimal digit 1, 3, 5, 7, or 9. The expression for A0 is

A0 = 1 + 3 + 5 + 7 + 9

Now let’s implement the logic circuitry required for encoding each decimal digit to a 
BCD code by using the logic expressions just developed. It is simply a matter of ORing 
the appropriate decimal digit input lines to form each BCD output. The basic encoder logic 
resulting from these expressions is shown in Figure 6–37.

Decimal Digit

BCD Code

A3 A2 A1 A0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

TABLE 6–6

A0

1
(LSB)

A1

A2

A3 (MSB)

2

3

4
5
6
7

8

9

fg06_03800

FIGURE 6–37  Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is not 
needed because the BCD outputs are all LOW when there are no HIGH inputs.

InfoNote

An assembler can be thought of 
as a software encoder because 
it interprets the mnemonic 
instructions with which a program 
is written and carries out the 
applicable encoding to convert 
each mnemonic to a machine code 
instruction (series of 1s and 0s) 
that the processor can understand. 
Examples of mnemonic 
instructions for a processor are 
ADD, MOV (move data), MUL 
(multiply), XOR, JMP (jump), and 
OUT (output to a port).

The basic operation of the circuit in Figure 6–37 is as follows: When a HIGH appears 
on one of the decimal digit input lines, the appropriate levels occur on the four BCD output 
lines. For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this 
condition will produce a HIGH on outputs A0 and A3 and LOWs on outputs A1 and A2, 
which is the BCD code (1001) for decimal 9.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously discussed. 
A priority encoder also offers additional flexibility in that it can be used in applications 
that require priority detection. The priority function means that the encoder will produce a 
BCD output corresponding to the highest-order decimal digit input that is active and will 
ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both 
active, the BCD output is 0110 (which represents decimal 6). 
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FIGURE 6–38  The 74HC147 decimal-to-BCD encoder (HPRI means highest value input 
has priority.

Implementation: Decimal-To-BCD Encoder

Fixed-Function Device    The 74HC147 is a priority encoder with active-LOW inputs (0) 
for decimal digits 1 through 9 and active-LOW BCD outputs as indicated in the logic sym-
bol in Figure 6–38. A BCD zero output is represented when none of the inputs is active. 
The device pin numbers are in parentheses.

Programmable Logic Device (PLD)    The logic of the decimal-to-BCD encoder shown in 
Figure 6–38 can be described in VHDL for implementation in a PLD. The data flow approach 
is used in this case.

entity DecBCDencoder is

  port (D1, D2, D3, D4, D5, D6, D7, D8, D9:
  in bit; A0, A1, A2, A3: out bit);

end entity DecBCDencoder;

architecture LogicFunction of DecBCDencoder is

begin

  A0 6= (D1 or D3 or D5 or D7 or D9);

  A1 6= (D2 or D3 or D6 or D7);

  A2 6= (D4 or D5 or D6 or D7);

  A3 6= (D8 or D9);

end architecture LogicFunction;

Boolean expressions for the 
four BCD outputs

¸
˚
˚
˝
˚
˚
˛

Inputs and outputs declared

EXAMPLE 6–11

If LOW levels appear on pins, 1, 4, and 13 of the 74HC147 shown in Figure 6–38, indi-
cate the state of the four outputs. All other inputs are HIGH.

Solution

Pin 4 is the highest-order decimal digit input having a LOW level and represents deci-
mal 7. Therefore, the output levels indicate the BCD code for decimal 7 where A0 is the 
LSB and A3 is the MSB. Output A0 is LOW, A1 is LOW, A2 is LOW, and A3 is HIGH.

Related Problem

What are the outputs of the 74HC147 if all its inputs are LOW? If all its inputs are HIGH?

¸
˝
˛
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An Application

The ten decimal digits on a numeric keypad must be encoded for processing by the logic 
circuitry. In this example, when one of the keys is pressed, the decimal digit is encoded to 
the corresponding BCD code. Figure 6–39 shows a simple keyboard encoder arrangement 
using a priority encoder. The keys are represented by ten push-button switches, each with a 
pull-up resistor to +V. The pull-up resistor ensures that the line is HIGH when a key is not 
depressed. When a key is depressed, the line is connected to ground, and a LOW is applied 
to the corresponding encoder input. The zero key is not connected because the BCD output 
represents zero when none of the other keys is depressed.

The BCD complement output of the encoder goes into a storage device, and each suc-
cessive BCD code is stored until the entire number has been entered. Methods of storing 
BCD numbers and binary data are covered in chapter 11.

HPRI/BCD

1
2
3
4
5
6
7
8
9

1
2
4
8

A0

A1

A2

A3

987

+V

65

321

0

All BCD complement lines are HIGH indicating a 0.
No encoding is necessary; however, this line may be
connected to other circuits that detect the key press.

BCD complement

4

R7 R8 R9

R4 R5 R6

R1 R2 R3

R0

Priority encoder

fg06_04000

FIGURE 6–39  A simplified keyboard encoder.

Section 6–6  Checkup

	 1.	Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit in 
Figure 6–37.

(a)	 What are the states of the output lines?

(b)	 Does this represent a valid BCD code?

(c)	 What is the restriction on the encoder logic in Figure 6–37?

	 2.	 (a)	� What is the A3 A2 A1 A0 output when LOWs are applied to pins 1 and 5 of the 
74HC147 in Figure 6–38?

(b)	 What does this output represent?
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6–7  Code Converters

In this section, we will examine some methods of using combinational logic circuits to 
convert from one code to another.

After completing this section, you should be able to

u	 Explain the process for converting BCD to binary

u	 Use exclusive-OR gates for conversions between binary and Gray codes

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion 
process is as follows:

	 1.	 The value, or weight, of each bit in the BCD number is represented by a binary 
number.

	 2.	 All of the binary representations of the weights of bits that are 1s in the BCD number 
are added.

	 3.	 The result of this addition is the binary equivalent of the BCD number.

A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to produce 
the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to 
understand the relationship between BCD and binary. For instance, you already know that 
the decimal number 87 can be expressed in BCD as

1000    0111()*    ()*
	 8	 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That 
is, the left-most group has a weight of 10, and the right-most group has a weight of 1. 
Within each group, the binary weight of each bit is as follows:

Tens Digit Units Digit

Weight: 80 40 20 10 8 4 2 1

Bit designation: B3 B2 B1 B0 A3 A2 A1 A0

The binary equivalent of each BCD bit is a binary number representing the weight of 
that bit within the total BCD number. This representation is given in Table 6–7.

TABLE 6–7

Binary representations of BCD bit weights.

BCD Bit BCD Weight
(MSB) Binary Representation (LSB)

64 32 16 8 4 2 1

A0   1 0 0 0 0 0 0 1
A1   2 0 0 0 0 0 1 0
A2   4 0 0 0 0 1 0 0
A3   8 0 0 0 1 0 0 0
B0 10 0 0 0 1 0 1 0
B1 20 0 0 1 0 1 0 0
B2 40 0 1 0 1 0 0 0
B3 80 1 0 1 0 0 0 0
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If the binary representations for the weights of all the 1s in the BCD number are added, 
the result is the binary number that corresponds to the BCD number. Example 6–12 illus-
trates this.

EXAMPLE 6–12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to 
binary.

Solution

Write the binary representations of the weights of all 1s appearing in the numbers, and 
then add them together.

80 40 20 10 8 4 2 1
0 0 1 0 0 1 1 1

0000001
0000010
0000100

+  0010100
0011011

 

1
2
4

20
Binary number for decimal 27

80 40 20 10 8 4 2 1
1 0 0 1 1 0 0 0

0001000
0001010

+  1010000
1100010

 

8
10
80
Binary number for decimal 98

Related Problem

Show the process of converting 01000001 in BCD to binary.

Open file EX06-12 and run the simulation to observe the operation of a 
BCD-to-binary logic circuit.

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR 
gates can be used for these conversions. Programmable logic devices (PLDs) can also be 
programmed for these code conversions. Figure 6–40 shows a 4-bit binary-to-Gray code 
converter, and Figure 6–41 illustrates a 4-bit Gray-to-binary converter.

B0

B1

B2

B3

G0

G1

G2

G3

(LSB)

(MSB)

Binary Gray

fg06_04300

FIGURE 6–40  Four-bit binary-to-
Gray conversion logic. Open file 
F06-40 to verify operation.

G0

G1

G2

G3

(LSB)

(MSB)

Gray

B0

B1

B2

B3

Binary

fg06_04400

FIGURE 6–41  Four-bit Gray-to-
binary conversion logic. Open file 
F06-41 to verify operation.
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EXAMPLE 6–13

(a)	 Convert the binary number 0101 to Gray code with exclusive-OR gates.

(b)	 Convert the Gray code 1011 to binary with exclusive-OR gates.

Solution

(a)	 01012 is 0111 Gray. See Figure 6–42(a).

(b)	 1011 Gray is 11012. See Figure 6–42(b).

(a)

1

0

1

0

1

1

1

0

Binary Gray

(b)

1

1

0

1

1

0

1

1

BinaryGray

fg06_04500

FIGURE 6–42 

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

Section 6–7  Checkup

	 1.	Convert the BCD number 10000101 to binary.

	 2.	Draw the logic diagram for converting an 8-bit binary number to Gray code.

6–8  Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several sources to 
be routed onto a single line for transmission over that line to a common destination. The 
basic multiplexer has several data-input lines and a single output line. It also has data-select 
inputs, which permit digital data on any one of the inputs to be switched to the output line. 
Multiplexers are also known as data selectors.

After completing this section, you should be able to

u	 Explain the basic operation of a multiplexer

u	 Describe the 74HC153 and the 74HC151 multiplexers

u	 Expand a multiplexer to handle more data inputs

u	 Use the multiplexer as a logic function generator

u	 Use VHDL to describe 4-input and 8-input multiplexers

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6–43. Notice that 
there are two data-select lines because with two select bits, any one of the four data-input 
lines can be selected.

In a multiplexer, data are switched 
from several lines to one line.
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348	 Functions of Combinational Logic

In Figure 6–43, a 2-bit code on the data-select (S) inputs will allow the data on the 
selected data input to pass through to the data output. If a binary 0 (S1 = 0 and S0 = 0) 
is applied to the data-select lines, the data on input D0 appear on the data-output line. 
If a binary 1 (S1 = 0 and S0 = 1) is applied to the data-select lines, the data on input 
D1 appear on the data output. If a binary 2 (S1 = 1 and S0 = 0) is applied, the data 
on D2 appear on the output. If a binary 3 (S1 = 1 and S0 = 1) is applied, the data on 
D3 are switched to the output line. A summary of this operation is given in Table 6–8.

Data
output

YD0

D1

D2

MUX

1

2

0

D3 3

S1

Data
select

Data
inputs

1

S0 0

fg06_04600

FIGURE 6–43  Logic symbol for a 1-of-4 data selector/multiplexer.

TABLE 6–8

Data selection for a 1-of-4-multiplexer.

Data-Select Inputs

Input SelectedS1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Now let’s look at the logic circuitry required to perform this multiplexing operation. The 
data output is equal to the state of the selected data input. You can therefore, derive a logic 
expression for the output in terms of the data input and the select inputs.

The data output is equal to D0 only if S1 = 0 and S0 = 0: Y = D0S1S0.

The data output is equal to D1 only if S1 = 0 and S0 = 1: Y = D1S1S0.

The data output is equal to D2 only if S1 = 1 and S0 = 0: Y = D2S1S0.

The data output is equal to D3 only if S1 = 1 and S0 = 1: Y = D3S1S0.

When these terms are ORed, the total expression for the data output is

Y = D0S1S0 + D1S1S0 + D2S1S0 + D3S1S0

The implementation of this equation requires four 3-input AND gates, a 4-input OR gate, 
and two inverters to generate the complements of S1 and S0, as shown in Figure 6–44. 
Because data can be selected from any one of the input lines, this circuit is also referred to 
as a data selector.

InfoNote

A bus is a multiple conductor 
pathway along which electrical 
signals are sent from one part 
of a computer to another. In 
computer networks, a shared 
bus is one that is connected to 
all the microprocessors in the 
system in order to exchange 
data. A shared bus may contain 
memory and input/output devices 
that can be accessed by all the 
microprocessors in the system. 
Access to the shared bus is 
controlled by a bus arbiter (a 
multiplexer of sorts) that allows 
only one microprocessor at a time 
to use the system’s shared bus.
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S0

S1

D0

D1

D2

D3

Y 

S0

S1

fg06_04700

FIGURE 6–44  Logic diagram for a 4-input multiplexer. Open file F06-44 to 
verify operation.

EXAMPLE 6–14

The data-input and data-select waveforms in Figure 6–45(a) are applied to the multi-
plexer in Figure 6–44. Determine the output waveform in relation to the inputs.

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1

D0

(a)

(b)

D1

D2

D3

S0

S1

Y

D0 D1 D2 D3 D0 D1 D2 D3

fg06_04800

FIGURE 6–45 

Solution

The binary state of the data-select inputs during each interval determines which data 
input is selected. Notice that the data-select inputs go through a repetitive binary 
sequence 00, 01, 10, 11, 00, 01, 10, 11, and so on. The resulting output waveform is 
shown in Figure 6–45(b).

Related Problem

Construct a timing diagram showing all inputs and the output if the S0 and S1 wave-
forms in Figure 6–45 are interchanged.  

M06_FLOY5983_11_GE_C06.indd Page 349  12/11/14  8:15 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



350	 Functions of Combinational Logic

Implementation: Data Selector/Multiplexer

Fixed-Function Device    The 74HC153 is a dual four-input data selector/multiplexer. 
The pin diagram is shown in Figure 6–46(a). The inputs to one of the multiplexers are 
1I0 through 1I3 and the inputs to the second multiplexer are 2I0 through 2I3. The data 
select inputs are S0 and S1 and the active-low enable inputs are 1E and 2E. Each of 
the multiplexers has an active-low enable input.

The ANSI/IEEE logic symbol with dependency notation is shown in Figure 6–46(b). 
The two multiplexers are indicated by the partitioned outline, and the inputs common to 
both multiplexers are inputs to the notched block (common control block) at the top. The 
G0

3 dependency notation indicates an AND relationship between the two select inputs (A 
and B) and the inputs to each multiplexer block.
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10

9

1

2
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5
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7

8

1Y (7)

2Y (9)
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1I1

1I2

(5)
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MUXEN

0

1

2

1I3 (3) 3

0
(14)

(2)
1

A

B

(b) Logic symbol(a) Pin diagram

S1

1I3

1I2

1I1

1I0

1Y

GND

VCC

2E

S0

2I3

2I2

2I1

2I0

2Y

2G (15)

2I0 (10)

2I1

2I2

(11)

(12)

2I3 (13)

1E
G 0–

3

FIGURE 6–46  The 74HC153 dual four-input data selector/multiplexer.

Programmable Logic Device (PLD)    The logic for a four-input multiplexer like the one 
shown in the logic diagram of Figure 6–44 can be described with VHDL. The data flow 
approach is used for this particular circuit. Keep in mind that once you have written the 
VHDL program for a given logic, the code is then downloaded into a PLD device and 
becomes actual hardware just as fixed-function devices are hardware.

entity FourInputMultiplexer is

  port (S0, S1, D0, D1, D2, D3; in bit; Y: out bit);

end entity FourInputMultiplexer;

architecture LogicFunction of FourInputMultiplexer is

begin

 � Y 6= (D0 and not S0 and not S1) or (Dl and S0 and not S1) 
or (D2 and not S0 and S1) or (D3 and S0 and S1);

end architecture LogicFunction;

Boolean expression 
for the output¸

˝
˛

Inputs and outputs declared
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FIGURE 6–47  The 74HC151 eight-input data selector/multiplexer.

Implementation: Eight-Input Data Selector/Multiplexer

Fixed-Function Device    The 74HC151 has eight data inputs (D0–D7) and, therefore, 
three data-select or address input lines (S0–S2). Three bits are required to select any one 
of the eight data inputs (23

= 8). A LOW on the Enable input allows the selected input 
data to pass through to the output. Notice that the data output and its complement are both 
available. The pin diagram is shown in Figure 6–47(a), and the ANSI/IEEE logic symbol 
is shown in part (b). In this case there is no need for a common control block on the logic 
symbol because there is only one multiplexer to be controlled, not two as in the 74HC153. 
The G 

0
7 label within the logic symbol indicates the AND relationship between the data-

select inputs and each of the data inputs 0 through 7.

Programmable Logic Device (PLD)    The logic for the eight-input multiplexer is imple-
mented by first writing the VHDL code. For the 74HC151, eight 5-input AND gates, one 
8-input OR gate, and four inverters are required.

entity EightInputMUX is

  port (S0, S1, S2, D0, D1, D2, D3, D4, D5, D6, D7,
  EN: in bit; Y: inout bit; YI: out bit);

end entity EightInputMUX;

architecture LogicOperation of EightInputMUX is

    signal AND0, AND1, AND2, AND3, AND4, AND5, AND6, AND7: bit;

    begin

    AND0 6= not S0 and not S1 and not S2 and D0 and not EN;

    AND1 6= S0 and not S1 and not S2 and D1 and not EN;

    AND2 6= not S0 and S1 and not S2 and D2 and not EN;

    AND3 6= S0 and S1 and not S2 and D3 and not EN;

    AND4 6= not S0 and not S1 and S2 and D4 and not EN;

    AND5 6= S0 and not S1 and S2 and D5 and not EN;

    AND6 6= not S0 and S1 and S2 and D6 and not EN;

    AND7 6= S0 and S1 and S2 and D7 and not EN;

    Y 6= AND0 or AND1 or AND2 or AND3 or AND4 or AND5 or AND6 or AND7;

    YI 6= not Y;

end architecture LogicOperation;

Boolean  
expressions for 
internal AND  
gate outputs

¸̋
˛Boolean expressions for 

fixed outputs

Inputs and outputs declared

Internal signals (outputs of 
AND gates) declared

¸
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

¸
˝
˛
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352	 Functions of Combinational Logic

Related Problem

Determine the codes on the select inputs required to select each of the following data 
inputs: D0, D4, D8, and D13.

EXAMPLE 6–15

Use 74HC151s and any other logic necessary to multiplex 16 data lines onto a single 
data-output line.

Solution

An expansion of two 74HC151s is shown in Figure 6–48. Four bits are required to select 
one of 16 data inputs (24

= 16). In this application the Enable input is used as the most 
significant data-select bit. When the MSB in the data-select code is LOW, the left 74HC151 
is enabled, and one of the data inputs (D0 through D7) is selected by the other three data-
select bits. When the data-select MSB is HIGH, the right 74HC151 is enabled, and one of 
the data inputs (D8 through D15) is selected. The selected input data are then passed through 
to the negative-OR gate and onto the single output line.

1/6 74HC04

74HC151

Y

1/4 74HC00

MUX
EN
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0

1

2

3

4

5

6

7
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D9

D10

D11

D12

D13

D14

D15

S0

S1

S2

S3

D0

D1

D2

D3

D4

D5

D6

D7

MUX
EN

0

0

1

2

3

4

5

6

7

0––
7

2

G 0––
7

Y
Y

fg06_04900

FIGURE 6–48  A 16-input multiplexer.

Applications
A 7-Segment Display Multiplexer

Figure 6–49 shows a simplified method of multiplexing BCD numbers to a 7-segment dis-
play. In this example, 2-digit numbers are displayed on the 7-segment readout by the use 
of a single BCD-to-7-segment decoder. This basic method of display multiplexing can be 
extended to displays with any number of digits. The 74HC157 is a quad 2-input multiplexer.

The basic operation is as follows. Two BCD digits (A3A2A1A0 and B3B2B1B0) are applied 
to the multiplexer inputs. A square wave is applied to the data-select line, and when it is 
LOW, the A bits (A3A2A1A0) are passed through to the inputs of the 74HC47 BCD-to-7-
segment decoder. The LOW on the data-select also puts a LOW on the A1 input of the 
74HC139 2-line-to-4-line decoder, thus activating its 0 output and enabling the A-digit 
display by effectively connecting its common terminal to ground. The A digit is now on 
and the B digit is off.
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When the data-select line goes HIGH, the B bits (B3B2B1B0) are passed through to the 
inputs of the BCD-to-7-segment decoder. Also, the 74HC139 decoder’s 1 output is acti-
vated, thus enabling the B-digit display. The B digit is now on and the A digit is off. The 
cycle repeats at the frequency of the data-select square wave. This frequency must be high 
enough to prevent visual flicker as the digit displays are multiplexed.

A Logic Function Generator

A useful application of the data selector/multiplexer is in the generation of combinational logic 
functions in sum-of-products form. When used in this way, the device can replace discrete 
gates, can often greatly reduce the number of ICs, and can make design changes much easier.

To illustrate, a 74HC151 8-input data selector/multiplexer can be used to implement any 
specified 3-variable logic function if the variables are connected to the data-select inputs 
and each data input is set to the logic level required in the truth table for that function. 
For example, if the function is a 1 when the variable combination is A2A1A0, the 2 input 
(selected by 010) is connected to a HIGH. This HIGH is passed through to the output when 
this particular combination of variables occurs on the data-select lines. Example 6–16 will 
help clarify this application.

Data
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B0
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d

f

a

e

g

b

Common-cathode
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B digit
(MSD)
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(LSD)

G1 (EN)

1Y0

*Additional buffer drive
  circuitry may be required.

*

B1
*

A1

LOW enables LSD
HIGH enables MSD

LOWs enable common-anode
7-seg display.

74HC139

A

B

C

D

Decoder

1–
2

LOW selects A3 A2 A1 A0

1Y1

1Y3

1Y4

HIGH selects B3 B2 B1 B0

LSD BCD: A3 A2 A1 A0

MSD BCD: B3 B2 B1 B0

FIGURE 6–49  Simplified 7-segment display multiplexing logic.
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The implementation of this function with logic gates would require four 3-input 
AND gates, one 4-input OR gate, and three inverters unless the expression can be 
simplified.

Related Problem

Use the 74HC151 to implement the following expression:

Y = A2A1A0 + A2A1A0 + A2A1A0

EXAMPLE 6–16

Implement the logic function specified in Table 6–9 by using a 74HC151 8-input data 
selector/multiplexer. Compare this method with a discrete logic gate implementation.

Inputs Output

A2 A1 A0 Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

TABLE 6–9

Solution

Notice from the truth table that Y is a 1 for the following input variable combinations: 
001, 011, 101, and 110. For all other combinations, Y is 0. For this function to be imple-
mented with the data selector, the data input selected by each of the above-mentioned 
combinations must be connected to a HIGH (5 V). All the other data inputs must be 
connected to a LOW (ground), as shown in Figure 6–50.

A0

A1

A2

Input
variables

MUX

0

0

1

2

3

4

2

6

7

5

EN

Y = A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

74HC151

G 0–
7

+5 V

FIGURE 6–50  Data selector/multiplexer connected as a 3-variable logic function 
generator.
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Example 6–16 illustrated how the 8-input data selector can be used as a logic function 
generator for three variables. Actually, this device can be also used as a 4-variable logic 
function generator by the utilization of one of the bits (A0) in conjunction with the data 
inputs.

A 4-variable truth table has sixteen combinations of input variables. When an 8-bit data 
selector is used, each input is selected twice: the first time when A0 is 0 and the second time 
when A0 is 1. With this in mind, the following rules can be applied (Y is the output, and A0 
is the least significant bit):

	 1.	 If Y = 0 both times a given data input is selected by a certain combination of the 
input variables, A3A2A1, connect that data input to ground (0).

	 2.	 If Y = 1 both times a given data input is selected by a certain combination of the 
input variables, A3A2A1, connect the data input to +V (1).

	 3.	 If Y is different the two times a given data input is selected by a certain combination 
of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

	 4.	 If Y is different the two times a given data input is selected by a certain combination 
of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

EXAMPLE 6–17

Implement the logic function in Table 6–10 by using a 74HC151 8-input data selector/
multiplexer. Compare this method with a discrete logic gate implementation.

Decimal
Digit

Inputs Output

A3 A2 A1 A0 Y

  0 0 0 0 0 0
  1 0 0 0 1 1
  2 0 0 1 0 1
  3 0 0 1 1 0
  4 0 1 0 0 0
  5 0 1 0 1 1
  6 0 1 1 0 1
  7 0 1 1 1 1
  8 1 0 0 0 1
  9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 1

TABLE 6–10

Solution

The data-select inputs are A3A2A1. In the first row of the table, A3A2A1 = 000 and Y = A0. 
In the second row, where A3A2A1 again is 000, Y = A0. Thus, A0 is connected to the 0 
input. In the third row of the table, A3A2A1 = 001 and Y = A0. Also, in the fourth row, 
when A3A2A1 again is 001, Y = A0. Thus, A0 is inverted and connected to the 1 input. 
This analysis is continued until each input is properly connected according to the speci-
fied rules. The implementation is shown in Figure 6–51.

If implemented with logic gates, the function would require as many as ten 4-input 
AND gates, one 10-input OR gate, and four inverters, although possible simplification 
would reduce this requirement.
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Related Problem

In Table 6–10, if Y = 0 when the inputs are all zeros and is alternately a 1 and a 0 for the 
remaining rows in the table, use a 74HC151 to implement the resulting logic function.
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MUX
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0
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G 0–7
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+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0

+5 V

FIGURE 6–51  Data selector/multiplexer connected as a 4-variable logic function 
generator.

Section 6–8  Checkup

	 1.	 In Figure 6–44, D0 = 1, D1 = 0, D2 = 1, D3 = 0, S0 = 1, and S1 = 0. What is 
the output?

	 2.	 Identify each device.

(a)	 74HC153	 (b)  74HC151

	 3.	A 74HC151 has alternating LOW and HIGH levels on its data inputs beginning with 
D0 = 0. The data-select lines are sequenced through a binary count (000, 001, 010, 
and so on) at a frequency of 1 kHz. The enable input is LOW. Describe the data out-
put waveform.

	 4.	Briefly describe the purpose of each of the following devices in Figure 6–49:

(a)	 74HC157	 (b)  74HC47	 (c)  74HC139

6–9  Demultiplexers

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital 
information from one line and distributes it to a given number of output lines. For this rea-
son, the demultiplexer is also known as a data distributor. As you will learn, decoders can 
also be used as demultiplexers.

After completing this section, you should be able to

u	 Explain the basic operation of a demultiplexer

u	 Describe how a 4-line-to-16-line decoder can be used as a demultiplexer

u	 Develop the timing diagram for a demultiplexer with specified data and data 
selection inputs
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Figure 6–52 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input 
line goes to all of the AND gates. The two data-select lines enable only one gate at a time, 
and the data appearing on the data-input line will pass through the selected gate to the 
associated data-output line.

S0

S1

D0

D1

D2

D3

Data
output
linesSelect

lines

Data
input

fg06_05500

FIGURE 6–52  A 1-line-to-4-line demultiplexer.

In a demultiplexer, data are switched 
from one line to several lines.

EXAMPLE 6–18

The serial data-input waveform (Data in) and data-select inputs (S0 and S1) are shown in 
Figure 6–53. Determine the data-output waveforms on D0 through D3 for the demulti-
plexer in Figure 6–52.

S0

S1

D0

D1

D2

D3

Data
in

1

1

0

0

10

11

fg06_05600

FIGURE 6–53 

Solution

Notice that the select lines go through a binary sequence so that each successive input 
bit is routed to D0, D1, D2, and D3 in sequence, as shown by the output waveforms in 
Figure 6–53.

Related Problem

Develop the timing diagram for the demultiplexer if the S0 and s1 waveforms are both 
inverted.

4-Line-to-16-Line Decoder as a Demultiplexer

We have already discussed a 4-line-to-16-line decoder (Section 6–5). This device and other 
decoders can also be used in demultiplexing applications. The logic symbol for this device 
when used as a demultiplexer is shown in Figure 6–54. In demultiplexer applications, the 
input lines are used as the data-select lines. One of the chip select inputs is used as the data-
input line, with the other chip select input held LOW to enable the internal negative-AND 
gate at the bottom of the diagram.
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FIGURE 6–54  The decoder used as a demultiplexer.

Section 6–9  Checkup

	 1.	Generally, how can a decoder be used as a demultiplexer?

	 2.	The demultiplexer in Figure 6–54 has a binary code of 1010 on the data-select lines, 
and the data-input line is LOW. What are the states of the output lines?

6–10  Parity Generators/Checkers

Errors can occur as digital codes are being transferred from one point to another within 
a digital system or while codes are being transmitted from one system to another. The 
errors take the form of undesired changes in the bits that make up the coded informa-
tion; that is, a 1 can change to a 0, or a 0 to a 1, because of component malfunctions or 
electrical noise. In most digital systems, the probability that even a single bit error will 
occur is very small, and the likelihood that more than one will occur is even smaller. 
Nevertheless, when an error occurs undetected, it can cause serious problems in a digital 
system.

After completing this section, you should be able to

u	 Explain the concept of parity

u	 Implement a basic parity circuit with exclusive-OR gates

u	 Describe the operation of basic parity generating and checking logic

u	 Discuss the 74HC280 9-bit parity generator/checker

u	 Use VHDL to describe a 9-bit parity generator/checker

u	 Discuss how error detection can be implemented in a data transmission system

The parity method of error detection in which a parity bit is attached to a group of 
information bits in order to make the total number of 1s either even or odd (depending on 
the system) was covered in Chapter 2. In addition to parity bits, several specific codes also 
provide inherent error detection.
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Basic Parity Logic

In order to check for or to generate the proper parity in a given code, a basic principle can 
be used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of 
an odd number of 1s is always 1.

Therefore, to determine if a given code has even parity or odd parity, all the bits in that 
code are summed. As you know, the modulo-2 sum of two bits can be generated by an 
exclusive-OR gate, as shown in Figure 6–55(a); the modulo-2 sum of four bits can be 
formed by three exclusive-OR gates connected as shown in Figure 6–55(b); and so on. 
When the number of 1s on the inputs is even, the output X is 0 (LOW). When the number 
of 1s is odd, the output X is 1 (HIGH).  

A parity bit indicates if the number 
of 1s in a code is even or odd for the 
purpose of error detection.

X
A1

A0

(b) Summing of four bits

A1

A0
X

(a) Summing of two bits

A3

A2

fg06_05800

FIGURE 6–55 

Implementation: 9-Bit Parity Generator/Checker

Fixed-Function Device    The logic symbol and function table for a 74HC280 are shown 
in Figure 6–56. This particular device can be used to check for odd or even parity on a 
9-bit code (eight data bits and one parity bit), or it can be used to generate a parity bit for a 
binary code with up to nine bits. The inputs are A through I; when there is an even number 
of 1s on the inputs, the © Even output is HIGH and the © Odd output is LOW.

(5)

(6)
(13)

(1)

(11)

(12)

(a) Traditional logic symbol

(2)

Data
input

(10)

(9)

(8)

Σ Odd

Σ Even

F

G

D

E

H

C

B

A

(b) Function table

(4)
I

Number of Inputs
A–I that Are High

Outputs

L
H

H
L

0, 2, 4, 6, 8
1, 3, 5, 7, 9

S Odd

fg06_05900

S Even

FIGURE 6–56  The 74HC280 9-bit parity generator/checker.

Parity Checker  When this device is used as an even parity checker, the number of input 
bits should always be even; and when a parity error occurs, the © Even output goes LOW 
and the © Odd output goes HIGH. When it is used as an odd parity checker, the number 
of input bits should always be odd; and when a parity error occurs, the © Odd output goes 
LOW and the © Even output goes HIGH.
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A Data Transmission System with Error Detection

A simplified data transmission system is shown in Figure 6–58 to illustrate an application 
of parity generators/checkers, as well as multiplexers and demultiplexers, and to illustrate 
the need for data storage in some applications.

In this application, digital data from seven sources are multiplexed onto a single line 
for transmission to a distant point. The seven data bits (D0 through D6) are applied to the 
multiplexer data inputs and, at the same time, to the even parity generator inputs. The © 
Odd output of the parity generator is used as the even parity bit. This bit is 0 if the number 
of 1s on the inputs A through I is even and is a 1 if the number of 1s on A through I is odd. 
This bit is D7 of the transmitted code.

The data-select inputs are repeatedly cycled through a binary sequence, and each data 
bit, beginning with D0, is serially passed through and onto the transmission line (Y ). In 
this example, the transmission line consists of four conductors: one carries the serial data 
and three carry the timing signals (data selects). There are more sophisticated ways of 
sending the timing information, but we are using this direct method to illustrate a basic 
principle.

entity ParityCheck is

  port (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9: in bit;

  X: out bit);

end entity ParityCheck;

architecture LogicOperation of ParityCheck is

begin

  X 6= ((A0 xor A1) xor (A2 xor A3)) xor ((A4 xor A5) xor

  (A6 xor A7)) xor (A8 xor A9);

end architecture LogicOperation;

A0
A1

A2
A3

A4
A5

A6
A7

A8
A

X

9

FIGURE 6–57 

Parity Generator  If this device is used as an even parity generator, the parity bit is 
taken at the © Odd output because this output is a 0 if there is an even number of input 
bits and it is a 1 if there is an odd number. When used as an odd parity generator, the 
parity bit is taken at the © Even output because it is a 0 when the number of inputs bits 
is odd.

Programmable Logic Device (PLD)    The 9-bit parity generator/checker can be described 
using VHDL and implemented in a PLD. We will expand the 4-bit logic circuit in Figure 
6–55(b) as shown in Figure 6–57. The data flow approach is used.

Inputs and output declared

Output defined by  
Boolean expression

¸
˝
˛

¸
˝
˛
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At the demultiplexer end of the system, the data-select signals and the serial data stream 
are applied to the demultiplexer. The data bits are distributed by the demultiplexer onto 
the output lines in the order in which they occurred on the multiplexer inputs. That is, D0 
comes out on the D0 output, D1 comes out on the D1 output, and so on. The parity bit comes 
out on the D7 output. These eight bits are temporarily stored and applied to the even parity 
checker. Not all of the bits are present on the parity checker inputs until the parity bit D7 
comes out and is stored. At this time, the error gate is enabled by the data-select code 111. 
If the parity is correct, a 0 appears on the © Even output, keeping the Error output at 0. If 
the parity is incorrect, all 1s appear on the error gate inputs, and a 1 on the Error output 
results.

This particular application has demonstrated the need for data storage. Storage devices 
will be introduced in Chapter 7 and covered in Chapter 11.

The timing diagram in Figure 6–59 illustrates a specific case in which two 8-bit words 
are transmitted, one with correct parity and one with an error.
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Even parity bit
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S2

S1

S0

II

(Even parity bit)

FIGURE 6–58  Simplified data transmission system with error detection.

InfoNote

Microprocessors perform internal 
parity checks as well as parity checks 
of the external data and address 
buses. In a read operation, the 
external system can transfer the parity 
information together with the data 
bytes. The microprocessor checks 
whether the resulting parity is even 
and sends out the corresponding 
signal. When it sends out an address 
code, the microprocessor does not 
perform an address parity check, but 
it does generate an even parity bit for 
the address.
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 S0
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FIGURE 6–59  Example of data transmission with and without error for the system 
in Figure 6–58.

Section 6–10  Checkup

	 1.	Add an even parity bit to each of the following codes:

(a)	 110100	 (b)  01100011

	 2.	Add an odd parity bit to each of the following codes:

(a)	 1010101	 (b)  1000001

	 3.	Check each of the even parity codes for an error.

(a)	 100010101	 (b)  1110111001

6–11  Troubleshooting

In this section, the problem of decoder glitches is introduced and examined from a trouble-
shooting standpoint. A glitch is any undesired voltage or current spike (pulse) of very short 
duration. A glitch can be interpreted as a valid signal by a logic circuit and may cause 
improper operation.

After completing this section, you should be able to

u	 Explain what a glitch is

u	 Determine the cause of glitches in a decoder application

u	 Use the method of output strobing to eliminate glitches

The 74HC138 is used as a 3-line-to-8-line decoder (binary-to-octal) in Figure 6–60 
to illustrate how glitches occur and how to identify their cause. The A2A1A0 inputs of the 
decoder are sequenced through a binary count, and the resulting waveforms of the inputs 
and outputs can be displayed on the screen of a logic analyzer, as shown in Figure 6–60. 
A2 transitions are delayed from A1 transitions and A1 transitions are delayed from A0 transi-
tions. This commonly occurs when waveforms are generated by a binary counter, as you 
will learn in Chapter 9.

The output waveforms are correct except for the glitches that occur on some of the 
output signals. A logic analyzer or an oscilloscope can be used to display glitches, which 
are normally very difficult to see. Generally, the logic analyzer is preferred, especially 
for low repetition rates (less than 10 kHz) and/or irregular occurrence because most logic 
analyzers have a glitch capture capability. Oscilloscopes can be used to observe glitches 
with reasonable success, particularly if the glitches occur at a regular high repetition rate 
(greater than 10 kHz).
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The points of interest indicated by the highlighted areas on the input waveforms in 
Figure 6–60 are displayed as shown in Figure 6–61. At point 1 there is a transitional 
state of 000 due to delay differences in the waveforms. This causes the first glitch 
on the 0 output of the decoder. At point 2 there are two transitional states, 010 and 
000. These cause the glitch on the 2 output of the decoder and the second glitch on 
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FIGURE 6–60  Decoder waveforms with output glitches.
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FIGURE 6–61  Decoder waveform displays showing how transitional input states produce 
glitches in the output waveforms.
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the 0 output, respectively. At point 3 the transitional state is 100, which causes the 
first glitch on the 4 output of the decoder. At point 4 the two transitional states, 110 
and 100, result in the glitch on the 6 output and the second glitch on the 4 output, 
respectively.

One way to eliminate the glitch problem is a method called strobing, in which the 
decoder is enabled by a strobe pulse only during the times when the waveforms are not in 
transition. This method is illustrated in Figure 6–62.
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FIGURE 6–62  Application of a strobe waveform to eliminate glitches on decoder 
outputs.

In addition to glitches that are the result of differences in propagation delays, as you have seen 
in the case of a decoder, other types of unwanted noise spikes can also be a problem. Current 
and voltage spikes on the VCC and ground lines are caused by the fast switching waveforms in 
digital circuits. This problem can be minimized by proper printed circuit board layout. Switching 
spikes can be absorbed by decoupling the circuit board with a 1 mF capacitor from VCC to ground. 
Also, smaller decoupling capacitors (0.022 mF to 0.1 mF) should be distributed at various points 
between VCC and ground over the circuit board. Decoupling should be done especially near devices 
that are switching at higher rates or driving more loads such as oscillators, counters, buffers, and  
bus drivers.

Section 6–11  Checkup

	 1.	Define the term glitch.

	 2.	Explain the basic cause of glitches in decoder logic.

	 3.	Define the term strobe.       
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Applied Logic
Traffic Signal Controller: Part 1

The control logic is developed for a traffic signal at the intersection of a busy main street and 
a lightly used side street. The system requirements are established, and a general block dia-
gram is developed. Also, a state diagram is introduced to define the sequence of operation. 
The combinational logic unit of the controller is developed in this chapter, and the remaining 
units are developed in Chapter 7.

Timing Requirements

The control logic establishes the sequencing of the lights for a traffic signal at the inter-
section of a busy main street and an occasionally used side street. The following are the 
timing requirements:

u	 The green light for the main street will stay on for a minimum of 25 s or as long as 
there is no vehicle on the side street.

u	 The green light for the side street will stay on until there is no vehicle on the side 
street up to a maximum of 25 s.

u	 The yellow caution light will stay on for 4 s between changes from green to red on 
both the main street and the side street.

The State Diagram

From the timing requirements, a state diagram can be developed to describe the complete 
operation. A state diagram graphically shows the sequence of states, the conditions for 
each state, and the requirements for transitions from one state to the next.

Defining the Variables    The variables that determine how the system sequences through 
the various states are defined as follows:

u	 Vs  A vehicle is present on the side street.
u	 TL  The 25 s timer (long timer) is on.
u	 TS  The 4 s timer (short timer) is on.

A complemented variable indicates the opposite condition.

State Descriptions    A state diagram is shown in Figure 6–63. Each of the four states is 
assigned a 2-bit Gray code as indicated. A looping arrow means that the system remains in 
a state, and an arrow between states means that the system transitions to the next state. The 
Boolean expression or variable associated with each of the arrows in the state diagram indi-
cate the condition under which the system remains in a state or transitions to the next state.

First State    The Gray code is 00. In this state, the light is green on the main street and 
red on the side street for 25 s when the long timer is on or there is no vehicle on the side 
street. This condition is expressed as TL + Vs. The system transitions to the next state 
when the long timer goes off and there is a vehicle on the side street. This condition is 
expressed as TLVs.

Second State    The Gray code is 01. In this state, the light is yellow on the main street and 
red on the side street. The system remains in this state for 4 s when the short timer is on. 
This condition is expressed as TS. The system transitions to the next state when the short 
timer goes off. This condition is expressed as TS.
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Third State    The Gray code is 11. In this state, the light is red on the main street and 
green on the side street for 25 s when the long timer is on as long as there is a vehicle on 
the side street. This condition is expressed as TLVs. The system transitions to the next state 
when the long timer goes off or when there is no vehicle on the side street. This condition 
is expressed as TL + Vs.

Fourth State    The Gray code is 10. In this state, the light is red on the main street and 
yellow on the side street. The system remains in this state for 4 s when the short timer is 
on. This condition is expressed as TS. The system transitions back to the first state when 
the short timer goes off. This condition is expressed as TS.

Exercise

1.	 How long can the system remain in the first state?
2.	 How long can the system remain in the fourth state?
3.	 Write the expression for the condition that produces a transition from the first state 

to the second state.
4.	 Write the expression for the condition that keeps the system in the second state.

Block Diagram

The traffic signal controller consists of three units: combinational logic, sequential logic, 
and timing circuits, as shown in Figure 6–64. The combinational logic unit provides out-
puts to turn the signal lights on and off. It also provides trigger outputs to start the long and 
short timers. The input sequence to this logic represents the four states described by the 
state diagram. The timing circuits unit provides the 25 s and the 4 s timing outputs. A fre-
quency divider in the timing circuits unit divides the system clock down to a 1 Hz clock for 
use in producing the 25 s and 4 s signals. The sequential logic unit produces the sequence 
of 2-bit Gray codes representing the four states.

TL + Vs

TLVsTS

TL + Vs TS

TS

TLVs

Third state
11

Main: red
Side:green

Fourth state
10

Main: red
Side: yellow

First state
00

Main: green
Side: red

Second state
01

Main: yellow
Side: red

TS

fg06_06600

FIGURE 6–63  State diagram for the traffic signal control.
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FIGURE 6–64  Block diagram of the traffic signal controller.

The Combinational Logic

The combinational logic consists of a state decoder, light output logic, and trigger logic, as 
shown in Figure 6–65.
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FIGURE 6–65  Block diagram of the combinational logic unit.

State Decoder    This logic decodes the 2-bit Gray code from the sequential logic to deter-
mine which of the four states the system is in. The inputs to the state decoder are the two 
Gray code bits G1 and G0. There are four state outputs S1, S2, S3, and S4. For each of the 
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four input codes, one and only one of the outputs is activated. The Boolean expressions for 
the state outputs in terms of the inputs are

 S1 = G1G0

 S2 = G1G0

 S3 = G1G0

 S4 = G1G0

The truth table for the state decoder logic is shown in Table 6–11, and the logic diagram is 
shown in Figure 6–66.

TABLE 6–11

Truth table for the state decoder.

State Inputs (Gray Code) State Outputs

G1 G0 S1 S2 S3 S4

0 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

G0

G1

S1

S2

S3

S4

Gray code
state inputs

State outputs

fg06_06900
FIGURE 6–66  State decoder logic.

Light Output Logic    This logic has the four state outputs (S1–S4) of the state decoder as its 
inputs (L1–L4) and produces six outputs to turn the traffic lights on and off. These outputs 
are designated MR, MY, MG (main red, main yellow, main green) and SR, SY, SG (side red, 
side yellow, side green).

The state diagram shows that the main red is on in the third state (L3) or in the fourth 
state (L4), so the Boolean expression is

MR = L3 + L4

The main yellow is on in the second state (L2), so the expression is

MY = L2

The main green is on in the first state (L1), so the expression is

MG = L1
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Similarly, the state diagram is used to obtain the following expressions for the side street:

 SR = L1 + L2

 SY = L4

 SG = L3

The logic circuit is shown in Figure 6–67.

L3

L4
MR

SR

SY
SG

MYL2
MGL1

FIGURE 6–67  Light output logic.

Exercise

5.	 Show the logic diagram for the light output logic using specific IC devices with pin 
numbers.

6.	 Develop a truth table for the light output logic.

Trigger Logic    The trigger logic produces two outputs, the long trigger output and the 
short trigger output. The long trigger output initiates the 25 s timer on a LOW-to-HIGH 
transition at the beginning of the first or third states. The short trigger output initiates the 4 s 
timer on a LOW-to-HIGH transition at the beginning of the second or fourth states. The 
Boolean expressions for this logic are

 LongTrig = T1 + T3

 ShortTrig = T2 + T4

Equivalently,

 LongTrig = T1 + T3

 ShortTrig = T1 + T3

The logic circuit is shown in Figure 6–68.

T1

T3
LongTrig

T2

T4
ShortTrig

FIGURE 6–68  Trigger logic.

Exercise

7.	 Show the logic diagram for the trigger logic using specific IC devices with pin 
numbers.

8.	 Develop a truth table for the trigger logic.
9.	 Show the complete combinational logic by combining the state decoder, light out-

put logic, and trigger logic. Include specific IC devices and pin numbers.
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u  The VHDL program code for the trigger logic is as follows:

entity TriggerLogic is

  port (T1, T2, T3, T4: in bit; LongTrig, ShortTrig: out bit);

end entity TriggerLogic;

architecture LogicOperation of TriggerLogic is

begin

  LongTrig 6= T1 or T3;

  ShortTrig 6= T2 or T4;

end architecture LogicOperation;

u  The VHDL program code for the light output logic is as follows:

entity LightOutputLogic is

  port (L1, L2, L3, L4: in bit; MR, MY, MG, SR, SY, SG: out bit);

end entity LightOutputLogic;

architecture LogicOperation of LightOutputLogic is

begin

  MR 6= L3 or L4;

  MY 6= L2;

  MG 6= L1;

  SR 6= L1 or L2;

  SY 6= L4;

  SG 6= L3;

end architecture LogicOperation;

VHDL Descriptions

The VHDL program for the combinational logic unit of the traffic signal controller can be 
written using the data flow approach to describe each of the three functional blocks of the 
combinational logic unit. These functional blocks are the state decoder, the light output 
logic, and the trigger logic, as shown in Figure 6–65. 

u  The VHDL program code for the state decoder is as follows:

entity StateDecoder is

  port (G0, G1: in bit; S1, S2, S3, S4: out bit);

end entity StateDecoder;

architecture LogicOperation of StateDecoder is

begin

  S1 6= not G0 and not G1;

  S2 6= G0 and not G1;

  S3 6= G0 and G1;

  S4 6= not G0 and G1;

end architecture LogicOperation;

G0, G1: gray code inputs
S1–S4: state outputs

Boolean expressions for 
state decoder outputs

Boolean expressions for 
light output logic outputs

Inputs and outputs 
declared

Inputs and out-
puts declared

Boolean expressions for 
trigger logic outputs

Development of the traffic signal controller will continue in the Applied Logic in 
Chapter 7.
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Simulation

Open Multisim file Al06 in the Applied Logic folder on the website. Run the simula-
tion for the combinational logic unit of the traffic signal controller and observe the 
operation for each of the four states in the light sequence.

Putting Your Knowledge to Work

There is a requirement for a pedestrian push button that would activate the yellow caution 
light for 4 s and the red light for 15 s on both the main street and the side street. (a) Modify 
the state diagram for this additional feature. (b) Develop the additional logic required.

Summary

•	 Half-adder and full-adder operations are summarized in truth Tables 6–12 and 6–13.

Inputs Carry In Carry Out Sum

A B Cin Cout π

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

TABLE 6–13

Inputs Carry Out Sum

A B Cout π

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

TABLE 6–12

•	 Combination logic functions include comparators, decoders, encoders, code converters, 
multiplexers, demultiplexers, and parity generators/checkers.

•	 Software versions of standard logic functions from the 74XX series are available for use in a 
programmable logic design.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Cascading  Connecting two or more similar devices in a manner that expands the capability of 
one device.

Comparator  A digital circuit that compares the magnitudes of two quantities and produces an 
output indicating the relationship of the quantities.

Decoder  A digital circuit that converts coded information into a familiar or noncoded form.

Demultiplexer (DEMUX)  A circuit that switches digital data from one input line to several out-
put lines in a specified time sequence.

Encoder  A digital circuit that converts information to a coded form.

Full-adder  A digital circuit that adds two bits and an input carry to produce a sum and an output 
carry.

Glitch  A voltage or current spike of short duration, usually unintentionally produced and unwanted.
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372	 Functions of Combinational Logic

Half-adder  A digital circuit that adds two bits and produces a sum and an output carry. It cannot 
handle input carries.

Look-ahead carry  A method of binary addition whereby carries from preceding adder stages are 
anticipated, thus eliminating carry propagation delays.

Multiplexer (MUX)  A circuit that switches digital data from several input lines onto a single out-
put line in a specified time sequence.

Parity bit  A bit attached to each group of information bits to make the total number of 1s odd or 
even for every group of bits.

Priority encoder  An encoder in which only the highest value input digit is encoded and any other 
active input is ignored.

Ripple carry  A method of binary addition in which the output carry from each adder becomes the 
input carry of the next higher-order adder.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A half-adder adds two binary bits.

	 2.	 A half-adder has a carry output only.

	 3.	 A full adder adds two bits and produces two outputs.

	 4.	 A full-adder can be realized only by using 2-input XOR gates.

	 5.	 When the input bits are both 1 and the input carry bit is 1, the sum output of a full adder is 1.

	 6.	 The output of a comparator is 0 when the two binary inputs given are equal.

	 7.	 A decoder detects the presence of a specified combination of input bits.

	 8.	 The 4-line-to-10-line decoder and the 1-of-10 decoder are two different types.

	 9.	 An encoder essentially performs a reverse decoder function.

	10.	 A multiplexer is a logic circuit that allows digital information from a single source to be routed 
onto several lines.

Self-Test

Answers are at the end of the chapter.

	 1.	 A half-adder is characterized by
(a)	 two inputs and two outputs	 (b)  three inputs and two outputs
(c)	 two inputs and three outputs	 (d)  two inputs and one output

	 2.	 A full-adder is characterized by
(a)	 two inputs and two outputs	 (b)  three inputs and two outputs
(c)	 two inputs and three outputs	 (d)  two inputs and one output

	 3.	 The inputs to a full adder are A = 1, B = 0, Cin = 1. The outputs are
(a)	 © = 0, Cout = 1	 (b)  © = 1, Cout = 0
(c)	 © = 0, Cout = 0	 (d)  © = 1, Cout = 1

	 4.	 A 3-bit parallel adder can add
(a)	 three 2-bit binary numbers	 (b)  two 3-bit binary numbers
(c)	 three bits at a time	 (d)  three bits in sequence

	 5.	 To expand a 2-bit parallel adder to a 4-bit parallel adder, you must
(a)	 use two 2-bit adders with no interconnections
(b)	 use two 2-bit adders and connect the sum outputs of one to the bit inputs of the other
(c)	 use four 2-bit adders with no interconnections
(d)	 use two 2-bit adders with the carry output of one connected to the carry input of the other

	 6.	 If a 74HC85 magnitude comparator has A = 1000 and B = 1010, the outputs are
(a)	 A 7 B = 0, A 6 B = 0, A = B = 0	 (b)  A 7 B = 0, A 6 B = 0, A = B = 1
(c)	 A 7 B = 0, A 6 B = 1, A = B = 0	 (d)  A 7 B = 0, A 6 B = 1, A = B = 1
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	 7.	 If a 1-of-16 decoder with active-LOW outputs exhibits a LOW on the decimal 12 output, what 
are the inputs?
(a)	 A3A2A1A0 = 1010	 (b)  A3A2A1A0 = 1110
(c)	 A3A2A1A0 = 1100	 (d)  A3A2A1A0 = 0100

	 8.	 A BCD-to-7 segment decoder has 0100 on its inputs. The active outputs are
(a)	 a, c, f, g	 (b)  b, c, f, g
(c)	 b, c, e, f	 (d)  b, d, e, g

	 9.	 If an octal-to-binary priority encoder has its 0, 2, 5, and 6 inputs at the active level, the active-
HIGH binary output is
(a)	 110	 (b)  010
(c)	 101	 (d)  000

	10.	 In general, a multiplexer has
(a)	 one data input, several data outputs, and selection inputs
(b)	 one data input, one data output, and one selection input
(c)	 several data inputs, several data outputs, and selection inputs
(d)	 several data inputs, one data output, and selection inputs

	11.	 Data distributors are basically the same as
(a)	 decoders	 (b)  demultiplexers
(c)	 multiplexers	 (d)  encoders

	12.	 Which of the following codes exhibit even parity?
(a)	 10011000	 (b)  01111000
(c)	 11111111	 (d)  11010101
(e)	 all	 (f)  both answers (b) and (c)

Problems

Answers to odd-numbered problems are at the end of the book.

Section 6–1	Half and Full Adders
	 1.	 For the full-adder of Figure 6–4, determine the outputs for each of the following inputs

(a)	 A = 0, B = 1, Cin = 0    (b)  A = 1, B = 0, Cin = 1
(c)	 A = 0, B = 0, Cin = 0

	 2.	 What are the half-adder inputs that will produce the following outputs:

(a)	 © = 0, Cout = 0               (b)  © = 1, Cout = 0
(c)	 © = 0, Cout = 1

	 3.	 Determine the outputs of a full-adder for each of the following inputs:

(a)	 A = 1, B = 0, Cin = 0    (b)  A = 0, B = 0, Cin = 1
(c)	 A = 0, B = 1, Cin = 1    (d)  A = 1, B = 1, Cin = 1

Section 6–2	Parallel Binary Adders
	 4.	 For the parallel adder in Figure 6–69, determine the complete sum by analysis of the logical 

operation of the circuit. Verify your result by longhand addition of the two input numbers.

Σ1Σ3Σ4

1 0 1 1 1 0

Σ2

0

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

fg06_07300

FIGURE 6–69 
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	 5.	 Repeat Problem 4 for the circuit and input conditions in Figure 6–70.

1 0 0 0

0

11 1 0 1

Σ1Σ3 Σ2Σ5Σ6 Σ4

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

AA

Σ

B Cin

Cout Σ

B Cin

Cout

1

fg06_07400

FIGURE 6–70 
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Σ
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Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

fg06_07500

FIGURE 6–71 

	 6.	 The circuit shown in Figure 6–71 is a 4-bit circuit that can add or subtract numbers in a form 
used in computers (positive numbers in true form; negative numbers in complement form). (a) 
Explain what happens when the Add /Subt. input is HIGH. (b) What happens when Add /Subt. 
is LOW?

	 7.	 For the circuit in Figure 6–71, assume the inputs are Add /Subt. 5 1, A = 1010, and B = 1101. 
What is the output?

	 8.	 The input waveforms in Figure 6–72 are applied to a 2-bit adder. Determine the waveforms for 
the sum and the output carry in relation to the inputs by constructing a timing diagram.

A1

A2

B1

B2

Cin

fg06_07600

FIGURE 6–72 
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	 9.	 The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel 
adder. Determine the resulting sequence of bits on each sum output.

	 A1	 1010
	 A2	 1100
	 A3	 0101
	 A4	 1101
	 B1	 1001
	 B2	 1011
	 B3	 0000
	 B4	 0001
	10.	 In the process of checking a 74HC283 4-bit parallel adder, the following logic levels are observed 

on its pins: 1-HIGH, 2-HIGH, 3-HIGH, 4-HIGH, 5-LOW, 6-LOW, 7-LOW, 9-HIGH, 10-LOW, 
11-HIGH, 12-LOW, 13-HIGH, 14-HIGH, and 15-HIGH. Determine if the IC is functioning properly.

Section 6–3	Ripple Carry and Look-Ahead Carry Adders
	11.	 Each of the eight full-adders in an 8-bit parallel ripple carry adder exhibits the following propa-

gation delay:

	 A to © and Cout:	 20 ns
	 B to © and Cout:	 20 ns
	 Cin to ©:	 30 ns
	 Cin to Cout:	 25 ns
		  Determine the maximum total time for the addition of two 8-bit numbers.

	12.	 Show the additional logic circuitry necessary to make the 4-bit look-ahead carry adder in 
Figure 6–17 into a 5-bit adder.

Section 6–4	Comparators
	13.	 The waveforms in Figure 6–73 are applied to the comparator as shown. Determine the output 

(A = B) waveform.
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0
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0
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A

B

A = B

fg06_07700

FIGURE 6–73 
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A < B
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A1

A2

A3

B0

B1

B2

B3

74HC85

FIGURE 6–74 

	14.	 For the 4-bit comparator in Figure 6–74, plot each output waveform for the inputs shown. The 
outputs are active-HIGH.
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	15.	 For each set of binary numbers, determine the output states for the comparator of Figure 6–21.

(a)	 A3A2A1A0 = 1010
	 B3B2B1B0 = 1101

(b)	 A3A2A1A0 = 1101
	 B3B2B1B0 = 1101

(c)	 A3A2A1A0 = 1001
	 B3B2B1B0 = 1000

Section 6–5	Decoders
	16.	 When a LOW is on the output of each of the decoding gates in  Figure 6–75, what is the binary 

code appearing on the inputs? The MSB is A3.

A0

A1

A2
A3

A0

A1

A2

A3

(b)(a)

(d)(c)

A0
A1
A2
A3

A0

A1
A2
A3

fg06_07900

FIGURE 6–75 

	17.	 Show the decoding logic for each of the following codes if an active-HIGH (1) output is 
required:

(a)	 1101	 (b)  1000	 (c)  11011	 (d)  11100
(e)	 101010	 (f)  111110	 (g)  000101	 (h)  1110110

	18.	 Solve Problem 17, given that an active-LOW (0) output is required.

	19.	 You wish to detect only the presence of the codes 1010, 1100, 0001, and 1011. An active-
HIGH output is required to indicate their presence. Develop the minimum decoding logic with 
a single output that will indicate when any one of these codes is on the inputs. For any other 
code, the output must be LOW.

	20.	 If the input waveforms are applied to the decoding logic as indicated in Figure 6–76, sketch the 
output waveform in proper relation to the inputs.

A0

A1

A2

A0

A1

A2
Y 

fg06_08000

FIGURE 6–76 
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	21.	 BCD numbers are applied sequentially to the BCD-to-decimal decoder in Figure 6–77. Draw 
a timing diagram, showing each output in the proper relationship with the others and with the 
inputs.
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FIGURE 6–77 
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FIGURE 6–78 

	22.	 A 7-segment decoder/driver drives the display in Figure 6–78. If the waveforms are applied as 
indicated, determine the sequence of digits that appears on the display.

Section 6–6	Encoders
	23.	 For the decimal-to-BCD encoder logic of Figure 6–37, assume that the 9 input and the 3 input 

are both HIGH. What is the output code? Is it a valid BCD (8421) code?

	24.	 A 74HC147 encoder has LOW levels on pins 2, 5, and 12. What BCD code appears on the 
outputs if all the other inputs are HIGH?

Section 6–7	Code Converters
	25.	 Convert each of the following decimal numbers to BCD and then to binary.

(a)	 4    (b)  7    (c)  12    (d)  23    (e)  34

	26.	 Show the logic required to convert a 10-bit binary number to Gray code and use that logic to 
convert the following binary numbers to Gray code:

(a)	 1010111100    (b)  1111000011    (c)  1011110011    (d)  1000000001

	27.	 Show the logic required to convert a 10-bit Gray code to binary and use that logic to convert 
the following Gray code words to binary:

(a)	 1010111100    (b)  1111000011    (c)  1011110011    (d)  1000000001
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Section 6–8	Multiplexers (Data Selectors)
	28.	 For the multiplexer in Figure 6–79, determine the output for the following input states: D0 = 1, 

D1 = 0, D2 = 0, D3 = 1, S0 = 0, S1 = 1.
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FIGURE 6–79 

S1

S0

fg06_08400

FIGURE 6–80 

	29.	 If the data-select inputs to the multiplexer in Figure 6–79 are sequenced as shown by the wave-
forms in Figure 6–80, determine the output waveform with the data inputs specified in Problem 28.

	30.	 The waveforms in Figure 6–81 are observed on the inputs of a 74HC151 8-input multiplexer. 
Sketch the Y output waveform.
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S1

D0

D1

D2

S0

D3

S2

D4

D5

D6

D7

Select
inputs

Data
inputs

fg06_08500

FIGURE 6–81 

Section 6–9	Demultiplexers
	31.	 Develop the total timing diagram (inputs and outputs) for a 74HC154 used in a demultiplexing 

application in which the inputs are as follows: The data-select inputs are repetitively sequenced 
through a straight binary count beginning with 0000, and the data input is a serial data stream 
carrying BCD data representing the decimal number 2468. The least significant digit (8) is first 
in the sequence, with its LSB first, and it should appear in the first 4-bit positions of the output.
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Section 6–10	Parity Generators/Checkers
	32.	 The waveforms in Figure 6–82 are applied to the 4-bit parity logic. Determine the output wave-

form in proper relation to the inputs. For how many bit times does even parity occur, and how 
is it indicated? The timing diagram includes eight bit times.
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A2

A3

Bit
time

fg06_08600

FIGURE 6–82 

	33.	 Determine the © Even and the © Odd outputs of a 74HC280 9-bit parity generator/checker for 
the inputs in Figure 6–83. Refer to the function table in Figure 6–56.
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fg06_08700

FIGURE 6–83 

Section 6–11	Troubleshooting
	34.	 The full-adder in Figure 6–84 is tested under all input conditions with the input waveforms 

shown. From your observation of the © and Cout waveforms, is it operating properly, and if 
not, what is the most likely fault?

Σ

A

B

Σ

Cin

Cout

Σ
A

B

Cin

Cout

fg06_08800

FIGURE 6–84 
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	35.	 List the possible faults for each decoder/display in Figure 6–85.
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FIGURE 6–86 

	36.	 Develop a systematic test procedure to check out the complete operation of the keyboard 
encoder in Figure 6–39.

	37.	 You are testing a BCD-to-binary converter consisting of 4-bit adders as shown in Figure 6–86. 
First verify that the circuit converts BCD to binary. The test procedure calls for applying BCD 
numbers in sequential order beginning with 010 and checking for the correct binary output. 
What symptom or symptoms will appear on the binary outputs in the event of each of the fol-
lowing faults? For what BCD number is each fault first detected?

(a)	 The A1 input is open (top adder).
(b)	 The Cout is open (top adder).
(c)	 The ©4 output is shorted to ground (top adder).
(d)	 The 32 output is shorted to ground (bottom adder).
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	38.	 For the 7-segment display multiplexing system in Figure 6–49, determine the most likely cause 
or causes for each of the following symptoms:

(a)	 The B-digit (MSD) display does not turn on at all.
(b)	 Neither 7-segment display turns on.
(c)	 The f-segment of both displays appears to be on all the time.
(d)	 There is a visible flicker on the displays.

	39.	 Develop a systematic procedure to fully test the 74HC151 data selector IC.

	40.	 During the testing of the data transmission system in Figure 6–58, a code is applied to the D0 
through D6 inputs that contains an odd number of 1s. A single bit error is deliberately intro-
duced on the serial data transmission line between the MUX and the DEMUX, but the system 
does not indicate an error (error output = 0). After some investigation, you check the inputs 
to the even parity checker and find that D0 through D6 contain an even number of 1s, as you 
would expect. Also, you find that the D7 parity bit is a 1. What are the possible reasons for the 
system not indicating the error?

	41.	 In general, describe how you would fully test the data transmission system in Figure 6–58, and 
specify a method for the introduction of parity errors.

Applied Logic
	42.	 Use a 74HC00 (quad NAND gates) and any other devices that may be required to produce 

active-HIGH outputs for the given inputs of the state decoder.

	43.	 Implement the light output logic with the 74HC00 if active-LOW outputs are required.

Special Design Problems
	44.	 Modify the design of the 7-segment display multiplexing system in Figure 6–49 to accommo-

date two additional digits.

	45.	 Using Table 6–2, write the SOP expressions for the © and Cout of a full-adder. Use a Karnaugh 
map to minimize the expressions and then implement them with inverters and AND-OR logic. 
Show how you can replace the AND-OR logic with 74HC151 data selectors.

	46.	 Implement the logic function specified in Table 6–14 by using a 74HC151 data selector.

	47.	 Using two of the 6-position adder modules from Figure 6–13, design a 12-position voting 
system.

	48.	 The adder block in the tablet-bottling system in Figure 6–87 performs the addition of the 8-bit 
binary number from the counter and the 16-bit binary number from Register B. The result from 

TABLE 6–14

Inputs Output

A3 A2 A1 A0 Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
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the adder goes back into Register B. Use 74HC283s to implement this function and draw a 
complete logic diagram including pin numbers. This is similar to the system in Section 1–4.

	49.	 Use 74HC85s to implement the comparator block in the tablet-bottling system in Figure 6–87 
and draw a complete logic diagram including pin numbers. The comparator compares the 8-bit 
binary number (actually only seven bits are required) from the BCD-to-binary converter with 
the 8-bit binary number from the counter.

	50.	 Two BCD-to-7-segment decoders are used in the tablet-bottling system in Figure 6–87. One is 
required to drive the 2-digit tablets/bottle display and the other to drive the 5-digit total tablets 
bottled display. Use 74HC47s to implement each decoder and draw a complete logic diagram 
including pin numbers.

	51.	 The encoder shown in the system block diagram of Figure 6–87 encodes each decimal key 
closure and converts it to BCD. Use a 74HC147 to implement this function and draw a 
complete logic diagram including pin numbers.

	52.	 The system in Figure 6–87 requires two code converters. The BCD-to-binary converter changes 
the 2-digit BCD number in Register A to an 8-bit binary code (actually only 7 bits are required 
because the MSB is always 0). Use appropriate fixed-function IC code converters to implement 
the BCD-to-binary converter function and draw a complete logic diagram including pin numbers.

Multisim Troubleshooting Practice
	53.	 Open file P06-53. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

8 9

4 5 6

1 2 3
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7

Keypad

Total tablets bottled

Switching sequence
control input

Valve

Sensor

Conveyor
control
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8 bits

8 bits

16 bits

16 bits
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16-bit binary
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Σ
Counter

8-bit binary
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FIGURE 6–87 
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	54.	 Open file P06-54. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct. 

	55.	 Open file P06-55. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	56.	 Open file P06-56. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

Answers

Section Checkups
Section 6–1	Half and Full Adders
	 1.	 (a)  © = 1, Cout = 0

(b)	 © = 0, Cout = 0

(c)	 © = 1, Cout = 0

(d)	 © = 0, Cout = 1

	 2.	 © = 1, Cout = 1

Section 6–2	Parallel Binary Adders
	 1.	 Cout©4©3©2©1 = 11001

	 2.	 Three 74HC283s are required to add two 10-bit numbers.

Section 6–3	Ripple Carry and Look-Ahead Carry Adders
	 1.	 Cg = 0, Cp = 1

	 2.	 Cout = 1

Section 6–4	Comparators
	 1.	 A 7 B = 1, A 6 B = 0, A = B = 0 when A = 1011 and B = 1010

	 2.	 Right comparator: A 6 B = 1; A = B = 0; A 7 B = 0
		  Left comparator: A 6 B = 0; A = B = 0; A 7 B = 1

Section 6–5	Decoders
	 1.	 Output 5 is active when 101 is on the inputs.

	 2.	 Four 74HC154s are used to decode a 6-bit binary number.

	 3.	 Active-HIGH output drives a common-cathode LED display.

Section 6–6 Encoders
	 1.	 (a) 	 A0 = 1, A1 = 1, A2 = 0, A3 = 1

(b)	 No, this is not a valid BCD code.

(c)	 Only one input can be active for a valid output.

	 2.	 (a)  A3 = 0, A2 = 1, A1 = 1, A0 = 1

(b)	 The output is 0111, which is the complement of 1000 (8).

Section 6–7	Code Converters
	 1.	 10000101 (BCD) = 10101012

	 2.	 An 8-bit binary-to-Gray converter consists of seven exclusive-OR gates in an arrangement like 
that in Figure 6–40 but with inputs B0–B7.

Section 6–8	Multiplexers (Data Selectors)
	 1.	 The output is 0.

	 2.	 (a)  74HC153: Dual 4-input data selector/multiplexer

	 	 (b)  74HC151: 8-input data selector/multiplexer
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	 3.	 The data output alternates between LOW and HIGH as the data-select inputs sequence through 
the binary states.

	 4.	 (a)  The 74HC157 multiplexes the two BCD codes to the 7-segment decoder.

(b)	 The 74HC47 decodes the BCD to energize the display.

(c)	 The 74HC139 enables the 7-segment displays alternately.

Section 6–9	Demultiplexers
	 1.	 A decoder can be used as a multiplexer by using the input lines for data selection and an 

Enable line for data input.

	 2.	 The outputs are all HIGH except D10, which is LOW.

Section 6–10	Parity Generators/Checkers
	 1.	 (a)  Even parity: 1110100	 (b)	 Even parity: 001100011

	 2.	 (a)  Odd parity: 11010101	 (b)	 Odd parity: 11000001

	 3.	 (a)  Code is correct, four 1s.	 (b)	 Code is in error, seven 1s

Section 6–11	Troubleshooting
	 1.	 A glitch is a very short-duration voltage spike (usually unwanted).

	 2.	 Glitches are caused by transition states.

	 3.	 Strobe is the enabling of a device for a specified period of time when the device is not in transition.

Related Problems for Examples
	6–1	 © = 1, Cout = 1

	6–2	 ©1 = 0, ©2 = 0, ©3 = 1, ©4 = 1

	6–3	 1011 + 1010 = 10101

	6–4	 See Figure 6–88.
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FIGURE 6–88

	6–5	 See Figure 6–89.

A0 = 1
B0 = 0

A1 = 0
B1 = 1 0

0

0 → not equal

FIGURE 6–89

	6–6	 A 7 B = 0, A = B = 0, A 6 B = 1
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	6–7	 See Figure 6–90.

	6–8	 See Figure 6–91.

	6–9	 Output 22

A
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Highest-order comparatorLowest-order comparator

Comp Comp Comp Comp
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FIGURE 6–90

X
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A2
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A4
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FIGURE 6–91

	6–10	 See Figure 6–92.

	6–11	 All inputs LOW: A0 = 0, A1 = 1, A2 = 1, A3 = 0

A0

A1

A2

A3

0

1

2

3

4

5

6

7

8

9
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FIGURE 6–92

7

7

		  All inputs HIGH: All outputs HIGH.

	6–12	 BCD 01000001

		                              	

00000001 1

00101000 40

Binary 00101001 41

	6–13	 Seven exclusive-OR gates

	6–14	 See Figure 6–93.

S1

S0

Y

fg06_09700

FIGURE 6–93
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True/False Quiz
	 1.	 T    2.  F    3.  F    4.  F    5.  T  

	 6.	 F    7.  T    8.  F    9.  T    10.  F

Self-Test
	 1.	 (a)    2.  (b)    3.  (a)    4.  (b)    5.  (d)    6.  (c)

	 7.	 (c)    8.  (b)    9.  (a)    10.  (d)    11.  (b)    12.  (f)

	6–15	  D0: S3 = 0, S2 = 0, S1 = 0, S0 = 0

		   D4: S3 = 0, S2 = 1, S1 = 0, S0 = 0

		   D8: S3 = 1, S2 = 0, S1 = 0, S0 = 0

		   D13: S3 = 1, S2 = 1, S1 = 0, S0 = 1

	6–16	 See Figure 6–94.

G
0

2

0
1
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3

Y = A2A1A0 + A2A1A0 + A2A1A0

4
5
6
7

EN

74HC151
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A1
A2

0–
7

MUX

FIGURE 6–94

6–17	 See Figure 6–95.

G
0

2
0
1
2
3

Y

4
5
6
7

EN

74HC151

A1
A2
A3
A0

0–
7

MUX

=    A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

FIGURE 6–95

	6–18	 See Figure 6–96.
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FIGURE 6–96
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Chapter Outline

7–1	 Latches 
7–2	 Flip-Flops 
7–3	 Flip-Flop Operating Characteristics 
7–4	 Flip-Flop Applications 
7–5	 One-Shots 
7–6	 The Astable Multivibrator 
7–7	 Troubleshooting 
	 Applied Logic 

Chapter Objectives

■	 Use logic gates to construct basic latches

■	 Explain the difference between an S-R latch 
and a D latch

■	 Recognize the difference between a latch 
and a flip-flop

■	 Explain how D and J-K flip-flops differ

■	 Understand the significance of propagation 
delays, set-up time, hold time, maximum operating 
frequency, minimum clock pulse widths, and power 
dissipation in the application of flip-flops

■	 Apply flip-flops in basic applications

■	 Explain how retriggerable and nonretriggerable 
one-shots differ

■	 Connect a 555 timer to operate as either an astable 
multivibrator or a one-shot

■	 Describe latches, flip-flops, and timers using VHDL

■	 Troubleshoot basic flip-flop circuits

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

This chapter begins a study of the fundamentals of 
sequential logic. Bistable, monostable, and astable 
logic devices called multivibrators are covered. Two 
categories of bistable devices are the latch and the 
flip-flop. Bistable devices have two stable states, 
called SET and RESET; they can retain either of 
these states indefinitely, making them useful as stor-
age devices. The basic difference between latches 
and flip-flops is the way in which they are changed 
from one state to the other. The flip-flop is a basic 
building block for counters, registers, and other 
sequential control logic and is used in certain types of 
memories. The monostable multivibrator, commonly 
known as the one-shot, has only one stable state. 
A one-shot produces a single controlled-width pulse 
when activated or triggered. The astable multivibrator 
has no stable state and is used primarily as an oscil-
lator, which is a self-sustained waveform generator. 
Pulse oscillators are used as the sources for timing 
waveforms in digital systems.

■	 Clock

■	 Edge-triggered flip-flop

■	 D flip-flop

■	 Synchronous

■	 J-K flip-flop

■	 Toggle

■	 Preset

■	 Clear

■	 Propagation delay time

■	 Set-up time

■	 Hold time

■	 Power dissipation

■	 One-shot

■	 Monostable

■	 Timer

■	 Astable

Latches, Flip-Flops,  
and Timers

7CHAPTER 

■	 Latch

■	 Bistable

■	 SET

■	 RESET

Key Terms

Key terms are in order of appearance in the chapter.
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7–1  Latches

The latch is a type of temporary storage device that has two stable states (bistable) and 
is normally placed in a category separate from that of flip-flops. Latches are similar to 
flip-flops because they are bistable devices that can reside in either of two states using a 
feedback arrangement, in which the outputs are connected back to the opposite inputs. The 
main difference between latches and flip-flops is in the method used for changing their state.

After completing this section, you should be able to

u	 Explain the operation of a basic S-R latch

u	 Explain the operation of a gated S-R latch

u	 Explain the operation of a gated D latch

u	 Implement an S-R or D latch with logic gates

u	 Describe the 74HC279A and 74HC75 quad latches

The S-R (SET-RESET) Latch

A latch is a type of bistable logic device or multivibrator. An active-HIGH input S-R 
(SET-RESET) latch is formed with two cross-coupled NOR gates, as shown in Figure 
7–1(a); an active-LOW input S@R latch is formed with two cross-coupled NAND gates, as 
shown in Figure 7–1(b). Notice that the output of each gate is connected to an input of the 
opposite gate. This produces the regenerative feedback that is characteristic of all latches 
and flip-flops.

InfoNote

Latches are sometimes used for 
multiplexing data onto a bus. For 
example, data being input to a 
computer from an external source 
have to share the data bus with 
data from other sources. When the 
data bus becomes unavailable to 
the external source, the existing 
data must be temporarily stored, 
and latches placed between the 
external source and the data bus 
may be used to do this.

(a) Active-HIGH input S-R latch

R

S

Q

Q

(b) Active-LOW input S-R latch 

S

R

Q

Q

fg07_00100

FIGURE 7–1  Two versions of SET-RESET (S-R) latches. Open files F07-01(a) and (b) 
and verify the operation of both latches. A Multisim tutorial is available on the website.

To explain the operation of the latch, we will use the NAND gate S@R latch in 
Figure 7–1(b). This latch is redrawn in Figure 7–2 with the negative-OR equivalent 
symbols used for the NAND gates. This is done because LOWs on the S and R lines 
are the activating inputs.

The latch in Figure 7–2 has two inputs, S and R, and two outputs, Q and Q. Let’s start 
by assuming that both inputs and the Q output are HIGH, which is the normal latched state. 
Since the Q output is connected back to an input of gate G2, and the R input is HIGH, the 
output of G2 must be LOW. This LOW output is coupled back to an input of gate G1, ensur-
ing that its output is HIGH.

When the Q output is HIGH, the latch is in the SET state. It will remain in this state 
indefinitely until a LOW is temporarily applied to the R input. With a LOW on the R input 
and a HIGH on S, the output of gate G2 is forced HIGH. This HIGH on the Q output is 
coupled back to an input of G1, and since the S input is HIGH, the output of G1 goes LOW. 
This LOW on the Q output is then coupled back to an input of G2, ensuring that the Q 
output remains HIGH even when the LOW on the R input is removed. When the Q output 
is LOW, the latch is in the RESET state. Now the latch remains indefinitely in the RESET 
state until a momentary LOW is applied to the S input.

Q

Q

S

R

G1

G2

fg07_00200

FIGURE 7–2  Negative-OR 
equivalent of the NAND gate 
S@R latch in Figure 7–1(b).

A latch can reside in either of its two 
states, SET or RESET.
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In normal operation, the outputs of a latch are always complements of each other.

When Q is HIGH, Q is LOW, and when Q is LOW, Q is HIGH.

An invalid condition in the operation of an active-LOW input S@R latch occurs when 
LOWs are applied to both S and R at the same time. As long as the LOW levels are 
simultaneously held on the inputs, both the Q and Q outputs are forced HIGH, thus 
violating the basic complementary operation of the outputs. Also, if the LOWs are 
released simultaneously, both outputs will attempt to go LOW. Since there is always 
some small difference in the propagation delay time of the gates, one of the gates will 
dominate in its transition to the LOW output state. This, in turn, forces the output of 
the slower gate to remain HIGH. In this situation, you cannot reliably predict the next 
state of the latch.

Figure 7–3 illustrates the active-LOW input S@R latch operation for each of the four 
possible combinations of levels on the inputs. (The first three combinations are valid, but 
the last is not.) Table 7–1 summarizes the logic operation in truth table form. Operation of 
the active-HIGH input NOR gate latch in Figure 7–1(a) is similar but requires the use of 
opposite logic levels.

SET means that the Q output is 
HIGH.

RESET means that the Q output is 
LOW.

Q

Q

S

R

G1

G2
1

0
Simultaneous LOWs on both inputs

Output states are uncertain
when input LOWs go back
HIGH at approximately
the same time.

1

0
1

1

(d) Invalid condition

(b) Two possibilities for the RESET operation

Q

Q

S

R

G1

G2

1 Outputs do
not change
state.  Latch
remains SET if
previously SET and
remains RESET if
previously RESET.

HIGHS on both inputs

(c) No-change condition

1

(a) Two possibilities for the SET operation

Q

Q

S

R

1

0

1

1

0

No transitions
occur because
latch is
already SET.

Latch starts out SET (Q = 1).

Q

Q

S

R G2

1

0

1

1

0

1

0
(HIGH)

Momentary LOW

Latch starts out RESET (Q = 0).

Outputs make
transitions when
S goes LOW and
remain in same
state after S
goes back HIGH.

G1

Q

Q

S

R

G1

G2
1

0

1
0

1

Latch starts out RESET (Q = 0).

No transitions occur
because latch is
already RESET.

Q

Q

S

R

G1

G2
1

0

1
1

0

1

0

Outputs make
transitions when R
goes LOW and remain
in same state after R
goes back HIGH.

Latch starts out SET (Q = 1).

G2

G1

FIGURE 7–3  The three modes of basic S@R latch operation (SET, RESET, no-change) 
and the invalid condition.
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Logic symbols for both the active-HIGH input and the active-LOW input latches are 
shown in Figure 7–4.

TABLE 7–1

Truth table for an active-LOW input S@R latch.

Inputs Outputs

S R Q Q Comments

1 1 NC NC No change. Latch remains in present state.
0 1 1 0 Latch SET.
1 0 0 1 Latch RESET.
0 0 1 1 Invalid condition

Q

Q

S

R

S

R

Q

Q

S

R

S-R latch
(a) Active-HIGH input

S-R latch
(b) Active-LOW input

fg07_00400

FIGURE 7–4  Logic symbols for the S-R and S@R latch.

Example 7–1 illustrates how an active-LOW input S@R latch responds to conditions on 
its inputs. LOW levels are pulsed on each input in a certain sequence and the resulting Q 
output waveform is observed. The S = 0, R = 0 condition is avoided because it results in 
an invalid mode of operation and is a major drawback of any SET-RESET type of latch.

EXAMPLE 7–1

If the S and R waveforms in Figure 7–5(a) are applied to the inputs of the latch in 
Figure 7–4(b), determine the waveform that will be observed on the Q output. Assume 
that Q is initially LOW.

S

(a) R

Q(b)

fg07_00500

FIGURE 7–5 

Solution

See Figure 7–5(b).

Related Problem*

Determine the Q output of an active-HIGH input S-R latch if the waveforms in 
Figure 7–5(a) are inverted and applied to the inputs.

*Answers are at the end of the chapter.
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An Application
The Latch as a Contact-Bounce Eliminator

A good example of an application of an S@R latch is in the elimination of mechanical switch 
contact “bounce.” When the pole of a switch strikes the contact upon switch closure, it 
physically vibrates or bounces several times before finally making a solid contact. Although 
these bounces are very short in duration, they produce voltage spikes that are often not 
acceptable in a digital system. This situation is illustrated in Figure 7–6(a).

S

R

Q

R

S

+VCC

(a) Switch contact bounce

+V

0

1

2
R

(b) Contact-bounce eliminator circuit

1

2

R1

+VCC

R2

Position
1 to 2

Position
2 to 1

Erratic transition voltage
due to contact bounce

fg07_00600

FIGURE 7–6  The S@R latch used to eliminate switch contact bounce.

An S@R latch can be used to eliminate the effects of switch bounce as shown in Figure 
7–6(b). The switch is normally in position 1, keeping the R input LOW and the latch RESET. 
When the switch is thrown to position 2, R goes HIGH because of the pull-up resistor to VCC, 
and S goes LOW on the first contact. Although S remains LOW for only a very short time 
before the switch bounces, this is sufficient to set the latch. Any further voltage spikes on 
the S input due to switch bounce do not affect the latch, and it remains SET. Notice that the 
Q output of the latch provides a clean transition from LOW to HIGH, thus eliminating the 
voltage spikes caused by contact bounce. Similarly, a clean transition from HIGH to LOW 
is made when the switch is thrown back to position 1. 

Implementation: S@R Latch

Fixed-Function Device    The 74HC279A is a quad S@R latch represented by the logic dia-
gram of Figure 7–7(a) and the pin diagram in part (b). Notice that two of the latches each 
have two S inputs.

(5)

1S1

1Q

(2)

(1)

(6)

1R

2S

3Q

4Q

2R
2Q

1S2
(4)

(9)

(13)

(7)

(3)

(14)

3S1
(11)

(10)

(15)

3R

4S

4R

3S2
(12)

(a) Logic diagram

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

VCC 4S 4R 4Q 3S2 3S1 3R 3Q

1R 1S1 1S2 1Q 2R 2S 2Q GND

(b) Pin diagram

fg07_00700

FIGURE 7–7  The 74HC279A quad S@R latch.
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EXAMPLE 7–2

Determine the Q output waveform if the inputs shown in Figure 7–9(a) are applied to a 
gated S-R latch that is initially RESET.

S

(a)

R

Q
(b)

EN

fg07_00900
FIGURE 7–9 

S

QR

Q

(b) Logic symbol

EN

S

R

EN

Q

Q

(a) Logic diagram

fg07_00800

FIGURE 7–8  A gated S-R latch.

The Gated S-R Latch

A gated latch requires an enable input, EN (G is also used to designate an enable input). The 
logic diagram and logic symbol for a gated S-R latch are shown in Figure 7–8. The S and R 
inputs control the state to which the latch will go when a HIGH level is applied to the EN input. 
The latch will not change until EN is HIGH; but as long as it remains HIGH, the output is con-
trolled by the state of the S and R inputs. The gated latch is a level-sensitive device. In this cir-
cuit, the invalid state occurs when both S and R are simultaneously HIGH and EN is also HIGH.

Programmable Logic Device (PLD)    An S@R latch can be described using VHDL and 
implemented as hardware in a PLD. VHDL statements and keywords not used in previous 
chapters are introduced in this chapter. These are library, use, std_logic, all, and inout. 
The data flow approach is used in this program to describe a single S@R latch. (The blue 
comments are not part of the program.)

entity SRLatch is
  port (SNot, RNot: in std_logic; Q, QNot: inout std_logic);
end entity SRLatch;

architecture LogicOperation of SRLatch is
begin
  Q 6= QNot nand SNot;
  QNot 6= Q nand RNot;
end architecture LogicOperation;

The two inputs SNot and RNot are defined as std_logic from the IEEE library. The inout 
keyword allows the Q and QNot outputs of the latch to be used also as inputs for cross-coupling.

SNot: SET complement
RNot: RESET 
complement
Q: Latch output
QNot: Latch output 
complement

Boolean expressions 
define the outputs

r
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Solution

The Q waveform is shown in Figure 7–9(b). When S is HIGH and R is LOW, a HIGH on 
the EN input sets the latch. When S is LOW and R is HIGH, a HIGH on the EN input resets 
the latch. When both S and R are LOW, the Q output does not change from its present state.

Related Problem

Determine the Q output of a gated S-R latch if the S and R inputs in Figure 7–9(a) are 
inverted.

The Gated D Latch

Another type of gated latch is called the D latch. It differs from the S-R latch because it 
has only one input in addition to EN. This input is called the D (data) input. Figure 7–10 
contains a logic diagram and logic symbol of a D latch. When the D input is HIGH and the 
EN input is HIGH, the latch will set. When the D input is LOW and EN is HIGH, the latch 
will reset. Stated another way, the output Q follows the input D when EN is HIGH.

EXAMPLE 7–3

Determine the Q output waveform if the inputs shown in Figure 7–11(a) are applied to 
a gated D latch, which is initially RESET.

D

(a)

Q(b)

EN

fg07_01100

FIGURE 7–11 

Solution

The Q waveform is shown in Figure 7–11(b). When D is HIGH and EN is HIGH, Q 
goes HIGH. When D is LOW and EN is HIGH, Q goes LOW. When EN is LOW, the 
state of the latch is not affected by the D input.

Related Problem

Determine the Q output of the gated D latch if the D input in Figure 7–11(a) is inverted. 

D

Q

Q

(b) Logic symbol

EN

D

EN

Q

Q

(a) Logic diagram

fg07_01000

FIGURE 7–10  A gated D latch. Open file F07-10 and verify the operation.
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Section 7–1  Checkup

Answers are at the end of the chapter.

	 1.	List three types of latches.

	 2.	Develop the truth table for the active-HIGH input S-R latch in Figure 7–1(a).

	 3.	What is the Q output of a D latch when EN = 1 and D = 1?

Implementation: Gated D Latch

Fixed-Function Device   An example of a gated D latch is the 74HC75 represented by the 
logic symbol in Figure 7–12(a). The device has four latches. Notice that each active-HIGH 
EN input is shared by two latches and is designated as a control input (C). The truth table 
for each latch is shown in Figure 7–12(b). The X in the truth table represents a “don’t care” 
condition. In this case, when the EN input is LOW, it does not matter what the D input is 
because the outputs are unaffected and remain in their prior states.

Programmable Logic Device (PLD)    The gated D latch can be described using VHDL 
and implemented as hardware in a PLD. The data flow approach is used in this program to 
describe a single D latch.

library ieee;
use ieee.std_logic_1164.all;

entity DLatch1 is
  port (D, EN: in std_logic; Q, QNot: inout std_logic);
end entity DLatch1;

architecture LogicOperation of DLatch1 is
begin
  Q 6= QNot nand (D nand EN);
  QNot 6= Q nand (not D nand EN);
end architecture LogicOperation;

(13)

(14)

(a) Logic symbol

Inputs

Comments

0
1
X

D EN

1
1
0

Outputs

RESET
SET
No change 

(b) Truth table (each latch)

2Q

3Q
(10)

1D1D 1Q
(16)

(1)
1Q

2Q
(15)

(11)
3Q

4Q
(9)

(8)
4Q

(2)

EN
C1

C2

(4)

3D3D
(6)

EN
C3

C4

4D4D
(7)

2D2D
(3)

0
1

Q0

Q Q

1
0

Q0

Note: Q0 is the prior output level before the indicated
input conditions were established.

FIGURE 7–12  The 74HC75 quad D latch.

Boolean expressions 
define the outputs

r
D: Data input
EN: Enable
Q: Latch output
QNot: Latch output 
complement
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7–2  Flip-Flops

Flip-flops are synchronous bistable devices, also known as bistable multivibrators. In this 
case, the term synchronous means that the output changes state only at a specified point 
(leading or trailing edge) on the triggering input called the clock (CLK), which is designated 
as a control input, C; that is, changes in the output occur in synchronization with the clock. 
Flip-flops are edge-triggered or edge-sensitive whereas gated latches are level-sensitive.

After completing this section, you should be able to

u	 Define clock

u	 Define edge-triggered flip-flop

u	 Explain the difference between a flip-flop and a latch

u	 Identify an edge-triggered flip-flop by its logic symbol

u	 Discuss the difference between a positive and a negative edge-triggered flip-flop

u	 Discuss and compare the operation of D and J-K edge-triggered flip-flops and ex-
plain the differences in their truth tables

u	 Discuss the asynchronous inputs of a flip-flop

An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at 
the negative edge (falling edge) of the clock pulse and is sensitive to its inputs only at this 
transition of the clock. Two types of edge-triggered flip-flops are covered in this section: D 
and J-K. The logic symbols for these flip-flops are shown in Figure 7–13. Notice that each 
type can be either positive edge-triggered (no bubble at C input) or negative edge-triggered 
(bubble at C input). The key to identifying an edge-triggered flip-flop by its logic symbol is 
the small triangle inside the block at the clock (C) input. This triangle is called the dynamic 
input indicator.

The dynamic input indicator � 
means the flip-flop changes state 
only on the edge of a clock pulse.

D

Q

Q

(a) D

C

J

QK

Q

(b) J-K

C

D

Q

Q

C

J

QK

Q

C

Dynamic input
indicator

FIGURE 7–13  Edge-triggered flip-flop logic symbols (top: positive edge-triggered; 
bottom: negative edge-triggered).

The D Flip-Flop

The D input of the D flip-flop is a synchronous input because data on the input are trans-
ferred to the flip-flop’s output only on the triggering edge of the clock pulse. When D is 
HIGH, the Q output goes HIGH on the triggering edge of the clock pulse, and the flip-flop 

D flip-flop but D as variable.
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is SET. When D is LOW, the Q output goes LOW on the triggering edge of the clock pulse, 
and the flip-flop is RESET.

This basic operation of a positive edge-triggered D flip-flop is illustrated in Figure 7–14, 
and Table 7–2 is the truth table for this type of flip-flop. Remember, the flip-flop cannot 
change state except on the triggering edge of a clock pulse. The D input can be changed at 
any time when the clock input is LOW or HIGH (except for a very short interval around the 
triggering transition of the clock) without affecting the output. Just remember, Q follows D 
at the triggering edge of the clock.

InfoNote

Semiconductor memories consist 
of large numbers of individual 
cells. Each storage cell holds a 1 
or a 0. One type of memory is the 
Static Random Access Memory or 
SRAM, which uses flip-flops for 
the storage cells because a flip-flop 
will retain either of its two states 
indefinitely as long as dc power 
is applied, thus the term static. 
This type of memory is classified 
as a volatile memory because 
all the stored data are lost when 
power is turned off. Another type 
of memory, the Dynamic Random 
Access Memory or DRAM, uses 
capacitance rather than flip-flops 
as the basic storage element and 
must be periodically refreshed in 
order to maintain the stored data.

D
Q

(a) D = 1 flip-flop SETS on positive clock
edge. (If already SET, it remains SET.)

C
t0

1

CLK
t0

1

0
D

Q

(b) D = 0 flip-flop RESETS on positive
clock edge. (If already RESET, it remains
RESET.)

C
t0

0
t0

1

0

Q Q

FIGURE 7–14  Operation of a positive edge-triggered D flip-flop.

TABLE 7–2

Truth table for a positive edge-triggered D flip-flop.

Inputs Outputs

D CLK Q Q Comments

0 c 0 1 RESET
1 c 1 0      SET  

c  = clock transition LOW to HIGH

The operation and truth table for a negative edge-triggered D flip-flop are the same as 
those for a positive edge-triggered device except that the falling edge of the clock pulse is 
the triggering edge.

D

Q

Q

C

FIGURE 7–15 

(a)

(b)

D

Q

CLK

Q
1

0

1

0

1

0

1

0
1 2 3 4 5 6

FIGURE 7–16 

EXAMPLE 7–4

Determine the Q and Q output waveforms of the flip-flop in Figure 7–15 for the D and CLK inputs in Figure 7–16(a). Assume 
that the positive edge-triggered flip-flop is initially RESET.
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The J-K Flip-Flop

The J and K inputs of the J-K flip-flop are synchronous inputs because data on these inputs 
are transferred to the flip-flop’s output only on the triggering edge of the clock pulse. When 
J is HIGH and K is LOW, the Q output goes HIGH on the triggering edge of the clock 
pulse, and the flip-flop is SET. When J is LOW and K is HIGH, the Q output goes LOW on 
the triggering edge of the clock pulse, and the flip-flop is RESET. When both J and K are 
LOW, the output does not change from its prior state. When J and K are both HIGH, the 
flip-flop changes state. This called the toggle mode.

This basic operation of a positive edge-triggered flip-flop is illustrated in Figure 7–17, 
and Table 7–3 is the truth table for this type of flip-flop. Remember, the flip-flop cannot 
change state except on the triggering edge of a clock pulse. The J and K inputs can be 
changed at any time when the clock input is LOW or HIGH (except for a very short interval 
around the triggering transition of the clock) without affecting the output.

Solution

	 1.	 At clock pulse 1, D is LOW, so Q remains LOW (RESET).

	 2.	 At clock pulse 2, D is LOW, so Q remains LOW (RESET).

	 3.	 At clock pulse 3, D is HIGH, so Q goes HIGH (SET).

	 4.	 At clock pulse 4, D is LOW, so Q goes LOW (RESET).

	 5.	 At clock pulse 5, D is HIGH, so Q goes HIGH (SET).

	 6.	 At clock pulse 6, D is HIGH, so Q remains HIGH (SET).

Once Q is determined, Q is easily found since it is simply the complement of Q. The resulting waveforms for Q and Q are 
shown in Figure 7–16(b) for the input waveforms in part (a).

Related Problem

Determine Q and Q for the D input in Figure 7–16(a) if the flip-flop is a negative edge-triggered device.

J

K

Q

(a) J = 1, K = 0 flip-flop SETS on positive clock
edge. (If already SET, it remains SET.)

C
t0

1

0

CLK
t0

1

0
J

K

Q

(b) J = 0, K = 1 flip-flop RESETS on positive
clock edge. (If already RESET, it remains
RESET.)

C
t0

0

1

t0

1

0

Q Q

J

K

Q = Q0 (no change)

(d) J = 0, K = 0 flip-flop does not change. (If SET, it
remains SET; if RESET, it remains RESET.)

C
t0

0

0 Q

J

K

Q 

(c) J = 1, K = 1 flip-flop changes
state (toggle).

C
t0

1

1 Q Q

Q

FIGURE 7–17  Operation of a positive edge-triggered J-K flip-flop.
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TABLE 7–3

Truth table for a positive edge-triggered J-K flip-flop.

Inputs Outputs

J K CLK Q Q Comments

0 0 c   Q0   Q0 No change
0 1 c 0 1          RESET
1 0 c 1 0          SET
1 1 c   Q0   Q0          Toggle

c  = clock transition LOW to HIGH
Q0 = output level prior to clock transition

Solution

Since this is a negative edge-triggered flip-flop, as indicated by the “bubble” at the clock input, the Q output will change 
only on the negative-going edge of the clock pulse.

	 1.	 At the first clock pulse, both J and K are HIGH; and because this is a toggle condition, Q goes HIGH.

	 2.	 At clock pulse 2, a no-change condition exists on the inputs, keeping Q at a HIGH level.

	 3.	 When clock pulse 3 occurs, J is LOW and K is HIGH, resulting in a RESET condition; Q goes LOW.

	 4.	 At clock pulse 4, J is HIGH and K is LOW, resulting in a SET condition; Q goes HIGH.

	 5.	 A SET condition still exists on J and K when clock pulse 5 occurs, so Q will remain HIGH.

The resulting Q waveform is indicated in Figure 7–18(b).

Related Problem

Determine the Q output of the J-K flip-flop if the J and K inputs in Figure 7–18(a) are inverted.

EXAMPLE 7–5

The waveforms in Figure 7–18(a) are applied to the J, K, and clock inputs as indicated. Determine the Q output, assuming 
that the flip-flop is initially RESET.

(a)

J

K

(b)

1 2 3 4 5
1

0CLK

Q

1

0
1

0

1

0
Toggle No

change
Reset Set Set

J

Q

Q

C

K

CLK

fg07_02400

FIGURE 7–18 

Edge-Triggered Operation
D Flip-Flop

A simplified implementation of an edge-triggered D flip-flop is illustrated in Figure 7–19(a) 
and is used to demonstrate the concept of edge-triggering. Notice that the basic D flip-flop 
differs from the gated D latch only in that it has a pulse transition detector.
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One basic type of pulse transition detector is shown in Figure 7–19(b). As you can 
see, there is a small delay through the inverter on one input to the NAND gate so that the 
inverted clock pulse arrives at the gate input a few nanoseconds after the true clock pulse. 
This circuit produces a very short-duration spike on the positive-going transition of the 
clock pulse. In a negative edge-triggered flip-flop the clock pulse is inverted first, thus 
producing a narrow spike on the negative-going edge.

The circuit in Figure 7–19(a) is partitioned into two sections, one labeled Steering gates 
and the other labeled Latch. The steering gates direct, or steer, the clock spike either to the 
input to gate G3 or to the input to gate G4, depending on the state of the D input. To under-
stand the operation of this flip-flop, begin with the assumptions that it is in the RESET state 
(Q = 0) and that the D and CLK inputs are LOW. For this condition, the outputs of gate 
G1 and gate G2 are both HIGH. The LOW on the Q output is coupled back into one input of 
gate G4, making the Q output HIGH. Because Q is HIGH, both inputs to gate G3 are HIGH 
(remember, the output of gate G1 is HIGH), holding the Q output LOW. If a pulse is applied 
to the CLK input, the outputs of gates G1 and G2 remain HIGH because they are disabled 
by the LOW on the D input; therefore, there is no change in the state of the flip-flop—it 
remains in the RESET state.

Let’s now make D HIGH and apply a clock pulse. Because the D input to gate G1 is 
now HIGH, the output of gate G1 goes LOW for a very short time (spike) when CLK goes 
HIGH, causing the Q output to go HIGH. Both inputs to gate G4 are now HIGH (remember, 
gate G2 output is HIGH because D is HIGH), forcing the Q output LOW. This LOW on Q is 
coupled back into one input of gate G3, ensuring that the Q output will remain HIGH. The 
flip-flop is now in the SET state. Figure 7–20 illustrates the logic level transitions that take 
place within the flip-flop for this condition.

Next, let’s make D LOW and apply a clock pulse. The positive-going edge of the clock 
produces a negative-going spike on the output of gate G2, causing the Q output to go 
HIGH. Because of this HIGH on Q, both inputs to gate G3 are now HIGH (remember, the 
output of gate G1 is HIGH because of the LOW on D), forcing the Q output to go LOW. 
This LOW on Q is coupled back into one input of gate G4, ensuring that Q will remain 
HIGH. The flip-flop is now in the RESET state. Figure 7–21 illustrates the logic level tran-
sitions that occur within the flip-flop for this condition.

G1

G2

G3

G4

CLK

(b) A type of pulse transition detector

(a) A simplified logic diagram for a positive edge-triggered D flip-flop

Delay

Steering gates Latch

Q
D

Q

CLK

Pulse
transition
detector

Short pulse (spike) produced by delay
(when both gate inputs are HIGH)

FIGURE 7–19  Edge triggering. InfoNote

All logic operations that are 
performed with hardware can also 
be implemented in software. For 
example, the operation of a J-K 
flip-flop can be performed with 
specific computer instructions. If 
two bits were used to represent 
the J and K inputs, the computer 
would do nothing for 00, a data 
bit representing the Q output 
would be set (1) for 10, the Q 
data bit would be cleared (0) for 
01, and the Q data bit would be 
complemented for 11. Although it 
may be unusual to use a computer 
to simulate a flip-flop, the point is 
that all hardware operations can be 
simulated using software.

The Q output of a D flip-flop 
assumes the state of the D input on 
the triggering edge of the clock.
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D Q

Q

0

This gate is enabled.

HIGH (1)

 CLK

Triggering
edge

This spike SETS flip-flop.
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0
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FIGURE 7–20  Flip-flop making a transition from the RESET state to the SET state on the 
positive-going edge of the clock pulse.
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This gate is enabled.
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 CLK
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HIGHG1
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1

1
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because D is LOW. 

FIGURE 7–21  Flip-flop making a transition from the SET state to the RESET state on the 
positive-going edge of the clock pulse.

EXAMPLE 7–6

Given the waveforms in Figure 7–22(a) for the D input and the clock, determine the Q 
output waveform if the flip-flop starts out RESET.

CLK

(a) D

Q(b)

D

Q

Q

C

fg07_02100FIGURE 7–22 

Solution

The Q output goes to the state of the D input at the time of the positive-going clock 
edge. The resulting output is shown in Figure 7–22(b).

Related Problem

Determine the Q output for the D flip-flop if the D input in Figure 7–22(a) is inverted.
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J-K Flip-Flop

Figure 7–23 shows the basic internal logic for a positive edge-triggered J-K flip-flop. The 
Q output is connected back to the input of gate G2, and the Q output is connected back to 
the input of gate G1. The two control inputs are labeled J and K in honor of Jack Kilby, who 
invented the integrated circuit. A J-K flip-flop can also be of the negative edge-triggered 
type, in which case the clock input is inverted.

K

J
Q

Q

Pulse
transition
detector

CLK

G1

G2

G3

G4

fg07_02200

FIGURE 7–23  A simplified logic diagram for a positive edge-triggered J-K flip-flop.

Let’s assume that the flip-flop in Figure 7–24 is RESET and that the J input is HIGH and 
the K input is LOW rather than as shown. When a clock pulse occurs, a leading-edge spike 
indicated by ① is passed through gate G1 because Q is HIGH and J is HIGH. This will 
cause the latch portion of the flip-flop to change to the SET state. The flip-flop is now SET.

If you make J LOW and K HIGH, the next clock spike indicated by ② will pass through 
gate G2 because Q is HIGH and K is HIGH. This will cause the latch portion of the flip-flop 
to change to the RESET state.

If you apply a LOW to both the J and K inputs, the flip-flop will stay in its present state 
when a clock pulse occurs. A LOW on both J and K results in a no-change condition.

When both the J and K inputs are HIGH and the flip-flop is RESET, the HIGH on the 
Q enables gate G1; so the clock spike indicated by ③ passes through to set the flip-flop. 
Now there is a HIGH on Q, which allows the next clock spike to pass through gate G2 and 
reset the flip-flop.

As you can see, on each successive clock spike, the flip-flop toggles to the opposite 
state. Figure 7–24 illustrates the transitions when the flip-flop is in the toggle mode. A J-K 
flip-flop connected for toggle operation is sometimes called a T flip-flop.

Asynchronous Preset and Clear Inputs

For the flip-flops just discussed, the D and J-K inputs are called synchronous inputs because 
data on these inputs are transferred to the flip-flop’s output only on the triggering edge of 
the clock pulse; that is, the data are transferred synchronously with the clock.

K

J Q

Q

G1

G2

G3

G4

Pulse
transition
detector

31

CLK

1 2 3 21 3

2

HIGH

HIGH

1 2 3

fg07_02300

FIGURE 7–24  Transitions illustrating flip-flop operation.

In the toggle mode, a J-K flip-flop 
changes state on every clock pulse.

An active preset input makes the Q 
output HIGH (SET).
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Most integrated circuit flip-flops also have asynchronous inputs. These are inputs that 
affect the state of the flip-flop independent of the clock. They are normally labeled preset 
(PRE) and clear (CLR), or direct set (SD) and direct reset (RD) by some manufacturers. An 
active level on the preset input will set the flip-flop, and an active level on the clear input 
will reset it. A logic symbol for a D flip-flop with preset and clear inputs is shown in Figure 
7–25. These inputs are active-LOW, as indicated by the bubbles. These preset and clear 
inputs must both be kept HIGH for synchronous operation. In normal operation, preset and 
clear would not be LOW at the same time.

Figure 7–26 shows the logic diagram for an edge-triggered D flip-flop with active-LOW 
preset (PRE) and clear (CLR) inputs. This figure illustrates basically how these inputs 
work. As you can see, they are connected so that they override the effect of the synchronous 
input, D and the clock.

D

Q

Q

C

PRE

CLR

FIGURE 7–25  Logic symbol 
for a D flip-flop with active-LOW 
preset and clear inputs.

D
Q

Q

Pulse
transition
detector

CLK

PRE

CLR

FIGURE 7–26  Logic diagram for a basic D flip-flop with active-LOW preset and clear inputs.

An active clear input makes the Q 
output LOW (RESET).

EXAMPLE 7–7

For the positive edge-triggered D flip-flop with preset and clear inputs in Figure 7–27, 
determine the Q output for the inputs shown in the timing diagram in part (a) if Q is 
initially LOW.

D

Q

Q

C

PRE

CLR

(a)

(b)

1 2 3 4 5CLK

Q

D
6 7 8 9

Preset Clear

PRE

CLR

Follows D

FIGURE 7–27  Open file F07-27 to verify the operation.
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Solution

	 1.	 During clock pulses 1, 2, and 3, the preset (PRE) is LOW, keeping the flip-flop 
SET regardless of the synchronous D input.

	 2.	 For clock pulses 4, 5, 6, and 7, the output follows the input on the clock pulse 
because both PRE and CLR are HIGH.

	 3.	 For clock pulses 8 and 9, the clear (CLR) input is LOW, keeping the flip-flop 
RESET regardless of the synchronous inputs.

The resulting Q output is shown in Figure 7–27(b).

Related Problem

If you interchange the PRE and CLR waveforms in Figure 7–27(a), what will the Q 
output look like?

Let’s look at two specific edge-triggered flip-flops. They are representative of the vari-
ous types of flip-flops available in fixed-function IC form and, like most other devices, are 
available in CMOS and in bipolar (TTL) logic families.

Also, you will learn how VHDL is used to describe the types of flip-flops.  

Implementation: D Flip-Flop

Fixed-Function Device    The 74HC74 dual D flip-flop contains two identical D flip-flops 
that are independent of each other except for sharing VCC and ground. The flip-flops are 
positive edge-triggered and have active-LOW asynchronous preset and clear inputs. The 
logic symbols for the individual flip-flops within the package are shown in Figure 7–28(a), 
and an ANSI/IEEE standard single block symbol that represents the entire device is shown 
in part (b). The pin numbers are shown in parentheses.

2CLK
(11)

D

1Q

1Q

C

1PRE

1CLR

(6)

1D

1CLK

(5)

(3)

(2)
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(11)

(12)
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(13)

S

C1

(8)
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(3)1D
(2)

(4)

(1)

(10)

2D
(12)

2CLR
(13)

(5)

(6)

(9)

1PRE 1Q

1CLR

2PRE

1Q

2Q

2Q

1D

R

(b) Single block logic symbol
Note: The S and R inside the

block indicate that PRE
SETS and CLR RESETS.(a) Individual logic symbols

S

R

S

R

fg07_02900

FIGURE 7–28  The 74HC74 dual positive edge-triggered D flip-flop.
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404	 Latches, Flip-Flops, and Timers

Programmable Logic Device (PLD)    The positive edge-triggered D flip-flop can be 
described using VHDL and implemented as hardware in a PLD. In this program, the 
behavioral approach will be used for the first time because it lends itself to describing 
sequential operations. A new VHDL statement, wait until rising_edge, is introduced. 
This statement allows the program to wait for the rising edge of a clock pulse to process 
the D input to create the desired results. Also the if then else statement is introduced. The 
keyword process is a block of code placed between the begin and end statements of the 
architecture to allow statements to be sequentially processed. The program code for a 
single D flip-flop is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity dffl is
  port (D, Clock, Pre, Clr: in std_logic; Q: inout std_logic);
end entity dffl;

architecture LogicOperation of dffl is
begin
process
  begin
    wait until rising_edge (Clock);
      if Clr = ‘1’ then
        if Pre = ‘1’ then
          if D = ‘1’ then
            Q 6= ‘1’;
          else
            Q 6= ‘0’;
          end if;
        else
          Q 6= ‘1’;
        end if;
      else
        Q 6= ‘0’;
    end if;
  end process;
end architecture LogicOperation;

D: Flip-flop input
Clock: System clock
Pre: Preset input
Clr: Clear input
Q: Flip-flop output

Q is set HIGH when Pre input is LOW.

Q is set LOW when Clr input is LOW.

Check for Preset and Clear conditions
$%
&

Q input follows D input when Clr and Pre inputs 
are HIGH.

Implementation: J-K Flip-Flop

Fixed-Function Device    The 74HC112 dual J-K flip-flop has two identical flip-flops that 
are negative edge-triggered and have active-LOW asynchronous preset and clear inputs. 
The logic symbols are shown in Figure 7–29.

Programmable Logic Device (PLD)    The negative edge-triggered J-K flip-flop can be 
described using VHDL and implemented as hardware in a PLD. In this program, the be-
havioral approach will be used. A new VHDL statement, if falling edge then, is intro-
duced. This statement allows the program to wait for the falling edge of a clock pulse 
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to process the J and K inputs to create the desired results. The following program code 
describes a single J-K flip-flop with no preset or clear inputs.

library ieee;
use ieee.std_logic_1164.all;
entity JKFlipFlop is
  port (J, K, Clock: in std_logic; Q, QNot: inout std_logic);
end entity JKFlipFlop;

architecture LogicOperation of JKFlipFlop is
signal J1, K1: std_logic;

begin
process (J, K, Clock, J1, K1, Q, QNot)
  begin
    if falling_edge(Clock) and Clock = ‘0’ then
      J1 6= not (J and not Clock and QNot);
      K1 6= not (K and not Clock and Q);
    end if;
      Q 6= J1 nand QNot;
    QNot 6= K1 nand Q;
end process;
end architecture LogicOperation;

Inputs and outputs 
declared

Defines the outputs in terms of J1 and 
K1 with Boolean expressions

$%
&

Identifies with Boolean expressions 
the inputs (J1 and K1) to the latch 
portion of the flip-flop$%

&

$%
&

1K

J

1Q
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C
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(4)

(15)

2Q

2Q

C

2PRE

2CLR
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S
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S
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FIGURE 7–29  The 74HC112 dual negative edge-triggered J-K flip-flop.

EXAMPLE 7–8

The 1J, 1K, 1CLK, 1PRE, and 1CLR waveforms in Figure 7–30(a) are applied to one of 
the negative edge-triggered flip-flops in a 74HC112 package. Determine the 1Q output 
waveform.
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Solution

The resulting 1Q waveform is shown in Figure 7–30(b). Notice that each time a LOW 
is applied to the 1PRE or 1CLR, the flip-flop is set or reset regardless of the states of the 
other inputs.

Related Problem

Determine the 1Q output waveform if the waveforms for 1PRE and 1CLR are inter-
changed.

(a)

(b)

(1CLK)

(1Q)

(1CLR)

(1PRE)

(1J )

(1K )

Pin 15

Pin 5

Pin 4

Pin 3

Pin 2

Pin 1

fg07_03100

FIGURE 7–30 

Section 7–2  Checkup

	 1.	Describe the main difference between a gated D latch and an edge-triggered D flip-
flop.

	 2.	How does a J-K flip-flop differ from a D flip-flop in its basic operation?

	 3.	Assume that the flip-flop in Figure 7–22 is negative edge-triggered. Describe the 
output waveform for the same CLK and D waveforms.

7–3  Flip-Flop Operating Characteristics

The performance, operating requirements, and limitations of flip-flops are specified 
by several operating characteristics or parameters found on the data sheet for the 
device. Generally, the specifications are applicable to all CMOS and bipolar (TTL) 
flip-flops.

After completing this section, you should be able to

u	 Define propagation delay time

u	 Explain the various propagation delay time specifications

u	 Define set-up time and discuss how it limits flip-flop operation

u	 Define hold time and discuss how it limits flip-flop operation

u	 Discuss the significance of maximum clock frequency

u	 Discuss the various pulse width specifications

u	 Define power dissipation and calculate its value for a specific device

u	 Compare various series of flip-flops in terms of their operating parameters
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Propagation Delay Times

A propagation delay time is the interval of time required after an input signal has been 
applied for the resulting output change to occur. Four categories of propagation delay times 
are important in the operation of a flip-flop:

	 1.	 Propagation delay tPLH as measured from the triggering edge of the clock pulse to the 
LOW-to-HIGH transition of the output. This delay is illustrated in Figure 7–31(a).

	 2.	 Propagation delay tPHL as measured from the triggering edge of the clock pulse to the 
HIGH-to-LOW transition of the output. This delay is illustrated in Figure 7–31(b).

50% point on triggering edge

50% point on LOW-to-HIGH
transition of Q

tPLH

CLK

Q

(a)

tPHL

Q

CLK 50% point

50% point on HIGH-to-LOW
transition of Q

(b)

fg07_03200

FIGURE 7–31  Propagation delays, clock to output.

	 3.	 Propagation delay tPLH as measured from the leading edge of the preset input to the 
LOW-to-HIGH transition of the output. This delay is illustrated in Figure 7–32(a) 
for an active-LOW preset input.

	 4.	 Propagation delay tPHL as measured from the leading edge of the clear input to the 
HIGH-to-LOW transition of the output. This delay is illustrated in Figure 7–32(b) 
for an active-LOW clear input.

tPHL

(a) (b)

CLR

Q50% point

tPLH

Q

PRE 50% point

50% point

50% point

fg07_03300

FIGURE 7–32  Propagation delays, preset input to output and clear input to output.

Set-up Time

The set-up time (ts) is the minimum interval required for the logic levels to be maintained 
constantly on the inputs (J and K, or D) prior to the triggering edge of the clock pulse in 
order for the levels to be reliably clocked into the flip-flop. This interval is illustrated in 
Figure 7–33 for a D flip-flop.
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Hold Time

The hold time (th) is the minimum interval required for the logic levels to remain on the 
inputs after the triggering edge of the clock pulse in order for the levels to be reliably 
clocked into the flip-flop. This is illustrated in Figure 7–34 for a D flip-flop.

50% point

50% point on triggering edge

Set-up time (ts)

CLK

D

fg07_03400

FIGURE 7–33  Set-up time (ts). The logic level must be present on the D input for a time 
equal to or greater than ts before the triggering edge of the clock pulse for reliable data 
entry.

Hold time (th)

CLK

D

50% point on
triggering edge

50% point

fg07_03500

FIGURE 7–34  Hold time (th). The logic level must remain on the D input for a time equal 
to or greater than th after the triggering edge of the clock pulse for reliable data entry.

Maximum Clock Frequency

The maximum clock frequency (fmax) is the highest rate at which a flip-flop can be reli-
ably triggered. At clock frequencies above the maximum, the flip-flop would be unable to 
respond quickly enough, and its operation would be impaired.

Pulse Widths

Minimum pulse widths (tW) for reliable operation are usually specified by the manufacturer 
for the clock, preset, and clear inputs. Typically, the clock is specified by its minimum 
HIGH time and its minimum LOW time.

Power Dissipation

The power dissipation of any digital circuit is the total power consumption of the device. 
For example, if the flip-flop operates on a +5 V dc source and draws 5 mA of current, the 
power dissipation is

P = VCC * ICC = 5 V * 5 mA = 25 mW

The power dissipation is very important in most applications in which the capacity of 
the dc supply is a concern. As an example, let’s assume that you have a digital system that 
requires a total of ten flip-flops, and each flip-flop dissipates 25 mW of power. The total 
power requirement is

PT = 10 * 25 mW = 250 mW = 0.25 W
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An advantage of CMOS is that it can operate over a wider range of dc supply voltages (typically 2 V 
to 6 V) than bipolar and, therefore, less expensive power supplies that do not have precise regula-
tion can be used. Also, batteries can be used as secondary or primary sources for CMOS circuits. In 
addition, lower voltages mean that the IC dissipates less power. The drawback is that the perform-
ance of CMOS is degraded with lower supply voltages. For example, the guaranteed maximum clock 
frequency of a CMOS flip-flop is much less at VCC = 2 V than at VCC = 6 V.

This tells you the output capacity required of the dc supply. If the flip-flops operate on 
+5 V dc, then the amount of current that the supply must provide is

I =
250 mW

5 V
= 50 mA

You must use a +5 V dc supply that is capable of providing at least 50 mA of current.

Comparison of Specific Flip-Flops

Table 7–4 provides a comparison, in terms of the operating parameters discussed in this 
section, of four CMOS and bipolar (TTL) flip-flops of the same type but with different IC 
families (HC, AHC, LS, and F).

TABLE 7–4

Comparison of operating parameters for four IC families of flip-flops of the same 
type at 25°C.

CMOS Bipolar (TTL)

Parameter 74HC74A 74AHC74 74LS74A 74F74

tPHL (CLK to Q) 17 ns 4.6 ns 40 ns 6.8 ns
tPLH (CLK to Q) 17 ns 4.6 ns 25 ns 8.0 ns
tPHL(CLR to Q) 18 ns 4.8 ns 40 ns 9.0 ns
tPLH (PRE to Q) 18 ns 4.8 ns 25 ns 6.1 ns
ts (set-up time) 14 ns 5.0 ns 20 ns 2.0 ns
th (hold time) 3.0 ns 0.5 ns 5 ns 1.0 ns
tW (CLK HIGH) 10 ns 5.0 ns 25 ns 4.0 ns
tW (CLK LOW) 10 ns 5.0 ns 25 ns 5.0 ns
tW (CLR/PRE) 10 ns 5.0 ns 25 ns 4.0 ns
fmax 35 MHz 170 MHz 25 MHz 100 MHz
Power, quiescent 0.012 mW 1.1 mW
Power, 50% duty cycle 44 mW 88 mW

Section 7–3  Checkup

	 1.	Define the following:

(a)  set-up time	 (b)  hold time

	 2.	Which specific flip-flop in Table 7–4 can be operated at the highest frequency?

7–4  Flip-Flop Applications

In this section, three general applications of flip-flops are discussed to give you an idea of 
how they can be used. In Chapters 8 and 9, flip-flop applications in registers and counters 
are covered in detail.
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After completing this section, you should be able to

u	 Discuss the application of flip-flops in data storage

u	 Describe how flip-flops are used for frequency division

u	 Explain how flip-flops are used in basic counter applications

Parallel Data Storage

A common requirement in digital systems is to store several bits of data from parallel lines 
simultaneously in a group of flip-flops. This operation is illustrated in Figure 7–35(a) using 
four flip-flops. Each of the four parallel data lines is connected to the D input of a flip-flop. 
The clock inputs of the flip-flops are connected together, so that each flip-flop is triggered 
by the same clock pulse. In this example, positive edge-triggered flip-flops are used, so the 
data on the D inputs are stored simultaneously by the flip-flops on the positive edge of the 
clock, as indicated in the timing diagram in Figure 7–35(b). Also, the asynchronous reset 
(R) inputs are connected to a common CLR line, which initially resets all the flip-flops.
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data
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C

R

D

C

R

D

C

CLR

CLR

0

1

1
0

0

0

0

0

R
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FIGURE 7–35  Example of flip-flops used in a basic register for parallel data storage.

This group of four flip-flops is an example of a basic register used for data storage. In 
digital systems, data are normally stored in groups of bits (usually eight or multiples thereof) 
that represent numbers, codes, or other information. Registers are covered in Chapter 8.
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Frequency Division

Another application of a flip-flop is dividing (reducing) the frequency of a periodic wave-
form. When a pulse waveform is applied to the clock input of a D or J-K flip-flop that is 
connected to toggle (D = Q or J = K = 1), the Q output is a square wave with one-half 
the frequency of the clock input. Thus, a single flip-flop can be applied as a divide-by-2 
device, as is illustrated in Figure 7–36 for both a D and a J-K flip-flop. As you can see in 
part (c), the flip-flop changes state on each triggering clock edge (positive edge-triggered in 
this case). This results in an output that changes at half the frequency of the clock waveform.

Further division of a clock frequency can be achieved by using the output of one flip-
flop as the clock input to a second flip-flop, as shown in Figure 7–37. The frequency of 
the QA output is divided by 2 by flip-flop B. The QB output is, therefore, one-fourth the 
frequency of the original clock input. Propagation delay times are not shown on the timing 
diagrams.

By connecting flip-flops in this way, a frequency division of 2n is achieved, where n is 
the number of flip-flops. For example, three flip-flops divide the clock frequency by 23

= 8; 
four flip-flops divide the clock frequency by 24

= 16; and so on.

CLK

Q

(c)

Q

HIGH

CLK

J

C

K

Q

CLK

D

C

(a) (b)

QQ

FIGURE 7–36  The D flip-flop and J-K flip-flop as a divide-by-2 device. Q is one-half the 
frequency of CLK. Open file F07-36 and verify the operation.
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D

C

D

C

Q BQ

FIGURE 7–37  Example of two D flip-flops used to divide the clock frequency by 4. QA 
is one-half and QB is one-fourth the frequency of CLK. Open file F07-37 and verify the 
operation.
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Related Problem

How many flip-flops are required to divide a frequency by thirty-two?

EXAMPLE 7–9

Develop the fout waveform for the circuit in Figure 7–38 when an 8 kHz square wave 
input is applied to the clock input of flip-flop A.

QA
D

C

Flip-flop A

f in

QB
D

C

Flip-flop B

QC
D

C

Flip-flop C

 fout

FIGURE 7–38 

Solution

The three flip-flops are connected to divide the input frequency by eight (23
= 8) and 

the QC ( fout) waveform is shown in Figure 7–39. Since these are positive edge-triggered 
flip-flops, the outputs change on the positive-going clock edge. There is one output 
pulse for every eight input pulses, so the output frequency is 1 kHz. Waveforms of QA 
and QB are also shown.

f in

QA

QC ( fout)

QB

FIGURE 7–39 

Counting

Another important application of flip-flops is in digital counters, which are covered in 
detail in Chapter 9. The concept is illustrated in Figure 7–40. Negative edge-triggered J-K 
flip-flops are used for illustration. Both flip-flops are initially RESET. Flip-flop A toggles 
on the negative-going transition of each clock pulse. The Q output of flip-flop A clocks 
flip-flop B, so each time QA makes a HIGH-to-LOW transition, flip-flop B toggles. The 
resulting QA and QB waveforms are shown in the figure.

Observe the sequence of QA and QB in Figure 7–40. Prior to clock pulse 1, QA = 0 and 
QB = 0; after clock pulse 1, QA = 1 and QB = 0; after clock pulse 2, QA = 0 and QB = 1; 
and after clock pulse 3, QA = 1 and QB = 1. If we take QA as the least significant bit, a 
2-bit sequence is produced as the flip-flops are clocked. This binary sequence repeats every 
four clock pulses, as shown in the timing diagram of Figure 7–40. Thus, the flip-flops are 
counting in sequence from 0 to 3 (00, 01, 10, 11) and then recycling back to 0 to begin the 
sequence again.
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FIGURE 7–40  J-K flip-flops used to generate a binary count sequence (00, 01, 10, 11). 
Two repetitions are shown.

Related Problem

How many flip-flops are required to produce a binary sequence representing decimal 
numbers 0 through 15?

EXAMPLE 7–10

Determine the output waveforms in relation to the clock for QA, QB, and QC in the cir-
cuit of Figure 7–41 and show the binary sequence represented by these waveforms.

QAJ

C

K

QBJ

C

K

QCJ

C

K

HIGH

CLK

QC

QB

QA

fg07_04200

FIGURE 7–41 

Solution

The output timing diagram is shown in Figure 7–42. Notice that the outputs change on 
the negative-going edge of the clock pulses. The outputs go through the binary sequence 
000, 001, 010, 011, 100, 101, 110, and 111 as indicated.

CLK

QA

QB

0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0QC

fg07_04300

FIGURE 7–42 
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414	 Latches, Flip-Flops, and Timers

The capacitor immediately begins to charge through R toward the high voltage level. 
The rate at which it charges is determined by the RC time constant. When the capacitor 
charges to a certain level, which appears as a HIGH to G2, the output goes back LOW.

To summarize, the output of inverter G2 goes HIGH in response to the trigger input. It 
remains HIGH for a time set by the RC time constant. At the end of this time, it goes LOW. 
A single narrow trigger pulse produces a single output pulse whose time duration is con-
trolled by the RC time constant. This operation is illustrated in Figure 7–43.

Section 7–4  Checkup

	 1.	What is a group of flip-flops used for data storage called?

	 2.	How must a D flip-flop be connected to function as a divide-by-2 device?

	 3.	How many flip-flops are required to produce a divide-by-64 device?

7–5  One-Shots

The one-shot, also known as a monostable multivibrator, is a device with only one stable 
state. A one-shot is normally in its stable state and will change to its unstable state only 
when triggered. Once it is triggered, the one-shot remains in its unstable state for a prede-
termined length of time and then automatically returns to its stable state. The time that the 
device stays in its unstable state determines the pulse width of its output.

After completing this section, you should be able to

u	 Describe the basic operation of a one-shot

u	 Explain how a nonretriggerable one-shot works

u	 Explain how a retriggerable one-shot works

u	 Set up the 74121 and the 74LS122 one-shots to obtain a specified output pulse 
width

u	 Recognize a Schmitt trigger symbol and explain basically what it means

u	 Describe the basic elements of a 555 timer

u	 Set up a 555 timer as a one-shot

Figure 7–43 shows a basic one-shot (monostable multivibrator) that is composed of a 
logic gate and an inverter. When a pulse is applied to the trigger input, the output of gate 
G1 goes LOW. This HIGH-to-LOW transition is coupled through the capacitor to the input 
of inverter G2. The apparent LOW on G2 makes its output go HIGH. This HIGH is con-
nected back into G1, keeping its output LOW. Up to this point the trigger pulse has caused 
the output of the one-shot, Q, to go HIGH.

Q

t1

Trigger G1

t1 t2
+V

R
t1 t2

G2 Q

t1 t2
t1 t2

Apparent LOW

C

fg07_04400

FIGURE 7–43  A simple one-shot circuit.

A one-shot produces a single pulse 
each time it is triggered.
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A typical one-shot logic symbol is shown in Figure 7–44(a), and the same symbol with 
an external R and C is shown in Figure 7–44(b). The two basic types of IC one-shots are 
nonretriggerable and retriggerable.

Trigger

Q

CEXT
REXT

CXQ

Q

RX/CX

Q

+V

(a) (b)

Trigger

fg07_04500

FIGURE 7–44  Basic one-shot logic symbols. CX and RX stand for external components.

A nonretriggerable one-shot will not respond to any additional trigger pulses from the 
time it is triggered into its unstable state until it returns to its stable state. In other words, 
it will ignore any trigger pulses occurring before it times out. The time that the one-shot 
remains in its unstable state is the pulse width of the output.

Figure 7–45 shows the nonretriggerable one-shot being triggered at intervals greater 
than its pulse width and at intervals less than the pulse width. Notice that in the second 
case, the additional pulses are ignored.

A retriggerable one-shot can be triggered before it times out. The result of retriggering 
is an extension of the pulse width as illustrated in Figure 7–46.

Q

Q

(a)

(b)

Trigger

tW

These pulses are
ignored by the
one-shot.

tW

Trigger

fg07_04600

FIGURE 7–45  Nonretriggerable one-shot action.

Trigger

Q

(a)

(b)

Q

tW

tW

Retriggers
Trigger
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FIGURE 7–46  Retriggerable one-shot action.
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416	 Latches, Flip-Flops, and Timers

Nonretriggerable One-Shot

The 74121 is an example of a nonretriggerable IC one-shot. It has provisions for external R 
and C, as shown in Figure 7–47. The inputs labeled A1, A2, and B are gated trigger inputs. 
The RINT input connects to a 2 k� internal timing resistor.

RI CX RX/CX

&

A1

A2

B

Q

Q

(3)
(4)

(5)

(9)

(10)

(11)

RINT

REXT /CEXT

CEXT

(6)

(1)

(a) Traditional logic symbol

A1

A2

(3)

B

(4)

(5)

1

Q

Q

(6)

(1)

(9) (10) (11)

RINT REXT /CEXTCEXT

(b) ANSI/IEEE std. 91–1984 logic symbol
(     = nonlogic connection). “1       ” is the
qualifying symbol for a nonretriggerable
one-shot.

≥1

1

RI

CX

RX/CX

fg07_04800

FIGURE 7–47  Logic symbols for the 74121 nonretriggerable one-shot.

Setting the Pulse Width

A typical pulse width of about 30 ns is produced when no external timing components 
are used and the internal timing resistor (RINT) is connected to VCC, as shown in Figure 
7–48(a). The pulse width can be set anywhere between about 30 ns and 28 s by the use of 
external components. Figure 7–48(b) shows the configuration using the internal resistor 
(2 k�) and an external capacitor. Part (c) shows the configuration using an external resis-
tor and an external capacitor. The output pulse width is set by the values of the resistor 
(RINT = 2 k�, and REXT is selected) and the capacitor according to the following formula:

	 tW � 0.7RCEXT	 Equation 7–1

where R is either RINT or REXT. When R is in kilohms (k�) and CEXT is in picofarads (pF), 
the output pulse width tW is in nanoseconds (ns).

VCC

RI CX RX/CX

& 1A1

A2

B

Q

Q

RI CX RX/CX

& 1A1

A2

B

Q

Q

CEXT

RI CX RX/CX

& 1A1

A2

B

Q

Q

REXT

VCC CEXT

(a) No external components
RINT to VCC
tW ≅ 30 ns

(b) RINT and CEXT
tW = 0.7(2 k�)CEXT

(c) REXT and CEXT
tW = 0.7REXT CEXT

VCC

≥1 ≥1 ≥1

fg07_04900

FIGURE 7–48  Three ways to set the pulse width of a 74121.
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	 One-Shots	 417

The Schmitt-Trigger Symbol

The symbol  indicates a Schmitt-trigger input. This type of input uses a special threshold 
circuit that produces hysteresis, a characteristic that prevents erratic switching between states 
when a slow-changing trigger voltage hovers around the critical input level. This allows reli-
able triggering to occur even when the input is changing as slowly as 1 volt/second.

Retriggerable One-Shot

The 74LS122 is an example of a retriggerable IC one-shot with a clear input. It also has 
provisions for external R and C, as shown in Figure 7–49. The inputs labeled A1, A2, B1, 
and B2 are the gated trigger inputs.

(     = nonlogic connection).        is the
qualifying symbol for a retriggerable
one-shot.

RI CX RX/CX

&≥1

A1

A2 Q

Q

(1)
(2)
(3)

(9)

(10)

(11)

RINT

REXT /CEXT

CEXT

(8)

(6)
RI

CX

RX/CX

(a) Traditional logic symbol

A1

A2

(1)

(2)

(3)
Q

Q

(8)

(6)

(9) (10) (11)

RINT REXT /CEXTCEXT

(b) ANSI/IEEE std. 91–1984 logic symbol

(4)
B1

B2

(5)
CLR

(4)
B1

B2

(5)
CLR
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FIGURE 7–49  Logic symbol for the 74LS122 retriggerable one-shot.

A minimum pulse width of approximately 45 ns is obtained with no external compo-
nents. Wider pulse widths are achieved by using external components. A general formula 
for calculating the values of these components for a specified pulse width (tW) is

	 tW � 0.32RCEXT ¢1 �
0.7
R

≤	 Equation 7–2

where 0.32 is a constant determined by the particular type of one-shot, R is in k� and 
is either the internal or the external resistor, CEXT is in pF, and tW is in ns. The internal 
resistance is 10 k� and can be used instead of an external resistor. (Notice the difference 
between this formula and that for the 74121, shown in Equation 7–1.)

EXAMPLE 7–11

A certain application requires a one-shot with a pulse width of approximately 100 ms. 
Using a 74121, show the connections and the component values.

Solution

Arbitrarily select REXT = 39 k� and calculate the necessary capacitance.

 tW = 0.7REXTCEXT

 CEXT =
tW

0.7REXT

where CEXT is in pF, REXT is in k�, and tW is in ns. Since 100 ms = 1 * 108 ns,

CEXT =
1 * 108 ns

0.7(39 k�)
= 3.66 * 10-6 pF = 3.66 MF
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418	 Latches, Flip-Flops, and Timers

A standard 3.3 mF capacitor will give an output pulse width of 91 ms. The proper con-
nections are shown in Figure 7–50. To achieve a pulse width closer to 100 ms, other 
combinations of values for REXT and CEXT can be tried. For example, REXT = 68 k� 
and CEXT = 2.2 mF gives a pulse width of 105 ms.

3.3    F

RI CX RX/CX

&

tW = 91 ms

A1

A2

B

Q

Q

 VCC

1

39 k�µ

≥1

fg07_05100

FIGURE 7–50 

Related Problem

Use an external capacitor in conjunction with RINT to produce an output pulse width of 
10 ms from the 74121.

EXAMPLE 7–12

Determine the values of REXT and CEXT that will produce a pulse width of 1 ms when 
connected to a 74LS122.

Solution

Assume a value of CEXT = 560 pF and then solve for REXT. The pulse width must be 
expressed in ns and CEXT in pF. REXT will be in k�.

 tw = 0.32REXTCEXT a1 +
0.7

REXT
b = 0.32REXTCEXT + 0.7 a 0.32REXTCEXT

REXT
b

 = 0.32REXTCEXT + (0.7)(0.32)CEXT

 REXT =
tW - (0.7)(0.32)CEXT

0.32CEXT
=

tW
0.32CEXT

- 0.7

 =
1000 ns

(0.32)560 pF
- 0.7 = 4.88 k�

Use a standard value of 4.7 k�.

Related Problem

Show the connections and component values for a 74LS122 one-shot with an output 
pulse width of 5 ms. Assume CEXT = 560 pF.

An Application

One practical one-shot application is a sequential timer that can be used to illuminate a 
series of lights. This type of circuit can be used, for example, in a lane change directional 
indicator for highway construction projects or in sequential turn signals on automobiles.
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Figure 7–51 shows three 74LS122 one-shots connected as a sequential timer. This par-
ticular circuit produces a sequence of three 1 s pulses. The first one-shot is triggered by 
a switch closure or a low-frequency pulse input, producing a 1 s output pulse. When the 
first one-shot (OS 1) times out and the 1 s pulse goes LOW, the second one-shot (OS 2) is 
triggered, also producing a 1 s output pulse. When this second pulse goes LOW, the third 
one-shot (OS 3) is triggered and the third 1 s pulse is produced. The output timing is illus-
trated in the figure. Variations of this basic arrangement can be used to produce a variety 
of timed outputs.

68    Fµ
47 k�

RI CX RX/CX

&

OS 3

68    F
47 k�

RI CX RX/CX

&

RI CX RX/CX

&
Q

68    F

OS 2OS 1

Q1

Q2

Q3

1 s 1 s 1 s

VCC

Q Q

A1

A2

B1

B2

CLR

A1

A2

B1

B2

CLR

A1

A2

B1

B2

CLR

47 k�
µ µ

≥1 ≥1 ≥1

fg07_05200
FIGURE 7–51  A sequential timing circuit using three 74LS122 one-shots.

The 555 Timer as a One-Shot

The 555 timer is a versatile and widely used IC device because it can be configured in two 
different modes as either a monostable multivibrator (one-shot) or as an astable multivibra-
tor (pulse oscillator). The astable multivibrator is discussed in Section 7–6.

The 555 Timer Operation

A functional diagram showing the internal components of a 555 timer is shown in 
Figure 7–52. The comparators are devices whose outputs are HIGH when the voltage on 
the positive (+) input is greater than the voltage on the negative (-) input and LOW when 
the - input voltage is greater than the + input voltage. The voltage divider consisting of 
three 5 k� resistors provides a trigger level of 1�3 VCC and a threshold level of 2�3 VCC. The 
control voltage input (pin 5) can be used to externally adjust the trigger and threshold lev-
els to other values if necessary. When the normally HIGH trigger input momentarily goes 
below 1�3 VCC, the output of comparator B switches from LOW to HIGH and sets the S-R 
latch, causing the output (pin 3) to go HIGH and turning the discharge transistor Q1 off. 
The output will stay HIGH until the normally LOW threshold input goes above 2�3 VCC and 
causes the output of comparator A to switch from LOW to HIGH. This resets the latch, 
causing the output to go back LOW and turning the discharge transistor on. The external 
reset input can be used to reset the latch independent of the threshold circuit. The trigger 
and threshold inputs (pins 2 and 6) are controlled by external components connected to 
produce either monostable or astable action.
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Monostable (One-Shot) Operation

An external resistor and capacitor connected as shown in Figure 7–53 are used to set up the 
555 timer as a nonretriggerable one-shot. The pulse width of the output is determined by 
the time constant of R1 and C1 according to the following formula:

	 tW � 1.1R1C1	 Equation 7–3

The control voltage input is not used and is connected to a decoupling capacitor C2 to pre-
vent noise from affecting the trigger and threshold levels.
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Threshold
(6)
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(7)

(1) (4)
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Q1
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S
Q
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FIGURE 7–52  Internal functional diagram of a 555 timer (pin numbers are in parentheses).
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FIGURE 7–53  The 555 timer connected as a one-shot.

Before a trigger pulse is applied, the output is LOW and the discharge transistor Q1 
is on, keeping C1 discharged as shown in Figure 7–54(a). When a negative-going trigger 
pulse is applied at t0, the output goes HIGH and the discharge transistor turns off, allowing 
capacitor C1 to begin charging through R1 as shown in part (b). When C1 charges to 1�3 VCC, 
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the output goes back LOW at t1 and Q1 turns on immediately, discharging C1 as shown in 
part (c). As you can see, the charging rate of C1 determines how long the output is HIGH.
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FIGURE 7–54  One-shot operation of the 555 timer.

EXAMPLE 7–13

What is the output pulse width for a 555 monostable circuit with R1 = 2.2 k� and 
C1 = 0.01 mF?

Solution

From Equation 7–3 the pulse width is

tW = 1.1R1C1 = 1.1(2.2 k�)(0.01 mF) = 24.2 Ms

Related Problem

For C1 = 0.01 mF, determine the value of R1 for a pulse width of 1 ms.
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One-Shot with VHDL

An example of a VHDL program code for a one-shot is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity OneShot is
  port (Enable, Clk: in std_logic;
        Duration: in integer range 0 to 25;
        QOut: buffer std_logic);
end entity OneShot;

architecture OneShotBehavior of OneShot is
begin
  Counter: process (Enable, Clk, Duration)
  variable Flag         : boolean := true;
  variable Cnt            : integer range 0 to 25;
  variable SetCount : integer range 0 to 25;
  begin
      SetCount := Duration;
      if (Clk’EVENT and Clk = ‘1’) then
      if Enable = ‘0’ then
            Flag := true;
          end if;

          if Enable = ‘1’ and Flag then
          Cnt := 1;
              Flag :=False;
      end if;

          if cnt = SetCount then
        Qout 6= ‘0’;
              Cnt := 0;
                  Flag := false;
      else
              if Cnt 7 0 then
              Cnt := Cnt + 1;
                  Qout 6= ‘1’;
          end if;
            end if;
      end if;
  end process;
end architecture OneShotBehavior;

In normal operation, a one-shot produces only a single pulse, which can be difficult to measure 
on an oscilloscope because the pulse does not occur regularly. To obtain a stable display for 
test purposes, it is useful to trigger the one-shot from a pulse generator that is set to a longer 
period than the expected pulse width and trigger the oscilloscope from the same pulse. For very 
long pulses, either store the waveform using a digital storage oscilloscope or shorten the time 
constant by some known factor. For example, replace a 1000 mF capacitor with a 1 mF capaci-
tor to shorten the time by a factor of 1000. A faster pulse is easier to see and measure with an 
oscilloscope.
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The 555 Timer as an Astable Multivibrator

A 555 timer connected to operate as an astable multivibrator is shown in Figure 7–56. 
Notice that the threshold input (THRESH) is now connected to the trigger input (TRIG). 
The external components R1, R2, and C1 form the timing network that sets the frequency of 
oscillation. The 0.01 mF capacitor, C2, connected to the control (CONT) input is strictly for 
decoupling and has no effect on the operation; in some cases it can be left off.

Section 7–5  Checkup

	 1.	Describe the difference between a nonretriggerable and a retriggerable one-shot.

	 2.	How is the output pulse width set in most IC one-shots?

	 3.	What is the pulse width of a 555 timer one-shot when C = 1 mF and R = 10 k�?

7–6  The Astable Multivibrator

An astable multivibrator is a device that has no stable states; it changes back and forth 
(oscillates) between two unstable states without any external triggering. The resulting out-
put is typically a square wave that is used as a clock signal in many types of sequential logic 
circuits. Astable multivibrators are also known as pulse oscillators.

After completing this section, you should be able to

u	 Describe the operation of a simple astable multivibrator using a Schmitt trigger 
circuit.

u	 Set up a 555 timer as an astable multivibrator.

Figure 7–55(a) shows a simple form of astable multivibrator using an inverter with 
hysteresis (Schmitt trigger) and an RC circuit connected in a feedback arrangement. When 
power is first applied, the capacitor has no charge; so the input to the Schmitt trigger 
inverter is LOW and the output is HIGH. The capacitor charges through R until the inverter 
input voltage reaches the upper trigger point (UTP), as shown in Figure 7–55(b). At this 
point, the inverter output goes LOW, causing the capacitor to discharge back through R, 
shown in part (b). When the inverter input voltage decreases to the lower trigger point 
(LTP), its output goes HIGH and the capacitor charges again. This charging/discharging 
cycle continues to repeat as long as power is applied to the circuit, and the resulting output 
is a pulse waveform, as indicated.

(a) (b)

UTP

LTP

Vout

Vin

R

C

VoutVin

fg07_05600

FIGURE 7–55  Basic astable multivibrator using a Schmitt trigger.

InfoNote

Most systems require a timing 
source to provide accurate clock 
waveforms. The timing section 
controls all system timing and 
is responsible for the proper 
operation of the system hardware. 
The timing section usually consists 
of a crystal-controlled oscillator 
and counters for frequency 
division. Using a high-frequency 
oscillator divided down to a lower 
frequency provides for greater 
accuracy and frequency stability.
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Initially, when the power is turned on, the capacitor (C1) is uncharged and thus the 
trigger voltage (pin 2) is at 0 V. This causes the output of comparator B to be HIGH and 
the output of comparator A to be LOW, forcing the output of the latch, and thus the base 
of Q1, LOW and keeping the transistor off. Now, C1 begins charging through R1 and R2, 
as indicated in Figure 7–57. When the capacitor voltage reaches 1�3 VCC, comparator B 
switches to its LOW output state; and when the capacitor voltage reaches 2�3 VCC, compara-
tor A switches to its HIGH output state. This resets the latch, causing the base of Q1 to go 
HIGH and turning on the transistor. This sequence creates a discharge path for the capaci-
tor through R2 and the transistor, as indicated. The capacitor now begins to discharge, 
causing comparator A to go LOW. At the point where the capacitor discharges down to 
1�3 VCC, comparator B switches HIGH; this sets the latch, making the base of Q1 LOW and 
turning off the transistor. Another charging cycle begins, and the entire process repeats. The 
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FIGURE 7–56  The 555 timer connected as an astable multivibrator (oscillator).
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FIGURE 7–57  Operation of the 555 timer in the astable mode.
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result is a rectangular wave output whose duty cycle depends on the values of R1 and R2. 
The frequency of oscillation is given by the following formula, or it can be found using the 
graph in Figure 7–58.

	 f �
1.44

(R1 � 2R2)C1
	 Equation 7–4

( 
  F

)
C

1
µ

(R1 + 2R2)

10 M
�

1 M
�

100 k�

10 k�
1 k�

10

1.0

0.1

0.01
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0.1 1.0 10 100 1.0k 10k 100k

f (Hz)

100
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FIGURE 7–58  Frequency of oscillation as a function of C1 and R1 + 2R2. The sloped 
lines are values of R1 + 2R2.

By selecting R1 and R2, the duty cycle of the output can be adjusted. Since C1 charges 
through R1 + R2 and discharges only through R2, duty cycles approaching a minimum 
of 50 percent can be achieved if R2 W R1 so that the charging and discharging times are 
approximately equal.

An expression for the duty cycle is developed as follows. The time that the output is 
HIGH (tH) is how long it takes C1 to charge from 1�3 VCC to 2�3 VCC. It is expressed as

	 tH � 0.7(R1 � R2)C1	 Equation 7–5

The time that the output is LOW (tL) is how long it takes C1 to discharge from 1�3 VCC to 
2�3 VCC. It is expressed as

	 tL � 0.7R2C1	 Equation 7–6

The period, T, of the output waveform is the sum of tH and tL. This is the reciprocal of f in 
Equation 7–4.

T = tH + tL = 0.7(R1 + 2R2)C1

Finally, the duty cycle is

	  Duty cycle =
tH
T

=
tH

tH + tL

	  Duty cycle � ¢ R1 � R2

R1 � 2R2
≤100%	 Equation 7–7

To achieve duty cycles of less than 50 percent, the circuit in Figure 7–56 can be modi-
fied so that C1 charges through only R1 and discharges through R2. This is achieved with a 
diode, D1, placed as shown in Figure 7–59. The duty cycle can be made less than 50 percent 
by making R1 less than R2. Under this condition, the expression for the duty cycle is

	  Duty cycle � ¢ R1

R1 � R2
≤100% 	 Equation 7–8
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FIGURE 7–59  The addition of diode D1 allows the duty cycle of the output to be adjusted 
to less than 50 percent by making R1 , R2.

EXAMPLE 7–14

A 555 timer configured to run in the astable mode (pulse oscillator) is shown in Figure 
7–60. Determine the frequency of the output and the duty cycle.

C2
0.01    F

RESET

555

VCC

DISCH

THRESH

TRIG

+5.5 V

R1
2.2 k�

GND

OUT

CONT

R2

C1
0.022    F

4.7 k�

µµ

fg07_06100

FIGURE 7–60  Open file F07-60 to verify operation.

Solution

Use Equations 7–4 and 7–7.

 f =
1.44

(R1 + 2R2)C1
=

1.44

(2.2 k� + 9.4 k�)0.022 mF
= 5.64 kHz

 Duty cycle = ¢ R1 + R2

R1 + 2R2
≤100% = ¢ 2.2 k� + 4.7 k�

2.2 k� + 9.4 k�
≤100% = 59.5%

Related Problem

Determine the duty cycle in Figure 7–60 if a diode is connected across R2 as indicated 
in Figure 7–59.
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Section 7–6  Checkup

	 1.	Explain the difference in operation between an astable multivibrator and a monosta-
ble multivibrator.

	 2.	For a certain astable multivibrator, tH = 15 ms and T = 20 ms. What is the duty 
cycle of the output?

7–7  Troubleshooting

It is standard practice to test a new circuit design to be sure that it is operating as specified. 
New fixed-function designs are “breadboarded” and tested before the design is finalized. 
The term breadboard refers to a method of temporarily hooking up a circuit so that its 
operation can be verified and any design flaws worked out before a prototype unit is built.

After completing this section, you should be able to

u	 Describe how the timing of a circuit can produce erroneous glitches

u	 Approach the troubleshooting of a new design with greater insight and awareness 
of potential problems

The circuit shown in Figure 7–61(a) generates two clock waveforms (CLK A and CLK B) 
that have an alternating occurrence of pulses. Each waveform is to be one-half the fre-
quency of the original clock (CLK), as shown in the ideal timing diagram in part (b).

CLK

CLK B

CLK A

CLK A

CLK B

CLK

Q

(a)

D

C

Q

Q

Q

(b)

FIGURE 7–61  Two-phase clock generator with ideal waveforms. Open file F07-61 and 
verify the operation.

When the circuit is tested with an oscilloscope or logic analyzer, the CLK A and CLK B 
waveforms appear on the display screen as shown in Figure 7–62(a). Since glitches occur 
on both waveforms, something is wrong with the circuit either in its basic design or in the 
way it is connected. Further investigation reveals that the glitches are caused by a race 
condition between the CLK signal and the Q and Q signals at the inputs of the AND gates. 
As displayed in Figure 7–62(b), the propagation delays between CLK and Q and Q create 
a short-duration coincidence of HIGH levels at the leading edges of alternate clock pulses. 
Thus, there is a basic design flaw.

The problem can be corrected by using a negative edge-triggered flip-flop in place of 
the positive edge-triggered device, as shown in Figure 7–63(a). Although the propaga-
tion delays between CLK and Q and Q still exist, they are initiated on the trailing edges 
of the clock (CLK), thus eliminating the glitches, as shown in the timing diagram of 
Figure 7–63(b).
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CLK A

CLK B

(a) Oscilloscope display of CLK A and CLK B waveforms with
glitches indicated by the “spikes”.

CLK

Q

CLK A

(b) Oscilloscope display showing propagation delay that creates
glitch on CLK A waveform

tPHL

fg07_06300

FIGURE 7–62  Oscilloscope displays for the circuit in Figure 7–61.

Q
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CLK A

CLK A
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Q

(b)

CLK B

(a)

Q

Q

D

C

FIGURE 7–63  Two-phase clock generator using negative edge-triggered flip-flop to 
eliminate glitches. Open file F07-63 and verify the operation.

Section 7–7  Checkup

	 1.	Can a negative edge-triggered J-K flip-flop be used in the circuit of Figure 7–63?

	 2.	What device can be used to provide the clock for the circuit in Figure 7–63?        

Glitches that occur in digital systems are very fast (extremely short in duration) and can be difficult to 
see on an oscilloscope, particularly at lower sweep rates. A logic analyzer, however, can show a glitch 
easily. To look for glitches using a logic analyzer, select “latch” mode or (if available) transitional 
sampling. In the latch mode, the analyzer looks for a voltage level change. When a change occurs, 
even if it is of extremely short duration (a few nanoseconds), the information is “latched” into the 
analyzer’s memory as another sampled data point. When the data are displayed, the glitch will show 
as an obvious change in the sampled data, making it easy to identify.
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Applied Logic
Traffic Signal Controller: Part 2

The combinational logic unit of the traffic signal controller was completed in Chapter 6. 
Now, the timing circuits and sequential logic are developed. Recall that the timing circuits 
produce a 25 s time interval for the red and green lights and a 4 s interval for the yellow 
caution light. These outputs will be used by the sequential logic. The block diagram of the 
complete traffic signal controller is shown in Figure 7–64.

Traffic light
interface unit

Combinational logic

Sequential logic

Long trigger

Short trigger

G1

G0Vehicle
sensor

input

Long
timer

Short
timer

System
clock

Timing circuits

Traffic signal control logic

MR

MY

MG

SR

SY

SG

FIGURE 7–64  Block diagram of the traffic signal controller.

Timing Circuits

The timing circuits unit of the traffic signal controller consists of a 25 s timer and a 
4 s timer and a clock generator. One way to implement this unit is with two 555 timers 
configured as one-shots and one 555 timer configured as an astable multivibrator (oscil-
lator), as discussed earlier in this chapter. Component values are calculated based on the 
formulas given.

Another way to implement the timing circuits is shown in Figure 7–65. An exter-
nal 24 MHz system clock (arbitrary value) is divided down to an accurate 1 Hz clock 
by the frequency divider. The 1 Hz clock is then used to establish the 25 s and the 4 s 
intervals by counting the 1 Hz pulses. This approach lends itself better to a VHDL 
description.

M07_FLOY5983_11_GE_C07.indd Page 429  26/11/14  3:59 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



430	 Latches, Flip-Flops, and Timers

4 s timer Short timerShort trigger

25 s timer Long timerLong trigger

System clock
Frequency

divider 1 Hz

To sequential
logic

FIGURE 7–65  Block diagram of the timing circuits unit.
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FIGURE 7–66  Programming model for the traffic signal controller.

Frequency Divider    The purpose of the frequency divider is to produce a 1 Hz clock for 
the timer circuits. The input ClkIn in this application is a 24.00 MHz oscillator that drives 
the program code. SetCount is used to initialize the count for a 1 Hz interval. The program 

Exercise

1.	 Determine the values for the resistor and capacitor in a 25 s 555 timer.
2.	 Determine the values for the resistor and capacitor in a 4 s 555 timer.
3.	 What is the purpose of the frequency divider?

Controller Programming with VHDL

A programming model for the traffic signal controller is shown in Figure 7–66, where all 
the input and output labels are given. Notice that the Timing circuits block is split into two 
parts; the Frequency divider and the Timer circuits; and the Combinational logic block 
is divided into the State decoder and two logic sections (Light output logic and Trigger 
logic). This model will be used to develop the VHDL program codes.
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FreqDivide counts up from zero to the value assigned to SetCount (one-half the oscillator 
speed) and inverts the output identifier ClkOut.

The integer value Cnt is set to zero prior to operation. The clock pulses are counted 
and compared to the value assigned to SetCount. When the number of pulses counted 
reaches the value in SetCount, the output ClkOut is checked to see if it is currently 
set to a 1 or 0. If ClkOut is currently 0, ClkOut is assigned a 1; otherwise, ClkIn is set 
to 1. Cnt is assigned a value of 0 and the process repeats. Toggling the output ClkOut 
each time the value of SetCount is reached creates a 1 Hz clock output with a 50% 
duty cycle.

The VHDL program code for the frequency divider is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity FreqDivide is
port(Clkln, in std_logic;
    ClkOut: buffer std_logic);
end entity FreqDivide;

architecture FreqDivide Behavior of FreqDivide is
begin
  FreqDivide: process(Clkln)
  variable Cnt: integer := 0;
  variable SetCount: integer;

begin
  SetCount := 12000000; -- 1/2 duty cycle
  if (ClkIn‘EVENT and ClkIn = ‘1’) then
    if (Cnt = SetCount) then
      if ClkOut = ‘0’ then
        ClkOut 6= ‘1’; --Output high 50%
      else
        ClkOut 6= ‘0’; --Output Low 50%
      end if;
      Cnt := 0;
    else
      Cnt := Cnt + 1;
    end if;
  end if;
end process;
end architecture FreqDivideBehavior;

Timer Circuits    The program TimerCircuits uses two one-shot instances consisting of a 
25 s timer (TLong) and a 4 s timer (TShort). The 25 s and the 4 s timers are triggered by 
long trigger (LongTrig) and short trigger (ShortTrig). In the VHDL program, countdown 
timers driven by a 1 Hz clock input (Clk) replicate the one-shot components TLong and 
TShort. The values stored in SetCountLong and SetCountShort are assigned to the Dura-
tion inputs of one-shot components TLong and TShort, setting the 25-second and 4-second 
timeouts. When Enable is set LOW, the one-shot timer is initiated and output QOut is set 
HIGH. When the one-shot timers time out, QOut is set LOW. The output of one-shot com-
ponent TLong is sent to TimerCircuits identifier TL. The output of one-shot component 
TShort is sent to TimerCircuits identifier TS.

Clkln: 24.00 MHz clock driver
ClkOut: Output at 1 Hz

Cnt: Counts up to value in SetCount
SetCount: Holds 1�2 timer interval value

SetCount is assigned a value equal 
to half the system clock to produce a 
1 Hz output. In this case, a 24 MHz 
system clock is used.

  �The if statement causes program to 
wait for a clock event and clock 5 1 
to start operation.

Check that the terminal value in 
SetCount has been reached at which 
time ClkOut is toggled and Cnt is 
reset to 0.

 �If terminal value has not been reached, Cnt is incremented.

w
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The diagram in Figure 7–68 shows how two D flip-flops can be used to implement the 
Gray code counter. Outputs from the input logic provide the D inputs to the flip-flops so 
they sequence through the proper states.

The VHDL program code for the timing circuits is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity TimerCircuits is
  port(LongTrig, ShortTrig, Clk: in std_logic;
      TS, TL: buffer std_logic);
end entity TimerCircuits;

architecture TimerBehavior of TimerCircuits is
component OneShot is
  port(Enable, Clk: in std_logic;
      Duration :in integer range 0 to 25;
      QOut     :buffer std_logic);
end component OneShot;

signal SetCountLong, SetCountShort: integer range 0 to 25;
begin
  SetCountLong 6= 25;
  SetCountShort 6= 4;
  TLong:OneShot port map(Enable=7LongTrig, Clk=7Clk, Duration=7SetCountLong, QOut=7TL);
  TShort:OneShotport map(Enable=7ShortTrig, Clk=7Clk, Duration=7SetCountShort, QOut=7TS);
end architecture TimerBehavior;

LongTrig: Long timeout timer enable input
ShortTrig: Short timeout timer enable input

Clk: 1 Hz Clock input
TS: Short timer timeout signal
TL: Long timer timeout signal

Component declaration for OneShot.

SetCountLong: Holds long timer duration
SetCountShort: Holds short timer duration

Long and short count times are hard-coded  
to 25 and 4 based on a 1 Hz clock.  �Instantiation 

TLong
 �Instantiation 
TShort

u
r

Sequential Logic

The sequential logic unit controls the sequencing of the traffic lights, based on inputs from 
the timing circuits and the side street vehicle sensor. The sequential logic produces a 2-bit 
Gray code sequence for each of the four states that were described in Chapter 6.

The Counter    The sequential logic consists of a 2-bit Gray code counter and the associ-
ated input logic, as shown in Figure 7–67. The counter produces the four-state sequence on 
outputs G0 and G1. Transitions from one state to the next are determined by the short timer 
(TS), the long timer (TL), and vehicle sensor (Vs) inputs.

Input logic
G0

G1

TS
TL
Vs

CLK

2-bit Gray
code counter

TS : Short timer (4 s)
TL : Long timer (25 s)
Vs : Vehicle sensor for the side street

To state
decoder

fg08_06200
FIGURE 7–67  Block diagram of the sequential logic.
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D1

Input logic
D0

C

10 kHz clock

G0

G1
TS
TL
Vs

C

Q1

To state
decoder

Q0

fg08_06300
FIGURE 7–68  Sequential logic diagram with two D flip-flops used to implement the 2-bit 
Gray code counter.

The D flip-flop transition table is shown in Table 7–5. A next-state table developed 
from the state diagram in Chapter 6 Applied Logic is shown in Table 7–6. The subject of 
counter design is covered further in Chapter 8.

TABLE 7–5

D flip-flop transition table. QN is the output before 
clock pulse. QN+1 is output after clock pulse.

Output Transitions Flip-Flop Input

QN QN�1 D

0 h 0 0
0 h 1 1
1 h 0 0
1 h 1 1

TABLE 7–6

Next-state table for the counter.

Present State Next State FF Inputs

Q1 Q0 Q1 Q0 Input Conditions D1 D0

0 0 0 0 TL + Vs 0 0

0 0 0 1 TLVs 0 1

0 1 0 1 TS 0 1

0 1 1 1 TS 1 1

1 1 1 1 TL Vs 1 1

1 1 1 0 TL + Vs 1 0

1 0 1 0 TS 1 0

1 0 0 0 TS 0 0
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The Input Logic    Using Tables 7–5 and 7–6, the conditions required for each flip-flop 
to go to the 1 state can be determined. For example, G0 goes from 0 to 1 when the 
present state is 00 and the condition on input D0 is TLVs, as indicated on the second row 
of Table 7–6. D0 must be a 1 to make G0 go to a 1 or to remain a 1 on the next clock 
pulse. A Boolean expression describing the conditions that make D0 a 1 is derived from 
Table 7–6 as follows:

D0 = G1G0TLVs + G1G0TS + G1G0TS + G1G0TLVs

In the two middle terms, the TS and the TS variables cancel, leaving the expression

D0 = G1G0TLVs + G1G0 + G1G0TLVs

Also, from Table 7–6, an expression for D1 can be developed as follows:

D1 = G1G0TS + G1G0TLVs + G1G0TL + G1G0Vs + G1G0TS

Based on the minimized expression for D0 and D1, the complete sequential logic diagram 
is shown in Figure 7–69.

TL

Vs

TS

G0

C

D0 Q0

C

D1 Q1 G1

Gray
code

Clock

fg08_06400
FIGURE 7–69  Complete diagram for the sequential logic.

Exercise

4.	 State the Boolean law and rule that permits the cancellation of TS and TS in the 
expression for D0.

5.	 Use the Karnaugh map to reduce the D0 expression further to a minimum form.
6.	 Use Boolean laws, rules, and/or the Karnaugh map to reduce the D1 expression to 

a minimum form.
7.	 Do your minimized expressions for D0 and D1 agree with the logic shown in 

Figure 7–69?

The Sequential Logic with VHDL

The program SequentialLogic describes the Gray code logic needed to drive the traf-
fic signal controller based on input from the timing circuits and the side street vehicle 
sensor. The sequential logic code produces a 2-bit Gray code sequence for each of the 
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four sequence states. The component definition dff is used to instantiate two D flip-flop 
instances DFF0 and DFF1. DFF0 and DFF1 produce the two-bit Gray code. The Gray 
code output sequences the traffic signal controller through each of four states. Internal 
variables D0 and D1 store the results of the D0 and D1 Boolean expressions developed 
in this chapter. The stored results in D0 and D1 are assigned to D flip-flops DFF0 and 
DFF1 along with the system clock to drive outputs G0 and G1 from the D flip-flop Q 
outputs.

The VHDL program code for the sequential logic is as follows:

The Complete Traffic Signal Controller

The program TrafficLights completes the traffic signal controller. Components FreqDi-
vide, TimerCircuits, SequentialLogic, and StateDecoder are used to compose the com-
pleted system. Signal CLKin from the TrafficLights program source code is the clock 
input to the FreqDivide component. The frequency divided output ClkOut is stored as 
local variable Clock and is the divided clock input to the TimerCircuits and Sequential-
Logic components. TimerCircuits is controlled by local variables LongTime and Short-
Time, which are controlled by the outputs Sig1 and Sig3 from component StateDecoder. 
StateDecoder also provides outputs Sig1 through Sig4 to control the traffic lights MG, SG, 
MY, SY, MR, and SR. TimerCircuit timeout signals TS and TL are stored in variables 
TLin (timer long in) and TSin (timer short in).

Signals TSin and TLin from TimerCircuits are used along with vehicle sensor VSin 
as inputs to the SequentialLogic component. The outputs from SequentialLogic G0 
and G1 are stored in variables Gray0 and Gray1 as inputs to component StateDecoder. 
Component StateDecoder returns signals S1 through S4 which are in turn passed to 
variables Sig1 through Sig4. The light output logic and trigger logic developed in 
Chapter 6 are not used as components in this program, but are stated as logic expres-
sions. The values stored in variables Sig1 through Sig4 provide the logic for outputs 
MG, SG, MY, SY, MR, SR; and local timer triggers LongTime and ShortTime are sent 
to TimerCircuits.

library ieee;
use ieee.std_logic_1164.all;

entity SequentialLogic is
port(VS, TL, TS, Clk: in std_logic; G0, G1: inout std_logic);
end entity SequentialLogic;

architecture SequenceBehavior of SequentialLogic is

component dff is
port (D, Clk: in std_logic; Q: out std_logic);
end component dff;

signal D0, D1: std_logic;
begin
D1 6= (G0 and not TS) or (G1 and TS);
D0 6= (not G1 and not TL and VS) or (not G1 and G0)
      or (G0 and TL and VS);

DFF0: dff port map(D=7 D0, Clk =7 Clk, Q =7 G0);
DFF1: dff port map(D=7 D1, Clk =7 Clk, Q =7 G1);

end architecture SequenceBehavior;

VS: Vehicle sensor input
TL: Long timer input
TS: Short timer input
Clk: System clock
G0: Gray code output bit 0
G1: Gray code output bit 1
D0: Logic for DFlipFlop DFF0
D1: Logic for DFlipFlop DFF1

Component declaration 
for D flip-flop (dff)

Logic definitions for D flip-
flop inputs D0 and D1 derived 
from Boolean expressions de-
veloped in this chapter.

Component instantiations

s
s

r
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The VHDL program code for the traffic signal controller is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity TrafficLights is
port(VSin, ClkIn: in std_logic; MR, SR, MY, SY, MG, SG: out std_logic);
end entity TrafficLights;

architecture TrafficLightsBehavior of TrafficLights is

component StateDecoder is
port(G0, G1: in std_logic; S1, S2, S3, S4: out std_logic);
end component StateDecoder;

component SequentialLogic is
port(VS, TL, TS, Clk: in std_logic; G0, G1: inout std_logic);
end component SequentialLogic;

component TimerCircuits is
port(LongTrig, ShortTrig, Clk: In std_logic; TS, TL: buffer std_logic);
end component TimerCircuits;

component FreqDivide is
port(Clkin: in std_logic; ClkOut: buffer std_logic);
end component FreqDivide;

signal Sig1, Sig2, Sig3, Sig4, Gray0, Gray1: std_logic;
signal LongTime, ShortTime, TLin, TSin, Clock: std_logic;

begin
MR 6= Sig3 or Sig4;
SR 6= Sig2 or Sig1;
MY 6= Sig2;
SY 6= Sig4;
MG 6= Sig1;
SG 6= Sig3;

LongTime 6= Sig1 or Sig3;
ShortTime 6= not(Sig1 or Sig3);

SD: StateDecoder	 port map (G0 =7 Gray0, G1 =7 Gray1, S1 =7 Sig1, S2 =7 Sig2, S3 =7 Sig3, S4 =7 Sig4);
SL: SequentialLogic	port map (VS =7 VSin, TL =7 TLin, TS =7 TSin, Clk =7 Fout, G0 =7 Gray0, G1 =7 Gray1);
TC: TimerCircuits	 port map (LongTrig=7LongTime, ShortTrig=7ShortTime, Clk=7Clock, TS=7TSin, TL=7TLin);
FD: FreqDivide	 port map (Clkln =7 CLKin, ClkOut =7-Clock);

end architecture TrafficLightsBehavior;

VSin	 : Vehicle sensor input
CLKin	 : System Clock
MR	 : Main red light output
SR	 : Side red light output
MY	 : Main yellow light output
SY	 : Side yellow light output
MG	 : Main green light output
SG	 : Side green light output

Component declaration for StateDecoder

Component declaration for SequentialLogic

Component declaration for TimerCircuits

Component declaration for FreqDivider

Logic definitions for the 
light output logic

Sig1-4	 : Return values from StateDecoder
Gray0-1	 : SequentialLogic Gray code return
LongTime	 : Trigger input to TimerCircuits
ShortTime	: Trigger input to TimerCircuits
TLin	 : Store TimerCircuits long timeout
TSin	 : Store TimerCircuits Short timeout
Clock	 : Divided clock from FreqDivide

Logic definitions for the trigger logic

Component 
instantiations

s
s

s
s

w
r s
Simulation

Open file AL07 in the Applied Logic folder on the website. Run the traffic signal 
controller simulation using your Multisim software and observe the operation. Lights 
will appear randomly when first turned on. Simulation times may vary.

Putting Your Knowledge to Work

Add your modification for the pedestrian input developed in Chapter 6 and run a simulation.
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Summary

•	 Latches are bistable devices whose state normally depends on asynchronous inputs.

•	 Edge-triggered flip-flops are bistable devices with synchronous inputs whose state depends on 
the inputs only at the triggering transition of a clock pulse. Changes in the outputs occur at the 
triggering transition of the clock.

•	 Monostable multivibrators (one-shots) have one stable state. When the one-shot is triggered, the 
output goes to its unstable state for a time determined by an RC circuit.

•	 Astable multivibrators have no stable states and are used as oscillators to generate timing wave-
forms in digital systems.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Astable  Having no stable state. An astable multivibrator oscillates between two quasi-stable 
states.

Bistable  Having two stable states. Flip-flops and latches are bistable multivibrators.

Clear  An asynchronous input used to reset a flip-flop (make the Q output 0).

Clock  The triggering input of a flip-flop.

D flip-flop  A type of bistable multivibrator in which the output assumes the state of the D input 
on the triggering edge of a clock pulse.

Edge-triggered flip-flop  A type of flip-flop in which the data are entered and appear on the out-
put on the same clock edge.

Hold time  The time interval required for the control levels to remain on the inputs to a flip-flop 
after the triggering edge of the clock in order to reliably activate the device.

J-K flip-flop  A type of flip-flop that can operate in the SET, RESET, no-change, and toggle 
modes.

Latch  A bistable digital circuit used for storing a bit.

Monostable  Having only one stable state. A monostable multivibrator, commonly called a one-
shot, produces a single pulse in response to a triggering input.

One-shot  A monostable multivibrator.

Power dissipation  The amount of power required by a circuit.

Preset  An asynchronous input used to set a flip-flop (make the Q output 1).

Propagation delay time  The interval of time required after an input signal has been applied for 
the resulting output change to occur.

RESET  The state of a flip-flop or latch when the output is 0; the action of producing a RESET 
state.

SET  The state of a flip-flop or latch when the output is 1; the action of producing a SET state.

Set-up time  The time interval required for the control levels to be on the inputs to a digital circuit, 
such as a flip-flop, prior to the triggering edge of a clock pulse.

Synchronous  Having a fixed time relationship.

Timer  A circuit that can be used as a one-shot or as an oscillator.

Toggle  The action of a flip-flop when it changes state on each clock pulse.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A latch has one stable state.

	 2.	 A latch is considered to be in the RESET state when the Q output is low.
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Self-Test

Answers are at the end of the chapter.

	 1.	 An active HIGH input S-R latch is formed by the cross-coupling of
(a)	 two NOR gates    (b)  two NAND gates    (c)  two OR gates    (d)  two AND gates

	 2.	 Which of the following is not true for an active LOW input S-R latch?
(a)	 S = 1, R = 1, Q = NC, Q = NC	 (b)  S = 0, R = 1, Q = 1, Q = 0
(c)	 S = 1, R = 0, Q = 1, Q = 0	 (d)  S = 0, R = 0, Q = 1, Q = 1

	 3.	 For what combinations of the inputs D and EN will a D latch reset?
(a)	 D = LOW, EN = LOW
(b)	 D = LOW, EN = HIGH
(c)	 D = HIGH, EN = LOW
(d)	 D = HIGH, EN = HIGH

	 4.	 A flip-flop changes its state during the
(a)	 complete operational cycle
(b)	 falling edge of the clock pulse
(c)	 rising edge of the clock pulse
(d)	 both answers (b) and (c)

	 5.	 The purpose of the clock input to a flip-flop is to
(a)	 clear the device
(b)	 set the device
(c)	 always cause the output to change states
(d)	 cause the output to assume a state dependent on the controlling (J-K or D) inputs.

	 6.	 For an edge-triggered D flip-flop,
(a)	 a change in the state of the flip-flop can occur only at a clock pulse edge
(b)	 the state that the flip-flop goes to depends on the D input
(c)	 the output follows the input at each clock pulse
(d)	 all of these answers

	 7.	 A feature that distinguishes the J-K flip-flop from the D flip-flop is the
(a)	 toggle condition	 (b)  preset input
(c)  type of clock	 (d)  clear input

	 8.	 A flip-flop is SET when
(a)	 J = 0, K = 0	 (b)  J = 0, K = 1
(c)	 J = 1, K = 0	 (d)  J = 1, K = 1

	 9.	 A J-K flip-flop with J = 1 and K = 1 has a 10 kHz clock input. The Q output is
(a)	 constantly HIGH	 (b)  constantly LOW
(c)  a 10 kHz square wave	 (d)  a 5 kHz square wave

	10.	 A one-shot is a type of
(a)	 monostable multivibrator	 (b)  astable multivibrator
(c)  timer	 (d)  answers (a) and (c)
(e)  answers (b) and (c)

	 3.	 A gated D latch cannot be used to change state.

	 4.	 Flip-flops and latches are both bistable devices.

	 5.	 An edge-triggered D flip-flop changes state whenever the D input changes.

	 6.	 A clock input is necessary for an edge-triggered flip-flop.

	 7.	 When both the J and K inputs are HIGH, an edge-triggered J-K flip-flop changes state on each 
clock pulse.

	 8.	 A one-shot is also known as an astable multivibrator.

	 9.	 When triggered, a one-shot produces a single pulse.

	10.	 The 555 timer cannot be used as a pulse oscillator.
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	11.	 The output pulse width of a nonretriggerable one-shot depends on
(a)	 the trigger intervals	 (b)  the supply voltage
(c)  a resistor and capacitor	 (d)  the threshold voltage

	12.	 An astable multivibrator
(a)	 requires a periodic trigger input	 (b)  has no stable state
(c)  is an oscillator	 (d)  produces a periodic pulse output
(e)  answers (a), (b), (c), and (d)	 (f)  answers (b), (c), and (d) only

Problems

Answers to odd-numbered problems are at the end of the book.

Section 7–1	Latches
	 1.	 If the waveforms in Figure 7–70 are applied to an active-HIGH S-R latch, draw the resulting Q 

output waveform in relation to the inputs. Assume that Q starts LOW.

QR

QS
S

R

fg07_07200

FIGURE 7–70 

	 2.	 Solve Problem 1 for the input waveforms in Figure 7–71 applied to an active-LOW 
S - R latch.

S

R

fg07_07300

FIGURE 7–71 

S

R

fg07_07400

FIGURE 7–72 

	 3.	 Solve Problem 1 for the input waveform in Figure 7–72.

	 4.	 For a gated S-R latch, determine the Q and Q outputs for the inputs in Figure 7–73. Show them 
in proper relation to the enable input. Assume that Q starts LOW.

Q

QS

R

EN

R

S

EN

fg07_07500

FIGURE 7–73 
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	 5.	 Determine the output of a gated D latch for the inputs in Figure 7–74.

CLK

J

K

J

QK

Q

(a)

CLK C

J

QK

Q

(b)

CLK C

FIGURE 7–77 

	 9.	 The Q output of an edge-triggered D flip-flop is shown in relation to the clock signal in Figure 
7–78. Determine the input waveform on the D input that is required to produce this output if 
the flip-flop is a positive edge-triggered type.

EN

D

FIGURE 7–74 

EN

D

FIGURE 7–75 

	 6.	 Determine the output of a gated D latch for the inputs in Figure 7–75.

	 7.	 For a gated D latch, the waveforms shown in Figure 7–76 are observed on its inputs. Draw 
the timing diagram showing the output waveform you would expect to see at Q if the latch is 
initially RESET.

EN

D

fg07_07800

FIGURE 7–76 

Section 7–2	Flip-Flops
	 8.	 Two edge-triggered J-K flip-flops are shown in Figure 7–77. If the inputs are as shown, draw 

the Q output of each flip-flop relative to the clock, and explain the difference between the two. 
The flip-flops are initially RESET.

CLK

Q

fg07_08000

FIGURE 7–78 

CLK

D

fg07_08100

FIGURE 7–79 

	10.	 Draw the Q output relative to the clock for a D flip-flop with the inputs as shown in 
Figure 7–79. Assume positive edge-triggering and Q initially LOW.
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	11.	 Solve Problem 10 for the inputs in Figure 7–80.

	14.	 Determine the Q waveform relative to the clock if the signals shown in Figure 7–83 are applied 
to the inputs of the J-K flip-flop. Assume that Q is initially LOW.

CLK

D

fg07_08200

FIGURE 7–80 

	12.	 For a positive edge-triggered D flip-flop with the input as shown in Figure 7–81, determine the 
Q output relative to the clock. Assume that Q starts LOW.

CLK

D

FIGURE 7–81 

CLK

D

FIGURE 7–82 

	13.	 Solve Problem 12 for the input in Figure 7–82.

CLK

J

K

PRE

CLR

J

Q

Q

C

K

PRE

CLR

fg07_08500

FIGURE 7–83 

	15.	 For a negative edge-triggered J-K flip-flop with the inputs in Figure 7–84, develop the Q output 
waveform relative to the clock. Assume that Q is initially LOW.

CLK

J

K

fg07_08600

FIGURE 7–84 
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	16.	 The following serial data are applied to the flip-flop through the AND gates as indicated in 
Figure 7–85. Determine the resulting serial data that appear on the Q output. There is one clock 
pulse for each bit time. Assume that Q is initially 0 and that PRE and CLR are HIGH. Right-
most bits are applied first.

J1: 1 0 1 0 0 1 1; J2: 0 1 1 1 0 1 0; J3: 1 1 1 1 0 0 0; K1: 0 0 0 1 1 1 0; K2: 1 1 0 1 1 0 0;
K3: 1 0 1 0 1 0 1

	17.	 For the circuit in Figure 7–85, complete the timing diagram in Figure 7–86 by showing the Q 
output (which is initially LOW). Assume PRE and CLR remain HIGH.

J

QK

QJ2

J1

J3

K2

K1

K3

CLR

PRE

CLK C

fg07_08700

FIGURE 7–85 

CLK

J1

J2

J3

K1

K2

K3

fg07_08800

FIGURE 7–86 

	18.	 Solve Problem 17 with the same J and K inputs but with the PRE and CLR inputs as shown in 
Figure 7–87 in relation to the clock.

CLR

PRE

CLK

fg07_08900

FIGURE 7–87 

Section 7–3	Flip-Flop Operating Characteristics
	19.	 What determines the power dissipation of a flip-flop?

	20.	 Typically, a flip-flop is limited in its operation due to hold time and setup time. Explain how.

	21.	 The datasheet of a certain flip-flop specified that the minimum HIGH time for the clock pulse 
is 20 ns and the minimum LOW time is 40 ns. What is the maximum operating frequency?

	22.	 The flip-flop in Figure 7–88 is initially RESET. Show the relation between Q output and the 
clock pulse if the propagation delay tPLH (clock to Q) is 5 ns.

Q

Q

HIGH

30 ns
CLK

D

C

FIGURE 7–88 

	23.	 The direct current required by a particular flip-flop that operates on a +4 V dc source is found 
to be 8 mA. A certain digital device uses 16 of these flip-flops. Determine the current capacity 
required for the +4 V dc supply and the total power dissipation of the system.
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	24.	 For the circuit in Figure 7–89, determine the maximum frequency of the clock signal for 
reliable operation if the set-up time for each flip-flop is 3 ns and the propagation delays (tPLH 
and tPHL) from clock to output are 6 ns for each flip-flop.

C
0.1 F

R1
2.0 k�

+VCC

(4) (8)

(7)(2)

(6)

(5)(3)

Output

555

(1)

R2
4.3 k�

µ

fg07_09300

FIGURE 7–91 

QB

QB

QA

QA

HIGH

CLK
Flip-flop A Flip-flop B

JB

KB

JA

KA

CC

fg07_09100

FIGURE 7–89 

Section 7–4	Flip-Flop Applications
	25.	 A D flip-flop is connected as shown in Figure 7–90. Determine the Q output in relation to the 

clock. What specific function does this device perform?

CLK

QD

C

fg07_09200

FIGURE 7–90 

	26.	 For the circuit in Figure 7–89, develop a timing diagram for eight clock pulses, showing the QA 
and QB outputs in relation to the clock.

Section 7–5	One-Shots
	27.	 Determine the pulse width of a 74121 one-shot if the external resistor is 1 k and the external 

capacitor is 1 pF.

	28.	 An output pulse of 3 ms duration is to be generated by a 74LS122 one-shot. Using a capacitor 
of 50,000 pF, determine the value of external resistance required.

	29.	 Create a one-shot using a 555 timer that will produce a 0.5 s output pulse.

Section 7–6	The Astable Multivibrator
	30.	 A 555 timer is configured to run as an astable multivibrator as shown in Figure 7–91. 

Determine its frequency.
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	31.	 Determine the values of the external resistors for a 555 timer used as an astable multivibrator 
with an output frequency of 10 kHz, if the external capacitor C is 0.004 mF and the duty cycle 
is to be approximately 80%.

Section 7–7	Troubleshooting
	32.	 The flip-flop in Figure 7–92 is tested under all input conditions as shown. Is it operating prop-

erly? If not, what is the most likely fault?

+V

Q
J

K

(a)

C

+V

Q
J

K

(b)

C

Q
J

K

(c)

C

+V

Q
J

K

(d)

C

fg07_09400

FIGURE 7–92 

	33.	 A 74HC00 quad NAND gate IC is used to construct a gated S-R latch on a protoboard in the 
lab as shown in Figure 7–93. The schematic in part (a) is used to connect the circuit in part (b). 
When you try to operate the latch, you find that the Q output stays HIGH no matter what the 
inputs are. Determine the problem.

(4)

(5)
(6)

(9)
(8)(10)

(2)
(3)

(12)
(13)

(1) (11)
R

S

EN

Q

Q

R

S

EN

+5 V GND

(a) (b)

74
H

C
00

fg07_09500

FIGURE 7–93 
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	34.	 Determine if the flip-flop in Figure 7–94 is operating properly, and if not, identify the most 
probable fault.

Q

J

C

K Q

Q

J

CLK

K

fg07_09600

FIGURE 7–94 

	35.	 The parallel data storage circuit in Figure 7–35 does not operate properly. To check it out, you 
first make sure that VCC and ground are connected, and then you apply LOW levels to all the D 
inputs and pulse the clock line. You check the Q outputs and find them all to be LOW; so far, 
so good. Next you apply HIGHs to all the D inputs and again pulse the clock line. When you 
check the Q outputs, they are still all LOW. What is the problem, and what procedure will you 
use to isolate the fault to a single device?

	36.	 The flip-flop circuit in Figure 7–95(a) is used to generate a binary count sequence. The gates 
form a decoder that is supposed to produce a HIGH when a binary zero or a binary three state 
occurs (00 or 11). When you check the QA and QB outputs, you get the display shown in part 
(b), which reveals glitches on the decoder output (X) in addition to the correct pulses. What is 
causing these glitches, and how can you eliminate them?

QBQA

CLK

(a)

X

CLK

QA

QB

X

(b)

G1

G2

G3

QBQA

GlitchGlitch

C

D

C

D

FIGURE 7–95 

	37.	 Determine the QA, QB and X outputs over six clock pulses in Figure 7–95(a) for each of the 
following faults in the bipolar (TTL) circuits. Start with both QA and QB LOW.
(a)	 D input open	 (b)  QB output open
(c)	 clock input to flip-flop B shorted	 (d)  gate G2 output open

	38.	 Two 74121 one-shots are connected on a circuit board as shown in Figure 7–96. After observ-
ing the oscilloscope display, do you conclude that the circuit is operating properly? If not, what 
is the most likely problem?

Applied Logic
	39.	 Using 555 timers, redesign the timing circuits portion of the traffic signal controller for an 

approximate 5 s caution light and 30 s red and green lights.

	40.	 Repeat Problem 39 using 74121 one-shots.

	41.	 Repeat Problem 39 using 74122 one-shots.

	42.	 Implement the input logic in the sequential circuit unit of the traffic signal controller using only 
NAND gates.

	43.	 Specify how you would change the time interval for the green light from 25 s to 60 s.
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Special Design Problems
	44.	 Design a basic counting circuit that produces a binary sequence from zero through seven by 

using negative edge-triggered J-K flip-flops.

	45.	 In the shipping department of a softball factory, the balls roll down a conveyor and through a 
chute single file into boxes for shipment. Each ball passing through the chute activates a switch 
circuit that produces an electrical pulse. The capacity of each box is 32 balls. Design a logic 
circuit to indicate when a box is full so that an empty box can be moved into position.

	46.	 List the design changes that would be necessary in the traffic signal controller to add a 15 s 
left turn arrow for the main street. The turn arrow will occur after the red light and prior to the 
green light. Modify the state diagram from Chapter 6 to show these changes.

Multisim Troubleshooting Practice
	47.	 Open file P07-47. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

	48.	 Open file P07-48. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	49.	 Open file P07-49. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	50.	 Open file P07-50. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	51.	 Open file P07-51. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct. 

Ch1 5 V

74121 74121

47 k�

0.47   F

47 k�

0.22   F

VCC GND

1

2

µ µ

1 2

Ch2 5 V 1 ms

fg07_09800

FIGURE 7–96 

Answers

Section Checkups
Section 7–1	Latches
	 1.	 Three types of latches are S-R, gated S-R, and gated D.

	 2.	 SR = 00, NC; SR = 01, Q = 0; SR = 10, Q = 1; SR = 11, invalid

	 3.	 Q = 1

Section 7–2	Flip-Flops
	 1.	 The output of a gated D latch can change any time the gate enable (EN) input is active. The 

output of an edge-triggered D flip-flop can change only on the triggering edge of a clock pulse.

	 2.	 The output of a J-K flip-flop is determined by the state of its two inputs whereas the output of a 
D flip-flop follows the input.

	 3.	 Output Q goes HIGH on the trailing edge of the first clock pulse, LOW on the trailing edge of 
the second pulse, HIGH on the trailing edge of the third pulse, and LOW on the trailing edge of 
the fourth pulse.
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Section 7–3	Flip-Flop Operating Characteristics
	 1.	 (a) � Set-up time is the time required for input data to be present before the triggering edge of 

the clock pulse.

		  (b)  �Hold time is the time required for data to remain on the inputs after the triggering edge of 
the clock pulse.

	 2.	 The 74AHC74 can be operated at the highest frequency, according to Table 7–4.

Section 7–4	Flip-Flop Applications
	 1.	 A group of data storage flip-flops is a register.

	 2.	 For divide-by-2 operation, the flip-flop must toggle (D = Q).

	 3.	 Six flip-flops are used in a divide-by-64 device.

Section 7–5	One-Shots
	 1.	 A nonretriggerable one-shot times out before it can respond to another trigger input. A retrig-

gerable one-shot responds to each trigger input.

	 2.	 Pulse width is set with external R and C components.

	 3.	 11 ms.

Section 7–6	The Astable Multivibrator
	 1.	 An astable multivibrator has no stable state. A monostable multivibrator has one stable state.

	 2.	 Duty cycle = (15 ms/20 ms)100% = 75%

Section 7–7	Troubleshooting
	 1.	 Yes, a negative edge-triggered J-K flip-flop can be used.

	 2.	 An astable multivibrator using a 555 timer can be used to provide the clock.

Related Problems for Examples
	7–1	 The Q output is the same as shown in Figure 7–5(b).

	7–2	 See Figure 7–97.

S

Uncertainty

EN

R

Q

fg07_09900

FIGURE 7–97

1CLK

1
0D

Q

1
0

Q

2 3 4 5 6

FIGURE 7–99

EN

Q

D

fg07_10000

FIGURE 7–98

	7–3	 See Figure 7–98.

	7–4	 See Figure 7–99.

	7–5	 See Figure 7–100.

	7–6	 See Figure 7–101.

CLK

J

K

Q

1 2 3 4 5

fg07_10300

FIGURE 7–100

CLK

D

Q

fg07_10200

FIGURE 7–101

M07_FLOY5983_11_GE_C07.indd Page 447  12/11/14  8:07 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



448	 Latches, Flip-Flops, and Timers

	7–13	 R1 = 91 k�

	7–14	 Duty cycle � 32%

True/False Quiz
	 1.	 F    2.  T    3.  F    4.  T    5.  F    6.  T    7.  T    8.  F    9.  T    10.  F

Self-Test
	 1.	 (a)    2.  (c)    3.  (b)      4.  (d)      5.  (d)      6.  (d)

	 7.	 (a)    8.  (c)    9.  (d)    10.  (d)    11.  (c)    12.  (f)

	7–7	 See Figure 7–102.

1CLK

PRE

CLR

Q

D

2 3 4 5 6 7 8 9

FIGURE 7–102

	7–8	 See Figure 7–103.

PIN 1 (1CLK)

PIN 2 (1J)

PIN 3 (1K)

PIN 4 (1CLR)

PIN 5 (1Q)

PIN 15 (1PRE)

fg07_10600

FIGURE 7–103

	7–9	 25
= 32. Five flip-flops are required.

	7–10	 Sixteen states require four flip-flops (24
= 16).

	7–11	 CEXT = 7143 pF connected from CX to RX/CX of the 74121 with no external resistor.

	7–12	 CEXT = 560 pF, REXT = 27 k�. See Figure 7–104.

RI CX RX/CX

&≥1

Q

Q

REXT

27 k�

+5 V
(1)

(2)

(3)

(4)

(5)

(9) (10) (11)

N/C

Output pulse

Trigger

(8)

(6)

+5 V

74LS122

CEXT

560 pF

fg07_10700

FIGURE 7–104
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Chapter Outline

8–1	 Shift Register Operations 
8–2	 Types of Shift Register Data I/Os 
8–3	 Bidirectional Shift Registers 
8–4	 Shift Register Counters 
8–5	 Shift Register Applications 
8–6	 Logic Symbols with Dependency Notation 
8–7	 Troubleshooting 
	 Applied Logic 

Chapter Objectives

■	 Identify the basic forms of data movement in shift 
registers

■	 Explain how serial in/serial out, serial in/parallel 
out, parallel in/serial out, and parallel in/parallel  
out shift registers operate

■	 Describe how a bidirectional shift register operates

■	 Determine the sequence of a Johnson counter

■	 Set up a ring counter to produce a specified 
sequence

■	 Construct a ring counter from a shift register

■	 Use a shift register as a time-delay device

■	 Use a shift register to implement a serial-to-parallel 
data converter

■	 Implement a basic shift-register-controlled 
keyboard encoder

■	 Interpret ANSI/IEEE Standard 91-1984 shift 
register symbols with dependency notation

■	 Use shift registers in a system application

Key Terms

Key terms are in order of appearance in the chapter.

Shift Registers

8

■	  Register

■	  Stage
■	  Load

■	  Bidirectional

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

Shift registers are a type of sequential logic circuit 
used primarily for the storage of digital data and 
typically do not possess a characteristic internal  
sequence of states. There are exceptions, however, 
and these are covered in Section 8–4.

In this chapter, the basic types of shift registers are 
studied and several applications are presented. Also, 
a troubleshooting method is introduced.

CHAPTER 
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450	 Shift Registers

8–1  Shift Register Operations

Shift registers consist of arrangements of flip-flops and are important in applications 
involving the storage and transfer of data in a digital system. A register has no specified 
sequence of states, except in certain very specialized applications. A register, in general, is 
used solely for storing and shifting data (1s and 0s) entered into it from an external source 
and typically possesses no characteristic internal sequence of states.

After completing this section, you should be able to

u	 Explain how a flip-flop stores a data bit

u	 Define the storage capacity of a shift register

u	 Describe the shift capability of a register

A register is a digital circuit with two basic functions: data storage and data movement. 
The storage capability of a register makes it an important type of memory device. Figure 8–1 
illustrates the concept of storing a 1 or a 0 in a D flip-flop. A 1 is applied to the data input as 
shown, and a clock pulse is applied that stores the 1 by setting the flip-flop. When the 1 on the 
input is removed, the flip-flop remains in the SET state, thereby storing the 1. A similar pro-
cedure applies to the storage of a 0 by resetting the flip-flop, as also illustrated in Figure 8–1.

A register can consist of one or  
more flip-flops used to store and 
shift data.

Q1 1

When a 1 is on D,
Q becomes a 1 at the
triggering edge of CLK
or remains a 1 if already
in the SET state.

1 is stored and appears on output.

CLK

D

C

Q 0

When a 0 is on D,
Q becomes a 0 at the
triggering edge of CLK
or remains a 0 if already
in the RESET state.

CLK

0 D

C

0 is stored and appears on output.

FIGURE 8–1  The flip-flop as a storage element. 

The storage capacity of a register is the total number of bits (1s and 0s) of digital data 
it can retain. Each stage (flip-flop) in a shift register represents one bit of storage capacity; 
therefore, the number of stages in a register determines its storage capacity.

The shift capability of a register permits the movement of data from stage to stage 
within the register or into or out of the register upon application of clock pulses. Figure 8–2 

Data outData in

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out (c) Parallel in/serial out

Data in

Data out

(e) Parallel in/parallel out

Data in

Data out

(d) Serial in/parallel out

Data out

Data in

(f) Rotate right (g) Rotate left

FIGURE 8–2  Basic data movement in shift registers. (Four bits are used for illustration. The 
bits move in the direction of the arrows.)
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Section 8–1  Checkup

Answers are at the end of the chapter.

	 1.	What determines the storage capacity of a shift register?

	 2.	What two principal functions are performed by a shift register?

Table 8–1 shows the entry of the four bits 1010 into the register in Figure 8–3, begin-
ning with the least significant bit. The register is initially clear. The 0 is put onto the data 
input line, making D = 0 for FF0. When the first clock pulse is applied, FF0 is reset, thus 
storing the 0.

8–2  Types of Shift Register Data I/Os

In this section, four types of shift registers based on data input and output (inputs/outputs) 
are discussed: serial in/serial out, serial in/parallel out, parallel in/serial out, and parallel 
in/parallel out.

After completing this section, you should be able to

u	 Describe the operation of four types of shift registers

u	 Explain how data bits are entered into a shift register

u	 Describe how data bits are shifted through a register

u	 Explain how data bits are taken out of a shift register

u	 Develop and analyze timing diagrams for shift registers

Serial In/Serial Out Shift Registers

The serial in/serial out shift register accepts data serially—that is, one bit at a time on a 
single line. It produces the stored information on its output also in serial form. Let’s first 
look at the serial entry of data into a typical shift register. Figure 8–3 shows a 4-bit device 
implemented with D flip-flops. With four stages, this register can store up to four bits of 
data.

D

C

Q0
Serial

data
input

FF0

CLK

D

C

Q1

FF1

D

C

Q2

FF2

D

C

Q3

FF3

Serial data output

Serial data output
Q3

fg09_00300

FIGURE 8–3  Serial in/serial out shift register.

InfoNote

Frequently, it is necessary to clear 
an internal register in a processor. 
For example, a register may be 
cleared prior to an arithmetic or 
other operation. One way that 
registers in a processor are cleared 
is using software to subtract the 
contents of the register from itself. 
The result, of course, will always 
be zero. For example, a processor 
instruction that performs this 
operation is SUB AL,AL. with this 
instruction, the register named AL 
is cleared.

illustrates the types of data movement in shift registers. The block represents any arbitrary 
4-bit register, and the arrows indicate the direction of data movement.
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452	 Shift Registers

Next the second bit, which is a 1, is applied to the data input, making D = 1 for FF0 
and D = 0 for FF1 because the D input of FF1 is connected to the Q0 output. When the 
second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0 to set; 
and the 0 that was in FF0 is shifted into FF1.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is applied. The 
0 is entered into FF0, the 1 stored in FF0 is shifted into FF1, and the 0 stored in FF1 is 
shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This time 
the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1, the 1 stored in FF1 is 
shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes the serial entry 
of the four bits into the shift register, where they can be stored for any length of time as long 
as the flip-flops have dc power.

If you want to get the data out of the register, the bits must be shifted out serially to the 
Q3 output, as Table 8–2 illustrates. After CLK4 in the data-entry operation just described, 
the LSB, 0, appears on the Q3 output. When clock pulse CLK5 is applied, the second bit 
appears on the Q3 output. Clock pulse CLK6 shifts the third bit to the output, and CLK7 
shifts the fourth bit to the output. While the original four bits are being shifted out, more 
bits can be shifted in. All zeros are shown being shifted in, after CLK8.

For serial data, one bit at a time is 
transferred.

TABLE 8–2

Shifting a 4-bit code out of the shift register in Figure 8–3. 
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 1 0 1 0
5 0 1 0 1
6 0 0 1 0
7 0 0 0 1
8 0 0 0 0

TABLE 8–1

Shifting a 4-bit code into the shift register in Figure 8–3.  
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 1 0 1 0

EXAMPLE 8–1

Show the states of the 5-bit register in Figure 8–4(a) for the specified data input and 
clock waveforms. Assume that the register is initially cleared (all 0s).

Solution

The first data bit (1) is entered into the register on the first clock pulse and then shifted 
from left to right as the remaining bits are entered and shifted. The register contains 
Q4Q3Q2Q1Q0 = 11010 after five clock pulses. See Figure 8–4(b).
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*Answers are at the end of the chapter.

Data
input

Data
output

Q4

CLK

CLK

Data
input

0

1

0

1

1

1 1 0 1 0

(b)

Data bits stored
after five
clock pulses

(a)

D

C

D

C

D

C

D

C

D

C

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q4

FF0 FF1 FF2 FF3 FF4

fg09_00600

FIGURE 8–4  Open file F08-04 to verify operation. A multisim tutorial is available on 
the website.

Related Problem*

Show the states of the register if the data input is inverted. The register is initially 
cleared.

A traditional logic block symbol for an 8-bit serial in/serial out shift register is shown in 
Figure 8–5. The “SRG 8” designation indicates a shift register (SRG) with an 8-bit capacity.

CLK

Data in

Q7

Q7

C

SRG 8

fg09_00700

FIGURE 8–5  Logic symbol for an 8-bit serial in/serial out shift register.
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454	 Shift Registers

Serial In/Parallel Out Shift Registers

Data bits are entered serially (least-significant bit first) into a serial in/parallel out shift 
register in the same manner as in serial in/serial out registers. The difference is the way 
in which the data bits are taken out of the register; in the parallel output register, the out-
put of each stage is available. Once the data are stored, each bit appears on its respective 
output line, and all bits are available simultaneously, rather than on a bit-by-bit basis as 
with the serial output. Figure 8–6 shows a 4-bit serial in/parallel out shift register and its 
logic block symbol.

Data input

CLK

(a)

D

C

D

C

D

C

D

C

Q3Q2Q1Q0

CLK

Data input

C

D SRG 4

Q0 Q1 Q2 Q3

(b)

fg09_00800

FIGURE 8–6  A serial in/parallel out shift register.

EXAMPLE 8–2

Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in 
Figure 8–7(a). The register initially contains all 1s.

(a)

Data in

CLK

0 11 0

(b)

Q1

Q0

Q2

Q3

Q0 Q1 Q2 Q3

D

C

SRG 4

fg09_00900

FIGURE 8–7 

Solution

The register contains 0110 after four clock pulses. See Figure 8–7(b).

Related Problem

If the data input remains 0 after the fourth clock pulse, what is the state of the register 
after three additional clock pulses?  
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Implementation: 8-Bit Serial In/Parallel Out Shift Register

Fixed-Function Device    The 74HC164 is an example of a fixed-function IC shift register 
having serial in/parallel out operation. The logic block symbol is shown in Figure 8–8. 
This device has two gated serial inputs, A and B, and an asynchronous clear (CLR) input 
that is active-LOW. The parallel outputs are Q0 through Q7.

(1)

C

SRG 8

Q0 Q1 Q2 Q3

(2)
(9)
(8)

A
B

CLR
CLK

Q4 Q5 Q6 Q7

(3) (4) (5) (6) (10) (11) (12) (13)

FIGURE 8–8  The 74HC164 8-bit serial in/parallel out shift register.

CLR

Serial
inputs

A

B

CLK

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Outputs

Clear Clear

fg09_01100

FIGURE 8–9  Sample timing diagram for a 74HC164 shift register.

A sample timing diagram for the 74HC164 is shown in Figure 8–9. Notice that 
the serial input data on input A are shifted into and through the register after input B 
goes HIGH.
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456	 Shift Registers

Programmable Logic Device (PLD)    The 8-bit serial in/parallel out shift register can be 
described using VHDL and implemented as hardware in a PLD. The program code is as 
follows. (blue comments are not part of the program.)

library ieee;

use ieee.std_logic_1164.all;

entity SerInParOutShift is

 � port (D0, Clock, Clr: in std_logic; Q0, Q1, Q2, Q3,
Q4, Q5, Q6, Q7: inout std_logic);

end entity SerInParOutShift;

architecture LogicOperation of SerInParOutShift is

component dffl is

  port (D, Clock: in std_logic; Q: inout std_logic);

end component dff1;

begin

FF0: dff1 port map(D=7D0 and Clr, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7Q0 and Clr, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7Q1 and Clr, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7Q2 and Clr, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7Q3 and Clr, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7Q4 and Clr, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7Q5 and Clr, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7Q6 and Clr, Clock=7Clock, Q=7Q7);

end architecture LogicOperation;

D0: Data input
Clock: System clock
Clr: Clear
Q0–Q7: Register outputs

Instantiations 
describe how 
the flip-flops 
are connected 
to form the 
register.

¸
˚

˚
˚

˚
˚

˝
˚

˚
˚

˚
˛

D flip-flop with preset and 
clear inputs was described in 
Chapter 7 and is used as a 
component.

¸
˚

˝
˚

˛

Parallel In/Serial Out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously into their respec-
tive stages on parallel lines rather than on a bit-by-bit basis on one line as with serial data 
inputs. The serial output is the same as in serial in/serial out shift registers, once the data 
are completely stored in the register.

Figure 8–10 illustrates a 4-bit parallel in/serial out shift register and a typical logic sym-
bol. There are four data-input lines, D0, D1, D2, and D3, and a SHIFT /LOAD input, which 
allows four bits of data to load in parallel into the register. When SHIFT /LOAD is LOW, 
gates G1 through G4 are enabled, allowing each data bit to be applied to the D input of its 
respective flip-flop. When a clock pulse is applied, the flip-flops with D = 1 will set and 
those with D = 0 will reset, thereby storing all four bits simultaneously.

When SHIFT /LOAD is HIGH, gates G1 through G4 are disabled and gates G5 through 
G7 are enabled, allowing the data bits to shift right from one stage to the next. The OR gates 
allow either the normal shifting operation or the parallel data-entry operation, depending 
on which AND gates are enabled by the level on the SHIFT /LOAD input. Notice that FF0 
has a single AND to disable the parallel input, D0. It does not require an AND/OR arrange-
ment because there is no serial data in.

For parallel data, multiple bits are 
transferred at one time.
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D0 D1 D3

C

D

D0 D1 D2 D3

CCLK
Serial data out

CLK

G2

C

D

G5

Q0
C

D

G3G6

D2

C

D
Q1

Serial
data
out

Data in

SRG 4

G4G7

Q2 Q3

(a) Logic diagram

(b) Logic symbol

SHIFT/LOAD

SHIFT/LOAD

G1

FF0 FF1 FF2 FF3

fg09_01200

FIGURE 8–10  A 4-bit parallel in/serial out shift register. Open file F08-10 to verify 
operation.

EXAMPLE 8–3

Show the data-output waveform for a 4-bit register with the parallel input data and the 
clock and SHIFT /LOAD waveforms given in Figure 8–11(a). Refer to Figure 8–10(a) 
for the logic diagram.

CLK 3 5 6

10 10

Last data bit

D0 D1 D2 D3

0101

CLK
Data out (Q3)

421

SHIFT/LOAD

SHIFT/LOAD(a)

Data out (Q3)(b)

C

SRG 4

fg09_01300

FIGURE 8–11 
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458	 Shift Registers

Solution

On clock pulse 1, the parallel data (D0D1D2D3 = 1010) are loaded into the register, 
making Q3 a 0. On clock pulse 2 the 1 from Q2 is shifted onto Q3; on clock pulse 3 the 
0 is shifted onto Q3; on clock pulse 4 the last data bit (1) is shifted onto Q3; and on clock 
pulse 5, all data bits have been shifted out, and only 1s remain in the register (assuming 
the D0 input remains a 1). See Figure 8–11(b).

Related Problem

Show the data-output waveform for the clock and SHIFT /LOAD inputs shown in 
Figure 8–11(a) if the parallel data are D0D1D2D3 = 0101.  

Implementation: 8-Bit Parallel Load Shift Register

Fixed-Function Device    The 74HC165 is an example of a fixed-function IC shift reg-
ister that has a parallel in/serial out operation (it can also be operated as serial in/serial 
out). Figure 8–12 shows a typical logic block symbol. A LOW on the SHIFT /LOAD input 
(SH /LD) enables asynchronous parallel loading. Data can be entered serially on the SER 
input. Also, the clock can be inhibited anytime with a HIGH on the CLK INH input. The 
serial data outputs of the register are Q7 and its complement Q7. This implementation is 
different from the synchronous method of parallel loading previously discussed, demon-
strating that there are usually several ways to accomplish the same function.

Figure 8–13 is a timing diagram showing an example of the operation of a 74HC165 
shift register.

Programmable Logic Device (PLD)    The 8-bit parallel load shift register is a parallel in/ 
serial out device and can be implemented in a PLD with the following VHDL code:

library ieee:
use ieee.std_logic_1164.all;

entity ParSerShift is

port (D0, D1, D2, D3, D4, D5, D6, D7, SHLD, Clock: 

in std_logic; Q, QNot: inout std_logic);

end entity ParSerShift;

architecture LogicOperation of ParSerShift is

signal �S1, S2, S3, S4, S5, S6, S7,

Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7: std_logic;

function ShiftLoad (A,B,C: in std_logic)return std_logic is

begin

return ((A and B) or (not B and C));

end function ShiftLoad;

D0-D7: Parallel input
SHLD: Shift Load input
Clock: System clock
Q: Serial output
QNot: Inverted serial output

Q0-Q7: Intermediate 
variables for flip-flop stages

S1-S7: Shift load signals 
from function ShiftLoad

Function ShiftLoad 
provides the AND-OR 
function shown in Figure 
8–10 to allow the parallel 
load of data or data shift 
from one flip-flop stage to 
the next.

¸
˚
˝
˚
˛

D0 D1 D2 D3

SER

D4 D5 D6 D7

CLK INH
CCLK Q7

Q7SH/LD SRG 8
(1)

(10)
(15)
(2)

(11) (12) (13) (14) (3) (4) (5) (6)
(9)

(7)

FIGURE 8–12  The 74HC165 8-bit parallel load shift register.

M08_FLOY5983_11_GE_C08.indd Page 458  11/11/14  6:03 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Types of Shift Register Data I/Os	 459
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1

0

1

0

1

0

1

1

CLK INH

SER 0 (LOW)

SH/LD

Q7

Q7

fg09_01500

component dff1 is

port �(D, Clock: in std_logic;

Q: inout std_logic);

end component dff1;

begin

SL1:S1 6=ShiftLoad(Q0, SHLD, D1);

SL2:S2 6=ShiftLoad(Q1, SHLD, D2);

SL3:S3 6=ShiftLoad(Q2, SHLD, D3);

SL4:S4 6=ShiftLoad(Q3, SHLD, D4);

SL5:S5 6=ShiftLoad(Q4, SHLD, D5);

SL6:S6 6=ShiftLoad(Q5, SHLD, D6);

SL7:S7 6=ShiftLoad(Q6, SHLD, D7);

FF0: dff1 port map(D=7D0 and not SHLD, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7S1, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7S2, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7S3, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7S4, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7S5, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7S6, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7S7, Clock=7Clock, Q=7Q);

QNot 6=not Q;

end architecture LogicOperation;

D flip-flop component used as 
storage for shift register

¸
˚

˝
˚

˛

ShiftLoad instances 
SL1–SL7 allow eight bits 
of data to load into 
flip-flop stages FF0–FF7 or 
to shift through the register 
providing the parallel load 
serial out function.

¸̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˝̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˛

FIGURE 8–13  Sample timing 
diagram for a 74HC165 shift 
register.
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460	 Shift Registers

Parallel In/Parallel Out Shift Registers

Parallel entry and parallel output of data have been discussed. The parallel in/parallel out 
register employs both methods. Immediately following the simultaneous entry of all data 
bits, the bits appear on the parallel outputs. Figure 8–14 shows a parallel in/parallel out 
shift register.  

D

C

CLK

D0

D

C

D1

D

C

D2

D

C

D3

Parallel data inputs

Q0 Q1 Q2 Q3

Parallel data outputs

fg09_01600

FIGURE 8–14  A parallel in/parallel out register.

Implementation: 4-Bit Parallel-Access Shift Register

Fixed-Function Device    The 74HC195 can be used for parallel in/parallel out operation. 
Because it also has a serial input, it can be used for serial in/serial out and serial in/parallel 
out operations. It can be used for parallel in/serial out operation by using Q3 as the output. 
A typical logic block symbol is shown in Figure 8–15.

Q0

SH/LD

CLK

(15)

Q1

(14)

Q2

(13)

Q3

(12)

D0

(4)

D1

(5)

D2

(6)

D3

(7)

K

J

CLR

(2)

(3)

(9)

(1)

(10)

Serial
inputs

C

SRG 4

fg09_01700

FIGURE 8–15  The 74HC195 4-bit parallel access shift register.

When the SHIFT /LOAD input (SH /LD) is LOW, the data on the parallel inputs are 
entered synchronously on the positive transition of the clock. When (SH /LD) is HIGH, 
stored data will shift right (Q0 to Q3) synchronously with the clock. Inputs J and K are the 
serial data inputs to the first stage of the register (Q0); Q3 can be used for serial output data. 
The active-LOW clear input is asynchronous.
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Programmable Logic Device (PLD)    The VHDL code for a 4-bit parallel in/parallel 
out shift register is as follows:

library ieee;

use ieee.std logic_1164.all;

entity ParInParOut is

  port (D0, D1, D2, D3, Clock: in std_logic;

        Q0, Q1, Q2, Q3: inout std_logic);

end entity ParInParOut;

architecture LogicOperation of ParInParOut is

  component dff1 is

    port (D, Clock: in std_logic;

          Q: inout std_logic);

end component dff1;

begin

  FF0: dff1 port map (D=7D0, Clock=7Clock, Q=7Q0);

  FF1: dff1 port map (D=7D1, Clock=7Clock, Q=7Q1);

  FF2: dff1 port map (D=7D2, Clock=7Clock, Q=7Q2);

  FF3: dff1 port map (D=7D3, Clock=7Clock, Q=7Q3);

end architecture LogicOperation;

Load

Parallel
data

inputs

Serial shift

Serial
inputs

Parallel
outputs

Clear

Serial shift

CLR

CLK

J

K

SH/LD

D0

D1

D2

D3

Q0

Q1

Q2

Q3

fg09_01800
FIGURE 8–16  Sample timing diagram for a 74HC195 shift register.

The timing diagram in Figure 8–16 illustrates the operation of this register.
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462	 Shift Registers

Section 8–2  Checkup

	 1.	Develop the logic diagram for the shift register in Figure 8–3, using J-K flip-flops to 
replace the D flip-flops.

	 2.	How many clock pulses are required to enter a byte of data serially into an 8-bit shift 
register?

	 3.	The bit sequence 1101 is serially entered (least-significant bit first) into a 4-bit parallel 
out shift register that is initially clear. What are the Q outputs after two clock pulses?

	 4.	How can a serial in/parallel out register be used as a serial in/serial out register?

	 5.	Explain the function of the SHIFT /LOAD input.

	 6.	 Is the parallel load operation in a 74HC165 shift register synchronous or asynchro-
nous? What does this mean?

	 7.	 In Figure 8–14, D0 = 1, D1 = 0, D2 = 0, and D3 = 1. After three clock pulses, what 
are the data outputs?

	 8.	For a 74HC195, SH /LD = 1, J = 1, and K = 1. What is Q0 after one clock pulse?

8–3  Bidirectional Shift Registers

A bidirectional shift register is one in which the data can be shifted either left or right. It 
can be implemented by using gating logic that enables the transfer of a data bit from one 
stage to the next stage to the right or to the left, depending on the level of a control line.

After completing this section, you should be able to

u	 Explain the operation of a bidirectional shift register

u	 Discuss the 74HC194 4-bit bidirectional universal shift register

u	 Develop and analyze timing diagrams for bidirectional shift registers

A 4-bit bidirectional shift register is shown in Figure 8–17. A HIGH on the RIGHT/LEFT 
control input allows data bits inside the register to be shifted to the right, and a LOW 

fg09_01900

Q0 Q1 Q2 Q3

RIGHT/LEFT

Serial
data in

G1 G5 G2 G6 G3 G7 G4 G8

CLK

D

C

D

C

D

C

D

C

FIGURE 8–17  Four-bit bidirectional shift register. Open file F08-17 to verify the 
operation.
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	 Bidirectional Shift Registers	 463

enables data bits inside the register to be shifted to the left. An examination of the gating 
logic will make the operation apparent. When the RIGHT/LEFT control input is HIGH, 
gates G1 through G4 are enabled, and the state of the Q output of each flip-flop is passed 
through to the D input of the following flip-flop. When a clock pulse occurs, the data bits 
are shifted one place to the right. When the RIGHT/LEFT control input is LOW, gates G5 
through G8 are enabled, and the Q output of each flip-flop is passed through to the D input 
of the preceding flip-flop. When a clock pulse occurs, the data bits are then shifted one 
place to the left.

EXAMPLE 8–4

Determine the state of the shift register of Figure 8–17 after each clock pulse for the 
given RIGHT /LEFT  control input waveform in Figure 8–18(a). Assume that Q0 = 1, 
Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW.

(right) (left) (right) (left)RIGHT/LEFT

CLK

Q0 1

Q1 1

Q2 0

Q3

0 0 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1 0

1 1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 01

(a)

(b)

fg09_02000

FIGURE 8–18 

Solution

See Figure 8–18(b).

Related Problem

Invert the RIGHT /LEFT  waveform, and determine the state of the shift register in 
Figure 8–17 after each clock pulse.  

Implementation: 4-Bit Bidirectional Universal Shift Register

Fixed-Function Device    The 74HC194 is an example of a universal bidirectional shift 
register in integrated circuit form. A universal shift register has both serial and parallel 
input and output capability. A logic block symbol is shown in Figure 8–19, and a sample 
timing diagram is shown in Figure 8–20.

Parallel loading, which is synchronous with a positive transition of the clock, is accom-
plished by applying the four bits of data to the parallel inputs and a high to the S0 and S1 
inputs. Shift right is accomplished synchronously with the positive edge of the clock when 
S0 is HIGH and S1 is LOW. Serial data in this mode are entered at the shift-right serial 
input (SR SER). When S0 is LOW and S1 is HIGH, data bits shift left synchronously with 
the clock, and new data are entered at the shift-left serial input (SL SER). Input SR SER 
goes into the Q0 stage, and SL SER goes into the Q3 stage.
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FIGURE 8–20  Sample timing diagram for a 74HC194 shift register.

Programmable Logic Device (PLD)    The following code describes a 4-bit bidirectional 
shift register with a serial input:

library ieee;

use ieee.std_logic_1164.all;

entity FourBitBiDirSftReg is

port (R_L, DataIn, Clock: in std_logic;

  Q0, Q1, Q2, Q3: buffer std_logic);

end entity FourBitBiDirSftReg;

R_L: Right/left
DataIn: Serial input data
Clock: System clock
Q0-Q3: Register outputs

FIGURE 8–19  The 74HC194 4-bit 
bidirectional universal shift register.
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architecture LogicOperation of FourBitBiDirSftReg is

component dff1 is

  port(D,Clock: in std_logic; Q: out std_logic);

end component dff1;

signal D0, D1, D2, D3: std_logic;

begin

  DO 6= (DataIn and R_L) or (not R_L and Q1);

  D1 6= (Q0 and R_L) or (not R_L and Q2);

  D2 6= (Q1 and R_L) or (not R_L and Q3);

  D3 6= (Q2 and R_L) or (not R_L and DataIn);

FF0: dff1 port map(D =7 D0, Clock =7 Clock, Q =7 Q0);

FF1: dff1 port map(D =7 D1, Clock =7 Clock, Q =7 Q1);

FF2: dff1 port map(D =7 D2, Clock =7 Clock, Q =7 Q2);

FF3: dff1 port map(D =7 D3, Clock =7 Clock, Q =7 Q3);

end architecture LogicOperation;

	 Shift Register Counters	 465

Section 8–3  Checkup

	 1.	Assume that the 4-bit bidirectional shift register in Figure 8–17 has the following 
contents: Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 0. There is a 1 on the serial data-input 
line. If RIGHT /LEFT is HIGH for three clock pulses and LOW for two more clock 
pulses, what are the contents after the fifth clock pulse?

8–4  Shift Register Counters

A shift register counter is basically a shift register with the serial output connected back to 
the serial input to produce special sequences. These devices are often classified as counters 
because they exhibit a specified sequence of states. Two of the most common types of shift 
register counters, the Johnson counter and the ring counter, are introduced in this section.

After completing this section, you should be able to

u	 Discuss how a shift register counter differs from a basic shift register

u	 Explain the operation of a Johnson counter

u	 Specify a Johnson sequence for any number of bits

u	 Explain the operation of a ring counter and determine the sequence of any specific 
ring counter

The Johnson Counter

In a Johnson counter the complement of the output of the last flip-flop is connected back 
to the D input of the first flip-flop (it can be implemented with other types of flip-flops 
as well). If the counter starts at 0, this feedback arrangement produces a characteristic 
sequence of states, as shown in Table 8–3 for a 4-bit device and in Table 8–4 for a 5-bit 
device. Notice that the 4-bit sequence has a total of eight states, or bit patterns, and that 
the 5-bit sequence has a total of ten states. In general, a Johnson counter will produce a 
modulus of 2n, where n is the number of stages in the counter.

¸
˝
˛ D flip-flop component declaration

¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

Describes the internal signals 
with Boolean equations

Internal flip-flop inputs

Describes how the  
flip-flops are connected
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466	 Shift Registers

The implementations of the 4-stage and 5-stage johnson counters are shown in Figure 8–21. 
The implementation of a Johnson counter is very straightforward and is the same regardless 
of the number of stages. The Q output of each stage is connected to the D input of the next 

TABLE 8–3

Four-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3

0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 1 1 1 1
5 0 1 1 1
6 0 0 1 1
7 0 0 0 1

TABLE 8–4

Five-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4

0 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 1 1 1 1 0
5 1 1 1 1 1
6 0 1 1 1 1
7 0 0 1 1 1
8 0 0 0 1 1
9 0 0 0 0 1
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(a) Four-bit Johnson counter

(b) Five-bit Johnson counter

fg09_02300

FIGURE 8–21  Four-bit and 5-bit Johnson counters.
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	 Shift Register Counters	 467

stage (assuming that D flip-flops are used). The single exception is that the Q output of the 
last stage is connected back to the D input of the first stage. As the sequences in Table 8–3 
and 8–4 show, if the counter starts at 0, it will “fill up” with 1s from left to right, and then 
it will “fill up” with 0s again.

Diagrams of the timing operations of the 4-bit and 5-bit counters are shown in Figures 
8–22 and 8–23, respectively.

CLK

Q0

1 2 3 4 5 6 7 8

Q1

Q2

Q3

fg09_02400

FIGURE 8–22  Timing sequence for a 4-bit Johnson counter.

1 2 3 4 7 8 9 105 6CLK

Q0

Q1

Q3

Q4

Q2

fg09_02500

FIGURE 8–23  Timing sequence for a 5-bit Johnson counter.

The Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advantage 
that decoding gates are not required. In the case of a 10-bit ring counter, there is a unique 
output for each decimal digit.

A logic diagram for a 10-bit ring counter is shown in Figure 8–24. The sequence for this 
ring counter is given in Table 8–5. Initially, a 1 is preset into the first flip-flop, and the rest of 
the flip-flops are cleared. Notice that the interstage connections are the same as those for a 

PRE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

CLR
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D

C
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D
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D
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C
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C
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FIGURE 8–24  A 10-bit ring counter. Open file F08-24 to verify operation.
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468	 Shift Registers

Johnson counter, except that Q rather than Q is fed back from the last stage. The ten outputs 
of the counter indicate directly the decimal count of the clock pulse. For instance, a 1 on Q0 
represents a zero, a 1 on Q1 represents a one, a 1 on Q2 represents a two, a 1 on Q3 represents a 
three, and so on. You should verify for yourself that the 1 is always retained in the counter and 
simply shifted “around the ring,” advancing one stage for each clock pulse.

Modified sequences can be achieved by having more than a single 1 in the counter, as 
illustrated in Example 8–5.

TABLE 8–5

Ten-bit ring counter sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1

EXAMPLE 8–5

If a 10-bit ring counter similar to Figure 8–24 has the initial state 1010000000, deter-
mine the waveform for each of the Q outputs.

Solution

See Figure 8–25.
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Q8

Q9

Q7

fg09_02700

FIGURE 8–25 
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Related Problem

If a 10-bit ring counter has an initial state 0101001111, determine the waveform for 
each Q output.

Section 8–4  Checkup

	 1.	How many states are there in an 8-bit Johnson counter sequence?

	 2.	Write the sequence of states for a 3-bit Johnson counter starting with 000.

8–5  Shift Register Applications

Shift registers are found in many types of applications, a few of which are presented in this 
section.

After completing this section, you should be able to

u	 Use a shift register to generate a time delay

u	 Implement a specified ring counter sequence using a 74HC195 shift register

u	 Discuss how shift registers are used for serial-to-parallel conversion of data

u	 Define UART

u	 Explain the operation of a keyboard encoder and how registers are used in this 
application

Time Delay

A serial in/serial out shift register can be used to provide a time delay from input to output 
that is a function of both the number of stages (n) in the register and the clock frequency.

When a data pulse is applied to the serial input as shown in Figure 8–26, it enters the first 
stage on the triggering edge of the clock pulse. It is then shifted from stage to stage on each 
successive clock pulse until it appears on the serial output n clock periods later. This time-
delay operation is illustrated in Figure 8–26, in which an 8-bit serial in/serial out shift register 
is used with a clock frequency of 1 MHz to achieve a time delay (td) of 8 ms (8 3 1 ms). This 
time can be adjusted up or down by changing the clock frequency. The time delay can also be 
increased by cascading shift registers and decreased by taking the outputs from successively 
lower stages in the register if the outputs are available, as illustrated in Example 8–6.

Q7

Q7

Data out

CLK
1 MHz

Data in

CLK

Data in

Data out
td = 8   s

1   sµ

µ

C

SRG 8

FIGURE 8–26  The shift register as a time-delay device.

InfoNote

Microprocessors have special 
instructions that can emulate 
a serial shift register. The 
accumulator register can shift 
data to the left or right. A right 
shift is equivalent to a divide-by-2 
operation and a left shift is 
equivalent to a multiply-by-2 
operation. Data in the accumulator 
can be shifted left or right with 
the rotate instructions; ROR is the 
rotate right instruction, and ROL 
is the rotate left instruction. Two 
other instructions treat the carry 
flag bit as an additional bit for the 
rotate operation. These are the 
RCR for rotate carry right and RCL 
for rotate carry left.
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Related Problem

Determine the clock frequency required to obtain a time delay of 24 ms to the Q7 output 
in Figure 8–27.  

EXAMPLE 8–6

Determine the amount of time delay between the serial input and each output in Figure 
8–27. Show a timing diagram to illustrate.

Solution

The clock period is 2 ms. Thus, the time delay can be increased or decreased in 2 ms incre-
ments from a minimum of 2 ms to a maximum of 16 ms, as illustrated in Figure 8–28.

CLR
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Data in

Q7Q6Q5Q4Q3Q2Q1Q0

* Data shifts from Q0 toward Q7.

C
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FIGURE 8–27 

2   s

4   s

6   s

8   s

10   s

12   s

14   s

16   s

CLK

Data in

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Data
outputs

µ
µ

µ
µ

µ
µ

µ
µ
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FIGURE 8–28  Timing diagram showing time delays for the register in Figure 8–27.
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Implementation: A Ring Counter

Fixed-Function Device    If the output is connected back to the serial input, a shift register 
can be used as a ring counter. Figure 8–29 illustrates this application with a 74HC195 4-bit 
shift register.

Initially, a bit pattern of 1000 (or any other pattern) can be synchronously preset into 
the counter by applying the bit pattern to the parallel data inputs, taking the SH /LD input 
LOW, and applying a clock pulse. After this initialization, the 1 continues to circulate 
through the ring counter, as the timing diagram in Figure 8–30 shows.

C

SRG 4

Q0 Q1

CLR

CLK

Q2 Q3

K

J

SH /LD

D0 D1 D2 D3

HIGH LOW

(3)

(4) (5) (6) (7)

(2)

(9)

(1)

(10)

(15) (14) (13) (12)

fg09_03100

FIGURE 8–29  74HC195 connected as a ring counter.
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Q0

Q1

Q2

Q3
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FIGURE 8–30  Timing diagram showing two complete cycles of the ring counter in Figure 
8–29 when it is initially preset to 1000.

Programmable Logic Device (PLD)    The VHDL code for a 4-bit ring counter using D flip-
flops is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity RingCtr is

  port (I, Clr, Clock: in std_logic;

Q0, Q1, Q2, Q3: inout std_logic);

end entity RingCtr;

architecture LogicOperation of RingCtr is

I: Serial input bit to clock data into 
the shift register
Clr: Ring counter clear input
Clock: System clock
Q0-Q3: Ring counter output stages
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Serial-to-Parallel Data Converter

Serial data transmission from one digital system to another is commonly used to reduce the 
number of wires in the transmission line. For example, eight bits can be sent serially over 
one wire, but it takes eight wires to send the same data in parallel.

Serial data transmission is widely used by peripherals to pass data back and forth to a 
computer. For example, USB (universal serial bus) is used to connect keyboards printers, 
scanners, and more to the computer. All computers process data in parallel form, thus the 
requirement for serial-to-parallel conversion. A simplified serial-to-parallel data converter, 
in which two types of shift registers are used, is shown in Figure 8–31.
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FIGURE 8–31  Simplified logic diagram of a serial-to-parallel converter.

To illustrate the operation of this serial-to-parallel converter, the serial data for-
mat shown in Figure 8–32 is used. It consists of eleven bits. The first bit (start bit) is 
always 0 and always begins with a HIGH-to-LOW transition. The next eight bits (D7 
through D0) are the data bits (one of the bits can be parity), and the last one or two 
bits (stop bits) are always 1s. When no data are being sent, there is a continuous HIGH 
on the serial data line.

component dff1 is

  port (D, Clock, Pre, Clr: in std_logic;

    Q: inout std_logic);

end component dff1;

begin

  FF0: dff1 port map(D=7 Q3, Clock=7Clock, Q=7Q0, Pre=7 not I, Clr=7‘1’);

  FF1: dff1 port map(D=7 Q0, Clock=7Clock, Q=7Q1, Pre=7‘1’, Clr=7not Clr);

  FF2: dff1 port map(D=7 Q1, Clock=7Clock, Q=7Q2, Pre=7‘1’, Clr=7not Clr);

  FF3: dff1 port map(D=7 Q2, Clock=7Clock, Q=7Q3, Pre=7‘1’, Clr=7not Clr);

end architecture LogicOperation;

¸
˚
˚
˝
˚
˚
˛

D flip-flop component used as storage 
for shift register

¸̊
˚̊

˝̊
˚̊

˛

FF0-FF3 flip-flop instan-
tiations show how flip-
flops are connected and 
represent one flip-flop 
for each state in the ring 
counter sequence. FF0 Pre 
input acts as a serial input 
when I is high. FF1-FF3 
Clr input clears flip-flop 
stages when Clr is low.
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The HIGH-to-LOW transition of the start bit sets the control flip-flop, which enables 
the clock generator. After a fixed delay time, the clock generator begins producing a pulse 
waveform, which is applied to the data-input register and to the divide-by-8 counter. The 
clock has a frequency precisely equal to that of the incoming serial data, and the first clock 
pulse after the start bit occurs during the first data bit.

The timing diagram in Figure 8–33 illustrates the following basic operation: The eight 
data bits (D7 through D0) are serially shifted into the data-input register. Shortly after the 

Start
bit (0)

Stop
bit (1)

Stop
bit (1)

D7 D6 D5 D4 D3 D2 D1 D0
t
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FIGURE 8–32  Serial data format.
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FIGURE 8–33  Timing diagram illustrating the operation of the serial-to-parallel data 
converter in Figure 8–31.

M08_FLOY5983_11_GE_C08.indd Page 473  11/11/14  6:04 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



474	 Shift Registers

eighth clock pulse, the terminal count (TC) goes from LOW to HIGH, indicating the coun-
ter is at the last state. This rising edge is ANDed with the clock pulse, which is still HIGH, 
producing a rising edge at TC # CLK. This parallel loads the eight data bits from the data-
input shift register to the data-output register. A short time later, the clock pulse goes LOW 
and this HIGH-to-LOW transition triggers the one-shot, which produces a short-duration 
pulse to clear the counter and reset the control flip-flop and thus disable the clock genera-
tor. The system is now ready for the next group of eleven bits, and it waits for the next 
HIGH-to-LOW transition at the beginning of the start bit.

By reversing the process just stated, parallel-to-serial data conversion can be accomplished. 
Since the serial data format must be produced, start and stop bits must be added to the sequence.

Universal Asynchronous Receiver Transmitter (UART)

As mentioned, computers and microprocessor-based systems often send and receive data in 
a parallel format. Frequently, these systems must communicate with external devices that 
send and/or receive serial data. An interfacing device used to accomplish these conversions 
is the UART (Universal Asynchronous Receiver Transmitter). Figure 8–34 illustrates the 
UART in a general microprocessor-based system application.

UART
Micro-

processor
system

Parallel
data bus

External
device

(printer, communications
system, etc.)

Serial data out

Serial data in

fg09_03600
FIGURE 8–34  UART interface.

A UART includes both serial-to-parallel and parallel-to-serial conversion, as shown in 
the block diagram in Figure 8–35. The data bus is basically a set of parallel conductors 
along which data move between the UART and the microprocessor system. Buffers inter-
face the data registers with the data bus.

Receiver
data register

Transmitter
data register

Buffers

Data bus

CLK
Transmitter

parallel in/serial
out shift register

Receiver
serial in/parallel
out shift register

Serial data out Serial data in

CLK

fg09_03700

FIGURE 8–35  Basic UART block diagram.
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The UART receives data in serial format, converts the data to parallel format, and places 
them on the data bus. The UART also accepts parallel data from the data bus, converts the 
data to serial format, and transmits them to an external device.

Keyboard Encoder

The keyboard encoder is a good example of the application of a shift register used as a 
ring counter in conjunction with other devices. Recall that a simplified computer keyboard 
encoder without data storage was presented in Chapter 6.

Figure 8–36 shows a simplified keyboard encoder for encoding a key closure in a 64-key 
matrix organized in eight rows and eight columns. Two parallel in/parallel out 4-bit shift 

Q0 Q1 Q2 Q3 Q4 Q5

D0 D1 D2 D3 D4 D5

Q5 Q6 Q7Q4Q1 Q2 Q3

D4 D5 D6 D7D1 D2 D3
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1 2 3 4 5 6 7 8

1 2 4
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1 2 3 4 5 6 7 8
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Key code register

Q
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Clock inhibit
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One-shots To ROM

Switch closure

Q

D0

Q0

J
K

C

J
K

C

SRG 4 SRG 4 CLK
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Power on LOAD
SH/LD +VCC Ring counter
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FIGURE 8–36  Simplified keyboard encoding circuit.
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476	 Shift Registers

8–6  Logic Symbols with Dependency Notation

Two examples of ANSI/IEEE Standard 91-1984 symbols with dependency notation for 
shift registers are presented. Two specific IC shift registers are used as examples.

After completing this section, you should be able to

u	 Understand and interpret the logic symbols with dependency notation for the 
74HC164 and the 74HC194 shift registers

The logic symbol for a 74HC164 8-bit serial in/parallel out shift register is shown in 
Figure 8–37. The common control inputs are shown on the notched block. The clear (CLR) 
input is indicated by an R (for RESET) inside the block. Since there is no dependency 
prefix to link R with the clock (C1), the clear function is asynchronous. The right arrow 
symbol after C1 indicates data flow from Q0 to Q7. The A and B inputs are ANDed, as 
indicated by the embedded AND symbol, to provide the synchronous data input, 1D, to the 
first stage (Q0). Note the dependency of D on C, as indicated by the 1 suffix on C and the 
1 prefix on D.

Figure 8–38 is the logic symbol for the 74HC194 4-bit bidirectional universal shift 
register. Starting at the top left side of the control block, note that the CLR input is active-
LOW and is asynchronous (no prefix link with C). Inputs S0 and S1 are mode inputs that 

Section 8–5  Checkup

	 1.	 In the keyboard encoder, how many times per second does the ring counter scan the 
keyboard?

	 2.	What is the 6-bit ROW/COLUMN code (key code) for the top row and the left-most 
column in the keyboard encoder?

	 3.	What is the purpose of the diodes in the keyboard encoder? What is the purpose of 
the resistors?

registers are connected as an 8-bit ring counter with a fixed bit pattern of seven 1s and one 
0 preset into it when the power is turned on. Two priority encoders (introduced in Chapter 
6) are used as eight-line-to-three-line encoders (9 input HIGH, 8 output unused) to encode 
the ROW and COLUMN lines of the keyboard matrix. A parallel in/parallel out register 
(key code) stores the ROW/COLUMN code from the priority encoders.

The basic operation of the keyboard encoder in Figure 8–36 is as follows: The ring 
counter “scans” the rows for a key closure as the clock signal shifts the 0 around the coun-
ter at a 5 kHz rate. The 0 (LOW) is sequentially applied to each ROW line, while all other 
ROW lines are HIGH. All the ROW lines are connected to the ROW encoder inputs, so the 
3-bit output of the ROW encoder at any time is the binary representation of the ROW line 
that is LOW. When there is a key closure, one COLUMN line is connected to one ROW 
line. When the ROW line is taken LOW by the ring counter, that particular COLUMN line 
is also pulled LOW. The COLUMN encoder produces a binary output corresponding to the 
COLUMN in which the key is closed. The 3-bit ROW code plus the 3-bit COLUMN code 
uniquely identifies the key that is closed. This 6-bit code is applied to the inputs of the key 
code register. When a key is closed, the two one-shots produce a delayed clock pulse to 
parallel-load the 6-bit code into the key code register. This delay allows the contact bounce 
to die out. Also, the first one-shot output inhibits the ring counter to prevent it from scan-
ning while the data are being loaded into the key code register.

The 6-bit code in the key code register is now applied to a ROM (read-only memory) 
to be converted to an appropriate alphanumeric code that identifies the keyboard character. 
ROMs are studied in Chapter 11.
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determine the shift-right, shift-left, and parallel load modes of operation, as indicated by 
the 0

3 dependency designation following the M. The 0
3 represents the binary states of 0, 1, 

2, and 3 on the S0 and S1 inputs. When one of these digits is used as a prefix for another 
input, a dependency is established. The 1 S >2 d symbol on the clock input indicates the 
following: 1 S indicates that a right shift (Q0 toward Q3) occurs when the mode inputs (S0, S1) 
are in the binary 1 state (S0 = 1, S1 = 0), 2 d indicates that a left shift (Q3 toward Q0) 
occurs when the mode inputs are in the binary 2 state (S0 = 0, S1 = 1). The shift-right 
serial input (SR SER) is both mode-dependent and clock-dependent, as indicated by 1, 4D. 
The parallel inputs (D0, D1, D2, and D3) are all mode-dependent (prefix 3 indicates parallel 
load mode) and clock-dependent, as indicated by 3, 4D. The shift-left serial input (SL SER) 
is both mode-dependent and clock-dependent, as indicated by 2, 4D.

The four modes for the 74HC194 are summarized as follows:

Do nothing: S0 = 0, S1 = 0 (mode 0)

Shift right: S0 = 1, S1 = 0 (mode 1, as in 1, 4D)

Shift left: S0 = 0, S1 = 1 (mode 2, as in 2, 4D)

Parallel load: S0 = 1, S1 = 1 (mode 3, as in 3, 4D)
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FIGURE 8–37  Logic symbol for the 74HC164.
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FIGURE 8–38  Logic symbol for the 74HC194.
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478	 Shift Registers

Section 8–6  Checkup

	 1.	 In Figure 8–38, are there any inputs that are dependent on the mode inputs being in 
the 0 state?

	 2.	 Is the parallel load synchronous with the clock?

8–7  Troubleshooting

A traditional method of troubleshooting sequential logic and other more complex systems 
uses a procedure of “exercising” the circuit under test with a known input waveform (stim-
ulus) and then observing the output for the correct bit pattern.

After completing this section, you should be able to

u	 Explain the procedure of “exercising” as a troubleshooting technique

u	 Discuss exercising of a serial-to-parallel converter

The serial-to-parallel data converter in Figure 8–31 is used to illustrate the “exercising” 
procedure. The main objective in exercising the circuit is to force all elements (flip-flops 
and gates) into all of their states to be certain that nothing is stuck in a given state as a 
result of a fault. The input test pattern, in this case, must be designed to force each flip-
flop in the registers into both states, to clock the counter through all of its eight states, and 
to take the control flip-flop, the clock generator, the one-shot, and the AND gate through 
their paces.

The input test pattern that accomplishes this objective for the serial-to-parallel data con-
verter is based on the serial data format in Figure 8–32. It consists of the pattern 10101010 
in one serial group of data bits followed by 01010101 in the next group, as shown in Figure 
8–39. These patterns are generated on a repetitive basis by a special test-pattern generator. 
The basic test setup is shown in Figure 8–40.
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t 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

St
op

St
ar

t
St

op

St
op

St
op
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FIGURE 8–39  Sample test pattern.

After both patterns have been run through the circuit under test, all the flip-flops in the 
data-input register and in the data-output register have resided in both SET and RESET 
states, the counter has gone through its sequence (once for each bit pattern), and all the 
other devices have been exercised.

To check for proper operation, each of the parallel data outputs is observed for an alter-
nating pattern of 1s and 0s as the input test patterns are repetitively shifted into the data-
input register and then loaded into the data-output register. The proper timing diagram is 
shown in Figure 8–41. The outputs can be observed in pairs with a dual-trace oscilloscope, 
or all eight outputs can be observed simultaneously with a logic analyzer configured for 
timing analysis.

If one or more outputs of the data-output register are incorrect, then you must back 
up to the outputs of the data-input register. If these outputs are correct, then the problem 
is associated with the data-output register. Check the inputs to the data-output register 
directly on the pins of the IC for an open input line. Check that power and ground are cor-
rect (look for the absence of noise on the ground line). Verify that the load line is a solid 
LOW and that there are clock pulses on the clock input of the correct amplitude. Make 
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FIGURE 8–40  Basic test setup for the serial-to-parallel data converter of Figure 8–31.
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FIGURE 8–41  Proper outputs for the circuit under test in Figure 8–40. The input test 
pattern is shown.

sure that the connection to the logic analyzer did not short two output lines together. If all 
of these checks pass inspection, then it is likely that the output register is defective. If the 
data-input register outputs are also incorrect, the fault could be associated with the input 
register itself or with any of the other logic, and additional investigation is necessary to 
isolate the problem.
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480	 Shift Registers

When measuring digital signals with an oscilloscope, you should always use dc coupling, rather than 
ac coupling. The reason that ac coupling is not best for viewing digital signals is that the 0 V level 
of the signal will appear at the average level of the signal, not at true ground or 0 V level. It is much 
easier to find a “floating” ground or incorrect logic level with dc coupling. If you suspect an open 
ground in a digital circuit, increase the sensitivity of the scope to the maximum possible. A good 
ground will never appear to have noise under this condition, but an open will likely show some noise, 
which appears as a random fluctuation in the 0 V level.

Section 8–7  Checkup

	 1.	What is the purpose of providing a test input to a sequential logic circuit?

	 2.	Generally, when an output waveform is found to be incorrect, what is the next step to 
be taken?     

Applied Logic
Security System

A security system that provides coded access to a secured area is developed. Once a 4-digit 
security code is stored in the system, access is achieved by entering the correct code on 
a keypad. A block diagram for the security system is shown in Figure 8–42. The system 
consists of the security code logic, the code-selection logic, and the keypad. The keypad is 
a standard numeric keypad.

To lock or gate
opener interface

Keypad

Code-
selection

logic

Security
code logic

FIGURE 8–42  Block diagram of the security system.

Basic Operation

A 4-digit entry code is set into the memory with user-accessible DIP switches. Initially 
pressing the # key sets up the system for the first digit in the code. For entry, the code is 
entered one digit at a time on the keypad and converted to a BCD code for processing by 
the security code logic. If the entered code agrees with the stored code, the output activates 
the access mechanism and allows the door or gate, depending on the type of area that is 
secured, to be opened.

Exercise

1.	 Write the BCD code sequence produced by the code generator if the 4-digit access 
number 4739 is entered on the keypad.
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The Security Code Logic

The security code logic compares the code entered on the keypad with the predetermined 
code from the code-selection logic. A logic diagram of the security code logic is shown in 
Figure 8–43.

In order to gain entry, first the # key on the keypad is pressed to trigger the one-shots, 
thus initializing the 8-bit register C with a preset pattern (00010000). Next the four digits 
of the code are entered in proper sequence on the keypad. As each digit is entered, it is 
converted to BCD by the decimal-to-BCD encoder, and a clock pulse is produced by one-
shot A that shifts the 4-bit code into register A. The one-shot is triggered by a transition 
on the output of the OR gate when a key is pressed. At the same time, the corresponding 
digit from the code generator is shifted into register B. Also, one-shot B is triggered after 
one-shot A to provide a delayed clock pulse for register C to serially shift the preloaded 
pattern (00010000). The left-most three 0s are simply “fillers” and serve no purpose in the 
operation of the system. The outputs of registers A and B are applied to the comparator; if 
the codes are the same, the output of the comparator goes HIGH, placing shift register C 
in the SHIFT mode.

Each time an entered digit agrees with the preset digit, the 1 in shift register C is 
shifted right one position. On the fourth code agreement, the 1 appears on the output 
of the shift register and activates the mechanism to unlock the door or open the gate. 
If the code digits do not agree, the output of the comparator goes LOW, placing shift 
register C in the LOAD mode so the shift register is reinitialized to the preset pattern 
(00010000).
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Keypad

#

OR gate

CLKA to memory
and code-selection

logic

Code from
code-selection

logic

4-bit shift
register B

One-shot
B

CLK

One-shot
A

FIGURE 8–43  Block diagram of the security code logic with keypad.
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482	 Shift Registers

Exercise

2.	 What is the state of shift register C after two correct code digits are entered?
3.	 Explain the purpose of the OR gate.
4.	 If the digit 4 is entered on the keypad, what appears on the outputs of register A?

The Code-Selection Logic

A logic diagram of the code-selection logic is shown in Figure 8–44. This part of the 
system includes a set of DIP switches into which a 4-digit entry code is set. Initially 
pressing the # key sets up the system for the first digit in the code by causing a preset 
pattern to be loaded into the 4-bit shift register (0001). The four bits in the first code 
digit are selected by a HIGH on the Q0 output of the shift register, enabling the four 
AND gates labeled A1–A4. As each digit of the code is entered on the keypad, the clock 
from the security code logic shifts the 1 in the shift register to sequentially enable each 
set of four AND gates. As a result, the BCD digits in the security code appear sequen-
tially on the outputs.
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FIGURE 8–44  Logic diagram of the code-selection logic.
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Security System with VHDL

The security system can be described using VHDL for implementation in a PLD. The three 
blocks of the system (keypad, security code logic, and code-selection logic) are combined 
in the program code to describe the complete system.

The security system block diagram is shown in Figure 8–45 as a programming model. Six 
program components perform the logical operations of the security system. Each component 
corresponds to a block or blocks in the figure. The security system program SecuritySystem 
contains the code that defines how the components interact.
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FIGURE 8–45  Security system block diagram as a programming model.

The security system includes a ten-bit input vector Key—one input bit for each 
decimal digit—and an input Enter, representing a typical numeric keypad. Once a key 
is pressed, the data stored in input array Key are sent to the decimal-to-BCD encoder 
(BCDEncoder). Its 4-bit output is then sent to the inputs of the 4-bit parallel in/parallel 
out shift register A (FourBitParSftReg). An external system clock applied to input Clk 
drives the overall security system. The Alarm output signal is set HIGH upon a success-
ful arming operation.

Pressing the Enter key sends an initial HIGH clock signal to the code-selection logic 
block (CodeSelection), which loads an initial binary value of 1000 to shift register B. 
At this time, a binary 0000 is stored in shift register A, and the output of the magnitude 
comparator (ComparatorFourBit) is set LOW. The code-selection logic is now ready to 
present the first stored code value that is to be compared to the value of the first numeric 
keypad entry. At this time a LOW on the 8-bit parallel in/serial out shift register C (Eight-
BitShiftReg) S_L input loads an initial value of 00010000.
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484	 Shift Registers

When a numeric key is pressed, the output of the OR gate (ORGate) clocks the first 
stored value to the inputs of shift register B, and the output of the decimal-to-BCD encoder 
is sent to the inputs of shift register A. If the values in shift registers A and B match, the 
output of the magnitude comparator is set HIGH; and the code-selection logic is ready to 
clock in the next stored code value.

At the conclusion of four successful comparisons of stored code values against four 
correct keypad entries, the value 00010000 initially in shift register C will shift four places 
to the right, setting the Alarm output to a HIGH. An incorrect keypad entry will not match 
the stored code value in shift register B and the magnitude comparator will output a LOW. 
With the comparator output LOW, the code-selection logic will reset to the first stored 
code value; and the value 00010000 is reloaded into shift register C, starting the process 
over again.

To clock the keypad and the stored code values through the system, two one-shots 
(OneShot) are used. The one-shots allow data to stabilize before any action is taken. One-
shot A receives an Enable signal from the keypad OR gate, which initiates the first timed 
process. The OR gate output is also sent to the code-selection logic, and the first code 
value from the code-selection logic is sent to the inputs of shift register A. When one-shot 
A times out, the selected keypad entry and the current code from the code-selection logic 
are stored in shift registers A and B for comparison by the magnitude comparator, and an 
Enable is sent to one-shot B. If the codes in shift registers A and B match, the value stored 
in shift register C shifts one place to the right after one-shot B times out.

The six components used in the security system program SecuritySystem are shown in 
Figure 8–46. 

Decimal-to-BCD
encoder

(BCDEncoder)

4-bit shift registers
A and B

(FourBitParSftReg)

8-bit shift 
register C

(EightBitShiftReg)

Magnitude
comparator

(ComparatorFourBit)

Code-Selection logic
(CodeSelection)

One-shots A and B
(OneShot)

Components

Security System
(SecuritySystem)

FIGURE 8–46  Security system components.
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The VHDL program code for the security system is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity SecuritySystem is

port (key: in std_logic_vector(0 to 9); Enter: in std_logic;

    Clk: in std_logic; Alarm: out std_logic);

end entity SecuritySystem;

architecture SecuritySystemBehavior of SecuritySystem is

component BCDEncoder is

port(D: in std_logic_vector(0 to 9);

    Q: out std_logic_vector(0 to 3));

end component BCDEncoder;

component FourBitParSftReg is

port(D: in std_logic_vector(0 to 3);

    Clk: in std_logic;

    Q: out std_logic_vector(0 to 3));

end component FourBitParSftReg;

component ComparatorFourBit is

port(A, B: in std_logic_vector(0 to 3);

    EQ: out std_logic);

end component ComparatorFourBit;

component OneShot is

port(Enable, Clk: in std_logic;

    QOut: buffer std_logic);

end component OneShot;

component EightBitShiftReg is

port(S_L, Clk: in std_logic;

    D: in std_logic_vector(0 to 7);

    Q: buffer std_logic);

end component EightBitShiftReg;

component CodeSelection is

port(Shiftin, Clk: in std_logic;

    Bout: out std_logic_vector(1 to 4));

end component CodeSelection;

signal BCDout: std_logic_vector(0 to 3);

signal SftAout: std_logic_vector(0 to 3);

signal SftBout: std_logic_vector(0 to 3);

signal MCodein: std_logic_vector(0 to 3);

signal ORgate: std_logic;

signal MagCompare: std_logic;

signal TimeoutA, TimeoutB: std_logic;

Component declaration for  
EightBitShiftReg

¸
˚
˚
˚
˚
˝
˚
˚
˚
˛

Component declaration for  
CodeSelection

¸
˚
˚
˝
˚
˚
˛

Component declaration for 
OneShot

¸
˚
˚
˝
˚
˚
˛

Component declaration for  
ComparatorFourBit

¸
˚
˚
˝
˚
˚
˛

Component declaration for  
FourBitParSftReg

¸
˚
˚
˚
˚
˝
˚
˚
˚
˛

BDCout: BCD encoder return
SftAout: Shift Register A return
SftBout: Shift Register B return
MCodein: Security Code value
ORgate: OR output from 10-keypad
MagCompare: Key entry to code compare
TimeoutA/B: One-shot timer variables

Component declaration for  
BCDEncoder

¸
˚
˚
˝
˚
˚
˛

Key : 10 - Key input
Enter : # - Key input
Clk : System clock
Alarm : Alarm output
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486	 Shift Registers

begin

ORgate 6= (Key(0) or Key(1) or Key(2) or Key(3) or Key(4)

          or key(5) or Key(6) or Key(7) or Key(8) or Key(9));

BCD: BCDEncoder

port map(D(0)=7Key(0),D(1)=7Key(1),D(2)=7Key(2),D(3)=7Key(3),

     �     D(4)=7Key(4),D(5)=7Key(5),D(6)=7Key(6),D(7)=7Key(7),D(8)=7Key(8),D(9)=7Key(9),

     �     Q(0)=7BCDout(0),Q(1)=7BCDout(1),Q(2)=7BCDout(2),Q(3)=7BCDout(3));

ShiftRegisterA: FourBitParSftReg

port map�(D(0)=7BCDout(0),D(1)=7BCDout(1),D(2)=7BCDout(2),D(3)=7BCDout(3),

     �     Clk=7not TimeoutA,Q(0)=7SftAout(0),Q(1)=7SftAout(1),Q(2)=7SftAout(2),Q(3)=7SftAout(3));

ShiftRegisterB: FourBitParSftReg

port map�(D(0)=7MCodein(0),D(1)=7MCodein(1),D(2)=7MCodein(2),D(3)=7MCodein(3),

     �     Clk=7not TimeoutA,Q(0)=7SftBout(0),Q(1)=7SftBout(1),Q(2)=7SftBout(2),Q(3)=>SftBout(3));

Magnitude Comparator: ComparatorFourBit port map(A=>SftAout,B=>SftBout,EQ=>MagCompare);

OSA:OneShot port map(Enable=7Enter or ORgate,Clk=7Clk,QOut=7TimeoutA);

OSB:OneShot port map(Enable=7not TimeoutA,Clk=7Clk,QOut=7TimeoutB);

ShiftRegisterC:EightBitShiftReg

port map(S_L=7MagCompare,Clk=7 TimeoutB,D(0)=7‘0’,D(1)=7‘0’,

     �     D(2)=7‘0’,D(3)=>‘1’,D(4)=7‘0’,D(5)=>‘0’,D(6)=7‘0’,D(7)=7‘0’,Q=7Alarm);

CodeSelectionA: CodeSelection

port map(ShiftIn=7MagCompare,Clk=7Enter or ORGate,Bout=7MCodein);

end architecture SecuritySystemBehavior;

Component 
instantiations

¸̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̋
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̨

Summary

•	 The basic types of data movement in shift registers are

1.	 Serial in/shift right/serial out

2.	 Serial in/shift left/serial out

3.	 Parallel in/serial out

4.	 Serial in/parallel out

Simulation

Open File AL08 in the Applied Logic folder on the website. Run the security code logic 
simulation using your Multisim software and observe the operation. A DIP switch is used 
to simulate the 10-digit keypad and switch J1 simulates the # key. Switches J2–J5 are used 
for test purposes to enter the code that is produced by the code selection logic in the com-
plete system. Probe lights are used only for test purposes to indicate the states of registers 
A and B, the output of the comparator, and the output of register C.

Putting Your Knowledge to Work

Explain how the security code logic can be modified to accommodate a 5-digit code.

Logic definition for ORGate
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	 Self-Test	 487

5.	 Parallel in/parallel out

6.	 Rotate right

7.	 Rotate left

•	 Shift register counters are shift registers with feedback that exhibit special sequences. Examples 
are the Johnson counter and the ring counter.

•	 The Johnson counter has 2n states in its sequence, where n is the number of stages.

•	 The ring counter has n states in its sequence.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Bidirectional  Having two directions. In a bidirectional shift register, the stored data can be shifted 
right or left.

Load  To enter data into a shift register.

Register  One or more flip-flops used to store and shift data.

Stage  One storage element in a register.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 Shift registers consist of an arrangement of flip-flops.

	 2.	 A shift register cannot be used to store data.

	 3.	 A serial shift register accepts one bit at a time on a single line.

	 4.	 All shift registers are defined by specified sequences.

	 5.	 A shift register counter is a shift register with the serial output connected back to the 
serial input.

	 6.	 A shift register with four stages can store a maximum count of fifteen.

	 7.	 The Johnson counter is a special type of shift register.

	 8.	 The modulus of an 8-bit Johnson counter is eight.

	 9.	 A ring counter uses one flip-flop for each state in its sequence.

	10.	 A shift register cannot be used as a time delay device.

Self-Test

Answers are at the end of the chapter.

	 1.	 A register’s functions include
(a)	 data storage	 (b)  data movement
(c)	 neither (a) not (b)	 (d)  both (a) and (b)

	 2.	 To enter a byte of data serially into an 8-bit shift register, there must be
(a)	 one clock pulse	 (b)  two clock pulses
(c)	 four clock pulses	 (d)  eight clock pulses

	 3.	 To parallel load a byte of data into a shift register with a synchronous load, there must be
(a)	 one clock pulse	 (b)  one clock pulse for each 1 in the data
(c)	 eight clock pulses	 (d)  one clock pulse for each 0 in the data

	 4.	 The group of bits 10110101 is serially shifted (right-most bit first) into an 8-bit parallel output 
shift register with an initial state of 11100100. After two clock pulses, the register contains
(a)	 01011110	 (b)  10110101
(c)	 01111001	 (d)  00101101
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488	 Shift Registers

	 5.	 With a 100 kHz clock frequency, eight bits can be serially entered into a shift register in
(a)	 80 ms	 (b)  8 ms
(c)	 80 ms	 (d)  10 ms

	 6.	 With a 1 MHz clock frequency, eight bits can be parallel entered into a shift register
(a)	 in 8 ms
(b)	 in the propagation delay time of eight flip-flops
(c)	 in 1 ms
(d)	 in the propagation delay time of one flip-flop

	 7.	 A modulus-8 Johnson counter requires
(a)	 eight flip-flops	 (b)  four flip-flops
(c)	 five flip-flops	 (d)  twelve flip-flops

	 8.	 A modulus-8 ring counter requires
(a)	 eight flip-flops	 (b)  four flip-flops
(c)	 five flip-flops	 (d)  twelve flip-flops

	 9.	 When an 8-bit serial in/serial out shift register is used for a 24 ms time delay, the clock 
frequency must be
(a)	 41.67 kHz	 (b)  333 kHz
(c)	 125 kHz	 (d)  8 MHz

	10.	 The purpose of the ring counter in the keyboard encoding circuit of Figure 8–36 is
(a)	 to sequentially apply a HIGH to each row for detection of key closure
(b)	 to provide trigger pulses for the key code register
(c)	 to sequentially apply a LOW to each row for detection of key closure
(d)	 to sequentially reverse bias the diodes in each row

Problems

Answers to odd-numbered problems are at the end of the book.

Section 8–1 Shift Register Operations
	 1.	 What is a register?

	 2.	 What is the storage capacity of a register that can retain one byte of data?

	 3.	 What does the “shift capacity” of a register mean?

Section 8–2 Types of Shift Register Data I/Os
	 4.	 The sequence 1011 is applied to the input of a 4-bit serial shift register that is initially cleared. 

What is the state of the shift register after three clock pulses?

	 5.	 For the data input and clock in Figure 8–47, determine the states of each flip-flop in the shift 
register of Figure 8–3 and show the Q waveforms. Assume that the register contains all 1s 
initially.

CLK

Serial data input

fg09_04800

FIGURE 8–47 

	 6.	 Solve Problem 5 for the waveforms in Figure 8–48.

CLK

Serial data input

fg09_04900

FIGURE 8–48 
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	 7.	 What is the state of the register in Figure 8–49 after each clock pulse if it starts in the 
101001111000 state?

SRG 12

C

D

CLK

Serial data in
Serial data out

CLK

Serial data in

fg09_05000

FIGURE 8–49 

	 8.	 For the serial in/serial out shift register, determine the data-output waveform for the data-input 
and clock waveforms in Figure 8–50. Assume that the register is initially cleared.

SRG 10

C

D

CLK

Serial data in
Serial data out

CLK

Serial data in

fg09_05100

FIGURE 8–50 

	 9.	 Solve Problem 8 for the waveforms in Figure 8–51.

CLK

Serial data in

fg09_05200

FIGURE 8–51 

	10.	 A leading-edge clocked serial in/serial out shift register has a data-output waveform as shown 
in Figure 8–52. What binary number is stored in the 8-bit register if the first data bit out (left-
most) is the LSB?

CLK

Data out

t

Binary number

fg09_05300
FIGURE 8–52 

	11.	 Show a complete timing diagram including the parallel outputs for the shift register in Figure 
8–6. Use the waveforms in Figure 8–50 with the register initially clear.

	12.	 Solve Problem 11 for the input waveforms in Figure 8–51.

	13.	 Develop the Q0 through Q7 outputs for a 74HC164 shift register with the input waveforms 
shown in Figure 8–53.

A

CLK

B

CLR

fg09_05400

FIGURE 8–53 
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490	 Shift Registers

	14.	 The shift register in Figure 8–54(a) has SHIFT /LOAD and CLK inputs as shown in part (b). 
The serial data input (SER) is a 0. The parallel data inputs are D0 = 1, D1 = 0, D2 = 1, and 
D3 = 0 as shown. Develop the data-output waveform in relation to the inputs.

CLK

CLK

SER

SHIFT/LOAD

D0 D1 D2 D3

SHIFT/LOAD
Data
out

(a) (b)

SRG 4

C

1 0 1 0

fg09_05500

FIGURE 8–54 

	15.	 The waveforms in Figure 8–55 are applied to a 74HC165 shift register. The parallel inputs are 
all 0. Determine the Q7 waveform.

CLK

SH/LD

CLK INH

SER

fg09_05600

FIGURE 8–55 

	16.	 Solve Problem 15 if the parallel inputs are all 1.

	17.	 Solve Problem 15 if the SER input is inverted.

	18.	 Determine all the Q output waveforms for a 74HC195 4-bit shift register when the inputs are as 
shown in Figure 8–56.

J

CLK

K

CLR

D0

SH/LD

D1

D2

D3

fg09_05700

FIGURE 8–56 

	19.	 Solve Problem 18 if the SH /LD input is inverted and the register is initially clear.

	20.	 Use two 74HC195 shift registers to form an 8-bit shift register. Show the required 
connections.

Section 8–3 Bidirectional Shift Registers
	21.	 For the 8-bit bidirectional register in Figure 8–57, determine the state of the register after each 

clock pulse for the RIGHT/LEFT  control waveform given. A HIGH on this input enables a shift 
to the right, and a LOW enables a shift to the left. Assume that the register is initially storing 
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the decimal number seventy-six in binary, with the right-most position being the LSB. There is 
a LOW on the data-input line.

CLK

Data in

RIGHT/LEFT CLK

RIGHT/LEFT

SRG 8

C

D

Data out

fg09_05800

FIGURE 8–57 

	22.	 Solve Problem 21 for the waveforms in Figure 8–58.

CLK

RIGHT/LEFT

fg09_05900

FIGURE 8–58 

	23.	 Use two 74HC194 4-bit bidirectional shift registers to create an 8-bit bidirectional shift 
register. Show the connections.

	24.	 Determine the Q outputs of a 74HC194 with the inputs shown in Figure 8–59. Inputs D0, D1, 
D2, and D3 are all HIGH.

CLK

CLR

S0

S1

SR SER

SL SER

fg09_06000

FIGURE 8–59 

Section 8–4 Shift Register Counters
	25.	 How many flip-flops are required to implement each of the following in a Johnson counter 

configuration:

(a)	 modulus-4
(b)	 modulus-8
(c)	 modulus-12
(d)	 modulus-18

	26.	 Draw the logic diagram for a modulus-18 Johnson counter. Show the timing diagram and write 
the sequence in tabular form.

	27.	 For the ring counter in Figure 8–60, show the waveforms for each flip-flop output with respect 
to the clock. Assume that FF0 is initially SET and that the rest are RESET. Show at least ten 
clock pulses.

C C C C C C C C C C

D

CLK

Q0

FF0

D
Q1

FF1

D
Q2

FF2

D
Q3

FF3

D
Q4

FF4

D
Q5

FF5

D
Q6

FF6

D
Q7

FF7

D
Q8

FF8 FF9

Q9
D

fg09_06100

FIGURE 8–60 
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492	 Shift Registers

	28.	 The waveform pattern in Figure 8–61 is required. Devise a ring counter, and indicate how it can 
be preset to produce this waveform on its Q9 output. At CLK16 the pattern begins to repeat.

CLK

Q9 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fg09_06200

FIGURE 8–61 

Section 8–5 Shift Register Applications
	29.	 Use 74HC195 4-bit shift registers to implement a 16-bit ring counter. Show the connections.

	30.	 What is the purpose of the power-on LOAD input in Figure 8–36?

	31.	 What happens when two keys are pressed simultaneously in Figure 8–36?

Section 8–7 Troubleshooting
	32.	 Based on the waveforms in Figure 8–62(a), determine the most likely problem with the register 

in part (b) of the figure.

CLK

Data in

Q0

Q1

Q2

Q3

(a)

Q3

D

Q0

D

Q1

D

Q2

D

CLK

Data in

(b)

CCCC

fg09_06300

FIGURE 8–62 

	33.	 Refer to the parallel in/serial out shift register in Figure 8–10. The register is in the state where 
Q0Q1Q2Q3 = 1001, and D0D1D2D3 = 1010 is loaded in. When the SHIFT /LOAD input is 
taken HIGH, the data shown in Figure 8–63 are shifted out. Is this operation correct? If not, 
what is the most likely problem?

1 0 1 1Q3

CLK

1

fg09_06400

FIGURE 8–63 

	34.	 You have found that the bidirectional register in Figure 8–17 will shift data right but not left. 
What is the most likely fault?

	35.	 For the keyboard encoder in Figure 8–36, list the possible faults for each of the following 
symptoms:

(a)	 The state of the key code register does not change for any key closure.
(b)	 The state of the key code register does not change when any key in the third row is closed. 

A proper code occurs for all other key closures.
(c)	 The state of the key code register does not change when any key in the first column is 

closed. A proper code occurs for all other key closures.
(d)	 When any key in the second column is closed, the left three bits of the key code (Q0Q1Q2) 

are correct, but the right three bits are all 1s.
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	36.	 Develop a test procedure for exercising the keyboard encoder in Figure 8–36. Specify the 
procedure on a step-by-step basis, indicating the output code from the key code register that 
should be observed at each step in the test.

	37.	 What symptoms are observed for the following failures in the serial-to-parallel converter in 
Figure 8–31:

(a)	 AND gate output stuck in HIGH state
(b)	 clock generator output stuck in LOW state
(c)	 third stage of data-input register stuck in SET state
(d)	 terminal count output of counter stuck in HIGH state

Applied Logic
	38.	 What is the major purpose of the security code logic?

	39.	 Assume the entry code is 1939. Determine the states of shift register A and shift register C after 
the second correct digit has been entered in Figure 8–43.

	40.	 Assume the entry code is 7646 and the digits 7645 are entered. Determine the states of shift 
register A and shift register C after each of the digits is entered.

Special Design Problems
	41.	 Specify the devices that can be used to implement the serial-to-parallel data converter in Figure 

8–31. Develop the complete logic diagram, showing any modifications necessary to accommo-
date the specific devices used.

	42.	 Modify the serial-to-parallel converter in Figure 8–31 to provide 16-bit conversion.

	43.	 Design an 8-bit parallel-to-serial data converter that produces the data format in Figure 8–32. 
Show a logic diagram and specify the devices.

	44.	 Design a power-on LOAD circuit for the keyboard encoder in Figure 8–36. This circuit must 
generate a short-duration LOW pulse when the power switch is turned on.

	45.	 Implement the test-pattern generator used in Figure 8–40 to troubleshoot the serial-to-parallel 
converter.

	46.	 Review the tablet-bottling system that was introduced in Chapter 1. Utilizing the knowledge 
gained in this chapter, implement registers A and B in that system using specific fixed-function 
IC devices.

Multisim Troubleshooting Practice
	47.	 Open file P08-47. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

	48.	 Open file P08-48. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	49.	 Open file P08-49. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	50.	 Open file P08-50. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	51.	 Open file P08-51. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct. 

Answers

Section Checkups
Section 8–1 Shift Register Operations
	 1.	 The number of stages.

	 2.	 Storage and data movement are two functions of a shift register.
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494	 Shift Registers

Section 8–2 Types of Shift Register Data I/Os
	 1.	 FF0: data input to J0, data input to K0; FF1: Q0 to J1, Q0 to K1; FF2: Q1 to J2, Q1 to K2; 

FF3: Q2 to J3, Q2 to K3

	 2.	 Eight clock pulses

	 3.	 0100 after 2 clock pulses

	 4.	 Take the serial output from the right-most flip-flop for serial out operation.

	 5.	 When SHIFT /LOAD is HIGH, the data are shifted right one bit per clock pulse. When 
SHIFT /LOAD is LOW, the data on the parallel inputs are loaded into the register.

	 6.	 The parallel load operation is asynchronous, so it is not dependent on the clock.

	 7.	 The data outputs are 1001.

	 8.	 Q0 = 1 after one clock pulse

Section 8–3 Bidirectional Shift Registers
	 1.	 1111 after the fifth clock pulse

Section 8–4 Shift Register Counters
	 1.	 Sixteen states are in an 8-bit Johnson counter sequence.

	 2.	 For a 3-bit Johnson counter: 000, 100, 110, 111, 011, 001, 000

Section 8–5 Shift Register Applications
	 1.	 625 scans/second

	 2.	 Q5Q4Q3Q2Q1Q0 = 011011

	 3.	 The diodes provide unidirectional paths for pulling the ROWs LOW and preventing HIGHs 
on the ROW lines from being connected to the switch matrix. The resistors pull the COLUMN 
lines HIGH.

Section 8–6 Logic Symbols with Dependency Notation
	 1.	 No inputs are dependent on the mode inputs being in the 0 state.

	 2.	 Yes, the parallel load is synchronous with the clock as indicated by the 4D label.

Section 8–7 Troubleshooting
	 1.	 A test input is used to sequence the circuit through all of its states.

	 2.	 Check the input to that portion of the circuit. If the signal on that input is correct, the fault is 
isolated to the circuitry between the good input and the bad output.

Related Problems for Examples
	8–1	 See Figure 8–64.

CLK

Data in
Q0

Q1

Q2

Q3

Q4

0

0

The output is Q4Q3Q2Q1Q0 = 00101
after 5 clock pulses.

fg09_06500
FIGURE 8–64

	8–2	 The state of the register after three additional clock pulses is 0000.
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	8–3	 See Figure 8–65.

CLK

SHIFT/LOAD
Q3 Unknown

1 2 3 4 5 6

fg09_06600

FIGURE 8–65

	8–4	 See Figure 8–66.

RIGHT/LEFT

CLK

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q0

Q1

0 1 0 1 0 0 0 0 0 0Q2

Q3 1 1

fg09_06700

FIGURE 8–66

	8–5	 See Figure 8–67.

CLK 1 2 3 4 5 6 7 8 9 10

Q1

Q2

Q3

Q4

Q0

Q5

Q6

Q7

Q8

Q9

1 0 1 0 1 1 1 1 0 0 1

0 1 0 1 1 1 1 0 0 1 0
1 0 1 1 1 1 0 0 1 0 1

0 1 1 1 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 1 1 1 0

1 0 0 1 0 1 0 1 1 1

1

1 1 0 0 1 0 1 0 1 1

1

1 1 1 0 0 1 0 1 0 1

1

1 1 1 1 0 0 1 0 1 0 1

fg09_06800

FIGURE 8–67

	8–6	 f = 1>3 ms = 333 kHz

True/False Quiz
	 1.	 T  2.  F  3.  T  4.  F  5.  T  6.  T  7.  T  8.  F   9.  T  10.  F

Self-Test
	 1.	 (d)  2.  (d)  3.  (a)  4.  (c)  5.  (a)  6.  (d)  7.  (b)  8.  (a)  9.  (b)  10.  (c)
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Chapter Objectives

■	 Discuss the types of state machines

■	 Describe the difference between an asynchronous 
and a synchronous counter

■	 Analyze counter timing diagrams

■	 Analyze counter circuits

■	 Explain how propagation delays affect the 
operation of a counter

■	 Determine the modulus of a counter

■	 Modify the modulus of a counter

■	 Recognize the difference between a 4-bit binary 
counter and a decade counter

■	 Use an up/down counter to generate forward and 
reverse binary sequences

■	 Determine the sequence of a counter

■	 Use IC counters in various applications

■	 Design a counter that will have any specified 
sequence of states

■	 Use cascaded counters to achieve a higher modulus

■	 Use logic gates to decode any given state of a counter

■	 Eliminate glitches in counter decoding

■	 Explain how a digital clock operates

■	 Interpret counter logic symbols that use 
dependency notation

■	 Troubleshoot counters for various types of faults

Counters

9CHAPTER 

■	 State machine

■	 Asynchronous

■	 Recycle

■	 Modulus

■	 Decade

■	 Synchronous

■	 Terminal count

■	 State diagram

■	 Cascade

Key Terms

Key terms are in order of appearance in the chapter.

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

As you learned in Chapter 7, flip-flops can be con-
nected together to perform counting operations. Such 
a group of flip-flops is a counter, which is a type of 
finite state machine. The number of flip-flops used 
and the way in which they are connected determine 
the number of states (called the modulus) and also 
the specific sequence of states that the counter goes 
through during each complete cycle.

Counters are classified into two broad categories 
according to the way they are clocked: asynchronous 
and synchronous. In asynchronous counters, commonly 
called ripple counters, the first flip-flop is clocked by the 
external clock pulse and then each successive flip-flop 
is clocked by the output of the preceding flip-flop. In 
synchronous counters, the clock input is connected to all 
of the flip-flops so that they are clocked simultaneously. 
Within each of these two categories, counters are clas-
sified primarily by the type of sequence, the number of 
states, or the number of flip-flops in the counter. VHDL 
codes for various types of counters are presented.
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9–1  Finite State Machines

A state machine is a sequential circuit having a limited (finite) number of states occuring 
in a prescribed order. A counter is an example of a state machine; the number of states is 
called the modulus. Two basic types of state machines are the Moore and the Mealy. The 
Moore state machine is one where the outputs depend only on the internal present state. 
The Mealy state machine is one where the outputs depend on both the internal present 
state and on the inputs. Both types have a timing input (clock) that is not considered a con-
trolling input. A design approach to counters is presented in this section.

After completing this section, you should be able to

u	 Describe a Moore state machine

u	 Describe a Mealy state machine

u	 Discuss examples of Moore and Mealy state machines

General Models of Finite State Machines

A Moore state machine consists of combinational logic that determines the sequence and 
memory (flip-flops), as shown in Figure 9–1(a). A Mealy state machine is shown in part (b).

Outputs

OutputsCombinational
logic

Memory

(a)  Moore machine (b)  Mealy machine

Input(s)

Present state

Combinational
logic

Memory

FIGURE 9–1  Two types of sequential logic.

In the Moore machine, the combinational logic is a gate array with outputs that deter-
mine the next state of the flip-flops in the memory. There may or may not be inputs to the 
combinational logic. There may also be output combinational logic, such as a decoder. If 
there is an input(s), it does not affect the outputs because they always correspond to and 
are dependent only on the present state of the memory. For the Mealy machine, the present 
state affects the outputs, just as in the Moore machine; but in addition, the inputs also affect 
the outputs. The outputs come directly from the combinational logic and not the memory.

Example of a Moore Machine

Figure 9–2(a) shows a Moore machine (modulus-26 binary counter with states 0 through 
25) that is used to control the number of tablets (25) that go into each bottle in an assem-
bly line. When the binary number in the memory (flip-flops) reaches binary twenty-five 
(11001), the counter recycles to 0 and the tablet flow and clock are cut off until the next 
bottle is in place. The combinational logic for the state transitions sets the modulus of the 
counter so that it sequences from binary state 0 to binary state 25, where 0 is the reset or 
rest state and the output combinational logic decodes binary state 25. There is no input in 
this case, other than the clock, so the next state is determined only by the present state, 
which makes this a Moore machine. One tablet is bottled for each clock pulse. Once a 
bottle is in place, the first tablet is inserted at binary state 1, the second at binary state 2, 
and the twenty-fifth tablet when the binary state is 25. Count 25 is decoded and used to 
stop the flow of tablets and the clock. The counter stays in the 0 state until the next bottle 
is in position (indicated by a 1). Then the clock resumes, the count goes to 1, and the cycle 
repeats, as illustrated by the state diagram in Figure 9–2(b).

M09_FLOY5983_11_GE_C09.indd Page 498  17/11/14  6:06 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Finite State Machines	 499

Example of a Mealy Machine

Let’s assume that the tablet-bottling system uses three different sizes of bottles: a 25-tablet 
bottle, a 50-tablet bottle, and a 100-tablet bottle. This operation requires a state machine with 
three different terminal counts: 25, 50, and 100. One approach is illustrated in Figure 9–3(a). 
The combinational logic sets the modulus of the counter depending on the modulus-select 
inputs. The output of the counter depends on both the present state and the modulus-select 
inputs, making this a Mealy machine. The state diagram is shown in part (b).

Present state

Combinational
logic for state

transitions
Flip-flops

Clock

Logic for
decoding

binary state 25

Output
(binary state 25)

Bottle in place

binary
0

Bottle not in place

binary
1

binary
25

Modulus 26 counter

(a)  Moore machine (b)  State diagram

FIGURE 9–2  A fixed-modulus binary counter as an example of a Moore state machine. 
The dashed line in the state diagram means the states between binary 1 and 25 are not 
shown for simplicity.

Present state

Combinational
logic for the state

transitions
Flip-flops

25 50 100
Modulus-select inputs

Combinational
logic for

decoding count
25 or 50 or 100

Output
(final state)

(a)  Mealy machine (b)  State diagram

binary
0

binary
1

binary
25

binary
51

binary
50

binary
100

binary
26

Bottle not in place

Bottle in place
Input 50 =1

Input 25 =1

Input 100 =1

FIGURE 9–3  A variable-modulus binary counter as an example of a Mealy state machine. 
The red arrows in the state diagram represent the recycle paths that depend on the input 
number. The black dashed lines mean the interim states are not shown for simplicity.

Section 9–1  Checkup

Answers are at the end of the chapter.

	 1.	What characterizes a finite state machine?

	 2.	Name the types of finite state machines.

	 3.	Explain the difference between the two types of state machines.
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500	 Counters

9–2  Asynchronous Counters

The term asynchronous refers to events that do not have a fixed time relationship with 
each other and, generally, do not occur at the same time. An asynchronous counter is one 
in which the flip-flops (FF) within the counter do not change states at exactly the same time 
because they do not have a common clock pulse.

After completing this section, you should be able to

u	 Describe the operation of a 2-bit asynchronous binary counter

u	 Describe the operation of a 3-bit asynchronous binary counter

u	 Define ripple in relation to counters

u	 Describe the operation of an asynchronous decade counter

u	 Develop counter timing diagrams

u	 Discuss the implementation of a 4-bit asynchronous binary counter

A 2-Bit Asynchronous Binary Counter

Figure 9–4 shows a 2-bit counter connected for asynchronous operation. Notice that the clock 
(CLK) is applied to the clock input (C) of only the first flip-flop, FF0, which is always the 
least significant bit (LSB). The second flip-flop, FF1, is triggered by the Q0 output of FF0. 
FF0 changes state at the positive-going edge of each clock pulse, but FF1 changes only when 
triggered by a positive-going transition of the Q0 output of FF0. Because of the inherent 
propagation delay time through a flip-flop, a transition of the input clock pulse (CLK) and a 
transition of the Q0 output of FF0 can never occur at exactly the same time. Therefore, the 
two flip-flops are never simultaneously triggered, so the counter operation is asynchronous.

The clock input of an asynchronous 
counter is always connected only to 
the LSB flip-flop.

The Timing Diagram

Let’s examine the basic operation of the asynchronous counter of Figure 9–4 by applying four 
clock pulses to FF0 and observing the Q output of each flip-flop. Figure 9–5 illustrates the 
changes in the state of the flip-flop outputs in response to the clock pulses. Both flip-flops are 
connected for toggle operation (D = Q) and are assumed to be initially RESET (Q LOW).

The positive-going edge of CLK1 (clock pulse 1) causes the Q0 output of FF0 to go 
HIGH, as shown in Figure 9–5. At the same time the Q0 output goes LOW, but it has no 
effect on FF1 because a positive-going transition must occur to trigger the flip-flop. After 
the leading edge of CLK1, Q0 = 1 and Q1 = 0. The positive-going edge of CLK2 causes 
Q0 to go LOW. Output Q0 goes HIGH and triggers FF1, causing Q1 to go HIGH. After the 
leading edge of CLK2, Q0 = 0 and Q1 = 1. The positive-going edge of CLK3 causes Q0 
to go HIGH again. Output Q0 goes LOW and has no effect on FF1. Thus, after the leading 
edge of CLK3, Q0 = 1 and Q1 = 1. The positive-going edge of CLK4 causes Q0 to go 
LOW, while Q0 goes HIGH and triggers FF1, causing Q1 to go LOW. After the leading 

Asynchronous counters are also 
known as ripple counters.

D1 Q1
D0

Q1

Q0

CLK
C C

FF1FF0

Q0

FIGURE 9–4  A 2-bit asynchronous binary counter. Open file F09-04 to verify operation. A 
Multisim tutorial is available on the website.
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edge of CLK4, Q0 = 0 and Q1 = 0. The counter has now recycled to its original state 
(both flip-flops are RESET).

In the timing diagram, the waveforms of the Q0 and Q1 outputs are shown relative to the 
clock pulses as illustrated in Figure 9–5. For simplicity, the transitions of Q0, Q1, and the 
clock pulses are shown as simultaneous even though this is an asynchronous counter. There 
is, of course, some small delay between the CLK and the Q0 transition and between the Q0 
transition and the Q1 transition.

Note in Figure 9–5 that the 2-bit counter exhibits four different states, as you would 
expect with two flip-flops (22

= 4). Also, notice that if Q0 represents the least significant 
bit (LSB) and Q1 represents the most significant bit (MSB), the sequence of counter states 
represents a sequence of binary numbers as listed in Table 9–1.

In digital logic, Q0 is always the LSB 
unless otherwise specified.

Q0

CLK

Q0 (LSB)

1 2 3 4

Q1 (MSB)

Outputs

fg08_00200

FIGURE 9–5  Timing diagram for the counter of Figure 9–4. As in previous chapters, 
output waveforms are shown in green.

TABLE 9–1

Binary state sequence for the counter in Figure 9–4.

Clock Pulse Q1 Q0

Initially 0 0
1 0 1
2 1 0
3 1 1
4 (recycles) 0 0

TABLE 9–2

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 (recycles) 0 0 0

Since it goes through a binary sequence, the counter in Figure 9–4 is a binary counter. It 
actually counts the number of clock pulses up to three, and on the fourth pulse it recycles 
to its original state (Q0 = 0, Q1 = 0). The term recycle is commonly applied to counter 
operation; it refers to the transition of the counter from its final state back to its original state.

A 3-Bit Asynchronous Binary Counter

The state sequence for a 3-bit binary counter is listed in Table 9–2, and a 3-bit asynchronous 
binary counter is shown in Figure 9–6(a). The basic operation is the same as that of the 2-bit 
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counter except that the 3-bit counter has eight states, due to its three flip-flops. A timing 
diagram is shown in Figure 9–6(b) for eight clock pulses. Notice that the counter progresses 
through a binary count of zero through seven and then recycles to the zero state. This counter 
can be easily expanded for higher count, by connecting additional toggle flip-flops.

Propagation Delay

Asynchronous counters are commonly referred to as ripple counters for the following 
reason: The effect of the input clock pulse is first “felt” by FF0. This effect cannot get to 
FF1 immediately because of the propagation delay through FF0. Then there is the propa-
gation delay through FF1 before FF2 can be triggered. Thus, the effect of an input clock 
pulse “ripples” through the counter, taking some time, due to propagation delays, to reach 
the last flip-flop.

To illustrate, notice that all three flip-flops in the counter of Figure 9–6 change state on 
the leading edge of CLK4. This ripple clocking effect is shown in Figure 9–7 for the first 
four clock pulses, with the propagation delays indicated. The LOW-to-HIGH transition of 

1 2 3 4CLK

tPLH

(CLK to Q0)

tPHL (CLK to Q0)

tPLH (Q0 to Q1)

tPHL (CLK to Q0)

tPHL (Q0 to Q1)

tPLH (Q1 to Q2)

Q0

Q1

Q2

fg08_00400

FIGURE 9–7  Propagation delays in a 3-bit asynchronous (ripple-clocked) binary counter.

Q0 (LSB)

Q2 (MSB)

D2 Q2D1
Q1

CLK C C

FF2FF1

D0
Q0

C

FF0

1 2 3 4 5CLK 6 7 8

10 10 10 10 0

Q1 10 10 1010

00 11 11

0

000

(a)

(b) Recycles back to 0

Q1Q0 Q2

FIGURE 9–6  Three-bit asynchronous binary counter and its timing diagram for one cycle. 
Open file F09-06 to verify operation.
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Q0 occurs one delay time (tPLH) after the positive-going transition of the clock pulse. The 
LOW-to-HIGH transition of Q1 occurs one delay time (tPLH) after the positive-going tran-
sition of Q0. The LOW-to-HIGH transition of Q2 occurs one delay time (tPLH) after the 
positive-going transition of Q1. As you can see, FF2 is not triggered until two delay times 
after the positive-going edge of the clock pulse, CLK4. Thus, it takes three propagation 
delay times for the effect of the clock pulse, CLK4, to ripple through the counter and change 
Q2 from LOW to HIGH.

This cumulative delay of an asynchronous counter is a major disadvantage in many 
applications because it limits the rate at which the counter can be clocked and creates 
decoding problems. The maximum cumulative delay in a counter must be less than the 
period of the clock waveform.

EXAMPLE 9–1

A 4-bit asynchronous binary counter is shown in Figure 9–8(a). Each D flip-flop is 
negative edge-triggered and has a propagation delay for 10 nanoseconds (ns). Develop 
a timing diagram showing the Q output of each flip-flop, and determine the total propa-
gation delay time from the triggering edge of a clock pulse until a corresponding change 
can occur in the state of Q3. Also determine the maximum clock frequency at which the 
counter can be operated.

CLK C C C

Q0 Q1 Q2 Q3

FF0 FF1 FF2 FF3

(a)

D0 D1 D2 D3

C

(b)

CLK

Q0

Q1

Q2

Q3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q0 Q1 Q2 Q3

FIGURE 9–8  Four-bit asynchronous binary counter and its timing diagram. Open file 
F09-08 and verify the operation.

Solution

The timing diagram with delays omitted is as shown in Figure 9–8(b). For the total 
delay time, the effect of CLK8 or CLK16 must propagate through four flip-flops before 
Q3 changes, so

tp(tot) = 4 * 10 ns = 40 ns
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Asynchronous Decade Counters

The modulus of a counter is the number of unique states through which the counter will 
sequence. The maximum possible number of states (maximum modulus) of a counter is 2n, 
where n is the number of flip-flops in the counter. Counters can be designed to have a num-
ber of states in their sequence that is less than the maximum of 2n. This type of sequence 
is called a truncated sequence.

One common modulus for counters with truncated sequences is ten (called MOD10). 
Counters with ten states in their sequence are called decade counters. A decade counter 
with a count sequence of zero (0000) through nine (1001) is a BCD decade counter because 
its ten-state sequence produces the BCD code. This type of counter is useful in display 
applications in which BCD is required for conversion to a decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recycle before 
going through all of its possible states. For example, the BCD decade counter must recycle 
back to the 0000 state after the 1001 state. A decade counter requires four flip-flops (three 
flip-flops are insufficient because 23

= 8).
Let’s use a 4-bit asynchronous counter such as the one in Example 9–1 and modify its 

sequence to illustrate the principle of truncated counters. One way to make the counter 
recycle after the count of nine (1001) is to decode count ten (1010) with a NAND gate and 
connect the output of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown 
in Figure 9–9(a).

Partial Decoding

Notice in Figure 9–9(a) that only Q1 and Q3 are connected to the NAND gate inputs. This 
arrangement is an example of partial decoding, in which the two unique states (Q1 = 1 
and Q3 = 1) are sufficient to decode the count of ten because none of the other states (zero 
through nine) have both Q1 and Q3 HIGH at the same time. When the counter goes into 
count ten (1010), the decoding gate output goes LOW and asynchronously resets all the 
flip-flops.

The resulting timing diagram is shown in Figure 9–9(b). Notice that there is a glitch 
on the Q1 waveform. The reason for this glitch is that Q1 must first go HIGH before 
the count of ten can be decoded. Not until several nanoseconds after the counter goes 
to  the count of ten does the output of the decoding gate go LOW (both inputs are 
HIGH). Thus, the counter is in the 1010 state for a short time before it is reset to 0000, 
thus producing the glitch on Q1 and the resulting glitch on the CLR line that resets the 
counter.

Other truncated sequences can be implemented in a similar way, as Example 9–2 
shows.

A counter can have 2n states, where 
n is the number of flip-flops.

The maximum clock frequency is

fmax =
1

tp(tot)
=

1

40 ns
= 25 MHz

The counter should be operated below this frequency to avoid problems due to the 
propagation delay.

Related Problem*

Show the timing diagram if all of the flip-flops in Figure 9–8(a) are positive edge-
triggered.

*Answers are at the end of the chapter.
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1 2 3 4 5 6 7 8 9 10

Q0

Q1

Q2

Q3

CLK

(b)

CLR

10 decoder

CLK C C C C

Q0 Q1 Q2 Q3

FF0 FF1 FF2 FF3

(a)

D0 D1 D2 D3

CLRCLRCLRCLR

CLR

Glitch

Glitch

Q0 Q1 Q2 Q3

FIGURE 9–9  An asynchronously clocked decade counter with asynchronous recycling.

EXAMPLE 9–2

Show how an asynchronous counter with J-K flip-flops can be implemented having a modulus of twelve with a straight 
binary sequence from 0000 through 1011.

Solution

Since three flip-flops can produce a maximum of eight states, four flip-flops are required to produce any modulus greater 
than eight but less than or equal to sixteen.

When the counter gets to its last state, 1011, it must recycle back to 0000 rather than going to its normal next state of 
1100, as illustrated in the following sequence chart:

Normal next state

Recycles

Observe that Q0 and Q1 both go to 0 anyway, but Q2 and Q3 must be forced to 0 on the twelfth clock pulse. Figure 9–10(a) 
shows the modulus-12 counter. The NAND gate partially decodes count twelve (1100) and resets flip-flop 2 and flip-flop 3. 

	 Q3	 Q2	 Q1	 Q0

	 0	 0	 0	 0
	 # 	 # 	 # 	 #
	 # 	 # 	 # 	 #
	 # 	 # 	 # 	 #
	 1	 0	 1	 1
	 1	 1	 0	 0
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Thus, on the twelfth clock pulse, the counter is forced to recycle from count eleven to count zero, as shown in the timing 
diagram of Figure 9–10(b). (It is in count twelve for only a few nanoseconds before it is reset by the glitch on CLR.)

(a)

12 decoder

Q0

FF0

C C C

Q1 Q2 Q3

HIGH

CLK

FF1 FF2 FF3

C

J0

K0

J1

K1

J2

K2

J3

K3

CLR CLR CLR CLR

CLR

1 2 3 4 5 6 7 8 9 10 11 12

Q0

Q1

Q2

Q3

Decoder
output
(CLR)

Glitch

Glitch

CLK

(b)

fg08_00700

FIGURE 9–10  Asynchronously clocked modulus-12 counter with asynchronous recycling.

Related Problem

How can the counter in Figure 9–10(a) be modified to make it a modulus-13 counter? 

Implementation: 4-Bit Asynchronous Binary Counter

Fixed-Function Device    The 74HC93 is an example of a specific integrated circuit asyn-
chronous counter. This device actually consists of a single flip-flop (CLK A) and a 3-bit asyn-
chronous counter (CLK B). This arrangement is for flexibility. It can be used as a divide-by-2 
device if only the single flip-flop is used, or it can be used as a modulus-8 counter if only the 
3-bit counter portion is used. This device also provides gated reset inputs, RO(1) and RO(2). 
When both of these inputs are HIGH, the counter is reset to the 0000 state CLR.

Additionally, the 74HC93 can be used as a 4-bit modulus-16 counter (counts 0 through 
15) by connecting the Q0 output to the CLK B input as shown by the logic symbol in 
Figure 9–11(a). It can also be configured as a decade counter (counts 0 through 9) with 
asynchronous recycling by using the gated reset inputs for partial decoding of count ten, as 
shown by the logic symbol in Figure 9–11(b).
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Programmable Logic Device (PLD)    The VHDL code for a generic 4-bit asynchronous 
binary counter using J-K flip flops with preset (PRN) and clear (CLRN) inputs is as 
follows:

C

RO(2)

RO(1)

CLK  A

CCLK  B

Q0 Q1 Q2 Q3

(b) 74HC93 connected as a decade counter 

CTR DIV 10C

RO(2)

RO(1)

CLK  A

CCLK  B

Q0 Q1 Q2 Q3

(a) 74HC93 connected as a modulus-16 counter 

CTR DIV 16

FIGURE 9–11  Two configurations of the 74HC93 asynchronous counter. (The qualifying 
label, CTR DIV n, indicates a counter with n states.)

Section 9–2  Checkup

	 1.	What does the term asynchronous mean in relation to counters?

	 2.	How many states does a modulus-14 counter have? What is the minimum number of 
flip-flops required?

9–3  Synchronous Counters

The term synchronous refers to events that have a fixed time relationship with each other. 
A synchronous counter is one in which all the flip-flops in the counter are clocked at the 
same time by a common clock pulse. J-K flip-flops are used to illustrate most synchronous 
counters. D flip-flops can also be used but generally require more logic because of having 
no direct toggle or no-change states.

library ieee;
use ieee.std_logic_1164.all;

entity AsyncFourBitBinCntr is
  port (Clock, Clr: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);
end entity AsyncFourBitBinCntr;

architecture LogicOperation of AsyncFourBitBinCntr is
component jkff is
  port (J, K, Clk, PRN, CLRN: in std_logic; Q: out std_logic);
end component jkff;

begin
  FF0: jkff port map(J=7‘1’, K=7‘1’, Clk=7Clock,  CLRN=7Clr, PRN=7‘1’, Q=7Q0);
  FF1: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q0, CLRN=7Clr, PRN=7‘1’, Q=7Q1);
  FF2: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q1, CLRN=7Clr, PRN=7‘1’, Q=7Q2);
  FF3: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q2, CLRN=7Clr, PRN=7‘1’, Q=7Q3);
end architecture LogicOperation;

J-K flip-flop component 
declaration

Inputs and outputs declared

Instantiations define 
how each flip-flop is 
connected.

t
s
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508	 Counters

After completing this section, you should be able to

u	 Describe the operation of a 2-bit synchronous binary counter

u	 Describe the operation of a 3-bit synchronous binary counter

u	 Describe the operation of a 4-bit synchronous binary counter

u	 Describe the operation of a synchronous decade counter

u	 Develop counter timing diagrams

A 2-Bit Synchronous Binary Counter

Figure 9–12 shows a 2-bit synchronous binary counter. Notice that an arrangement differ-
ent from that for the asynchronous counter must be used for the J1 and K1 inputs of FF1 
in order to achieve a binary sequence. A D flip-flop implementation is shown in part (b). 

J1 Q1

K1

J0

Q1

Q0

K0

HIGH

CLK

C C

FF1FF0

(a) J-K flip-flop

FIGURE 9–12  2-bit synchronous binary counters.

Q1
D0

D1
Q0

CLK

C C

(b) D flip-flop

The operation of a J-K flip-flop synchronous counter is as follows: First, assume that the 
counter is initially in the binary 0 state; that is, both flip-flops are RESET. When the positive 
edge of the first clock pulse is applied, FF0 will toggle and Q0 will therefore go HIGH. What 
happens to FF1 at the positive-going edge of CLK1? To find out, let’s look at the input con-
ditions of FF1. Inputs J1 and K1 are both LOW because Q0, to which they are connected, has 
not yet gone HIGH. Remember, there is a propagation delay from the triggering edge of the 
clock pulse until the Q output actually makes a transition. So, J = 0 and K = 0 when the 
leading edge of the first clock pulse is applied. This is a no-change condition, and therefore 
FF1 does not change state. A timing detail of this portion of the counter operation is shown 
in Figure 9–13(a).

The clock input goes to each flip-flop 
in a synchronous counter.

Propagation delay through FF0Q0
 1

 0

(a)

Propagation delay through FF0

1

(c)

Propagation delay through FF0

(b)

Propagation delay through FF1

Propagation delay through FF0

(d)

Propagation delay through FF1

 0

Q0
 1

 0

Q0
 1
 0

Q1
 1
 0

Q0
 1

 0

Q1
 1
 0

CLK3

CLK1

CLK4

CLK2

Q1

Q1

fg08_01200

FIGURE 9–13  Timing details for the 2-bit synchronous counter operation (the 
propagation delays of both flip-flops are assumed to be equal).
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	 Synchronous Counters	 509

After CLK1, Q0 = 1 and Q1 = 0 (which is the binary 1 state). When the leading edge 
of CLK2 occurs, FF0 will toggle and Q0 will go LOW. Since FF1 has a HIGH (Q0 = 1) on 
its J1 and K1 inputs at the triggering edge of this clock pulse, the flip-flop toggles and Q1 
goes HIGH. Thus, after CLK2, Q0 = 0 and Q1 = 1 (which is a binary 2 state). The timing 
detail for this condition is shown in Figure 9–13(b).

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0 = 1), 
and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 = 0). After 
this triggering edge, Q0 = 1 and Q1 = 1 (which is a binary 3 state). The timing detail is 
shown in Figure 9–13(c).

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both have a toggle 
condition on their J and K inputs. The timing detail is shown in Figure 9–13(d). The counter 
has now recycled to its original state, binary 0. Examination of the D flip-flop counter in 
Figure 9–12(b) will show the timing diagram is the same as for the J-K flip-flop counter.

The complete timing diagram for the counters in Figure 9–12 is shown in Figure 9–14. 
Notice that all the waveform transitions appear coincident; that is, the propagation delays are 
not indicated. Although the delays are an important factor in the synchronous counter opera-
tion, in an overall timing diagram they are normally omitted for simplicity. Major waveform 
relationships resulting from the normal operation of a circuit can be conveyed completely 
without showing small delay and timing differences. However, in high-speed digital circuits, 
these small delays are an important consideration in design and troubleshooting.

CLK

Q0

Q1

Q2

1 2 3 4 5 6 7 8

fg08_01500

FIGURE 9–16  Timing diagram for the counter of Figure 9–15.

A 3-Bit Synchronous Binary Counter

A 3-bit synchronous binary counter is shown in Figure 9–15, and its timing diagram is 
shown in Figure 9–16. You can understand this counter operation by examining its sequence 
of states as shown in Table 9–3.

Q0

CLK

J0

K0

C

HIGH

FF0

Q1
J1

K1

C

FF1

Q2J2

K2

C

FF2Q0Q1

fg08_01400

FIGURE 9–15  A 3-bit synchronous binary counter. Open file F09-15 to verify the operation.

Q0

CLK

Q1

1 2 3 4

fg08_01300

FIGURE 9–14  Timing diagram 
for the counters of Figure 9–12.
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510	 Counters

First, let’s look at Q0. Notice that Q0 changes on each clock pulse as the counter pro-
gresses from its original state to its final state and then back to its original state. To produce 
this operation, FF0 must be held in the toggle mode by constant HIGHs on its J0 and K0 
inputs. Notice that Q1 goes to the opposite state following each time Q0 is a 1. This change 
occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the counter to recycle. 
To produce this operation, Q0 is connected to the J1 and K1 inputs of FF1. When Q0 is a 1 
and a clock pulse occurs, FF1 is in the toggle mode and therefore changes state. The other 
times, when Q0 is a 0, FF1 is in the no-change mode and remains in its present state.

Next, let’s see how FF2 is made to change at the proper times according to the binary 
sequence. Notice that both times Q2 changes state, it is preceded by the unique condi-
tion in which both Q0 and Q1 are HIGH. This condition is detected by the AND gate and 
applied to the J2 and K2 inputs of FF2. Whenever both Q0 and Q1 are HIGH, the output of 
the AND gate makes the J2 and K2 inputs of FF2 HIGH, and FF2 toggles on the following 
clock pulse. At all other times, the J2 and K2 inputs of FF2 are held LOW by the AND gate 
output, and FF2 does not change state.

The analysis of the counter in Figure 9–15 is summarized in Table 9–4.

TABLE 9–3

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 (recycles) 0 0 0

InfoNote

The TSC or time stamp counter in 
some microprocessors is used for 
performance monitoring, which 
enables a number of parameters 
important to the overall perform-
ance of a system to be determined 
exactly. By reading the TSC before 
and after the execution of a proce-
dure, the precise time required for 
the procedure can be determined 
based on the processor cycle time. 
In this way, the TSC forms the 
basis for all time evaluations in 
connection with optimizing system 
operation. For example, it can 
be accurately determined which 
of two or more programming 
sequences is more efficient. This 
is a very useful tool for compiler 
developers and system program-
mers in producing the most effec-
tive code.

TABLE 9–4

Summary of the analysis of the counter in Figure 9–15.

Outputs J-K Inputs At the Next Clock Pulse

Clock Pulse Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 FF2 FF1 FF0

Initially 0 0 0 0 0 0 0 1 1 NC* NC Toggle
1 0 0 1 0 0 1 1 1 1 NC Toggle Toggle
2 0 1 0 0 0 0 0 1 1 NC NC Toggle
3 0 1 1 1 1 1 1 1 1 Toggle Toggle Toggle
4 1 0 0 0 0 0 0 1 1 NC NC Toggle
5 1 0 1 0 0 1 1 1 1 NC Toggle Toggle
6 1 1 0 0 0 0 0 1 1 NC NC Toggle
7 1 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

Counter recycles back to 000.

*NC indicates No Change.

A 4-Bit Synchronous Binary Counter

Figure 9–17(a) shows a 4-bit synchronous binary counter, and Figure 9–17(b) shows its 
timing diagram. This particular counter is implemented with negative edge-triggered flip-
flops. The reasoning behind the J and K input control for the first three flip-flops is the 
same as previously discussed for the 3-bit counter. The fourth stage, FF3, changes only 
twice in the sequence. Notice that both of these transitions occur following the times that 
Q0, Q1, and Q2 are all HIGH. This condition is decoded by AND gate G2 so that when a 
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clock pulse occurs, FF3 will change state. For all other times the J3 and K3 inputs of FF3 
are LOW, and it is in a no-change condition.

A 4-Bit Synchronous Decade Counter

As you know, a BCD decade counter exhibits a truncated binary sequence and goes from 
0000 through the 1001 state. Rather than going from the 1001 state to the 1010 state, it 
recycles to the 0000 state. A synchronous BCD decade counter is shown in Figure 9–18. 
The timing diagram for the decade counter is shown in Figure 9–19.

CLK

FF0 FF2 FF3FF1 Q0 Q1 Q2

Q3

Q1Q0 G1 G2

Q2

J0

K0

J1

K1

J2

K2

J3

K3

C

(a)

C C C

Q0 Q1

(b)

CLK

Q0

Q1

Q2

Q3

Q0 Q1 Q0 Q1 Q2 Q0 Q1 Q0 Q1 Q2

HIGH

fg08_01600

FIGURE 9–17  A 4-bit synchronous binary counter and timing diagram. Times where the 
AND gate outputs are HIGH are indicated by the shaded areas.

A decade counter has ten states.

Q0

CLK

J0

K0

C

HIGH

FF0

Q1

C

FF1

Q2

C

FF2

J1

K1

J2

K2

C

J3

K3

Q3

FF3

Q3

fg08_01700

FIGURE 9–18  A synchronous BCD decade counter. Open file F09-18 to verify operation.
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512	 Counters

The counter operation is shown by the sequence of states in Table 9–5. First, notice that 
FF0 (Q0) toggles on each clock pulse, so the logic equation for its J0 and K0 inputs is

J0 = K0 = 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.

1 2 3 4 5CLK 6 7 8

Q0
10 10 10 10 0

Q1
10 10 1010

Q2
00 11 1100

9 10

Q3
00 00

0

0

1 1000

1

0

0

0

0

0

0

0

fg08_01800

FIGURE 9–19  Timing diagram for the BCD decade counter (Q0 is the LSB).

TABLE 9–5

States of a BCD decade counter.

Clock Pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 (recycles) 0 0 0 0

Next, notice in Table 9–5 that FF1 (Q1) changes on the next clock pulse each time 
Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1 = K1 = Q0Q3

This equation is implemented by ANDing Q0 and Q3 and connecting the gate output to the 
J1 and K1 inputs of FF1.

Flip-flop 2 (Q2) changes on the next clock pulse each time both Q0 = 1 and Q1 = 1. 
This requires an input logic equation as follows:

J2 = K2 = Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output to the 
J2 and K2 inputs of FF2.

Finally, FF3 (Q3) changes to the opposite state on the next clock pulse each time Q0 = 1, 
Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q3 = 1 (state 9). The equation for 
this is as follows:

J3 = K3 = Q0Q1Q2 + Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and K3 inputs of 
FF3 as shown in the logic diagram in Figure 9–18. Notice that the differences between this 
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	 Synchronous Counters	 513

decade counter and the modulus-16 binary counter in Figure 9–17(a) are the Q0Q3 AND 
gate, the Q0Q3 AND gate, and the OR gate; this arrangement detects the occurrence of the 
1001 state and causes the counter to recycle properly on the next clock pulse.  

Implementation: 4-Bit Synchronous Binary Counter

Fixed-Function Device    The 74HC163 is an example of an integrated circuit 4-bit syn-
chronous binary counter. A logic symbol is shown in Figure 9–20 with pin numbers in 
parentheses. This counter has several features in addition to the basic functions previously 
discussed for the general synchronous binary counter.

CLR

Q0

CTR DIV 16

Q1 Q2 Q3

D3D2D1D0

(1)

LOAD
(9)

ENP
(7)

ENT
(10)

CCLK
(2)

(3) (4) (5) (6)

(14) (13) (12) (11)

TC = 15
(15)

RCO

Data outputs

Data inputs

fg08_01900

FIGURE 9–20  The 74HC163 4-bit synchronous binary counter. (The qualifying label CTR 
DIV 16 indicates a counter with sixteen states.)

First, the counter can be synchronously preset to any 4-bit binary number by applying 
the proper levels to the parallel data inputs. When a LOW is applied to the LOAD input, 
the counter will assume the state of the data inputs on the next clock pulse. Thus, the coun-
ter sequence can be started with any 4-bit binary number.

Also, there is an active-LOW clear input (CLR), which synchronously resets all four 
flip-flops in the counter. There are two enable inputs, ENP and ENT. These inputs must 
both be HIGH for the counter to sequence through its binary states. When at least one 
input is LOW, the counter is disabled. The ripple clock output (RCO) goes HIGH when 
the counter reaches the last state in its sequence of fifteen, called the terminal count 
(TC = 15). This output, in conjunction with the enable inputs, allows these counters to be 
cascaded for higher count sequences.

Figure 9–21 shows a timing diagram of this counter being preset to twelve (1100) and 
then counting up to its terminal count, fifteen (1111). Input D0 is the least significant input 
bit, and Q0 is the least significant output bit.

Let’s examine this timing diagram in detail. This will aid you in interpreting timing 
diagrams in this chapter or on manufacturers’ data sheets. To begin, the LOW level pulse 
on the CLR input causes all the outputs (Q0, Q1, Q2, and Q3) to go LOW.

Next, the LOW level pulse on the LOAD input synchronously enters the data on the 
data inputs (D0, D1, D2, and D3) into the counter. These data appear on the Q outputs at the 
time of the first positive-going clock edge after LOAD goes LOW. This is the preset opera-
tion. In this particular example, Q0 is LOW, Q1 is LOW, Q2 is HIGH, and Q3 is HIGH. 
This, of course, is a binary 12 (Q0 is the LSB).

The counter now advances through states 13, 14, and 15 on the next three positive-
going clock edges. It then recycles to 0, 1, 2 on the following clock pulses. Notice that 
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514	 Counters

both ENP and ENT inputs are HIGH during the state sequence. When ENP goes LOW, the 
counter is inhibited and remains in the binary 2 state.

Programmable Logic Device (PLD)    The VHDL code for a 4-bit synchronous decade 
counter using J-K flip flops is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity FourBitSynchDecadeCounter is
  port (Clk: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);
end entity FourBitSynchDecadeCounter;

architecture LogicOperation of FourBitSynchDecadeCounter is

component jkff is
  port (J, K, Clk: in std_logic; Q: out std_logic);
end component jkff;

signal J1, J2, J3: std_logic;
begin
J1 6= Q0 and not Q3;
J2 6= Q1 and Q0;
J3 6= (Q2 and J2) or (Q0 and Q3);

FF0: jkff port map (J =7 ‘1’, K =7 ‘1’, Clk =7 Clk, Q =7 Q0);
FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);
FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);
FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);
end architecture LogicOperation;

Input and outputs 
declared

Instantiations define 
connections for each 
flip-flop.

Component declaration for 
the J-K flip-flop

D0

Data
inputs

Outputs

D1

D2

D3

Count Inhibit

Clear   Preset

12 13 14 15 0 1 2

Q0

Q1

Q2

Q3

CLK

ENP

ENT

RCO

CLR

LOAD

fg08_02000

FIGURE 9–21  Timing example for a 74HC163.

t
s

Boolean expressions for J input 
of each flip-flop (J = K)

t
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Section 9–3  Checkup

	 1.	How does a synchronous counter differ from an asynchronous counter?

	 2.	Explain the function of the preset feature of counters such as the 74HC163.

	 3.	Describe the purpose of the ENP and ENT inputs and the RCO output for the 
74HC163 counter.

9–4  Up/Down Synchronous Counters

An up/down counter is one that is capable of progressing in either direction through a 
certain sequence. An up/down counter, sometimes called a bidirectional counter, can have 
any specified sequence of states. A 3-bit binary counter that advances upward through 
its sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it goes through the 
sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of up/down 
sequential operation.

After completing this section, you should be able to

u	 Explain the basic operation of an up/down counter

u	 Discuss the 74HC190 up/down decade counter

In general, most up/down counters can be reversed at any point in their sequence. For 
instance, the 3-bit binary counter can be made to go through the following sequence:

	 UP	 UP

0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.

	 DOWN	 DOWN

Table 9–6 shows the complete up/down sequence for a 3-bit binary counter. The arrows 
indicate the state-to-state movement of the counter for both its UP and its DOWN modes 
of operation. An examination of Q0 for both the up and down sequences shows that FF0 
toggles on each clock pulse. Thus, the J0 and K0 inputs of FF0 are

J0 = K0 = 1

¸̊ ˚̋ ˚̊ ˛ ¸˚˝˚˛

¸˝˛ ¸˝˛

TABLE 9–6

Up/Down sequence for a 3-bit binary counter.

Clock Pulse Up Q2 Q1 Q0 Down

0  0 0 0



1  0 0 1



2  0 1 0



3  0 1 1



4  1 0 0



5  1 0 1



6  1 1 0



7  1 1 1



For the up sequence, Q1 changes state on the next clock pulse when Q0 = 1. For the down 
sequence, Q1 changes on the next clock pulse when Q0 = 0. Thus, the J1 and K1 inputs of 
FF1 must equal 1 under the conditions expressed by the following equation:

J1 = K1 = (Q0
# UP) + (Q0

# DOWN)
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516	 Counters

For the up sequence, Q2 changes state on the next clock pulse when Q0 = Q1 = 1. For 
the down sequence, Q2 changes on the next clock pulse when Q0 = Q1 = 0. Thus, the 
J2 and K2 inputs of FF2 must equal 1 under the conditions expressed by the following 
equation:

J2 = K2 = (Q0
# Q1

# UP) + (Q0
# Q1

# DOWN)

Each of the conditions for the J and K inputs of each flip-flop produces a toggle at the 
appropriate point in the counter sequence.

Figure 9–22 shows a basic implementation of a 3-bit up/down binary counter using 
the logic equations just developed for the J and K inputs of each flip-flop. Notice that the 
UP/DOWN control input is HIGH for UP and LOW for DOWN.

Q2

FF0

J0

K0

C

HIGH

CLK

Q1

C

J1

K1

Q1

Q0

Q0

FF1
Q2

C

J2

K2

FF2

UP/DOWN

Q0 • UP

Q0 • DOWN
DOWN

UP

fg08_02100

FIGURE 9–22  A basic 3-bit up/down synchronous counter. Open file F09-22 to verify 
operation.

EXAMPLE 9–3

Show the timing diagram and determine the sequence of a 4-bit synchronous binary  
up/down counter if the clock and UP/DOWN control inputs have waveforms as shown 
in Figure 9–23(a). The counter starts in the all-0s state and is positive edge-triggered.

(b)

CLK

Q0

Q1

Q2

Q3

0 1

0

0

0

0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 1 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

Up Up

(a)

Down Down
UP/ DOWN

fg08_02200

FIGURE 9–23 
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Solution

The timing diagram showing the Q outputs is shown in Figure 9–23(b). From these 
waveforms, the counter sequence is as shown in Table 9–7.

TABLE 9–7

Q3 Q2 Q1 Q0

0 0 0 0
0 0 0 1
0 0 1 0 UP
0 0 1 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1 DOWN
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 1 UP
0 0 1 0
0 0 0 1

DOWN
0 0 0 0

¸
˚
˝
˚
˛

¸
˚
˝
˚
˛

¸
˝
˛

¸
˝
˛

Related Problem

Show the timing diagram if the UP/DOWN  control waveform in Figure 9–23(a) is 
inverted.  

Implementation: Up/Down Decade Counter

Fixed-Function Device    Figure 9–24 shows a logic diagram for the 74HC190, an example 
of an integrated circuit up/down synchronous decade counter. The direction of the count is 
determined by the level of the up/down input (D/U). When this input is HIGH, the counter 
counts down; when it is LOW, the counter counts up. Also, this device can be preset to any 
desired BCD digit as determined by the states of the data inputs when the LOAD input 
is LOW.

(10)(15)

CTEN

Q0

CTR DIV 10

Q1 Q2 Q3

D3D2D1D0

(4)

D/U
(5)

LOAD
(11)

CLK
(14)

C

(1) (9)

(3) (2) (6) (7)

(12)
MAX/MIN

(13)
RCO

fg08_02300
FIGURE 9–24  The 74HC190 up/down synchronous decade counter.
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library ieee;
use ieee.std_logic_1164.all;

entity UpDnDecadeCntr is
  port (UPDN, Clk: in std_logic; Q0, Q1, Q2, Q3: buffer std_logic);
end entity UpDnDecadeCntr;

architecture LogicOperation of UpDnDecadeCntr is

component jkff is
  port (J, K, Clk: in std_logic; Q: buffer std_logic);
end component jkff;

The MAX/MIN output produces a HIGH pulse when the terminal count nine (1001) 
is reached in the UP mode or when the terminal count zero (0000) is reached in the 
DOWN mode. The MAX/MIN output, the ripple clock output (RCO), and the count enable 
input (CTEN) are used when cascading counters. (Cascaded counters are discussed in 
Section 9–6.)

Figure 9–25 is a timing diagram that shows the 74HC190 counter preset to seven 
(0111) and then going through a count-up sequence followed by a count-down sequence. 
The MAX/MIN output is HIGH when the counter is in either the all-0s state (MIN) or the 
1001 state (MAX).

D/U

CTEN

D0

Data
inputs

Data
outputs

D1

D2

D3

Count up Inhibit

7 8 9 0 1

Q0

Q1

Q2

Q3

Load

Count down

2 2 1 0 9 8 7

CLK

RCO

MAX /MIN

LOAD

2

fg08_02400

FIGURE 9–25  Timing example for a 74HC190.

Programmable Logic Device (PLD)    A VHDL code for an up/down decade counter using 
J-K flip-flops is as follows:

UPDN:	 Counter direction
Clk:	 System clock
Q0-Q3:	 Counter output

J-K flip flop components
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Section 9–4  Checkup

	 1.	A 4-bit up/down binary counter is in the DOWN mode and in the 1010 state. On the 
next clock pulse, to what state does the counter go?

	 2.	What is the terminal count of a 4-bit binary counter in the UP mode? In the DOWN 
mode? What is the next state after the terminal count in the DOWN mode?

9–5  Design of Synchronous Counters

In this section, you will learn the six steps to design a counter (state machine). As you 
learned in Section 9–1, sequential circuits can be classified into two types: (1) those in 
which the output or outputs depend only on the present internal state (Moore state machines) 
and (2) those in which the output or outputs depend on both the present state and the input 
or inputs (Mealy state machines). This section is recommended for those who want an 
introduction to counter design or to state machine design in general. It is not a prerequisite 
for any other material.

After completing this section, you should be able to

u	 Develop a state diagram for a given sequence

u	 Develop a next-state table for a specified counter sequence

u	 Create a flip-flop transition table

u	 Use the Karnaugh map method to derive the logic requirements for a synchronous 
counter

u	 Implement a counter to produce a specified sequence of states

Step 1: State Diagram

The first step in the design of a state machine (counter) is to create a state diagram. A state 
diagram shows the progression of states through which the counter advances when it is 

function UpDown(A, B, C, D: in std_logic)
  return std_logic is
begin
  return((A and B) or (C and D));
end function UpDown;

signal J1Up, J1Dn, J1, J2, J3: std_logic;

begin
  J1Up 6= UPDN and Q0; J1Dn <= not UPDN and not Q0;
  UpDn1: J1 6= UpDown(UPDN, Q0, not UPDN, not Q0);
  UpDn2: J2 6= UpDown(J1Up, Q1, J1Dn, not Q1);
  UpDn3: J3 6= UpDown(J1Up and Q1, Q2, J1Dn and not Q1, not Q2);

  FF0: jkff port map (J =7‘1’, K =7‘1’, Clk =7 Clk, Q =7 Q0);
  FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);
  FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);
  FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);
end architecture LogicOperation;

Identifiers J1, J2, and J3 complete the 
up/down logic applied to the J and K 
inputs of flip-flop stages FF0-FF1. 
Using a function to perform operations 
common to multiple tasks simplifies the 
overall code design and implementation.

J1Up: Initial Up logic for FF1.
J1Dn: Initial Down logic for FF1.
J1-J3: Variable for combined UpDown applied to FF1-FF3.t

Flip-flop stages FF0-FF3 complete the  
Up/Down counter.

t

Function UpDown is a helper function performing the common 
logic between stages performed by the two AND gates applied 
to the OR gate supplying the J K inputs of the next stage. See 
Figure 9–22.

u
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Step 2: Next-State Table

Once the sequential circuit is defined by a state diagram, the second step is to derive a 
next-state table, which lists each state of the counter (present state) along with the cor-
responding next state. The next state is the state that the counter goes to from its present 
state upon application of a clock pulse. The next-state table is derived from the state 
diagram and is shown in Table 9–8 for the 3-bit Gray code counter. Q0 is the least sig-
nificant bit.

TABLE 9–8

Next-state table for 3-bit Gray code counter.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1
0 0 1 0 1 1
0 1 1 0 1 0
0 1 0 1 1 0
1 1 0 1 1 1
1 1 1 1 0 1
1 0 1 1 0 0
1 0 0 0 0 0

TABLE 9–9

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X
0 ¡ 1 1 X
1 ¡ 0 X 1
1 ¡ 1 X 0

QN: present state
QN + 1: next state
X: “don’t care”

Step 3: Flip-Flop Transition Table

Table 9–9 is a transition table for the J-K flip-flop. All possible output transitions are 
listed by showing the Q output of the flip-flop going from present states to next states. 
QN is the present state of the flip-flop (before a clock pulse) and QN + 1 is the next state 
(after a clock pulse). For each output transition, the J and K inputs that will cause the 
transition to occur are listed. An X indicates a “don’t care” (the input can be either a 1 
or a 0).

To design the counter, the transition table is applied to each of the flip-flops in the 
counter, based on the next-state table (Table 9–8). For example, for the present state 000, 

001

011

010

110

100

101

111

000

fg08_02600

FIGURE 9–26  State diagram for a 3-bit Gray code counter.

clocked. As an example, Figure 9–26 is a state diagram for a basic 3-bit Gray code counter. 
This particular circuit has no inputs other than the clock and no outputs other than the 
outputs taken off each flip-flop in the counter. You may wish to review the coverage of the 
Gray code in Chapter 2 at this time.
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Q0 goes from a present state of 0 to a next state of 1. To make this happen, J0 must be a 
1 and you don’t care what K0 is (J0 = 1, K0 = X), as you can see in the transition table 
(Table 9–9). Next, Q1 is 0 in the present state and remains a 0 in the next state. For this 
transition, J1 = 0 and K1 = X. Finally, Q2 is 0 in the present state and remains a 0 in the 
next state. Therefore, J2 = 0 and K2 = X. This analysis is repeated for each present state 
in Table 9–8.

Step 4: Karnaugh Maps

Karnaugh maps can be used to determine the logic required for the J and K inputs of each 
flip-flop in the counter. There is a Karnaugh map for the J input and a Karnaugh map for 
the K input of each flip-flop. In this design procedure, each cell in a Karnaugh map repre-
sents one of the present states in the counter sequence listed in Table 9–8.

From the J and K states in the transition table (Table 9–9) a 1, 0, or X is entered into each 
present-state cell on the maps depending on the transition of the Q output for a particular 
flip-flop. To illustrate this procedure, two sample entries are shown for the J0 and the K0 
inputs to the least significant flip-flop (Q0) in Figure 9–27.

0 1

00

01

11

10

Q0
Q2Q1

X

1

J0 map

0 1

00

01

11

10

Q0
Q2Q1

1

X

K0 map

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

Output
Transitions

Flip-Flop
Inputs

QN QN+1

0
0
1
1

0
1
0
1

0
1
X
X

KJ

Present State Next State

Q2 Q2Q1 Q1Q0 Q0

0 1
0 1
0 0
1 0
1 1
1 1
1 0

0 00
0
1
1
1
1
0
0

0 1
0 1
0 0
1 0

0
1
1
1

1 11
1 10
1 00
0 00

For the present state 000, Q0
makes a transition from 0 to 1
to the next state.

For the present state 101, Q0
makes a transition from 1 to 0
to the next state.

Next-state table

Flip-flop transition table

X
X
1
0

FIGURE 9–27  Examples of the mapping procedure for the counter sequence 
represented in Table 9–8 and Table 9–9.

The completed Karnaugh maps for all three flip-flops in the counter are shown in 
Figure 9–28. The cells are grouped as indicated and the corresponding Boolean expres-
sions for each group are derived.
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Step 5: Logic Expressions for Flip-Flop Inputs

From the Karnaugh maps of Figure 9–28 you obtain the following expressions for the J and 
K inputs of each flip-flop:

 J0 = Q2Q1 + Q2Q1 = Q2 � Q1

 K0 = Q2Q1 + Q2Q1 = Q2 � Q1

 J1 = Q2Q0

 K1 = Q2Q0

 J2 = Q1Q0

 K2 = Q1Q0

Step 6: Counter Implementation

The final step is to implement the combinational logic from the expressions for the J and 
K inputs and connect the flip-flops to form the complete 3-bit Gray code counter as shown 
in Figure 9–29.

Q2Q1

Q0

0 0

1 0

00

0 1
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Q2Q1

Q0

000

0 1

01

11

10

Q2Q1

Q0

0

00
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11

1000
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01
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Q2Q1
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0 1
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11

10

Q2Q1

Q0
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0 1
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0

0

0

0 0Q2Q0

X X

X X

X X

X X

X

X

X

X

X

X

X

XX X

X XX X
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J2 map J1 map J0 map

K2 map K1 map K0 map

Q2Q1

Q2Q1

Q2Q1Q2Q0

Q1Q0
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11

1

1

1

Q2Q1
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FIGURE 9–28  Karnaugh maps for present-state J and K inputs.
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Q1

Q2
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FIGURE 9–29  Three-bit Gray code counter. Open file F09-29 to verify operation.
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A summary of steps used in the design of the 3-bit Gray code counter follows. In gen-
eral, these steps can be applied to any state machine.

	 1.	 Specify the counter sequence and draw a state diagram.

	 2.	 Derive a next-state table from the state diagram.

	 3.	 Develop a transition table showing the flip-flop inputs required for each transition. 
The transition table is always the same for a given type of flip-flop.

	 4.	 Transfer the J and K states from the transition table to Karnaugh maps. There is a 
Karnaugh map for each input of each flip-flop.

	 5.	 Group the Karnaugh map cells to generate and derive the logic expression for each 
flip-flop input.

	 6.	 Implement the expressions with combinational logic, and combine with the flip-flops 
to create the counter.

This procedure is now applied to the design of other synchronous counters in Examples 
9–4 and 9–5.

EXAMPLE 9–4

Design a counter with the irregular binary count sequence shown in the state diagram of 
Figure 9–30. Use D flip-flops.

001
 (1)

010
 (2)

111
 (7)

101
 (5)

fg08_03000

FIGURE 9–30 

Solution

Step 1:	 The state diagram is as shown. Although there are only four states, a 3-bit 
counter is required to implement this sequence because the maximum binary 
count is seven. Since the required sequence does not include all the possible 
binary states, the invalid states (0, 3, 4, and 6) can be treated as “don’t cares” 
in the design. However, if the counter should erroneously get into an invalid 
state, you must make sure that it goes back to a valid state.

Step 2:	 The next-state table is developed from the state diagram and is given in 
Table 9–10.

TABLE 9–10

Next-state table.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 1 0 1 0
0 1 0 1 0 1
1 0 1 1 1 1
1 1 1 0 0 1
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Step 3:	 The transition table for the D flip-flop is shown in Table 9–11.

TABLE 9–11

Transition table for a D flip-flop.

Output Transitions Flip-Flop Input

QN QN 1 1 D

0 ¡ 0 0
0 ¡ 1 1
1 ¡ 0 0
1 ¡ 1 1

Step 4:	 The D inputs are plotted on the present-state Karnaugh maps in Figure 9–31. 
Also “don’t cares” can be placed in the cells corresponding to the invalid 
states of 000, 011, 100, and 110, as indicated by the red Xs.

Q2Q1

Q0

00

0 1

01

11

10

Q2Q1

Q0

00

0 1

01

11

10

Q2Q1

Q0
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X

X

X

X
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1

X

X

X

X

0
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X

X

X

X

1

1

1

01

1

1

0

D2 map D1 map D0 mapQ2Q1

Q0

Q0

Q1 Q2

FIGURE 9–31 

Step 5:	 Group the 1s, taking advantage of as many of the “don’t care” states as pos-
sible for maximum simplification, as shown in Figure 9–31. The expression 
for each D input taken from the maps is as follows:

 D0 = Q0 + Q2

 D1 = Q1

 D2 = Q0 + Q2Q1

Step 6:	 The implementation of the counter is shown in Figure 9–32.

Q0

CLK

Q1

Q2

C C

D0 D1 D2

C

Q0 Q1

FIGURE 9–32 
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An analysis shows that if the counter, by accident, gets into one of the invalid states 
(0, 3, 4, 6), it will always return to a valid state according to the following sequences: 
0 S 3 S 4 S 7, and 6 S 1.

Related Problem

Verify the analysis that proves the counter will always return (eventually) to a valid 
state from an invalid state.

Step 2:	 The next-state table is derived from the state diagram and is shown in Table 9–12. Notice that for each present state 
there are two possible next states, depending on the UP/DOWN control variable, Y.

EXAMPLE 9–5

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up 
when an UP/DOWN control input is 1 and count down when the control input is 0.

Solution

Step 1:	 The state diagram is shown in Figure 9–33. The 1 or 0 beside each arrow indicates the state of the UP/DOWN 
control input, Y.

1

001

011

010

110

100

101

111

000

0

0
1

0

1

1

0

1

Y = 1

Y = 0

0

1
0

0

1

fg08_03300

FIGURE 9–33  State diagram for a 3-bit up/down Gray code counter.

TABLE 9–12

Next-state table for 3-bit up/down Gray code counter.

Next State

Present State Y � 0 (DOWN) Y � 1 (UP)

Q2 Q1 Q0 Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 1
0 1 1 0 0 1 0 1 0
0 1 0 0 1 1 1 1 0
1 1 0 0 1 0 1 1 1
1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 1 0 0
1 0 0 1 0 1 0 0 0

Y = UP/ DOWN control input.
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Step 3:	 The transition table for the J-K flip-flops is repeated in Table 9–13.

TABLE 9–13

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X
0 ¡ 1 1 X
1 ¡ 0 X 1
1 ¡ 1 X 0

Step 4:	 The Karnaugh maps for the J and K inputs of the flip-flops are shown in Figure 9–34. The UP/DOWN control 
input, Y, is considered one of the state variables along with Q0, Q1, and Q2. Using the next-state table, the informa-
tion in the “Flip-Flop Inputs” column of Table 9–13 is transferred onto the maps as indicated for each present state 
of the counter.
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FIGURE 9–34  J and K maps for Table 9–12. The UP/DOWN control input, Y, is treated 
as a fourth variable.

Step 5:	 The 1s are combined in the largest possible groupings, with “don’t cares” (Xs) used where possible. The groups 
are factored, and the expressions for the J and K inputs are as follows:

 J0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y   K0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y

 J1 = Q2Q0Y + Q2Q0Y   K1 = Q2Q0Y + Q2Q0Y

 J2 = Q1Q0Y + Q1Q0Y   K2 = Q1Q0Y + Q1Q0Y

Step 6:	 The J and K equations are implemented with combinational logic. This step is the Related Problem.

Related Problem

Specify the number of flip-flops, gates, and inverters that are required to implement the logic described in Step 5.
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Section 9–5  Checkup

	 1.	A flip-flop is presently in the RESET state and must go to the SET state on the next 
clock pulse. What must J and K be?

	 2.	A flip-flop is presently in the SET state and must remain SET on the next clock pulse. 
What must J and K be?

	 3.	A binary counter is in the Q3Q2Q1Q0 = 1010 state.

(a)	 What is its next state?

(b)	 What condition must exist on each flip-flop input to ensure that it goes to the 
proper next state on the clock pulse?

9–6  Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus operation. In essence, 
cascading means that the last-stage output of one counter drives the input of the next counter.

After completing this section, you should be able to

u	 Determine the overall modulus of cascaded counters

u	 Analyze the timing diagram of a cascaded counter configuration

u	 Use cascaded counters as a frequency divider

u	 Use cascaded counters to achieve specified truncated sequences

Asynchronous Cascading

An example of two asynchronous counters connected in cascade is shown in Figure 9–35 
for a 2-bit and a 3-bit ripple counter. The timing diagram is shown in Figure 9–36. Notice 
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CLK C

J1

K1

C

J2
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C

J3

Q3

K3
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J4

K4
Q1

Modulus-4 counter Modulus-8 counter

Q4

C
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HIGH HIGH

FIGURE 9–35  Two cascaded asynchronous counters (all J and K inputs are HIGH).
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FIGURE 9–36  Timing diagram for the cascaded counter configuration of Figure 9–35.
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that the final output of the modulus-8 counter, Q4, occurs once for every 32 input clock 
pulses. The overall modulus of the two cascaded counters is 4 * 8 = 32; that is, they act 
as a divide-by-32 counter.

Synchronous Cascading

When operating synchronous counters in a cascaded configuration, it is necessary to use 
the count enable and the terminal count functions to achieve higher-modulus operation. 
On some devices the count enable is labeled simply CTEN (or some other designation 
such as G), and terminal count (TC) is analogous to ripple clock output (RCO) on some IC 
counters.

Figure 9–37 shows two decade counters connected in cascade. The terminal count (TC) 
output of counter 1 is connected to the count enable (CTEN) input of counter 2. Counter 2 
is inhibited by the LOW on its CTEN input until counter 1 reaches its last, or terminal, state 
and its terminal count output goes HIGH. This HIGH now enables counter 2, so that when 
the first clock pulse after counter 1 reaches its terminal count (CLK10), counter 2 goes 
from its initial state to its second state. Upon completion of the entire second cycle of coun-
ter 1 (when counter 1 reaches terminal count the second time), counter 2 is again enabled 
and advances to its next state. This sequence continues. Since these are decade counters, 
counter 1 must go through ten complete cycles before counter 2 completes its first cycle. 
In other words, for every ten cycles of counter 1, counter 2 goes through one cycle. Thus, 
counter 2 will complete one cycle after one hundred clock pulses. The overall modulus of 
these two cascaded counters is 10 * 10 = 100.

The overall modulus of cascaded 
counters is equal to the product of 
the individual moduli.

InfoNote

The time stamp counter (TSC), 
mentioned in the last InfoNote, is 
a 64-bit counter. It is interesting 
to observe that if this counter (or 
any full-modulus 64-bit counter) 
is clocked at a frequency of 1 GHz, 
it will take 583 years for it to go 
through all of its states and reach 
its terminal count. In contrast, 
a 32-bit full-modulus counter 
will exhaust all of its states in 
approximately 4.3 seconds when 
clocked at 1 GHz. The difference is 
astounding.
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CLK

TC

HIGH

CTEN

Q0

CTR DIV 10

Q1 Q2 Q3
C

CTEN TC

ƒin

10

ƒin

100

ƒin

C

Counter 1 Counter 2

fg08_03800

FIGURE 9–37  A modulus-100 counter using two cascaded decade counters.
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fg08_03900

FIGURE 9–38  Three cascaded decade counters forming a divide-by-1000 frequency 
divider with intermediate divide-by-10 and divide-by-100 outputs.

When viewed as a frequency divider, the circuit of Figure 9–37 divides the input clock 
frequency by 100. Cascaded counters are often used to divide a high-frequency clock sig-
nal to obtain highly accurate pulse frequencies. Cascaded counter configurations used for 
such purposes are sometimes called countdown chains. For example, suppose that you have 
a basic clock frequency of 1 MHz and you wish to obtain 100 kHz, 10 kHz, and 1 kHz; 
a series of cascaded decade counters can be used. If the 1 MHz signal is divided by 10, 
the output is 100 kHz. Then if the 100 kHz signal is divided by 10, the output is 10 kHz. 
Another division by 10 produces the 1 kHz frequency. The general implementation of this 
countdown chain is shown in Figure 9–38.
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EXAMPLE 9–6

Determine the overall modulus of the two cascaded counter configurations in Figure 9–39.

CTR DIV 8 CTR DIV 12 CTR DIV 16

(a)

CTR DIV 10 CTR DIV 4 CTR DIV 7

(b)

CTR DIV 5Input Output

Input Output

fg08_04000

FIGURE 9–39 

Solution

In Figure 9–39(a), the overall modulus for the 3-counter configuration is

8 * 12 * 16 = 1536

In Figure 9–39(b), the overall modulus for the 4-counter configuration is

10 * 4 * 7 * 5 = 1400

Related Problem

How many cascaded decade counters are required to divide a clock frequency by 100,000?

EXAMPLE 9–7

Use 74HC190 up/down decade counters connected in the UP mode to obtain a 10 kHz waveform from a 1 MHz clock. 
Show the logic diagram.

Solution

To obtain 10 kHz from a 1 MHz clock requires a division factor of 100. Two 74HC190 counters must be cascaded as shown 
in Figure 9–40. The left counter produces a terminal count (MAX/MIN) pulse for every 10 clock pulses. The right counter 
produces a terminal count (MAX/MIN) pulse for every 100 clock pulses.
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D/U
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Q1 Q2 Q3

(11)

(4)

(5)

(14)

(12)

C
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LOADLOAD
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(3) (2) (6) (7) (3) (2) (6) (7)

(15) (1) (10) (9)(15) (1) (10) (9)

fg08_04100

LOAD

D/U

CTEN

LOAD

MAX/MIN

FIGURE 9–40  A divide-by-100 counter using two 74HC190 up/down decade counters 
connected for the up sequence.

Related Problem

Determine the frequency of the waveform at the Q0 output of the second counter (the one on the right) in Figure 9–40.
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Cascaded Counters with Truncated Sequences

The preceding discussion has shown how to achieve an overall modulus (divide-by-factor) 
that is the product of the individual moduli of all the cascaded counters. This can be con-
sidered full-modulus cascading.

Often an application requires an overall modulus that is less than that achieved by full-
modulus cascading. That is, a truncated sequence must be implemented with cascaded 
counters. To illustrate this method, we will use the cascaded counter configuration in 
Figure 9–41. This particular circuit uses four 74HC161 4-bit synchronous binary coun-
ters. If these four counters (sixteen bits total) were cascaded in a full-modulus arrange-
ment, the modulus would be

216
= 65,536

LOAD

0000

ENT RCO

C

CLK

HIGH

ENP

CTR DIV 16

D0D1D2D3

LSD 016

0011

ENT RCO
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ENP

CTR DIV 16

D0D1D2D3

C16

1100

ENT RCO

C

ENP

CTR DIV 16

D0D1D2D3

316

0110

ENT RCO

C

ENP

CTR DIV 16

D0D1D2D3

MSD616

Output

fg08_04200

FIGURE 9–41  A divide-by-40,000 counter using 74HC161 4-bit binary counters. Note 
that each of the parallel data inputs is shown in binary order (the right-most bit D0 is the 
LSB in each counter).

Let’s assume that a certain application requires a divide-by-40,000 counter (modulus 
40,000). The difference between 65,536 and 40,000 is 25,536, which is the number of 
states that must be deleted from the full-modulus sequence. The technique used in the cir-
cuit of Figure 9–41 is to preset the cascaded counter to 25,536 (63C0 in hexadecimal) each 
time it recycles, so that it will count from 25,536 up to 65,535 on each full cycle. Therefore, 
each full cycle of the counter consists of 40,000 states.

Notice in Figure 9–41 that the RCO output of the right-most counter is inverted and 
applied to the LOAD input of each 4-bit counter. Each time the count reaches its terminal 
value of 65,535, which is 11111111111111112, RCO goes HIGH and causes the number 
on the parallel data inputs (63C016) to be synchronously loaded into the counter with the 
clock pulse. Thus, there is one RCO pulse from the right-most 4-bit counter for every 
40,000 clock pulses.

With this technique any modulus can be achieved by synchronous loading of the counter 
to the appropriate initial state on each cycle.

Section 9–6  Checkup

	 1.	How many decade counters are necessary to implement a divide-by-1000 (modulus-
1000) counter? A divide-by-10,000?

	 2.	Show with general block diagrams how to achieve each of the following, using a flip-
flop, a decade counter, and a 4-bit binary counter, or any combination of these:

(a)	 Divide-by-20 counter	 (b)  Divide-by-32 counter

(c)	 Divide-by-160 counter	 (d)  Divide-by-320 counter
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9–7  Counter Decoding

In many applications, it is necessary that some or all of the counter states be decoded. 
The decoding of a counter involves using decoders or logic gates to determine when 
the counter is in a certain binary state in its sequence. For instance, the terminal count 
function previously discussed is a single decoded state (the last state) in the counter 
sequence.

After completing this section, you should be able to

u	 Implement the decoding logic for any given state in a counter sequence

u	 Explain why glitches occur in counter decoding logic

u	 Use the method of strobing to eliminate decoding glitches

Suppose that you wish to decode binary state 6 (110) of a 3-bit binary counter. When 
Q2 = 1, Q1 = 1, and Q0 = 0, a HIGH appears on the output of the decoding gate, indi-
cating that the counter is at state 6. This can be done as shown in Figure 9–42. This is called 
active-HIGH decoding. Replacing the AND gate with a NAND gate provides active-LOW 
decoding.

EXAMPLE 9–8

Implement the decoding of binary state 2 and binary state 7 of a 3-bit synchronous 
counter. Show the entire counter timing diagram and the output waveforms of the 
decoding gates. Binary 2 = Q2Q1Q0 and binary 7 = Q2Q1Q0.

Solution

See Figure 9–43. The 3-bit counter was originally discussed in Section 9–3 (Figure 9–15).

HIGH
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1 11
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Decoded 6

Q0

Q2Q1Q0

C

J2

K2

C

J1

K1

C

J0

K0

Q0

Q1

Q1

Q2

Q2

fg08_04300
FIGURE 9–42  Decoding of state 6 (110). Open file F09-42 to verify operation.
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Related Problem

Show the logic for decoding state 5 in the 3-bit counter.

C

Q0

C

CLK

HIGH

LSB Q1
Q2

CLK 1 2 3 4 5 6 7 8

Q0

Q1

Q2

7

MSB
FF0 FF1 FF2

2

2
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Decoded
outputs

J2

K2

J1

K1

J0

K0

Q0
Q2

C

fg08_04400

FIGURE 9–43  A 3-bit counter with active-HIGH decoding of count 2 and count 7. 
Open file F09-43 to verify operation.

Decoding Glitches

The problem of glitches produced by the decoding process was discussed in Chapter 6. As 
you have learned, the propagation delays due to the ripple effect in asynchronous coun-
ters create transitional states in which the counter outputs are changing at slightly dif-
ferent times. These transitional states produce undesired voltage spikes of short duration 
(glitches) on the outputs of a decoder connected to the counter. The glitch problem can also 
occur to some degree with synchronous counters because the propagation delays from the 
clock to the Q outputs of each flip-flop in a counter can vary slightly.

Figure 9–44 shows a basic asynchronous BCD decade counter connected to a BCD-to-
decimal decoder. To see what happens in this case, let’s look at a timing diagram in which the 
propagation delays are taken into account, as shown in Figure 9–45. Notice that these delays 
cause false states of short duration. The value of the false binary state at each critical transi-
tion is indicated on the diagram. The resulting glitches can be seen on the decoder outputs.

A glitch is an unwanted spike of 
voltage.
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One way to eliminate the glitches is to enable the decoded outputs at a time after the 
glitches have had time to disappear. This method is known as strobing and can be accom-
plished in the case of an active-HIGH clock by using the LOW level of the clock to enable 
the decoder, as shown in Figure 9–46. The resulting improved timing diagram is shown in 
Figure 9–47.
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FIGURE 9–44  A basic decade (BCD) counter and decoder.
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FIGURE 9–45  Outputs with glitches from the decoder in Figure 9–44. Glitch widths are 
exaggerated for illustration and are usually only a few nanoseconds wide.
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FIGURE 9–46  The basic decade counter and decoder with strobing to eliminate glitches.

1 2 3 4 5

Decoder
outputs

6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

CLK/STROBE

fg08_04800

FIGURE 9–47  Strobed decoder outputs for the circuit of Figure 9–46.

Section 9–7  Checkup

	 1.	What transitional states are possible when a 4-bit asynchronous binary counter 
changes from

(a)	 count 2 to count 3	 (b)  count 3 to count 4

(c)	 count 1010 to count 1110	 (d)  count 15 to count 0

9–8  Counter Applications

The digital counter is a useful and versatile device that is found in many applications. In 
this section, some representative counter applications are presented.

After completing this section, you should be able to

u	 Describe how counters are used in a basic digital clock system

u	 Explain how a divide-by-60 counter is implemented and how it is used in a digital 
clock
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u	 Explain how the hours counter is implemented

u	 Discuss the application of a counter in an automobile parking control system

u	 Describe how a counter is used in the process of parallel-to-serial data conversion

A Digital Clock

A common example of a counter application is in timekeeping systems. Figure 9–48 is a 
simplified logic diagram of a digital clock that displays seconds, minutes, and hours. First, 
a 60 Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and divided down to 
a 1 Hz pulse waveform by a divide-by-60 counter formed by a divide-by-10 counter fol-
lowed by a divide-by-6 counter. Both the seconds and minutes counts are also produced by 
divide-by-60 counters, the details of which are shown in Figure 9–49. These counters count 
from 0 to 59 and then recycle to 0; synchronous decade counters are used in this particular 
implementation. Notice that the divide-by-6 portion is formed with a decade counter with 
a truncated sequence achieved by using the decoder count 6 to asynchronously clear the 
counter. The terminal count, 59, is also decoded to enable the next counter in the chain.

Seconds counter (divide-by-60)Hours counter Minutes counter (divide-by-60)
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(0–9)
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C
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FF
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(0–9)
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(0–1)

C
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EN
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C

1 Hz60 Hz
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Divide-by-60
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FIGURE 9–48  Simplified logic diagram for a 12-hour digital clock. Logic details using 
specific devices are shown in Figures 9–49 and 9–50.

The hours counter is implemented with a decade counter and a flip-flop as shown in Figure 
9–50. Consider that initially both the decade counter and the flip-flop are RESET, and the 
decode-12 gate and decode-9 gate outputs are HIGH. The decade counter advances through all 
of its states from zero to nine, and on the clock pulse that recycles it from nine back to zero, the 
flip-flop goes to the SET state (J = 1, K = 0). This illuminates a 1 on the tens-of-hours dis-
play. The total count is now ten (the decade counter is in the zero state and the flip-flop is SET).
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Next, the total count advances to eleven and then to twelve. In state 12 the Q2 output of 
the decade counter is HIGH, the flip-flop is still SET, and thus the decode-12 gate output 
is LOW. This activates the LOAD input of the decade counter. On the next clock pulse, the 
decade counter is preset to 0001 from the data inputs, and the flip-flop is RESET (J = 0, 
K = 1). As you can see, this logic always causes the counter to recycle from twelve back 
to one rather than back to zero.

Automobile Parking Control

This counter example illustrates the use of an up/down counter to solve an everyday prob-
lem. The problem is to devise a means of monitoring available spaces in a one-hundred-
space parking garage and provide for an indication of a full condition by illuminating a 
display sign and lowering a gate bar at the entrance.
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To next
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Q3 Q2 Q1 Q0

Decode 6
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TC = 59
To ENABLE
of next CTR
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FIGURE 9–49  Logic diagram of typical divide-by-60 counter using synchronous decade 
counters. Note that the outputs are in binary order (the right-most bit is the LSB).
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FIGURE 9–50  Logic diagram for hours counter and decoders. Note that on the counter 
inputs and outputs, the right-most bit is the LSB.
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A system that solves this problem consists of optoelectronic sensors at the entrance and 
exit of the garage, an up/down counter and associated circuitry, and an interface circuit that 
uses the counter output to turn the FULL sign on or off as required and lower or raise the 
gate bar at the entrance. A general block diagram of this system is shown in Figure 9–51.
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FIGURE 9–51  Functional block diagram for parking garage control.
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FIGURE 9–52  Logic diagram for modulus-100 up/down counter for automobile parking 
control.

Incrementing a counter increases its 
count by one.

Decrementing a counter decreases its 
count by one.

A logic diagram of the up/down counter is shown in Figure 9–52. It consists of two cas-
caded up/down decade counters. The operation is described in the following paragraphs.

The counter is initially preset to 0 using the parallel data inputs, which are not shown. 
Each automobile entering the garage breaks a light beam, activating a sensor that produces 
an electrical pulse. This positive pulse sets the S-R latch on its leading edge. The LOW on the 
Q output of the latch puts the counter in the UP mode. Also, the sensor pulse goes through 
the NOR gate and clocks the counter on the LOW-to-HIGH transition of its trailing edge. 
Each time an automobile enters the garage, the counter is advanced by one (incremented). 
When the one-hundredth automobile enters, the counter goes to its last state (10010). The 
MAX/MIN output goes HIGH and activates the interface circuit (no detail), which lights the 
FULL sign and lowers the gate bar to prevent further entry.

When an automobile exits, an optoelectronic sensor produces a positive pulse, which 
resets the S-R latch and puts the counter in the DOWN mode. The trailing edge of the clock 
decreases the count by one (decremented). If the garage is full and an automobile leaves, the 
MAX/MIN output of the counter goes LOW, turning off the FULL sign and raising the gate.

Parallel-to-Serial Data Conversion (Multiplexing)

A simplified example of data transmission using multiplexing and demultiplexing tech-
niques was introduced in Chapter 6. Essentially, the parallel data bits on the multiplexer 
inputs are converted to serial data bits on the single transmission line. A group of bits 
appearing simultaneously on parallel lines is called parallel data. A group of bits appearing 
on a single line in a time sequence is called serial data.

Parallel-to-serial conversion is normally accomplished by the use of a counter to provide 
a binary sequence for the data-select inputs of a data selector/multiplexer, as illustrated in 
Figure 9–53. The Q outputs of the modulus-8 counter are connected to the data-select 
inputs of an 8-bit multiplexer.
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Figure 9–54 is a timing diagram illustrating the operation of this circuit. The first byte 
(eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes 
through a binary sequence from zero to seven, each bit, beginning with D0, is sequentially 
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FIGURE 9–53  Parallel-to-serial data conversion logic.
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FIGURE 9–54  Example of parallel-to-serial conversion timing for the circuit in Figure 9–53.

InfoNote

Computers contain an internal 
counter that can be programmed 
for various frequencies and tone 
durations, thus producing “music.” 
To select a particular tone, the 
programmed instruction selects a 
divisor that is sent to the counter. 
The divisor sets the counter up to 
divide the basic peripheral clock 
frequency to produce an audio 
tone. The duration of a tone can 
also be set by a programmed 
instruction; thus, a basic counter 
is used to produce melodies by 
controlling the frequency and dura-
tion of tones.

M09_FLOY5983_11_GE_C09.indd Page 538  17/11/14  6:10 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Logic Symbols with Dependency Notation	 539

selected and passed through the multiplexer to the output line. After eight clock pulses the 
data byte has been converted to a serial format and sent out on the transmission line. When 
the counter recycles back to 0, the next byte is applied to the data inputs and is sequentially 
converted to serial form as the counter cycles through its eight states. This process contin-
ues repeatedly as each parallel byte is converted to a serial byte.

Section 9–8  Checkup

	 1.	Explain the purpose of each NAND gate in Figure 9–50.

	 2.	 Identify the two recycle conditions for the hours counter in Figure 9–48, and explain 
the reason for each.

9–9  Logic Symbols with Dependency Notation

Up to this point, the logic symbols with dependency notation specified in ANSI/IEEE Stan-
dard 91-1984 have been introduced on a limited basis. In many cases, the symbols do not 
deviate greatly from the traditional symbols. A significant departure does occur, however, for 
some devices, including counters and other more complex devices. Although we will continue 
to use primarily the more traditional symbols throughout this book, a brief coverage of logic 
symbols with dependency notation is provided. A specific IC counter is used as an example.

After completing this section, you should be able to

u	 Interpret logic symbols that include dependency notation

u	 Identify the common block and the individual elements of a counter symbol

u	 Interpret the qualifying symbol

u	 Discuss control dependency

u	 Discuss mode dependency

u	 Discuss AND dependency

Dependency notation is fundamental to the ANSI/IEEE standard. Dependency notation 
is used in conjunction with the logic symbols to specify the relationships of inputs and 
outputs so that the logical operation of a given device can be determined entirely from its 
logic symbol without a prior knowledge of the details of its internal structure and without a 
detailed logic diagram for reference. This coverage of a specific logic symbol with depen-
dency notation is intended to aid in the interpretation of other such symbols that you may 
encounter in the future.

The 74HC163 4-bit synchronous binary counter is used for illustration. For comparison, 
Figure 9–55 shows a traditional block symbol and the ANSI/IEEE symbol with depen-
dency notation. Basic descriptions of the symbol and the dependency notation follow.

Common Control Block

The upper block with notched corners in Figure 9–55(b) has inputs and an output that are 
considered common to all elements in the device and not unique to any one of the elements.

Individual Elements

The lower block in Figure 9–55(b), which is partitioned into four abutted sections, repre-
sents the four storage elements (D flip-flops) in the counter, with inputs D0, D1, D2, and D3 
and outputs Q0, Q1, Q2, and Q3.

Qualifying Symbol

The label “CTR DIV 16” in Figure 9–55(b) identifies the device as a counter (CTR) with 
sixteen states (DIV 16).
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Control Dependency (C)

As shown in Figure 9–55(b), the letter C denotes control dependency. Control inputs usu-
ally enable or disable the data inputs (D, J, K, S, and R) of a storage element. The C input 
is usually the clock input. In this case the digit 5 following C (C5/2,3,4+) indicates that the 
inputs labeled with a 5 prefix are dependent on the clock (synchronous with the clock). For 
example, 5CT = 0 on the CLR input indicates that the clear function is dependent on the 
clock; that is, it is a synchronous clear. When the CLR input is LOW (0), the counter is reset 
to zero (CT = 0) on the triggering edge of the clock pulse. Also, the 5 D label at the input 
of storage element [1] indicates that the data storage is dependent on (synchronous with) 
the clock. All labels in the [1] storage element apply to the [2], [4], and [8] elements below 
it since they are not labeled differently.

Mode Dependency (M)

As shown in Figure 9–55(b), the letter M denotes mode dependency. This label is used to 
indicate how the functions of various inputs or outputs depend on the mode in which the 
device is operating. In this case the device has two modes of operation. When the LOAD 
input is LOW (0), as indicated by the triangle input, the counter is in a preset mode (M1) in 
which the input data (D0, D1, D2, and D3) are synchronously loaded into the four flip-flops. 
The digit 1 following M in M1 and the 1 in the label 1, 5 D show a dependency relationship 
and indicate that input data are stored only when the device is in the preset mode (M1), in 
which LOAD = 0. When the LOAD input is HIGH (1), the counter advances through its 
normal binary sequence, as indicated by M2 and the 2 in C5/2,3,4+.

AND Dependency (G)

As shown in Figure 9–55(b), the letter G denotes AND dependency, indicating that an input 
designated with G followed by a digit is ANDed with any other input or output having the 
same digit as a prefix in its label. In this particular example, the G3 at the ENT input and 
the 3CT = 15 at the RCO output are related, as indicated by the 3, and that relationship is 
an AND dependency, indicated by the G. This tells us that ENT must be HIGH (no triangle 
on the input) and the count must be fifteen (CT = 15) for the RCO output to be HIGH.

Also, the digits 2, 3, and 4 in the label C5/2,3,4+ indicate that the counter advances 
through its states when LOAD = 1, as indicated by the mode dependency label M2, and 
when ENT = 1 and ENP = 1, as indicated by the AND dependency labels G3 and G4. 
The + indicates that the counter advances by one count when these conditions exist.

(2)
CLK

(10)ENT
(7)ENP

Q0

Q1

Q2

Q3

D0

D1

D2

D3

5CT = 0CLR

LOAD

Common
control
block

CTR DIV 16
(1)
(9)

G4

3CT = 15
(15)

(b) ANSI/IEEE Std. 91-1984 logic symbol

C5/2,3,4+

G3

M1

M2

(3) (14)

(4) (13)
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[4]

[8]
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FIGURE 9–55  The 74HC163 4-bit synchronous counter.
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Section 9–9  Checkup

	 1.	 In dependency notation, what do the letters C, M, and G stand for?

	 2.	By what letter is data storage denoted?

9–10  Troubleshooting

The troubleshooting of counters can be simple or quite involved, depending on the type of 
counter and the type of fault. This section will give you some insight into how to approach 
the troubleshooting of sequential circuits.

After completing this section, you should be able to

u	 Detect a faulty counter

u	 Isolate faults in maximum-modulus cascaded counters

u	 Isolate faults in cascaded counters with truncated sequences

u	 Determine faults in counters implemented with individual flip-flops

Counters

The symptom for a faulty counter is usually that it does not advance its count. If this is the 
case, then check power and ground on the chip. Look at these lines with a scope to make sure 
there is no noise present (a noisy ground may actually be open). Check that there are clock 
pulses and that they have the correct amplitude and rise time and that there is not extrane-
ous noise on the line. (Sometimes clock pulses can be loaded down by other ICs, making it 
appear that the counter is faulty when it is not). If power, ground, and the clock pulses are 
okay, check all inputs (including enable, load, and clear inputs), to see that they are connected 
correctly and that the logic is correct. An open input can cause a counter to work correctly 
some of the time—inputs should never be left open, even if they are not used. (An unused 
input should be connected to an inactive level). If the counter is stuck in a state and the clock 
is present, determine what input should be present to advance the counter. This may point to 
a faulty input (including clear or load inputs), which can be caused by logic elsewhere in the 
circuit. If inputs are all checked okay, an output may be pulled LOW or HIGH by an external 
short or open (or another faulty IC), keeping the output from advancing.

Cascaded Counters with Maximum Modulus

A failure in one of the counters in a chain of cascaded counters can affect all the counters 
that follow it. For example, if a count enable input opens, it effectively acts as a HIGH (for 
TTL logic), and the counter is always enabled. This type of failure in one of the counters 
will cause that counter to run at the full clock rate and will also cause all the succeeding 
counters to run at higher than normal rates. This is illustrated in Figure 9–56 for a divide-
by-1000 cascaded counter arrangement where an open enable (CTEN) input acts as a TTL 
HIGH and continuously enables the second counter. Other faults that can affect “down-
stream” counter stages are open or shorted clock inputs or terminal count outputs. In some 
of these situations, pulse activity can be observed, but it may be at the wrong frequency. 
Exact frequency or frequency ratio measurements must be made.

Cascaded Counters with Truncated Sequences

The count sequence of a cascaded counter with a truncated sequence, such as that in Figure 
9–57, can be affected by other types of faults in addition to those mentioned for maximum-
modulus cascaded counters. For example, a failure in one of the parallel data inputs, the LOAD 
input, or the inverter can alter the preset count and thus change the modulus of the counter.
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For example, suppose the D3 input of the most significant counter in Figure 9–57 is 
open and acts as a HIGH. Instead of 616 (0110) being preset into the counter, E16 (1110) is 
preset in. So, instead of beginning with 63C016 (25,53610) each time the counter recycles, 
the sequence will begin with E3C016 (58,30410). This changes the modulus of the counter 
from 40,000 to 65,536 - 58,304 = 7232.

To check this counter, apply a known clock frequency, for example 1 MHz, and mea-
sure the output frequency at the final terminal count output. If the counter is operating 
properly, the output frequency is

fout =
fin

modulus
=

1 MHz

40,000
= 25 Hz

In this case, the specific failure described in the preceding paragraph will cause the output 
frequency to be

fout =
fin

modulus
=

1 MHz

7232
_ 138 Hz

TC

CTR DIV 10
TCCTEN

C
CTR DIV 10

TCCTEN

C
CTR DIV 10

TCCTEN

C

(a) Normal operation

HIGH

1 MHz

100 kHz 10 kHz 1 kHz

CTR DIV 10
TCCTEN

C
CTR DIV 10

CTEN

C
CTR DIV 10

TCCTEN

C

(b) Count Enable (CTEN) input of second counter open

HIGH

1 MHz

100 kHz 100 kHz 10 kHz
OPEN (acts as a HIGH)

fg08_05700

FIGURE 9–56  Example of a failure that affects following counters in a cascaded arrangement.
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LOAD

CTR DIV 16
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CTR DIV 16

TCCTEN
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TCCTEN

C

D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0D3 D2 D1 D0
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fg08_05800
FIGURE 9–57  Example of a failure in a cascaded counter with a truncated sequence.

EXAMPLE 9–9

Frequency measurements are made on the truncated counter in Figure 9–58 as indicated. Determine if the counter is work-
ing properly, and if not, isolate the fault.
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Solution

Check to see if the frequency measured at TC 4 is correct. If it is, the counter is working properly.

  truncated modulus = full modulus - preset count

  = 164 - 82C016

 = 65,536 - 33,472 = 32,064

The correct frequency at TC 4 is

f4 =
10 MHz

32,064
_ 312 Hz

There is a problem. The measured frequency of 637.8 Hz does not agree with the correct calculated frequency of 312 Hz.
To find the faulty counter, determine the actual truncated modulus as follows:

modulus =
fin
fout

=
10 MHz

637.8 Hz
= 15,679

Because the truncated modulus should be 32,064, most likely the counter is being preset to the wrong count when it recy-
cles. The actual preset count is determined as follows:

 truncated modulus = full modulus - preset count

 preset count = full modulus - truncated modulus

 = 65,536 - 15,679

 = 49,857

 = C2C016

This shows that the counter is being preset to C2C016 instead of 82C016 each time it recycles.
Counters 1, 2, and 3 are being preset properly but counter 4 is not. Since C16 = 11002, the D2 input to counter 4 is HIGH 

when it should be LOW. This is most likely caused by an open input. Check for an external open caused by a bad solder con-
nection, a broken conductor, or a bent pin on the IC. If none can be found, replace the IC and the counter should work properly.

Related Problem

Determine what the output frequency at TC 4 would be if the D3 input of counter 3 were open.

Hz

LOAD
016 C16 216 816

0 0 0 0 0 0 0 0 0 0 0 01111

CTR DIV 16
TCCTEN

C

HIGH
CTR DIV 16

TCCTEN

C
CTR DIV 16

TCCTEN

C
CTR DIV 16

TCCTEN

C

CTR1 CTR2 CTR3 CTR4
TC 4

D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0

MHz

fg08_05900

FIGURE 9–58 

Counters Implemented with Individual Flip-Flops

Counters implemented with individual flip-flop and gate ICs are sometimes more difficult 
to troubleshoot because there are many more inputs and outputs with external connections 
than there are in an IC counter. The sequence of a counter can be altered by a single open 
or short on an input or output, as Example 9–10 illustrates.
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CLK
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Q2
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K0

J1

K1

J2

K2

HIGH

CLK

C C C

Q0

Q1

FF0 FF1 FF2
Q2
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FIGURE 9–59 

EXAMPLE 9–10

Suppose that you observe the output waveforms (green) that are indicated for the coun-
ter in Figure 9–59. Determine if there is a problem with the counter.

Solution

The Q2 waveform is incorrect. The correct waveform is shown as a red dashed line. 
You can see that the Q2 waveform looks exactly like the Q1 waveform, so whatever is 
causing FF1 to toggle appears to also be controlling FF2.

Checking the J and K inputs to FF2, you find a waveform that looks like Q0. This result 
indicates that Q0 is somehow getting through the AND gate. The only way this can happen is 
if the Q1 input to the AND gate is always HIGH. However, you have seen that Q1 has a cor-
rect waveform. This observation leads to the conclusion that the lower input to the AND gate 
must be internally open and acting as a HIGH. Replace the AND gate and retest the circuit.

Related Problem

Describe the Q2 output of the counter in Figure 9–59 if the Q1 output of FF1 is open.

To observe the time relationship between two digital signals with a dual-trace analog oscilloscope, 
the proper way to trigger the scope is with the slower of the two signals. The reason for this is that the 
slower signal has fewer possible trigger points than the faster signal and there will be no ambiguity 
for starting the sweep. Vertical mode triggering uses a composite of both channels and should never 
be used for determining absolute time information. Since clock signals are usually the fastest signal 
in a digital system, they should not be used for triggering.

Section 9–10  Checkup

	 1.	What failures can cause the counter in Figure 9–56 to have no pulse activity on any 
of the TC outputs?

	 2.	What happens if the inverter in Figure 9–58 develops an open output?     
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Applied Logic
Elevator Controller: Part 1

This Applied Logic describes the operation and implementation of a service elevator con-
troller for a seven-story building. The controller consists of logic that controls the elevator 
operation, a counter that determines the floor at which the elevator is located at any given 
time, and a floor number display. For simplicity, there is only one floor call and one floor 
request for each elevator cycle. A cycle occurs when the elevator is called to a given floor 
to pick up a passenger and the passenger is delivered to a requested floor. The elevator 
sequence for one cycle is shown in Figure 9–60.

Elevator in
WAIT state

Passenger calls
for elevator
(FLRCALL)

Elevator goes
to calling floor

FLR = FLRCALL

Time delay

Elevator stops,
door opens, and
passenger enters

Door closes
after time delay

Passenger
requests floor
(FLRREQ)

Elevator goes
to requested

floor

FLR = FLRREQ

Time delay

Elevator stops,
door opens, and
passenger exits

Door closes
after time delay

FIGURE 9–60  One cycle of the elevator operation.

The five states in the elevator control sequence are WAIT, DOWN, UP, STOP/OPEN, 
and CLOSE. In the WAIT state, the elevator is waiting on the last floor serviced for an ex-
ternal call button (FLRCALL) on any floor to be pressed. When there is a call for the eleva-
tor from any floor, the appropriate command (UP or DOWN) is issued. When the elevator 
arrives and stops at the calling floor, the door opens; the person enters and presses a number 
to request a destination floor. If the number of the requested floor is less than the number 
of the current floor, the elevator goes into the DOWN mode. If the number of the requested 
floor is greater than the number of the current floor, the elevator goes into the UP mode. The 
elevator goes to the STOP/OPEN mode at the requested floor to allow exit. After the door is 
open for a specified time, it closes and then goes back to the WAIT state until another floor 
call is received.
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FLRCALL

WAIT

STOP/
OPEN

CLOSE
FLRREQ < FLR

FLRCALL < FLR FLRCALL > FLR

FLRREQ > FLR

FLR = FLRCALL + FLRREQ FLR = FLRCALL + FLRREQ

T = TIME DELAYFLRREQ = FLR

FLRCALL = FLR

UPDOWN

The following states are shown in the state diagram of Figure 9–61:

WAIT  The system always begins in the WAIT state on the floor last serviced. When a 
floor call (FLRCALL) signal is received, the control logic determines if the number of the 
calling floor is greater than the current floor (FLRCALL 7 FLR), less than the current floor 
(FLRCALL 6 FLR), or equal to the current floor (FLRCALL = FLR) and puts the system in 
the UP mode, DOWN mode, or OPEN mode, respectively.

DOWN  In this state, the elevator moves down toward the calling floor.

UP  In this mode, the elevator moves up toward the calling floor.

STOP/OPEN  This state occurs when the calling floor has been reached. When the 
number of the floor where the elevator is equals the number of the calling or requested 
floor, a signal is issued to stop the elevator and open the door.

CLOSE  After a preset time (T) to allow entry or exit, the door closes.

The signals used by the elevator controller are defined as follows:

FLR  Number of floor represented by a 3-bit binary code.

Floor sensor pulse  A pulse issued at each floor to clock the floor counter to the next state.

FLRCALL  Number of floor where a call for elevator service originates, represented 
by a 3-bit binary code.

Call pulse  A pulse issued in conjunction with FLRCALL to clock the 3-bit code into 
a register.

FLRREQ  Number of floor to which the passenger desires to go, represented by a 
3-bit binary code.

Request pulse  A pulse issued in conjunction with FLRREQ to clock the 3-bit code 
into a register.

UP  A signal issued to the elevator motor control to cause the elevator to move from a 
lower floor to a higher floor.

DOWN  A signal issued to the elevator motor control to cause the elevator to move 
from a higher floor to a lower floor.

STOP  A signal issued to the elevator motor control to cause the elevator to stop.

OPEN  A signal issued to door motor control to cause the door to open.

CLOSE  A signal issued to the door motor control to cause the door to close.

Elevator Controller Block Diagram

Figure 9–62 shows the elevator controller block diagram, which consists of controller logic, 
a floor counter, and a floor number display. Assume that the elevator is on the first floor in 

FIGURE 9–61  Elevator 
controller state diagram.
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the WAIT state. The floor counter contains 001, which is the first floor code. Suppose the 
FLRCALL (101) comes in from the call button on the fifth floor. Since FLRCALL 7 FLR 
(101 7 001), the controller issues an UP command to the elevator motor. As the elevator moves 
up, the floor counter receives a floor sensor pulse as it reaches each floor which advances its state 
(001, 010, 011, 100, 101). When the fifth floor is reached and FLR = FLRCALL, the controller 
logic stops the elevator and opens its door. The process is repeated for a FLRREQ input.

The floor counter sequentially tracks the number of the floor and always contains the 
number of the current floor. It can count up or down and can reverse its state at any point 
under the direction of the state controller and the floor sensor input. A 3-bit counter is re-
quired since there are eight floors (23

= 8) including the basement, as shown in the floor 
counter state diagram in Figure 9–63.

Controller
Logic Floor Counter

Floor Number
Display

FLRCALL

UP

FLRREQ

To elevator motor and door

DOWN

DOWN
FLR
CODE

STOP/
OPEN

UP CLOSE

Call
pulse

Request
pulse

Floor
sensor

FIGURE 9–62  Elevator 
controller block diagram.
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DOWN

DOWN
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DOWNDOWN

DOWN

DOWN
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000

FLOOR1

001

FLOOR7

111

FLOOR3

011

FLOOR5

101

FLOOR4

100

FLOOR2

010

FLOOR6

110

FIGURE 9–63  Floor counter 
state diagram.
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Floor
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CALL/REQ FF
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CALL/REQ
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Delay
Timer

UP

Floor
sensor
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CLK
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CALL Enable

REQ Enable

CALL
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FIGURE 9–64  Elevator controller logic diagram.

Operation of Elevator Controller

The elevator controller logic diagram is shown in Figure 9–64. Elevator action is initiated by 
either a floor call (FLRCALL) or a floor request (FLRREQ). Keep in mind that FLRCALL 
is when a person calls the elevator to come to a particular floor. FLRREQ is when a passen-
ger in the elevator requests to go to a specified floor. This simplified operation is based on a 
CALL/REQ sequence; that is, a call followed by a request followed by a call.

As you know, FLRCALL and FLRREQ are 3-bit codes representing specific floors. 
When a person presses a call button on a given floor, the specific 3-bit code for that floor 
is placed on the inputs to the CALL/REQ code register and a CALL pulse is generated to 
enter the code into the register. The same process occurs when a request button is pressed 
inside the elevator. The code is input to the CALL/REQ code register, and a REQ pulse is 
generated to store the code in the register.

The elevator does not know the difference between a call and a request. The comparator 
determines if the destination floor number is greater than, less than, or equal to the current 
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floor where the elevator is located. As a result of this comparison, either an UP command, 
a DOWN command, or an OPEN command is issued to the elevator motor control. As the 
elevator moves toward the desired floor, the floor counter is either incremented at each floor 
as it goes up or decremented at each floor as it goes down. Once the elevator reaches the de-
sired floor, a STOP/OPEN command is issued to the elevator motor control and to the door 
control. After a preset time, the delay timer issues a CLOSE signal to the elevator door control. 
As mentioned, this elevator design is limited to one floor call and one floor request per cycle.

Initialization    The initial one-time setup requires that the elevator be placed at the base-
ment level and the floor counter be preset to 000. After this, the counter will automatically 
move through the sequence of states determined by the elevator position.

Exercise

1.	 Explain the purpose of the floor counter.
2.	 Describe what happens during the WAIT mode.
3.	 How does the system know when the desired floor has been reached?
4.	 Discuss the limitations of the elevator design in Figure 9–64.

Implementation

The elevator controller can be implemented using fixed-function logic devices, a PLD 
programmed with a VHDL (or Verilog) code, or a programmed microcontroller or mi-
croprocessor. In the Chapter 10 Applied Logic, the VHDL program code for the elevator 
controller is presented. You will see how to program a PLD step by step.

Putting Your Knowledge to Work

What changes are required in the logic diagram of Figure 9–64 to upgrade the elevator 
controller for a ten-story building?

Summary

•	 Asynchronous and synchronous counters differ only in the way in which they are clocked. The 
first stage of an asynchronous counter is driven by a clock pulse. Each succeeding stage is clocked 
by the output of the previous stage. In a synchronous counter, all stages are clocked by the same 
clock pulse. Synchronous counters can run at faster clock rates than asynchronous counters.

•	 The maximum modulus of a counter is the maximum number of possible states and is a function 
of the number of stages (flip-flops). Thus,

Maximum modulus = 2n

	 where n is the number of stages in the counter. The modulus of a counter is the actual number of 
states in its sequence and can be equal to or less than the maximum modulus.

•	 The overall modulus of cascaded counters is equal to the product of the moduli of the individual 
counters.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Asynchronous  Not occurring at the same time.

Cascade  To connect “end-to-end” as when several counters are connected from the terminal 
count output of one counter to the enable input of the next counter.

M09_FLOY5983_11_GE_C09.indd Page 549  17/11/14  6:11 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



550	 Counters

Decade  Characterized by ten states or values.

Modulus  The number of unique states through which a counter will sequence.

Recycle  To undergo transition (as in a counter) from the final or terminal state back to the initial state.

State diagram  A graphic depiction of a sequence of states or values.

State machine  A logic system or circuit exhibiting a sequence of states conditioned by internal 
logic and external inputs; any sequential circuit exhibiting a specified sequence of states. Two types 
of state machine are Moore and Mealy.

Synchronous  Occurring at the same time.

Terminal count  The final state in a counter’s sequence.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A state machine is a sequential circuit having a limited number of states occurring in a 
prescribed order.

	 2.	 Synchronous counters cannot be realized using J-K flip-flops.

	 3.	 An asynchronous counter is also known as a ripple counter.

	 4.	 A decade counter has twelve states.

	 5.	 A counter with four stages has a maximum modulus of sixteen.

	 6.	 To achieve a maximum modulus of 32, sixteen stages are required.

	 7.	 If the present state is 1000, the next state of a 4-bit up/down counter in the DOWN mode is 0111.

	 8.	 Two cascaded decade counters divide the clock frequency by 10.

	 9.	 A counter with a truncated sequence has less than its maximum number of states.

	10.	 To achieve a modulus of 100, ten decade counters are required.

Self-Test

Answers are at the end of the chapter.

	 1.	 A Moore state machine consists of combinational logic circuits that determine
(a)	 sequences	 (b)  memory
(c)	 both (a) and (b)	 (d)  neither (a) nor (b)

	 2.	 The output of a Mealy machine depends on its
(a)	 inputs	 (b)  next state
(c)	 present state	 (d)  answers (a) and (c)

	 3.	 The maximum cumulative delay of an asynchronous counter must be
(a)	 more than the period of the clock waveform
(b)  less than the period of the clock waveform
(c)	 equal to the period of the clock waveform
(d)  both (a) and (c)

	 4.	 A decade counter with a count of zero (0000) through nine (1001) is known as
(a)	 an ASCII counter	 (b)  a binary counter
(c)	 A BCD counter	 (d)  a decimal counter

	 5.	 The modulus of a counter is
(a)	 the number of flip-flops
(b)	 the actual number of states in its sequence
(c)	 the number of times it recycles in a second
(d)	 the maximum possible number of states

	 6.	 A 3-bit binary counter has a maximum modulus of
(a)	 3    (b)  6    (c)  8      (d)  16

	 7.	 A 5-bit binary counter has a maximum modulus of
(a)	 4    (b)  8    (c)  16    (d)  32

	 8.	 A modulus-12 counter must have
(a)	 12 flip-flops	 (b)  3 flip-flops
(c)	 4 flip-flops	 (d)  synchronous clocking
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	 9.	 Which one of the following is an example of a counter with a truncated modulus?
(a)	 Modulus 8	 (b)  Modulus 14
(c)	 Modulus 16	 (d)  Modulus 32

	10.	 A 4-bit ripple counter consists of flip-flops that each have a propagation delay from clock to Q 
output of 12 ns. For the counter to recycle from 1111 to 0000, it takes a total of
(a)	 12 ns	 (b)  24 ns
(c)	 48 ns	 (d)  36 ns

	11.	 A BCD counter is an example of
(a)	 a full-modulus counter	 (b)  a decade counter
(c)	 a truncated-modulus counter	 (d)  answers (b) and (c)

	12.	 Which of the following is a valid state in an 8421 BCD counter?
(a)	 1010	 (b)  1011
(c)	 1111	 (d)  1000

	13.	 Three cascaded modulus-10 counters have an overall modulus of
(a)	 30	 (b)  100
(c)	 1000	 (d)  10,000

	14.	 A 10 MHz clock frequency is applied to a cascaded counter consisting of a modulus-5 counter, 
a modulus-8 counter, and two modulus-10 counters. The lowest output frequency possible is
(a)	 10 kHz	 (b)  2.5 kHz
(c)	 5 kHz	 (d)  25 kHz

	15.	 A 4-bit binary up/down counter is in the binary state of zero. The next state in the DOWN 
mode is
(a)	 0001	 (b)  1111
(c)	 1000	 (d)  1110

	16.	 The initial count of a modulus-13 binary counter is
(a)	 0000	 (b)  1111
(c)	 1101	 (d)  1100

Problems

Answers to odd-numbered problems are at the end of the book.

Section 9–1	Finite State Machines
	 1.	 Represent a decade counter with the terminal state decoded as a state machine. Identify the 

type and show the block diagram and the state diagram.

	 2.	 Identify the type of state machine for the traffic signal controller in Chapter 6. State the reason 
why it is the type you specified.

Section 9–2	Asynchronous Counters
	 3.	 For the ripple counter shown in Figure 9–65, show the complete timing diagram for eight clock 

pulses, showing the clock, Q0, and Q1 waveforms.

D1 Q1

CLK

D0 Q0

C C

Q0 Q1

FIGURE 9–65 
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	 5.	 In the counter of Problem 4, assume that each flip-flop has a propagation delay from the trig-
gering edge of the clock to a change in the Q output of 8 ns. Determine the worst-case (longest) 
delay time from a clock pulse to the arrival of the counter in a given state. Specify the state or 
states for which this worst-case delay occurs.

	 6.	 Show how to connect a 74HC93 4-bit asynchronous counter for each of the following moduli:

(a)	 9    (b)  11    (c)  13    (d)  14    (e)  15

Section 9–3	Synchronous Counters
	 7.	 If the counter of Problem 5 were synchronous rather than asynchronous, what would be the 

longest delay time?

	 8.	 Show the complete timing diagram for the 5-stage synchronous binary counter in Figure 9–67. Verify 
that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

	 4.	 For the ripple counter in Figure 9–66, show the complete timing diagram for sixteen clock 
pulses. Show the clock, Q0, Q1, and Q2 waveforms.

D1 Q1

CLK

D0 Q0

C C

D2 Q2

C

Q0 Q1 Q2

FIGURE 9–66 

Q0

CLK

J0

K0

C

HIGH

Q1

C

J1

K1

C

J4

K4

Q4

Q2

C

J2

K2

Q3

C

J3

K3

fg08_07100

FIGURE 9–67 

Q0

CLK

J0

K0

C

HIGH

Q1

C

Q2

C

J1

K1

J2

K2

C

J3

K3

Q3

FF0 FF1 FF2 FF3

Q3

fg08_07200

FIGURE 9–68 

	 9.	 By analyzing the J and K inputs to each flip-flop prior to each clock pulse, prove that the dec-
ade counter in Figure 9–68 progresses through a BCD sequence. Explain how these conditions 
in each case cause the counter to go to the next proper state.
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	10.	 The waveforms in Figure 9–69 are applied to the count enable, clear, and clock inputs as indi-
cated. Show the counter output waveforms in proper relation to these inputs. The clear input is 
asynchronous.

CLR

LOAD

ENP

ENT

CLK

fg08_07500

FIGURE 9–71 

CLK
CTR DIV 16

Q0

C

CTEN

CLK
CTEN

CLR CLR
CLR

Q1 Q2 Q3

fg08_07300
FIGURE 9–69 

CLK

CTR DIV 10

Q0 Q3Q1 Q2

C

CLR

fg08_07400
FIGURE 9–70 

	11.	 A BCD decade counter is shown in Figure 9–70. The waveforms are applied to the clock and 
clear inputs as indicated. Determine the waveforms for each of the counter outputs (Q0, Q1, Q2, 
and Q3). The clear is synchronous, and the counter is initially in the binary 1000 state.

	12.	 The waveforms in Figure 9–71 are applied to a 74HC163 binary counter. Determine the Q 
outputs and the RCO. The inputs are D0 = 1, D1 = 1, D2 = 0, and D3 = 1.

	13.	 The waveforms in Figure 9–71 are applied to a 74HC161 counter. Determine the Q outputs and 
the RCO. The inputs are D0 = 1, D1 = 0, D2 = 0, and D3 = 1.

Section 9–4	Up/Down Synchronous Counters
	14.	 Show a complete timing diagram for a 3-bit up/down counter that goes through the following 

sequence. Indicate when the counter is in the UP mode and when it is in the DOWN mode. 
Assume positive edge-triggering.

0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0

	15.	 Develop the Q output waveforms for a 74HC190 up/down counter with the input waveforms 
shown in Figure 9–72. A binary 0 is on the data inputs. Start with a count of 0000.

LOAD

CTEN

D/U

CLK

fg08_07600

FIGURE 9–72 
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	16.	 Repeat Problem 15 if the D/U input signal is inverted with the other inputs the same.

	17.	 Repeat Problem 15 if the CTEN is inverted with the other inputs the same.

Section 9–5	Design of Synchronous Counters
	18.	 Determine the sequence of the counter in Figure 9–73.

0 Up

Down 3

5

7

9

11

fg08_07900

FIGURE 9–75 

CLK

D0

C

D1

C

D2

C

Q0 Q1

Q2

fg08_07700

FIGURE 9–73 

HIGH

CLK

J0

C

K0

Q0 Q1 Q2 Q3

J3

C

K3

J2

C

K2

J1

C

K1

fg08_07800

FIGURE 9–74 

	19.	 Determine the sequence of the counter in Figure 9–74. Begin with the counter cleared.

	20.	 Design a counter to produce the following sequence. Use J-K flip-flops.

00, 10, 01, 11, 00, c
	21.	 Design a counter to produce the following binary sequence. Use J-K flip-flops.

1, 4, 3, 5, 7, 6, 2, 1, c
	22.	 Design a counter to produce the following binary sequence. Use J-K flip-flops.

0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 0, c
	23.	 Design a binary counter with the sequence shown in the state diagram of Figure 9–75.
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Section 9–6	Cascaded Counters
	24.	 For each of the cascaded counter configurations in Figure 9–76, determine the frequency of the 

waveform at each point indicated by a circled number, and determine the overall modulus.

(c)

(d)

DIV 2 DIV 4 DIV 6 DIV 8
1 2 3 4 5

DIV 1639.4 kHz

DIV 3 DIV 6 DIV 8 DIV 10
1 2 3 4 5

DIV 1021 MHz

DIV 10 DIV 10 DIV 10

(b)

DIV 2
1 2 3 4

100 kHz

DIV 4 DIV 8 DIV 2

(a)

1 2 3
1 kHz

fg08_08000

FIGURE 9–76 

	25.	 Expand the counter in Figure 9–38 to create a divide-by-10,000 counter and a divide-
by-100,000 counter.

	26.	 With general block diagrams, show how to obtain the following frequencies from a 10 MHz 
clock by using single flip-flops, modulus-5 counters, and decade counters:

(a)	 5 MHz	 (b)  2.5 MHz	 (c)  2 MHz	 (d)  1 MHz	 (e)  500 kHz
(f)	 250 kHz	 (g)  62.5 kHz	 (h)  40 kHz	 (i)  10 kHz	 (j)  1 kHz

Section 9–7	Counter Decoding
	27.	 Given a BCD decade counter with only the Q outputs available, show what decoding logic is 

required to decode each of the following states and how it should be connected to the counter. 
A HIGH output indication is required for each decoded state. The MSB is to the left.

(a)	 0001	 (b)  0011	 (c)  0101	 (d)  0111	 (e)  1000

	28.	 For the 4-bit binary counter connected to the decoder in Figure 9–77, determine each of the 
decoder output waveforms in relation to the clock pulses.

BIN/DEC
0

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Q3

4
Q2

2
Q1

1
Q0

CLK
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
EN

CTR DIV 16

fg08_08100

FIGURE 9–77 
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	29.	 If the counter in Figure 9–77 is asynchronous, determine where the decoding glitches occur on 
the decoder output waveforms.

	30.	 Modify the circuit in Figure 9–77 to eliminate decoding glitches.

	31.	 Analyze the counter in Figure 9–42 for the occurrence of glitches on the decode gate output. If 
glitches occur, suggest a way to eliminate them.

	32.	 Analyze the counter in Figure 9–43 for the occurrence of glitches on the outputs of the decod-
ing gates. If glitches occur, make a design change that will eliminate them.

Section 9–8	Counter Applications
	33.	 Assume that the digital clock of Figure 9–48 is initially reset to 12 o’clock. Determine the 

binary state of each counter after sixty-two 60 Hz pulses have occurred.

	34.	 What is the output frequency of each counter in the digital clock circuit of Figure 9–48?

	35.	 For the automobile parking control system in Figure 9–51, a pattern of entrance and exit sensor 
pulses during a given 24-hour period are shown in Figure 9–78. If there were 53 cars already in the 
garage at the beginning of the period, what is the state of the counter at the end of the 24 hours?

Entrance
sensor

Exit
sensor

0 24 hrs

fg08_08200

FIGURE 9–78 

	36.	 The binary number for decimal 57 appears on the parallel data inputs of the parallel-to-serial 
converter in Figure 9–53 (D0 is the LSB). The counter initially contains all zeros and a 10 kHz 
clock is applied. Develop the timing diagram showing the clock, the counter outputs, and the 
serial data output.

Section 9–10	Troubleshooting
	37.	 For the counter in Figure 9–4, show the timing diagram for the Q0 and Q1 waveforms for each 

of the following faults (assume Q0 and Q1 are initially LOW):

(a)	 clock input to FF0 shorted to ground
(b)	 Q0 output open
(c)	 clock input to FF1 open
(d)	 D input to FF0 open
(e)	 D input to FF1 shorted to ground

	38.	 Solve Problem 37 for the counter in Figure 9–12(b).

	39.	 Isolate the fault in the counter in Figure 9–6 by analyzing the waveforms in Figure 9–79.

	40.	 From the waveform diagram in Figure 9–80, determine the most likely fault in the counter of 
Figure 9–15.

CLK

Q0

Q1

Q2

1 2 3 4 5 6 7 8

0

fg08_08300

FIGURE 9–79 

CLK

Q0

Q1

Q2

1 2 3 4 5 6 7 8

fg08_08400

FIGURE 9–80 
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	41.	 Solve Problem 40 if the Q2 output has the waveform observed in Figure 9–81. Outputs Q0 and 
Q1 are the same as in Figure 9–80.

CLK

Q2

1 2 3 4 5 6 7 8

fg08_08500

FIGURE 9–81 

	42.	 You apply a 5 MHz clock to the cascaded counter in Figure 9–41 and measure a frequency of 
76.2939 Hz at the last RCO output. Is this correct, and if not, what is the most likely problem?

	43.	 Develop a table for use in testing the counter in Figure 9–41 that will show the frequency at the 
final RCO output for all possible open failures of the parallel data inputs (D0, D1, D2, and D3) 
taken one at a time. Use 10 MHz as the test frequency for the clock.

	44.	 The tens-of-hours 7-segment display in the digital clock system of Figure 9–48 continuously 
displays a 1. All the other digits work properly. What could be the problem?

	45.	 What would be the visual indication of an open Q1 output in the tens portion of the minutes 
counter in Figure 9–48? Also see Figure 9–49.

	46.	 One day (perhaps a Monday) complaints begin flooding in from patrons of a parking garage 
that uses the control system depicted in Figures 9–51 and 9–52. The patrons say that they enter 
the garage because the gate is up and the FULL sign is off but that, once in, they can find no 
empty space. As the technician in charge of this facility, what do you think the problem is, and 
how will you troubleshoot and repair the system as quickly as possible?

Applied Logic
	47.	 Propose a general design for generation of the 3-bit FLRCALL code and the Call pulse by the 

pressing of a single button.

	48.	 Propose a general design for generation of the 3-bit FLRREQ code and the Request pulse by 
the pressing of one of seven buttons.

	49.	 What changes are required to the logic diagram in Figure 9–64 to modify the elevator control-
ler for a four-story building?

Special Design Problems
	50.	 Design a modulus-1000 counter by using decade counters.

	51.	 Modify the design of the counter in Figure 9–41 to achieve a modulus of 30,000.

	52.	 Repeat Problem 51 for a modulus of 50,000.

	53.	 Modify the digital clock in Figures 9–48, 9–49, and 9–50 so that it can be preset to any desired time.

	54.	 Design an alarm circuit for the digital clock that can detect a predetermined time (hours and 
minutes only) and produce a signal to activate an audio alarm.

	55.	 Modify the design of the circuit in Figure 9–52 for a 1000-space parking garage and a 3000-
space parking garage.

	56.	 Implement the parallel-to-serial data conversion logic in Figure 9–53 with specific fixed-
function devices.

	57.	 In Problem 19 it was found that the counter locks up and alternates between two states. It turns 
out that this operation is the result of a design flaw. Redesign the counter so that when it goes 
into the second of the lock-up states, it will recycle to the all-0s state on the next clock pulse.

Multisim Troubleshooting Practice
	58.	 Open file P09-58. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct. 

	59.	 Open file P09-59. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.

	60.	 Open file P09-60. For the specified fault, predict the effect on the circuit. Then introduce the 
fault and verify whether your prediction is correct.
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Answers

Section Checkups
Section 9–1	Checkup
	 1.	 A finite state machine is a sequential circuit having a finite number of states that occur in a 

specified order.

	 2.	 Moore state machine and Mealy state machine

	 3.	 The Moore state machine has an output(s) that is dependent on the present internal state only. 
The Mealy state machine has an output(s) that is dependent on both the present internal state 
and the value of the inputs.

Section 9–2	Asynchronous Counters
	 1.	 Asynchronous means that each flip-flop after the first one is enabled by the output of the pre-

ceding flip-flop.

	 2.	 A modulus-14 counter has fourteen states requiring four flip-flops.

Section 9–3	Synchronous Counters
	 1.	 All flip-flops in a synchronous counter are clocked simultaneously.

	 2.	 The counter can be preset (initialized) to any given state.

	 3.	 Counter is enabled when ENP and ENT are both HIGH; RCO goes HIGH when final state in 
sequence is reached.

Section 9–4	Up/Down Synchronous Counters
	 1.	 The counter goes to 1001.

	 2.	 UP: 1111: DOWN: 0000; the next state is 1111.

Section 9–5	Design of Synchronous Counters
	 1.	 J = 1, K = X (“don’t care”)

	 2.	 J = X (“don’t care”), K = 0

	 3.	 (a)	 The next state is 1011.

(b)	 Q3 (MSB): no-change or SET; Q2: no-change or RESET; Q1: no change or SET; 
Q0 (LSB): SET or toggle

Section 9–6	Cascaded Counters
	 1.	 Three decade counters produce , 1000; 4 decade counters produce , 10,000.

	 2.	 (a)	 , 20: flip-flop and DIV 10

(b)	 , 32: flip-flop and DIV 16

(c)	 , 160: DIV 16 and DIV 10

(d)	 , 320: DIV 16 and DIV 10 and flip-flop

Section 9–7	Counter Decoding
	 1.	 (a)	 No transitional states because there is a single bit change

(b)	 0000, 0001, 0010, 0101, 0110, 0111

(c)	 No transitional states because there is a single bit change

(d)	 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110

	61.	 Open file P09-61. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct.

	62.	 Open file P09-62. For the observed behavior indicated, predict the fault in the circuit. Then 
introduce the suspected fault and verify whether your prediction is correct. 
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Section 9–8	Counter Applications
	 1.	 Gate G1 resets flip-flop on first clock pulse after count 9. Gate G2 decodes count 12 to preset 

counter to 0001.

	 2.	 The hours decade counter advances through each state from zero to nine, and as it recycles 
from nine back to zero, the flip-flop is toggled to the SET state. This produces a ten (10) on 
the display. When the hours decade counter is in state 12, the decode NAND gate causes the 
counter to recycle to state 1 on the next clock pulse. The flip-flop resets. This results in a one 
(01) on the display.

Section 9–9	Logic Symbols with Dependency Notation
	 1.	 C: control, usually clock; M: mode; G: AND

	 2.	 D indicates data storage.

Section 9–10	Troubleshooting
	 1.	 No pulses on TC outputs: CTEN of first counter shorted to ground or to a LOW; clock input of 

first counter open; clock line shorted to ground or to a LOW; TC output of first counter shorted 
to ground or to a LOW.

	 2.	 With inverter output open, the counter does not recycle at the preset count but acts as a full-
modulus counter.

Related Problems for Examples
	9–1	 See Figure 9–82.

CLK

Q0

Q1

Q2

Q3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fg08_08600

FIGURE 9–82

	9–2	 Connect Q0 to the NAND gate as a third input (Q2 and Q3 are two of the inputs). Connect the 
CLR line to the CLR input of FF0 as well as FF2 and FF3.

	9–3	 See Figure 9–83.

CLK
Q0

Q1

UP/DOWN

Q2

Q3

150 14 13 12 13 14 15 0 1 0 15 14 15 0

fg08_08800

FIGURE 9–83

	9–4	 See Table 9–14.

TABLE 9–14

Present Invalid State D Inputs Next State

Q2 Q1 Q0 D2 D1 D0 Q2 Q1 Q0

0 0 0 1 1 1 1 1 1 valid state
0 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1
1 1 0 1 0 1 1 0 1 valid state

000 S 111
011 S 000 S 111
100 S 111
110 S 101
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	9–5	 Three flip-flops, sixteen 3-input AND gates, two 4-input OR gates, four 2-input OR gates, 
and one inverter

	9–6	 Five decade counters are required. 105
= 100,000

	9–7	 fQ0 = 1 MHz/[(10)(2)] = 50 kHz

	9–8	 See Figure 9–84.

	9–9	 8AC016 would be loaded. 164 - 8AC016 = 65,536 - 32,520 = 30,016 
fTC4 = 10 MHz/30,016 = 333.2 Hz

	9–10	 See Figure 9–85.

Q2

Q1

Q0

5

fg08_08900

FIGURE 9–84

CLK
Q0

Q1

 Q2

0

fg08_09000

FIGURE 9–85

True/False Quiz
	 1.	 T    2.  F    3.  T    4.  F    5.  T    6.  F    7.  T    8.  F    9.  T    10.  F

Self-Test
	 1.	 (c)      2.  (a)      3.  (b)      4.  (c)      5.  (b)      6.  (c)      7.  (d)      8.  (c)

	 9.	 (b)    10.  (c)    11.  (d)    12.  (d)    13.  (c)    14.  (b)    15.  (b)    16.  (a)
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	 Applied Logic 

Chapter Objectives

■	 Discuss the types of programmable logic, SPLDs 
and CPLDs, and explain their basic structure

■	 Describe the basic architecture of two types of 
SPLDs—the PAL and the GAL

■	 Explain the basic structure of a programmable logic 
array (PLA)

■	 Discuss the operation of macrocells

■	 Distinguish between CPLDs and FPGAs

■	 Explain the basic operation of a look-up table (LUT)

■	 Define intellectual property and platform FPGA
■	 Discuss embedded functions

■	 Show a basic software design flow for a 
programmable device

■	 Explain the design flow elements of design entry, 
functional simulation, synthesis, implementation, 
timing simulation, and downloading

■	 Discuss several methods of testing a programmable 
logic device, including boundary scan logic

Key Terms

Key terms are in order of appearance in the chapter.

Visit the Website

Study aids for this chapter are available at 
http://www.pearsonglobaleditions.com/floyd

Introduction

The distinction between hardware and software is 
hazy. Today, new digital circuits are programmed into 
hardware using languages like VHDL. The density 
(number of equivalent gates on a single chip) has 
increased dramatically over the past few years. The 
maximum number of gates in an FPGA (a type of PLD 
known as a field-programmable gate array) is dou-
bling every 18 months, according to Moore’s law. At 
the same time, the price for a PLD is decreasing.

PLDs, such as the FPGA, can be used in conjunction 
with processors and software in an embedded system, 
or the FPGA can be the sole component with all the 
logic functions programmed in. An embedded system 
is one that is dedicated to a single task or a very limited 
number of tasks unlike the computer, which is multipur-
pose and can be programmed to perform just about any 
task. With PLDs, logic is described with software and 
then implemented with the internal gates of the PLD.

In this chapter, the basic architecture (internal 
structure and organization) of SPLDs, CPLDs, and 
FPGAs is discussed. A discussion of software devel-
opment tools covers the generic design flow for pro-
gramming a device, including design entry, functional 
simulation, synthesis, implementation, timing simula-
tion, and downloading.

■	 LUT

■	 FPGA

■	 CLB

■	 Intellectual property

■	 Design flow

■	 Target device

■	 Schematic entry

■	 Text entry

■	 Functional simulation

■	 Compiler

■	 Timing simulation

■	 Downloading

■	 Break point

■	 Boundary scan

■	 PAL

■	 GAL

■	 Macrocell

■	 Registered

■	 CPLD

■	 LAB
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562	 Programmable Logic

10–1  Simple Programmable Logic Devices (SPLDs)

Two major types of simple programmable logic devices (SPLDs) are the PAL and the 
GAL. PAL stands for programmable array logic, and GAL stands for generic array 
logic. Generally, a PAL is one-time programmable (OTP), and a GAL is a type of 
PAL that is reprogrammable. The term GAL is a designation originally used by Lattice 
Semiconductor and later licensed to other manufacturers. The basic structure of both 
PALs and GALs is a programmable AND array and a fixed OR array, which is a basic 
sum-of-products architecture.

After completing this section, you should be able to

u	 Describe SPLD operation

u	 Show how a sum-of-products expression is implemented in a PAL or GAL

u	 Explain simplified PAL/GAL logic diagrams

u	 Describe a basic PAL/GAL macrocell

SPLD: The PAL

A PAL (programmable array logic) consists of a programmable array of AND gates that 
connects to a fixed array of OR gates. Generally, PALs are implemented with fuse process 
technology and are, therefore, one-time programmable (OTP).

The PAL structure allows any sum-of-products (SOP) logic expression with a defined 
number of variables to be implemented. As you have learned, any combinational logic 
function can be expressed in SOP form. A simple PAL structure is shown in Figure 10–1 
for two input variables and one output; most PALs have many inputs and many outputs. 
As you learned earlier, a programmable array is essentially a grid or matrix of conductors 
that form rows and columns with a programmable link at each cross point. Each program-
mable link, which is a fuse in the case of a PAL, is called a cell. Each row is connected to 
the input of an AND gate, and each column is connected to an input variable or its comple-
ment. By programming the presence or absence of a fuse connection, any combination 
of input variables or complements can be applied to an AND gate to form any desired 
product term. The AND gates are connected to an OR gate, creating a sum-of-products 
(SOP) output.

BBAA

X

fg11_00100

FIGURE 10–1  Basic AND/OR structure of a PAL.
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Implementing a Sum-of-Products Expression

An example of a simple PAL is programmed as shown in Figure 10–2 so that the product 
term AB is produced by the top AND gate, AB  is produced by the middle AND gate, and 
A B is produced by the bottom AND gate. As you can see, the fuses are left intact to connect 
the desired variables or their complements to the appropriate AND gate inputs. The fuses 
are opened where a variable or its complement is not used in a given product term. The final 
output from the OR gate is the SOP expression,

X = AB + AB + A B

BBAA

X = AB + AB + AB

fg11_00200

FIGURE 10–2  PAL implementation of a sum-of-products expression.

SPLD: The GAL

The GAL is essentially a PAL that can be reprogrammed. It has the same type of AND/
OR organization that the PAL does. The basic difference is that a GAL uses a repro-
grammable process technology, such as EEPROM (E2CMOS), instead of fuses, as shown in 
Figure 10–3.

BBAA

+V

X

+V

+V

+V

fg11_00300

FIGURE 10–3  Simplified GAL array.
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564	 Programmable Logic

Simplified Notation for PAL/GAL Diagrams

Actual PAL and GAL devices have many AND and OR gates in addition to other elements 
and are capable of handling many variables and their complements. Most PAL and GAL 
diagrams that you may see on a data sheet use simplified notation, as illustrated in Fig-
ure 10–4, to keep the schematic from being too complicated.

The input variables to a PAL or GAL are usually buffered to prevent loading by a 
large number of AND gate inputs to which they are connected. On the diagram, the 
triangle symbol represents a buffer that produces both the variable and its complement. 
The fixed connections of the input variables and buffers are shown using standard dot 
notation.

PALs and GALs have a large number of programmable interconnection lines, and each 
AND gate has multiple inputs. Typical PAL and GAL logic diagrams represent a multiple-
input AND gate with an AND gate symbol having a single input line with a slash and a 
digit representing the actual number of inputs. Figure 10–4 illustrates this for the case of 
2-input AND gates.

Programmable links in an array are indicated in a diagram by a red X at the cross 
point for an intact fuse or other type of link and the absence of an X for an open fuse 
or other type of link. In Figure 10–4, the 2-variable logic function AB + AB + A B  is 
programmed.

EXAMPLE 10–1

Show how a PAL is programmed for the following 3-variable logic function:

X = ABC + ABC + A B + AC

Solution

The programmed array is shown in Figure 10–5. The intact fusible links are indicated by small red Xs. The absence of an X 
means that the fuse is open.

BBAA

A

B

Input
buffer

Fixed connection

Single line with slash represents multiple
AND gate inputs. (In this case, 2 inputs)

2

Fuse blown
(no connection)

Fuse intact
(connection)

Product
term lines

Input lines

AB

AB

AB

2

2

X = AB + AB + AB

fg11_00400

FIGURE 10–4  A portion of a programmed PAL/GAL.
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B

C

A

CBA A B C

ABC

ABC

AB

AC

X = ABC + ABC + AB + AC

3

3

3

3

fg11_00500

FIGURE 10–5 

Related Problem*

Write the expression for the output if the fusible links connecting input A to the top row and to the bottom row in 
Figure 10–5 are open.

*Answers are at the end of the chapter.

PAL/GAL General Block Diagram

A block diagram of a PAL or GAL is shown in Figure 10–6. Remember, the basic difference 
is that a GAL has a reprogrammable array and the PAL is one-time programmable.  

Macrocells

OR array

OR
gate

Output
logic

O1

OR
gate

Output
logic

O2

OR
gate

Output
logic

O3

OR
gate

Output
logic

Om

I1

I2

I3

I4

In

Programmable
AND array

PAL: One-time
          programmable
GAL: Reprogrammable

FIGURE 10–6  General block diagram of a PAL or GAL.
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566	 Programmable Logic

The programmable AND array outputs go to fixed OR gates that are connected to addi-
tional output logic. An OR gate combined with its associated output logic is typically called 
a macrocell. The complexity of the macrocell depends on the particular device, and in 
GALs it is often reprogrammable.

Generally, SPLD package configurations range from 20 pins to 28 pins. Two factors that 
you can use to help determine whether a certain PAL or GAL is adequate for a given logic 
design are the number of inputs and outputs and the number of equivalent gates or density. 
Other parameters to consider are the maximum operating frequency, delay times, and dc 
supply voltage. Two common types of SPLD are the 16V8 and the 22V10. Various SPLD 
manufacturers may have different ways of defining density, so you have to use the specified 
number of equivalent gates with this in mind.

Macrocells

A macrocell generally consists of one OR gate and some associated output logic. The 
macrocells vary in complexity, depending on the particular type of PAL or GAL. A macro-
cell can be configured for combinational logic, registered logic, or a combination of both. 
Registered logic means that there is a flip-flop in the macrocell to provide for sequential 
logic functions. The registered operation of macrocells is covered in Section 10–3.

Figure 10–7 illustrates three basic types of macrocells with combinational logic. Part 
(a) shows a simple macrocell with the OR gate and an inverter with a tristate control that 
can make the inverter like an open circuit to completely disconnect the output. The output 
of the tristate inverter can be either LOW, HIGH, or disconnected. Part (b) is a macrocell 
that can be either an input or an output. When it is used as an input, the tristate inverter 
is disconnected, and the input goes to the buffer that is connected to the AND array. Part 
(c) is a macrocell that can be programmed to have either an active-HIGH or an active-
LOW output, or it can be used as an input. One input to the exclusive-OR (XOR) gate 
can be programmed to be either HIGH or LOW. When the programmable XOR input is 
HIGH, the OR gate output is inverted because 0 � 1 = 1  and 1 � 1 = 0 . Similarly, 
when the programmable XOR input is LOW, the OR gate output is not inverted because 
0 � 0 = 0  and 1 � 0 = 1 .

Input/Output (I/O)

(c) Programmable polarity output

From AND
gate array

Programmable
fuse

Output

(a) Combinational output (active-LOW). An active-HIGH
      output would be shown without the bubble on the tristate
      gate symbol.

From AND
gate array

Tristate control Input/Output (I/O)

(b) Combinational input/output (active-LOW)

From AND
gate array

fg11_00700

FIGURE 10–7  Basic types of PAL/GAL macrocells for combinational logic.
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Section 10–1  Checkup

Answers are at the end of the chapter.

	 1.	What does PAL stand for?

	 2.	What does GAL stand for?

	 3.	What is the difference between a PAL and a GAL?

	 4.	Basically, what does a macrocell contain?

10–2  Complex Programmable Logic Devices (CPLDs)

The complex programmable logic device (CPLD) is basically a single device containing 
multiple SPLDs and providing more capacity for larger logic designs. In this section, the 
focus is the concepts of traditional CPLD architecture, keeping in mind that CPLDs may 
vary somewhat in architecture and/or in parameters such as density, process technology, 
power consumption, supply voltage, and speed.

After completing this section, you should be able to

u	 Describe a typical CPLD

u	 Discuss the basic CPLD architecture

u	 Explain how product terms are generated in CPLDs

The CPLD

A CPLD (complex programmable logic device) consists basically of multiple SPLD arrays 
with programmable interconnections. Although the way CPLDs are internally organized 
varies with the manufacturer, Figure 10–8 illustrates a generic CPLD. We will refer to each 

I/O

I/O I/O

PIA

I/O

I/O I/O

I/O I/O

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

Logic array
block (LAB)

SPLD

fg11_01000

FIGURE 10–8  Basic block diagram of a generic CPLD.
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568	 Programmable Logic

SPLD array in a CPLD as a LAB (logic array block). Other designations are sometimes 
used, such as function block, logic block, or generic block. The programmable intercon-
nections are generally called the PIA (programmable interconnect array) although some 
manufacturers, such as Xilinx, use the term AIM (advanced interconnect matrix) or a simi-
lar designation. The LABs and the interconnections between LABs are programmed using 
software. A CPLD can be programmed for complex logic functions based on the SOP 
structure of the individual LABs (actually SPLDs). Inputs can be connected to any of the 
LABs, and their outputs can be interconnected to any other LABs via the PIA.

Most programmable logic manufacturers make a series of CPLDs that range in density, 
process technology, power consumption, supply voltage, and speed. Manufacturers usually 
specify CPLD density in terms of macrocells or logic array blocks. Densities can range 
from tens of macrocells to over 1500 macrocells in packages with up to several hundred 
pins. As PLDs become more complex, maximum densities will increase. Most CPLDs are 
reprogrammable and use EEPROM or SRAM process technology for the programmable 
links. Power consumption can range from a few milliwatts to a few hundred milliwatts. DC 
supply voltages are typically from 2.5 V to 5 V, depending on the specific device.

Several manufacturers, (for example, Altera, Xilinx, Lattice, and Atmel) produce 
CPLDs. As you will learn, CPLDs and other programmable logic devices are really a com-
bination of hardware and software.

Classic CPLD Architecture

The architecture of a CPLD is the way in which the internal elements are organized and 
arranged. The architecture of specific CPLDs is similar to the block diagram of a generic 
CPLD (shown in Figure 10–8). It has the classic PAL/GAL structure that produces SOP 
functions. The density ranges from 2 LABs to 16 LABs, depending on the particular device 
in the series. Remember, a LAB is roughly equivalent to one SPLD, and package sizes for 
CPLDs vary from 44 pins to 208 pins. Typically, a series of CPLDs uses the EEPROM-based 
process technology. In-system programmable (ISP) versions use the JTAG standard interface.

Figure 10–9 shows a general block diagram of a typical CPLD. Four LABs are shown, 
but there can be up to sixteen, depending on the particular device in a series. Each of 
the four LABs consists of sixteen macrocells, and multiple LABs are linked together via 
the PIA, which is a programmable global (goes to all LABs) bus structure to which the 
general-purpose inputs, the I/Os, and the macrocells are connected.

The Macrocell

A simplified diagram of a typical macrocell is shown in Figure 10–10. The macrocell con-
tains a small programmable AND array with five AND gates, an OR gate, a product-term 
selection matrix for connecting the AND gate outputs to the OR gate, and associated logic 
that can be programmed for input, combinational logic output, or registered output. This 
macrocell is covered in more detail in Section 10–3.

Although based on the same concept, this macrocell differs somewhat from the macrocell 
discussed in Section 10–1 in relation to SPLDs because it contains a portion of the program-
mable AND array and a product-term selection matrix. As shown in Figure 10–10, five AND 
gates feed product terms from the PIA into the product-term selection matrix. The product term 
from the bottom AND gate can be fed back inverted into the programmable array as a shared 
expander for use by other macrocells. The parallel expander inputs allow borrowing of unused 
product terms from other macrocells to expand an SOP expression. The product-term selection 
matrix is an array of programmable connections that is used to connect selected outputs from 
the AND array and from the expander inputs to the OR gate.

Shared Expanders

A complemented product term that can be used to increase the number of product terms in 
an SOP expression is available from each macrocell in a LAB. Figure 10–11 illustrates how 
a shared expander term from another macrocell can be used to create additional product 
terms. In this case, each of the five AND gates in a macrocell array is limited to four inputs 

M10_FLOY5983_11_GE_C10.indd Page 568  11/11/14  6:44 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



569

8–168–16 36

16

36

16

8–168–16

8–168–16 36

16

I/O
control
block

I/O
control
block

Logic array block
(LAB A)

36

16

I/O
control
block

I/O
control
block

8–16 I/O
pins/LAB

Macrocell 1

Macrocell 2

Macrocell 16

Logic array block
(LAB B)

Logic array block
(LAB C)

Logic array block
(LAB D)

Macrocell 1

Macrocell 2

Macrocell 16

Macrocell 1

Macrocell 2

Macrocell 16

Macrocell 1

Macrocell 2

Macrocell 16

8–168–16

General-purpose inputs

PIA

fg11_01100

FIGURE 10–9  Basic block diagram of a typical CPLD.
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FIGURE 10–10  Simplified diagram of a macrocell in a typical CPLD.
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FEDCBA

Product-term
selection
matrix

ABCD + ABCD + ABCD
+ ABCD + ABCE + ABCF

Macrocell 1

ABCD + ABCD + ABCD

Macrocell 2

Expander terms

Expander term E + F
to Macrocell 1

Product-term
selection
matrix

EF

fg11_01400

FIGURE 10–12  Simplified illustration of using a shared expander term from another 
macrocell to increase an SOP expression. The red Xs and lines represent the connections 
produced in the hardware by the software compiler running the programmed design.

A
B
C
D

ABCD

(a)

A
B
C ABC(E + F) = ABCE + ABCF

(b)

E + F
EF Product term from another

macrocell in same LAB

A 4-input AND array gate can produce
one 4-variable product term.

AND gate is expanded to produce two product terms.

fg11_01300

FIGURE 10–11  Example of how a shared expander can be used in a macrocell 
to increase the number of product terms.

and, therefore, can produce up to a 4-variable product term, as illustrated in part (a). Figure 
10–11(b) shows the expansion to two product terms.

Each macrocell can produce up to five product terms generated from its AND array. 
If a macrocell needs more than five product terms for its SOP output, it can use an 
expander term from another macrocell. Suppose that a design requires an SOP expres-
sion that contains six product terms. Figure 10–12 shows how a product term from 
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ABCD + EFGH + ABCD + ABCD + EFGH

A
B
C
D

E
F
G
H

ABCD + ABCD + EFGH Parallel expander terms

fg11_01500

FIGURE 10–13  Basic concept of the parallel expander.

another macrocell can be used to increase an SOP output. Macrocell 2, which is under-
utilized, generates a shared expander term (E + F)  that connects to the fifth AND gate 
in macrocell 1 to produce an SOP expression with six product terms.

Parallel Expanders

Another way to increase the number of product terms for a macrocell is by using paral-
lel expanders in which additional product terms are ORed with the terms generated by a 
macrocell instead of being combined in the AND array, as in the shared expander. A given 
macrocell can borrow unused product terms from neighboring macrocells. The basic con-
cept is illustrated in Figure 10–13 where a simplified circuit that can produce two product 
terms borrows three additional product terms.

Figure 10–14 shows how one macrocell can borrow parallel expander terms from 
another macrocell to increase the SOP output. Macrocell 2 uses three product terms from 
macrocell 1 to produce an eight-term SOP expression.

LUT CPLD Architecture

This architecture differs from the classic CPLD previously discussed. As shown by the 
block diagram in Figure 10–15, this device contains logic array blocks (LABs) each with 
multiple logic elements (LEs). An LE is the basic logic design unit and is analogous to the 
macrocell. The programmable interconnects are arranged in a row and column arrange-
ment running between the LABs, and input/output elements (IOEs) are oriented around 
the perimeter. The architecture of this type of CPLD is similar to that of FPGAs, which we 
discuss in Section 10–4.

A main difference between this type of CPLD and the classic AND/OR array CPLD 
previously discussed is the way in which a logic function is developed. Look-up tables 
(LUTs) are used instead of AND/OR arrays. An LUT is basically a type of memory that 
can be programmed to produce SOP functions (discussed in more detail in Section 10–4). 
These two approaches are contrasted in Figure 10–16.

As mentioned, the LUT CPLD has a row/column arrangement of interconnects instead 
of the channel-type interconnects found in most classic CPLDs. These two approaches 
are contrasted in Figure 10–17 and can be understood by comparing Figure 10–9 and 
Figure 10–15.

Most CPLDs use a nonvolatile process technology for the programmable links. The 
LUT CPLD, however, uses a SRAM-based process technology that is volatile—all pro-
grammed logic is lost when power is turned off. The memory embedded on the chip stores 
the program data using nonvolatile memory technology and reconfigures the CPLD on 
power up.
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PLA (Programmable Logic Array)

As you have learned, the architecture of a CPLD is the way in which the internal ele-
ments are organized and arranged. The architecture of some PLDs is based on a PLA 
(programmable logic array) structure rather than on a PAL (programmable array logic) 
structure, which we have discussed. Figure 10–18 compares a simple PAL structure with 
a simple PLA structure. The PAL has a programmable AND array followed by a fixed 
OR array and produces an SOP expression, as shown by the example in Figure 10–18(a). 
The PLA has a programmable AND array followed by a programmable OR array, as 
shown by the example in Figure 10–18(b).

Specific CPLD Devices

Several manufacturers produce CPLDs. Table 10–1 lists device families from selected 
companies. As time passes, a series may become obsolete or a new series may be added. 
You can check the websites for the most current information.

CPLDs vary greatly in terms of complexity. Table 10–2 lists some of the parameter 
ranges that are available. Keep in mind that these numbers are subject to change as technol-
ogy advances.

FEDCBA

ABCD + ABCD + ABCD
+ ABCD + ABCD +
ABCD + ABCD + ABCD

ABCD + ABCD + ABCD

Parallel expander terms
loaned to Macrocell 2

Product-term
selection
matrix

Macrocell 1

Macrocell 2

Product-term
selection
matrix

fg11_01600

FIGURE 10–14  Simplified illustration of using parallel expander terms from another 
macrocell to increase an SOP expression. The red Xs and lines represent the connections 
produced in the hardware by the software complier running the programmed design.
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FIGURE 10–15  Simplified block diagram of an LUT CPLD.
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FIGURE 10–16  Two types of logic function generation in CPLDs.

(a) Row/column interconnects (b) Channel-type interconnect

LABs
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FIGURE 10–17  LUT CPLDs have row/column interconnects. Classic CPLDs have 
channel-type interconnects.
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FIGURE 10–18  Comparison of a basic PLA to a basic PAL type PLD architecture.

TABLE 10–1

CPLD manufacturers.

Manufacturer Series Name Design Software Website

Altera MAX Quartus II Altera.com
Xilinx Coolrunner ISE Design Suite Xilinx.com
Lattice ispMACH ispLEVER classic Latticesemi.com
Atmel ATF ProChip Designer Atmel.com

TABLE 10–2

Selected CPLD parameters.

Feature Range

Number of macrocells 10–1700
Number of LABs 10–221
Maximum operating frequency 20.4 MHz–400 MHz
Number of I/Os 10–1156
DC operating voltage 1.8 V, 2.5 V, 3.3 V, 5 V

Section 10–2  Checkup

	 1.	What is a CPLD?

	 2.	What does LAB stand for?

	 3.	Describe a LAB in a typical CPLD.

	 4.	What is the purpose of a shared expander?

	 5.	What is the purpose of a parallel expander?

	 6.	How does a PLA differ from a PAL?

10–3  Macrocell Modes

CPLD macrocells were introduced previously. A macrocell can be configured for combina-
tional logic or registered logic outputs and inputs by programming. The term registered refers 
to the use of flip-flops. In this section, you will learn about the typical macrocell, including 
the combinational and the registered modes of operation. Although macrocell architecture 
varies among different CPLDs, a typical macrocell architecture is used for illustration.
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After completing this section, you should be able to

u	 Describe the operation of a typical CPLD macrocell

Logic diagrams often use the symbol shown in Figure 10–19 to represent a multiplexer. 
In this case, the multiplexer has two data inputs and a select input that provides for pro-
grammable selection; the select input is usually not shown on a logic diagram.

Data output

Select (0 selects D0, 1 selects D1)

D0

D1

Data inputs

fg11_02400
FIGURE 10–19  Commonly used symbol for a multiplexer. It can have any number of inputs.

Figure 10–20 shows a complete macrocell including the flip-flop (register). The XOR 
gate provides for complementing the SOP function from the OR gate to produce a func-
tion in POS form. A 1 on the top input of the XOR gate complements the OR output, and 
a 0 lets the OR output pass uncomplemented (in SOP form). MUX 1 provides for selection 
of either the XOR output or an input from the I/O. MUX 2 can be programmed to select 
either the global clock or a clock signal based on a product term. MUX 3 can be pro-
grammed to select either a HIGH (VCC) or a product-term enable for the flip-flop. MUX 4 
can select the global clear or a product-term clear. MUX 5 is used to bypass the flip-flop 
and connect the combinational logic output to the I/O or to connect the registered output 
to the I/O. The flip-flop can be programmed as a D, T (toggle), or J-K flip-flop.
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Global
clear

Global
clock
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FIGURE 10–20  A CPLD macrocell.

The Combinational Mode

When a macrocell is programmed to produce an SOP combinational logic function, the 
logic elements in the data path are as shown in red in Figure 10–21. As you can see, only 
one mux is used and the register (flip-flop) is bypassed.
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FIGURE 10–21  A macrocell configured for generation of an SOP logic function. 
Red indicates data path.
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FIGURE 10–22  A macrocell configured for generation of a registered logic function. 
Red indicates data path.

The Registered Mode

When a macrocell is programmed for the registered mode with the SOP combinational 
logic output providing the data input to the register and clocked by the global clock, the 
elements in the data path are as shown in red in Figure 10–22. As you can see, four multi-
plexers (mux) are used and the register (flip-flop) is active.
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Section 10–3  Checkup

	 1.	Explain the purpose of the XOR gate in the macrocell.

	 2.	What are the two major modes of a macrocell?

	 3.	What does the term registered refer to?

	 4.	Besides the OR gate, XOR gate, and flip-flop, what other logic element is commonly 
used in a macrocell?

10–4  Field-Programmable Gate Arrays (FPGAs)

As you have learned, the classic CPLD architecture consists of PAL/GAL or PLA-type logic 
blocks with programmable interconnections. Basically, the FPGA (field-programmable gate 
array) differs in architecture, does not use PAL/PLA type arrays, and has much greater 
densities than CPLDs. A typical FPGA has many times more equivalent gates than a typical 
CPLD. The logic-producing elements in FPGAs are generally much smaller than in CPLDs, 
and there are many more of them. Also, the programmable interconnections are generally 
organized in a row and column arrangement in FPGAs.

After completing this section, you should be able to

u	 Describe the basic structure of a field-programmable gate array (FPGA)

u	 Compare an FPGA to a CPLD

u	 Discuss look-up tables (LUTs)

u	 Discuss the SRAM-based FPGA

u	 Define the FPGA core

The three basic elements in an FPGA are the configurable logic block (CLB), the inter-
connections, and the input/output (I/O) blocks, as illustrated in Figure 10–23. The configu-
rable logic blocks (CLBs) in an FPGA are not as complex as the LABs or function blocks 
(FBs) in a CPLD, but generally there are many more of them. When the CLBs are relatively 
simple, the FPGA architecture is called fine grained. When the CLBs are larger and more 
complex, the architecture is called coarse grained. The I/O blocks around the perimeter 
of the structure provide individually selectable input, output, or bidirectional access to the 
outside world. The distributed matrix of programmable interconnections provide for inter-
connection of the CLBs and connection to inputs and outputs. Large FPGAs can have tens 
of thousands of CLBs in addition to memory and other resources.

Most programmable logic manufacturers make a series of FPGAs that range in density, 
power consumption, supply voltage, speed, and to some degree vary in architecture. FPGAs 
are reprogrammable and use SRAM or antifuse process technology for the programmable 
links. Densities can range from hundreds of logic modules to hundreds of thousands of logic 
modules in packages with up to over 1,000 pins. DC supply voltages are typically 1.8 V to 
5 V, depending on the specific device.

Configurable Logic Blocks

Typically, an FPGA logic block consists of several smaller logic modules that are the basic 
building units, somewhat analogous to macrocells in a CPLD. Figure 10–24 shows the 
fundamental configurable logic blocks (CLBs) within the global row/column program-
mable interconnects that are used to connect logic blocks. Each CLB (also known as logic 
array block, LAB) is made up of multiple smaller logic modules and a local programmable 
interconnect that is used to connect logic modules within the CLB.
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FIGURE 10–23  Basic structure of an FPGA. CLB is configurable logic block, also known 
as logic array block (LAB).
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FIGURE 10–24  Basic configurable logic blocks (CLBs) within the global row/column 
programmable interconnects.
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Logic Modules

A logic module in an FPGA logic block can be configured for combinational logic, regis-
tered logic, or a combination of both. A flip-flop is part of the associated logic and is used 
for registered logic. A block diagram of a typical LUT-based logic module is shown in 
Figure 10–25. As you know, an LUT (look-up table) is a type of memory that is program-
mable and used to generate SOP combinational logic functions. The LUT essentially does 
the same job as the PAL or PLA does.

Logic module

I/O

SOP output
A0

A1

A2

An–1

LUT
Associated

logic

fg11_03300

FIGURE 10–25  Basic block diagram of a logic module in an FPGA.

Generally, the organization of an LUT consists of a number of memory cells equal to 2n, 
where n is the number of input variables. For example, three inputs can select up to eight 
memory cells, so an LUT with three input variables can produce an SOP expression with 
up to eight product terms. A pattern of 1s and 0s can be programmed into the LUT memory 
cells, as illustrated in Figure 10–26 for a specified SOP function. Each 1 means the associ-
ated product term appears in the SOP output, and each 0 means that the associated product 
term does not appear in the SOP output. The resulting SOP output expression is

A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

Memory
cells

A2A1A0

A1

Selection logic

A2A1A0

A2A1A0

A2A1A0

A2A1A0

1

0

0

1

0

A2A1A0 1

A2A1A0 0

A2A1A0 1

A0

A2

SOP output

LUT
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FIGURE 10–26  The basic concept of an LUT programmed for a particular SOP output.

EXAMPLE 10–2

Show a basic 3-variable LUT programmed to produce the following SOP function:

A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0
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Operating Modes of a Logic Module

Typically, a logic module (LM) can be programmed for the following modes of operation:

•	 Normal mode

•	 Extended LUT mode

•	 Arithmetic mode

•	 Shared arithmetic mode

In addition to these four modes, a logic module can be utilized as a register chain to cre-
ate counters and shift registers. In this section, we will discuss the normal mode and the 
extended LUT mode.

The normal mode is used primarily for generating combinational logic functions. A 
logic module can implement one or two combinational output functions with its two 
LUTs. Examples of four LUT configurations are illustrated in Figure 10–28. Gener-
ally, two SOP functions, each with four variables or less, can be implemented in an 
LM without sharing inputs. For example, you can have two 4-variable functions, one 
4-variable function and one 3-variable function, or two 3-variable functions. By shar-
ing inputs, you can have any combination of a total of eight inputs up to a maximum 
of six inputs for each LUT. In the normal mode, you are limited to 6-variable SOP 
functions.

The extended LUT mode allows expansion to a 7-variable function, as illustrated in Fig-
ure 10–29. The multiplexer formed by the AND-OR circuit with a complemented input is 
part of the dedicated logic in a logic module.

Related Problem

How many memory cells would be in an LUT with four input variables? What would be 
the maximum possible number of product terms in the SOP output?

Solution

A 1 is stored for each product term in the SOP expression, as shown in Figure 10–27.
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FIGURE 10–27 
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FIGURE 10–28  Examples of possible LUT configurations in a logic module (LM) in the 
normal mode.

SOP output

5-input
LUT

5-input
LUT

LM

7 input
variables

FIGURE 10–29  Expansion of a logic module (LM) to produce a 7-variable SOP function 
in the extended LUT mode.

EXAMPLE 10–3

A logic module is configured in the extended LUT mode, as shown in Figure 10–30. For the specific LUT outputs shown, 
determine the final SOP output.

Solution

The SOP output expression is as follows:

A5A4A3A2A1A0 + A5A4A3A2A1A0 + A5A4A3A2A1A0 + A6A5A4A3A2A0 + A6A5A4A3A2A0 + A6A5A4A3A2A0

Related Problem

Show an LM configured in the normal mode to produce one SOP function with five product terms from one LUT and three 
product terms from the other LUT.
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SRAM-Based FPGAs

FPGAs are either nonvolatile because they are based on antifuse technology or they are 
volatile because they are based on SRAM technology. (The term volatile means that all 
the data programmed into the configurable logic blocks are lost when power is turned 
off.) Therefore, SRAM-based FPGAs include either a nonvolatile configuration memory 
embedded on the chip to store the program data and reconfigure the device each time power 
is turned back on or they use an external memory with data transfer controlled by a host 
processor. The concept of on-the-chip memory is illustrated in Figure 10–31(a). The con-
cept of the host processor configuration is shown in part (b).

A5A4A3A2A1 + A5A4A3A2A1 + A5A4A3A2A1

5-input
LUT

5-input
LUT

LM
A0

A1
A2
A3
A4
A5

A6

A6A5A4A3A2 + A6A5A4A3A2 + A6A5A4A3A2

FIGURE 10–30 

Reprograms CLBs on
power up or resetNonvolatile

configuration
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(a) Volatile FPGA with on-the-chip nonvolatile configuration memory

Nonvolatile
configuration

memory

Volatile
FPGA

Host
processor

Programming
data

(b) Volatile FPGA with on-board memory and host processor

Programming
data

CLB
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FIGURE 10–31  Basic concepts of volatile FPGA configurations.
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FPGA Cores

FPGAs, as we have discussed, are essentially like “blank slates” that the end user can pro-
gram for any logic design. FPGAs are available that also contain hard-core logic. A hard 
core is a portion of logic in an FPGA that is put in by the manufacturer to provide a specific 
function and that cannot be reprogrammed. For example, if a customer needs a small micro-
processor as part of a system design, it can be programmed into the FPGA by the customer 
or it can be provided as hard core by the manufacturer. If the embedded function has some 
programmable features, it is known as a soft-core function. An advantage of the hard-core 
approach is that the same design can be implemented using much less of the available capac-
ity of the FPGA than if the user programmed it in the field, resulting in less space on the 
chip (“real estate”) and less development time for the user. Also, hard-core functions have 
been thoroughly tested. The disadvantage of the hard core is that the specifications are fixed 
during manufacturing and the customer must be able to use the hard-core logic “as is.” It 
cannot be changed later.

Hard cores are generally available for functions that are commonly used in digital sys-
tems, such as a microprocessor, standard input/output interfaces, and digital signal pro-
cessors. More than one hard-core function can be programmed in an FPGA. Figure 10–32 
illustrates the concept of a hard core surrounded by configurable logic programmed by the 
user. This is a basic embedded system because the hard-core function is embedded in the 
user-programmed logic.

Remaining CLBs
are programmed
by user.

Hard core:
portion of CLBs

programmed during
manufacturing for a

specific function

fg11_03700

FIGURE 10–32  Basic idea of a hard-core function embedded in an FPGA.

Hard core designs are generally developed by and are the property of the FPGA 
manufacturer. Designs owned by the manufacturer are termed intellectual property 
(IP). A company usually lists the types of intellectual property that are available on its 
website. Some intellectual properties are a mix of hard core and soft core. A processor 
that has some flexibility in the selection and adjustment of certain parameters by the 
user is an example.

Those FPGAs containing either or both hard-core and soft-core embedded processors 
and other functions are known as platform FPGAs because they can be used to implement 
an entire system without the need for external support devices.

Embedded Functions

A block diagram of a typical FPGA is shown in Figure 10–33. The FPGA contains 
embedded memory functions as well as digital signal processing (DSP) functions. DSP 
functions, such as digital filters, are commonly used in many systems. As you can see 
in the block diagram, the embedded blocks are arranged throughout the FPGA intercon-
nection matrix and input/output elements (IOEs) are placed around the FPGA perimeter.
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Specific FPGA Devices

Several manufacturers produce FPGAs as well as CPLDs. Table 10–3 lists device families 
from selected companies. Check the website for the most current information.
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FIGURE 10–33  Example FPGA block diagram.

TABLE 10–3

FPGA manufacturers.

Manufacturer Series Name(s) Design Software Website

Altera Stratix Quartus II Altera.com
Aria
Cyclone

Xilinx Spartan ISE Design Suite Xilinx.com
Artix
Kintex
Virtex

Lattice iCE40 Lattice Diamond Latticesemi.com
MachX02 iCEcube2
Lattice ECP3
LatticeXP2
LatticeGC/M

Atmel AT40 IDS Atmel.com

FPGAs vary greatly in terms of complexity. Table 10–4 lists some of the parameter 
ranges that are available. Keep in mind that these numbers are subject to change as technol-
ogy advances.
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TABLE 10–4

Selected FPGA parameters.

Feature Range

Number of LEs 1,500–813,000
Number of CLBs 26–359,000
Embedded memory 26 kb–63 Mb
Number of I/Os 18–1200
DC operating voltage 1.8 V, 2.5 V, 3.3 V, 5 V

10–5  Programmable Logic Software

In order to be useful, programmable logic must have both hardware and software compo-
nents combined into a functional unit. All manufacturers of SPLDs, CPLDs, and FPGAs 
provide software support for each hardware device. These software packages are in a 
category of software known as computer-aided design (CAD). In this section, program-
mable logic software is presented in a generic way using the traffic signal controller from 
Chapters 6 and 7 Applied Logic for illustration. Tutorials for two types of software, Altera 
Quartus II and Xilinx ISE, are provided on the website.

After completing this section, you should be able to

u	 Explain the programming process in terms of design flow

u	 Describe the design entry phase

u	 Describe the functional simulation phase

u	 Describe the synthesis phase

u	 Describe the implementation phase

u	 Describe the timing simulation phase

u	 Describe the download phase

The programming process is generally referred to as design flow. A basic design flow 
diagram for implementing a logic design in a programmable device is shown in Figure 
10–34. Most specific software packages incorporate these elements in one form or another 
and process them automatically. The device being programmed is usually referred to as the 
target device.

Section 10–4  Checkup

	 1.	How does an FPGA differ from a CPLD?

	 2.	What does CLB stand for?

	 3.	Describe an LUT and discuss its purpose.

	 4.	What is the difference between a local interconnect and a global interconnect in an 
FPGA?

	 5.	What is an FPGA core?

	 6.	Define the term intellectual property in relation to an FPGA manufacturer.

	 7.	What produces combinational logic functions in an LM?

	 8.	Name the two types of embedded functions.
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You must have four things to get started programming a device: a computer, develop-
ment software, a programmable logic device (SPLD, CPLD, or FPGA), and a way to con-
nect the device to the computer. These essentials are illustrated in Figure 10–35. Part (a) 
shows a computer that meets the system requirements for the particular software you are 
using. Part (b) shows the software acquired either on a CD from the device manufacturer 
or downloaded from the device manufacturer’s website. Most manufacturers provide free 
software that can be downloaded and used for a limited time (Examples are Altera Quartus 
II and Xilinx ISE.). Part (c) shows a programmable logic device. Part (d) illustrates two 
means of physically connecting the device to the computer via cable by using either the 

Design entry

Synthesis

Device
programming
(downloading)

Timing
simulationFunctional

simulation

Implementation

Schematic
HDL

FIGURE 10–34  General design flow diagram for programming a SPLD, CPLD, or FPGA.

(a) Computer (b) Software (CD or Website download)

(c) Device (d) Programming hardware (programming fixture or development board with cable for
connection to computer port)

FIGURE 10–35  Essential elements for programming an SPLD, CPLD, or FPGA. 
(d) photo courtesy of Digilent, Inc.
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programming fixture into which the device is inserted or the development board on which 
the device is mounted. After the software has been installed on your computer, you must 
become familiar with the particular software tools before attempting to connect and pro-
gram a device.

Design Entry

Assume that you have a logic circuit design that you wish to implement in a programmable 
device. You can enter the design on your computer in either of two basic ways: schematic 
entry or text entry. In order to use text entry, you must be familiar with an HDL such 
as VHDL, Verilog, or AHDL. Most programmable logic manufacturers provide software 
packages that support VHDL and Verilog because they are standard HDLs. Some also sup-
port AHDL, ABEL, or other proprietary HDLs. Schematic entry allows you to place sym-
bols of logic gates and other logic functions from a library on the screen and connect them 
as required by your design. A knowlege of an HDL is not required for schematic entry.

Building a Logic Design

In addition to programming languages such as VHDL and Verilog, schematic capture can 
also be used in PLD development. When you enter a complete logic circuit schematic on 
the screen, it is called a “flat” schematic. Complex logic circuits may be hard to fit onto the 
screen and difficult to read. You can enter logic circuits in segments, save each segment as 
a block symbol, and then connect the block symbols graphically to form a complex circuit, 
as shown in Figure 10–36 for the traffic signal controller (Chapters 6 and 7), which we will 
use for illustration of the process. This is called a hierarchical approach.
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FIGURE 10–36  Block diagram for the traffic signal controller.

The sequential logic section of the traffic signal controller is created using schematic 
capture and compared to the same application created using VHDL. Figure 10–37 shows 
the use of VHDL to create the sequential logic component of the system. The sequential 
logic portion of the traffic light application was developed in Chapter 7. The code for the 
expressions assigned to D0 and D1 are created straight from the Boolean expressions.

 D1 = G0TS + G1TS

 D0 = G1TLVs + G1G0 + G0TLVs
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Figure 10–38(a) shows the sequential logic block created using schematic entry (also 
known as schematic capture) techniques. Breaking the schematic into separate logic circuits 
allows for functional compartmentalization and easier development. The Boolean expres-
sions are implemented using separate logic gates with graphical representation of wires and 
I/O components needed to connect them. The completed and tested module is reduced to a 

FIGURE 10–37  Text entry with VHDL description of the sequential logic for the traffic 
signal controller.
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FIGURE 10–38  The sequential logic using schematic entry.

(a)
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simple block symbol, as shown in Figure 10–38(b), and can be inserted as a component, as 
shown in Figure 10–36. A block symbol can also be created using VHDL code. 

Functional Simulation

The purpose of the functional simulation in the design flow is to make sure that the design 
you entered works as it should in terms of its logic operation, before synthesizing into a 
hardware design. Basically, after a logic circuit is compiled, it can then be simulated by 
applying input waveforms and checking the output for all possible input combinations. 
Functional simulation is accomplished graphically using a waveform editor or program-
matically using a test bench. Graphical waveform editors allow drawing of test stimulus 
using waveform drawing features and drag and drop techniques.

Graphical Approach

Graphical generation tools allow for the easy creation of drawn stimulus waveforms for simple 
testing applications. Graphical waveforms are created to provide the input stimulus for the 
sequential logic component of the traffic signal control system as an example. Inputs Clk, TL, 
TS, and VS will be created using graphical tools. Output identifiers G0 and G1 require no input 
stimulus and are simply dragged and dropped into the Wave window. The clock definition is 
created using the Define Clock feature to drive the system clock Clk and limit the simulation 
run time. The offset, duty cycle, period, logic values, cancel, and initial edge are provided. 
Inputs VS, TL, and TS are created using the same graphical techniques. You can view the 
drawn stimulus waveforms prior to simulation. Typical windows are shown in Figure 10–39.

FIGURE 10–39  Functional simulation.

After you have specified the input waveforms, the simulation is ready to run. When 
the simulation is started, the output waveforms for G0 and G1 will be displayed as shown 
in Figure 10–40. This allows you to verify that the design is good or that it is working 
properly. In this case, the output waveform is corrected to the selected input waveforms. 
An incorrect output waveform would indicate a flaw in the functionality of the logic; you 
would have to go back, check the original design, and then re-enter a revised design.
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Test Bench Approach

A programmatic approach to design simulation is to create an additional program file 
called a test bench. A test bench is similar in construction to the program code and is typi-
cally written in the same HDL as the original program. The test bench program can be as 
complex as the original program. In this example, a test bench program is written to pro-
vide the input stimulus for the sequential logic component of the traffic signal controller. 
The following test bench program is written in VHDL to simulate input waveforms for the 
sequential logic module.

FIGURE 10–40  After the functional simulation is run, the output waveform should 
indicate that the logic is functioning properly.

library IEEE;

use IEEE.std_logic_1164.all;

entity TestSL is
end entity TestSL;

architecture TestSLBehavior of TestSL is

component SequentialLogic is
port(VS, TL, TS, CLK: in std_logic;

     G0, G1: inout std_logic);

end component SequentialLogic;

signal VS, TL, TS, Clk, G0, G1: std_logic;

begin
  Clk_process:process
  begin
    for iterate in 1 to 10000

      loop
      CLK6=‘1’;

      wait for 50 us;

      CLK6=‘0’;

      wait for 50 us;

    end loop;

    wait;
  end process;

Input stimulus for the SequentialLogic unit under  
test (UUT) is created programmatically within the  
program so the entity is left blank.

Stimulus process for 
CLKin input. A loop 
structure is used to 
limit the number clock 
cycles to 10000.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

¸
˝
˛
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After the test bench simulation is run, the output waveform on the waveform editor 
screen should indicate that the logic is functioning properly.

Synthesis

Once the design has been entered and functionally simulated to verify that its logical oper-
ation is correct, the compiler automatically goes through several phases to prepare the 
design to be downloaded to the target device. During this synthesis phase of the design 
flow, the design is optimized in terms of minimizing the number of gates, replacing logic 
elements with other logic elements that can perform the same function more efficiently, 
and eliminating any redundant logic. The final output from the synthesis phase is a netlist 
that describes the optimized version of the logic circuit.

To demonstrate the process of design optimization, the schematic capture version 
of the sequential logic section of the system is presented with redundant ORGates and 
NotGates, as shown in Figure 10–41(a). The AND-OR logic that was entered in the 
design entry phase, shown in Figure 10–41(a), could result in the optimized circuit 
shown in Figure 10–41(b). In this illustration, the compiler removed two 2-input OR 
gates and replaced them with a single 3-input OR gate. Also, one of the redundant 
inverters was eliminated.

Netlist

A netlist is a connectivity list that describes components and how they are connected 
together. Generally, a netlist contains references to descriptions of the components or 
elements used. Each time a component, such as a logic gate, is used in a netlist, it is 
called an instance. Each instance has a definition that lists the connections that can be 
made to that kind of component and some basic properties of that component. These 
connection points are called ports or pins. Usually, each instance will have a unique 
name; for example, if you have two instances of AND gates, one might be “and1” and 
the other “and2”. Aside from their names, they might otherwise be identical. Nets are 
the “wires” that connect things together in the circuit. Net-based netlists usually describe 

TLS_process: process

begin

    TL 6=‘0’;

    TS 6=‘1’;

    wait for 100 us;

    TL 6=‘1’;

    TS 6=‘0’;

    wait for 100 us;

  end process;

  stim_proc: process

  begin

    VS 6=‘0’;

    wait for 100 us;

    VS 6=‘1’;

    wait;

  end process;

UUT: SequentialLogic port map

(VS =7 VS, TL =7 TL, TS =7 TS, Clk =7 Clk, G0 =7 G0, G1 =7 G1);

end architecture TestSLBehavior;

Stimulus process for 
TL and TS input.

Stimulus process for VSin 
input.

Creating a separate stimulus 
process for inputs CLK, TL, TS, 
and VS allows for independent 
control of the input identifiers.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˛

¸
˚
˚
˚
˚
˝
˚
˚
˚
˚
˛
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all the instances and their attributes, then describe each net, and specify which port they 
are connected to on each instance. The synthesis software generates a netlist, as shown 
in Figure 10–42(a). The netlist indicates the type of information that is necessary to 
describe a circuit. One format used for netlists is EDIF (Electronic Design Interchange 
Format). Using the netlist, the software creates a schematic representation of the net 
assignments, as shown in Figure 10–42(b).

Implementation (Software)

After the design has been synthesized, the compiler implements the design, which is basi-
cally a “mapping” of the design so that it will fit in the specific target device based on its 
architecture and pin configurations. This process is called fitting or place and routing. To 
accomplish the implementation phase of the design flow, the software must “know” about 
the specific device and have detailed pin information. Complete data on all potential target 
devices are generally stored in the software library.

Timing Simulation

This part of the design flow occurs after the implementation and before downloading to 
the target device. The timing simulation verifies that the circuit works at the design fre-
quency and that there are no timing problems that will affect the overall operation. Since a 
functional simulation has already been done, the circuit should work properly from a logic 

(b) Logic after synthesis

FIGURE 10–41  Example of logic optimization during synthesis. The final version is 
reduced by eliminating one inverter and combining two 2-input OR gates into a single 
3-input OR gate.

(a) Original logic design
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point of view. The development software uses information about the specific target device, 
such as propagation delays of the gates, to perform a timing simulation of the design. For 
the functional simulation, the specification of the target device was not required; but for the 
timing simulation, the target device must be chosen. The Waveform Editor can be used to 
view the result of the timing simulation just as with the functional simulation, as illustrated 
in Figure 10–43. If there are no problems with the timing, as shown in part (a), the design 
is ready to download. However, suppose that the timing simulation reveals a “glitch” due to 
propagation delay, as shown in Figure 10–43(b). A glitch is a very short duration spike in 
the waveform. In this event, you would need to carefully analyze the design for the cause, 
then re-enter the modified design, and repeat the design flow process. Remember, you have 
not committed the design to hardware at this point.

(b) Schematic representation of netlist

FIGURE 10–42  Synthesis produces netlist and schematic for the optimized sequential logic.

Netlist(SequentialLogic)
Net<name>: instance<name>,<from>,<to>;
Instances: and0,and1,and2,and3,and4,or0,or1,inv0,inv1,inv2,DFF0,DFF1;
Input/outputs:l1,l2,l3,l4,O1,O2
net1:   DFF0, inport2; DFF1, inport2; l1;
net2:   and0, inport2; inv1, outport1; l2;
net3:   inv0, outport1; and4, inport2; l3;
net4:   and2, inport3, and4, inport4; l4;
net5:   and2, inport2;
net6:   DFF1, outport1; and0, inport1; inv2, output1; O0;
net7:   DFF0, outport1; and1, inport2; and3, inport2; and4, inport1; O1;
net8:   and1, inport1;
net9:   and2, inport1; and3, inport1;
net10: or0, inport1;
net11: or0, inport2;
net12: or1, inport1;
net13: or1, inport2;
net14: or1, inport3;
net15: DFF1, inport1;
net16: DFF0, inport1;
end;

(a) Netlist
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Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you 
can initiate the download sequence. A bitstream is generated that represents the final design, and 
it is sent to the target device to automatically configure it. Upon completion, the design is actually 
in hardware and can be tested in-circuit. Figure 10–44 shows the basic concept of downloading.

Glitch

(b) Timing problem

FIGURE 10–43  Hypothetical examples of timing simulation results.

(a) Good result

11010001101111101001110

Bitstream

Target
device

FIGURE 10–44  Downloading a design to the target device.  (Photo courtesy of Digilent, Inc.)
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Section 10–5  Checkup

	 1.	List the phases of the design flow for programmable logic.

	 2.	List the essential elements for programming a CPLD or FPGA.

	 3.	What is the purpose of a netlist?

	 4.	Which comes first in the design flow, the functional simulation or the timing simulation?

10–6  Boundary Scan Logic

Boundary scan is used for both the testing and the programming of the internal logic of a 
programmable device. The JTAG standard for boundary scan logic is specified by IEEE 
Std. 1149.1. Most programmable logic devices are JTAG compliant. In this section, the 
basic architecture of a JTAG IEEE Std. 1149.1 device is introduced and discussed in terms 
of the details of its boundary scan register and control logic structure.

After completing this section, you should be able to

u	 Describe the required elements of a JTAG-compliant device

u	 List the mandatory JTAG inputs and outputs

u	 State the purpose of the boundary scan register

u	 State the purpose of the instruction register

u	 Explain what the bypass register is for

IEEE Std. 1149.1 Registers

All programmable logic devices that are compliant with IEEE Std. 1149.1 require the 
elements shown in the simplified diagram in Figure 10–45. These are the boundary scan 
register, the bypass register, the instruction register, and the TAP (test access port) logic. 
Another register, the identification register, is optional and not shown in the figure.

Boundary Scan (BS) Register  The interconnected BSCs (boundary scan cells) form 
the boundary scan register. The serial input to the register is the TDI (test data in), and 
the serial output is TDO (test data out). Data from the internal logic and the input and 
output pins of the device can also be parallel shifted into the BS register. The BS regis-
ter is used to test connections between PLDs and the internal logic that has been pro-
grammed into the device.

Bypass (BP) Register  This required data register (typically only one flip-flop) opti-
mizes the shifting process by shortening the path between the TDI and the TDO in case 
the BS register or other data register is not used.

Instruction Register  This required register stores instructions for the execution of var-
ious boundary scan operations.

Identification (ID) Register  An identification register is an optional data register that is 
not required by IEEE Std. 1149.1. However, it is used in some boundary scan architec-
tures to store a code that identifies the particular programmable device.

IEEE Std. 1149.1 Boundary Scan Instructions

Several standard instructions are used to control the boundary scan logic. In addition to 
these, other optional instructions are available.

•	 BYPASS  This instruction switches the BP register into the TDI/TDO path.

•	 EXTEST  This instruction switches the BS register into the TDI/TDO path and 
allows external pin tests and interconnection tests between the output of one pro-
grammable logic device and the input of another.
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•	 INTEST  This instruction switches the BS register into the TDI/TDO path and 
allows testing of the internal programmed logic.

•	 SAMPLE/PRELOAD  This instruction is used to sample data at the device input 
pins and apply the data to the internal logic. Also, it is used to apply data (preload) 
from the internal logic to the device output pins.

•	 IDCODE  This instruction switches the optional identification register into the TDI/
TDO path so the ID code can be shifted out to the TDO.

IEEE Std. 1149.1 Test Access Port (TAP)

The Test Access Port (TAP) consists of control logic, four mandatory inputs and outputs, 
and one defined optional input, Test Reset (TRST).

•	 Test Data In (TDI)  The TDI provides for serially shifting test and programming 
data as well as instructions into the boundary scan logic.

•	 Test Data Out (TDO)  The TDO provides for serially shifting test and programming 
data as well as instructions out of the boundary scan logic.

•	 Test Mode Select (TMS)  The TMS switches between the states of the TAP controller.

•	 Test Clock (TCK)  The TCK provides timing for the TAP controller which gener-
ates control signals for the data registers and the instruction register.

BSC BSC BSC BSC

BSCBSC

BSCBSC

BSCBSC

BSCBSC

BSCBSC

Bypass register

Instruction register

Test access port

TCK TRST TDOTMSTDI

Internal
programmable

logic

fg11_06200
FIGURE 10–45  Greatly simplified diagram of a JTAG compliant (IEEE Std. 1149.1) 
programmable logic device (CPLD or FPGA). The BSCs (boundary scan cells) form the 
boundary scan register. Only a small number of BSCs are shown for illustration.
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A block diagram of the boundary scan logic is shown in Figure 10–46. Both instruc-
tions and data are shifted in on the TDI line. The TAP controller directs instructions into 
the instruction register or data into the appropriate data register. A decoded instruction from 
the instruction decoder selects which data register is to be accessed via MUX 1 and also 
if an instruction or data are to be shifted out on the TDO line via MUX 2. Also, a decoded 
instruction provides for setting up the boundary scan register in one of five basic modes. 
The boundary scan cell and its modes of operation are described next.

UPDATEIR

UPDATEDR

CLOCKIR

SHIFTIR

CLOCKDR

SHIFTDR

TMS

TAP control logic

TCK

Instruction register

Instruction
decoder

BS/ID/BP register select lines

BS register parallel data I/O select

TDO

Data/Instruction
register select lines

OE

Boundary scan (BS) register

Identification (ID) register*

Bypass (BP) register

Data registers (*optional)

TDI

MUX 2

MUX 1

fg11_06300
FIGURE 10–46  Boundary scan logic diagram.

The Boundary Scan Cell (BSC)

The boundary scan register is made up of boundary scan cells. A block diagram of a basic 
bidirectional BSC is shown in Figure 10–47. As indicated, data can be serially shifted in and 
out of the BSC. Also, data can be shifted into the BSC from the internal programmable logic, 
from a device input pin, or from the previous BSC. Additionally, data can be shifted out of the 
BSC to the internal programmable logic, to a device output pin, or to the next BSC.

The architecture of a generic boundary scan cell is shown in Figure 10–48. The cell 
consists of two identical logic circuits, each containing two flip-flops and two multiplexers. 
Essentially, one circuit allows data to be shifted from the internal programmable logic or to 
a device output pin. The other circuit allows data to be shifted from a device input pin or to 
the internal programmable logic.

There are five modes in which the BSC can operate in terms of data flow. The first 
BSC mode allows data to flow serially from the previous BSC to the next BSC, as illus-
trated in Figure 10–49. A 1 on the SHIFT input selects the SDI. The data on the SDI 
line are clocked into Capture register A on the positive edge of the CLOCK. The data 
are then clocked into Capture register B on the negative edge of the CLOCK and appear 
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on the SDO line. This is equivalent to serially shifting data through the boundary scan 
register.

The second BSC mode allows data to flow directly from the internal programmable 
logic to a device output pin, as illustrated in Figure 10–50. The 0 on the PDI/O (parallel 
data I/O) control line selects the data from the internal programmable logic. The 1 on the 
OE (output enable) line enables the output buffer.

Internal
programmable

logic
Data I/O

Serial data out
to next BSC

SDO

SDI
Serial data in

from previous BSC

BS
logic

BS
logic

fg11_06400

FIGURE 10–47  A basic bidirectional BSC.
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FIGURE 10–48  Representative architecture of a typical boundary scan cell.
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FIGURE 10–49  Data path for serially shifting data from one BSC to the next. There is 
a 1 on the SHIFT input and a CLOCK pulse is applied. The red lines indicate data flow.
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FIGURE 10–50  Data path for transferring data from the internal programmable logic to 
a device output pin. There is a 0 on the PDI/O line and a 1 on the OE line.
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The third BSC mode allows data to flow directly from a device input pin to the internal 
programmable logic, as illustrated in Figure 10–51. The 0 on the PDI/O (parallel data I/O) 
control line selects the data from the input pin. The 0 on the OE (output enable) line dis-
ables the output buffer.
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0

1

0

1
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FIGURE 10–51  Data path for transferring data from a device input pin to the internal 
programmable logic. There is a 0 on the PDI/O line and a 0 on the OE line.

The fourth BSC mode allows data to flow from the SDI to the internal programmable 
logic, as illustrated in Figure 10–52. A 1 on the SHIFT input selects the SDI. The data on 
the SDI line are clocked into Capture register A on the positive edge of the CLOCK. The 
data are then clocked into Capture register B on the negative edge of the CLOCK and 
appear on the SDO line. A pulse on the UPDATE line clocks the data into Update register 
B. A 1 on the PDI/O line selects the output of Update register B and applies it to the internal 
programmable logic. The data also appear on the SDO line.

The fifth BSC mode allows data to flow from the SDI to a device output pin and to the 
SDO line, as illustrated in Figure 10–53. A 1 on the SHIFT input selects the SDI. The data 
on the SDI line are clocked into Capture register A on the positive edge of the CLOCK. 
The data are then clocked into Capture register B on the negative edge of the CLOCK and 
appear on the SDO line. A pulse on the UPDATE line clocks the data into Update register 
A. With a 1 on OE, a 1 on the PDI/O line selects the output of Update register A and applies 
it to the device output pin.

Boundary Scan Testing of Multiple Devices

Boundary scan testing can be applied to printed circuit boards on which multiple JTAG 
(IEEE Std. 1149.1) devices are mounted to check interconnections as well as internal logic. 
This concept is illustrated by tracing the path of data shown in red through the boundary 
scan registers in Figure 10–54.
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FIGURE 10–52  Data path for transferring data from the SDI to the internal programmable 
logic and the SDO. There is a 1 on the SHIFT line, a 1 on the PDI/O line, and a 0 on the 
OE line. A pulse is applied to the CLOCK line followed by a pulse on the UPDATE line.
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FIGURE 10–53  Data path for transferring data from the SDI to a device output pin and 
the SDO. There is a 1 on the SHIFT line, a 1 on the PDI/O line and a 1 on the OE line.  
A pulse is applied to the CLOCK line followed by a pulse on the UPDATE line.
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321

TDI
TMS
TCK
TDO

fg11_07100

FIGURE 10–54  Basic concept of boundary scan testing of multiple devices and 
interconnections. The test path is shown in red.

The bit is shifted into the TDI of device 1 and through the BS register of device 1 to a 
cell where the connection to be tested goes to device 2. The bit is shifted out to the device 
output pin and through the interconnection to the input pin of device 2. The bit continues 
through the BS register of device 2 to an output pin and through the interconnection to the 
input pin of device 3. It is then shifted through the BS register of device 3 to the TDO. If 
the bit coming out of the TDO is the same as the bit going into the TDI, the boundary scan 
cells through which it was shifted and the interconnections from device 1 to device 2 and 
from device 2 to device 3 are good.

Section 10–6  Checkup

	 1.	List the boundary scan inputs and outputs required by IEEE Std.1149.1.

	 2.	What is the TAP?

	 3.	Name the mandatory registers in boundary scan logic.

	 4.	Describe five modes in which a boundary scan cell can operate in terms of data flow.

10–7  Troubleshooting

During program code development, simulation tools can be used to validate logic modules 
for proper operation prior to PLD programming. Two basic ways to test a device that has 
been programmed with a logic design are traditional and automated. Boundary scan is an 
automated method used in this section. The focus is on simulation prior to device program-
ming and boundary scan testing once the PLD has been programmed.

After completing this section, you should be able to

u	 Explain troubleshooting techniques using waveform simulation

u	 Define break point

u	 Discuss boundary scan testing
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Troubleshooting with Waveform Simulation

As discussed, simulation waveform stimulus can be accomplished using a test bench pro-
gram or graphically using a waveform editor. The following illustration demonstrates sim-
ulation troubleshooting techniques applied to the SequentialLogic section of the traffic 
signal controller created in VHDL.

Functional Simulation

Prior to download to the target device, simulation tools are useful to identify unexpected 
behavior. In the following illustration, the waveform output in Figure 10–55 shows that 
the sequential logic Gray code output from identifiers g0 and g1 does not respond to the 
waveform test stimulus as expected. In a timing simulation, the PLD chip libraries are 
loaded, and testing is conducted against a model of the target device where typically 
outputs start at a zero state. In the functional simulation, the basic logic is tested. Since 
functional simulation does not make assumptions about initial states, a circular depen-
dency could exist where the output of one function is used to determine the outcome of 
a second where neither may be resolved. A break point can be inserted in the program 
code to determine where undetermined states may exist, so they can be addressed in the 
program code if needed. A break point is a flag placed within the program source code 
where the application is stopped temporarily, allowing investigation of program identi-
fiers and the status of the I/O.

FIGURE 10–55 

To investigate this behavior, you can insert a break point into the program code, so you 
can view the condition of identifiers G0 and G1 as the simulation progresses.

In the sequential logic component of the traffic signal controller, identifiers D0 and 
D1 are dependent on the output of flip-flops DFF0 and DFF1. Since D0 feeds DFF0, for 
example, D0 could be in an undetermined state at startup, causing G0 to also be in an 
undetermined state. The functional simulation would point this out as shown since G0 
and G1 are left in an undetermined state. As shown in Figure 10–56, in this case, a break 
point is set by right-clicking line number 22 and selecting “Set Breakpoint 22”. Multiple 
break points may be defined as needed to investigate the behavior of the program under 
simulation.

The simulation has stopped at the predefined break point inserted at identifier D0. By 
examining the condition of the supporting identifiers D0, TL, VS and G1, you determine 
the problem to be related to the D flip-flop components whose output value G1 is listed 
as “U” or undefined. D0 is dependent on identifier G1 and the flip-flop. DFF1 is in turn 
dependent on D1. The output of the flip-flop does not allow resolution of the Boolean 
expressions assigned to D0 or D1.
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Examining the D flip-flop definition, you see that the flip-flop simply writes the value 
of the D input to output Q upon a rising clock edge. Figure 10–57(a) shows that the out-
put Q is not preinitialized, causing the output to start in an uninitialized state. To correct 
this problem, a new signal QT is created and initialized to 0 in Figure 10–57(b). The 
value of identifier D is written to signal QT upon a rising clock edge and QT is written 
to output Q.

Hover over
identifiers to
view current
status

Simulation run
stopped at

break point
defined for

identifier D0.

FIGURE 10–56 

Initializing the D flip-flop output to 0 allows the Boolean expressions for D0 and 
D1 to resolve to a value of 1 or 0. A second simulation shows that the sequential logic 
portion of the traffic signal controller is now able to output a valid Gray code, as shown 
in Figure 10–58.

Signal QT allows for
the pre-initialization
of a 0 to output Q

FIGURE 10–57 

(a) (b)
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FIGURE 10–58 
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FIGURE 10–59  Basic concept of boundary scan logic in a programmable logic device.

Boundary Scan Testing

Limited access to test points led to the concept of placing the test points within the inte-
grated circuit devices themselves. Most CPLDs and FPGAs include boundary scan logic 
as part of their internal structure independent of the functionality of the logic programmed 
into the device. These devices are JTAG compliant.

A circuit, known as a boundary scan cell, is placed between the programmable logic 
and each input and output pin of the device, as shown in Figure 10–59. The cells are 
basically memory cells that store a 1 or a 0. The cells connected to the programmable 
logic inputs are called input cells, and those connected to the programmable logic out-
puts are called output cells. Boundary scan testing is based on the JTAG standard 
(IEEE Std. 1149.1). The four JTAG inputs and outputs—TDI (test data in), TDO (test 
data out), TCK (test clock), and TMS (test mode select)—are known as the test access 
port (TAP).
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Intest

When boundary scan cells are used to test the internal functionality of the device, the 
test mode is called Intest. The basic concept of boundary scan using Intest is as follows: 
A software-driven pattern of 1s and 0s is shifted in via the TDI pin and is placed on the 
programmable logic inputs. As a result of these applied input bits, the logic will produce 
output bit(s) in response. The resulting output bit(s) is (are) then shifted out on the TDO pin 
and checked for errors. An incorrect output, of course, indicates a fault in the programmed 
logic, I/O cells, or boundary scan cells.

Figure 10–60 shows a boundary scan Intest pattern 1011 for an AND-OR logic circuit 
that has been programmed into a device. Sixteen combinations of four TDI bits would test 
the circuit in all possible states according to the list in Table 10–5. The 4-bit combinations 
are serially shifted into the boundary scan cells, and the corresponding output is shifted out 
on TDO for checking. This process is controlled by boundary scan test software.

TABLE 10–5

Boundary scan test bit 
pattern for the programmed 
device in Figure 10–60.

TDI TDO

0000 1
0001 1
0010 0
0011 1
0100 1
0101 1
0110 1
0111 1
1000 1
1001 1
1010 0
1011 1
1100 1
1101 1
1110 1
1111 1

TDO

TDI

TMS

1

0

1

1

1

TCK

fg11_07600

FIGURE 10–60  Example of a bit pattern in the boundary scan Intest for the internal logic.

Extest

When boundary scan cells are used to test the external connections to the device in addi-
tion to some internal functionality, the test mode is called Extest. The basic concept of 
boundary scan using Extest is as follows: A software-driven pattern of 1s and 0s is applied 
to the input pins of the device and entered into the input cells. As a result of these applied 
input bits, the logic will produce output bit(s) in response. The resulting output bit(s) is 
(are) then taken from the output pin of the device and checked for errors. An incorrect 
output, of course, indicates a fault in the input or output pin connections or interconnec-
tions, an incorrect device, or improperly installed device. Obviously, some internal faults 
can also be detected in the Extest mode. For example, faults in the boundary scan cells, 
I/O cells or certain faults in the programmed logic will produce an incorrect output. Fig-
ure 10–61 shows an example of a boundary scan Extest that tests the four inputs and the 
output of the logic circuit.
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If a fault is detected in the Extest mode, it can be either external (a bad pin connec-
tion) or internal (a faulty connection, boundary scan cell, or logic element) to the device. 
Therefore, in order to isolate an Extest detected fault, an Intest should be run following the 
Extest. If both tests show a fault, then it is internal to the device.

In the Extest mode, it is necessary to probe contacts to the input and output pins of the 
device. These pins have to be available at a connector to the circuit board or on test pads so 
they can be checked by the automatic test equipment.

Boundary Scan Description Language (BSDL)

This test software is part of the JTAG standard IEEE 1149.1 and uses VHDL to describe 
how the boundary scan logic is implemented in a specific device and how it operates. 
BSDL provides a standard data format for describing how IEEE 1149.1 is implemented 
in a JTAG-compliant device. When you use boundary scan test software tools that support 
BSDL, you can usually obtain BSDL from the device manufacturer.

Each device that contains dedicated boundary scan logic is supported by a BSDL file 
that describes that particular device. Certain things described in the BSDL file include the 
device type and descriptions of the I/O pins and TAP (test access port) pins. BSDL also 
provides a mapping of logical signals onto the physical pins and a description of the bound-
ary scan logic architecture contained in the device. A bit test pattern for testing the device 
can be defined using BSDL.

TDO

TDI

TCK

TMS

1

0

1

1

1

fg11_07700

FIGURE 10–61  Example of a bit pattern in the boundary scan Extest for external faults.

Section 10–7  Checkup

	 1.	Describe the purpose of a programmer-defined break point.

	 2.	Explain the basic concept of boundary scan.

	 3.	What are the two modes of boundary scan test?

	 4.	Name four JTAG signals used with boundary scan.

	 5.	What is BSDL? 
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608	 Programmable Logic

Applied Logic
Elevator Controller: Part 2

In this section, the elevator controller that was introduced in the Applied Logic in Chap-
ter 9 will be programmed for implementation in a PLD. Refer to Chapter 9 to review the 
elevator operation. The logic diagram is repeated in Figure 10–62 with labels changed to 
facilitate programming.

CallCode

Floor
Counter

CALL/REQ FF
Q

J K

1

FlrCodeIn

CALL/REQ Code Register

FLRCALL/FLRCNT
Comparator

7-Segment
Decoder

7-segment
display of

floor number
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Enable
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FRCLOUT

FRCNT

UP
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PanelCode
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CallEn

Not CallEn

Call
FlrCodeOut

FIGURE 10–62  Programming model of the elevator controller.

The VHDL program code for the elevator controller will include component definitions 
for the Floor Counter, the FLRCALL/FLRCNT Comparator, the Code Register, the Timer, 
the Seven-Segment Decoder, and the CALL/REQ Flip-Flop. The VHDL program codes 
for these six components are as follows. (Blue annotated notes are not part of the program.)
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Floor Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity FLOORCOUNTER is

  port (UP, DOWN, Sensor: in std_logic;

        FLRCODE: out std_logic_vector(2 downto 0));

end entity FLOORCOUNTER;

architecture LogicOperation of FLOORCOUNTER is

signal FloorCnt: unsigned(2 downto 0) := “000”;

begin

process(UP, DOWN, Sensor, FloorCnt)

begin

FLRCODE 6= std_logic_vector(FloorCnt);

if (Sensor’EVENT and Sensor = ‘1’) then

if UP = ‘1’ and DOWN = ‘0’ then

FloorCnt 6= FloorCnt + 1;

elsif Up = ‘0’ and DOWN = ‘1’ then

FloorCnt 6= FloorCnt - 1;

end if;

end if;

end process;

end architecture LogicOperation;

FLRCALL/FLRCNT Comparator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity FLRCALLCOMPARATOR is

  port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

UP, DOWN, STOP: inout std_logic;

end entity FLRCALLCOMPARATOR;

architecture LogicOperation of FLRCALLCOMPARATOR is

begin

STOP 6= ‘1’ when (FlrCodeCall = FlrCodeCnt) else ‘0’;

UP 6= ‘1’ when (FlrCodeCall 7 FlrCodeCnt) else ‘0’;

DOWN 6= ‘1’ when (FlrCodeCall 6 FlrCodeCnt) else ‘0’;

end architecture LogicOperation;

ieee.numeric_std_all is included to enable casting of 
unsigned identifier. Unsigned FloorCnt is converted to 
std_logic_vector.

Floor count is initialized to 000.

Numeric unsigned FloorCnt is con-
verted to std_logic_vector data type 
and sent to std_logic_vector output 
FLRCODE.

Sensor event high pulse causes the 
floor count to increment when UP 
is set high or decrement by one 
when DOWN is set low.

UP, DOWN: Floor count 
direction signals
Sensor: Elevator car floor 
sensor
FLRCODE: 3-digit floor 
count

¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

FlrCodeCall, FlrCodeCnt: 
Compared values
UP, DOWN, STOP: Output 
control signals

STOP, UP, and DOWN 
signals are set or reset 
based on =, 7, and 6 
relational comparisons.

¸̋
˛

¸
˚
˚
˝
˚
˚
˛
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Code Register

library ieee;

use ieee.std_logic_1164.all;

entity CODEREGISTER is

port (Clk: in std_logic;

FlrCodeIn: in std_logic_vector(0 to 2);

FlrCodeOut: out std_logic_vector(0 to 2));

end entity CODEREGISTER;

architecture LogicOperation of CODEREGISTER is

begin

process(Clk)

begin

if (Clk ‘event and Clk= ‘1’) then

FlrCodeOut 6= FlrCodeIn;

end if;

end process;

end architecture LogicOperation;

Timer

library ieee;

use ieee.std_logic_1164.all;

entity Timer is

  port (Enable, Clk: in std_logic;

SetCount: in integer range 0 to 1023;

QOut: inout std_logic);

end entity Timer;

architecture TimerBehavior of Timer is

begin

process(Enable, Clk)

variable Cnt: integer range 0 to 1023;

begin

if (Clk’EVENT and Clk = ‘1’) then

if Enable = ‘0’ then

Cnt := 0; QOut 6= ‘0’;

end if;

if Cnt = SetCount then

QOut 6= ‘1’;

Cnt := 0;

else

Cnt := Cnt + 1;

end if;

end if;

end process;

end architecture TimerBehavior;

Clk event high pulse sends the  
FlrCodeIn floor number to FlrCodeOut.

Clk: Clk Pulse input
FlrCodein: 3-digit floor panel input
FlrCodeOut: 3-digit floor panel output

¸
˚
˚
˝
˚
˚
˛

¸
˝
˛

¸
˚
˚
˝
˚
˚
˛

Enable: Enable timer count input
Clk: Timer clock input
SetCount: Counter set input. Limit 
to 1023 for ten bits.
QOut: Counter output

Integer variable Cnt range limited to 1023 
for ten bits used to count from 0 to terminal 
count from integer port input SetCount.

When a Clk clock event is HIGH, input 
Enable is checked for a ‘0’ to clear Cnt and 
output Qout. If Cnt is equal to SetCount, 
then output QOut is set to ‘1’ ending the 
count. If the terminal count in SetCount has 
not been reached, Cnt is incremented by one 
and the count process continues.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛
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Seven Segment Decoder

library ieee;

use ieee.std_logic_1164.all;

entity SevenSegment is

port (a, b, c, d, e, f, g: out std_logic; H0, H1, H2: inout std_logic);

end entity SevenSegment;

architecture SevenSegmentBehavior of SevenSegment is

begin

a 6= H1 or (H2 and H0) or (not H2 and not H0);

b 6= not H2 or (not H0 and not H1) or (H0 and H1);

c 6= H0 or not H1 or H2;

d 6= (not H0 and not H2) or (not H2 and H1) or

        (H1 and not H0) or (H2 and not H1 and H0);

e 6= (not H0 and not H2) or (H1 and not H0);

f 6= (not H1 and H2) or (not H1 and not H0) or (H2 and not H0);

g 6= (not H2 and H1) or (H1 and not H0) or (H2 and not H1);

end architecture SevenSegmentBehavior;

Call/REQ FF

library ieee;

use ieee.std_logic_1164.all;

entity JKFlipFlop is

port (J,K,Clk: in std_logic; Q: inout std_logic);

end entity JKFlipFlop;

architecture LogicOperation of JKFlipFlop is

signal QNot: std_logic := ‘1’;

begin

process (J, K, Clk)

begin

if (Clk’EVENT and Clk = ‘1’) then

if J = ‘1’ and K = ‘0’ then

Q 6= ‘1’;

elsif J = ‘0’ and K = ‘1’ then

Q 6= ‘0’;

elsif J = ‘1’ and K = ‘1’ then

Q 6= QNot;

end if;

end if;

end process;

QNot 6= not Q;

end architecture LogicOperation;

Seven-segment logic operation

a, b, c, d, e, f, g: Seven-segment 
display element output 
H0, H1, H2: Hexadecimal 
count input

¸̋
˛

¸
˚

˚
˚

˚
˝

˚
˚

˚
˛
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The complete VHDL program code for the elevator controller using the previously de-
fined components is as follows. Comments shown in green preceded by two hyphens are 
for explanatory purposes and are not recognized by the program for processing purposes.

Elevator Controller

library ieee;

use ieee.std_logic_1164.all;

entity ELEVATOR is

port (CallCode, PanelCode: in std_logic_vector(2 downto 0);

Call, Request, Sensor, Clk: in std_logic;

UP, DOWN, STOPOPEN, CLOSE: inout std_logic;

a, b, c, d, e, f, g: out std_logic);

end entity ELEVATOR;

architecture LogicOperation of ELEVATOR is

component FLOORCOUNTER is

port (UP, DOWN, Sensor: in std_logic;

FLRCODE: out std_logic_vector(2 downto 0));

end component FLOORCOUNTER;

component FLRCALLCOMPARATOR is

port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

Up, Down, Stop : inout std_logic);

end component FLRCALLCOMPARATOR;

component CODEREGISTER

port (Clk: in std_logic;

FlrCodeIn: in std_logic_vector(0 to 2);

FlrCodeOut: out std_logic_vector(0 to 2));

end component CODEREGISTER;

component Timer is

port (Enable, Clk: in std_logic;

SetCount: in integer range 0 to 1023;

QOut: inout std_logic);

end component Timer;

component SevenSegment is

Port (a, b, c, d, e, f, g: out std_logic;

H0, H1, H2: inout std_logic);

end component SevenSegment;

component JKFlipFlop

port (J, K, Clk: in std_logic;

Q: out std_logic);

end component JKFlipFlop;

CallCode: Request number from 
floor
PanelCode: Request number 
from car
Call: Request pulse for CallCode
Request: Request pulse for  
PanelCode
Sensor: Floor level pulse input
Clk: Elevator system clock
UP, DOWN: Direction for  
elevator car
STOPOPEN: Motor stop and 
door open command
CLOSE: Door close command

¸
˚
˝
˚
˛

¸
˝
˛

Component definition for 
FLOOR COUNTER

Component definition for 
FLRCALL/FLRCNT  
COMPARATOR

Component definition for  
CODEREGISTER

Component defintion for Timer

Component definition for SevenSegment 
Decoder

Component definition for CALL/REQ flip-flop
¸
˝
˛

¸
˝
˛

¸
˝
˛

¸̋
˛

¸
˝
˛
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-- Signal definitions used to interconnect components and output control signals

signal FRCNT, FRCLOUT, FRIN: std_logic_vector(0 to 2);

signal CallEn: std_logic;

begin

Gnd 6= ‘0’;

process (CallEn, CallCode, PanelCode) -- Select Floor or Panel call code based on 
  begin	 CALL/REQ 

if (CallEn = ‘1’) then

FRIN 6= CallCode; -- �If CALL Enabled, select code from call buttons from floor

else

FRIN 6= PanelCode; -- �If CALL not Enabled, select code from elevator
end if;	 panel buttons 

end process;

-- Component instantiations

CALLREQ: JKFlipFlop port map(J=7‘1’, K=7‘1’, Clk=7Close, Q=7 CallEn);

CODEREG: CODEREGISTER port map(Call =7 (Call and CallEn) or (Request and not 
CallEn), FlrCodeIn=7 FRIN, FlrCodeOut =7 FRCLOUT);

FLCLCOMP: FLRCALLCOMPARATOR port map(FlrCodeCall=7 FRCL
FlrCodeCnt =7 FRCNT, Up=7UP, Down=7DOWN, Stop=7STOPOPEN);

FLRCNT: FLOORCOUNTER port map(UP=7UP, DOWN=7DOWN, Sensor=7Sensor,
FLRCODE=7FRCNT);

DISPLAY: SevenSegment port map(a=7a,b=7b,c=7c,d=7d,e=7e,f=7f,g=7g,
H0=7FRCNT(2),H1=7FRCNT(1),H2=7FRCNT(0));

TIMER1: Timer port map (Enable=7STOPOPEN, Clk=7 Clk,SetCount=710, 
QOut=7Close);

end architecture LogicOperation;

The Programming and PLD Implementation Process

The elevator controller is implemented in a PLD using Altera Quartus II and ModelSim 
software. The Altera Quartus II software package is an integrated development envi-
ronment (IDE) supplied by Altera for the creation of HDL applications combined with 
the ModelSim simulation software. A short summary of the programming process and 
PLD implementation follows. An expanded description of the elevator controller pro-
gramming process can be found on the website as well as an Altera Quartus II tutorial. 
Altera Quartus II is available as a free download from Altera.com.

Project Creation    To start the programming process, a project is created. A project allows 
the IDE to identify a location to store your application and to create self-generated support 
files needed to organize your application as well as to keep track of project preferences, 
rules, and definitions.

Project Definition    To complete the project, you will need to respond to general ques-
tions defining the location of your project, the PLD device to be used, and the primary 
language. Additional questions will determine how you will simulate and verify your 
application.
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614	 Programmable Logic

Completed Project Definition    With the project definitions completed, the VHDL pro-
gram source code for the previously defined components and Elevator Controller files are 
added to your project.

Compiling the Application    By compiling the program at this time, part of the input and 
output identifier information is automatically entered as you are now ready to make pin as-
signments to your I/O port identifiers. However, the basic design can be simulated before 
making the pin assignments.

Graphical Waveform Simulation    In order to simulate the elevator controller design, first 
start the ModelSim application. Graphical waveform generation tools allow for the easy 
creation of stimulus waveforms. Graphical waveforms are created to provide the input 
stimulus to test the elevator controller application. Inputs call, request, callcode, panel-
code, sensor, and clk will be created using graphical tools. Output identifiers up, down, 
stopopen, close, and seven-segment outputs a through g require no input stimulus.

Pin Assignments    A pin assignment editor is used to associate an I/O port identifier with 
an external pin. Many newer pin editors utilize drag-and-drop features to allow the user to 
select an identifier with the mouse, then drag and drop to a graphic representation of the 
target device. Pin assignments can also be accomplished using traditional text entry.

Device Programming    With the pins selected and saved, the project is recompiled once 
again, generating the output file to be loaded on the target device (PLD). The second com-
piling operation associates the selected pin to the program identifier. In order to program 
the target device, the project board on which it is mounted must be connected to the pro-
gramming computer according to the project board manufacturer’s instructions. The target 
device is typically JTAG compliant and connected through a USB port. Other JTAG com-
pliant target boards may use other inputs such as Ethernet, serial, parallel, or FireWire as 
described by the manufacturer.

Downloading to the PLD    With the simulation, pin assignment, and recompiling com-
plete, it is time to download the application to the development environment (project board 
with PLD).

Hardware Testing    With the project loaded, the application can be tested against actual 
hardware.

Putting Your Knowledge to Work

Modify the elevator controller program for a building with ten floors rather than eight.

Summary

•	 A PAL is a one-time programmable (OTP) SPLD consisting of a programmable array of AND 
gates that connects to a fixed array of OR gates.

•	 The PAL structure allows any sum-of-products (SOP) logic expression with a defined number of 
variables to be implemented.

•	 The GAL is essentially a PAL that can be reprogrammed.

•	 In a PAL or GAL, a macrocell generally consists of one OR gate and some associated output logic.

•	 A CPLD is a complex programmable logic device that consists basically of multiple SPLD  
arrays with programmable interconnections.

•	 Each SPLD array in a CPLD is called a logic array block (LAB).

•	 A macrocell can be configured for either of two modes: the combinational mode or the regis-
tered mode.
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•	 An FPGA (field-programmable gate array) differs in architecture, does not use PAL/PLA type 
arrays, and has much greater densities than typical CPLDs.

•	 Most FPGAs use either antifuse or SRAM-based process technology.

•	 Each configurable logic block (CLB) in an FPGA is made up of multiple smaller logic modules 
and a local programmable interconnect that is used to connect logic modules within the CLB.

•	 FPGAs are based on LUT architecture.

•	 LUT stands for look-up table, which is a type of memory that is programmable and used to 
generate SOP combinational logic functions.

•	 A hard core is a portion of logic embedded in an FPGA that is put in by the manufacturer to 
provide a specific function and which cannot be reprogrammed.

•	 A soft core is a portion of logic embedded in an FPGA that has some programmable features.

•	 Designs owned by the manufacturer are termed intellectual property (IP).

•	 The programming process is generally referred to as design flow.

•	 The device being programmed is usually referred to as the target device.

•	 In software packages for programmable logic, the operations are controlled by an application 
program called the compiler.

•	 During downloading, a bitstream is generated that represents the final design, and it is sent to 
the target device to automatically configure it.

•	 A method of internally testing a programmable device is called boundary scan, which is based 
on the JTAG standard (IEEE Std. 1149.1).

•	 The boundary scan logic in a CPLD consists of a boundary scan register, a bypass register, an 
instruction register, and a test access port (TAP).

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Boundary scan  A method for internally testing a PLD based on the JTAG standard (IEEE Std. 
1149.1).

Break point  A flag placed within a program source code to stop a program for investigation.

CLB  Configurable logic block; a unit of logic in an FPGA that is made up of multiple smaller 
logic modules and a local programmable interconnect that is used to connect logic modules within 
the CLB.

Compiler  An application program in development software packages that controls the operation 
of the software.

CPLD  A complex programmable logic device that consists basically of multiple SPLD arrays 
with programmable interconnections.

Design flow  The process or sequence of operations carried out to program a target device.

Downloading  The final step in a design flow in which the logic design is implemented in the 
target device.

FPGA  Field-programmable gate array; a programmable logic device that uses the LUT as the 
basic logic element and generally employs either antifuse or SRAM-based process technology.

Functional simulation  A software process that tests the logical or functional operation of a design.

GAL  A reprogrammable type of SPLD that is similar to a PAL except that it uses a reprogramma-
ble process technology, such as EEPROM (E2CMOS), instead of fuses.

Intellectual property (IP)  Designs owned by a manufacturer of programmable logic devices.

LAB  Logic array block; an SPLD array in a CPLD.

LUT  Look-up table; a type of memory that can be programmed to produce SOP functions.

Macrocell  Part of a PAL, GAL, or CPLD that generally consists of one OR gate and some associated 
output logic.

PAL  A type of one-time programmable SPLD that consists of a programmable array of AND 
gates that connects to a fixed array of OR gates.
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616	 Programmable Logic

Registered  A macrocell operational mode that uses a flip–flop.

Schematic entry  A method of placing a logic design into software using schematic symbols.

Target device  The programmable logic device that is being programmed.

Text entry  A method of placing a logic design into software using a hardware description lan-
guage (HDL).

Timing simulation  A software process that uses information on propagation delays and netlist 
data to test both the logical operation and the worst-case timing of a design.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A PAL consists of a programmable array of OR gates connected to a fixed array of AND gates.

	 2.	 SPLD stands for simple programmable logic device.

	 3.	 Typically, a macrocell consists of an AND gate and its associated output logic.

	 4.	 CPLD stands for complex programmable logic device.

	 5.	 An FGPA is a field programmable gate array.

	 6.	 A typical FPGA has a greater gate density than a CPLD.

	 7.	 Logic array blocks are found in CPLDs.

	 8.	 The process of programming a PLD is known as design flow.

	 9.	 The device being programmed is called a target device.

	10.	 Two types of programmable design entry are schematic and HDL.

Self-Test

Answers are at the end of the chapter.

	 1.	 Two types of SPLDs are
(a)	 CPLD and PAL	 (b)	 PAL and FPGA
(c)	 PAL and GAL	 (d)	 GAL and SRAM

	 2.	 A PAL is a logic device which is
(a)	 a one-time programmable
(b)	 an erasable programmable
(c)	 electronically erasable and programmable
(d)	 both (a) and (b)

	 3.	 The factor that determines the adequacy of a GAL for a logic design is
(a)	 the number of inputs and outputs
(b)	 the number of equivalent gates or density
(c)	 the number of inverters involved
(d)	 both (a) and (b)

	 4.	 A macrocell is part of a
(a)	 PAL	 (b)  GAL	 (c)  CPLD	 (d)  answers (a), (b), and (c)

	 5.	 The LUT, used in the LUT-CPLD architecture, is basically a memory that can be programmed 
using
(a)	 POS functions	 (b)	 SOP functions
(c)	 product of complements	 (d)	 answers (a), (b), and (c)

	 6.	 The term LAB stands for
(a)	 logic AND block	 (b)	 logic array block
(c)	 last asserted bit	 (d)	 logic assembly block

	 7.	 Two modes of macrocell operation are
(a)	 input and output	 (b)	 registered and sequential
(c)	 combinational and registered	 (d)	 parallel and shared
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	 8.	 The flip-flop used in a CPLD macrocell can be programmed as a
(a)	 D flip-flop	 (b)	 J-K flip-flop
(c)	 both (a) and (b)	 (d)	 neither (a) nor (b)

	 9.	 A typical macrocell consists of
(a)	 gates, multiplexers, and a flip-flop
(b)	 gates and a shift register
(c)	 a Gray code counter
(d)	 a fixed logic array

	10.	 The basic elements of an FPGA are
(a)	 configurable logic blocks
(b)	 I/O blocks
(c)	 PAL arrays
(d)	 both (a) and (b)

	11.	 Nonvolatile FPGAs are generally based on
(a)	 fuse technology	 (b)	 antifuse technology
(c)	 EEPROM technology	 (d)	 SRAM technology

	12.	 When the configurable logic blocks in an FPGA are relatively simple, the FPGA architecture is
(a)	 fine grained	 (b)	 coarse grained
(c)	 hard core	 (d)	 soft core

	13.	 The logic module in an FPGA logic block can be configured for
(a)	 combinational logic	 (b)	 parallel mode logic
(c)	 registered logic	 (d)	 both (a) and (c)

	14.	 A logic module can be programmed for the following modes of operations:
(a)	 normal mode
(b)	 arithmetic and shared arithmetic mode
(c)	 extended LUT mode	
(d)	 answers (a), (b), and (c)

	15.	 In a functional simulation, the user must specify the
(a)	 specific target device	 (b)	 output waveform
(c)	 input waveforms	 (d)	 HDL

	16.	 The final output of the synthesis phase of a design flow is the
(a)	 netlist	 (b)	 bitstream
(c)	 timing simulation	 (d)	 device pin numbers

	17.	 EDIF stands for
(a)	 electronic device interchange format
(b)	 electrical design integrated fixture
(c)	 electrically destructive input function
(d)	 electronic design interchange format

	18.	 The boundary scan TAP stands for
(a)	 test access point	 (b)	 test array port
(c)	 test access port	 (d)	 terminal access path

	19.	 A typical boundary scan cell contains
(a)	 flip–flops only
(b)	 flip–flops and multiplexer logic
(c)	 latches and flip–flops
(d)	 latches and an encoder

	20.	 The JTAG standard has the following inputs and outputs
(a)	 Intest, extest, TDI, TDO
(b)	 TDI, TDO, TCK, TMS
(c)	 ENT, CLK, SHF, CLR
(d)	 TCK, TMS, TMO, TLF

	21.	 The acronym BSDL stands for
(a)	 board standard digital logic
(b)	 boundary scan down load
(c)	 bistable digital latch
(d)	 boundary scan description language
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618	 Programmable Logic

	 2.	 Show how the PAL-type array in Figure 10–64 should be programmed to implement each of 
the following SOP expressions. Use an X to indicate a connected link.

(a)	 Y = ABC + ABC + ABC
(b)	 Y = ABC + A BC + ABC

Problems

Answers to odd-numbered problems are at the end of the book.

Section 10–1  Simple Programmable Logic Devices (SPLDs)
	 1.	 Determine the Boolean output expression for the simple PAL array shown in Figure 10–63. 

The Xs represent connected links.

BBAA                                                            CC

X

fg11_09500

FIGURE 10–63 

BBAA                                                           CC

X

fg11_09600

FIGURE 10–64 

	 3.	 Modify the array in Figure 10–64 for the expression

Y = ABCD + ABCD + ABCD + A B C D

	 4.	 Explain how a programmed polarity output in a PAL works.

Section 10–2  Complex Programmable Logic Devices (CPLDs)
	 5.	 Describe how a CPLD differs from an SPLD.
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	 6.	 Refer to the block diagram in Figure 10–9 and determine the number of

(a)	 inputs from the PIA to a LAB
(b)	 outputs from a LAB to the PIA
(c)	 inputs from an I/O control block to the PIA
(d)	 outputs from a LAB to an I/O control block

	 7.	 Determine the product term for the AND gate in a CPLD array shown in Figure 10–65(a). 
If the AND gate is expanded, as shown in Figure 10–65(b), determine the SOP output.

DE

(a)

A
B
C

(b)

A
B
C
D

X

X

fg11_09700
FIGURE 10–65 

	 8.	 Determine the output of the macrocell logic in Figure 10–66 if ABCD + ABCD is applied to 
the parallel expander input.

A
B
C
D

E
F
G
H

Parallel expander input

fg11_09800

FIGURE 10–66 

	 9.	 Determine the output of the array in Figure 10–67. The Xs represent connected links.

BA BA

X

fg11_09900

FIGURE 10–67 

	10.	 Modify the array in Figure 10–67 to produce an output X = A B C + A B C + ABC + A B C
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620	 Programmable Logic

Section 10–3  Macrocell Modes
	12.	 Determine the data output for the multiplexer in Figure 10–69 for each of the following conditions:

(a)	 D0 = 1, D1 = 0, Select = 0
(b)	 D0 = 1, D1 = 0, Select = 1

DCBA

Product-term
array

1 2 16

Sum-term
array

16 macrocells

X2

X1

fg11_10000
FIGURE 10–68 

Data output

Select

D0

D1

fg11_10100

FIGURE 10–69 

	13.	 Determine how the macrocell in Figure 10–70 is configured (combinational or registered) and 
the data bit that is on the output (to I/O) for each of the following conditions. The flip-flop is a 
D type. Refer to Figure 10–69 for MUX data input arrangement.

(a)	 XOR output = 1, flip@flop Q output = 1, from I/O input = 1, MUX 1 select = 1,
	 MUX 2 select = 0, MUX 3 select = 0, MUX 4 select = 0, and MUX 5 select = 0.
(b)	 XOR output = 0, flip@flop Q output = 0, from I/O input = 1, MUX 1 select = 1,
	 MUX 2 select = 0, MUX 3 select = 1, MUX 4 select = 0, and MUX 5 select = 1.

	14.	 For the CPLD macrocell in Figure 10–71, the following conditions are programmed: MUX 1
		  select = 1, MUX 2 select = 1, MUX 3 selects = 01, MUX 4 select = 0, MUX 5 select = 1,
		  MUX 6 selects = 11, MUX 7 selects = 11, MUX 8 select = 1, and the OR output = 1. The 

flip-flop is a D type and the MUX inputs are from D0 at the top to Dn at the bottom.

(a)	 Is the macrocell configured for combinational or registered logic?
(b)	 Which clock is applied to the flip-flop?
(c)	 What is the data bit on the D input to the flip-flop?
(d)	 What is the output of MUX 8?

	15.	 Repeat Problem 14 for MUX 1 select = 0.

	11.	 Determine the output expressions for X1 and X2 from macrocells 1 and 2 in Figure 10–68.

M10_FLOY5983_11_GE_C10.indd Page 620  11/11/14  6:47 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Problems	 621

Section 10–4  Field-Programmable Gate Arrays (FPGAs)
	16.	 Generally, what elements make up a configurable logic block (CLB) in an FPGA? What 

elements make up a logic module?

15 expander product
terms from other
macrocells

36 lines
from PIA

Shared
expander

Parallel expanders
from other
macrocells

To I/O

Product-
term

selection
matrix

D/T

C

EN

PRE

CLR

Q
MUX 1

MUX 2

MUX 3VCC

MUX 4

MUX 5
From
I/O

Global
clear

Global
clock

fg11_10200

FIGURE 10–70 

Product-term
array

1

To I/O
D/T

CE

CK

S

R

Q

MUX 2

MUX 7

MUX 8

From
I/O

40
 from AIM MUX 1

VCC (1)

GND (0)

PTC

Feedback
to AIM

PTA
CTS
GSR

GND

MUX 5
MUX 3

GCK0
GCK1
GCK2

MUX 4
CTC

PTC

MUX 6

CTS
GSR

PTA

GND

fg11_10300

FIGURE 10–71 
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622	 Programmable Logic

	18.	 Show how to reprogram the LUT in Figure 10–72 to produce the following SOP output:

ABC + AB C + ABC

	19.	 Show a logic module configured in the normal mode to produce one 4-variable SOP function 
and one 2-variable SOP function.

	20.	 Determine the final SOP output function for the logic module shown in Figure 10–73.

Memory
cells

0

B

Selection logic

1

2

3

4

1

1

0

1

0

5 1

6 1

7 0

A

C
SOP output

fg11_10400

FIGURE 10–72 

4-input
LUT

4-input
LUT

A4A3A2A1 + A4A3A2A1

A5A3A2A1 + A5A3A2A1 + A5A3A2A1

fg11_10500
FIGURE 10–73 

Section 10–5 Programmable Logic Software
	21.	 Show the logic diagram that you would enter in the Graphic Editor for the circuit described by 

each of the VHDL programs.

(a)	 entity AND_OR is
	 port (A0, A1, A2, A3: in bit; X: out bit);

	 end entity AND_OR;
	 architecture LogicFunction of AND_OR is
	 begin

	 X 6= (A0 and A1) or (A2 and not A3);
	 end architecture LogicFunction;

	17.	 Determine the output expression of the LUT for the internal conditions shown in Figure 10–72.
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(b)	 entity LogicCircuit is
	 port (A, B, C, D: in bit; X: out bit);

	 end entity LogicCircuit;

	 architecture Function of LogicCircuit is

	 begin

	 X 6= (A and B) or (C and D) and

      (A and not B) and (not C and not D);

	 end architecture Function;

	22.	 Show the logic circuit that you would enter in the Graphic Editor for the following Boolean 
expression. Simplify before entering, if possible.

X = ABCD + ABCD + ABCD + ABCD + ABCD + A B C D

	23.	 The input waveforms for the logic circuit described in Problem 22 are as shown in the Wave-
form Editor of Figure 10–74. Determine the output waveform that is produced after running a 
simulation.

Waveform Editor

Name:

A

4   s

B

C

D

X

µ1   sµ 8   sµ 12   sµ 16   sµ

0

0

0

0

X

fg11_10700

FIGURE 10–74 

	24.	 Repeat Problem 23 for the following Boolean expression:

X = ABCD + AB CD + ABCD + ABCD + ABCD

Section 10–6  Boundary Scan Logic
	25.	 In a given boundary scan cell, assume that data flow serially from the previous BCS to the next 

BSC. Describe what happens as the data pass through the given BCS.

	26.	 Describe the conditions and what happens in a given BCS when data flow directly from the 
internal programmable logic to a device output pin.

	27.	 Describe the conditions and what happens in a given BCD when data flow from a device input 
pin to the internal programmable logic.

	28.	 Describe the data path for transferring data from the SDI to the internal programmable 
logic.
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TDO

TDI

TCK

TMS

fg11_10800

FIGURE 10–75 

Answers

Section Checkups
Section 10–1  Simple Programmable Logic Devices (SPLDs)
	 1.	 PAL: Programmable Array Logic

	 2.	 GAL: Generic Array Logic

	 3.	 A GAL is reprogrammable. A PAL is one-time programmable.

	 4.	 Basically, a macrocell consists of an OR gate and associated output logic including a flip-flop.

Section 10–2  Complex Programmable Logic Devices (CPLDs)
	 1.	 CPLD: Complex Programmable Logic Device

	 2.	 LAB: Logic Array Block

	 3.	 A LAB consists of 16 macrocells in a typical CPLD.

	 4.	 A shared expander is used to increase the number of product terms from a macrocell by 
ANDing additional sum terms (complemented product terms) from other macrocells.

Section 10–7  Troubleshooting
	29.	 Develop a boundary scan test bit pattern to test the logic that is programmed into the device 

shown in Figure 10–75 for all possible input combinations.

Applied Logic
	30.	 List the changes to Figure 10–62 required to use the elevator controller for a 16-story building 

including a basement.

	31.	 Explain the purpose of the AND-OR logic associated with the CALL/REQ Code Register.

	32.	 Modify the VHLD code for the seven-segment decoder in order to add another floor to the 
eight-floor building.
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	 5.	 A parallel expander is used to increase the number of product terms from a macrocell by 
ORing unused product terms from other macrocells in a LAB.

	 6.	 A PLA has a programmable AND array and a programmable OR array. A PAL has a fixed 
OR array.

Section 10–3  Macrocell Modes
	 1.	 The XOR gate is used as a programmable inverter for the data. It can be programmed to invert 

or not invert.

	 2.	 Combinational and registered

	 3.	 Registered refers to the use of a flip-flop.

	 4.	 Multiplexer

Section 10–4  Field-Programmable Gate Arrays (FPGAs)
	 1.	 Generally, an FPGA is organized with a row/column interconnect structure and uses LUTs 

rather than AND/OR logic for generating combinational logic functions.

	 2.	 CLB: Configurable Logic Block

	 3.	 LUT: Look-Up Table. A programmable type of memory that is used to store and generate com-
binational logic functions.

	 4.	 A local interconnect is used to connect logic modules within a CLB. A global interconnect is 
used to connect a CLB with other CLBs.

	 5.	 A core is a portion of logic embedded in an FPGA to provide a specific function.

	 6.	 Intellectual property refers to the hard-core designs that are developed and owned by the FPGA 
manufacturer.

	 7.	 An LUT produces combinational logic functions in an LM.

	 8.	 Memory and DSP (digital signal processing)

Section 10–5  Programmable Logic Software
	 1.	 Design entry, functional simulation, synthesis, implementation, timing simulation, downloading

	 2.	 Computer running PLD development software, a programming fixture or a development board, 
and an interface cable

	 3.	 A netlist provides information necessary to describe a circuit.

	 4.	 The functional simulation comes before the timing simulation.

Section 10–6  Boundary Scan Logic
	 1.	 TDI, TMS, TCK, TDO

	 2.	 TAP: Test access port

	 3.	 Boundary scan register, bypass register, instruction register, and TAP

	 4.	 Transfer of data from SDI to SDO, transfer of data from internal programmable logic to device 
output pin, transfer of data from device input pin to internal programmable logic, transfer of 
data from SDI to internal programmable logic, and transfer of data from SDI to device output 
pin and to the SDO line.

Section 10–7  Troubleshooting
	 1.	 A break point is a user-defined location in a program where the simulation is stopped 

temporarily.

	 2.	 Boundary scan enables the internal testing and programming of a programmable logic device 
and testing of interconnections between two or more devices. It is based on the JTAG IEEE 
Std. 1149.1. Boundary scan uses specific logic internal to the device for testing.

	 3.	 Intest and Extest

	 4.	 TDI, TDO, TCK, TMS

	 5.	 BSDL: Boundary Scan Description Language
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True/False Quiz
	 1.	 F    2.  T    3.  F    4.  T      5.  T

	 6.	 T    7.  F    8.  T    9.  T    10.  T

Self-Test
	 1.	 (c)      2.  (a)      3.  (d)      4.  (d)      5.  (b)      6.  (b)      7.  (c)

	 8.	 (c)      9.  (b)    10.  (d)    11.  (b)    12.  (a)    13.  (d)    14.  (d)

	15.	 (c)    16.  (a)    17.  (d)    18.  (c)    19.  (b)    20.  (b)    21.  (d)

5-input
LUT

3-input
LUT

fg11_11000

FIGURE 10–76

Related Problems for Examples
	10–1	 X = BC + ABC + A B + C

	10–2	 Sixteen; sixteen

	10–3	 See Figure 10–76.
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Chapter Objectives

■	 Define the basic memory characteristics

■	 Explain what a RAM is and how it works

■	 Explain the difference between static RAMs 
(SRAMs) and dynamic RAMs (DRAMs)

■	 Explain what a ROM is and how it works

■	 Describe the various types of PROMs

■	 Discuss the characteristics of a flash memory

■	 Describe the expansion of ROMs and RAMs to 
increase word length and word capacity

■	 Discuss special types of memories such as FIFO 
and LIFO

■	 Describe the basic organization of magnetic disks 
and magnetic tapes

■	 Describe the basic operation of magneto-optical 
disks and optical disks

■	 Describe the key elements in a memory hierarchy

■	 Describe several characteristics of cloud storage

■	 Describe basic methods for memory testing

■	 Develop flowcharts for memory testing

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

Chapter 8 covered shift registers, which are a type 
of storage device. The memory devices covered 
in this chapter are generally used for longer-term 
storage of larger amounts of data than registers 
can provide.

Computers and other types of systems require 
the permanent or semipermanent storage of large 
amounts of binary data. Microprocessor-based 
systems rely on storage devices for their operation 
because of the necessity for storing programs and  
for retaining data during processing.

In this chapter semiconductor memories and 
magnetic and optical storage media are covered. Also, 
memory hierarchy and cloud storage are discussed.

■	 Memory

■	 Byte

■	 Word

■	 Cell

■	 Address

■	 Capacity

■	 Write

■	 Read

■	 RAM

■	 ROM

■	 SRAM

■	 DRAM

■	 Bus

■	 PROM

■	 EPROM

■	 Flash memory

■	 FIFO

■	 LIFO

■	 Hard disk

■	 Blu-ray

■	 Memory hierarchy

■	 Cloud storage

■	 Server

Data Storage

11

Key Terms

Key terms are in order of appearance in the chapter.

CHAPTER 
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628	 Data Storage

11–1  Semiconductor Memory Basics

Memory is the portion of a computer or other system that stores binary data. In a com-
puter, memory is accessed millions of times per second, so the requirement for speed and 
accuracy is paramount. Very fast semiconductor memory is available today in modules 
with several GB (a gigabyte is one billion bytes) of capacity. These large-memory modules 
use exactly the same operating principles as smaller units, so we will use smaller ones for 
illustration in this chapter to simplify the concepts.

After completing this chapter, you should be able to

u	 Explain how a memory stores binary data

u	 Discuss the basic organization of a memory

u	 Describe the write operation

u	 Describe the read operation

u	 Describe the addressing operation

u	 Explain what RAMs and ROMs are

Units of Binary Data: Bits, Bytes, Nibbles, and Words

As a rule, memories store data in units that have from one to eight bits. The smallest unit 
of binary data, as you know, is the bit. In many applications, data are handled in an 8-bit 
unit called a byte or in multiples of 8-bit units. The byte can be split into two 4-bit units 
that are called nibbles. Bytes can also be grouped into words. The term word can have two 
meanings in computer terminology. In memories, it is defined as a group of bits or bytes 
that acts as a single entity that can be stored in one memory location. In assembly language, 
a word is specifically defined as two bytes.

The Basic Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called a cell. Memories 
are made up of arrays of cells, as illustrated in Figure 11–1 using 64 cells as an example. 
Each block in the memory array represents one storage cell, and its location can be identi-
fied by specifying a row and a column.

The 64-cell array can be organized in several ways based on units of data. Figure 11–1(a) 
shows an 8 * 8 array, which can be viewed as either a 64-bit memory or an 8-byte memory. 
Part (b) shows a 16 * 4 array, which is a 16-nibble memory, and part (c) shows a 64 * 1 

InfoNote

The general definition of word is 
a complete unit of information 
consisting of a unit of binary 
data. When applied to computer 
instructions, a word is more 
specifically defined as two bytes 
(16 bits). As an important part 
of assembly language used in 
computers, the DW (Define Word) 
directive means to define data 
in 16-bit units. This definition 
is independent of the particular 
microprocessor or the size of 
its data bus. Assembly language 
also allows definitions of bytes 
(8 bits) with the DB directive, 
double words (32 bits) with the DD 
directive, and quad-words (64 bits) 
with the QD directive.

1
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4
5
6
7
8

1 2 3 4 5 6 7 8

(a) 8 × 8 array

1 2 3 4

(c) 64 × 1 array(b) 16 × 4 array

1
2
3
4
5
6

13
14
15
16

1
2
3
4
5
6

61
62
63
64

fg11_00100

Memory cell

FIGURE 11–1  A 64-cell memory array organized in three different ways.
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array, which is a 64-bit memory. A memory is identified by the number of words it can store 
times the word size. For example, a 16k * 8 memory can store 16,384 words of eight bits 
each. The inconsistency here is common in memory terminology. The actual number of 
words is always a power of 2, which, in this case, is 214

= 16,384. However, it is common 
practice to state the number to the nearest thousand, in this case, 16k.

Memory Address and Capacity

A representation of a small 8 * 8 memory chip is shown in Figure 11–2(a). The location of 
a unit of data in a memory array is called its address. For example, in part (b), the address 
of a bit in the 2-dimensional array is specified by the row and column as shown. In part (c), 
the address of a byte is specified only by the row. So, as you can see, the address depends 
on how the memory is organized into units of data. Personal computers have random-
access memories organized in bytes. This means that the smallest group of bits that can be 
addressed is eight. 

8 7 6 5 4 3 1
1 2 3

4 5
6

7
8

2

(a) Physical structure of 64-bit memory.

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

(b) The address of the blue bit
is row 5, column 4.

1
2
3
4
5
6
7
8

(c) The address of the blue byte
      is row 3.

fg11_0020bc
FIGURE 11–2  Examples of memory address in a 2-dimensional memory array.

Figure 11–3(a) illustrates the expansion of the 8 * 8 (64-bit) array to a 64-byte mem-
ory. The address of a byte in the array is specified by the row and column, as shown. In 
this case, the smallest group of bits that can be accessed is eight. This can be viewed as a 
3-dimensional array, as shown in part (b). 

1
2

3

8

1 2 3 4 5 6 7 8

(a) The 8 � 8 bit array expanded to a 64 � 8 bit array. This array forms a memory module.

FIGURE 11–3  Example of memory address in an expanded (multiple) array.

1
2
3
4
5

Rows

Columns

Arrays

1
2

3
4

5
6

7
8

6
7
8

1 2 3 4 5 6 7 8

(b) The address of the blue byte is row 5, column 8.

fg11_0030b

The capacity of a memory is the total number of data units that can be stored. For 
example, in the bit-organized memory array in Figure 11–2(b), the capacity is 64 bits. In 
the byte-organized memory array in Figure 11–2(c), the capacity is 8 bytes, which is also 
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630	 Data Storage

64 bits. In Figure 11–3, the capacity is 64 bytes. Computer memories typically have mul-
tiple gigabytes of internal memory. Computers usually transfer and store data as 64-bit 
words, in which case all eight bits of row five in each chip in Figure 11–3(a) would be 
accessed.

Memory Banks and Ranks

A bank is a section of memory within a single memory array (chip). A memory chip may 
have one or more banks. Memory banks can be used for storing frequently used informa-
tion. Easier and faster access can be achieved by knowing the section of memory in which 
the data are stored. A rank is a group of chips that make up a memory module that stores 
data in units such as words or bytes. These terms are illustrated in Figure 11–4.

Bank

1 byte of data

1 2 3 4 5 6 7 8
Rank

64-bit (8-byte) word

Figure 11–4  Simple illustration of memory bank and memory rank.

Basic Memory Operations

Addressing is the process of accessing a specified location in memory. Since a memory 
stores binary data, data must be put into the memory and data must be copied from the 
memory when needed. The write operation puts data into a specified address in the mem-
ory, and the read operation copies data out of a specified address in the memory. The 
addressing operation, which is part of both the write and the read operations, selects the 
specified memory address.

Data units go into the memory during a write operation and come out of the memory 
during a read operation on a set of lines called the data bus. As indicated in Figure 11–5, 
the data bus is bidirectional, which means that data can go in either direction (into the 
memory or out of the memory). In this case of byte-organized memories, the data bus has 
at least eight lines so that all eight bits in a selected address are transferred in parallel. For 
a write or a read operation, an address is selected by placing a binary code representing 
the desired address on a set of lines called the address bus. The address code is decoded 
internally, and the appropriate address is selected. In the case of the multiple-array memory 
in Figure 11–5(b) there are two decoders, one for the rows and one for the columns. The 
number of lines in the address bus depends on the capacity of the memory. For example, a 
15-bit address code can select 32,768 locations (215) in the memory, a 16-bit address code 
can select 65,536 locations (216) in the memory, and so on. In personal computers a 32-bit 
address bus can select 4,294,967,296 locations (232), expressed as 4G.

The Write Operation

A simplified write operation is illustrated in Figure 11–6. To store a byte of data in the 
memory, a code held in the address register is placed on the address bus. Once the address 
code is on the bus, the address decoder decodes the address and selects the specified loca-
tion in the memory. The memory then gets a write command, and the data byte held in 
the data register is placed on the data bus and stored in the selected memory address, thus 
completing the write operation. When a new data byte is written into a memory address, 
the current data byte stored at that address is overwritten (replaced with a new data byte).
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Address
decoder

Address bus Data bus

Write

Memory array

Read

(a) Single-array memory

Row
address
decoder

Address bus Data bus

Write

Memory arrays

Read

(b) Multiple-array memory

Column address decoder

FIGURE 11–5  Block diagram of a single-array memory and a multiple-array memory 
showing address bus, address decoder(s), bidirectional data bus, and read/write inputs.
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Data register
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2
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3
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1 Address code 101 is placed on the address bus and address 5 is selected.

Data byte is placed on the data bus.

Write command causes the data byte to be stored in address 5, replacing previous data.

2

3

fg10_00500

1 0 0 0 1 1 0 11 0 1

FIGURE 11–6  Illustration of the write operation.
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632	 Data Storage

The Read Operation

A simplified read operation is illustrated in Figure 11–7. Again, a code held in the address 
register is placed on the address bus. Once the address code is on the bus, the address 
decoder decodes the address and selects the specified location in the memory. The memory 
then gets a read command, and a “copy” of the data byte that is stored in the selected 
memory address is placed on the data bus and loaded into the data register, thus completing 
the read operation. When a data byte is read from a memory address, it also remains stored 
at that address. This is called nondestructive read.

7

6

5

4

3

2

1

0

Address decoder

Address register

Address bus

1

Data register

Data bus

3

Byte-organized memory array

2

Read

1 Address code 011 is placed on the address bus and address 3 is selected.

Read command is applied.

The contents of address 3 is placed on the data bus and shifted into data register.
The contents of address 3 is not erased by the read operation.

2

3

fg10_00600

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1

0

1

0

0

1

1

0

0

1

1

0

1

0

1

1

1

1 1 0 0 0 0 0 10 1 1

FIGURE 11–7  Illustration of the read operation.

RAMs and ROMs

The two major categories of semiconductor memories are the RAM and the ROM. RAM 
(random-access memory) is a type of memory in which all addresses are accessible in an 
equal amount of time and can be selected in any order for a read or write operation. All 
RAMs have both read and write capability. Because RAMs lose stored data when the 
power is turned off, they are volatile memories.

ROM (read-only memory) is a type of memory in which data are stored permanently or 
semipermanently. Data can be read from a ROM, but there is no write operation as in the 
RAM. The ROM, like the RAM, is a random-access memory but the term RAM tradition-
ally means a random-access read/write memory. Several types of RAMs and ROMs will be 
covered in this chapter. Because ROMs retain stored data even if power is turned off, they 
are nonvolatile memories.

Section 11–1  Checkup

Answers are at the end of the chapter.

	 1.	What is the smallest unit of data that can be stored in a memory?

	 2.	What is the bit capacity of a memory that can store 256 bytes of data?
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	 3.	What is a write operation?

	 4.	What is a read operation?

	 5.	How is a given unit of data located in a memory?

	 6.	Describe the difference between a RAM and a ROM.

11–2  The Random-Access Memory (RAM)

A RAM is a read/write memory in which data can be written into or read from any selected 
address in any sequence. When a data unit is written into a given address in the RAM, the 
data unit previously stored at that address is replaced by the new data unit. When a data unit 
is read from a given address in the RAM, the data unit remains stored and is not erased by 
the read operation. This nondestructive read operation can be viewed as copying the con-
tent of an address while leaving the content intact. A RAM is typically used for short-term 
data storage because it cannot retain stored data when power is turned off.

After completing this section, you should be able to

u	 Name the two categories of RAM

u	 Explain what a SRAM is

u	 Describe the SRAM storage cell

u	 Explain the difference between an asynchronous SRAM and a synchronous burst 
SRAM

u	 Explain the purpose of a cache memory

u	 Explain what a DRAM is

u	 Describe the DRAM storage cells

u	 Discuss the types of DRAM

u	 Compare the SRAM with the DRAM

The RAM Family

The two major categories of RAM are the static RAM (SRAM) and the dynamic RAM 
(DRAM). SRAMs generally use latches as storage elements and can therefore store data 
indefinitely as long as dc power is applied. DRAMs use capacitors as storage elements 
and cannot retain data very long without the capacitors being recharged by a process called 
refreshing. Both SRAMs and DRAMs will lose stored data when dc power is removed 
and, therefore, are classified as volatile memories.

Data can be read much faster from SRAMs than from DRAMs. However, DRAMs can 
store much more data than SRAMs for a given physical size and cost because the DRAM cell 
is much simpler and more cells can be crammed into a given chip area than in the SRAM.

The basic types of SRAM are the asynchronous SRAM and the synchronous SRAM with 
a burst feature. The basic types of DRAM are the Fast Page Mode DRAM (FPM DRAM), 
the Extended Data Out DRAM (EDO DRAM), the Burst EDO DRAM (BEDO DRAM), 
and the synchronous DRAM (SDRAM). These are shown in Figure 11–8.

Static RAMs (SRAMs)
Memory Cell

All SRAMs are characterized by latch memory cells. As long as dc power is applied to a 
static memory cell, it can retain a 1 or 0 state indefinitely. If power is removed, the stored 
data bit is lost.
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634	 Data Storage

Figure 11–9 shows a basic SRAM latch memory cell. The cell is selected by an active 
level on the Select line and a data bit (1 or 0) is written into the cell by placing it on the Data 
in line. A data bit is read by taking it off the Data out line.

Static
RAM

(SRAM)

Dynamic
RAM

(DRAM)

Asynchronous
SRAM

(ASRAM)

Synchronous
SRAM with
burst feature
(SB SRAM)

Extended
Data Out
DRAM

(EDO DRAM)

Burst
EDO DRAM

(BEDO
DRAM)

Fast Page
Mode

DRAM
(FPM DRAM)

Synchronous
DRAM

(SDRAM)

Random-
Access

Memory
(RAM)

FIGURE 11–8  The RAM family.

Select

Data in Data out

fg10_00800

FIGURE 11–9  A typical SRAM latch memory cell.

Static Memory Cell Array

The memory cells in a SRAM are organized in rows and columns, as illustrated in Figure 
11–10 for the case of an n * 4 array. All the cells in a row share the same Row Select line. 
Each set of Data in and Data out lines go to each cell in a given column and are connected 
to a single data line that serves as both an input and output (Data I/O) through the data input 
and data output buffers.

To write a data unit, in this case a nibble (4 bits), into a given row of cells in the memory 
array, the Row Select line is taken to its active state and four data bits are placed on the 
Data I/O lines. The Write line is then taken to its active state, which causes each data bit to 
be stored in a selected cell in the associated column. To read a data unit, the Read line is 
taken to its active state, which causes the four data bits stored in the selected row to appear 
on the Data I/O lines.

Basic Asynchronous SRAM Organization

An asynchronous SRAM is one in which the operation is not synchronized with a system 
clock. To illustrate the general organization of a SRAM, a 32k * 8 bit memory is used. A 
logic symbol for this memory is shown in Figure 11–11.
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In the READ mode, the eight data bits that are stored in a selected address appear on the 
data output lines. In the WRITE mode, the eight data bits that are applied to the data input 
lines are stored at a selected address. The data input and data output lines (I/O0 through 
I/O7) share the same lines. During READ, they act as output lines (O0 through O7) and 
during WRITE they act as input lines (I0 through I7).

Tri-state Outputs and Buses

Tri-state buffers in a memory allow the data lines to act as either input or output lines and 
connect the memory to the data bus in a computer. These buffers have three output states: 

Row Select 1

Row Select 2

Row Select n

Row Select 0

Memory cell

Data Input/Output
Buffers and Control

Data I/O
Bit 0

Data I/O
Bit 1

Data I/O
Bit 2

Data I/O
Bit 3

FIGURE 11–10  Basic SRAM array.

RAM 32k×8

Address
lines

A0
A1
A2
A3
A4
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A6
A7
A8
A9
A10
A11
A12
A13
A14

A
0

32,767

OE
WE

CS [CHIP SELECT]

[WRITE]

[READ]

[OUTPUT ENABLE]

I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7

Data inputs (I)
and outputs (O)

∆
∆
∆
∆

∆
∆
∆
∆

FIGURE 11–11  Logic diagram for an asynchronous 32k * 8 SRAM.
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HIGH (1), LOW (0), and HIGH-Z (open). Tri-state outputs are indicated on logic symbols 
by a small inverted triangle (�), as shown in Figure 11–11, and are used for compatibility 
with bus structures such as those found in microprocessor-based systems.

Physically, a bus is one or more conductive paths that serve to interconnect two or 
more functional components of a system or several diverse systems. Electrically, a bus is 
a collection of specified voltage levels and/or current levels and signals that allow various 
devices to communicate and work properly together.

A microprocessor is connected to memories and input/output devices by certain bus 
structures. An address bus allows the microprocessor to address the memories, and a data 
bus provides for transfer of data between the microprocessor, the memories, and the input/
output devices such as monitors, printers, keyboards, and modems. A control bus allows 
the microprocessor to control data transfers and timing for the various components.

Memory Array

SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits), or multiple 
bytes (words with 16, 24, 32 bits, etc.).

Figure 11–12 shows the organization of a small 32k * 8 SRAM. The memory cell array 
is arranged in 256 rows and 128 columns, each with 8 bits, as shown in part (a). There are 
actually 215

= 32,768 addresses and each address contains 8 bits. The capacity of this 
example memory is 32,768 bytes (typically expressed as 32 kB). Although small by today’s 
standards, this memory serves to introduce the basic concepts.

The SRAM in Figure 11–12(b) works as follows. First, the chip select, CS, must be 
LOW for the memory to operate. (Other terms for chip select are enable or chip enable.) 
Eight of the fifteen address lines are decoded by the row decoder to select one of the 256 
rows. Seven of the fifteen address lines are decoded by the column decoder to select one 
of the 128 8-bit columns.

Read

In the READ mode, the write enable input, WE, is HIGH and the output enable, OE, is 
LOW. The input tri-state buffers are disabled by gate G1, and the column output tri-state 

WE

256
rows

128 columns

8 bits

(a) Memory array configuration

Address lines

Eight
input tri-state

buffers

Row
decoder

Input
data

control
I/O7

I/O0

Address
lines

OE
G2

G1

Eight output tri-state buffers

Output
data

Column I/O

CS

(b) Memory block diagram

Column decoder
Memory arrays

256 rows ×
128 columns ×

8 bits

Memory arrays

256 rows ×
128 columns ×

8 bits

fg11_01200FIGURE 11–12  Basic organization of an asynchronous 32k * 8 SRAM.
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buffers are enabled by gate G2. Therefore, the eight data bits from the selected address are 
routed through the column I/O to the data lines (I/O0 though I/O7), which are acting as data 
output lines.

Write

In the WRITE mode, WE is LOW and OE is HIGH. The input tri-state buffers are enabled 
by gate G1, and the output tri-state buffers are disabled by gate G2. Therefore, the eight 
input data bits on the data lines are routed through the input data control and the column 
I/O to the selected address and stored.

Read and Write Cycles

Figure 11–13 shows typical timing diagrams for a memory read cycle and a write cycle. 
For the read cycle shown in part (a), a valid address code is applied to the address lines for 
a specified time interval called the read cycle time, tRC. Next, the chip select (CS) and the 
output enable (OE) inputs go LOW. One time interval after the OE input goes LOW, a valid 
data byte from the selected address appears on the data lines. This time interval is called the 
output enable access time, tGQ. Two other access times for the read cycle are the address 
access time, tAQ, measured from the beginning of a valid address to the appearance of valid 
data on the data lines and the chip enable access time, tEQ, measured from the HIGH-to-
LOW transition of CS to the appearance of valid data on the data lines.

During each read cycle, one unit of data, a byte in this case, is read from the memory.
For the write cycle shown in Figure 11–13(b), a valid address code is applied to the 

address lines for a specified time interval called the write cycle time, tWC. Next, the chip 

tRC

Valid addressAddress

Valid data

tEQ

tGQ

tAQ

O (Data out)

(a) Read cycle (WE HIGH) 

tWC

Valid addressAddress

tWD

ts(A)

CS (Chip select)

WE (Write enable)

I (Data in)

(b) Write cycle (WE LOW)

Valid data

th(D)

CS (Chip select)

OE (Output enable)

fg10_01200

FIGURE 11–13  Timing diagrams for typical read and write cycles for the SRAM in 
Figure 11–12.
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select (CS) and the write enable (WE) inputs go LOW. The required time interval from the 
beginning of a valid address until the WE input goes LOW is called the address setup time, 
ts(A). The time that the WE input must be LOW is the write pulse width. The time that the 
input WE must remain LOW after valid data are applied to the data inputs is designated 
tWD; the time that the valid input data must remain on the data lines after the WE input goes 
HIGH is the data hold time, th(D).

During each write cycle, one unit of data is written into the memory.

Synchronous SRAM with Burst Feature

Unlike the asynchronous SRAM, a synchronous SRAM is synchronized with the system 
clock. For example, in a computer system, the synchronous SRAM operates with the same 
clock signal that operates the microprocessor so that the microprocessor and memory are 
synchronized for faster operation.

The fundamental concept of the synchronous feature of a SRAM can be shown with 
Figure 11–14, which is a simplified block diagram of a 32k * 8 memory for purposes of 
illustration. The synchronous SRAM is similar to the asynchronous SRAM in terms of 
the memory array, address decoder, and read/write and enable inputs. The basic difference 
is that the synchronous SRAM uses clocked registers to synchronize all inputs with the 
system clock. The address, the read/write input, the chip enable, and the input data are all 
latched into their respective registers on an active clock pulse edge. Once this information 
is latched, the memory operation is in sync with the clock.

For the purpose of simplification, a notation for multiple parallel lines or bus lines is 
introduced in Figure 11–14, as an alternative to drawing each line separately. A set of 
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(Data I/O) 8
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FIGURE 11–14  A basic block diagram of a synchronous SRAM with burst feature.
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parallel lines can be indicated by a single heavy line with a slash and the number of sepa-
rate lines in the set. For example, the following notation represents a set of 8 parallel lines:

8

The address bits A0 through A14 are latched into the Address register on the positive edge 
of a clock pulse. On the same clock pulse, the state of the write enable (WE) line and chip 
select (CS) are latched into the Write register and the Enable register respectively. These are 
one-bit registers or simply flip-flops. Also, on the same clock pulse the input data are latched 
into the Data input register for a Write operation, and data in a selected memory address are 
latched into the Data output register for a Read operation, as determined by the Data I/O 
control based on inputs from the Write register, Enable register, and the Output enable (OE).

Two basic types of synchronous SRAM are the flow-through and the pipelined. The 
flow-through synchronous SRAM does not have a Data output register, so the output data 
flow asynchronously to the data I/O lines through the output buffers. The pipelined syn-
chronous SRAM has a Data output register, as shown in Figure 11–14, so the output data 
are synchronously placed on the data I/O lines.

The Burst Feature

As shown in Figure 11–14, synchronous SRAMs normally have an address burst feature, 
which allows the memory to read or write up to four sequential locations using a single 
address. When an external address is latched in the address register, the two lowest-order 
address bits, A0 and A1, are applied to the burst logic. This produces a sequence of four 
internal addresses by adding 00, 01, 10, and 11 to the two lowest-order address bits on 
successive clock pulses. The sequence always begins with the base address, which is the 
external address held in the address register.

The address burst logic in a typical synchronous SRAM consists of a binary counter and 
exclusive-OR gates, as shown in Figure 11–15. For 2-bit burst logic, the internal burst address 
sequence is formed by the base address bits A2–A14 plus the two burst address bits A=

1 and A=
0.

Burst control
Binary counter

Q1 Q0
CLK

Lowest-order bits
of internal burst
address

A0 A1

Lowest-order bits of
external address

A'0

A'1

FIGURE 11–15  Address burst logic.

To begin the burst sequence, the counter is in its 00 state and the two lowest-order 
address bits are applied to the inputs of the XOR gates. Assuming that A0 and A1 are both 
0, the internal address sequence in terms of its two lowest-order bits is 00, 01, 10, and 11.

Cache Memory

One of the major applications of SRAMs is in cache memories in computers. Cache mem-
ory is a relatively small, high-speed memory that stores the most recently used instructions 
or data from the larger but slower main memory. Cache memory can also use dynamic 
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RAM (DRAM), which is discussed next. Typically, SRAM is several times faster than 
DRAM. Overall, a cache memory gets stored information to the microprocessor much 
faster than if only high-capacity DRAM is used. Cache memory is basically a cost-effective 
method of improving system performance without having to resort to the expense of mak-
ing all of the memory faster.

The concept of cache memory is based on the idea that computer programs tend to get 
instructions or data from one area of main memory before moving to another area. Basi-
cally, the cache controller “guesses” which area of the slow dynamic memory the CPU 
(central-processing unit) will need next and moves it to the cache memory so that it is ready 
when needed. If the cache controller guesses right, the data are immediately available to 
the microprocessor. If the cache controller guesses wrong, the CPU must go to the main 
memory and wait much longer for the correct instructions or data. Fortunately, the cache 
controller is right most of the time.

Cache Analogy

There are many analogies that can be used to describe a cache memory, but comparing it 
to a home refrigerator is perhaps the most effective. A home refrigerator can be thought of 
as a “cache” for certain food items while the supermarket is the main memory where all 
foods are kept. Each time you want something to eat or drink, you can go to the refrigera-
tor (cache) first to see if the item you want is there. If it is, you save a lot of time. If it is not 
there, then you have to spend extra time to get it from the supermarket (main memory).

L1 and L2 Caches

A first-level cache (L1 cache) is usually integrated into the processor chip and has a very 
limited storage capacity. L1 cache is also known as primary cache. A second-level cache 
(L2 cache) may also be integrated into the processor or as a separate memory chip or set 
of chips external to the processor; it usually has a larger storage capacity than an L1 cache. 
L2 cache is also known as secondary cache. Some systems may have higher-level caches 
(L3, L4, etc.), but L1 and L2 are the most common. Also, some systems use a disk cache 
to enhance the performance of the hard disk because DRAM, although much slower than 
SRAM, is much faster than the hard disk drive. Figure 11–16 illustrates L1 and L2 cache 
memories in a computer system.

Main memory
(DRAM)

Microprocessor

L1 cache
(internal)

Clock (CLK)

L2 cache
(SRAM)

Cache
controller

Data bus

Address bus

fg10_01500

FIGURE 11–16  Block diagram showing L1 and L2 cache memories in a computer 
system.

Dynamic RAM (DRAM) Memory Cells

Dynamic memory cells store a data bit in a small capacitor rather than in a latch. The 
advantage of this type of cell is that it is very simple, thus allowing very large memory 
arrays to be constructed on a chip at a lower cost per bit. The disadvantage is that the 
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storage capacitor cannot hold its charge over an extended period of time and will lose the 
stored data bit unless its charge is refreshed periodically. To refresh requires additional 
memory circuitry and complicates the operation of the DRAM. Figure 11–17 shows a typi-
cal DRAM cell consisting of a single MOS transistor (MOSFET) and a capacitor.

Column (bit line)

Row

fg10_01600

FIGURE 11–17  A MOS DRAM cell.

In this type of cell, the transistor acts as a switch. The basic simplified operation is 
illustrated in Figure 11–18 and is as follows. A LOW on the R/W  line (WRITE mode) 
enables the tri-state input buffer and disables the output buffer. For a 1 to be written into 
the cell, the DIN line must be HIGH, and the transistor must be turned on by a HIGH 
on the row line. The transistor acts as a closed switch connecting the capacitor to the 
bit line. This connection allows the capacitor to charge to a positive voltage, as shown 
in Figure 11–18(a). When a 0 is to be stored, a LOW is applied to the DIN line. If the 
capacitor is storing a 0, it remains uncharged, or if it is storing a 1, it discharges as 
indicated in Figure 11–18(b). When the row line is taken back LOW, the transistor turns 
off and disconnects the capacitor from the bit line, thus “trapping” the charge (1 or 0) 
on the capacitor.

To read from the cell, the R/W (Read/Write) line is HIGH, enabling the output buffer 
and disabling the input buffer. When the row line is taken HIGH, the transistor turns on 
and connects the capacitor to the bit line and thus to the output buffer (sense amplifier), 
so the data bit appears on the data-output line (DOUT). This process is illustrated in Fig-
ure 11–18(c).

For refreshing the memory cell, the R/W  line is HIGH, the row line is HIGH, and the 
refresh line is HIGH. The transistor turns on, connecting the capacitor to the bit line. The 
output buffer is enabled, and the stored data bit is applied to the input of the refresh buf-
fer, which is enabled by the HIGH on the refresh input. This produces a voltage on the bit 
line corresponding to the stored bit, thus replenishing the capacitor. This is illustrated in 
Figure 11–18(d).

DRAM Organization

The major application of DRAMs is in the main memory of computers. The difference 
between DRAMs and SRAMs is the type of memory cell. As you have seen, the DRAM 
memory cell consists of one transistor and a capacitor and is much simpler than the SRAM 
cell. This allows much greater densities in DRAMs and results in greater bit capacities for 
a given chip area, although much slower access time.

Again, because charge stored in a capacitor will leak off, the DRAM cell requires a 
frequent refresh operation to preserve the stored data bit. This requirement results in more 
complex circuitry than in a SRAM. Several features common to most DRAMs are now 
discussed, using a generic 1M * 1 bit DRAM as an example.

Address Multiplexing

DRAMs use a technique called address multiplexing to reduce the number of address lines. 
Figure 11–19 shows the block diagram of a 1,048,576-bit (1 Mb) DRAM with a 1M * 1 
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organization. We will focus on the blue blocks to illustrate address multiplexing. The green 
blocks represent the refresh logic.

The ten address lines are time multiplexed at the beginning of a memory cycle by the 
row address select (RAS) and the column address select (CAS) into two separate 10-bit 
address fields. First, the 10-bit row address is latched into the row address register. Next, 
the 10-bit column address is latched into the column address register. The row address and 
the column address are decoded to select one of the 1,048,576 addresses (220

= 1,048,576) 
in the memory array. The basic timing for the address multiplexing operation is shown in 
Figure 11–20.

Read and Write Cycles

At the beginning of each read or write memory cycle, RAS and CAS go active (LOW) to 
multiplex the row and column addresses into the registers, and decoders. For a read cycle, 
the R/W  input is HIGH. For a write cycle, the R/W  input is LOW. This is illustrated in 
Figure 11–21.
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FIGURE 11–18  Basic operation of a DRAM cell.

M11_FLOY5983_11_GE_C11.indd Page 642  11/11/14  7:03 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 The Random-Access Memory (RAM)	 643

Fast Page Mode

In the normal read or write cycle described previously, the row address for a particular 
memory location is first loaded by an active-LOW RAS and then the column address for 
that location is loaded by an active-LOW CAS. The next location is selected by another 
RAS followed by a CAS, and so on.

A “page” is a section of memory available at a single row address and consists of all the 
columns in a row. Fast page mode allows fast successive read or write operations at each 
column address in a selected row. A row address is first loaded by RAS going LOW and 
remaining LOW while CAS is toggled between HIGH and LOW. A single row address is 
selected and remains selected while RAS is active. Each successive CAS selects another 
column in the selected row. So, after a fast page mode cycle, all of the addresses in the 
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FIGURE 11–19  Simplified block diagram of a 1M * 1 DRAM.
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FIGURE 11–20  Basic timing for address multiplexing.
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644	 Data Storage

selected row have been read from or written into, depending on R/W. For example, a fast 
page mode cycle for the DRAM in Figure 11–19 requires CAS to go active 1024 times for 
each row selected by RAS.

Fast page mode operation for read is illustrated by the timing diagram in Figure 11–22. 
When CAS goes to its nonasserted state (HIGH), it disables the data outputs. Therefore, 
the transition of CAS to HIGH must occur only after valid data are latched by the external 
system.

Refresh Cycles

As you know, DRAMs are based on capacitor charge storage for each bit in the memory 
array. This charge degrades (leaks off) with time and temperature, so each bit must be peri-
odically refreshed (recharged) to maintain the correct bit state. Typically, a DRAM must 
be refreshed every several milliseconds, although for some devices the refresh period can 
be much longer.

A read operation automatically refreshes all the addresses in the selected row. However, 
in typical applications, you cannot always predict how often there will be a read cycle, 
and so you cannot depend on a read cycle to occur frequently enough to prevent data loss. 
Therefore, special refresh cycles must be implemented in DRAM systems.

Burst refresh and distributed refresh are the two basic refresh modes for refresh oper-
ations. In burst refresh, all rows in the memory array are refreshed consecutively each 
refresh period. For a memory with a refresh period of 8 ms, a burst refresh of all rows 
occurs once every 8 ms. The normal read and write operations are suspended during a burst 
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FIGURE 11–21  Timing diagrams for normal read and write cycles.
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FIGURE 11–22  Fast page mode timing for a read operation.

refresh cycle. In distributed refresh, each row is refreshed at intervals interspersed between 
normal read or write cycles. For example, the memory in Figure 11–19 has 1024 rows. As an 
example, for an 8 ms refresh period, each row must be refreshed every 8 ms/1024 = 7.8 ms 
when distributed refresh is used.

The two types of refresh operations are RAS only refresh and CAS before RAS refresh. 
RAS-only refresh consists of a RAS transition to the LOW (active) state, which latches 
the address of the row to be refreshed while CAS remains HIGH (inactive) throughout the 
cycle. An external counter is used to provide the row addresses for this type of operation.

The CAS before RAS refresh is initiated by CAS going LOW before RAS goes LOW. 
This sequence activates an internal refresh counter that generates the row address to be 
refreshed. This address is switched by the data selector into the row decoder.

Types of DRAMs

Now that you have learned the basic concept of a DRAM, let’s briefly look at the major 
types. These are the Fast Page Mode (FPM) DRAM, the Extended Data Out (EDO) DRAM, 
the Burst Extended Data Out (BEDO) DRAM, and the Synchronous (S) DRAM.

FPM DRAM

Fast page mode operation was described earlier. Recall that a page in memory is all of the 
column addresses contained within one row address.

The idea of the FPM DRAM is based on the probability that the next several memory 
addresses to be accessed are in the same row (on the same page). Fortunately, this happens 
a large percentage of the time. FPM saves time over pure random accessing because in FPM 
the row address is specified only once for access to several successive column addresses 
whereas for pure random accessing, a row address is specified for each column address.

Recall that in a fast page mode read operation, the CAS signal has to wait until the valid 
data from a given address are accepted (latched) by the external system (CPU) before it 
can go to its nonasserted state. When CAS goes to its nonasserted state, the data outputs are 
disabled. This means that the next column address cannot occur until after the data from 
the current column address are transferred to the CPU. This limits the rate at which the 
columns within a page can be addressed.

EDO DRAM

The Extended Data Out DRAM, sometimes called hyper page mode DRAM, is similar to 
the FPM DRAM. The key difference is that the CAS signal in the EDO DRAM does not 
disable the output data when it goes to its nonasserted state because the valid data from the 
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current address can be held until CAS is asserted again. This means that the next column 
address can be accessed before the external system accepts the current valid data. The idea 
is to speed up the access time.

BEDO DRAM

The Burst Extended Data Out DRAM is an EDO DRAM with address burst capability. 
Recall from the discussion of the synchronous burst SRAM that the address burst feature 
allows up to four addresses to be internally generated from a single external address, which 
saves some access time. This same concept applies to the BEDO DRAM.

SDRAM

Faster DRAMs are needed to keep up with the ever-increasing speed of microprocessors. 
The Synchronous DRAM is one way to accomplish this. Like the synchronous SRAM 
discussed earlier, the operation of the SDRAM is synchronized with the system clock, 
which also runs the microprocessor in a computer system. The same basic ideas described 
in relation to the synchronous burst SRAM, also apply to the SDRAM.

This synchronized operation makes the SDRAM totally different from the other asyn-
chronous DRAM types. With asynchronous memories, the microprocessor must wait for 
the DRAM to complete its internal operations. However, with synchronous operation, the 
DRAM latches addresses, data, and control information from the processor under control 
of the system clock. This allows the processor to handle other tasks while the memory read 
or write operations are in progress, rather than having to wait for the memory to do its thing 
as is the case in asynchronous systems.

DDR SDRAM

DDR stands for double data rate. A DDR SDRAM is clocked on both edges of a clock pulse, 
whereas a SDRAM is clocked on only one edge. Because of the double clocking, a DDR 
SDRAM is theoretically twice as fast as an SDRAM. Sometimes the SDRAM is referred to 
as an SDR SDRAM (single data rate SDRAM) for contrast with the DDR SDRAM.

Section 11–2  Checkup

	 1.	List two types of SRAM.

	 2.	What is a cache?

	 3.	Explain how SRAMs and DRAMs differ.

	 4.	Describe the refresh operation in a DRAM.

	 5.	List four types of DRAM.

11–3  The Read-Only Memory (ROM)

A ROM contains permanently or semipermanently stored data, which can be read from 
the memory but either cannot be changed at all or cannot be changed without specialized 
equipment. A ROM stores data that are used repeatedly in system applications, such as 
tables, conversions, or programmed instructions for system initialization and operation. 
ROMs retain stored data when the power is off and are therefore nonvolatile memories.

After completing this section, you should be able to

u	 List the types of ROMs

u	 Describe a basic mask ROM storage cell

u	 Explain how data are read from a ROM

u	 Discuss internal organization of a typical ROM
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The ROM Family

Figure 11–23 shows how semiconductor ROMs are categorized. The mask ROM is the type 
in which the data are permanently stored in the memory during the manufacturing process. 
The PROM, or programmable ROM, is the type in which the data are electrically stored by 
the user with the aid of specialized equipment. Both the mask ROM and the PROM can be 
of either MOS or bipolar technology. The EPROM, or erasable PROM, is strictly a MOS 
device. The UV EPROM is electrically programmable by the user, but the stored data must 
be erased by exposure to ultraviolet light over a period of several minutes. The electrically 
erasable PROM (EEPROM or E2PROM) can be erased in a few milliseconds. The UV 
EPROM has been largely displaced by the EEPROM.

Read-Only
Memory
(ROM)

Electrically
Erasable
PROM

(EEPROM)

Mask
ROM

Erasable
PROM

(EPROM)

Ultraviolet
EPROM

(UV EPROM)

Programmable
ROM

(PROM)

FIGURE 11–23  The ROM family.

The Mask ROM

The mask ROM is usually referred to simply as a ROM. It is permanently programmed dur-
ing the manufacturing process to provide widely used standard functions, such as popular 
conversions, or to provide user-specified functions. Once the memory is programmed, it 
cannot be changed. Most IC ROMs utilize the presence or absence of a transistor connec-
tion at a row/column junction to represent a 1 or a 0.

Figure 11–24 shows MOS ROM cells. The presence of a connection from a row line to 
the gate of a transistor represents a 1 at that location because when the row line is taken 
HIGH, all transistors with a gate connection to that row line turn on and connect the HIGH 
(1) to the associated column lines. At row/column junctions where there are no gate con-
nections, the column lines remain LOW (0) when the row is addressed.

Row

Column

Storing a 1

+VDD

Column

Storing a 0

+VDD

Row

fg10_02300

FIGURE 11–24  ROM cells.

To illustrate the ROM concept, Figure 11–25 shows a small, simplified ROM array. The 
blue squares represent stored 1s, and the gray squares represent stored 0s. The basic read 
operation is as follows. When a binary address code is applied to the address input lines, the 
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648	 Data Storage

corresponding row line goes HIGH. This HIGH is connected to the column lines through 
the transistors at each junction (cell) where a 1 is stored. At each cell where a 0 is stored, 
the column line stays LOW because of the terminating resistor. The column lines form the 
data output. The eight data bits stored in the selected row appear on the output lines.

+ +

Address
input
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1

2

4

8

Row 0

Row 1

Row 2

Row 14

Row 15

0 1 2 6 7

Data output lines

Cell storing a 1 Cell storing a 0

Address
decoder

0

1

2

14

15

FIGURE 11–25  A representation of a 16 * 8-bit ROM array.

As you can see, the example ROM in Figure 11–25 is organized into 16 addresses, each 
of which stores 8 data bits. Thus, it is a 16 * 8 (16-by-8) ROM, and its total capacity is 
128 bits or 16 bytes. ROMs can be used as look-up tables (LUTs) for code conversions and 
logic function generation.

EXAMPLE 11–1

Show a basic ROM, similar to the one in Figure 11–25, programmed for a 4-bit binary-
to-Gray conversion.

Solution

Review Chapter 2 for the Gray code. Table 11–1 is developed for use in programming 
the ROM.

The resulting 16 * 4 ROM array is shown in Figure 11–26. You can see that a 
binary code on the address input lines produces the corresponding Gray code on the 
output lines (columns). For example, when the binary number 0110 is applied to the 
address input lines, address 6, which stores the Gray code 0101, is selected.

Related Problem*

Using Figure 11–26, determine the Gray code output when a binary code of 1011 is 
applied to the address input lines.

*Answers are at the end of the chapter.

M11_FLOY5983_11_GE_C11.indd Page 648  11/11/14  7:04 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



Table 11–1

G3

Gray code output

Binary code
applied to

address
input lines

G2 G1 G0

B0

B1

B2

B3

1 0
Address
decoder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

4

8

FIGURE 11–26  Representation of a ROM programmed as a binary-to-Gray code converter.

649

Binary Gray
B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0
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650	 Data Storage

Internal ROM Organization

Most IC ROMs have a more complex internal organization than that in the basic simpli-
fied example just presented. To illustrate how an IC ROM is structured, let’s use a 1024-
bit device with a 256 * 4 organization. The logic symbol is shown in Figure 11–27. 
When any one of 256 binary codes (eight bits) is applied to the address lines, four data 
bits appear on the outputs if the chip select inputs are LOW. (256 addresses require eight 
address lines.)

ROM 256×4

Address
input

Chip
select

lines

A0

A1

A2

A3

A4

A5

A6

A7

0

CS0

CS1

&
EN

7

A
0

255

O0

O1

O2

O3

Data
output
lines∆

∆

∆

∆

FIGURE 11–27  A 256 * 4 ROM logic symbol. The A 0
255 designator means that the 8-bit 

address code selects addresses 0 through 255.

Although the 256 * 4 organization of this device implies that there are 256 rows and 
4 columns in the memory array, this is not actually the case. The memory cell array is 
actually a 32 * 32 matrix (32 rows and 32 columns), as shown in the block diagram in 
Figure 11–28.

The ROM in Figure 11–28 works as follows. Five of the eight address lines (A0 
through A4) are decoded by the row decoder (often called the Y decoder) to select one 
of the 32 rows. Three of the eight address lines (A5 through A7) are decoded by the 
column decoder (often called the X decoder) to select four of the 32 columns. Actu-
ally, the column decoder consists of four 1-of-8 decoders (data selectors), as shown in 
Figure 11–28.

The result of this structure is that when an 8-bit address code (A0 through A7) is applied, 
a 4-bit data word appears on the data outputs when the chip select lines (CS0 and CS1) are 
LOW to enable the output buffers. This type of internal organization (architecture) is typi-
cal of IC ROMs of various capacities.

ROM Access Time

A typical timing diagram that illustrates ROM access time is shown in Figure 11–29. The 
access time, ta, of a ROM is the time from the application of a valid address code on the 
input lines until the appearance of valid output data. Access time can also be measured 
from the activation of the chip select (CS) input to the occurrence of valid output data when 
a valid address is already on the input lines.

InfoNote

ROM is used in a computer to 
store the BIOS (Basic Input/Output 
System). These are programs that 
are used to perform fundamental 
supervisory and support functions 
for the computer. For example, 
BIOS programs stored in the ROM 
control certain video monitor 
functions, provide for disk 
formatting, scan the keyboard for 
inputs, and control certain printer 
functions.
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A5

O3

32 × 32
Memory array

A6

A7

A1

A2

A0

A3

A4

32
row
lines

Row
decoder

Column decoders
(Four 1-of-8 decoders)

and I/O circuits

O2 O1 O0

Output
buffers

Row
address

Column
address

Chip
select

CS0

CS1

FIGURE 11–28  A 1024-bit ROM with a 256 * 4 organization based on a 32 * 32 array.

Previous
address

Valid address on
input lines

Address
inputs

(A0–An)

Address transition

Valid data on
output lines

Data
outputs

(O0–O7)

Data output
transition

ta

(Chip select)
CS

fg10_02800

FIGURE 11–29  ROM access time (ta) from address change to data output with chip 
select already active.

Section 11–3  Checkup

	 1.	What is the bit storage capacity of a ROM with a 512 * 8 organization?

	 2.	List the types of read-only memories.

	 3.	How many address bits are required for a 2048-bit memory organized as a 256 * 8 
memory?
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652	 Data Storage

11–4  Programmable ROMs

Programmable ROMs (PROMs) are basically the same as mask ROMs once they have 
been programmed. As you have learned, ROMs are a type of programmable logic device. 
The difference is that PROMs come from the manufacturer unprogrammed and are custom 
programmed in the field to meet the user’s needs.

After completing this section, you should be able to

u	 Distinguish between a mask ROM and a PROM

u	 Describe a basic PROM memory cell

u	 Discuss EPROMs including UV EPROMs and EEPROMs

u	 Analyze an EPROM programming cycle

PROMs

A PROM uses some type of fusing process to store bits, in which a memory link is burned 
open or left intact to represent a 0 or a 1. The fusing process is irreversible; once a PROM 
is programmed, it cannot be changed.

Figure 11–30 illustrates a MOS PROM array with fusible links. The fusible links are 
manufactured into the PROM between the source of each cell’s transistor and its column 
line. In the programming process, a sufficient current is injected through the fusible link to 
burn it open to create a stored 0. The link is left intact for a stored 1.

Rows

Fusible
link

+VDD

Columns

fg10_02900

FIGURE 11–30  MOS PROM array with fusible links. (All drains are commonly connected 
to VDD.)

Three basic fuse technologies used in PROMs are metal links, silicon links, and pn junc-
tions. A brief description of each of these follows.

	 1.	 Metal links are made of a material such as nichrome. Each bit in the memory array is 
represented by a separate link. During programming, the link is either “blown” open 
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or left intact. This is done basically by first addressing a given cell and then forcing 
a sufficient amount of current through the link to cause it to open.

	 2.	 Silicon links are formed by narrow, notched strips of polycrystalline silicon. Pro-
gramming of these fuses requires melting of the links by passing a sufficient 
amount of current through them. This amount of current causes a high temperature 
at the fuse location that oxidizes the silicon and forms an insulation around the 
now-open link.

	 3.	 Shorted junction, or avalanche-induced migration, technology consists basically of 
two pn junctions arranged back-to-back. During programming, one of the diode 
junctions is avalanched, and the resulting voltage and heat cause aluminum ions to 
migrate and short the junction. The remaining junction is then used as a forward-
biased diode to represent a data bit.

EPROMs

An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be repro-
grammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated 
transistor gate has no electrical connections and can store an electrical charge for indefi-
nite periods of time. The data bits in this type of array are represented by the presence 
or absence of a stored gate charge. Erasure of a data bit is a process that removes the 
gate charge.

A typical EPROM is represented in Figure 11–31 by a logic diagram. Its operation 
is representative of that of other typical EPROMs of various sizes. As the logic symbol 
shows, this device has 2048 addresses (211

= 2048), each with eight bits. Notice that the 
eight outputs are tri-state (§).

EPROM
2048 × 8

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

CE/PGM

O0

O1

O2

O3

O4

O5

O6

O7

VPP

OE

&
EN

0

10

0––––
2047A

∆
∆

∆
∆

∆
∆

∆
∆

FIGURE 11–31  The logic symbol for a 2048 * 8 EPROM.

To read from the memory, the output enable input (OE) must be LOW and the power-
down/program (CE/PGM) input LOW.

To program or write to the device, a high dc voltage is applied to VPP and OE is HIGH. 
The eight data bits to be programmed into a given address are applied to the outputs (O0 
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654	 Data Storage

through O7), and the address is selected on inputs A0 through A10. Next, a HIGH level 
pulse is applied to the CE/PGM input. The addresses can be programmed in any order. A 
timing diagram for the programming is shown in Figure 11–32. These signals are normally 
produced by an EPROM programmer.

Two basic types of erasable PROMs are, the electrically erasable PROM (EEPROM) 
and the ultraviolet erasable PROM (UV EPROM). The UV EPROM is much less used than 
the EEPROM.

EEPROMs

An electrically erasable PROM can be both erased and programmed with electrical pulses. 
Since it can be both electrically written into and electrically erased, the EEPROM can be 
rapidly programmed and erased in-circuit for reprogramming. Two types of EEPROMs are 
the floating-gate MOS and the metal nitride-oxide silicon (MNOS). The application of a 
voltage on the control gate in the floating-gate structure permits the storage and removal of 
charge from the floating gate.

UV EPROMs

You can recognize the UV EPROM device by the UV transparent window on the package. 
The isolated gate in the FET of an ultraviolet EPROM is “floating” within an oxide insulat-
ing material. The programming process causes electrons to be removed from the floating 
gate. Erasure is done by exposure of the memory array chip to high-intensity ultraviolet 
radiation through the UV window on top of the package. The positive charge stored on the 
gate is neutralized after several minutes to an hour of exposure time.

Program

Address n

th(A)

th(E)

th(D)

ts(D)

ts(VPP)

ts(E)

ts(A)

Data to
be programmed in

A0–A10

OE

O0–O7

CE/PGM

VPP

n + 1

fg10_03200

FIGURE 11–32  Timing diagram for a 2048 * 8 EPROM programming cycle, with critical 
setup times (ts) and hold times (th) indicated.

Section 11–4  Checkup

	 1.	How do PROMs differ from ROMs?

	 2.	What represents a data bit in an EPROM?

	 3.	What is the normal mode of operation for a PROM?
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11–5  The Flash Memory

The ideal memory has high storage capacity, nonvolatility, in-system read and write 
capability, comparatively fast operation, and cost effectiveness. The traditional memory 
technologies such as ROM, PROM, EPROM, EEPROM, SRAM, and DRAM individu-
ally exhibit one or more of these characteristics. Flash memory has all of the desired 
characteristics.

After completing this section, you should be able to

u	 Discuss the basic characteristics of a flash memory

u	 Describe the basic operation of a flash memory cell

u	 Compare flash memories with other types of memories

u	 Discuss the USB flash drive

Flash memories are high-density read/write memories (high-density translates into 
large bit storage capacity) that are nonvolatile, which means that data can be stored indefi-
nitely without power. High-density means that a large number of cells can be packed into a 
given surface area on a chip; that is, the higher the density, the more bits that can be stored 
on a given size chip. This high density is achieved in flash memories with a storage cell 
that consists of a single floating-gate MOS transistor. A data bit is stored as charge or the 
absence of charge on the floating gate depending if a 0 or a 1 is stored.

Flash Memory Cell

A single-transistor cell in a flash memory is represented in Figure 11–33. The stacked gate 
MOS transistor consists of a control gate and a floating gate in addition to the drain and 
source. The floating gate stores electrons (charge) as a result of a sufficient voltage applied 
to the control gate. A 0 is stored when there is more charge and a 1 is stored when there is 
less or no charge. The amount of charge present on the floating gate determines if the tran-
sistor will turn on and conduct current from the drain to the source when a control voltage 
is applied during a read operation.

Control
gate

Floating
gate Drain

Source

MOS
transistor
symbol

–
–
–
–
–
–

–
–
–
–
–
–

Many electrons = more charge = stored 0.

–

–

Few electrons = less charge = stored 1.

fg10_03300

FIGURE 11–33  The storage cell in a flash memory.

Basic Flash Memory Operation

There are three major operations in a flash memory: the programming operation, the read 
operation, and the erase operation.
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Programming

Initially, all cells are at the 1 state because charge was removed from each cell in a previous 
erase operation. The programming operation adds electrons (charge) to the floating gate of 
those cells that are to store a 0. No charge is added to those cells that are to store a 1. Appli-
cation of a sufficient positive voltage to the control gate with respect to the source during 
programming attracts electrons to the floating gate, as indicated in Figure 11–34. Once 
programmed, a cell can retain the charge for up to 100 years without any external power.

Control
gate

Floating
gate

–

–

To store a 0, a sufficient positive voltage is
applied to the control gate with respect to the
source to add charge to the floating gate during
programming.

–
–

–

–

–

–

+VPROG

+VD

0 V

–

–

To store a 1, no charge is added and the cell is
left in the erased condition.

+VD

fg10_03400

FIGURE 11–34  Simplified illustration of storing a 0 or a 1 in a flash cell during the 
programming operation.

When a 0 is read, the transistor remains off
because the charge on the floating gate prevents
the read voltage from exceeding the turn-on
threshold.

+VREAD

+VD

0 V

–

–

When a 1 is read, the transistor turns on because
the absence of charge on the floating gate
allows the read voltage to exceed the turn-on
threshold.

+VD

0 V

– –
– –
– –
– –
– –
– –

+VREAD I

Control
gate

Floating
gate

fg10_03500

FIGURE 11–35  The read operation of a flash cell in an array.

Read

During a read operation, a positive voltage is applied to the control gate. The amount of charge 
present on the floating gate of a cell determines whether or not the voltage applied to the con-
trol gate will turn on the transistor. If a 1 is stored, the control gate voltage is sufficient to turn 
the transistor on. If a 0 is stored, the transistor will not turn on because the control gate volt-
age is not sufficient to overcome the negative charge stored in the floating gate. Think of the 
charge on the floating gate as a voltage source that opposes the voltage applied to the control 
gate during a read operation. So the floating gate charge associated with a stored 0 prevents 
the control gate voltage from reaching the turn-on threshold, whereas the small or zero charge 
associated with a stored 1 allows the control gate voltage to exceed the turn-on threshold.

When the transistor turns on, there is current from the drain to the source of the cell tran-
sistor. The presence of this current is sensed to indicate a 1, and the absence of this current 
is sensed to indicate a 0. This basic idea is illustrated in Figure 11–35.
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Erase

During an erase operation, charge is removed from all the memory cells. A sufficient posi-
tive voltage is applied to the transistor source with respect to the control gate. This is 
opposite in polarity to that used in programming. This voltage attracts electrons from the 
floating gate and depletes it of charge, as illustrated in Figure 11–36. A flash memory is 
always erased prior to being reprogrammed.

–

–

To erase a cell, a sufficient positive voltage is
applied to the source with respect to the control
gate to remove charge from the floating gate
during the erase operation.

–

–

–

–

–

–

+VERASE

0 V

–

fg10_03600

FIGURE 11–36  Simplified illustration of removing charge from a cell during erase.

Flash Memory Array

A simplified array of flash memory cells is shown in Figure 11–37. Only one row line is 
accessed at a time. When a cell in a given bit line turns on (stored 1) during a read opera-
tion, there is current through the bit line, which produces a voltage drop across the active 
load. This voltage drop is compared to a reference voltage with a comparator circuit and 
an output level indicating a 1 is produced. If a 0 is stored, then there is no current or little 
current in the bit line and an opposite level is produced on the comparator output.

The memory stick is a storage medium that uses flash memory technology in a physi-
cal configuration smaller than a stick of chewing gum. Memory sticks are typically avail-
able up to 64 GB capacities and as a kit with a PC card adaptor. Because of its compact 
design, it is ideal for use in small digital electronics products, such as laptop computers 
and digital cameras.

Comparison of Flash Memories with Other Memories

Let’s compare flash memories with other types of memories with which you are already 
familiar.

Flash vs. ROM, EPROM, and EEPROM

Read-only memories are high-density, nonvolatile devices. However, once programmed the 
contents of a ROM can never be altered. Also, the initial programming is a time-consuming 
and costly process. The EEPROM has a more complex cell structure than either the ROM 
or UV EPROM and so the density is not as high, although it can be reprogrammed without 
being removed from the system. Because of its lower density, the cost/bit is higher than 
ROMs or EPROMs. Although the UV EPROM is a high-density, nonvolatile memory, it can 
be erased only by removing it from the system and using ultraviolet light. It can be repro-
grammed only with specialized equipment.

A flash memory can be reprogrammed easily in the system because it is essentially 
a READ/WRITE device. The density of a flash memory compares with the ROM and 
EPROM because both have single-transistor cells. A flash memory (like a ROM, EPROM, 
or EEPROM) is nonvolatile, which allows data to be stored indefinitely with power off.

M11_FLOY5983_11_GE_C11.indd Page 657  11/11/14  7:04 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



658	 Data Storage

Flash vs. SRAM

As you have learned, static random-access memories are volatile READ/WRITE devices. 
A SRAM requires constant power to retain the stored data. In many applications, a battery 
backup is used to prevent data loss if the main power source is turned off. However, since 
battery failure is always a possibility, indefinite retention of the stored data in a SRAM can-
not be guaranteed. Because the memory cell in a SRAM is basically a flip-flop consisting 
of several transistors, the density is relatively low.

A flash memory is also a READ/WRITE memory, but unlike the SRAM it is nonvola-
tile. Also, a flash memory has a much higher density than a SRAM.

Flash vs. DRAM

Dynamic random-access memories are volatile high-density READ/WRITE devices. 
DRAMs require not only constant power to retain data but also that the stored data must be 
refreshed frequently. In many applications, backup storage such as hard disk must be used 
with a DRAM.

Flash memories exhibit higher densities than DRAMs because a flash memory cell con-
sists of one transistor and does not need refreshing, whereas a DRAM cell is one transistor 
plus a capacitor that has to be refreshed. Typically, a flash memory consumes much less 
power than an equivalent DRAM and can be used as a hard disk replacement in many 
applications.

Table 11–2 provides a comparison of the memory technologies.

Row select 0

Row select 1

Row select n

Reference

Active load

+V

Comparator
Data out 0

Bit line 0

Column select 0

+V

Data out m

Bit line m

Column select m

fg10_03700

FIGURE 11–37  Basic flash memory array.
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USB Flash Drive

A USB flash drive consists of a flash memory connected to a standard USB connector 
housed in a small case about the size of a cigarette lighter. The USB connector can be 
plugged into a port on a personal computer and obtains power from the computer. These 
memories are usually rewritable and can have a storage capacity up to 512 GB (a number 
which is constantly increasing), with most ranging from 2 GB to 64 GB. A typical USB 
flash drive is shown in Figure 11–38(a), and a basic block diagram is shown in part (b). 

Table 11–2

Comparison of types of memories.

Memory Type Nonvolatile High-Density
One-Transistor 

Cell
In-System 
Writability

Flash Yes Yes Yes Yes
SRAM No No No Yes
DRAM No Yes Yes Yes
ROM Yes Yes Yes No
EEPROM Yes No No Yes
UV EPROM Yes Yes Yes No

(a) Typical USB flash drive

USB connector

Mass memory
controller

Crystal
oscillator

Flash memory

+V

Data−
Gnd

Data+

(b) Basic block diagram

Figure 11–38  The USB flash drive.

The USB flash drive uses a standard USB A-type connector for connection to the com-
puter, as shown in Figure 11–39(a). Peripherals such as printers use the USB B-type con-
nector, which has a different shape and physical pin configuration. The USB icon is shown 
in part (b). 

4 3 2 1

(a) Type A USB connector (b) USB icon

Figure 11–39  Connector and symbol.

Section 11–5  Checkup

	 1.	What types of memories are nonvolatile?

	 2.	What is a major advantage of a flash memory over a SRAM or DRAM?

	 3.	List the three modes of operation of a flash memory.

M11_FLOY5983_11_GE_C11.indd Page 659  11/11/14  7:04 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



660	 Data Storage

11–6  Memory Expansion

Available memory can be expanded to increase the word length (number of bits in each 
address) or the word capacity (number of different addresses) or both. Memory expansion 
is accomplished by adding an appropriate number of memory chips to the address, data, 
and control buses. SIMMs and DIMMs, which are types of memory expansion modules, 
are introduced.

After completing this section, you should be able to

u	 Define word-length expansion

u	 Show how to expand the word length of a memory

u	 Define word-capacity expansion

u	 Show how to expand the word capacity of a memory

u	 Discuss types of memory modules

Word-Length Expansion

To increase the word length of a memory, the number of bits in the data bus must be 
increased. For example, an 8-bit word length can be achieved by using two memories, 
each with 4-bit words as illustrated in Figure 11–40(a). As you can see in part (b), the 
16-bit address bus is commonly connected to both memories so that the combination 
memory still has the same number of addresses (216

= 65,536) as each individual 
memory. The 4-bit data buses from the two memories are combined to form an 8-bit 
data bus. Now when an address is selected, eight bits are produced on the data bus—
four from each memory. Example 11–2 shows the details of 65,536 * 4 to 65,536 * 8 
expansion.

16 bits

16 bits

8 bits

4 bits

4 bits

16 bits

4 bits

4 bits

16 bits

Data
bus

Address
bus

Control
bus

Data
bus

Address
bus

Control
bus

Data
bus

65,536 × 8

(a) Two separate 65,536 × 4 ROMs (b) One 65,536 × 8 ROM from two 65,536 × 4 ROMs

Address
bus

Control
bus

ROM
65,536 × 4

ROM 1

ROM 2ROM
65,536 × 4

FIGURE 11–40  Expansion of two 65,536 * 4 ROMs into a 65,536 * 8 ROM to illustrate 
word-length expansion.

EXAMPLE 11–2

Expand the 65,536 * 4 ROM (64k * 4) in Figure 11–41 to form a 64k * 8 ROM. 
Note that “64k” is the accepted shorthand for 65,536. Why not “65k”? Maybe it’s 
because 64 is also a power-of-two.
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Solution

Two 64k * 4 ROMs are connected as shown in Figure 11–42. Notice that a specific 
address is accessed in ROM 1 and ROM 2 at the same time. The four bits from a 
selected address in ROM 1 and the four bits from the corresponding address in ROM 2 
go out in parallel to form an 8-bit word on the data bus. Also notice that a LOW on the 
enable line, E, which forms a simple control bus, enables both memories.

Related Problem

Describe how you would expand a 64k * 1 ROM to a 64k * 8 ROM.

AAddress

A0

A15

E0

E1

ROM
64k × 4

&
EN

O0
O1
O2
O3

Data
output

Enable

0

65,535

FIGURE 11–41  A 64k * 4 ROM.

A

A

0

65,535

0

65,535

Address
bus

A0

A15

ROM 1

&
EN

O0
O1
O2
O3

Data
bus

Control
bus

ROM 2

&
ENE

O4
O5
O6
O7

fg10_04000

FIGURE 11–42 

EXAMPLE 11–3

Use the memories in Example 11–2 to form a 64k * 16 ROM.

Solution

In this case you need a memory that stores 65,536 16-bit words. Four 64k * 4 ROMs are required to do the job, as shown 
in Figure 11–43.
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16 bits 16 bits 16 bits 16 bits

Data
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A0

A15

Control
bus

(enable)
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ROM 1
64k × 4

&
EN

ROM 2
64k × 4

&
EN

ROM 3
64k × 4

&
EN

ROM 4
64k × 4

EN
&

16 bits

16 bits

4 bits 4 bits 4 bits 4 bits

FIGURE 11–43 

Related Problem

How many 64k * 1 ROMs would be required to implement the memory shown in Figure 11–43?

m bits

m bits
Address

bus

m bits

2n bits

Control
bus

Data bus

RAM 2m ×  2n

Data
in/out

RAM 2
2m × n

RAM 1
2m × n

Data
in/out

∆∆

n bits n bits

FIGURE 11–44  Illustration of word-length expansion with two 2m * n RAMs forming a 2m * 2n RAM.

EXAMPLE 11–4

Use 1M * 4 SRAMs to create a 1M * 8 SRAM.

Solution

Two 1M * 4 SRAMs are connected as shown in the simplified block diagram of Figure 11–45.

A ROM has only data outputs, but a RAM has both data inputs and data outputs. For 
word-length expansion in a RAM (SRAM or DRAM), the data inputs and data outputs 
form the data bus. Because the same lines are used for data input and data output, tri-state 
buffers are required. Most RAMs provide internal tri-state circuitry. Figure 11–44 illus-
trates RAM expansion to increase the data word length.
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Word-Capacity Expansion

When memories are expanded to increase the word capacity, the number of addresses is 
increased. To achieve this increase, the number of address bits must be increased, as illus-
trated in Figure 11–46, (where two 1M * 8 RAMs are expanded to form a 2M * 8 memory).

Data
bus

ROM 2M × 8

Address
bus

21 bits

Control
bus

20 bits

20 bits

20 bits

EN

EN

RAM 2
1M × 8

RAM 1
1M × 8

(a) Individual memories each store 1,048,576
8-bit words

(b) Memories expanded to form a 2M × 8 RAM requiring a 
21-bit address bus

8 bits

8 bits

8 bits

RAM
1M × 8

RAM
1M × 8

Address
bus

Address
bus

Data
bus

8 bits

Data
bus

8 bits

Control
bus

Control
bus

20 bits

FIGURE 11–46  Illustration of word-capacity expansion.
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Control
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A 0
1,048,575

A 0
1,048,575

Data
I/O

Data
I/O

fg10_04300

FIGURE 11–45 

Related Problem

Use 1M * 8 SRAMs to create a 1M * 16 SRAM.
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664	 Data Storage

Each individual memory has 20 address bits to select its 1,048,576 addresses, as 
shown in part (a). The expanded memory has 2,097,152 addresses and therefore requires 
21 address bits, as shown in part (b). The twenty-first address bit is used to enable the 
appropriate memory chip. The data bus for the expanded memory remains eight bits wide. 
Details of this expansion are illustrated in Example 11–5.

EXAMPLE 11–5

Use 512k * 4 RAMs to implement a 1M * 4 memory.

Solution

The expanded addressing is achieved by connecting the enable (E0) input to the twentieth address bit (A19), as shown in 
Figure 11–47. Input E1 is used as an enable input common to both memories. When the twentieth address bit (A19) is LOW, 
RAM 1 is selected (RAM 2 is disabled), and the nineteen lower-order address bits (A0–A18) access each of the addresses in 
RAM 1. When the twentieth address bit (A19) is HIGH, RAM 2 is enabled by a LOW on the inverter output (RAM 1 is 
disabled), and the nineteen lower-order address bits (A0 - A18) access each of the RAM 2 addresses.

20-bit
address

bus

Control
bus

4-bit
data bus

A0

A19
DI/O0

&
EN

&
EN

RAM 1

RAM 2

E0

E1

E0

E1

A18

DI/O1
DI/O2
DI/O3

∆
∆
∆
∆

A
1,048,575

A 0

524,287

∆
∆
∆
∆

524,288

fg10_04500

FIGURE 11–47 

Related Problem

What are the ranges of addresses in RAM 1 and in RAM 2 in Figure 11–47?

Memory Modules

SDRAMs are available in modules consisting of multiple memory ICs arranged on a 
printed circuit board (PCB). The most common type of SDRAM memory module is called 
a DIMM (dual in-line memory module). Another version of the DIMM is the SODIMM 
(small-outline DIMM). A type of memory module, generally found in older equipment and 
essentially obsolete, is the SIMM (single in-line memory module). The SIMM has connec-
tion pins on one side of a PCB where the DIMM uses both sides of the board. DIMMs plug 
into a socket on the system mother board for memory expansion. A generic representation of 
a memory module is shown in Figure 11–48 with the system board connectors into which the 
modules are inserted.
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DIMMs generally contain DDR SDRAM memory chips. DDR means double data rate, 
so a DDR SDRAM transfers two blocks of data for each clock cycle rather than one like a 
standard SDRAM. Three basic types of modules are DDR, DDR2, and DDR3.

•	 DDR modules have 184 pins and require a 2.5 voltage source.

•	 DDR2 modules have 240 pins and require a 1.8 voltage source.

•	 DDR3 modules have 240 pins and require a 1.5 voltage source.

The DDR, DDR2, and DDR3 have transfer data rates of 1600 MB/s, 3200 MB/s, and 6400 MB/s 
respectively.

fg10_04700

Figure 11–48  A memory module with connectors.

Memory components are extremely sensitive to static electricity. Use the following precautions when 
handling memory chips or modules such as DIMMs:

•	 Before handling, discharge your body’s static charge by touching a grounded surface or wear a 
grounding wrist strap containing a high-value resistor if available. A convenient, reliable ground 
is the ac outlet ground.

•	 Do not remove components from their antistatic bags until you are ready to install them.

•	 Do not lay parts on the antistatic bags because only the inside is antistatic.

•	 When handling DIMMs, hold by the edges or the metal mounting bracket. Do not touch compo-
nents on the boards or the edge connector pins.

•	 Never slide any part over any type of surface.
•	 Avoid plastic, vinyl, styrofoam, and nylon in the work area.

When installing DIMMs, follow these steps:

1.	 Line up the notches on the DIMM board with the notches in the memory socket.

2.	 Push firmly on the module until it is securely seated in the socket.

3.	 Generally, the latches on both sides of the socket will snap into place when the module is com-
pletely inserted. These latches also release the module, so it can be removed from the socket.

Section 11–6  Checkup

	 1.	How many 16k * 1 RAMs are required to achieve a memory with a word capacity 
of 16k and a word length of eight bits?

	 2.	To expand the 16k * 8 memory in question 1 to a 32k * 8 organization, how many 
more 16k * 1 RAMs are required?

	 3.	What does DIMM stand for?
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666	 Data Storage

11–7  Special Types of Memories

In this section, the first in–first out (FIFO) memory, the last in–first out (LIFO) memory, 
the memory stack, and the charge-coupled device memory are covered.

After completing this section, you should be able to

u	 Describe a FIFO memory

u	 Describe a LIFO memory

u	 Discuss memory stacks

u	 Explain how to use a portion of RAM as a memory stack

u	 Describe a basic CCD memory

First In–First Out (FIFO) Memories

This type of memory is formed by an arrangement of shift registers. The term FIFO refers 
to the basic operation of this type of memory, in which the first data bit written into the 
memory is the first to be read out.

One important difference between a conventional shift register and a FIFO register is 
illustrated in Figure 11–49. In a conventional register, a data bit moves through the register 
only as new data bits are entered; in a FIFO register, a data bit immediately goes through 
the register to the right-most bit location that is empty.

     = empty positions.
In a FIFO shift register, data “fall” through (go right).

X = unknown data bits.
In a conventional shift register, data stay to the left until “forced”
through by additional data.

Input

0

1

1

0

X

0

1

1

0

X

0

1

1

X

X

0

1

OutputX X

Conventional Shift Register

X

X

X

1

X Input

0

1

1

0 0

1

1

1

1

1

Output

FIFO Shift Register

0

0

0

0

FIGURE 11–49  Comparison of conventional and FIFO register operation.

Figure 11–50 is a block diagram of a FIFO serial memory. This particular memory 
has four serial 64-bit data registers and a 64-bit control register (marker register). When 
data are entered by a shift-in pulse, they move automatically under control of the marker 
register to the empty location closest to the output. Data cannot advance into occupied 
positions. However, when a data bit is shifted out by a shift-out pulse, the data bits 
remaining in the registers automatically move to the next position toward the output. In 
an asynchronous FIFO, data are shifted out independent of data entry, with the use of 
two separate clocks.

FIFO Applications

One important application area for the FIFO register is the case in which two systems of 
differing data rates must communicate. Data can be entered into a FIFO register at one rate 
and taken out at another rate. Figure 11–51 illustrates how a FIFO register might be used 
in these situations.
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Last In–First Out (LIFO) Memories

The LIFO (last in–first out) memory is found in applications involving microprocessors 
and other computing systems. It allows data to be stored and then recalled in reverse order; 
that is, the last data byte to be stored is the first data byte to be retrieved.

Register Stacks

A LIFO memory is commonly referred to as a push-down stack. In some systems, it is 
implemented with a group of registers as shown in Figure 11–52. A stack can consist of any 
number of registers, but the register at the top is called the top-of-stack.

To illustrate the principle, a byte of data is loaded in parallel onto the top of the stack. 
Each successive byte pushes the previous one down into the next register. This process is 
illustrated in Figure 11–53. Notice that the new data byte is always loaded into the top reg-
ister and the previously stored bytes are pushed deeper into the stack. The name push-down 
stack comes from this characteristic.

64-bit shift register

64-bit shift register

64-bit shift register

64-bit shift register

Input
buffers

Output
buffer

Marker register
and controls

Input
control
logic

Output
control
logic

Data
input

I0
I1
I2
I3

Input ready (IR)

Shift in (SI)

Output ready (OR)

Shift out (SO)

O0
O1
O2
O3

Data
output

Memory array stores
64  4-bit data words

Control lines Control lines
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FIGURE 11–50  Block diagram of a typical FIFO serial memory.

FIFO register

(a) Irregular telemetry data can be stored and retransmitted at a constant rate.

(b) Data input at a slow keyboard rate can be stored and then transferred at a higher rate for processing.

(c) Data input at a constant rate can be stored and then output in bursts.

(d) Data in bursts can be stored and reformatted into a constant-rate output.

Irregular-rate data Constant-rate data

FIFO registerLower-rate data Higher-rate data

FIFO registerConstant-rate data Burst data

FIFO registerBurst data Constant-rate data

fg10_05000

FIGURE 11–51  Examples of the FIFO register in data-rate buffering applications.
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668	 Data Storage

Data bytes are retrieved in the reverse order. The last byte entered is always at the top 
of the stack, so when it is pulled from the stack, the other bytes pop up into the next higher 
locations. This process is illustrated in Figure 11–54.

RAM Stack

Another approach to LIFO memory used in microprocessor-based systems is the allocation 
of a section of RAM as the stack rather than the use of a dedicated set of registers. As you 
have seen, for a register stack the data move up or down from one location to the next. In 

Top-of-stack1

2

3

nth register

fg10_05100

FIGURE 11–52  Register stack.

1 1 1 0 0 0 01

1 0 0 0 0 1 11

First data byte pushed onto stack
1 0 0 1 0 0 1 1

Second data byte pushed onto stack
1 1 1 1 0 0 0 0

Third data byte pushed onto stack
0 1 0 1 0 1 0 1

1 0 0 0 0 1 11 0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11

fg10_05200

FIGURE 11–53  Simplified illustration of pushing data onto the stack.

1 0 0 0 0 1 111 1 1 0 0 0 01

1 0 0 0 0 1 11

0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11

1 1 1 1 0 0 0 0

Initially storing 3 data bytes.
The last byte in is at top-of-
stack.

0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1

After third byte is pulled
from stack, the second byte
that was stored pops up to
the top-of-stack.

After second byte is pulled
from stack, the first byte
that was stored pops up to
the top-of-stack.
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FIGURE 11–54  Simplified illustration of pulling data from the stack.
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a RAM stack, the data do not move but the top-of-stack moves under control of a register 
called the stack pointer.

Consider a random-access memory that is byte organized—that is, one in which 
each address contains eight bits—as illustrated in Figure 11–55. The binary address 
0000000000001111, for example, can be written as 000F in hexadecimal. A 16-bit address 
can have a minimum hexadecimal value of 000016 and a maximum value of FFFF16. With 
this notation, a 64 kB memory array can be represented as shown in Figure 11–55. The 
lowest memory address is 000016 and the highest memory address is FFFF16.

Now, consider a section of RAM set aside for use as a stack. A special separate register, 
the stack pointer, contains the address of the top of the stack, as illustrated in Figure 11–56. 
A 4-digit hexadecimal representation is used for the binary addresses. In the figure, the 
addresses are chosen for purposes of illustration.

Now let’s see how data are pushed onto the stack. The stack pointer is initially at address 
FFEE16, which is the top of the stack as shown in Figure 11–56(a). The stack pointer is 
then decremented (decreased) by two to FFEC16. This moves the top of the stack to a 
lower memory address, as shown in Figure 11–56(b). Notice that the top of the stack is not 
stationary as in the fixed register stack but moves downward (to lower addresses) in the 
RAM as data words are stored. Figure 11–56(b) shows that two bytes (one data word) are 
then pushed onto the stack. After the data word is stored, the top of the stack is at FFEC16.

Figure 11–57 illustrates the POP operation for the RAM stack. The last data word stored 
in the stack is read first. The stack pointer that is at FFEC is incremented (increased) by two 
to address FFEE16 and a POP operation is performed as shown in part (b). Keep in mind 
that RAMs are nondestructive when read, so the data word still remains in the memory 
after a POP operation. A data word is destroyed only when a new word is written over it.

fg10_05400
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FFFE
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16-bit address
(hexadecimal)

FIGURE 11–55  Representation 
of a 64 kB memory with the 
16-bit addresses expressed in 
hexadecimal.
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FFEE Top-of-stack

(a) The stack pointer is initially at FFEE before the data word
     0001001000110100 (1234) is pushed onto the stack.

Stack pointer
Top-of-stack

(b) The stack pointer is decremented by two and the data
     word 0001001000110100 is placed in the two locations
     prior to the original stack pointer location.

FFECFFEE

Stack pointer

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0

FIGURE 11–56  Illustration of the PUSH operation for a RAM stack.

fg10_05600

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0

FFEC

Top-of-stack

copied (popped) from the stack.

FFEE Top-of-stack

data word stored is copied (popped) from the stack.

Stack pointer Stack pointer
0 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0

(a) The stack pointer is at FFEC before the data word is (b) The stack pointer is incremented by two and the last

FIGURE 11–57  Illustration of the POP operation for the RAM stack.
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670	 Data Storage

A RAM stack can be of any depth, depending on the number of continuous memory 
addresses assigned for that purpose.

CCD Memories

The CCD (charge-coupled device) memory stores data as charges on capacitors and has 
the ability to convert optical images to electrical signals. Unlike the DRAM, however, the 
storage cell does not include a transistor. High density is the main advantage of CCDs, and 
these devices are widely used in digital imaging.

The CCD memory consists of long rows of semiconductor capacitors, called channels. 
Data are entered into a channel serially by depositing a small charge for a 0 and a large 
charge for a 1 on the capacitors. These charge packets are then shifted along the channel by 
clock signals as more data are entered.

As with the DRAM, the charges must be refreshed periodically. This process is done by 
shifting the charge packets serially through a refresh circuit. Figure 11–58 shows the basic 
concept of a CCD channel. Because data are shifted serially through the channels, the CCD 
memory has a relatively long access time. CCD arrays are used in many modern cameras 
to capture video images in the form of light-induced charge.

Charge
movement

Substrate

fg10_05700

FIGURE 11–58  A CCD (charge-coupled device) channel.

Section 11–7  Checkup

	 1.	What is a FIFO memory?

	 2.	What is a LIFO memory?

	 3.	Explain the PUSH operation in a memory stack.

	 4.	Explain the POP operation in a memory stack.

	 5.	What does the term CCD stand for?

11–8  Magnetic and Optical Storage

In this section, the basics of magnetic disks, magnetic tape, magneto-optical disks, and 
optical disks are introduced. These storage media are important, particularly in computer 
applications, where they are used for mass nonvolatile storage of data and programs.

After completing this section, you should be able to

u	 Describe a magnetic hard disk

u	 Discuss magnetic tape

u	 Discuss removable hard disks

u	 Explain the principle of magneto-optical disks

u	 Discuss the CD-ROM, CD-R, and CD-RW disks

u	 Describe the WORM

u	 Discuss the DVD-ROM
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Magnetic Storage
Magnetic Hard Disks

Computers use hard disks as the internal mass storage media. Hard disks are rigid “plat-
ters” made of aluminum alloy or a mixture of glass and ceramic covered with a magnetic 
coating. Hard disk drives mainly come in three diameter sizes, 3.5 in., 2.5 in., and 1.8 in. 
older formats of 8 in. and 5.25 in. are considered obsolete. A hard disk drive is hermeti-
cally sealed to keep the disks dust-free.

Typically, two or more disks are stacked on top of each other on a common shaft or 
spindle that turns the assembly at several thousand rpm. A separation between each disk 
allows for a magnetic read/write head that is mounted on the end of an actuator arm, as 
shown in Figure 11–59. There is a read/write head for both sides of each disk since data are 
recorded on both sides of the disk surface. The drive actuator arm synchronizes all the read/
write heads to keep them in perfect alignment as they “fly” across the disk surface with a 
separation of only a fraction of a millimeter from the disk. A small dust particle could cause 
a head to “crash,” causing damage to the disk surface.

Actuator arm

Disks

Spindle

Read/Write head

Case

FIGURE 11–59  A hard disk drive.  FrameAngel/shutterstock

Basic Read/Write Head Principles

The hard drive is a random-access device because it can retrieve stored data anywhere on 
the disk in any order. A simplified diagram of the magnetic surface read/write operation is 
shown in Figure 11–60. The direction or polarization of the magnetic domains on the disk 
surface is controlled by the direction of the magnetic flux lines (magnetic field) produced 
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fg11_06000FIGURE 11–60  Simplified read/write head operation.
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672	 Data Storage

by the write head according to the direction of a current pulse in the winding. This mag-
netic flux magnetizes a small spot on the disk surface in the direction of the magnetic field. 
A magnetized spot of one polarity represents a binary 1, and one of the opposite polarity 
represents a binary 0. Once a spot on the disk surface is magnetized, it remains until written 
over with an opposite magnetic field.

When the magnetic surface passes a read head, the magnetized spots produce magnetic 
fields in the read head, which induce voltage pulses in the winding. The polarity of these 
pulses depends on the direction of the magnetized spot and indicates whether the stored bit 
is a 1 or a 0. The read and write heads are usually combined in a single unit.

Hard Disk Format

A hard disk is organized or formatted into tracks and sectors, as shown in Figure 11–61(a). 
Each track is divided into a number of sectors, and each track and sector has a physical 
address that is used by the operating system to locate a particular data record. Hard disks 
typically have from a few hundred to thousands of tracks and are available with storage 
capacities of up to 1 TB or more. As you can see in the figure, there is a constant number 
of tracks/sector, with outer sectors using more surface area than the inner sectors. The 
arrangement of tracks and sectors on a disk is known as the format.

A hard disk stack is illustrated in Figure 11–61(b). Hard disk drives differ in the number 
of disks in a stack, but there is always a minimum of two. All of the same corresponding 
tracks on each disk are collectively known as a cylinder, as indicated.

Track 1

Track 2
Track 3

Track n

Sector

(a) (b)

Corresponding tracks (blue)
make a cylinder

fg10_06000

FIGURE 11–61  Hard disk organization and formatting.

InfoNote

Data are stored on a hard drive  
in the form of files. Keeping  
track of the location of files 
is the job of the device driver 
that manages the hard drive 
(sometimes referred to as hard 
drive BIOS). The device driver and 
the computer’s operating system 
can access two tables to keep 
track of files and file names. The 
first table is called the FAT (File 
Allocation Table). The FAT shows 
what is assigned to specific files 
and keeps a record of open sectors 
and bad sectors. The second table 
is the Root Directory which has 
file names, type of file, time and 
date of creation, starting cluster 
number, and other information 
about the file.

Hard Disk Performance

Several basic parameters determine the performance of a given hard disk drive. A seek 
operation is the movement of the read/write head to the desired track. The seek time is the 
average time for this operation to be performed. Typically, hard disk drives have an average 
seek time of several milliseconds, depending on the particular drive.

The latency period is the time it takes for the desired sector to spin under the head once 
the head is positioned over the desired track. A worst case is when the desired sector is 
just past the head position and spinning away from it. The sector must rotate almost a full 
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revolution back to the head position. Average latency period assumes that the disk must 
make half of a revolution. Obviously, the latency period depends on the constant rotational 
speed of the disk. Disk rotation speeds are different for different disk drives but typically 
are from 4200 rpm to 15,000 rpm.

The sum of the average seek time and the average latency period is the access time for 
the disk drive.

Removable Hard Disk

A removable hard disk drive with a capacity of 1 TB is available. Keep in mind that the tech-
nology is changing so rapidly that there most likely will be further advancements at the time 
you are reading this.

Magnetic Tape

Tape is used for backup data from mass storage devices and typically is slower than disks 
because data on tape is accessed serially rather than randomly. There are several types that 
are available, including QIC, 8 mm, and DLT.

QIC is an abbreviation for quarter-inch cartridge and looks much like audio tape cas-
settes with two reels inside. Various QIC standards have from 28 to 108 tracks that can 
store from 80 MB to 1.6 GB. More recent innovations under the Travan standard have 
lengthened the tape and increased its width allowing storage capacities up to 10 GB. QIC 
tape drives use read/write heads that have a single write head with a read head on each 
side. This allows the tape drive to verify data just written when the tape is running in either 
direction. In the record mode, the tape moves past the read/write heads at approximately 
100 inches/second, as indicated in Figure 11–62.

Read head

Write head Write head

Head assembly

Track 1
Track 2

Track nMagnetic tape
(moving past head)

0.25 in. 100 in./s

fg10_06200

FIGURE 11–62  QIC tape.

8 mm tape was originally designed for the video industry but has been adopted by the 
computer industry as a reliable way to store large amounts of computer data.

DLT is an abbreviation for digital linear tape. DLT is a half-inch wide tape, which is 
60% wider than 8 mm and, of course, twice as wide as standard QIC. Basically, DLT dif-
fers in the way the tape-drive mechanism works to minimize tape wear compared to other 
systems. DLT offers the highest storage capacity of all the tape formats with capacities 
ranging up to 800 GB.

Magneto-Optical Storage

As the name implies, magneto-optical (MO) storage devices use a combination of mag-
netic and optical (laser) technologies. A magneto-optical disk is formatted into tracks and 
sectors similar to magnetic disks.

The basic difference between a purely magnetic disk and an MO disk is that the mag-
netic coating used on the MO disk requires heat to alter the magnetic polarization. There-
fore, the MO is extremely stable at ambient temperature, making data unchangeable. To 
write a data bit, a high-power laser beam is focused on a tiny spot on the disk, and the 

Infonote

Tape is a viable alternative to 
disk due to its lower cost per 
bit. Though the density is lower 
than for a disk drive, the available 
surface on a tape is far greater. 
The highest-capacity tape media 
are generally on the same order 
as the largest available disk drive 
(about 1 TB—a terabyte is one 
trillion bytes.) Tape has historically 
offered enough advantage in cost 
over disk storage to make it a 
viable product, particularly for 
backup, where media removability 
is also important.
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674	 Data Storage

temperature of that tiny spot is raised above a temperature level called the Curie point 
(about 200°C). Once heated, the magnetic particles at that spot can easily have their direc-
tion (polarization) changed by a magnetic field generated by the write head. Information is 
read from the disk with a less-powerful laser than used for writing, making use of the Kerr 
effect where the polarity of the reflected laser light is altered depending on the orientation 
of the magnetic particles. Magnetic spots of one polarity represent 0s and magnetic spots 
of the opposite polarity represent 1s. Basic MO operation is shown in Figure 11–63, which 
represents a small cross-sectional area of a disk.

Magnetic
material

Substrate

Electromagnet

(a) Unrecorded disk

Disk
rotation

Magnetic
spot

Magnetic spot is heated
by laser and magnetized
by electromagnetic field.

Write
current

(b) Writing: A high-power laser beam heats the spot, causing the
magnetic particles to align with the electromagnetic field.

High-power
laser beam

+

–

Erase
current

(d) Erasing: The electromagnetic field is reversed as the high-
power laser beam heats the spot, causing the magnetic particles
to be restored to the original polarity.

High-power
laser beam

–

+

Lens

(c) Reading: A low-power laser beam reflects off of the reversed-
polarity magnetic particles and its polarization shifts. If the particles
are not reversed, the polarization of the reflected beam is unchanged.

Low-power
laser beam

Reflected beam

Detector

Mirror

FIGURE 11–63  Basic principle of a magneto-optical disk.

Optical Storage
CD-ROM

The most common Compact Disk–Read-Only Memory is a 120 mm diameter disk with 
a sandwich of three coatings: a polycarbonate plastic on the bottom, a thin aluminum 
sheet for reflectivity, and a top coating of lacquer for protection. The CD-ROM disk is 
formatted in a single spiral track with sequential 2 kB sectors and has a capacity of 680 
MB. Data are prerecorded at the factory in the form of minute indentations called pits 
and the flat area surrounding the pits called lands. The pits are stamped into the plastic 
layer and cannot be erased.

A CD player reads data from the spiral track with a low-power infrared laser, as illus-
trated in Figure 11–64. The data are in the form of pits and lands as shown. Laser light 
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reflected from a pit is 180° out-of-phase with the light reflected from the lands. As the disk 
rotates, the narrow laser beam strikes the series of pits and lands of varying lengths, and a 
photodiode detects the difference in the reflected light. The result is a series of 1s and 0s 
corresponding to the configuration of pits and lands along the track.

Pit
Land Lens

Lens

Prism

Laser

Photoelectric
cell

Disk

fg10_06400

FIGURE 11–64  Basic operation of reading data from a CD-ROM.

WORM

Write Once/Read Many (WORM) is a type of optical storage that can be written onto one 
time after which the data cannot be erased but can be read many times. To write data, a low-
power laser is used to burn microscopic pits on the disk surface. 1s and 0s are represented 
by the burned and nonburned areas.

CD-R

This is essentially a type of WORM. The difference is that the CD-Recordable allows mul-
tiple write sessions to different areas of the disk. The CD-R disk has a spiral track like the 
CD-ROM, but instead of mechanically pressing indentations on the disk to represent data, 
the CD-R uses a laser to burn microscopic spots into an organic dye surface. When heated 
beyond a critical temperature with a laser during read, the burned spots change color and 
reflect less light than the nonburned areas. Therefore, 1s and 0s are represented on a CD-R 
by burned and nonburned areas, whereas on a CD-ROM they are represented by pits and 
lands. Like the CD-ROM, the data cannot be erased once it is written.

CD-RW

The CD-Rewritable disk can be used to read and write data. Instead of the dye-based record-
ing layer in the CD-R, the CD-RW commonly uses a crystalline compound with a special 
property. When it is heated to a certain temperature, it becomes crystalline when it cools; 
but if it is heated to a certain higher temperature, it melts and becomes amorphous when it 
cools. To write data, the focused laser beam heats the material to the melting temperature 
resulting in an amorphous state. The resulting amorphous areas reflect less light than the 
crystalline areas, allowing the read operation to detect 1s and 0s. The data can be erased 
or overwritten by heating the amorphous areas to a temperature above the crystallization 
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temperature but lower than the melting temperature that causes the amorphous material to 
revert to a crystalline state.

DVD-ROM

Originally DVD was an abbreviation for Digital Video Disk but eventually came to repre-
sent Digital Versatile Disk. Like the CD-ROM, DVD-ROM data are prestored on the disk. 
However, the pit size is smaller than for the CD-ROM, allowing more data to be stored on 
a track. The major difference between CD-ROM and DVD-ROM is that the CD is single-
sided, while the DVD has data on both sides. Also, in addition to double-sided DVD disks, 
there are also multiple-layer disks that use semitransparent data layers placed over the main 
data layers, providing storage capacities of tens of gigabytes. To access all the layers, the 
laser beam requires refocusing going from one layer to the other.

Blu-Ray

The Blu-ray Disc (BD) is designed to eventually replace the DVD. The BD is the same 
size as DVDs and CDs. The name Blu-ray refers to the blue laser used to read the disc. 
DVDs use a red laser that has a longer wavelength. Information can be stored on a BD at 
a greater density and video definition than is possible with a DVD. The smaller Blu-ray 
laser beam can read recorded data in pits that are less than half the size of the pits on a 
DVD. A Blu-ray Disc can store about five times more data than a DVD. Typical storage 
capacities for conventional Blu-ray dual-layer discs are 50 GB, which is the industry 
standard for feature-length video. Triple layer and quadruple layer discs (BD-XL) can 
store 100 GB and 128 GB, respectively. Storage capacities up to 1 TB are currently under 
development.

Section 11–8  Checkup

	 1.	List the major types of magnetic storage.

	 2.	Generally, how is a magnetic disk organized?

	 3.	How are data written on and read from a magneto-optical disk?

	 4.	List the types of optical storage.

11–9  Memory Hierarchy

A memory system performs the data storage function in a computer. The memory system 
holds data temporarily during processing and also stores data and programs on a long-term 
basis. A computer has several types of memory, such as registers, cache, main, and hard 
disk. Other types of storage can also be used, such as magnetic tape, optical disk, and mag-
netic disk. Memory hierarchy as well as the system processor determines the processing 
speed of a computer.

After completing this section, you should be able to

u	 Discuss several types of memory

u	 Define memory hierarchy

u	 Describe key elements in a memory hierarchy

Three key characteristics of memory are cost, capacity, and access time. Memory cost 
is usually specified in cost per bit. The capacity of a memory is measured in the amount 
of data (bits or bytes) it can store. The access time is the time it takes to acquire a speci-
fied unit of data from the memory. The greater the capacity, the smaller the cost and the 
greater the access time. The smaller the access time, the greater the cost. The goal of using 
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a memory hierarchy is to obtain the shortest possible average access time while minimiz-
ing the cost.

The speed with which data can be processed depends both on the processor speed and 
on the time it takes to access stored data. Memory hierarchy is the arrangement of vari-
ous memory elements within the computer architecture to maximize processing speed and 
minimize cost. Memory can be classified according to its “distance” from the processor 
in terms of the number of machine cycles or access time required to get data for process-
ing. Distance is measured in time, not in physical location. Faster memory elements are 
considered closer to the processor compared to slower types of memory elements. Also, 
the cost per bit is much greater for the memory close to the processor than for the memory 
that is further from the processor. Figure 11–65 illustrates the arrangement of elements in 
a typical memory hierarchy.

Processor

Registers

Caches

Main memory

Primary storage

Secondary storage

Tertiary storage

Hard disk

Auxiliary storage

Figure 11–65  Typical memory hierarchy.

A primary distinction between the storage elements in Figure 11–65 is the time 
required for the processor to access data and programs. This access time is known as 
memory latency. The greater the latency, the further from the processor a storage ele-
ment is considered to be. For example, typical register latency can be up to 1 or 2 ns, 
cache latency can be up to about 50 ns, main memory latency can be up to about 90 ns, 
and hard disk latency can be up to about 20 ms. Auxiliary memory latency can range up 
to several seconds.

Registers

Registers are memory elements that are located within the processor. They have a very 
small latency as well as a low capacity (number of bits that can be stored). One goal of pro-
gramming is to keep as much frequently used data in the registers as possible. The number 
of registers in a processor can vary from the tens to hundreds.

Caches

The next level in the hierarchy is the memory cache, which provides temporary storage. 
The L1 cache is located in the processor, and the L2 cache is outside of the processor. A 
programming goal is to keep as much of a program as possible in the cache, especially the 
parts of a program that are most extensively used. There can be more than two caches in a 
memory system.

Main Memory

Main memory generally consists of two elements: RAM (random-access memory) and 
ROM (read-only memory). The RAM is a working memory that temporarily stores less 
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frequently used data and program instructions. The RAM is volatile, which means that the 
stored contents are lost when the power is turned off. The ROM is for permanent storage 
of frequently used programs and data; ROM is nonvolatile. Registers, caches, and main 
memory are considered primary storage.

Hard Disk

The hard disk has a very high latency and is used for mass storage of data and programs on 
a permanent basis. The hard disk is also used for virtual memory, space allocated for data 
when the primary memory fills up. In effect, virtual memory simulates primary memory 
with the disadvantage of high latency. Capacities range up to about 1 terabyte (TB).

1 TB = 1,000,000,000,000 B = 1012 B

In addition to the internal hard disk, secondary storage can also include off-line storage. 
Off-line storage includes DVDs, CD-ROM, CD-RW, and USB flash drive. Off-line storage 
is removable storage.

Auxiliary Storage

Auxiliary storage, also called tertiary storage, includes magnetic tape libraries and optical 
jukeboxes. A tape library can store immense amounts of data (up to hundreds of peta
bytes). A petabyte (PB) is

1 PB = 1,000,000,000,000,000 B = 1015 B

An optical jukebox is a robotic storage device that automatically loads and unloads 
optical disks. It may have as many as 2,000 slots for disks and can store hundreds of 
petabytes.

Relationship of Cost, Capacity, and Access Time

Figure 11–66 shows how capacity (the amount of data a memory can store) and cost per 
unit of storage varies as the distance from the processor, in terms of access time or latency, 
increases. The capacity increases and the cost decreases as access time increases.

Registers

Capacity

Cost/unit

L1 Cache L2 Cache Hard disk Auxiliary
memory

Main
memory

Access
time

Processor

Figure 11–66  Changes in memory capacity and cost per unit of data as latency 
(access time) increases.
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Memory Hierarchy Performance

In a computer system, the overall processing speed is usually limited by the memory, not 
the processor. Programming determines how well a particular memory hierarchy is uti-
lized. The goal is to process data at the fastest rate possible. Two key factors in establishing 
maximum processor performance are locality and hit rate.

If a block of data is referenced, it will tend to be either referenced again soon or a nearby 
data block will be referenced soon. Frequent referencing of the same data block is known 
as temporal locality, and the program code should be arranged so that the piece of the data 
in the cache is reused frequently. Referencing an adjacent data block is known as spatial 
locality, and the program code should be arranged to use consecutive pieces of data on a 
frequent basis.

A miss is a failed attempt by the processor to read or write a block of data in a given 
level of memory (such as the cache). A miss causes the processor to have to go to a lower 
level of memory (such as main memory), which has a longer latency. The three types of 
misses are instruction read miss, data read miss, and data write miss. A successful attempt 
to read or write a block of data in a given level of memory is called a hit. Hits and misses 
are illustrated in Figure 11–67, where the processor is requesting data from the cache.

Request
issued

Request
issued

Data
retrieved

Data
retrieved

Registers

Caches

Main memory

Cache miss

Data not in
cache–access
main memory

Cache hit

Hard disk

Auxiliary storage

Processor

Figure 11–67  Illustration of a cache hit and a miss.

The hit rate is the percentage of memory accesses that find the requested data in 
the given level of memory. The miss rate is the percentage of memory accesses that fail 
to find the requested data in the given level of memory and is equal to 1– hit rate. The 
time required to access the requested information in a given level of memory is called 
the hit time. The higher the hit rate (hit to miss ratio), the more efficient the memory 
hierarchy is.

Section 11–9  Checkup

	 1.	State the purpose of memory hierarchy.

	 2.	What is access time?

	 3.	How does memory capacity affect the cost per bit?

	 4.	Does higher level memory generally have lower capacity than lower level memory?

	 5.	What is a hit? A miss?

	 6.	What determines the efficiency of the memory hierarchy?
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11–10  Cloud Storage

Cloud storage is a system, usually maintained by a third party, for securely storing data 
in a remote location that can be conveniently accessed through the Internet. A file on a 
computer can be stored on secure remote servers and accessed by various user devices 
such as computers, smart phones, and tablets. Cloud storage eliminates the need for local 
backup storage such as external hard drives or CDs. When you use cloud storage, you are 
essentially storing your files or documents on Internet servers instead of or in addition to a 
computer. The term cloud may have originated from the use of a symbol that resembled a 
cloud on early network diagrams.

After completing this section, you should be able to

u	 Describe cloud storage

u	 Explain what a server is

u	 State the advantages of cloud storage

u	 Describe several properties of cloud storage

The Cloud Storage System

A cloud storage system consists of a remote network of servers (also called nodes) that 
are connected to a user device through the Internet, as shown in Figure 11–68. Some 
cloud storage systems accommodate only certain types of data such as e-mail or digital 
pictures, while others store all types of data and range in size from small operations with a 
few servers to very large operations that utilize hundreds of servers. A facility that houses 
cloud storage systems is called a data center. A typical storage cloud system can serve 
multiple users.

User
device

Server
(storage)

Server
(storage)

Server
(storage)

Server
(storage)

Server
(control)

Internet

Figure 11–68  A typical cloud storage system architecture consists of a master control 
server and several storage servers that can be accessed by a user device over the Internet.

Servers typically operate within a client-server architecture, where the client is the user 
that is subscribing to the cloud storage. Theoretically, a server is any computerized process 
that shares a resource with one or more clients. More practically, a storage server is a com-
puter and software with a large memory capacity that responds to requests across a network 
to provide file storage and access as well as services such as file sharing. The control server 
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coordinates the activities within the storage cloud network among other servers and man-
ages user access. A server rack and data center are shown in Figure 11–69.

At its simplest level, a cloud storage system needs just one storage server connected to 
the Internet. When copies of a file are sent by a client to the server over the Internet, the 
data are stored. When the client wishes to retrieve the data, the storage server (node) sends 
it back through a web-based interface or allows the client to manipulate the file on the 
server itself.

Most cloud storage systems have many storage servers (hundreds in some cases) to 
provide both capacity and redundancy. A grouping of servers is sometimes called a clus-
ter. Depending on the system architecture, a given system may have multiple clusters. A 
simple system with four storage servers illustrating file storage redundancy is shown in 
Figure 11–70. When a client sends data to the cloud, it is stored in multiple servers. This 
redundancy guarantees availability of data at any time to the client and makes the system 
highly reliable. Redundancy is necessary because a server requires periodic maintenance 
or may break down and need repairs. In addition to storage server redundancy, most cloud 
storage systems use power supply redundancy so that all servers are not operating from the 
same power source.

(a) A typical rack of servers (b) A typical server room in a data center

Figure 11–69  Cloud servers.  (a) Jojje/shutterstock (b) Oleksiy Mark/Shutterstock

User
device

Server
(storage)

Server
(storage)

Server
(storage)

Server
(storage)

Server
(control)

Internet

Figure 11–70  A simple cloud storage system with storage redundancy. In this case, the 
data are stored on four different servers.
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In addition to reliability that provides assurance that a client’s data are accurately 
stored and can be retrieved at any time, a second major factor for cloud storage is security 
that the data cannot be compromised. Generally, three methods are used to provide data 
security:

•	 Encryption or encoding, which prevents the data from being read or interpreted with-
out proper decryption tools

•	 Authentication, which requires a name and password for access

•	 Authorization, which requires a list of only those people who can have access to 
the data

Cloud storage has certain advantages over traditional data storage in a computer. One 
advantage is that you can store and retrieve data from any physical location that has Inter-
net access. A second advantage is that you don’t have to use the same computer to store and 
retrieve data or carry a physical storage device for data backup around with you. Also, the 
user does not have to maintain the storage components. Another advantage of cloud storage 
is that other people can access your data (data sharing).

Architecture

The term architecture relates to how a cloud storage system is structured and organized. 
The primary purpose of cloud storage architecture is to deliver the service for data storage 
in a specific way. Architectures vary but generically most consist of a front end, a control, 
and a back end, as depicted in Figure 11–71.

Users/
clients

Internet/
network

Front end
(access

protocol)

Control
(data

handling
protocols)

Back end
(storage)

Figure 11–71  Generic architecture of a cloud storage system.

A cloud storage system uses various protocols within the architecture that determine 
how the data are accessed and handled. A protocol is a standardized set of software regula-
tions, requirements, and procedures that control and regulate the transmission, processing, 
and exchange of data among devices. For example, common Internet protocols are HTTP 
(Hypertext Transfer Protocol), FTP (File Transfer Protocol), TCP/IP (Transfer Control Pro-
tocol/Internet Protocol), and SMTP (Simple Mail Transfer Protocol).

An API is an Application Programming Interface, which is essentially a protocol for 
access and utilization of a cloud storage system. There are many types of APIs. For exam-
ple, a commonly used one is the REST API. REST stands for Representational State Trans-
fer. An API is a software-to-software interface, not a user interface. With APIs, applications 
talk to each other “behind the scene” without user knowledge.

Cloud Storage Properties

The following cloud storage properties determine the performance of the system.

•	 Latency. The time between a request for data and the delivery of the data to the user is 
the latency of a system. Delay is due to the time for each component of the cloud stor-
age system to respond to a request and to the time for data to be transferred to the user.
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•	 Bandwidth. Bandwidth is a measure of the range of frequencies that can be simulta-
neously transferred to the cloud and is defined as a range of frequencies that can be 
handled by the system. Generally, the wider the bandwidth, the shorter the latency 
and vice versa.

•	 Scalability. The scalability property indicates the ability of a cloud storage system to 
handle increasing amounts of data in a smooth and easy manner; or it is the cloud’s 
ability to improve movement of data through the system (throughput) when addi-
tional resources (typically hardware) are added. When the performance of a system 
improves proportionally to the storage capacity added, the system is said to be scal-
able. Scaling vertically (scale up) occurs when resources (hardware and memory) are 
added to a single server (node). Scaling horizontally (scale out) occurs when more 
servers (nodes) are added to a system.

•	 Elasticity. Elasticity is a cloud’s ability to deal with variations in the amount of data 
(load) being transferred in and out of the storage system without service interrupts. 
There is a subtle difference between scalability and elasticity when describing a sys-
tem’s behavior. Essentially, scalability is a static parameter that indicates how much 
the system can be expanded, and elasticity is a dynamic parameter that refers to the 
implementation of scalability. For example, a storage system may be scalable from one 
to 100 servers. If the system is currently operating with 20 servers (nodes) and the data 
load doubles, its elasticity allows 20 more nodes to be added for a total of 40. Likewise, 
if the data load decreases by half, the elasticity allows 10 nodes to be removed. A server 
can be added or removed by powering it up or down in a proper manner without dis-
rupting service to the user. Elasticity results in cost efficiency because only the number 
of servers required for the data load at any given time are consuming power.

•	 Multitenancy. The multitenancy property of a cloud storage system allows multiple 
users to share the same software applications and hardware and the same data storage 
mechanism but not to see each other’s data.

Section 11–10  Checkup

	 1.	What is a cloud storage system?

	 2.	What is a server?

	 3.	How does a user connect to a cloud storage system?

	 4.	Name three advantages of a cloud system.

11–11  Troubleshooting

Because memories can contain large numbers of storage cells, testing each cell can be 
a lengthy and frustrating process. Fortunately, memory testing is usually an automated 
process performed with a programmable test instrument or with the aid of software for in-
system testing. Most microprocessor-based systems provide automatic memory testing as 
part of their system software.

After completing this section, you should be able to

u	 Discuss the checksum method of testing ROMs

u	 Discuss the checkerboard pattern method of testing RAMs

ROM Testing

Since ROMs contain known data, they can be checked for the correctness of the stored 
data by reading each data word from the memory and comparing it with a data word that 
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is known to be correct. One way of doing this is illustrated in Figure 11–72. This process 
requires a reference ROM that contains the same data as the ROM to be tested. A special 
test instrument is programmed to read each address in both ROMs simultaneously and to 
compare the contents. A flowchart in Figure 11–73 illustrates the basic sequence.

ROM ROM

EN EN

Enable Data Ref. Data

Address
ROM tester

ROM
under
test

Reference
ROM

fg10_06500

FIGURE 11–72  Block diagram for a 
complete contents check of a ROM.
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from address n of

ROM & Ref. ROM.
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Do data
bytes
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Next
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n = n + 1

Compare
data bytes.

No Last
address

?

Indicate
fault.

STOP

Yes

* n is the address number.

Yes

fg10_06600

FIGURE 11–73  Flowchart for a complete contents 
check of a ROM.

Checksum Method

Although the previous method checks each ROM address for correct data, it has the disad-
vantage of requiring a reference ROM for each different ROM to be tested. Also, a failure 
in the reference ROM can produce a fault indication.

In the checksum method a number, the sum of the contents of all the ROM addresses, 
is stored in a designated ROM address when the ROM is programmed. To test the ROM, 
the contents of all the addresses except the checksum are added, and the result is compared 
with the checksum stored in the ROM. If there is a difference, there is definitely a fault. If 
the checksums agree, the ROM is most likely good. However, there is a remote possibility 
that a combination of bad memory cells could cause the checksums to agree.

This process is illustrated in Figure 11–74 with a simple example. The checksum in this 
case is produced by taking the sum of each column of data bits and discarding the carries. 
This is actually an XOR sum of each column. The flowchart in Figure 11–75 illustrates the 
basic checksum test.
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ROM

⊕Data

1 0 0 1 1 0 1 0
1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 0
0 0 1 0 1 1 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 1

fg10_06700

FIGURE 11–74  Simplified illustration of a programmed ROM with the checksum stored 
at a designated address.
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FIGURE 11–75  Flowchart for a basic checksum test.

The checksum test can be implemented with a special test instrument, or it can be incor-
porated as a test routine in the built-in (system) software or microprocessor-based systems. 
In that case, the ROM test routine is automatically run on system start-up.

RAM Testing

To test a RAM for its ability to store both 0s and 1s in each cell, first 0s are written into all 
the cells in each address and then read out and checked. Next, 1s are written into all the 
cells in each address and then read out and checked. This basic test will detect a cell that is 
stuck in either a 1 state or a 0 state.

Some memory faults cannot be detected with the all-0s–all-1s test. For example, if two 
adjacent memory cells are shorted, they will always be in the same state, both 0s or both 1s. 
Also, the all-0s–all-1s test is ineffective if there are internal noise problems such that the 
contents of one or more addresses are altered by a change in the contents of another address.

The Checkerboard Pattern Test

One way to more fully test a RAM is by using a checkerboard pattern of 1s and 0s, as illus-
trated in Figure 11–76. Notice that all adjacent cells have opposite bits. This pattern checks 
for a short between two adjacent cells; if there is a short, both cells will be in the same state.

After the RAM is checked with the pattern in Figure 11–76(a), the pattern is reversed, 
as shown in part (b). This reversal checks the ability of all cells to store both 1s and 0s.
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686	 Data Storage

A further test is to alternate the pattern one address at a time and check all the other 
addresses for the proper pattern. This test will catch a problem in which the contents of an 
address are dynamically altered when the contents of another address change.

A basic procedure for the checkerboard test is illustrated by the flowchart in Figure 11–77. 
The procedure can be implemented with the system software in microprocessor-based 
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FIGURE 11–77  Flowchart for basic RAM checkerboard test.
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0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0
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FIGURE 11–76  The RAM checkerboard test pattern.
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Section 11–11  Checkup

	 1.	Describe the checksum method of ROM testing.

	 2.	Why can the checksum method not be applied to RAM testing?

	 3.	List the three basic faults that the checkerboard pattern test can detect in a RAM.

Summary

•	 Types of semiconductor memories:

Static

DRAM

Dynamic

EPROM

Erasable
Program-

mable
ROM

EEPROM

Electrically
Erasable
PROM

FLASH
Read/write

&
Random
access

FIFO

Serial
access

LIFO

Serial
access

CCD

Serial
access

SRAM

RAM

Random-
Access

Memory

ROM

Read-
Only

Memory

Also
Random
access

ua11_00200•	 Types of SRAMs (Static RAMs) and DRAMs (Dynamic RAMs):

Asynchronous

BEDO DRAM
Burst EDO

Asynchronous

EDO DRAM
Extended Data

Output

Synchronized
with system clock.
Burst addressing

Synchronous
SRAM with
burst featureNot synchronized

with
system clock

Faster than DRAM.
Smaller capacity
than DRAM.
Often used as
cache memory.

Asynchronous
SRAM

SDRAM

Asynchronous

Slower than SRAM.
Larger capacity
than SRAM.
Used as main
memory.

FPM DRAM
Fast Page Mode

Capacitor storage
cells. Must be
refreshed.

Synchronous

DRAMFlip-flop
storage cells

SRAM

ua10_00300

systems so that either the tests are automatic when the system is powered up or they can be 
initiated from the keyboard.
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•	 Types of magnetic storage:

Random access

Hard disk

Magnetic
disk

Serial access

QIC
(Travan)

8 mm DLT

Tape
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Magneto-
Optical

Disk

Cross between
magnetic and
optical

Prerecorded at
factory

CD-ROM CD-R

Recordable

CD-RW

Rewritable

WORM

Write once read
many

DVD-ROM Blu-ray

Digital versatile
disk

ua10_00500

•	 Types of optical (laser) storage:

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Address  The location of a given storage cell or group of cells in a memory.

Blue-ray  A disc storage technology that uses a blue laser to achieve more density and definition 
than a DVD.

Bus  One or more interconnections that interface one or more devices based on a standardized 
specification.

Byte  A group of eight bits.

Capacity  The total number of data units (bits, nibbles, bytes, words) that a memory can store.

Cell  A single storage element in a memory.

Cloud storage  A network of servers that is connected to a user device through the internet.

DRAM  Dynamic random-access memory; a type of semiconductor memory that uses capacitors 
as the storage elements and is a volatile, read/write memory.

EPROM  Erasable programmable read-only memory; a type of semiconductor memory device 
that typically uses ultraviolet light to erase data.

FIFO  First in–first out memory.

Flash memory  A nonvolatile read/write random-access semiconductor memory in which data are 
stored as charge on the floating gate of a certain type of FET.

Hard disk  A magnetic storage device; typically, a stack of two or more rigid disks enclosed in a 
sealed housing.

LIFO  Last in–first out memory; a memory stack.

Memory  The portion of a computer or other system that stores binary data.

Memory hierarchy  The arrangement of various memory elements within a computer architecture 
to achieve maximum performance.

PROM  Programmable read-only memory; a type of semiconductor memory.

RAM  Random-access memory; a volatile read/write semiconductor memory.

Read  The process of retrieving data from a memory.

ROM  Read-only memory; a nonvolatile random-access semiconductor memory.
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Server  Any computerized process that shares a resource with one or more clients. A computer 
and software with a large memory capacity that responds to requests across a network to provide 
file storage and access as well as services such as file sharing.

SRAM  Static random-access memory; a type of volatile read/write semiconductor memory.

Word  A group of bits or bytes that acts as a single entity that can be stored in one memory 
location; two bytes.

Write  The process of storing data in a memory.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A nibble consists of eight bits.

	 2.	 A memory cell can store a byte of data.

	 3.	 The location of a unit of data in a memory array is called its address.

	 4.	 A data bus is bidirectional in operation.

	 5.	 RAM is a random address memory.

	 6.	 Data stored in a static RAM is retained even after power is removed.

	 7.	 Cache is a type of memory used for intermediate or temporary storage of data.

	 8.	 Dynamic RAMs must be periodically refreshed to retain data.

	 9.	 ROM is a read-only memory.

	10.	 A flash memory uses a flashing beam of light to store data.

	11.	 Registers are at the top of a memory hierarchy.

	12.	 Cloud storage is accessed through the Internet.

Self-Test

Answers are at the end of the chapter.

	 1.	 The bit capacity of a memory that has 512 addresses and can store 8 bits at each address is
(a)	 512	 (b)  1024	 (c)  2048	 (d)  4096

	 2.	 A 16-bit word consists of
(a)	 3 bytes	 (b)  4 nibbles	 (c)  4 bytes	 (d)  3 bytes and 1 nibble

	 3.	 Data are stored in a random-access memory (RAM) during the
(a)	 read operation	 (b)  enable operation
(c)	 write operation	 (d)  addressing operation

	 4.	 Data that are stored at a given address in a random-access memory (RAM) are lost when
(a)	 power goes off	 (b)  the data are read from the address
(c)	 new data are written at the address	 (d)  answers (a) and (c)

	 5.	 A ROM is a
(a)	 nonvolatile memory	 (b)  volatile memory
(c)	 read/write memory	 (d)  byte-organized memory

	 6.	 A memory with 512 addresses has
(a)	 512 address lines	 (b)  12 address lines
(c)	 1 address line	 (d)  9 address lines

	 7.	 A byte-organized memory has
(a)	 1 data output line	 (b)  4 data output lines
(c)	 8 data output lines	 (d)  16 data output lines

	 8.	 The storage element of a DRAM is a
(a)	 resistor    (b)  transistor    (c)  capacitor    (d)  diode

	 9.	 ADDRESS-BURST is a feature of
(a)	 synchronous SRAM	 (b)  asynchronous SRAM
(c)	 fast page mode DRAM	 (d)  synchronous DRAM
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	10.	 In a computer, the BIOS programs are stored in the
(a)	 ROM	 (b)	 RAM
(c)	 SRAM	 (d)	 DRAM

	11.	 SRAM, DRAM, flash, and EEPROM are all
(a)	 magneto-optical storage devices	 (b)	 semiconductor storage devices
(c)	 magnetic storage devices	 (d)	 optical storage devices

	12.	 Optical storage devices employ
(a)	 ultraviolet light	 (b)	 electromagnetic fields
(c)	 optical couplers	 (d)	 lasers

	13.	 Memory latency is
(a)	 average down time	 (b)	 time to reference a block of data
(c)	 processor access time	 (d)	 the hit rate

	14.	 A facility that houses a cloud storage system is called a
(a)	 server	 (b)	 data center
(c)	 computer center	 (d)	 cloud house

Problems

Answers to odd-numbered problems are at the end of the book.

Section 11–1	Semiconductor Memory Basics
	 1.	 How would you distinguish between the two memories in Figure 11–78?

    0    ––
    63

A0

A1

A2

A3

A4

A5

E

O0

O1

O2

O3

64×4 A0

A1

A2

A3

A4

A5

R/W

I/O0

I/O1

I/O2

64×4

E

(a) (b)

A     0    ––
    63A

I/O3

FIGURE 11–78 

	 2.	 How are bits, bytes, nibbles, and words related?

	 3.	 Explain the basic memory operations.

	 4.	 What memory address (0 through 256) is represented by each of the following hexadecimal 
numbers?

(a)	 0C16    (b)  5E16    (c)  DF16

Section 11–2	The Random-Access Memory (RAM)
	 5.	 A static memory array with four rows similar to the one in Figure 11–10 is initially storing all 

0s. What is its content after the following conditions? Assume a 1 selects a row.

 Row 0 = 1, Data in (Bit 0) = 1

 Row 1 = 0, Data in (Bit 1) = 1

 Row 2 = 1, Data in (Bit 2) = 0

 Row 3 = 0, Data in (Bit 3) = 1

	 6.	 Draw a basic logic diagram for a 512 3 4-bit static RAM, showing all the inputs and outputs.
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	 7.	 Assuming that a 64k * 8 SRAM has a structure similar to that of the SRAM in Figure 11–12. 
determine the number of rows and 8-bit columns in its memory cell array.

	 8.	 Redraw the block diagram in Figure 11–12 for a 64k * 8 memory.

	 9.	 What is cache memory?

	10.	 What are the different types of RAM families available?

Section 11–3	The Read-Only Memory (ROM)
	11.	 For the ROM array in Figure 11–79, determine the outputs for all possible input combinations, 

and summarize them in tabular form (Blue cell is a 1, gray cell is a 0).

fg10_07600
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FIGURE 11–80 

	12.	 Determine the truth table for the ROM in Figure 11–80.

	13.	 Using a procedure similar to that in Example 11–1, design a ROM for conversion of single-
digit BCD to excess-3 code.

	14.	 What is the total bit capacity of a ROM that has 14 address lines and 8 data outputs?
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Section 11–4	Programmable ROMs
	15.	 Assuming that the PROM matrix in Figure 11–81 is programmed by blowing a fuse link to 

create a 0, indicate the links to be blown to program an X3 look-up table, where X is a number 
from 0 through 7.

28 27 26 25 24 23 22 21 20

X3

0

1

2

3

4

5

6

7

1

2

4

X

1 2 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

+V

3
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FIGURE 11–81 

	16.	 Determine the addresses that are programmed and the contents of each address after the 
programming sequence in Figure 11–82 has been applied to an EPROM like the one shown in 
Figure 11–31.

Section 11–6	Memory Expansion
	17.	 Use 16k * 4 DRAMs to build a 64k * 8 DRAM. Show the logic diagram.

	18.	 Using a block diagram, show how 64k * 1 dynamic RAMs can be expanded to build a 
256k * 4 RAM.

	19.	 What is the word length and the word capacity of the memory of Problem 17? Problem 18?

Section 11–7	Special Types of Memories
	20.	 Complete the timing diagram in Figure 11–83 by showing the output waveforms that are 

initially all LOW for a FIFO serial memory like that shown in Figure 11–50.

	21.	 Consider a 4096 * 8 RAM in which the last 64 addresses are used as a LIFO stack. If the first 
address in the RAM is 00016, designate the 64 addresses used for the stack.

	22.	 In the memory of Problem 21, sixteen bytes are pushed into the stack. At what address is the 
first byte in located? At what address is the last byte in located?

M11_FLOY5983_11_GE_C11.indd Page 692  11/11/14  7:07 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Problems	 693

Section 11–8	Magnetic and Optical Storage
	23.	 Describe the physical structure of a hard disk.

	24.	 Explain the basic read/write principles involved in a hard/disk.

	25.	 What are the parameters used to measure the performance of a hard disk?

	26.	 What are the differences between a CD-R and a CD-RW?

	27.	 What is the main difference between a CD and a DVD?

	28.	 What is a Blu-ray disc?
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FIGURE 11–83 
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694	 Data Storage

	39.	 Suppose that a checksum test is run on the memory in Figure 11–85 and each individual ROM 
has a checksum at its highest address. What IC or ICs will you replace for each of the follow-
ing error messages that appear on the system’s video monitor?

(a)	 ADDRESSES 40–5F FAULTY    (b)  ADDRESSES 20–3F FAULTY
(c)	 ADDRESSES 00–7F FAULTY

Section 11–9	Memory Hierarchy
	29.	 What does memory hierarchy mean?

	30.	 What are the memory storage levels used in computers?

	31.	 Describe hit rate.

	32.	 If the miss rate in a certain memory is 0.2, what is the hit rate?

Section 11–10 Cloud Storage
	33.	 Draw a diagram of a cloud storage system with six servers.

	34.	 What does a server in a cloud storage system provide?

	35.	 What is the architecture of a cloud storage system?

	36.	 List five properties of a cloud storage system and briefly discuss each.

Section 11–11 Troubleshooting
	37.	 Determine if the contents of the ROM in Figure 11–84 are correct.

	38.	 A 128 * 8 ROM is implemented as shown in Figure 11–85. The decoder decodes the two most 
significant address bits to enable the ROMs one at a time, depending on the address selected.

(a)	 Express the lowest address and the highest address of each ROM as hexadecimal numbers.
(b)	 Assume that a single checksum is used for the entire memory and it is stored at the highest 

address. Develop a flowchart for testing the complete memory system.
(c)	 Assume that each ROM has a checksum stored at its highest address. Modify the flowchart 

developed in part (b) to accommodate this change.
(d)	 What is the disadvantage of using a single checksum for the entire memory rather than a 

checksum for each individual ROM?
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Answers

Section Checkups
Section 11–1 Semiconductor Memory Basics
	 1.	 Bit is the smallest unit of data.

	 2.	 256 bytes is 2048 bits.
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	 3.	 A write operation stores data in memory.

	 4.	 A read operation takes a copy of data from memory.

	 5.	 A unit of data is located by its address.

	 6.	 A RAM is volatile and has read/write capability. A ROM is nonvolatile and has only read capability.

Section 11–2 The Random-Access Memory (RAM)
	 1.	 Asynchronous and synchronous with burst feature

	 2.	 A small fast memory between the CPU and main memory

	 3.	 SRAMs have latch storage cells that can retain data indefinitely while power is applied. 
DRAMs have capacitive storage cells that must be periodically refreshed.

	 4.	 The refresh operation prevents data from being lost because of capacitive discharge. A stored 
bit is restored periodically by recharging the capacitor to its nominal level.

	 5.	 FPM, EDO, BEDO, Synchronous

Section 11–3 The Read-Only Memory (ROM)
	 1.	 512 * 8 equals 4096 bits.

	 2.	 Mask ROM, PROM, EPROM, UV EPROM, EEPROM

	 3.	 Eight bits of address are required for 256 byte locations (28
= 256).

Section 11–4 Programmable ROMs
	 1.	 PROMs are field-programmable; ROMs are not.

	 2.	 Presence or absence of stored charge

	 3.	 Read is the normal mode of operation for a PROM.

Section 11–5 The Flash Memory
	 1.	 Flash, ROM, EPROM, and EEPROM are nonvolatile.

	 2.	 Flash is nonvolatile; SRAM and DRAM are volatile.

	 3.	 Programming, read, erase

Section 11–6 Memory Expansion
	 1.	 Eight RAMs

	 2.	 Eight RAMs

	 3.	 DIMM: Dual in-line memory module

Section 11–7 Special Types of Memories
	 1.	 In a FIFO memory the first bit (or word) in is the first bit (or word) out.

	 2.	 In a LIFO memory the last bit (or word) in is the first bit (or word) out. A stack is a LIFO.

	 3.	 The PUSH operation or instruction adds data to the memory stack.

	 4.	 The POP operation or instruction removes data from the memory stack.

	 5.	 CCD is a charge-coupled device.

Section 11–8 Magnetic and Optical Storage
	 1.	 Magnetic storage: hard disk, tape, and magneto-optical disk

	 2.	 A magnetic disk is organized in tracks and sectors.

	 3.	 A magneto-optical disk uses a laser beam and an electromagnet.

	 4.	 Optical storage: CD-ROM, CD-R, CD-RW, DVD-ROM, WORM, Blu-ray Disc (BD)

Section 11–9 Memory Hierarchy
	 1.	 The purpose of memory hierarchy is to obtain the fastest access time at the lowest cost.

	 2.	 Access time is the time it takes a processor to retrieve (read) or write a block of data stored in 
the memory.
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	 3.	 Generally, the higher the capacity the lower the cost per bit.

	 4.	 Yes

	 5.	 A hit is when the processor finds the requested data at the first place it looks. A miss is when 
the processor fails to find the requested data and has to go to another level of memory to find it.

	 6.	 The hit rate

Section 11–10 Cloud Storage
	 1.	 A cloud storage system is a remote network of servers connected to a user device through the 

internet.

	 2.	 A server is any computerized process that shares a resource with one or more clients. Practically, a 
storage server is a computer and software with a large memory capacity that responds to requests 
across a network to provide file storage and access as well as services such as file sharing.

	 3.	 A user connects via Internet access.

	 4.	 Data storage and retrieval from any physical location with Internet access, any computer can be 
used and a local physical backup storage device is not necessary, and other users can be permit-
ted to access your data.

Section 11–11 Troubleshooting
	 1.	 The contents of the ROM are added and compared with a prestored checksum.

	 2.	 Checksum cannot be used because the contents of a RAM are not fixed.

	 3.	 (1) a short between adjacent cells; (2) an inability of some cells to store both 1s and 0s; 
(3) dynamic altering of the contents of one address when the contents of another address 
change.

Related Problems for Examples
	11–1	 G3G2G1G0 = 1110

	11–2	 Connect eight 64k * 1 ROMs in parallel to form a 64k * 8 ROM.

	11–3	 Sixteen 64k * 1 ROMs

	11–4	 See Figure 11–86.

	11–5	 ROM 1: 0 to 524,287; ROM 2: 524,288 to 1,048,575

G
R/W

E1
E2

I/O8

I/O15

    0    ––––––––
    1,048,575

…A0

A19

A     0    ––––––––
    1,048,575A

I/O0

I/O7

fg10_08300

FIGURE 11–86

True/False Quiz
	 1.	 F    2.  F    3.  T      4.  T      5.  F      6.  F

	 7.	 T    8.  T    9.  T    10.  F    11.  T    12.  T

Self-Test
	 1.	 (d)    2.  (b)      3.  (c)     4.  (d)      5.  (a)      6.  (d)      7.  (c)

	 8.	 (c)    9.  (a)    10.  (a)    11.  (b)    12.  (d)    13.  (c)    14.  (b)
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Chapter Outline

12–1	 Analog-to-Digital Conversion 
12–2	 Methods of Analog-to-Digital Conversion 
12–3	 Methods of Digital-to-Analog Conversion 
12–4	 Digital Signal Processing 
12–5	 The Digital Signal Processor (DSP) 

Chapter Objectives

■	 Explain how analog signals are converted to digital 
form

■	 Discuss the purpose of filtering

■	 Describe the sampling process

■	 State the purpose of analog-to-digital conversion

■	 Explain how several types of ADCs operate

■	 State the purpose of digital-to-analog conversion

■	 Explain how DACs operate

■	 List the essential elements in a digital signal 
processing system

■	 Explain the basic concepts of a digital signal 
processor (DSP)

■	 Describe the basic architecture of a DSP

■	 Name some of the functions that a DSP performs

Key Terms

Key terms are in order of appearance in the chapter.
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698      Signal Conversion and Processing

12–1  Analog-to-Digital Conversion

In order to process signals using digital techniques, the incoming analog signal must be 
converted into digital form.

After completing this section, you should be able to

u	 Explain the basic process of converting an analog signal to digital

u	 Describe the purpose of the sample-and-hold function

u	 Define the Nyquist frequency

u	 Define the reason for aliasing and discuss how it is eliminated

u	 Describe the purpose of an ADC

Sampling and Filtering

An anti-aliasing filter and a sample-and-hold circuit are two functions typically found in a 
digital signal processing system. The sample-and-hold function does two operations, the 
first of which is sampling. Sampling is the process of taking a sufficient number of dis-
crete values at points on a waveform that will define the shape of the waveform. The more 
samples you take, the more accurately you can define a waveform. Sampling converts an 
analog signal into a series of impulses, each representing the amplitude of the signal at a 
given instant in time. Figure 12–1 illustrates the process of sampling.

Sampling
circuit

Sampled
version of

input signal

Analog
input

signal

Sampling
pulses

fg12_00100

FIGURE 12–1  Illustration of the sampling process.

When an analog signal is to be sampled, there are certain criteria that must be met in 
order to accurately represent the original signal. All analog signals (except a pure sine 
wave) contain a spectrum of component frequencies. For a pure sine wave, these frequen-
cies appear in multiples called harmonics. The harmonics of an analog signal are sine 
waves of different frequencies and amplitudes. When the harmonics of a given periodic 
waveform are added, the result is the original signal. Before a signal can be sampled, it 
must be passed through a low-pass filter (anti-aliasing filter) to eliminate harmonic fre-
quencies above a certain value as determined by the Nyquist frequency.
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The Sampling Theorem

Notice in Figure 12–1 that there are two input waveforms. One is the analog signal and the 
other is the sampling pulse waveform. The sampling theorem states that, in order to rep-
resent an analog signal, the sampling frequency, fsample, must be at least twice the highest 
frequency component fa(max) of the analog signal. Another way to say this is that the highest 
analog frequency can be no greater than one-half the sampling frequency. The frequency 
fa(max) is known as the Nyquist frequency and is expressed in Equation 12–1. In practice, 
the sampling frequency should be more than twice the highest analog frequency.

	 fsample + 2fa(max)	 Equation 12–1

To intuitively understand the sampling theorem, a simple “bouncing-ball” analogy may 
be helpful. Although it is not a perfect representation of the sampling of electrical signals, 
it does serve to illustrate the basic idea. If a ball is photographed (sampled) at one instant 
during a single bounce, as illustrated in Figure 12–2(a), you cannot tell anything about the 
path of the ball except that it is off the floor. You can’t tell whether it is going up or down 
or the distance of its bounce. If you take photos at two equally-spaced instants during 
one bounce, as shown in part (b), you can obtain only a minimum amount of information 
about its movement and nothing about the distance of the bounce. In this particular case, 
you know only that the ball has been in the air at the times the two photos were taken and 
that the maximum height of the bounce is at least equal to the height shown in each photo. 
If you take four photos, as shown in part (c), then the path that the ball follows during a 
bounce begins to emerge. The more photos (samples) that you take, the more accurately 
you can determine the path of the ball as it bounces.

(a) One sample of a ball during a
single bounce

(b) Two samples of a ball during a single
bounce. This is the absolute minimum
required to tell anything about its
movement, but generally insufficient
to describe its path.

(c) Four samples of a ball during a single
bounce form a rough picture of the path
of the ball.

fg12_00200

FIGURE 12–2  Bouncing ball analogy of sampling theory.

The Need for Filtering

Low-pass filtering is necessary to remove all frequency components (harmonics) of the 
analog signal that exceed the Nyquist frequency. If there are any frequency components 
in the analog signal that exceed the Nyquist frequency, an unwanted condition known as 
aliasing will occur. An alias is a signal produced when the sampling frequency is not at 
least twice the signal frequency. An alias signal has a frequency that is less than the high-
est frequency in the analog signal being sampled and therefore falls within the spectrum 
or frequency band of the input analog signal causing distortion. Such a signal is actually 
“posing” as part of the analog signal when it really isn’t, thus the term alias.

Another way to view aliasing is by considering that the sampling pulses produce a 
spectrum of harmonic frequencies above and below the sample frequency, as shown in 
Figure 12–3. If the analog signal contains frequencies above the Nyquist frequency, these 
frequencies overlap into the spectrum of the sample waveform as shown and interference 
occurs. The lower frequency components of the sampling waveform become mixed in with 
the frequency spectra of the analog waveform, resulting in an aliasing error.
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700      Signal Conversion and Processing

A low-pass anti-aliasing filter must be used to limit the frequency spectrum of the analog 
signal for a given sample frequency. To avoid an aliasing error, the filter must at least 
eliminate all analog frequencies above the minimum frequency in the sampling spectrum, 
as illustrated in Figure 12–4. Aliasing can also be avoided by sufficiently increasing the 
sampling frequency. However, the maximum sampling frequency is usually limited by the 
performance of the analog-to-digital converter (ADC) that follows it.

Unfiltered analog
frequency spectrum Sampling frequency

spectrum

Overlap causes
aliasing error

f sample

f

fg12_00300

FIGURE 12–3  A basic illustration of the condition fsample 6 2fa(max).

Filtered analog
frequency spectrum Sampling frequency

spectrum

f sample

f

fg12_00400

FIGURE 12–4  After low-pass filtering, the frequency spectra of the analog and the 
sampling signals do not overlap, thus eliminating aliasing error.

An Application

An example of the application of sampling is in digital audio equipment. The sampling 
rates used are 32 kHz, 44.1 kHz, or 48 kHz (the number of samples per second). The  
48 kHz rate is the most common, but the 44.1 kHz rate is used for audio CDs and prerecorded 
tapes. According to the Nyquist rate, the sampling frequency must be at least twice the audio 
signal. Therefore, the CD sampling rate of 44.1 kHz captures frequencies up to about 22 kHz, 
which exceeds the 20 kHz specification that is common for most audio equipment.

Many applications do not require a wide frequency range to obtain reproduced sound 
that is acceptable. For example, human speech contains some frequencies near 10 kHz and, 
therefore, requires a sampling rate of at least 20 kHz. However, if only frequencies up to 
4 kHz (ideally requiring an 8 kHz minimum sampling rate) are reproduced, voice is very 
understandable. On the other hand, if a sound signal is not sampled at a high enough rate, 
the effect of aliasing will become noticeable with background noise and distortion.

Holding the Sampled Value

The holding operation is the second part of the sample-and-hold function. After filtering 
and sampling, the sampled level must be held constant until the next sample occurs. This 
is necessary for the ADC to have time to process the sampled value. This sample-and-hold 
operation results in a “stairstep” waveform that approximates the analog input waveform, 
as shown in Figure 12–5.
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Analog-to-Digital Conversion

Analog-to-digital conversion is the process of converting the output of the sample-
and-hold circuit to a series of binary codes that represent the amplitude of the analog 
input at each of the sample times. The sample-and-hold process keeps the amplitude 
of the analog input signal constant between sample pulses; therefore, the analog-to-
digital conversion can be done using a constant value rather than having the analog 
signal change during a conversion interval, which is the time between sample pulses. 
Figure 12–6 illustrates the basic function of an analog-to-digital converter (ADC), 
which is a circuit that performs analog-to-digital conversion. The sample intervals are 
indicated by dashed lines.

Sample

Sampled version of
input signal

Hold

Sample-and-hold
Sample-and-hold approximation
of input signal

fg12_00500

FIGURE 12–5  Illustration of a sample-and-hold operation.

. . . . . . .ADC 0 1 1 . . . .

. . . . .

0 1 0 0 1 0 1 1 0 0 0 1 0

fg12_00600
FIGURE 12–6  Basic function of an analog-to-digital converter (ADC) (The binary codes 
and number of bits are arbitrarily chosen for illustration only). The ADC output waveform 
that represents the binary codes is also shown.

Quantization

The process of converting an analog value to a code is called quantization. During the 
quantization process, the ADC converts each sampled value of the analog signal to a binary 
code. The more bits that are used to represent a sampled value, the more accurate is the 
representation.

To illustrate, let’s quantize a reproduction of the analog waveform into four levels (0–3). 
Two bits are required for four levels. As shown in Figure 12–7, each quantization level 
is represented by a 2-bit code on the vertical axis, and each sample interval is numbered 
along the horizontal axis. The sampled data is held for the entire sample period. This data 
is quantized to the next lower level, as shown in Table 12–1 (for example, compare samples 
3 and 4, which are assigned different levels).
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If the resulting 2-bit digital codes are used to reconstruct the original waveform, you 
would get the waveform shown in Figure 12–8. This operation is done by digital-to-
analog converters (DACs), which are circuits that perform digital-to-analog conver-
sions. As you can see, quite a bit of accuracy is lost using only two bits to represent 
the sampled values.

Now, let’s see how more bits will improve the accuracy. Figure 12–9 shows the same 
waveform with sixteen quantization levels (4 bits). The 4-bit quantization process is sum-
marized in Table 12–2.

If the resulting 4-bit digital codes are used to reconstruct the original waveform, 
you would get the waveform shown in Figure 12–10. As you can see, the result is much 
more like the original waveform than for the case of four quantization levels in Figure 
12–8. This shows that greater accuracy is achieved with more quantization bits. Typi-
cal integrated circuit ADCs use from 12 to 24 bits, and the sample-and-hold function 
is sometimes contained on the ADC chip. Several types of ADCs are introduced in the 
next section.

1

Quantization
level

(Code)

0
(00)

1
(01)

2
(10)

3
(11)

2 3 4 5 6 7 8 9 10 11 12

Sample
intervals13
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FIGURE 12–7  Sample-and-hold output waveform with four quantization levels. 
The original analog waveform is shown in light gray for reference.

Table 12–1

Two-bit quantization for the waveform in Figure 12–7.

Sample Interval Quantization Level Code

  1 0 00
  2 1 01
  3 2 10
  4 1 01
  5 1 01
  6 1 01
  7 1 01
  8 2 10
  9 3 11
10 3 11
11 3 11
12 3 11
13 3 11
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1 2 3 4 5 6 7 8 9 10 11 12 13

Binary
values

00

01

10

11

Sample
intervals
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FIGURE 12–8  The reconstructed waveform in Figure 12–7 using four quantization levels 
(2 bits). The original analog waveform is shown in light gray for reference.
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Sample
intervals

14 (1110)
13 (1101)
12 (1100)
11 (1011)
10 (1010)
9 (1001)
8 (1000)
7 (0111)
6 (0110)
5 (0101)
4 (0100)
3 (0011)
2 (0010)
1 (0001)
0 (0000)
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FIGURE 12–9  Sample-and-hold output waveform with sixteen quantization levels. 
The original analog waveform is shown in light gray for reference.

Table 12–2

Four-bit quantization for the waveform in Figure 12–9.

Sample Interval Quantization Level Code

  1   0 0000
  2   5 0101
  3   8 1000
  4   7 0111
  5   5 0101
  6   4 0100
  7   6 0110
  8 10 1010
  9 14 1110
10 15 1111
11 15 1111
12 15 1111
13 14 1110
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FIGURE 12–10  The reconstructed waveform in Figure 12–9 using sixteen quantization 
levels (4 bits). The original analog waveform is shown in light gray for reference.

Section 12–1  Checkup

Answers are at the end of the chapter.

	 1.	What does sampling mean?

	 2.	Why must you hold a sampled value?

	 3.	 If the highest frequency component in an analog signal is 20 kHz, what is the mini-
mum sample frequency?

	 4.	What does quantization mean?

	 5.	What determines the accuracy of the quantization process?

12–2  Methods of Analog-to-Digital Conversion

As you have seen, analog-to-digital conversion is the process by which an analog quantity 
is converted to digital form. It is necessary when measured quantities must be in digital 
form for processing or for display or storage. Some common types of analog-to-digital con-
verters (ADCs) are now examined. Two important ADC parameters are resolution, which is 
the number of bits, and throughput, which is the sampling rate an ADC can handle in units 
of samples per second (sps).

After completing this section, you should be able to

u	 Explain what an operational amplifier is

u	 Show how the op-amp can be used as an inverting amplifier or a comparator

u	 Explain how a flash ADC works

u	 Discuss dual-slope ADCs

u	 Describe the operation of a successive-approximation ADC

u	 Describe a delta-sigma ADC

u	 Discuss testing ADCs for a missing code, incorrect code and offset
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A Quick Look at an Operational Amplifier

Before getting into analog-to-digital converters (ADCs), let’s look briefly at an element that 
is common to most types of ADCs and digital-to-analog converters (DACs). This element 
is the operational amplifier, or op-amp for short. This is an abbreviated coverage of the  
op-amp.

An op-amp is a linear amplifier that has two inputs (inverting and noninverting) and one 
output. It has a very high voltage gain and a very high input impedance, as well as a very 
low output impedance. The op-amp symbol is shown in Figure 12–11(a). When used as an 
inverting amplifier, the op-amp is configured as shown in part (b). The feedback resistor, 
Rf, and the input resistor, Ri, control the voltage gain according to the formula in Equation 
12–2, where Vout/Vin is the closed-loop voltage gain (closed loop refers to the feedback 
from output to input provided by Rf). The negative sign indicates inversion.

	
Vout

Vin
� �

 Rf

Ri
	 Equation 12–2

In the inverting amplifier configuration, the inverting input of the op-amp is approximately 
at ground potential (0 V) because feedback and the extremely high open-loop gain make the 
differential voltage between the two inputs extremely small. Since the noninverting input is 
grounded, the inverting input is at approximately 0 V, which is called virtual ground.

When the op-amp is used as a comparator, as shown in Figure 12–11(c), two voltages 
are applied to the inputs. When these input voltages differ by a very small amount, the op-
amp is driven into one of its two saturated output states, either HIGH or LOW, depending 
on which input voltage is greater.

–

+
Vout

Rf

Vin

Virtual
ground
(0 V)

(b) Op-amp as an inverting amplifier
with gain of Rf /Ri

Represents the high
internal input impedance

–

+
Vout

–

+

Vin1

Vin2

(c) Op-amp as a comparator

Noninverting input

Inverting input

Output

(a) Op-amp symbol

Ri
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FIGURE 12–11  The operational amplifier (op-amp).

Flash (Simultaneous) Analog-to-Digital Converter

The flash method utilizes special high-speed comparators that compare reference voltages 
with the analog input voltage. When the input voltage exceeds the reference voltage for a 
given comparator, a HIGH is generated. Figure 12–12 shows a 3-bit converter that uses 
seven comparator circuits; a comparator is not needed for the all-0s condition. A 4-bit con-
verter of this type requires fifteen comparators. In general, 2n − 1 comparators are required 
for conversion to an n-bit binary code. The number of bits used in an ADC is its resolution. 
The large number of comparators necessary for a reasonable-sized binary number is one of 
the disadvantages of the flash ADC. Its chief advantage is that it provides a fast conversion 
time because of a high throughput, measured in samples per second (sps).

The reference voltage for each comparator is set by the resistive voltage-divider circuit. 
The output of each comparator is connected to an input of the priority encoder. The encoder 
is enabled by a pulse on the EN input, and a 3-bit code representing the value of the input 
appears on the encoder’s outputs. The binary code is determined by the highest-order input 
having a HIGH level.
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The frequency of the enable pulses and the number of bits in the binary code determine 
the accuracy with which the sequence of binary codes represents the input of the ADC. The 
signal is sampled each time the enable pulse is active.
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FIGURE 12–12  A 3-bit flash ADC.

EXAMPLE 12–1

Determine the binary code output of the 3-bit flash ADC in Figure 12–12 for the 
input signal in Figure 12–13 and the encoder enable pulses shown. For this example, 
VREF = +8 V.
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1

7 8 9 10 11 121 2 3 4 5 6

7

Analog
input

voltage

V

t

Enable
pulses

8
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FIGURE 12–13  Sampling of values on a waveform for conversion to binary code.
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Dual-Slope Analog-to-Digital Converter

A dual-slope ADC is common in digital voltmeters and other types of measurement instru-
ments. A ramp generator (integrator) is used to produce the dual-slope characteristic. A 
block diagram of a dual-slope ADC is shown in Figure 12–15.

Enable pulses
1

100

D2

D1

D0

2 3 4 5 6 7 8 9 1110 12

110 111 110 100 010 000 001 011 101 110 111

fg12_01400

FIGURE 12–14  Resulting digital outputs for sample-and-hold values. Output D0 is the 
LSB of the 3-bit binary code.

Solution

The resulting digital output sequence is listed as follows and shown in the waveform 
diagram of Figure 12–14 in relation to the enable pulses:

100, 110, 111, 110, 100, 010, 000, 001, 011, 101, 110, 111

–

+

CLK

CLEAR

Control
logic

C

Counter

LatchesEN

D7 D6 D5 D4 D3 D2 D1 D0

Binary or BCD
output

Comparator

R

–

+

Integrator
(ramp generator)

Analog
input (Vin)

–VREF

SW R

C

A1
A2

Switch control

n
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FIGURE 12–15  Basic dual-slope ADC.

Related Problem*

If the enable pulse frequency in Figure 12–13 were halved, determine the binary numbers 
represented by the resulting digital output sequence for 6 pulses. Is any information lost?

*Answers are at the end of the chapter.
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Figure 12–16 illustrates dual-slope conversion. Start by assuming that the counter is 
reset and the output of the integrator is zero. Now assume that a positive input voltage is 
applied to the input through the switch (SW) as selected by the control logic. Since the 
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FIGURE 12–16  Illustration of dual-slope conversion.
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inverting input of A1 is at virtual ground, and assuming that Vin is constant for a period 
of time, there will be constant current through the input resistor R and therefore through 
the capacitor C. Capacitor C will charge linearly because the current is constant, and as a 
result, there will be a negative-going linear voltage ramp on the output of A1, as illustrated 
in Figure 12–16(a).

When the counter reaches a specified count (n), it will be reset (R), and the control logic 
will switch the negative reference voltage (-VREF) to the input of A1, as shown in Figure 
12–16(b). At this point the capacitor is charged to a negative voltage (-V) proportional to 
the input analog voltage.

Now the capacitor discharges linearly because of the constant current from the -VREF, 
as shown in Figure 12–16(c). This linear discharge produces a positive-going ramp on the 
A1 output, starting at -V and having a constant slope that is independent of the charge volt-
age. As the capacitor discharges, the counter advances from its RESET state. The time it 
takes the capacitor to discharge to zero depends on the initial voltage -V (proportional to 
Vin) because the discharge rate (slope) is constant. When the integrator (A1) output voltage 
reaches zero, the comparator (A2) switches to the LOW state and disables the clock to the 
counter. The binary count is latched, thus completing one conversion cycle. The binary 
count is proportional to Vin because the time it takes the capacitor to discharge depends 
only on -V, and the counter records this interval of time.

Successive-Approximation Analog-to-Digital Converter

One of the most widely used methods of analog-to-digital conversion is successive-
approximation. It has a much faster conversion time than the dual-slope conversion, but 
it is slower than the flash method. It also has a fixed conversion time that is the same for 
any value of the analog input.

Figure 12–17 shows a basic block diagram of a 4-bit successive approximation ADC. 
It consists of a DAC (DACs are covered in Section 12–3), a successive-approximation 
register (SAR), and a comparator. The basic operation is as follows: The input bits of 
the DAC are enabled (made equal to a 1) one at a time, starting with the most significant 
bit (MSB). As each bit is enabled, the comparator produces an output that indicates 
whether the input signal voltage is greater or less than the output of the DAC. If the 
DAC output is greater than the input signal, the comparator’s output is LOW, caus-
ing the bit in the register to reset. If the output is less than the input signal, the 1 bit 
is retained in the register. The system does this with the MSB first, then the next most 
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FIGURE 12–17  Successive-approximation ADC.
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FIGURE 12–18  Illustration of the successive-approximation conversion process.

Figure 12–18(a) shows the first step in the conversion cycle with the MSB = 1. The 
output of the DAC is 8 V. Since this is greater than the input of 5.1 V, the output of the 
comparator is LOW, causing the MSB in the SAR to be reset to a 0.

Figure 12–18(b) shows the second step in the conversion cycle with the 22 bit equal to a 
1. The output of the DAC is 4 V. Since this is less than the input of 5.1 V, the output of the 
comparator switches to a HIGH, causing this bit to be retained in the SAR.

Figure 12–18(c) shows the third step in the conversion cycle with the 21 bit equal to a 1. 
The output of the DAC is 6 V because there is a 1 on the 22 bit input and on the 21 bit input; 
4 V + 2 V = 6 V. Since this is greater than the input of 5.1 V, the output of the comparator 
switches to a LOW, causing this bit to be reset to a 0.

Figure 12–18(d) shows the fourth and final step in the conversion cycle with the 20 bit 
equal to a 1. The output of the DAC is 5 V because there is a 1 on the 22 bit input and on 
the 20 bit input; 4 V + 1 V = 5 V.

The four bits have all been tried, thus completing the conversion cycle. At this point the 
binary code in the register is 0101, which is approximately the binary value of the input of 
5.1 V. Additional bits will produce an even more accurate result. Another conversion cycle 
now begins, and the basic process is repeated. The SAR is cleared at the beginning of each 
cycle.  

significant bit, then the next, and so on. After all the bits of the DAC have been tried, 
the conversion cycle is complete.

In order to better understand the operation of the successive-approximation ADC, let’s 
take a specific example of a 4-bit conversion. Figure 12–18 illustrates the step-by-step 
conversion of a constant input voltage (5.1 V in this case). Let’s assume that the DAC has 
the following output characteristics: Vout = 8 V for the 23 bit (MSB), Vout = 4 V for the 
22 bit, Vout = 2 V for the 21 bit, and Vout = 1 V for the 20 bit (LSB).
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Implementation: Analog-To-Digital Converter

The ADC0804 is an example of a successive-approximation ADC. A block diagram is 
shown in Figure 12–19. This device operates from a +5 V supply and has a resolution 
of eight bits with a conversion time of 100 ms. Also, it has an on-chip clock generator. 
Optionally, an external clock can be used. The data outputs are tri-state, so they can be 
interfaced with a microprocessor bus system.

The basic operation of the device is as follows: The ADC0804 contains the equivalent 
of a 256-resistor DAC network. The successive-approximation logic sequences the net-
work to match the analog differential input voltage (Vin+ - Vin-) with an output from the 
resistive network. The MSB is tested first. After eight comparisons (sixty-four clock peri-
ods), an 8-bit binary code is transferred to output latches, and the interrupt (INTR) output 
goes LOW. The device can be operated in a free-running mode by connecting the INTR 
output to the write (WR) input and holding the conversion start (CS) LOW. To ensure startup 
under all conditions, a LOW WR input is required during the power-up cycle. Taking CS 
low anytime after that will interrupt the conversion process.

When the WR input goes LOW, the internal successive-approximation register (SAR) 
and the 8-bit shift register are reset. As long as both CS and WR remain LOW, the ADC 
remains in a RESET state. Conversion starts one to eight clock periods after CS or WR 
makes a LOW-to-HIGH transition.

When a LOW is at both the CS and RD inputs, the tri-state output latch is enabled and 
the output code is applied to the D0–D7 lines. When either the CS or the RD input returns 
to a HIGH, the D0–D7 outputs are disabled.
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FIGURE 12–19  The ADC0804 
analog-to-digital converter.

Sigma-Delta Analog-to-Digital Converter

Sigma-delta is a widely used method of analog-to-digital conversion, particularly in telecom-
munications using audio signals. The method is based on delta modulation where the differ-
ence between two successive samples (increase or decrease) is quantized; other ADC methods 
were based on the absolute value of a sample. Delta modulation is a 1-bit quantization method.

The output of a delta modulator is a single-bit data stream where the relative number of 1s 
and 0s indicates the level or amplitude of the input signal. The number of 1s over a given num-
ber of clock cycles establishes the signal amplitude during that interval. A maximum number 
of 1s corresponds to the maximum positive input voltage. A number of 1s equal to one-half the 
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maximum corresponds to an input voltage of zero. No 1s (all 0s) corresponds to the maximum 
negative input voltage. This is illustrated in a simplified way in Figure 12–20. For example, 
assume that 4096 1s occur during the interval when the input signal is a positive maximum. 
Since zero is the midpoint of the dynamic range of the input signal, 2048 1s occur during the 
interval when the input signal is zero. There are no 1s during the interval when the input signal is 
a negative maximum. For signal levels in between, the number of 1s is proportional to the level.

The Sigma-Delta ADC Functional Block Diagram

The basic block diagram in Figure 12–21 accomplishes the conversion illustrated in Figure 
12–20. The analog input signal and the analog signal from the converted quantized bit 
stream from the DAC in the feedback loop are applied to the summation (©) point. The dif-
ference (�) signal out of the © is integrated, and the 1-bit ADC increases or decreases the 
number of 1s depending on the difference signal. This action attempts to keep the quantized 
signal that is fed back equal to the incoming analog signal. The 1-bit quantizer is essen-
tially a comparator followed by a latch.

2048 1s

+MAX

4096 1s 0 1s

0

–MAX

Quantized
output from
sigma-delta

Input signal
from sample-

and-hold

fg12_02000

FIGURE 12–20  A simplified illustration of sigma-delta analog-to-digital conversion.
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FIGURE 12–21  Partial functional block diagram of a sigma-delta ADC.

To complete the sigma-delta conversion process using one particular approach, the 
single bit data stream is converted to a series of binary codes, as shown in Figure 12–22. 
The counter counts the 1s in the quantized data stream for successive intervals. The code 
in the counter then represents the amplitude of the analog input signal for each interval. 
These codes are shifted out into the latch for temporary storage. What comes out of the 
latch is a series of n-bit codes, which completely represent the analog signal.

Testing Analog-to-Digital Converters

One method for testing ADCs is shown in Figure 12–23. A DAC is used as part of the test 
setup to convert the ADC output back to analog form for comparison with the test input.
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FIGURE 12–22  One type of sigma-delta ADC.

ADC

Ramp
source

Analog input
ramp Binary

code

Analog output

HARDCOPY

HORIZONTALVERTICAL TRIGGER

LEVEL

TRIGGER MENU

SET LEVEL TO 50%

FORCE TRIGGER

CURSOR DISPLAYUTILITY

MEASURE ACQUIRESAVE/RECALL AUTOSET

RUN/STOP

POSITION

HORIZONTAL
MENU

SEC/DIV

5 s 5  ns

HOLDOFF

POSITION

VOLTS/DIV

CURSOR 2

CH 2
MENU

5 V 2 mV

POSITION

VOLTS/DIV

CURSOR 1

CH 1
MENU

5 V 2 mV

MATH
MENU

CH 1 CH 2 EXT TRIGPROBE COMP
5 V

MENUS

TRIGGER VIEW

DAC
0
1
2

n

FIGURE 12–23  A method for testing ADCs.

A test input in the form of a linear ramp is applied to the input of the ADC. The result-
ing binary output sequence is then applied to the DAC test unit and converted to a stairstep 
ramp. The input and output ramps are compared for any deviation.

Analog-to-Digital Conversion Errors

Again, a 4-bit conversion is used to illustrate the principles. Let’s assume that the test input 
is an ideal linear ramp.

Missing Code

The stairstep output in Figure 12–24(a) indicates that the binary code 1001 does not appear 
on the output of the ADC. Notice that the 1000 value stays for two intervals and then the 
output jumps to the 1010 value.

In a flash ADC, for example, a failure of one of the op-amp comparators can cause a 
missing-code error.
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FIGURE 12–24  Illustrations of analog-to-digital conversion errors.
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Incorrect Code

The stairstep output in Figure 12–24(b) indicates that several of the binary code words 
coming out of the ADC are incorrect. Analysis indicates that the 21-bit line is stuck in the 
LOW (0) state in this particular case.

Offset

Offset conditions are shown in 12–24(c). In this situation the ADC interprets the analog 
input voltage as greater than its actual value.
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   FIGURE 12–25 

EXAMPLE 12–2

A 4-bit flash ADC is shown in Figure 12–25(a). It is tested with a setup like the one in 
Figure 12–23. The resulting reconstructed analog output is shown in Figure 12–25(b). 
Identify the problem and the most probable fault.

Solution

The binary code 0011 is missing from the ADC output, as indicated by the missing step. 
Most likely, the output of comparator 3 is stuck in its inactive state (LOW).

Related Problem

Reconstruct the analog output in a test setup like in Figure 12–23 if the ADC in Figure 
12–25(a) has comparator 8 stuck in the HIGH output state.
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FIGURE 12–26  A 4-bit DAC with binary-weighted inputs.

Since there is practically no current into the op-amp inverting (- ) input, all of the input 
currents sum together and go through Rf. Since the inverting input is at 0 V (virtual ground), 
the drop across Rf is equal to the output voltage, so Vout = IfRf.

The values of the input resistors are chosen to be inversely proportional to the binary 
weights of the corresponding input bits. The lowest-value resistor (R) corresponds to the 
highest binary-weighted input (23). The other resistors are multiples of R (that is, 2R, 4R, 
and 8R) and correspond to the binary weights 22, 21, and 20, respectively. The input cur-
rents are also proportional to the binary weights. Thus, the output voltage is proportional to 
the sum of the binary weights because the sum of the input currents is through Rf.

Section 12–2  Checkup

	 1.	What is the fastest method of analog-to-digital conversion?

	 2.	Which analog-to-digital conversion method produces a single-bit data stream?

	 3.	Does the successive-approximation converter have a fixed conversion time?

	 4.	Name two types of output errors in an ADC.

12–3  Methods of Digital-to-Analog Conversion

Digital-to-analog conversion is an important part of a digital processing system. Once the 
digital data has been processed, it is converted back to analog form. In this section, we will 
examine the theory of operation of two basic types of digital-to-analog converters (DACs) 
and learn about their performance characteristics.

After completing this section, you should be able to

u	 Explain the operation of a binary-weighted-input DAC

u	 Explain the operation of an R/2R ladder DAC

u	 Discuss resolution, accuracy, linearity, monotonicity, and settling time in a DAC

u	 Discuss the testing of DACs for nonmonotonicity, differential nonlinearity, low or 
high gain, and offset error

Binary-Weighted-Input Digital-to-Analog Converter

One method of digital-to-analog conversion uses a resistor network with resistance values 
that represent the binary weights of the input bits of the digital code. Figure 12–26 shows 
a 4-bit DAC of this type. Each of the input resistors will either have current or have no cur-
rent, depending on the input voltage level. If the input voltage is zero (binary 0), the current 
is also zero. If the input voltage is HIGH (binary 1), the amount of current depends on the 
input resistor value and is different for each input resistor, as indicated in the figure.
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FIGURE 12–27 

EXAMPLE 12–3

Determine the output of the DAC in Figure 12–27(a) if the waveforms representing a sequence of 4-bit numbers in Figure 
12–27(b) are applied to the inputs. Input D0 is the least significant bit (LSB).

Solution

First, determine the current for each of the weighted inputs. Since the inverting (- ) input of the op-amp is at 0 V (vir-
tual ground) and a binary 1 corresponds to +5 V, the current through any of the input resistors is 5 V divided by the 
resistance value.

 I0 =
5 V

200 k�
= 0.025 mA

 I1 =
5 V

100 k�
= 0.05 mA

 I2 =
5 V

50 k�
= 0.1 mA

 I3 =
5 V

25 k�
= 0.2 mA

Almost no current goes into the inverting op-amp input because of its extremely high impedance. Therefore, assume that 
all of the current goes through the feedback resistor Rf. Since one end of Rf is at 0 V (virtual ground), the drop across Rf 
equals the output voltage, which is negative with respect to virtual ground.

 Vout(D0) = (10 k�)(-0.025 mA) = -0.25 V

 Vout(D1) = (10 k�)(-0.05 mA) = -0.5 V

 Vout(D2) = (10 k�)(-0.1 mA) = -1 V

 Vout(D3) = (10 k�)(-0.2 mA) = -2 V

From Figure 12–27(b), the first binary input code is 0000, which produces an output voltage of 0 V. The next input code 
is 0001, which produces an output voltage of -0.25 V. The next code is 0010, which produces an output voltage of -0.5 V. 
The next code is 0011, which produces an output voltage of -0.25 V + -0.5 V = -0.75 V. Each successive binary code 
increases the output voltage by -0.25 V, so for this particular straight binary sequence on the inputs, the output is a stairstep 
waveform going from 0 V to -3.75 V in -0.25 V steps. This is shown in Figure 12–28.

Disadvantages of this type of DAC are the number of different resistor values and the 
fact that the voltage levels must be exactly the same for all inputs. For example, an 8-bit 
converter requires eight resistors, ranging from some value of R to 128R in binary-weighted 
steps. This range of resistors requires tolerances of one part in 255 (less than 0.5%) to accu-
rately convert the input, making this type of DAC very difficult to mass-produce.
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Related Problem

Reverse the input waveforms to the DAC in Figure 12–27 (D3 to D0, D2 to D1, D1 to D2, D0 to D3) and determine the output.
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FIGURE 12–28  Output of the DAC in Figure 12–27.

The R/2R Ladder Digital-to-Analog Converter

Another method of digital-to-analog conversion is the R/2R ladder, as shown in Figure 
12–29 for four bits. It overcomes one of the problems in the binary-weighted-input DAC in 
that it requires only two resistor values.
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FIGURE 12–29  An R/2R ladder DAC.

Start by assuming that the D3 input is HIGH (+5 V) and the others are LOW (ground, 
0 V). This condition represents the binary number 1000. A circuit analysis will show that 
this reduces to the equivalent form shown in Figure 12–30(a). Essentially no current goes 
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FIGURE 12–30  Analysis of the R/2R ladder DAC.

through the 2R equivalent resistance because the inverting input is at virtual ground. Thus, 
all of the current (I = 5 V/2R) through R7 also goes through Rf, and the output voltage is -5 V. 
The operational amplifier keeps the inverting (- ) input near zero volts (L0 V) because of 
negative feedback. Therefore, all current goes through Rf rather than into the inverting input.
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Figure 12–30(b) shows the equivalent circuit when the D2 input is at +5 V and the oth-
ers are at ground. This condition represents 0100. If we thevenize* looking from R8, we 
get 2.5 V in series with R, as shown. This results in a current through Rf of I = 2.5 V/2R, 
which gives an output voltage of -2.5 V. Keep in mind that there is no current into the op-
amp inverting input and that there is no current through the equivalent resistance to ground 
because it has 0 V across it, due to the virtual ground.

Figure 12–30(c) shows the equivalent circuit when the D1 input is at +5 V and the others 
are at ground. This condition represents 0010. Again thevenizing looking from R8, you get 
1.25 V in series with R as shown. This results in a current through Rf of I = 1.25 V/2R, 
which gives an output voltage of -1.25 V.

In part (d) of Figure 12–30, the equivalent circuit representing the case where D0 is at 
+5 V and the other inputs are at ground is shown. This condition represents 0001. Theve-
nizing from R8 gives an equivalent of 0.625 V in series with R as shown. The resulting 
current through Rf is I = 0.625 V/2R, which gives an output voltage of -0.625 V.

Notice that each successively lower-weighted input produces an output voltage that is 
halved, so that the output voltage is proportional to the binary weight of the input bits.

Performance Characteristics of Digital-to-Analog Converters

The performance characteristics of a DAC include resolution, accuracy, linearity, monoto-
nicity, and settling time, each of which is discussed in the following list:

•	 Resolution. The resolution of a DAC is the reciprocal of the number of discrete steps 
in the output. This, of course, is dependent on the number of input bits. For example, 
a 4-bit DAC has a resolution of one part in 24 -  1 (one part in fifteen). Expressed as 
a percentage, this is (1/15)100 = 6.67%. The total number of discrete steps equals 
2n -  1, where n is the number of bits. Resolution can also be expressed as the number 
of bits that are converted.

•	 Accuracy. Accuracy is derived from a comparison of the actual output of a DAC with 
the expected output. It is expressed as a percentage of a full-scale, or maximum, out-
put voltage. For example, if a converter has a full-scale output of 10 V and the accuracy 
is ;0.1%, then the maximum error for any output voltage is (10 V)(0.001) = 10 mV. 
Ideally, the accuracy should be no worse than ;1/2 of a least significant bit. For an 
8-bit converter, the least significant bit is 0.39% of full scale. The accuracy should be 
approximately ;0.2%.

•	 Linearity. A linear error is a deviation from the ideal straight-line output of a DAC. 
A special case is an offset error, which is the amount of output voltage when the 
input bits are all zeros.

•	 Monotonicity. A DAC is monotonic if it does not take any reverse steps when it is 
sequenced over its entire range of input bits.

•	 Settling time. Settling time is normally defined as the time it takes a DAC to settle 
within ;1/2 LSB of its final value when a change occurs in the input code.

*Thevenin’s theorem states that any circuit can be reduced to an equivalent voltage source in series with an 
equivalent resistance.

EXAMPLE 12–4

Determine the resolution, expressed as a percentage, of the following:

(a)	 an 8-bit DAC

(b)	 a 12-bit DAC
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Solution

(a)	 For the 8-bit converter,

1

28 - 1
* 100 =

1

255
* 100 = 0.392%

(b)	 For the 12-bit converter,

1

212 - 1
* 100 =

1

4095
* 100 = 0.0244%

Related Problem

Calculate the resolution for a 16-bit DAC.

Testing Digital-to-Analog Converters

The concept of DAC testing is illustrated in Figure 12–31. In this basic method, a sequence 
of binary codes is applied to the inputs, and the resulting output is observed. The binary 
code sequence extends over the full range of values from 0 to 2n - 1 in ascending order, 
where n is the number of bits.

Binary test
sequence

source

DAC
Binary
code

0
1
2

n

Analog output

HARDCOPY

HORIZONTALVERTICAL TRIGGER

LEVEL

TRIGGER MENU

SET LEVEL TO 50%

FORCE TRIGGER

CURSOR DISPLAYUTILITY

MEASURE ACQUIRESAVE/RECALL AUTOSET

RUN/STOP

POSITION

HORIZONTAL
MENU

SEC/DIV

5 s 5  ns

HOLDOFF

POSITION

VOLTS/DIV

CURSOR 2

CH 2
MENU

5 V 2 mV

POSITION

VOLTS/DIV

CURSOR 1

CH 1
MENU

5 V 2 mV

MATH
MENU

CH 1 CH 2 EXT TRIGPROBE COMP
5 V

MENUS

TRIGGER VIEW

0 to 2n – 1

FIGURE 12–31  Basic test setup for a DAC.

The ideal output is a straight-line stairstep as indicated. As the number of bits in the 
binary code is increased, the resolution is improved. That is, the number of discrete steps 
increases, and the output approaches a straight-line linear ramp.

Digital-to-Analog Conversion Errors

Several digital-to-analog conversion errors to be checked for are shown in Figure 12–32, 
which uses a 4-bit conversion for illustration purposes. A 4-bit conversion produces fifteen 
discrete steps. Each graph in the figure includes an ideal stairstep ramp for comparison 
with the faulty outputs.

Nonmonotonicity

The step reversals in Figure 12–32(a) indicate nonmonotonic performance, which is a 
form of nonlinearity. In this particular case, the error occurs because the 21 bit in the 
binary code is interpreted as a constant 0. That is, a short is causing the bit input line to 
be stuck LOW.
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Binary
input

Analog
output

Binary
input

Analog
output

(a) Nonmonotonic output (green)

Ideal

(c) High and low gains (green)

High gain

Low gain

01
10

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
11

01
01

01
00

00
11

00
10

00
00

00
01

11
11

01
10

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
11

01
01

01
00

00
11

00
10

00
00

00
01

11
11

Binary
input01

10

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
11

01
01

01
00

00
11

00
10

00
00

00
01

11
11

(b) Differential nonlinearity (green)

Analog
output

Binary
input

Analog
output

(d) Offset error (green)

01
10
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10
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01
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00

10
11

10
10
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01
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00
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11

01
01

01
00

00
11

00
10

00
00

00
01

11
11

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
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10
11
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13

1

14
15

0

2
3
4
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6
7
8
9
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11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15
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FIGURE 12–32  Illustrations of several digital-to-analog conversion errors.

Differential Nonlinearity

Figure 12–32(b) illustrates differential nonlinearity in which the step amplitude is less than it 
should be for certain input codes. This particular output could be caused by the 22 bit having 
an insufficient weight, perhaps because of a faulty input resistor. We could also see steps with 
amplitudes greater than normal if a particular binary weight were greater than it should be.

Low or High Gain

Output errors caused by low or high gain are illustrated in Figure 12–32(c). In the case of 
low gain, all of the step amplitudes are less than ideal. In the case of high gain, all of the 
step amplitudes are greater than ideal. This situation may be caused by a faulty feedback 
resistor in the op-amp circuit.

Offset Error

An offset error is illustrated in Figure 12–32(d). Notice that when the binary input is 0000, 
the output voltage is nonzero and that this amount of offset is the same for all steps in the 
conversion. A faulty op-amp may be the culprit in this situation.
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Solution

The DAC in this case is nonmonotonic. Analysis of the output reveals that the device is converting the following sequence, 
rather than the actual binary sequence applied to the inputs.

0010, 0011, 0010, 0011, 0110, 0111, 0110, 0111, 1010, 1011, 1010, 1011, 1110, 1111,1110, 1111

Apparently, the 21 bit is stuck in the HIGH (1) state. To find the problem, first monitor the bit input pin to the device. If 
it is changing states, the fault is internal to the DAC and it should be replaced. If the external pin is not changing states and 
is always HIGH, check for an external short to +V that may be caused by a solder bridge somewhere on the circuit board.

Related Problem

Determine the output of a DAC when a straight 4-bit binary sequence is applied to the inputs and the 20 bit is stuck HIGH.

The Reconstruction Filter

The output of the DAC is a “stairstep” approximation of the original analog signal after 
it has been processed by the digital signal processor (DSP), which is a special type of 
microprosessor that processes data in real time. The purpose of the low-pass reconstruction 
filter (sometimes called a postfilter) is to smooth out the DAC output by eliminating the 
higher frequency content that results from the fast transitions of the “stairsteps,” as roughly 
illustrated in Figure 12–34.

Final analog output

Reconstruction
filter

Output of the DAC

fg12_03400

FIGURE 12–34  The reconstruction filter smooths the output of the DAC.

EXAMPLE 12–5

The DAC output in Figure 12–33 is observed when a straight 4-bit binary sequence is applied to the inputs. Identify the 
type of error, and suggest an approach to isolate the fault.

Binary
input

Analog
output

01
10

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
11

01
01

01
00

00
11

00
10

00
00

00
01

11
11

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

fg12_03300

FIGURE 12–33 
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Section 12–3  Checkup

	 1.	What is the disadvantage of the DAC with binary-weighted inputs?

	 2.	What is the resolution of a 4-bit DAC?

	 3.	How do you detect nonmonotonic behavior in a DAC?

	 4.	What effect does low gain have on a DAC output?

12–4  Digital Signal Processing

Digital signal processing converts signals that naturally occur in analog form, such as 
sound, video, and information from sensors, to digital form and uses digital techniques to 
enhance and modify analog signal data for various applications.

After completing this section, you should be able to

u	 Discuss digital signal processing

u	 Draw a basic block diagram of a digital signal processing system

A digital signal processing system first translates a continuously varying analog signal 
into a series of discrete levels. This series of levels follows the variations of the analog 
signal and resembles a staircase, as illustrated for the case of a sine wave in Figure 12–35. 
The process of changing the original analog signal to a “stairstep” approximation is accom-
plished by a sample-and-hold circuit.

Each held level is converted to
a binary code by an ADC.

Hold

Sample

fg12_03500

FIGURE 12–35  An original analog signal (sine wave) and its “stairstep” approximation.

Next, the “stairstep” approximation is quantized into binary codes that represent each 
discrete step on the “stairsteps” by a process called analog-to-digital (A/D) conversion. The 
circuit that performs A/D conversion is an analog-to-digital converter (ADC).

Once the analog signal has been converted to a binary coded form, it is applied to a 
DSP (digital signal processor). The DSP can perform various operations on the incoming 
data, such as removing unwanted interference, increasing the amplitude of some signal 
frequencies and reducing others, encoding the data for secure transmissions, and detecting 
and correcting errors in transmitted codes. DSPs make possible, among many other things, 
the cleanup of sound recordings, the removal of echos from communications lines, the 
enhancement of images from CT scans for better medical diagnosis, and the scrambling of 
cellular phone conversations for privacy.

After a DSP processes a signal, the signal can be converted back to an enhanced 
version of the original analog signal. This is accomplished by a digital-to-analog 
converter (DAC). Figure 12–36 shows a basic block diagram of a typical digital signal 
processing system.
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DAC
Reconstruction

filter

Enhanced
analog
signal

10110
01101
00011
11100

DSP

10110
01101
00011
11100

Analog
signal ADC

Sample-and-
hold circuit

Anti-aliasing
filter

fg12_03600

FIGURE 12–36  Basic block diagram of a typical digital signal processing system.

DSPs are actually a specialized type of microprocessor but are different from general-
purpose microprocessors in a couple of significant ways. Typically, microprocessors are 
designed for general-purpose functions and operate with large software packages. DSPs 
are used for special-purpose applications; they are very fast number crunchers that must 
work in real time by processing information as it happens using specialized algorithms 
(programs). The analog-to-digital converter (ADC) in a system must take samples of the 
incoming analog data often enough to catch all the relevant fluctuations in the signal ampli-
tude, and the DSP must keep pace with the sampling rate of the ADC by doing its calcula-
tions as fast as the sampled data are received. Once the digital data are processed by the 
DSP, they go to the digital-to-analog converter (DAC) and reconstruction filter for conver-
sion back to analog form.

Section 12–4  Checkup

	 1.	What does DSP stand for?

	 2.	What does ADC stand for?

	 3.	What does DAC stand for?

	 4.	An analog signal is changed to a binary coded form by what circuit?

	 5.	A binary coded signal is changed to analog form by what circuit?

12–5  The Digital Signal Processor (DSP)

Essentially, a digital signal processor (DSP) is a special type of microprocessor that 
processes data in real time. Its applications focus on the processing of digital data that 
represents analog signals. A DSP, like a microprocessor, has a central processing unit 
(CPU) and memory units in addition to many interfacing functions. Every time you use 
your cellular telephone, you are using a DSP, and this is only one example of its many 
applications.

After completing this chapter, you should be able to

u	 Explain the basic concepts of a DSP

u	 List some of the applications of DSPs

u	 Describe the basic functions of a DSP in a cell phone

u	 Discuss the TMS320C6000 series DSP

The digital signal processor (DSP) is the heart of a digital signal processing system. It 
takes its input from an ADC and produces an output that goes to a DAC, as shown in Figure 
12–37. As you have learned, the ADC changes an analog waveform into data in the form 
of a series of binary codes that are then applied to the DSP for processing. After being pro-
cessed by the DSP, the data go to a DAC for conversion back to analog form.
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ADC DSP
Analog

input

Digital input
from ADC

DAC

Digital output
to DAC

Analog
output
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FIGURE 12–37  The DSP has a digital input and produces a digital output.

DSP Programming

DSPs are typically programmed in either assembly language or in C. Because programs 
written in assembly language can usually execute faster and because speed is critical in most 
DSP applications, assembly language is used much more in DSPs than in general-purpose 
microprocessors. Also, DSP programs are usually much shorter than traditional micropro-
cessor programs because of their very specialized applications where much redundancy is 
used. In general, the instruction sets for DSPs tend to be smaller than for microprocessors.

DSP Applications

The DSP, unlike the general-purpose microprocessor, must typically process data in real 
time; that is, as it happens. Many applications in which DSPs are used cannot tolerate any 
noticeable delays, requiring the DSP to be extremely fast. In addition to cell phones, digital 
signal processors (DSPs) are used in multimedia computers, video recorders, CD players, 
hard disk drives, digital radio modems, and other applications to improve the signal quality. 
DSPs are also used in television applications. For example, television converters use DSP 
to provide compatibility with various television standards.

An important application of DSPs is in signal compression and decompression. In CD 
systems, for example, the music on the CD is in a compressed form so that it doesn’t use 
as much storage space. It must be decompressed in order to be reproduced. Also signal 
compression is used in cell phones to allow a greater number of calls to be handled simul-
taneously in a local cell. 

Telecommunications

The field of telecommunications involves transferring all types of information from one 
location to another, including telephone conversations, television signals, and digital 
data. Among other functions, the DSP facilitates multiplexing many signals onto one 
transmission channel because information in digital form is relatively easy to multiplex 
and demultiplex.

At the transmitting end of a telecommunications system, DSPs are used to compress 
digitized voice signals for conservation of bandwidth. Compression is the process of reduc-
ing the data rate. Generally, a voice signal is converted to digital form at 8000 samples per 
second (sps), based on a Nyquist frequency of 4 kHz. If 8 bits are used to encode each 
sample, the data rate is 64 kbps. In general, reducing (compressing) the data rate from 64 kbps 
to 32 kbps results in no loss of sound quality. When the data are compressed to 8 kbps, 
the sound quality is reduced noticeably. When compressed to the minimum of 2 kbps, the 
sound is greatly distorted but still usable for some applications where only word recogni-
tion and not quality is important. At the receiving end of a telecommunications system, the 
DSP decompresses the data to restore the signal to its original form.

Echoes, a problem in many long distance telephone connections, occur when a por-
tion of a voice signal is returned with a delay. For shorter distances, this delay is barely 
noticeable; but as the distance between the transmitter and the receiver increases, so does 
the delay time of the echo. DSPs are used to effectively cancel the annoying echo, which 
results in a clear, undisturbed voice signal.

InfoNote

Sound cards used in computers 
use an ADC to convert sound from 
a microphone, audio CD player, or 
other source into a digital signal. 
The ADC sends the digital signal to 
a digital signal processor (DSP). 
Based on instructions from a 
ROM, one function of the DSP is 
to compress the digital signal so it 
uses less storage space. The DSP 
then sends the compressed data to 
the computer’s processor which, 
in turn, sends the data to a hard 
drive or CD ROM for storage. To 
play a recorded sound, the stored 
data is retrieved by the processor 
and sent to the DSP where it is 
decompressed and sent to a DAC. 
The output of the DAC, which is a 
reproduction of the original sound 
signal, is applied to the speakers.
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Music Processing

The DSP is used in the music industry to provide filtering, signal addition and subtraction, 
and signal editing in music preparation and recording. Also, another application of the DSP 
is to add artificial echo and reverberation, which are usually minimized by the acoustics 
of a sound studio, in order to simulate ideal listening environments from concert halls to 
small rooms.

Speech Generation and Recognition

DSPs are used in speech generation and recognition to enhance the quality of man/machine 
communication. The most common method used to produce computer-generated speech is 
digital recording. In digital recording, the human voice is digitized and stored, usually in a 
compressed form. During playback the stored voice data are uncompressed and converted 
back into the original analog form. Approximately an hour of speech can be stored using 
about 3 MB of memory.

Speech recognition is much more difficult to accomplish than speech generation. The 
DSP is used to isolate and analyze each word in the incoming voice signal. Certain param-
eters are identified in each word and compared with previous examples of the spoken word 
to create the closest match. Most systems are limited to a few hundred words at best. Also, 
significant pauses between words are usually required and the system must be “trained” for 
a given individual’s voice. Speech recognition is an area of tremendous research effort and 
will eventually be applied in many commercial applications.

Radar

In radio detection and ranging (radar) applications, DSPs provide more accurate determi-
nation of distance using data compression techniques, decrease noise using filtering tech-
niques, thereby increasing the range, and optimize the ability of the radar system to identify 
specific types of targets. DSPs are also used in similar ways in sonar systems.

Image Processing

The DSP is used in image-processing applications such as the computed tomography (CT) 
and magnetic resonance imaging (MRI), which are widely used in the medical field for 
looking inside the human body. In CT, X-rays are passed through a section of the body 
from many directions. The resulting signals are converted to digital form and stored. This 
stored information is used to produce calculated images that appear to be slices through the 
human body that show great detail and permit better diagnosis.

Instead of X-rays, MRI uses magnetic fields in conjunction with radio waves to probe 
inside the human body. MRI produces images, just as CT, and provides excellent discrimi-
nation between different types of tissue as well as information such as blood flow through 
arteries. MRI depends entirely on digital signal processing methods.

In applications such as video telephones, digital television, and other media that provide 
moving pictures, the DSP uses image compression to reduce the number of bits needed, 
making these systems commercially feasible.

Filtering

DSPs are commonly used to implement digital filters for the purposes of separating signals 
that have been combined with other signals or with interference and noise and for restor-
ing signals that are distorted. Although analog filters are quite adequate for some applica-
tions, the digital filter is generally much superior in terms of the performance that can be 
achieved. One drawback to digital filters is that the execute time required produces a delay 
from the time the analog signal is applied until the time the output appears. Analog filters 
present no delay problems because as soon as the input occurs, the response appears on 
the output. Analog filters are also less expensive than digital filters. Regardless of this, the 
overall performance of the digital filter is far superior in many applications.
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The DSP in a Cellular Telephone

The digital cellular telephone is an example of how a DSP can be used. Figure 12–38 shows 
a simplified block diagram of a digital cell phone. The voice codec (codec is the abbreviation 
for coder/decoder) contains, among other functions, the ADC and DAC necessary to convert 
between the analog voice signal and a digital voice format. Sigma-delta conversion is typically 
used in most cell phone applications. For transmission, the voice signal from the microphone 
is converted to digital form by the ADC in the codec and then it goes to the DSP for processing. 
From the DSP, the digital signal goes to the rf (radio frequency) section where it is modulated 
and changed to the radio frequency for transmission. An incoming rf signal containing voice 
data is picked up by the antenna, demodulated, and changed to a digital signal. It is then applied 
to the DSP for processing, after which the digital signal goes to the codec for conversion back 
to the original voice signal by the DAC. It is then amplified and applied to the speaker.

Amplifier Filter ADC

DACFilterAmplifier

Control

Codec

Keypad

Display

Microphone

Speaker

DSP

(modulation,
demodulation,

frequency
 conversion,
rf amplifier)

Antenna

RF section

fg12_03800

FIGURE 12–38  Simplified block diagram of a digital cellular phone.

Functions Performed by the DSP

In a cellular phone application, the DSP performs many functions to improve and facilitate 
the reception and transmission of a voice signal. Some of these DSP functions are as follows:

•	 Speech compression. The rate of the digital voice signal is reduced significantly for 
transmission in order to meet the bandwidth requirements.

•	 Speech decompression. The rate of the received digital voice signal is returned to its 
original rate in order to properly reproduce the analog voice signal.

•	 Protocol handling. The cell phone communicates with the nearest base in order to 
establish the location of the cell phone, allocates time and frequency slots, and 
arranges handover to another base station as the phone moves into another cell.

•	 Error detection and correction. During transmission, error detection and correction 
codes are generated and, during reception, detect and correct errors induced in the rf 
channel by noise or interference.

•	 Encryption. Converts the digital voice signal to a form for secure transmission and 
converts it back to original form during reception.

Basic DSP Architecture

As mentioned before, a DSP is basically a specialized microprocessor optimized for speed 
in order to process data in real time. Many DSPs are based on what is known as the Harvard 
architecture, which consists of a central processing unit (CPU) and two memories, one for 
data and the other for the program, as shown by the block diagram in Figure 12–39.
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FIGURE 12–40  General block diagram of the TMS320C6000 series DSP.
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FIGURE 12–39  Many DSPs use the Harvard architecture (two memories).

A Specific DSP

DSPs are manufactured by several companies including Texas Instruments, Motorola, and 
Analog Devices. DSPs are available for both fixed-point and floating-point processing. Recall 
from Chapter 2 that these two methods differ in the way numbers are stored and manipulated. 
All floating-point DSPs can also handle numbers in fixed-point format. Fixed-point DSPs are 
less expensive than the floating-point versions and, generally, can operate faster. The details 
of DSP architecture can vary significantly, even within the same family. Let’s look briefly at 
one particular DSP series as an example of how a DSP is generally organized.

Examples of DSPs available in the TMS320C6000 series include the TMS320C62xx, 
the TMS320C64xx, and the TMS320C67xx, which are part of Texas Instrument’s TMS320 
family of devices. A general block diagram for these devices is shown in Figure 12–40.

The DSPs have a central processing unit (CPU), also known as the DSP core, that 
contains 64 general-purpose 32-bit registers in the C64xx and 32 general-purpose 32-bit 
registers in the C62xx and the C67xx. The C67xx can handle floating-point operations, 
whereas the C62xx and C64xx are fixed-point devices.

Each DSP has eight functional units that contain two 16-bit multipliers and six arithme-
tic logic units (ALUs). The performance of the three DSPs in the C6000 series in terms of 
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MIPS (Million Instructions Per Second), MFLOPS (Million Floating-point Operations Per 
Second), and MMACS (Million Multiply/Accumulates per Second) is shown in Table 12–3.

Data Paths in the CPU

In the CPU, the program fetch, instruction dispatch, and instruction decode sections can 
provide eight 32-bit instructions to the functional units during every clock cycle. The CPU 
is split into two data paths, and instruction processing occurs in both data paths A and B. 
Each data path contains half of the general-purpose registers (16 in the C62xx and C67xx 
or 32 in the C64xx) and four functional units. The control register and logic are used to 
configure and control the various processor operations.

Functional Units

Each data path has four functional units. The M units (labeled .M1 and .M2 in Figure 
12–40) are dedicated multipliers. The L units (labeled .L1 and .L2) perform arithmetic, 
logic, and miscellaneous operations. The S units (labeled .S1 and .S2) perform compare, 
shift, and miscellaneous arithmetic operations. The D units (labeled .D1 and .D2) perform 
load, store, and miscellaneous operations.

Pipeline

A pipeline allows multiple instructions to be processed simultaneously. A pipeline opera-
tion consists of three stages through which all instructions flow: fetch, decode, execute. 
Eight instructions at a time are first fetched from the program memory; they are then 
decoded, and finally they are executed.

During fetch, the eight instructions (called a packet) are taken from memory in four 
phases, as shown in Figure 12–41.

•	 Program address generate (PG). The program address is generated by the CPU.

•	 Program address send (PS). The program address is sent to the memory.

•	 Program access ready wait (PW). A memory read operation occurs.

•	 Program fetch packet receive (PR). The CPU receives the packet of instructions.

Program
address
generate

Program
access

ready wait

Program
fetch

 packet receive

Program
address

send

(PG) (PW) (PR)(PS)

fg12_04100

FIGURE 12–41  The four fetch phases of the pipeline operation.

Two phases make up the instruction decode stage of pipeline operation, as shown in 
Figure 12–42. The instruction dispatch (DP) phase is where the instruction packets are 
split into execute packets and assigned to the appropriate functional units. The instruction 
decode (DC) phase is where the instructions are decoded.

Table 12–3

TMS320C6000 series DSP data processing performance.

DSP Type Application
Processing  

Speed

Multiply/
Accumulate  

Speed

C62xx Fixed-point General-purpose 1200–2400 MIPS 300–600 MMACS
C64xx Fixed-point Special-purpose 3200–4800 MIPS 1600–2400 MMACS
C67xx Floating-point General-purpose 600–1000 MFLOPS 200–333 MMACS

Dispatch Decode

(DP) (DC)

fg12_04200

FIGURE 12–42  The two 
decode phases of the pipeline 
operation.

M12_FLOY5983_11_GE_C12.indd Page 729  12/11/14  7:20 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



730      Signal Conversion and Processing

The execute stage of the pipeline operation is where the instructions from the decode 
stage are carried out. The execute stage has a maximum of five phases (E1 through E5), as 
shown in Figure 12–43. All instructions do not use all five phases. The number of phases 
used during execution depends on the type of instruction. Part of the execution of an 
instruction requires getting data from the data memory.

E5E1 E3 E4E2

fg12_04300

FIGURE 12–43  The five execute phases of pipeline operation.

Internal DSP Memory and Interfaces

As you can see in Figure 12–40, there are two internal memories, one for data and one for 
program. The program memory is organized in 256 bit packets (eight 32-bit instructions) 
and there are 64 kB of capacity. The data memory also has a capacity of 64 kB and can 
be accessed in 8-, 16-, 32-, or 64-bit word lengths, depending on the specific device in the 
series. Both internal memories are accessed with a 32-bit address. The DMA (Direct Mem-
ory Access) is used to transfer data without going through the CPU. The EMIF (External 
Memory Interface) is used to support external memories when required in an application. 
Additional interface is provided for serial I/O ports and other external devices.

Timers

There are two general-purpose timers in the DSP that can be used for timed events, count-
ing, pulse generation, CPU interrupts, and more.

Packaging

The TMS 3206000 series processors are available in 352-pin ball grid array (BGA) pack-
ages, as shown in Figure 12–44, and are implemented with CMOS technology.
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FIGURE 12–44  A 352-pin BGA package.
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Section 12–5  Checkup

	 1.	What is meant by the Harvard architecture?

	 2.	What is a DSP core?

	 3.	Name two categories of DSPs according to the type of numbers handled.

	 4.	What are the two types of internal memory?

	 5.	Define (a) MIPS (b) MFLOPS (c) MMACS.

	 6.	Basically, what does pipelining accomplish?

	 7.	Name the three stages of pipeline operation.

	 8.	What happens during the fetch phase?

Summary

•	 Sampling converts an analog signal into a series of impulses, each representing the signal ampli-
tude at a given instant in time.

•	 The sampling theorem states that the sampling frequency must be at least twice the highest 
sampled frequency (Nyquist frequency).

•	 Analog-to-digital conversion changes an analog signal into a series of digital codes.

•	 Four types of analog-to-digital converters (ADCs) are flash (simultaneous), dual-slope, successive-
approximation, and sigma-delta.

•	 Digital-to-analog conversion changes a series of digital codes that represent an analog signal 
back into the analog signal.

•	 Two types of digital-to-analog converters (DACs) are binary-weighted input and R/2R ladder.

•	 Digital signal processing is the digital processing of analog signals, usually in real-time, for the 
purpose of modifying or enhancing the signal in some way.

•	 In general, a digital signal processing system consists of an anti-aliasing filter, a sample-and-
hold circuit, an analog-to-digital converter, a DSP (digital signal processor), a digital-to-analog 
converter, and a reconstruction filter.

•	 A DSP is a specialized microprocessor optimized for speed in order to process data as it occurs 
(real-time).

•	 Most DSPs are based on the Harvard architecture, which means that there is a data memory and 
a program memory.

•	 A pipeline operation consists of fetch, decode, and execute stages.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Aliasing  The effect created when a signal is sampled at less than twice the signal frequency. Aliasing 
creates unwanted frequencies that interfere with the signal frequency when the signal is recovered.

Analog-to-digital converter (ADC)  A circuit used to convert an analog signal to digital form.

Decode  A stage of the DSP pipeline operation in which instructions are assigned to functional 
units and are decoded.

Digital signal processor (DSP)  A special type of microprocessor that processes data in real time.

Digital-to-analog converter (DAC)  A circuit used to convert the digital representation of an 
analog signal back to the analog signal.

DSP core  The central processing unit of a DSP.

Execute  A stage of the DSP pipeline operation in which the decoded instructions are carried out.
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Fetch  A stage of the DSP pipeline operation in which an instruction is obtained from the program 
memory.

MFLOPS  Million floating-point operations per second.

MIPS  Million instructions per second.

MMACS  Million multiply/accumulates per second.

Nyquist frequency  The highest signal frequency that can be sampled at a specified sampling 
frequency; a frequency equal to or less than half the sampling frequency.

Pipeline  Part of the DSP architecture that allows multiple instructions to be processed 
simultaneously.

Quantization  The process whereby a binary code is assigned to each sampled value during 
analog-to-digital conversion.

Sampling  The process of taking a sufficient number of discrete values at points on a waveform 
that will define the shape of the waveform.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 An analog signal can be converted to a digital signal using sampling.

	 2.	 An ADC is an analog data component.

	 3.	 Aliasing is a desired factor in sampling.

	 4.	 A higher sampling rate is more accurate than a lower sampling rate for a given analog signal.

	 5.	 MIPS stands for memory instructions per second.

	 6.	 Successful approximation is an analog-to-digital conversion method.

	 7.	 Delta modulation is based on the difference of two successive samples.

	 8.	 Two types of DAC are the binary-weighted input and the R/2R ladder.

	 9.	 The process of converting an analog value to a code is called quantization.

	10.	 A flash ADC differs from a simultaneous ADC.

Self-Test

Answers are at the end of the chapter.

	 1.	 Which of following is not a type of ADC?
(a)	 Flash ADC	 (b)  Dual slope ADC
(c)	 Recessive approximation ADC	 (d)  sigma-delta ADC

	 2.	 A DAC is a
(a)	 digital-to-analog computer	 (b)  digital analysis calculator
(c)	 data accumulation converter	 (d)  digital-to-analog converter

	 3.	 Aliasing results in
(a)	 oversampling
(b)	 undersampling
(c)	 guard-band formation
(d)	 perfect sampling

	 4.	 According to the sampling theorem, the sampling frequency should be
(a)	 less than half the highest signal frequency
(b)	 greater than twice the highest signal frequency
(c)	 less than half the lowest signal frequency
(d)	 greater than the lowest signal frequency
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	 5.	 An op-amp is a linear amplifier which has
(a)	 one input and one output	 (b)  one input and two outputs
(c)	 two inputs and one output	 (d)  two inputs and two outputs

	 6.	 The quantization process
(a)	 converts the sample-and-hold output to binary code
(b)	 converts a sample impulse to a level
(c)	 converts a sequence of binary codes to a reconstructed analog signal
(d)	 filters out unwanted frequencies before sampling takes place

	 7.	 Generally, an analog signal can be reconstructed more accurately with
(a)	 more quantization levels	 (b)  fewer quantization levels
(c)	 a higher sampling frequency	 (d)  a lower sampling frequency
(e)	 either answer (a) or (c)

	 8.	 The throughput of a flash ADC is measured in
(a)	 displacement per second	 (b)  distance per second
(c)	 samples per minute	 (d)  samples per second

	 9.	 A digital voltmeter uses a
(a)	 flash ADC	 (b)  successive approximation ADC
(c)	 sigma-delta ADC	 (d)  dual-slope ADC

	10.	 The most common ADC seen in telecommunications based on audio signals is
(a)	 flash ADC
(b)  successive approximation ADC
(c)	 sigma-delta ADC
(d)  dual-slope ADC

	11.	 In a binary weighted DAC, the lowest-value resistor corresponds to
(a)	 the highest binary weighted input
(b)	 the lowest binary weighted input
(c)	 the first input
(d)	 the last input

	12.	 DSPs are typically programmed in
(a)	 assembly level languages
(b)	 the C programming language
(c)	 neither (a) nor (b)
(d)	 both (a) and (b)

	13.	 A digital signal processing system usually operates in
(a)	 real time	 (b)  imaginary time
(c)	 compressed time	 (d)  computer time

	14.	 The term Harvard architecture means
(a)	 a CPU and a main memory
(b)	 a CPU and two data memories
(c)	 a CPU, a program memory, and a data memory
(d)	 a CPU and two register files

	15.	 The minimum number of general-purpose registers in the TMS320C6000 series DSPs is
(a)	 32	 (b)  64
(c)	 16	 (d)  8

	16.	 The two internal memories in the TMS320C6000 series each have a capacity of
(a)	 1 MB	 (b)  512 kB
(c)	 64 kB	 (d)  32 kB

	17.	 In the TMS320C6000 series pipeline operation, the number of instructions processed simulta-
neously is
(a)	 eight	 (b)  four
(c)	 two	 (d)  one

	18.	 The stage of the pipeline operation in which instructions are retrieved from the memory is 
called
(a)	 execute	 (b)  accumulate
(c)	 decode	 (d)  fetch
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Problems

Answers to odd-numbered problems are at the end of the book.

Section 12–1 Analog-to-Digital Conversion
	 1.	 The waveform shown in Figure 12–45 is applied to a sampling circuit and is sampled every 

3 ms. Show the output of the sampling circuit. Assume a one-to-one voltage correspondence 
between the input and output.
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FIGURE 12–45 

	 2.	 The output of the sampling circuit in Problem 1 is applied to a hold circuit. Show the output of 
the hold circuit.

	 3.	 If the output of the hold circuit in Problem 2 is quantized using two bits, what is the resulting 
sequence of binary codes?

	 4.	 Repeat Problem 3 using 4-bit quantization.

	 5.	 (a)	  Reconstruct the analog signal from the 2-bit quantization in Problem 3.

(b)	 Reconstruct the analog signal from the 4-bit quantization in Problem 4.
	 6.	 Graph the analog function represented by the following sequence of binary numbers:

1111, 1110, 1101, 1100, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0101, 0110, 0111, 1000,
1001, 1010, 1011, 1100, 1100, 1100, 1011, 1010, 1001.

Section 12–2 Methods of Analog-to-Digital Conversion
	 7.	 The input voltage to a certain op-amp inverting amplifier is 5 mV, and the output is 1 V. What 

is the closed-loop voltage gain?

	 8.	 To achieve a closed-loop voltage gain of 220 with an inverting amplifier, what value of feed-
back resistor do you use if Ri = 2 k�?

	 9.	 What is the gain of an inverting amplifier that uses a 33 k� feedback resistor if the input 
resistor is 1 k�?

	10.	 How many comparators are required to form a 4-bit flash converter?

	11.	 Determine the binary output code of a 3-bit flash ADC for the analog input signal in Figure 12–46.
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FIGURE 12–46 
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	12.	 Repeat Problem 11 for the analog waveform in Figure 12–47.
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FIGURE 12–47 

	13.	 For a certain 2-bit successive-approximation ADC, the maximum ladder output is +8 V. If a 
constant +6 V is applied to the analog input, determine the sequence of binary states for the 
SAR.

	14.	 Repeat Problem 13 for a 4-bit successive-approximation ADC.

	15.	 An ADC produces the following sequence of binary numbers when an analog signal is applied 
to its input: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 0110, 0101, 0100, 0011, 0010, 
0001, 0000.

(a)	 Reconstruct the input digitally.
(b)	 If the ADC failed so that the code 0111 were missing, what would the reconstructed output 

look like?

Section 12–3 Methods of Digital-to-Analog Conversion
	16.	 In the 4-bit DAC in Figure 12–26, the lowest-weighted resistor has a value of 20 k�. What 

should the values of the other input resistors be?

	17.	 Determine the output of the DAC in Figure 12–48(a) if the sequence of 4-bit numbers in part 
(b) is applied to the inputs. The data inputs have a low value of 0 V and a high value of +5 V.
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FIGURE 12–48 

	18.	 Repeat Problem 17 for the inputs in Figure 12–49.
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FIGURE 12–49 
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	19.	 Determine the resolution expressed as a percentage, for each of the following DACs:

(a)	 2-bit        (b)  5-bit        (c)  12-bit

	20.	 Develop a circuit for generating an 8-bit binary test sequence for the test setup in Figure 12–31.

	21.	 A 4-bit DAC has failed in such a way that the MSB is stuck in the 0 state. Draw the analog 
output when a straight binary sequence is applied to the inputs.

	22.	 A straight binary sequence is applied to a 4-bit DAC, and the output in Figure 12–50 is 
observed. What is the problem?
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FIGURE 12–50 

Section 12–4 Digital Signal Processing
	23.	 How can an analog signal be converted into a stair-step approximation?

	24.	 Fill in the appropriate functional names for the digital signal processing system block diagram 
in Figure 12–51.

fg12_05100

FIGURE 12–51 

	25.	 Explain the purpose of analog-to-digital conversion.

Section 12–5 The Digital Signal Processor (DSP)
	26.	 A TMS320C62xx DSP has 32-bit instructions and is operating at 1800 MIPS. How many bytes 

per second is the DSP processing?

	27.	 If the clock rate of a TMS320C64xx DSP is 600 MHz, how many instructions can it provide to 
the CPU functional units in one second?
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Answers

Section Checkups
Section 12–1 Analog-to-Digital Conversion
	 1.	 Sampling is the process of converting an analog signal into a series of impulses, each 

representing the amplitude of the analog signal.

	 2.	 A sampled value is held to allow time to convert the value to a binary code.

	 3.	 The minimum sampling frequency is 40 kHz.

	 4.	 Quantization is the process of converting a sampled level to a binary code.

	 5.	 The number of bits determine quantization accuracy.

Section 12–2 Methods of Analog-to-Digital Conversion
	 1.	 The simultaneous (flash) method is fastest.

	 2.	 The sigma-delta method produces a single-bit data stream.

	 3.	 Yes, successive approximation has a fixed conversion time.

	 4.	 Missing code, incorrect code, and offset are types of ADC output errors.

Section 12–3 Methods of Digital-to-Analog Conversion
	 1.	 In a binary-weighted DAC, each resistor has a different value.

	 2.	 (1/(24 - 1))100% = 6.67%

	 3.	 A step reversal indicates nonmonotonic behavior in a DAC.

	 4.	 Step amplitudes in a DAC are less than ideal with low gain.

Section 12–4 Digital Signal Processing
	 1.	 DSP stands for digital signal processor.

	 2.	 ADC stands for analog-to-digital converter.

	 3.	 DAC stands for digital-to-analog converter.

	 4.	 The ADC changes an analog signal to binary coded form.

	 5.	 The DAC changes a binary coded signal to analog form.

Section 12–5 The Digital Signal Processor (DSP)
	 1.	 Harvard architecture means that there is a CPU and two memories, one for data and one for 

programs.

	 2.	 The DSP core is the CPU.

	 3.	 DSPs can be fixed-point or floating-point.

	 4.	 Internal memory types are data and program.

	 5.	 	(a)  MIPS—million instructions per second

(b)	 MFLOPS—million floating-point operations per second

(c)	 MMACS—million multiply/accumulates per second

	 6.	 Pipelining provides for the processing of multiple instructions simultaneously.

	 7.	 The stages of pipeline operation are fetch, decode, and execute.

	 8.	 During fetch, instructions are retrieved from the program memory.

	28.	 How many floating-point operations can a DSP do in one second if it is specified at 2000 
MFLOPS?

	29.	 List and describe the four phases of the fetch operation in a TMS320C6000 series DSP.

	30.	 List and describe the two phases of the decode operation in a TMS320C6000 series DSP.
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Related Problems for Examples
	12–1	 100, 111, 100, 000, 011, 110. Yes, information is lost.

	12–2	 See Figure 12–52.

	12–3	 See Figure 12–53.

	12–4	 (1/(216 - 1))100% = 0.00153%

	12–5	 See Figure 12–54.
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FIGURE 12–52
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FIGURE 12–53
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FIGURE 12–54

True/False Quiz
	 1.	 T  2.  F  3.  F  4.  T  5.  F  6.  F  	7.  T  8.  T  9.  T  10.  F 

Self-Test
	 1.  (c)    2.  (d)    3.  (b)    4.  (b)    5.  (c)    6.  (a)

	 7.  (e)    8.  (d)    9.  (d)  10.  (c)  11.  (a)  12.  (d)

	13.  (a)  14.  (c)  15.  (a)  16.  (c)  17.  (a)  18.  (d)
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Chapter Outline

13–1	 Data Transmission Media 
13–2	 Methods and Modes of Data Transmission 
13–3	 Modulation of Analog Signals with Digital Data 
13–4	 Modulation of Digital Signals with Analog Data 
13–5	 Multiplexing and Demultiplexing 
13–6	 Bus Basics 
13–7	 Parallel Buses 
13–8	 The Universal Serial Bus (USB) 
13–9	 Other Serial Buses 
13–10	 Bus Interfacing 

Chapter Objectives

■	 Discuss various types of data transmission media

■	 Describe the methods for data transmission

■	 Explain data transmission modes

■	 Define modulation

■	 Describe the types of modulation for transmission 
of digital data

■	 Explain how digital signals are used to transmit 
analog information

■	 Define multiplexing and demultiplexing

■	 Discuss the types of multiplexing and 
demultiplexing

■	 Discuss the types of buses

■	 List bus characteristics

■	 Explain bus protocols

■	 Explain the multiplexed bus and tri-state outputs

■	 Discuss the PCI series, AGP, ISA, IEEE-488, and 
SCSI types of parallel buses

■	 Describe the Universal Serial Bus (USB)

■	 Discuss the RS-232/422/423/485, SPI, I2C, CAN, 
Firewire, and SCSI types of serial buses

Key Terms

Key terms are in order of appearance in the chapter.

Data Transmission

13

■	 Coaxial cable

■	 EMI

■	 Optical fiber

■	 Electromagnetic waves

■	 Bit rate

■	 Baud

■	 RZ

■	 NRZ

■	 Manchester encoding

■	 Simplex

■	 Half-duplex

■	 Full-duplex

■	 Modulation

■	 PAM

■	 Bus

■	 Bus protocol

■	 Handshake

■	 GPIB

■	 SCSI

■	 Universal serial bus 
(USB)

■	 RS-232 bus

■	 Tri-state buffers

Visit the Website

Study aids for this chapter are available at  
www.pearsonglobaleditions.com/floyd

Introduction

data transmission is the transfer of data over a me-
dium or channel from one point to one or more points. 
Channels can be wire, cable, optical fibers, or wire-
less. Information (data) transmission falls into two 
basic categories, analog and digital. As you know, 
analog information is transmitted as a continuously 
varying signal. Digital data is transmitted either as a 
sequence of pulses, called baseband transmission, 
or by modulating an analog signal, called broadband 
transmission. Both types are generally considered 
digital transmission. A modem is used in broadband 
modulation and demodulation. Buses are an important 
part of many data transmission systems and are cov-
ered in this chapter.

CHAPTER 
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13–1  Data Transmission Media

All data transmission systems in their most basic form have a data source (sending device) 
at one end and a receiving device at the other. The two devices are connected by a transmis-
sion medium, which can be wire, coaxial cable, twisted pair cable, optical fiber cable, or 
space (wireless). A digital signal is a changing electrical or electromagnetic quantity that 
carries information through the medium. When data are sent without modulation, usually 
over wires or cables, it is called baseband transmission. When data are modulated and sent 
through a wireless medium, it is called broadband transmission.

After completing this section, you should be able to

u	 Define a data transmission system

u	 Describe wire and cable transmission media

u	 Describe optical fiber transmission media

u	 Describe wireless transmission

The basic block diagram in Figure 13–1 illustrates the essential elements in a data trans-
mission system.

InfoNote

Early fundamental work in data 
transmission and information 
theory was done by Harry Nyquist, 
Ralph Hartley, Claude Shannon, 
and others.

Sending
device

Receiving
device

Transmission medium

FIGURE 13–1  Basic data transmission system.

Wire Connections

The simplest connection between sending and receiving devices is a wire or a conductive 
trace on a printed circuit board (PCB). This type of connection is typically limited to inter-
nal data transmission over very short distances within the same system or between nearby 
systems, such as a computer and/or peripherals. Data buses or conductive traces connect 
one element to another on a PCB and between PCBs in close proximity or between parts of 
a system, as illustrated in Figure 13–2.

Conductive trace Wire interconnections

FIGURE 13–2  Conductive traces on PCBs and wire interconnections between boards.

Coaxial Cable

Coaxial cable (coax) consists of a center conductor within an insulating dielectric mate-
rial. A copper braided or foil shield surrounds the dielectric to protect the conductor against 
electromagnetic interference (EMI). The shield is encased in a protective insulating jacket, 
as shown in Figure 13–3. BNC (Bayonet Neill-Concelman) connectors are typically used 
for coaxial connections. Coax is used in data transmission applications with data rates up 
to about 1 GHz. Two common applications for coax are cable TV and Internet connections.
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Twisted Pair Cable

Unshielded twisted pair (UTP) cable is used extensively for indoor telephone application 
as well as some outdoor uses. It is found in many computer networks and video applica-
tions, such as security cameras, and also in the USB (universal serial bus) cable. UTP is 
color-coded according to a standard 25-pair color code. Most cables use a subset of these 
standard colors.

Cross talk, a type of distortion, is minimized when twisted pairs are bundled together. 
The two wires in each pair are twisted so that they cross each other at nearly 90°, ideally 
cancelling any electromagnetic fields generated by the signals in the wires. UTP cables are 
limited to use in low-noise environments and to lower signal frequencies than coax, such as 
audio and other signals up to about 1 MHz. UTP cables use standard RJ-45 connectors. A 
common four-pair UTP cable is shown in Figure 13–4(a), and an RJ-45 connector is shown 
in part (b). Shielded twisted pair (STP) cable encased in a metal sleeve or conduit is also 
available and provides more protection from EMI.

Outer jacket Metallic shield 

Center 
conductor

Dielectric

FIGURE 13–3  Construction view of a coaxial cable.

(a) (b)

FIGURE 13–4  Example of an unshielded twisted pair (UTP) cable and connector.

(a) Single optical fiber (b) Fiber optic cable

Core
Cladding

Jacket

FIGURE 13–5  Optical fiber cables.

Optical Fiber Cable

The structure of a single optical fiber is shown in Figure 13–5(a). An optical fiber can be 
as small as a human hair, so many single fibers can be bundled into a cable, as shown in 
Figure 13–5(b).

Instead of using electrical pulses to transmit information through copper lines, fiber 
optics uses light pulses transmitted through optical fibers. Fiber-optic systems have several 
advantages over electrical transmission media. Advantages include faster data rates, higher 
signal capacity (more signals at a time), and better transmission over longer distances; 
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optical fibers are not susceptible to EMI. The main disadvantage of fiber optics is the cost, 
which is higher than that of coax, UTP, and STP.

Optical fiber is commonly used as a medium for telecommunication and networking. 
Because light propagates through the fiber with little attenuation compared to electrical 
cables, optical fiber is useful for long-distance transmission. Data rates from 10 GHz to 
40 GHz are common, although rates over 100 GHz are used.

When light is introduced at one end of an optical fiber called the core, it “bounces” 
along until it emerges from the other end, as shown in Figure 13–6. The fiber is typically 
made of pure glass, plastic, or other material that is surrounded by a highly reflective 
cladding that effectively acts as a mirrored surface, using a phenomenon called total inter-
nal reflection to produce an almost lossless reflection. This allows the light to move around 
bends in the fiber.

FIGURE 13–6  Light propagating through an optical fiber while reflecting off the internal 
surface.

Modes of Light Propagation

Two basic modes of light propagation in optical fibers are multimode and single-mode, as 
illustrated in Figure 13–7. In multimode, the light entering the fiber will tend to propagate 
through the core in multiple rays (modes), basically due to varying angles as each light ray 
moves along. Some of the rays will go straight down the core, while others will bounce 
back and forth. Still others will scatter due to the sharp angle at which they strike the 
cladding, resulting in attenuation in light energy. Multimode also exhibits time dispersion, 
which means that all the light rays do not arrive at the end of the fiber at exactly the same 
time. In single-mode, the core is much smaller in diameter than in multimode. Light enter-
ing the fiber tends to propagate in a straight line as a single ray.

(a) Multimode (b) Single mode

FIGURE 13–7  Modes of light propagation in an optical fiber.

The diameter of the optical fiber determines the mode. There are three sizes most widely 
used in data transmission: 50/125, 62.5/125 and 8.3/125. The numbers are in microns (one 
micron is one millionth of a meter) and represent the diameters of the fiber core and clad-
ding, respectively. The 50/125 and the 62.5/125 are multimode fibers. The 8.3/125 is a 
single-mode fiber. Single mode results in increased bandwidth and distance for transmis-
sion, but the costs are higher than for multimode.

A Fiber-Optic Data Communications Link

A simplified block diagram of a fiber-optic communications link is shown in Figure 13–8. 
The source provides the electrical signal that is to be transmitted. The electrical signal is 
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converted to a light signal and coupled to the fiber-optic cable. At the receiving end, the light 
signal is coupled out of the cable into the receiver, which converts it back to an electrical 
signal. The signal is then processed and sent to the end user. The electrical signal modulates 
the light intensity and produces a light signal that carries the same information as the electri-
cal signal. Special connectors are used to connect the fiber-optic cable to various equipment.

Various types of connectors are used in fiber-optic systems. Some of these are described 
as follows and are shown in Figure 13–9:

•	 ST  An AT&T trademark and is one of the most widely used for multimode networks

•	 SC  A snap-in type multimode connector

•	 FC  A popular single-mode connector type

•	 LC  A single-mode connector

•	 LX-5  Similar to an LC connector except it has a shutter over the end of the fiber

•	 MT  A 12-fiber connector used for ribbon cables

•	 FDDI  All duplex, meaning the connector can accommodate two optical fibers for 
two-way communication

ST SC FC

LC MT FDDI

FIGURE 13–9  Typical types of optical fiber connectors.

Fiber-optic cable

Optical connectors

Electrical
signal source Receiver

Electrical-to-
light

conversion

Light-to-
electrical

conversion

FIGURE 13–8  Basic block diagram of a fiber-optic communications link.

Wireless Transmission

The transmission of data through air and space via electromagnetic waves without the 
use of physical connections between sending and receiving systems is known as wireless 
transmission. Wireless transmission generally can be categorized by the type of signal in 
terms of application, frequency, or how the data are configured. Another medium of wire-
less communications is water where sonar is used. Sonar produces low-frequency sound 
waves that do not fall into the electromagnetic spectrum.
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The Electromagnetic Spectrum

The spectrum of frequencies for the range of electromagnetic waves is shown in Figure 13–10. 
Most data communications occur within the radio wave, microwave, and infrared frequencies.

Radio waves Microwaves Infrared
far near

Visible
light

Shorter wavelengths
higher energyWavelength

in meters

Ultraviolet

700 nm 400 nm

102 10−2 10−4 10−6 10−8 10−10 10−12

X-rays

1

FIGURE 13–10  The electromagnetic spectrum.

Three ways in which radio wave (rf) and microwave signals propagate through Earth’s 
atmosphere (air) are ground wave, ionospheric, and line-of-sight. In ground wave propaga-
tion, the radio waves follow the curvature of Earth and can be up to about 2 MHz in fre-
quency; the standard AM broadcast band is an example. Radio frequencies in the 30 MHz 
to 85 MHz range bounce off of the ionosphere. These signals can change with time of day 
and weather conditions. Most ham radio bands are examples of where signals bounce off 
the ionosphere. In line-of-sight (LOS) propagation, the receiver must be in view of the 
transmitter. The distance is limited to about 100 km (horizon to horizon) from a ground-
based transmitter to a ground-based receiver. Long distances are achieved by placing a 
series of repeater towers so that each tower is within the line-of-sight of the previous tower. 
In the case of satellites, which use line-of-sight propagation, the distances can be extended 
around the world. Figure 13–11 illustrates these types of rf and microwave propagation.

Earth

Electromagnetic wave (rf)

(a) Ground wave

Earth

Ionosphere

(b) Ionospheric

Satellite

(c) Line-of-sight (LOS)

Earth

FIGURE 13–11  Ways in which rf and microwave signals can propagate.

Communication in the infrared region of the electromagnetic spectrum can be line-of-sight 
or diffused. With LOS, the transmitter and receiver must be visible to each other with no obsta-
cles in between. With diffusion, the IR waves reflect off of nearby surfaces such as buildings, 
ceilings, and walls. Uses include remote control devices, weather satellites, and night vision.

SECTION 13–1  Checkup

Answers are at the end of the chapter.

	 1.	List the types of data transmission media.

	 2.	What is the purpose of a coax shield?

	 3.	Name three ways in which radio waves are propagated in wireless transmission.

	 4.	Which type of electromagnetic radiation has the highest frequencies?

	 5.	Generally, what is the difference between baseband and broadband?
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Generally, data are processed in parallel by computers but are transmitted serially to 
outside systems. For example, data from a computer to a printer are typically sent over 
a USB, which is serial. Data that are sent over long distances via one of the transmission 
media are typically in a serial format. In some cases, data can be sent in parallel over a 
single channel by using different frequencies for each bit, so the bits can be transmitted at 
the same time.

Serial-to-parallel and parallel-to-serial conversions are used in most data transmission 
systems. The basic concept is shown in Figure 13–13. A simple parallel-to-serial converter 
is a parallel in/serial out shift register. The parallel bits are loaded into the register and then 
shifted out in serial format at a specific clock frequency that determines the data rate in bits 

1

1

0

1

0

0

1

0

1 1 0 1 0 0 1 0

(a) Serial data 

(b) Parallel data

FIGURE 13–12 

13–2  Methods and Modes of Data Transmission

Data transmission over a communications channel can be configured in several ways. A 
communication channel is the pathway over which data are sent and can be in the form of 
any of the media discussed in Section 13–1. The methods by which data are transmitted 
can be one bit at a time (serial) or several bits at a time (parallel), and the data can be either 
synchronized or unsynchronized. The modes describe the direction of the data.

After completing this section, you should be able to

u	 Distinguish between serial and parallel data

u	 Distinguish between synchronous and asynchronous data

u	 Describe the three modes of data transmission

Serial and Parallel Data

Serial data transmission is when data are transmitted one bit at a time in a bit stream, as illus-
trated in Figure 13–12(a). Parallel data transmission is when data are transmitted several bits 
at a time, as shown in part (b). In general, a given number of bits can be transmitted faster in 
parallel than in series, resulting in higher data rates. However, when several bits are sent simul-
taneously on separate lines in parallel, slight differences in the properties of the lines can cause 
skewing in the data, making the data more susceptible to error, so the data rate may need to be 
reduced to prevent errors. Error detection and correction methods can be used in these cases.

Parallel-to-serial
conversion

Serial-to-parallel
conversion

FIGURE 13–13  Digital data conversions.
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per second (bps). Likewise, a serial in/parallel out shift register can be used as a serial-to-
parallel converter. The receiving device must be able to recognize each valid group of data 
bits that it is receiving serially. Two types of data transmission in terms of how a receiving 
device knows what a sending device is transmitting are asynchronous and synchronous.

Asynchronous Data

Data are sent in short “bursts” known as packets in asynchronous transmission. A data 
packet is one complete piece of information of a longer message. Typically, many packets 
make up the entire message. A data packet consists of data bits representing alphabetic or 
numeric characters, a parity bit, and start/stop bits. There is a pause between data packets 
so that the receiver recognizes the start bit that precedes each packet. At the end of the data 
packet, there are one or more stop bits that tell the receiver the packet is complete.

In asynchronous systems, the sending and receiving devices operate with separate 
oscillators having the same clock frequency. Because the separate clock frequencies may 
drift over time, they are typically re-synchronized on each data packet with the start bit. 
Most commonly, data are sent in small packets of perhaps 10 or 11 bits. Eight of these bits 
carry the information. Between packets, when the channel is idle, there is a continuous 
logic level. A data packet always begins with a start bit with the opposite logic level as the 
idle period to alert the receiver that a data packet is starting. A parity bit follows the eight 
data bits, and a stop bit signals the end of the packet. This is illustrated in Figure 13–14.

Idle Idle
Start
bit

Parity
bit

Stop
bit

Data bits

1 1 0 1 0 0 1 0

Packet

FIGURE 13–14  Example of a serial transmission of a data packet for a given data code.

Synchronous Data

In synchronous data transmission, both the sender and the receiver derive timing from the 
same clock signal, which originates at the sender end of the system. The bits are transmit-
ted in a continuous stream with no pauses, so the receiver must have some way to recognize 
where a data block starts and ends. In order for the receiver to know when to read infor-
mation bits from the channel, it must determine exactly when the data begin and the time 
between bits. When this timing information is determined, the receiver is synchronized 
with the transmitter. Unlike asynchronous transmission, the data blocks usually contain 
more than one character of information. Synchronous transmission is generally faster than 
asynchronous transmission.

One method of synchronization is by using separate channels to transmit the data and 
the timing information (synchronization and clock pulses). Because the transmitter origi-
nates both the data and the timing pulses, the receiver will read the data channel only when 
told to do so by the transmitter (via the timing channel), and synchronization is achieved. 
The disadvantage of this method is that it requires two physical lines. 

Two data formats that require separate data and timing are RZ (return to zero) and NRZ 
(nonreturn to zero). In the RZ format, a single pulse during a bit time represents a 1 and the 
absence of a pulse is a zero, as shown in Figure 13–15(a). In the NRZ format, a high level 
during a bit time represents a 1 and a low level represents a 0. A series of 1s is represented by 
a continuous high level, and a series of 0s is represented by a continuous low level. The wave-
form does not return to the low level until a zero occurs after a string of 1s and does not go 
back to the high level until a 1 occurs after a string of 0s. This is illustrated in Figure 13–15(b).

Another more commonly used method of data synchronization, called biphase or Man-
chester encoding, is to embed the timing signal in the data at the transmitter so that only 
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one channel is required. The receiver extracts the embedded timing signal and uses it to 
synchronize to the transmitter. 

Figure 13–16 illustrates Manchester encoding. A rising edge in the biphase code is a 
1 and a falling edge is a 0, as indicated by the up and down arrowheads. The edges occur 
at the middle of the bit time. The biphase code is sent to the receiver, and the clock is 
extracted from the data with a phase-locked loop. Sometimes a series of all 1s or all 0s are 
included in the transmission to allow the receiver to synchronize.

(a) RZ format

Data

1 1 1 0 0 1 1 0 1

Clock

FIGURE 13–15  Data formats that require separate timing for synchronization.

Data

Clock

(b) NRZ format

1 1 1 0 0 1 1 0 1

Data

Clock

Biphase code

0 0 1 1 1 10 0

0 0 1 1 1 10 0

FIGURE 13–16  Example of Manchester encoded data and timing.

Synchronous Frames

Synchronous data are sent in frames that include other bits, as shown by the generic pro-
tocol in Figure 13–18. (Frame formats vary because there are numerous standards in use.)

•	 Preamble  A group of bits at the beginning of a frame that is used to alert the receiver that 
a new frame has arrived and to synchronize the receiver’s clock with the transmitted clock

Data

Clock(a)

(b)

Encoded data
and embedded
timing

1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 11

FIGURE 13–17 

EXAMPLE 13–1

Determine the biphase (Manchester) code for the data and clock shown in Figure 13–17(a).

Solution

The encoded data and embedded timing are shown in Figure 13–17(b). As the arrowheads indicate, the rising edges are 1s 
and the falling edges are 0s that occur in the middle of each bit time (period of the clock).

Related Problem*

If the data were all 1s, what would the Manchester code look like?

*Answers are at the end of the chapter.
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•	 Address fields  A group of bits containing the address(s) of the sender and the 
receiver. One or both addresses may be present in a given protocol.

•	 Control field  This group of bits identifies the type of data being sent, such as hand-
shaking (establishes a connection), file transfers, and the size of the data.

•	 Data field  This sequence is the actual information being sent and can be of a fixed 
length or a variable length. If it is a fixed-length field, a group of bits called a pad is 
used to fill in if the actual data field is less than the fixed field.

•	 Frame check  This field contains an error check such as parity, CRC (cyclic redun-
dancy check), or checksum, which is a value computed by a simple algorithm of the 
data bits in the frame.

•	 End frame  A group of bits that tells the receiver when the end of the frame occurs.

Data Rate

Data rate is the speed of data transfer. In a serial data transmission the rate can be stated as 
bit rate or baud; bit rate is the preferred measure. The bit rate is the number of bits (1s and 
0s) per second (bps); the baud is the symbol rate or the number of data symbols (some-
times known as transitions or events) per second.

A symbol (transition) can consist of one or more bits. Therefore, bit rate is always 
greater than or equal to the baud. The relationship between bit rate and baud is

 Bit rate = (Number of bits per symbol) (Baud)

or

 Baud =
Bit rate

Number of bits per symbol

Data can be in the form of a string of ASCII characters or other information. In the case of 
ASCII characters, each character is called a symbol and is represented by eight bits. To illustrate, 
assume that one symbol is transmitted every millisecond (ms). The data rate expressed as baud is

Baud = (1 symbol/ms)(1000 ms/s) = 1000 baud = 1 kbaud

The data rate in terms of bit rate is

Bit rate = (8 bits/symbol)(1000 symbols/s) = 8000 bps = 8 kbps

Preamble
Address

fields
Control

field
Data

Frame
check

End
frame

FIGURE 13–18  Basic synchronous frame structure.

EXAMPLE 13–2

A certain analog waveform is represented by sixteen-voltage levels that are being trans-
mitted. Each level (symbol) is represented by a 4-bit code. Assuming that eight symbols 
are transmitted in 1 ms, express the data rate as bit rate and as baud.

Solution

 Bit rate = (4 bits/symbol)(8 symbols/ms) = 32 bits/ms = 32 Mbps

 Baud =
32 Mbps

4 bits per symbol
= 8 Mbaud

Related Problem

Determine the bit rate if a symbol is represented by 8 bits and the baud is 5000 symbols/s.
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Transmission Efficiency

The efficiency of a data transmission channel is the ratio of data bits to total bits in a packet. 
For example, in Figure 13–14 there are eight data bits, a start bit, a parity bit, and a stop bit. 
The nondata bits are considered overhead bits. There are eleven total bits transmitted in a 
packet so the efficiency of the transmission is

Efficiency =
Data bits

Total bits
=

8 bits

11 bits
= 0.727 or 72.7%

EXAMPLE 13–3

A certain system transmits a block of information containing ten packets each with eight data bits, a start bit, and a stop bit. 
Additional “overhead” bits include a 4-bit synchronization code at the beginning of the block and a parity bit at the end of 
the block. Determine the transmission efficiency.

Solution

 Data bits = (8 data bits)(10 packets) = 80 bits

 Overhead bits = (1)(10 start bits) + (1)(10 stop bits) + 4 synchronization bits + 1 parity bit = 25 bits

 Total bits = Data bits + Overhead bits = 80 + 25 = 105

 Efficiency =
Data bits

Total bits
=

80

105
= 0.762 or 76.2%

Related Problem

Determine the efficiency if each packet has 12 data bits and the same number of overhead bits as stated in the example.

Transmission Modes

Three modes that characterize data channel (media) connections are simplex, half-duplex, 
and full-duplex. In the simplex mode, data flow in only one direction from the sender (trans-
mitter) to the receiver. In a computer, for example, data flow one way from the computer to 
the printer. In the half-duplex mode, the data flow both ways but not at the same time in the 
same channel. For example, a sender transmits information to the receiver and the receiver 
responds back to the sender after it has received the information. In the full-duplex mode, 
the data flow both ways simultaneously in the same channel. The bandwidth of the channel 
is divided between the two directions. Figure 13–19 illustrates these three modes.

Sender Receiver

(a) Simplex (b) Half-duplex (c) Full-duplex

Sender ReceiverSender Receiver

FIGURE 13–19  Data transmission modes.

SECTION 13–2  Checkup

	 1.	Explain the difference between serial and parallel data.

	 2.	What is the purpose of synchronization in a data transmission system?

	 3.	Name three types of data formats.

	 4.	List the modes of data transmission?
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13–3  Modulation of Analog Signals with Digital Data

Three major classes of modulation techniques for wireless transmission of digital data 
are amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying 
(PSK). Another common modulation method is basically a combination of ASK and FSK 
and is known as quadrature amplitude modulation (QAM). Several variations of these 
main modulation techniques are also in use. All of these techniques convey information by 
changing a property of an rf carrier signal, usually a sine wave for the purpose of conveying 
digital information over a wireless medium.

After completing this section, you should be able to

u	 Describe ASK

u	 Describe FSK

u	 Describe PSK

u	 Describe QAM

Amplitude-Shift Keying

Amplitude-shift keying (ASK) is a form of modulation in which a digital signal varies the 
amplitude of a higher frequency sine wave (carrier). In its simplest form, a sinusoidal car-
rier signal is turned on and off by the data signal and, therefore, this method is also known 
as on-off keying (OOK). When the carrier is on, a binary 1 is represented, and when the 
carrier is off, a binary 0 is represented. ASK is very susceptible to noise interference and 
is not typically used for wireless data transmission. ASK is most commonly used in fiber 
optics where the presence of light represents a binary 1 and the absence of light represents 
a binary 0. Figure 13–20 illustrates the concept of ASK. The presence of the sine wave car-
rier is a 1 and the absence is a 0. When modulated by digital data (1s and 0s), this method 
is sometimes known as binary amplitude-shift keying (BASK).

Original data 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1

ASK
modulated

data

FIGURE 13–20  Illustration of amplitude-shift keying (ASK).

Frequency-Shift Keying

Frequency-shift keying (FSK) is a form of modulation in which a digital signal modulates 
the frequency of a higher frequency sine wave (carrier). A carrier signal with a lower fre-
quency generally represents a binary 0, and a carrier signal with a higher frequency rep-
resents a binary 1. When modulated by digital data (1s and 0s), this method is sometimes 
known as binary frequency-shift keying (BFSK). Figure 13–21 illustrates FSK.

Phase-Shift Keying

Phase-shift keying (PSK) is a form of modulation in which a digital signal modulates 
the phase of a higher frequency sine wave. A carrier signal of one phase generally repre-
sents a binary 1, and a carrier signal that is 180° out-of-phase represents a binary 0. When 
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modulated by digital data (1s and 0s), this method is sometimes known as binary phase-shift 
keying (BPSK). In one of its many variations, PSK applications include wireless LAN and 
bluetooth. Figure 13–22 illustrates PSK.

Original data 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1

FSK
modulated

data

FIGURE 13–21  Illustration of frequency-shift keying (FSK).

Original data

PSK
modulated

data

1 1 1 1 0 0 1 1 1 1 0 1 1 1 10 0 0 00 0

FIGURE 13–22  Illustration of phase-shift keying (PSK).

Amplitude

1000

001

010

011

100

101

110

111

2

2

2

2

360°

1

1

1

0°

0°

90°

180°

270°

90°

180°

270°

Phase

FIGURE 13–23  Eight amplitude/phase combinations (modulation states) represent one 
of the eight 3-bit groups. Only one cycle of each modulation state is shown.

Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is widely used in telecommunications and in digital 
cable TV. Digital QAM uses a combination of PSK and ASK to send information. Quadrature 
refers to a 90° phase difference. Each combination of phase and amplitude is called a modula-
tion state or symbol and represents a combination of two or more bits. To illustrate the basic 
concept of QAM, let’s use what is known as 8-QAM where each of the eight modulation 
states (23) represents a unique three-bit combination. As shown in Figure 13–23, in 8-QAM, 
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there are two different amplitudes with a quadrature phase difference between each pair. Since 
there are four quadratures (90°) in 360°, there are a total of eight different amplitude/phase 
combinations or modulation states.

A digital 8-QAM data transmission can represent any combination of three bits in any 
sequence. Figure 13–24 illustrates an 8-QAM transmission of the binary sequence of num-
bers 0 through 7. Depending on the carrier frequency and the time specified for each bit 
group, multiple cycles of each modulation state can represent each bit group. For simplic-
ity, only two cycles per bit group are shown.

000

000001010011100101110111

001 010 011 100 101 110 111

FIGURE 13–24  Illustration of an 8-QAM transmission of the binary sequence shown.

M-QAM

There are numerous variations in QAM in terms of the number of modulation states 
(M) that can be represented. For the 8-QAM just illustrated, M = 8. Higher M values 
of QAM, such as 16-QAM, 64-QAM, and 256-QAM, are also commonly used. These 
higher M values are achieved by using more amplitude levels and/or phases. For example, 
a 64-QAM can have 16 amplitude levels and four phases and can represent 6-bit binary 
groups. A 256-QAM can have 32 amplitude levels and eight phases and can represent 
8-bit binary groups.

Constellation Maps

Modulated transmission of digital data can be represented by a constellation map, which is 
a vector representation that graphically shows the symbol values and corresponding phases 
being transmitted by a system. As you have seen, when data are transmitted, a pattern is 
modulated into the signal, such as in PSK, where the bit pattern is represented by various 
phase shifts. A constellation map is useful in the design and analysis of a data transmission 
system and in visually understanding how the system works.

Figure 13–25 shows a 4-quadrant constellation map for a 3-bit PSK transmission. Each 
green dot represents the ideal amplitude and phase of the modulated signal. The amplitude 

011 (135°)

100 (180°)

101 (−135°)

110 (−90°)

−90°

0°

111 (−45°)

000 (0°)

001 (45°)

010 (90°)

90°

180°

FIGURE 13–25  Constellation map for a 3-bit PSK transmission. The phases are 
0�, 45�, 90�, 135�, 180�, -45�, -90�, and -135�, as indicated.
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constant is represented by the distance of the dots from the origin. Eight different phases or 
symbols represent the 3-bit binary combinations.

In an actual transmission, the medium can affect both amplitude and phase shift. In 
the figure, the cluster of red dots around each green dot represents nonideal signal values. 
When the signal is received, these nonideal values can be adjusted to the ideal value (near-
est green dot) as long as there is adequate separation of the clusters; there should be no con-
fusion as to which ideal value the signal belongs. If there is any overlap, errors can occur.

100 101

011

010

−90°

0°
001 000

111

110

90°

180°

FIGURE 13–26 

EXAMPLE 13–4

Develop an ideal constellation map for the 8-QAM transmission represented in Figures 
13–23 and 13–24.

Solution

There are four phases and four amplitudes that represent a 3-bit code in this system. The 
ideal constellation map is shown in Figure 13–26. There are two amplitudes for each 
phase represented by the distance from the origin.

Related Problem

How many phases and amplitudes could be used to represent a 4-bit code?

SECTION 13–3  Checkup

	 1.	List four types of modulation techniques.

	 2.	What parameter is changed in ASK?

	 3.	What parameter is changed in FSK?

	 4.	What is QAM?

	 5.	What parameter is changed in PSK?

13–4  Modulation of Digital Signals with Analog Data

As you learned in the last section, analog signals are commonly used to carry digital data. 
In this section, you will see that digital signals can be used to carry analog information. 
These techniques are usually referred to as pulse modulation. A pulse parameter such as 
amplitude or pulse width is varied to represent an analog quantity.
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After completing this section, you should be able to

u	 Describe pulse amplitude modulation

u	 Describe pulse position modulation

u	 Discuss pulse code modulation

u	 Explain delta modulation

Pulse Amplitude Modulation

In pulse amplitude modulation (PAM), the heights or amplitudes of the pulses are varied 
according to the modulating analog signal; each pulse represents a value of the analog 
signal. PAM is the simplest, but least used, type of pulse modulation although it is used in 
the Ethernet communications standard. A simple PAM sequence is shown in Figure 13–27.

Amplitude

t

FIGURE 13–27  A simple PAM signal.

A basic method of producing a PAM representation of an analog signal is to use a 
constant-amplitude pulse source to sample the analog wave that has a frequency lower than 
the pulses, as shown in Figure 13–28 for a sine wave input; any form of analog signal can be 
converted to a PAM output. The pulses turn the switch on (closed) and off (open) to sample the 
waveform. When there is a pulse, the sample switch is closed; the amplitude of the sine wave 
at that point goes to the hold element that maintains the initial analog value occurring at the 
beginning of each pulse for the duration of the pulse. The output goes to zero between pulses.

Sample Hold

PAM output

Sample points

FIGURE 13–28  Basic method of pulse amplitude modulation.

InfoNote

Ethernet is a family of computer 
networking protocols described by 
the IEEE 802.3 standard. Systems 
that communicate using Ethernet 
divide the data into individual 
packets called frames. Each frame 
contains source and destination 
addresses and error-checking bits. 
The Ethernet standard includes 
several variations that specify both 
media and signaling standards, 
including type of wire or cable, 
data format, and data rates.

Pulse Width Modulation

In pulse width modulation (PWM), the width or duration of the pulses and duty cycle are 
varied according to the modulating analog signal; each pulse represents a value of the ana-
log signal. PWM (also known as pulse duration modulation, PDM), is commonly used in 
control applications. Braking systems, motor speed control, and renewable energy systems 
are just three examples.

Figure 13–29 illustrates one method of PWM generation, called the intersective method, 
which uses a sawtooth waveform. A triangular waveform can also be used. Again, a sine 
wave input is used, but the input can be any type of analog waveform. The sawtooth inter-
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sects the sinusoidal modulating signal twice during each cycle. The sawtooth is either 
increasing above the sine wave or decreasing below the sine wave. When the sawtooth is 
increasing above the sine wave, a low level is generated; when it is decreasing below the 
sine wave, a high level is generated. The resulting output is a series of pulses with widths 
proportional to the amplitude of the sine wave.

An intersective PWM system can be implemented simply with a sawtooth or triangular 
wave generator and a comparator, as shown in Figure 13–30.

Modulating
waveform

Sampling
waveform

PWM
output

FIGURE 13–29  Illustration of PWM.

+

−

Comparator

Sawtooth
generator

FIGURE 13–30  A basic method of pulse width modulation.

FIGURE 13–31  Modulating waveform.

EXAMPLE 13–5

Determine the PAM signal and the PWM signal for the modulating signal in Figure 13–31. Assume ten cycles of the sam-
pling pulse waveform or sawtooth waveform during the portion of the modulating signal shown.
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Pulse Position Modulation

In pulse position modulation (PPM), also known as pulse phase modulation, the position 
of each pulse relative to a reference or timing signal is varied proportional to the modu-
lating signal waveform. The amplitude and width of the pulses in a PPM system are kept 
constant. An example of a PPM signal is shown in Figure 13–33 where the PPM pulses are 
shifted relative to the leading edges of the timing waveform.

Timing

PPM

FIGURE 13–33  Example of a PPM signal with timing.

As with other types of pulse modulation, there is generally more than one way to pro-
duce a modulated waveform. One method is to derive the PPM from PWM, as illustrated 
in Figure 13–34. Notice that the leading (positive-going) edges of the PWM signal occur at 

PWM

Differentiated
PWM

PPM

FIGURE 13–34  A method of generating PPM.

Related Problem

How would the outputs in Figure 13–32 be affected by an increase in frequency of the pulse and sawtooth waveforms?

Solution

Figure 13–32 shows the PAM and PWM results.

Sampling
waveform

PAM
output

(a) PAM

FIGURE 13–32 

Sampling
waveform

PWM
output

(b) PWM
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PPM is widely used in optical communications, such as fiber optics and in certain types 
of rf systems, such as radio control for model planes, boats, and cars. It is less sensitive to 
channel interference than PAM or PWM because noise can alter pulse amplitude and width 
but not so much the position.

PPM Encoding

A certain number of data bits (D) are encoded by a single pulse in one of 2D possible posi-
tions during a specified fixed time period (T). The data rate is D/T bits per second (bps). 
Figure 13–36 illustrates the case of four time periods and two data bits per time period. There 
are 2D

= 22
= 4 possible positions in each time period. As you can see, each position rep-

resents a 2-bit binary number. In the first time period, the pulse position represents 00, in the 
second time period the pulse position represents 10, et cetera. Any pulse could be in any of 
the four positions within each period, depending on the data being encoded. The code for this 
particular set of pulse positions is 00100111; it is shown in NRZ format in the figure.

Differentiator

PWM in

PPM out

Rectifier

FIGURE 13–35  PPM system block diagram.

0 0 1 0 0 1 1 1

T

00

PPM

NRZ

01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

T T T

FIGURE 13–36  Encoding of a PPM signal.

EXAMPLE 13–6

For a PPM system with four data bits and a time period of 1 ms, determine the data rate. 
How many possible pulse positions are there in each time period?

Solution

The data rate is

D

T
=

4

1 ms
= 4 Mbps

fixed intervals, while the trailing (negative-going) edges vary relative to the leading edges. 
When the PWM signal is passed through a differentiator, short positive pulses (spikes) are 
generated on the leading edges and short negative pulses occur on the trailing edges. The 
differentiated signal is rectified to remove the positive pulses and generate the PPM wave-
form shown, which can be inverted to produce positive pulses. A simplified block diagram 
of a PPM system is shown in Figure 13–35.
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Pulse Code Modulation

Pulse code modulation (PCM) involves sampling of an analog signal amplitude at regular 
intervals and converting the sampled values to a digital code. (Sampling was mentioned in 
Chapter 1, and the sample-and-hold process was covered in Chapter 12.) The concept of 
PCM is demonstrated in Figure 13–37.

111

Modulating
signal Sample/hold

signal

Code

PCM in
NRZ

format

110

101

100

011

010

001

000

100 101 110 111 111 110 101 100 100 010 001 000 000 001 010 100

FIGURE 13–37  Concept of PCM with eight levels.

The number of possible pulse positions in each period is

2D
= 24

= 16

Related Problem

For eight data bits, what is the data rate (T = 1 ms), and what is the number of possible 
pulse positions in each period?

The modulating signal is a sine wave in this illustration, and its amplitude is divided into 
eight levels as shown. Each level is represented by a 3-bit binary number (23

= 8). The 
sine wave is sampled at fixed intervals; and the sampled value is held until the next sample, 
resulting in the green stair-step waveform that approximates the sine wave. The value at 
each sample is converted to a 3-bit binary number, and a pulse sequence is generated where 
each pulse represents a 1 and the absence of a pulse represents a 0. In this case, the PCM 
waveform is shown in NRZ format. The higher the sampling rate and the more levels used, 
the more accurate is the PCM representation.

PCM is used for digital audio in computers, Blu-ray, CD, and DVD formats. Also, it is 
used in digital telephone systems. A simplified block diagram of the PCM process is shown 
in Figure 13–38.

Sample-and-Hold
3-bit analog-to-
digital converter

Binary code to
PCM conversion

FIGURE 13–38  Block diagram of a PCM system.
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Digital Data Systems

All digital data systems have certain common components and variations that depend on 
the type of data format. The three main data transmission combinations are digital-to-
analog, analog-to-digital, and digital-to-digital. Figure 13–39 shows a general functional 
block diagram of a data transmission system. Each block is not used in all cases, depending 
on the type of data format and the type of communications channel.

From
communications
channel

Analog source

Demodulation Detection Decoding
Digital-to-analog

conversion

Clock

Analog-to-digital
conversion

Encoding
(PAM, PWM,
PPM, PCM)

Modulation
(ASK, FSK, PSK)

To
communications
channel

Carrier
signal

Digital to end user

Analog to end user

FIGURE 13–39  General function block diagram of a data transmission system.

EXAMPLE 13–7

In a PCM system with 32 levels, determine the number of code bits for each sample of 
an analog signal.

Solution

Code bits = 32 = 25

Five bits represent each sample.

Related Problem

What is the number of PCM code bits for each sample if the system has 64 levels?

SECTION 13–4  Checkup

	 1.	List four types of pulse modulation methods.

	 2.	What parameter is used in PAM to represent the value of the modulating signal?

	 3.	What parameter is used in PWM to represent the value of the modulating signal?

	 4.	What parameter is used in PPM to represent the value of the modulating signal?

	 5.	What is used in PCM to represent the value of the modulating signal?

13–5  Multiplexing and Demultiplexing

This topic was introduced briefly in Chapter 1. Multiplexing (also known as muxing) is 
a method used to transmit digital data from multiple sources over a single communica-
tion channel. Multiplexing is widely used in telecommunications and computer networks. 
Demultiplexing (demuxing) is the process of separating data from a single channel to mul-
tiple channels. Muxing is used on the sending end of a data communication system, and 
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demuxing is used on the receiving end. Two major types of multiplexing are time-division 
and frequency-division. Time-division multiplexing is a type of baseband communications. 
Baseband is where digital or analog signals are sent using the entire channel bandwidth. 
Frequency-division multiplexing is a type of broadband communications where analog 
signals of different frequencies are transmitted simultaneously.

After completing this section, you should be able to

u	 Describe time-division multiplexing

u	 Discuss frequency-division multiplexing

Time-Division Multiplexing

Time-division multiplexing (TDM) is a technique in which data from several sources are 
interleaved on a time basis and sent on a single communication channel or data link. Let’s 
say that there are three sources of digital data to be transmitted. Certain time slots are allot-
ted for each channel so that an element of data (bits or bytes) from source 1 is sent during 
time slot 1, an element of data from source 2 is sent during time slot 2, and an element of 
data from source 3 is sent during time slot 3. This is repeated for time slots that follow until 
all the data have been sent. Figure 13–40 illustrates the TDM concept.

Source 1 data

Time slot 1 Time slot 2 Time slot 3 Time slot 4 Time slot 5

Time

Source 2 data Source 3 data Source 1 data Source 2 data

FIGURE 13–40  Basic concept of TDM.

1 1
t1

t2

t1

t3

t4

t2

t3

t4

2 2

3 3

4 4
MUX DEMUX

Channel

FIGURE 13–41  Simple illustration of TDM.

A simplified illustration of TDM is shown in Figure 13–41. Multiple data sources are 
switched (multiplexed) in a time sequence (t1 through t4) onto a single line (communica-
tions channel), and the single stream of data is switched back onto multiple lines in a syn-
chronized time sequence. That is, data from source 1 go to the data 1 output during time 
slot t1, data from source 2 go to the data 2 output during time slot t2, and so on.

Bit-Interleaved TDM

In this method, a single data bit from a source is transmitted on the channel, followed by 
a data bit from another source, and so on. A time slot is reserved on the channel for each 
input source. These time slots are synchronized with the sender and receiver so that the 
receiver knows to which output the data bit in each time slot should go.

Bit-interleaving is demonstrated in Figure 13–42. In this case, the TDM channel data are 
transmitted at a rate four times greater than the data rate of the individual sources. Samples 
are sequentially taken of each data source (four in this case) during a bit time slot to deter-
mine if the bit is a 1 or a 0. The resulting values are sequentially placed onto the channel 
in 1, 2, 3, 4 order, as shown. This process is repeated for each of the bit times that follow.
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Byte-Interleaved TDM

In this method, bytes for each input source are sequentially placed onto the data channel. 
As in bit-interleaving, synchronization between the mux and demux at each end of the 
communications channel is required. The basic concept is shown in Figure 13–43.

Sample points

1

2

3

4

Source
data

Multiplexed
channel data

Time slot 1

1 2 3 4 1 2 3 4 1 2 3 4
Time, t

Time slot 2

Time slot 3

Time slot 4

Bit time

FIGURE 13–42  Illustration of TDM bit interleaving.

MUXData A Byte 1 Byte 2 Byte 3 Byte 4

Byte 1 Byte 2 Byte 3 Byte 4Data B Communications channel

1 2 2 3 3 4 41

FIGURE 13–43  Basic idea of byte-interleaved TDM.

The byte-interleaved data are from two sources (in this case) and are sent at twice the 
rate as either source, as illustrated in Figure 13–44. As you can see in the figure, it is neces-
sary to delay the data before multiplexing until an entire byte is complete, using a process 
called buffering. Notice that a byte of Data A and a byte of Data B occur during the Byte n 
interval. These two bytes are interleaved during the Byte n + 1 interval, so the multiplexed 
data are one byte delayed from the input data (A and B). This continues for each successive 
data byte.

Synchronous TDM

When the time slots allotted to each source are fixed, each time slot is transmitted 
whether or not the source has data to send. This results in an inefficient use of the com-
munications channel because sometimes some of the time slots are empty, as illustrated 
in Figure 13–45. Here, data source C is not transmitting data, so its assigned time slots 
are blank.
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Statistical TDM

The statistical TDM approach improves channel efficiency by making use of all the time 
slots. Only data from active sources are transmitted, so there are no blank time slots for inac-
tive sources. The time slot assignment is variable rather than fixed, as in synchronous TDM. 
This method is shown in Figure 13–46 for the case where data source C is not transmitting. 
If data source C becomes active, the time slots are reassigned to accommodate the data.

Data A

Byte n Byte n + 1

Byte n + 1 Byte n + 1Byte n - 1 Byte n - 1 Byte n Byte n

Byte n + 2

Data B

Multiplexed
data

channel

Source A
time slot

Source B
time slot

Source A
time slot

Source B
time slot

Source A
time slot

Source B
time slot

FIGURE 13–44  Byte-interleaved TDM with two data sources.

MUX

A B A B A B

Communications channel

Empty time slots due to
data C not transmitting

Data A Byte 1

Byte 1

Byte 2

Byte 2

Byte 3

Byte 3

Byte 4

Byte 4Data B

Data C

1 1 2 2 3 3

FIGURE 13–45  Example of a 3-source synchronous TDM with one data source inactive.

MUX

Communications channel

Data A Byte 1

Byte 1

Byte 2

Byte 2

Byte 3

Byte 3

Byte 4

Byte 4Data B

Data C

A B A B A B

1 1 2 2 3 3

A B

4 4

FIGURE 13–46  Example of a 3-source statistical TDM with one source inactive.

TDM is used by the telephone company in North America for nearly all voice traffic 
with what is known as the T1 system. A T1 line can carry 24 digitized telephone conversa-
tions and is capable of transmitting data at a rate of 1.544 Mbps. A voice signal is sampled 
8,000 times per second, and each sample is converted to a byte of digital data. A voice 
signal requires a transmission rate of

Voice transmission rate = (8000 samples/s)(8 bits/sample) = 64 kbps
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The number of digitized voice signals that can be multiplexed on a T1 line is

Voice signals =
1.544 Mbps

64 kbps
= 24

A T1 transmission over the channel consists of sequential 193-bit frames, as shown in 
Figure 13–47. Each frame is made up of twenty-four 8-bit slots plus one signaling bit.

Transmitter Σ To communications channel

Source 2

Source 3

Source n

Modulation at ƒ2

Modulation at ƒ3

Modulation at ƒn

From communications channel Receiver 

BP filter ƒ1

BP filter ƒ2

BP filter ƒ3

BP filter ƒn

Demodulation 

Demodulation 

Demodulation 

Demodulation 

Modulation at ƒ1Source 1

FIGURE 13–48  Basic FDM system. π stands for summation.

193-bit frame 193-bit frame 193-bit frame 193-bit frame

Signaling bit
Slot 1
8-bits

Slot 2
8-bits

Slot 3
8-bits

Slot 4
8-bits

Slot 23
8-bits

Slot 24
8-bits

FIGURE 13–47  T1 channel transmission.

Frequency-Division Multiplexing

Frequency-division multiplexing (FDM) is a broadband technique in which the total band-
width available to a system is divided into frequency sub-bands and information is sent in 
analog form. Each sub-band is assigned to a given source. The sources can transmit at the 
same time but at different frequencies. At the receiving end, the signals are demuxed using 
band-pass (BP) filtering. Figure 13–48 illustrates the concept of FDM.
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As mentioned, all sources transmit at the same time but at different frequencies. The 
general spectrum of a composite FDM transmission is shown in Figure 13–49. The band-
width (BW) of each source is centered around the carrier frequency for that source and is 
separated from the adjacent bandwidths by the guard band.

f1 f2 f3 fn
Frequency

BW1 BW2 BW3 BWn

Overall frequency band

Guard band

FIGURE 13–49  Frequency spectrum of an FDM transmission.

SECTION 13–5  Checkup

	 1.	Discuss the reason that multiplexing is used in data communications.

	 2.	What is TDM?

	 3.	What is FDM?

	 4.	Which has the higher efficiency, synchronous TDM or statistical TDM?

	 5.	What is a guard band?

13–6  Bus Basics

The bus is an essential element for transmission of data in many types of systems. A bus 
is a set of connections that carries digital information between two or more systems or 
between two or more parts of a system in a specified format. For example, most computers 
have both internal and external buses. Internal buses connect to various internal elements 
to allow data transfer. External buses connect external peripheral devices to the computer.

After completing this section, you should be able to

u	 Name the internal computer buses

u	 Discuss the difference between internal and external buses

u	 Describe how parallel and serial buses operate

u	 List several bus characteristics

u	 Discuss bus protocol

u	 Explain how synchronous and asynchronous buses differ

The Bus

A bus allows two or more devices to communicate with each other, generally for the pur-
pose of transmitting data. A bus is a set of physical wires and connectors and a set of elec-
trical specifications. A bus can be either internal or external to a system.

The physical properties of a typical bus include the number of wires or PCB conduc-
tors (width), the configuration and length of the wires or conductors, and the types and 
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configurations of the connectors. The electrical properties of a typical bus include but 
are not limited to some or all of the following: signal format, signal voltage levels, clock 
frequency, data transfer speed, bandwidth, data frame format, data rate, handshaking pro-
tocol, error detection, impedances, and line termination. Each device connected to a bus 
must be compatible with the bus specifications in order to communicate. A sending device 
can also be a receiving device, and a receiving device can also be a sending device. Figure 
13–50 illustrates the concept of a typical bus.

Bus connections

• Number of wires
• Configuration of wires
• Length of cable

Connectors

• Number of pins
• Configuration of pins
• Shape(s)

Output specifications:

• Signal characteristics
• Data rate
• Data frame format
• Handshaking protocol
• Error detection
• Impedance

Sending device

• Signal characteristics
• Data frame format
• Data rate
• Handshaking protocol
• Error detection
• Line termination

Input specifications:

Receiving device

FIGURE 13–50  Physical and electrical definition of a typical bus.

(a) Parellel bus (a) Serial bus

FIGURE 13–51  Comparison of parallel and serial buses.

Parallel and Serial Buses

Buses can be either parallel or serial. A parallel bus carries data bits simultaneously, and a 
serial bus carries data bits sequentially one at a time. Figure 13–51 is a simple comparison 
of parallel and serial buses showing eight bits being transmitted.

It would seem that a parallel bus would transmit data faster than a serial bus because 
multiple data bits can be sent simultaneously. However, this is not always the case. As data 
rates increase, things like crosstalk across parallel bus lines, timing skew between bus lines, 
and EMI (electromagnetic interference) become problems that limit the speed. Serial buses 
are not limited by those factors and can actually transmit data at higher rates than parallel 
buses in many situations.

Internal and External Buses

Internal buses carry information within a system, that is, from one part of the system to 
another part of the same system. External buses (also known as expansion buses) are used 
to connect one system to another separate system. For example, a computer connects to 
peripheral units such as a monitor, keyboard, mouse, and printer through external buses, as 
illustrated in Figure 13–52.
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General Bus Characteristics

A bus is typically described by the following parameters:

•	 Width  The number of bits that a bus can transmit at one time. The width of typical 
buses can vary from 1 bit for a serial bus up to 64 bits for a parallel bus.

•	 Frequency  The clock frequency at which a bus can operate

•	 Transfer speed  The number of bytes per clock cycle

•	 Bandwidth  The number of bytes per clock cycle times the number of clock cycles 
per second; that is, transfer speed times frequency. Bus bandwidth is sometimes 
called throughput.

Bus bandwidth can be specified in two ways, which result in slightly different values. The 
difference depends on how the prefix M in MBps is defined. It can be defined in decimal form 
as a power of ten (106

= 1,000,000) or in binary form as a power of two (220
= 1,048,576). 

In the decimal form, the M stands for mega; in the binary form, the M stands for mebi (mega-
binary). This can be a point of confusion in specifications, so you should be aware of the 
difference. The following two formulas provide for determination of the bus bandwidth. 
Equation 13–1 is for the decimal approach, and Equation 13–2 is for the binary approach.

 Bus bandwidth �
Width (bits) :  Frequency (MHz)

8 bits per byte
	 Equation 13–1

 Bus bandwidth �
((Width (bits) : Frequency (MHz))/8 bits per byte)106

220 	

Equation 13–2

Monitor

Printer

Mouse

Keyboard

External buses

Computer

FIGURE 13–52  Example of external bus application.

EXAMPLE 13–8

A certain bus is specified with a width of 32 bits and a frequency of 66 MHz. Determine 
the bus bandwidth expressed as two different values, according to the decimal and 
binary definitions of M. Note that Bps is bytes per second.

Solution

Using the decimal definition of M (106) in the unit of MBps,

Bandwidth =
32 bits * 66 MHz

8 bits per byte
= 264 MBps

Using the binary definition of M (220),

Bandwidth =
((32 bits * 66 MHz)/8 bits per byte) 106

220 = 252 MBps
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Table 13–1 lists some typical buses and their characteristics.

Related Problem

What is the frequency for a bus that has a width of 64 bits and bandwidth of 125 MBps 
as specified in decimal form?

Table 13–1

 
Bus

Width  
(bits)

Frequency 
(MHz)

Transfer Speed 
(bytes/cycle)

Bandwidth (MBps)

Decimal Binary

ISA (16 bit) 16 8.3 2     16.6   15.9
PCI 32 33 4 132 125.9
PCI-X 32 66 4 264 251.8
AGP 32 66 4 264 251.8

Bus Protocol

Bus protocol is a set of rules that allow two or more devices to communicate through a 
bus. Buses provide for data transfer, address selection, and control. Each device connected 
to a bus has an address assigned to it for identification and command signals as well as 
control signals to implement the protocol. These signals allow the devices to work properly 
together by identifying each other and communicating back and forth. One device can send 
a request to another device and get an acknowledgement or reply.

Handshaking

The handshake is a routine by which two devices initiate and complete a bus transfer. 
Figure 13–53 shows a simple handshake process, including a timing diagram, in which 

Responding
device (servant)

DATA

DATA

ACK

REQD

REQD

ACK

Requesting
device (master)

1

Master sends request for data (REQD) to servant.1

Servant sends an acknowledgement (ACK) and places data on bus.2

Master receives data and removes request.3

Servant removes acknowledge and is ready for next request.4

2
4

3

FIGURE 13–53  Simple example of handshake and data transfer.
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Data in Data out

Data out

Transmit

Transmit

Receive

Receive

Data in

Differential
signal

Data signal
invertedData signal

(b)  Differential

(a)  Single-ended

Data signal

FIGURE 13–54  A comparison of single-ended and differential bus operation.

a requesting device (sometimes called the master) and a responding device (sometimes 
called the servant) initiate and complete a data transfer.

Synchronous and Asynchronous Buses

A synchronized bus includes a clock in the control lines and has a fixed protocol that is 
relative to the clock. A synchronous bus is fast but has the disadvantage that every device 
connected to it must operate at the same clock frequency. Also, the physical length of the 
bus may be limited because of having to carry a high-frequency clock signal.

An asynchronous bus is not clocked, so it can serve various devices with different clock 
rates. The asynchronous bus uses a handshake protocol to establish communication, as 
previously described.

Single-Ended vs. Differential Buses

Data communications between devices can be classified as either single-ended or differen-
tial in terms of the physical bus configuration. In general, single-ended operation is limited 
in both data rate and distance (cable length). Differential operation provides much higher 
data rates and longer transmission distances. Single-ended operation uses one wire for 
data and one wire for ground, where the signal voltage on the wire is with respect to 
ground. Differential operation uses two wires for data and one wire for ground. The data 
signal is sent on one wire in the twisted pair and its complement (inversion) is sent on the 
other wire. The difference between the two data wires is the differential signal. Figure 
13–54 shows both single-ended and differential operation.

A single-ended transmission is simpler and lower in cost compared to a differential trans-
mission. Differential operation is much less sensitive to noise because of common-mode 
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Section 13–6  Checkup

	 1.	List two factors that may limit the speed of a parallel bus.

	 2.	What is the basic difference between an internal and an external bus?

	 3.	Name four bus characteristics.

	 4.	What is bus protocol?

	 5.	Discuss the difference between single-ended and differential bus operation.

13–7  Parallel Buses

A bus is not only a set of physical connections (PCB traces or cables) but it is also a set 
of signals and operating parameters that are defined in the bus specification. Any devices 
connected to a given bus must be compatible with the bus specifications. In this section, we 
briefly look at several important parallel bus standards. Further details and information on 
each bus can be found on the Internet.

After completing this section, you should be able to

u	 Discuss the PCI, PCI-X, and PCI-Express buses

u	 Explain the basics of the IEEE-488 bus

u	 Discuss the parallel SCSI bus

The PCI Bus

The PCI (peripheral component interconnect) bus is an internal synchronous bus for inter-
connecting chips, expansion boards, and processor/memory subsystems. The original PCI 
bus had a width of 32 bits and a frequency of 33 MHz. Another version has a width of 
64 bits and a frequency of 66 MHz. Still later versions enable 64-bit data transfers using up 
to a 133 MHz clock to enable bandwidths of up to 1066 MBps.

The original PCI standard required 5 V power and signal levels. As the standard evolved, 
the option for 3.3 V was added. The latest standard provides for 3.3 V only. The 32-bit PCI 
connector has 62 pins and 124 contacts (62 per side). Thirty-two of the contacts are used 
for both a 32-address and 32 bits of data, which are multiplexed. The remaining pins are 
used for command and control signals, power, ground, etc. A 64-bit PCI connector has an 
additional 32 pins for a total of 94. The 32-bit PCI connector is shown in Figure 13–55. It 
has 64 pins of which 62 are used.

The PCI-X Bus

The PCI-X bus is a high-performance enhancement of the PCI and is backward com-
patible with the PCI bus, although it is a faster bus and has some additional features. A 
64-bit bus, the PCI-X runs at a frequency of 133 MHz. The PCI-X 2.0 revision supports 
frequencies of 266 MHz and 533 MHz. Some additional features increase system reli-
ability by minimizing errors at high transfer rates. Servers are the major application for 
the PCI-X.

rejection. This means that when a common noise signal appears on each line, the two noise 
signals cancel due to the differential operation where the difference between them is zero. 
Since the data signals are the same but opposite in phase, they are effectively added and 
the data signal is reinforced while the noise signal is cancelled. Due to the twisted pair, 
crosstalk is reduced at higher frequencies, thus allowing longer cables.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

−12 V
TCK
Gnd
TDO
+5 V
+5 V
INTB#
INTD#
PRSNT1#
Reserved
PRSNT1#
Gnd
Gnd
Reserved
Gnd
CLK
Gnd
REQ#
IOPWR
AD[31]
AD[29]
Gnd
AD[27]
AD[25]
+3.3 V
C/BE[3]#
AD[23]
Gnd
AD[21]
AD[19]
+3.3 V
AD[17]

TRST#
+12 V
TMD
TDI
+5 V
INTA#
INTC#
+5 V
Reserved
IOPWR
Reserved
Gnd
Gnd
3.3 Vaux
RST#
IOPWR
GNT#
Gnd
PME#
AD[30]
+3.3 V
AD[28]
AD[26]
Gnd
AD[24]
IDSEL
+3.3 V
AD[22]
AD[20]
Gnd
AD[18]
AD[16]

PIN SIDE A SIDE B

JTAG port pins

Interrupt lines

Indicates 7.5 or 24 W power
+5 V or +3.3 V
Indicates 7.5 or 24 V power

Key notch for 3.3 V cards
Standby power
Bus reset
33 MHz/66 MHz clock
Bus grant motherboard to card
Bus request card to motherboard
Power management event/3.3 V

Address/data bus

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

C/BE[2]#
Gnd
IRDY#
+3.3 V
DEVSEL#
Gnd
LOCK#
PERR#
+3.3 V
SERR#
+3.3 V
C/BE[1]#
AD[14]
Gnd
AD[12]
AD[10]
MGGEN/Gen
Gnd
Gnd
AD[08]
AD[07]
+3.3 V
AD[05]
AD[03]
Gnd
AD[01]
IOPWR
ACK64#
+5 V
+5 V

Bus transfer in progress
Initiator ready
Target ready
Target selected
Target halt request
Locked transaction
Parity error/SMBus clock
SMBus data
System error
Even parity over AD bus

Address/data bus

Address/data bus

For 64-bit expansion

+3.3 V
FRAME#
Gnd
TRDY#
Gnd
STOP#
+3.3 V
SMBCLK
SMBDAT
Gnd
PAR
AD[15]
+3.3 V
AD[13]
AD[11]
Gnd
AD[09]
Gnd
Gnd
C/BE[0]#
+3.3 V
AD[06]
AD[04]
Gnd
AD[02]
AD[00]
IOPWR
REQ64#
+5 V
+5 V

Key notch for +5 V cards

FIGURE 13–55  Pin layout and functional designation for a 32-bit PCI connector.

The PCI-Express Bus

The PCI-Express is also designated as PCIe or PCI-E. This bus differs from the PCI and 
PCI-X buses in that it does not use a shared bus. Both PCI and PCI-X use a shared bus 
configuration, as shown in Figure 13–56(a). Each PCIe device has a dedicated path, called 
a lane, to a single chip known as a switch, as shown in part (b). More lanes result in a faster 
data transfer. High speed makes PCI-Express ideal for video and graphics applications.

Lane(s) Lane(s)

PCI
device

PCI
device

Host
device

Host
device

Switch

Lane(s)

Shared bus

PCI
device

PCIe
device

PCIe
device

PCIe
device

(a) PCI shared bus configuration (b) PCI-Express lane configuration

FIGURE 13–56  Comparison of PCI and PCI-Express.
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Bidirectional data are transferred serially on each lane. For multiple-lane configura-
tions, the serial data on each lane are in parallel with the serial data on all the other lanes. 
The data are transferred at one bit per cycle on a x1 connection, two bits per cycle on a x2, 
and sixteen bits per cycle on a x16. The PCI-Express has a bandwidth of 4 Gbps per lane. 
PCI-Express supports hot swapping in which expansion cards can be added or removed 
without turning off the system. PCI and PCIe are software compatible but not hardware 
compatible.

The IEEE-488 Bus

This bus standard has been around a long time and is also known as the General-Purpose 
Interface Bus (GPIB). Widely used in test and measurement applications, it was devel-
oped by Hewlett-Packard in the 1960s. The IEEE 488 specifies 24 lines that are used to 
transfer eight parallel data bits at a time and provide eight control signals that include 
three handshake lines and five bus-management lines. Also included are eight ground 
lines used for shielding and ground returns. The maximum data transfer rate for the IEEE 
488 standard is 1 Mbps. A superset of this standard, called the HS488, has a maximum 
data rate of 8 Mbps.

To connect test equipment to a computer using the IEEE-488 bus, an interface card is 
installed in the computer, which turns the computer into a system controller. In a typical 
GPIB setup, up to 14 controlled devices (test and measurement instruments) can be con-
nected to the system controller. When the system controller issues a command for a con-
trolled device to perform a specified operation, such as a frequency measurement, it is said 
that the controller “talks” and the controlled device “listens.”

A listener is an instrument capable of receiving data over the GPIB when it is addressed 
by the system controller (computer). Examples of listeners are printers, monitors, program-
mable power supplies, and programmable signal generators. A talker is an instrument 
capable of sending data over the GPIB. Examples are DMMs and frequency counters that 
can output bus-compatible data. Some instruments can send and receive data and are called 
talker/listeners; examples are computers, modems, and certain measurement instruments. 
The system controller can specify each of the other instruments on the bus as either a talker 
or a listener for the purpose of data transfer. The controller is usually a talker/listener.

A typical GPIB arrangement is shown in Figure 13–58 as an example. The three basic 
bus signal groupings are shown as the data bus, data transfer control bus, and interface 
management bus.

1 lane

(a) x1

2 lanes

(b) x2 (c) x16

16 lanes
...

PCIe device

Switch

PCIe device

Switch

PCIe device

Switch

FIGURE 13–57  PCI-Express lane configurations.

A single PCI-Express lane contains two pairs of conductors. One pair of conductors 
from a given device receives data and the other pair sends data in a serial format. A single 
lane configuration is known as x1 and is illustrated in Figure 13–57(a). A x2 configuration 
is shown in part (b), and a x16 configuration is shown in part (c). Other possible configura-
tions are x4, x8, and x32.

M13_FLOY5983_11_GE_C13.indd Page 771  12/11/14  9:37 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



772	 Data Transmission

DI/O1
DI/O2
DI/O3
DI/O4
DI/O5
DI/O6
DI/O7
DI/O8

IFC
ATN
SRQ
REN
EOI

DAV
NRFD
NDAC

Interface clear
Attention
Service req
Remote EN
End or identify

Data valid
Not ready for data
Not data accepted

Interface management bus

Data transfer control bus

Data busData

Instrument
A

Controller
Talker/Listener

(Computer)

Instrument
B

Talker/Listener
(DMM)

Instrument
C

Listener
(Printer)

Instrument
D

Talker
(Counter)

FIGURE 13–58  A typical IEEE 488 (GPIB) connection.

The parallel data lines are designated DI/O1 through DI/O8 (data input/output). One 
byte of data is transferred on this bidirectional part of the bus. Every byte that is transferred 
undergoes a handshaking operation via the data transfer control. The three active-LOW 
handshaking lines indicate if data are valid (DAV), if the addressed instrument is not ready 
for data (NRFD), or if the data are not accepted (NDAC). More than one instrument can 
accept data at the same time, and the slowest instrument sets the rate of transfer. Figure 
13–59 shows the timing diagram for the GPIB handshaking sequence, and Table 13–2 
describes the handshaking signals.

DI/O1–DI/O8 1st data byte

VALIDDAV NOT VALID

2nd data byte

VALIDNOT VALID NOT VALID

Some ready

All ready

None readyNRFD

NDAC

None ready

Some ready

None accepted None accepted

Some
accepted

Some
accepted

All accepted All accepted

fg13_04300

FIGURE 13–59  Timing diagram for the GPIB handshaking sequence.

The five signals of the interface management bus control the orderly flow of data. The 
ATN (attention) line is monitored by all instruments on the bus. When ATN is active, the 
system controller selects the specific interface operation, designates the talkers and the 
listeners, and provides specific addressing for the listeners. Each GPIB instrument has a 
specific identifying address that is used by the system controller. Table 13–3 describes the 
GPIB interface management lines and their functions.
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Table 13–2

The GPIB handshaking signals.

Name Description

DAV Data Valid: After the talker detects a HIGH on the NRFD line, a LOW is placed on 
this line by the talker when the data on its I/O are settled and valid.

NRFD Not Ready for Data: The listener places a LOW on this line to indicate that it is not 
ready for data. A HIGH indicates that it is ready. The NRFD line will not go HIGH 
until all addressed listeners are ready to accept data.

NDAC Not Data Accepted: The listener places a LOW on this line to indicate that it has 
not accepted data. When it accepts data from its I/O, it releases its NDAC line. The 
NDAC line to the talker does not go HIGH until the last listener has accepted data.

Table 13–3

The GPIB management lines.

Name Description

ATN Attention: Causes all the devices on the bus to interpret data, as a controller 
command or address and activates the handshaking function.

IFC Interface Clear: Initializes the bus.

SRQ Service Request: Alerts the controller that a device needs to communicate.

REN Remote Enable: Enables devices to respond to remote program control.

EOI End or Identify: Indicates the last byte of data to be transferred.

The GPIB is limited to a maximum cable length of 15 meters, and there can be no 
more than one instrument per meter with a maximum capacitive loading of 50 pF each. 
The cable length limitation can be overcome by the use of bus extenders and modems. A 
bus extender provides for cable-interfacing of instruments that are separated by a distance 
greater than allowed by the GPIB specifications or for communicating over greater dis-
tances via modem-interfaced telephone lines.

The IEEE-488 connector and pin configuration are shown in Figure 13–60.

1324

12 1

FIGURE 13–60  The IEEE-488 (GPIB) bus connector and pin assignments.

Pin Designation Description

  1 DI01 Data input/output bit.
  2 DI02 Data input/output bit.
  3 DI03 Data input/output bit.
  4 DI04 Data input/output bit.
  5 EOI End-or-identify.
  6 DAV Data valid.
  7 NRFD Not ready for data.
  8 NDAC Not data accepted.
  9 IFC Interface clear.
10 SRQ Service request.
11 ATN Attention.
12 SHIELD

Pin Designation Description

13 DIO5 Data input/output bit.
14 DIO6 Data input/output bit.
15 DIO7 Data input/output bit.
16 DIO8 Data input/output bit.
17 REN Remote enable.
18 GND (wire twisted with DAV)
19 GND (wire twisted with NRFD)
20 GND (wire twisted with NDAC)
21 GND (wire twisted with IFC)
22 GND (wire twisted with SRQ)
23 GND (wire twisted with ATN)
24 Logic ground
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The Parallel SCSI Bus

The SCSI (small computer system interface) bus, generally pronounced “skuzy”, is a par-
allel I/O bus with a width of either 8, 16, or 32 bits, depending on the version. For many 
years SCSI has been one of the most widely used buses in storage servers and data centers. 
SCSI is also used for the purpose of transferring data between a computer and peripheral 
devices, such as hard disks, tape drives, scanners, and CD drives. Figure 13–61 shows the 
SCSI symbol.

The original version of the SCSI parallel bus standard was introduced in 1986 and des-
ignated SCSI-1. The current SCSI standard is known as SCSI-5, which was preceded by 
SCSI-1, SCSI-2, SCSI-3, and SCSI-4. Later versions are backward compatible with earlier 
versions. There are many variations of the SCSI standard version with designations such as 
asynchronous, synchronous, fast, ultra, and wide, which have different speeds, widths, and 
number of devices that can be connected, as shown in Table 13–4.

FIGURE 13–61  SCSI symbol.

Table 13–4

Evolution of the parallel SCSI standard.

 
Version

 
Variations

Maximum Target 
Devices Connected

 
Bus Width Data transfer rates

SCSI-1 Asynchronous/Synchronous 7 8 bits 4 MBps/5 MBps
SCSI-2 Wide, Fast, Fast/Wide 7/15 8/16 bits 10 MBps/20 MBps
SCSI-3 Ultra, Ultra/Wide, Ultra2,  

Ultra2/Wide, Ultra160
7/15 8/16 bits 20 MBps/40 MBps/ 

80 MBps/160 MBps
SCSI-4 Ultra320 15 16 bits 320 MBps
SCSI-5 Ultra640 15 8/16/32 bits 640 MBps

SCSI Signals

A parallel SCSI bus contains nine control signals in addition to data, dc voltages, and 
ground. These signals are listed in Table 13–5.

Table 13–5

SCSI parallel bus signals.

Signal Description

BSY Busy, Bus in use
SEL Select
RST Reset
C/D Control/Data
MSG Message
REQ Request
ACK Acknowledge a request
ATN Attention
I/O Input or output

Up to eight or sixteen devices, including the host, can be connected to a SCSI bus, but 
only two devices can communicate at any given time. Communication begins when an ini-
tiating device sends a request and the target device acknowledges and performs the request. 
Single-ended (SE) and differential (LVD or HVD) are the three electrical specifications. 
Single-ended operation is limited to a cable length of 6 meters, and differential operation 
allows up to 25 meters. LVD is low-voltage differential and HVD is high-voltage differen-
tial. SCSI devices can operate either asynchronously or synchronously. The serial SCSI bus 
is introduced in Section 13-9.
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SECTION 13–7  Checkup

	 1.	What does PCI stand for?

	 2.	List two alternate designations for the PCI-Express bus.

	 3.	What is a lane?

	 4.	What is the IEEE designation for the GPIB?

	 5.	What does SCSI stand for?

13–8  The Universal Serial Bus (USB)

Although there are several serial bus standards available, the USB is one of the most widely 
used. Recall that a serial bus transfers data one bit at a time. As with the parallel bus, a 
serial bus is not only a set of physical connections but it is also a set of signals and operat-
ing parameters that are defined in the bus specification. As with other buses, only the basics 
are introduced here. More details and information can be found on the Internet.

After completing this section, you should be able to

u	 Discuss the USB

u	 Identify and describe USB cables and connectors

u	 Discuss USB signals

The universal serial bus (USB) is a widely used standard serial bus for connecting 
peripherals to a computer. There are typically two or more USB ports on computers and, 
with USB hubs, up to 127 devices can be connected. USB allows the devices to be con-
nected or disconnected while the computer is running (hot swapping). Figure 13–62 shows 
the symbol for USB.

The original USB standard was 1.0, which was followed by 1.1. USB 2.0 replaced the 
two original versions and more recently USB 3.0 was introduced. The earlier versions are 
still in use, especially 2.0. In terms of data rate, USB has four classifications: low-speed, 
full-speed, high-speed, and super-speed. Table 13–6 shows how the data rate classifications 
apply to each of the USB versions and Table 13–7 shows the data rate values.

FIGURE 13–62  USB symbol.

Cable length is an important specification for buses. Table 13–8 lists maximum cable 
lengths for three USB versions and maximum total lengths when multiple cables are strung 
together using USB hubs. A hub is a common connection device with multiple ports.

Table 13–8

USB 1.1 USB 2.0 USB 3.0

Max cable length 9.8 ft. (3.0 m) 16.4 ft. (5.0 m) 9.8 ft. (3.0 m)
Maximum total length 49.2 ft. (15 m) 82.0 ft. (25 m) 49.2 ft. (15 m)

Table 13–6	 Table 13–7

 Low-Speed Full-Speed High-Speed Super-Speed

USB 1.0 • •   
USB 1.1 • •   
USB 2.0 • • •  
USB 3.0 • • • •

    

Data Rate Maximum Value

Low-speed 0.1875 MBps
Full-speed 1.5 MBps
High-speed 60 MBps
Super-speed 625 MBps
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USB Cable and Connectors

USB versions up to and including 2.0 have a four-wire cable that includes a twisted pair 
to reduce or eliminate noise for data transmission, a +5 V wire, and a ground wire color-
coded, as shown in Figure 13–63(a). The standard type A and type B connectors are shown 
in parts (b) and (c) with pin designations. USB hosts (computer) and devices (peripherals) 
have sockets, and all USB cables have a type A plug at one end and a type B plug at the 
other. The sockets on a host are Type A, and the sockets on peripheral devices are Type B. 
Hubs have both Type A and Type B. The USB standard also specifies smaller connectors 
designated mini and micro.

(a) USB cable

(b) Type A connector (c) Type B connector

Data +
Data −
  +5 V
  Gnd

4 3 2 1
1 2

4 3

Gnd GndD+ D+D−

D−

+5 V

+5 V

FIGURE 13–63  USB cable and connectors for USB standards through 2.0.

USB Data Format

Serial data are transmitted on the twisted pair (D+  and D- ) using half-duplex differential 
mode to minimize EMI and improve the signal-to-noise ratio. Data are sent in packets 
using NRZI (non-return-to-zero invert) encoding format with a 3.3 V level (differentially, 
there are 6.6 V between the two data lines). A packet format can contain the following 
fields:

Sync field  All packets start with a sync (synchronization) field. The sync field con-
sists of 8 bits for low and 32 bits (full speed) for high speed and is used to synchronize 
the receiver clock with that of the transmitter.

PID field  The packet identification field is used to identify the type of packet that is 
being transmitted. There are four bits in the PID; however, to ensure it is received  
correctly, the four bits are complemented and repeated, making an 8-bit PID code.

ADDR field  The address field specifies to which device the packet is sent. The seven 
bits in this field allow for 127 devices to be supported. Address 0 is invalid.

Data field   The data field contains up to 1024 bytes of data.

ENDP field  The endpoint field is made up of four bits, allowing 16 possible end-
points. An endpoint is a data source or load. Low-speed devices, however, can only have 
two additional endpoints on top of the default pipe (four endpoints max). Endpoints can 
be described as sources or sinks of data.
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CRC field  Cyclic redundancy checks are performed on the data within the packet 
using from 5–16 bits, depending on the type of packet.

EOP field  This packet field signals the end of a packet.

Four types of USB packets are token, data, handshake, and start-of-frame, as shown 
in Figure 13–64 with the packet format for each type. Each field is labeled and the 
number of bits shown. The token packet indicates the type of transaction, the data 
packet contains the actual data, the handshake packet acknowledges a transaction, and 
the start-of-frame packet begins a new frame. The token packet, data packet, hand-
shake packet, and start-of-frame packet each have a different packet format as specified 
by the PID field.  

Sync
8/32

PID
8

ADDR
7

ENDP
4

CRC
5

EOP
3

(a) Token packet

Sync
8/32

PID
8

Data
0-8192

CRC
16

EOP
3

(b) Data packet

Sync
8/32

PID
8

EOP
3

(c) Handshake packet

FIGURE 13–64  Types of USB packets.

Sync
8/32

PID
8

Frame number
11

CRC
5

EOP
3

(d) Start-of-frame packet

USB 3.0

USB 3.0 is a recent version of the USB standard. The 3.0 version, known as SuperSpeed 
USB, is ten times faster than USB 2.0 at 4.8 Gbps. The 3.0 connectors (types A and B) are 
different then version 2.0 because they now have nine contacts instead of four. The 3.0 type 
A connector looks about the same as that for 2.0 except that the extra five pins are further 
inside and make contact only with a 3.0 mating connector. The connector is compatible 
with a 2.0 device where the front four pins are accessible. Type A and type B connectors 
for USB 3.0 along with the standard symbol are shown in Figure 13–65. There is also a 
micro-B connector available.

(c) Symbol(b) Type B(a) Type A

FIGURE 13–65  USB 3.0 connectors and symbol.

USB 3.0 is, for the most part, backward compatible with USB 2.0, but the speed is 
limited to the 2.0 specification. The USB 3.0 cable consists of two additional twisted pairs 
for data and an additional ground, for a total of nine wires. Unlike the previous versions, 
version 3.0 is full-duplex, meaning that data can be sent and received simultaneously. One 
twisted pair is for receiving data, and two additional twisted pairs are for sending high-
speed data.

M13_FLOY5983_11_GE_C13.indd Page 777  12/11/14  9:38 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



778	 Data Transmission

The recent USB 3.1 specification increases the data rate to 10 Gbps, twice that of the 
3.0. USB 3.1 is backward compatible with 3.0 and 2.0 and a new connector, type C, is 
included in the specification.

Figure 13–66 shows the USB in a typical computer system. The computer acts as a host 
and uses Type A connectors. The hub functions as both a host and a device.

Computer

Monitor

Hub

Printer

Scanner

Keyboard

Mouse

A B

B

B

B

A

A

A

A

A

FIGURE 13–66  Example of USB applications.

SECTION 13–8  Checkup

	 1.	What does USB stand for?

	 2.	What are the functions of the four pins in a USB 2.0 connector?

	 3.	Why are twisted pairs used in USB cables?

	 4.	Describe the basic differences between USB 2.0 and USB 3.0.

13–9  Other Serial Buses

Although the USB is widely used, many other serial buses are available. A few of the these 
important bus standards are introduced in this section. For more detailed information on 
any bus standard, search the Internet.

After completing this section, you should be able to

u	 Discuss the RS-232, RS-422, RS-423, and RS-485 bus standards

u	 Describe the SPI bus

u	 Discuss the I2C bus

u	 Explain the CAN bus

u	 Describe the Firewire (IEEE 1394) bus

u	 Discuss the serial SCSI bus

The RS-232/422/423/485 Buses
RS-232 Bus

Also known as EIA-232, the RS-232 bus was once standard on computers for connec-
tion to peripheral devices. The standard provides for single-ended data transmission in 
either synchronous or asynchronous formats. It has been replaced by the USB because 
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of its limited speed, relatively large voltage requirements, and large connector size. 
However, RS-232 devices are still used in industrial and telecommunication applica-
tions as well as scientific instrumentation. The devices connected by the RS-232 are 
classified as DTE (data terminal equipment) or DCE (data communication equipment). 
Since newer computers have no RS-232 ports, USB-to-RS-232 converters can be used to 
connect to older RS-232 compatible peripherals, if necessary. The standard is designed 
for one transmitting device and one receiving device with a maximum cable length of  
50 feet between them.

The maximum RS-232 data rate is 20 kbps. The data format typically consists of seven 
or eight bits of data, a start bit, a parity bit in some cases depending on the protocol, and 
a stop bit. A transmitted signal level between +5 V and +15 V represents a binary 0 and 
between -5 V and -15 V represents a binary 1. The data is transmitted in NRZ format, as 
Figure 13–67 shows.

Protective ground11

Data carrier detect (2)12

Clear to send (2)

(a) 25-pin (b) 9-pin

13

18

25

1 Protective ground
14 Transmit data (2)

2 Transmit data
15 Transmitter clock (DCE)

3 Receive data
16 Receive data (2)

4 Request to send
17 Receiver clock

5 Clear to send

6 Data set ready
19 Request to send (2)

7 Signal ground
20 Data terminal ready

8 Data carrier detect
21 Signal quality detector

9 Test pin
22 Ring indicator

10 Test pin
23 Data signal rate detector

24 Transmitter clock (DTE)

1
6

7

8

9

Data carrier detect
Data set ready

2 Receive data
Request to send

3 Transmit data
Clear to send

4 Data terminal ready
Ring indicator

5 Signal ground

FIGURE 13–68  Standard RS-232 connectors.

+15 V

−15 V

(1)
Start bit

(0)
Stop bit

(1)

(0)
0 0 0 1 1 0 1 0

FIGURE 13–67  Example of RS-232 transmitted data format. A parity bit is not included.

The standard 25-pin connector for RS-232 is shown in Figure 13–68(a). A smaller 9-pin 
connector, is shown in part (b).

RS-422/423/485

The RS-422 bus provides for differential transmission for greater distances (longer cable 
length) and has higher data rates than the RS-232 bus. Also, the standard defines the num-
ber of receiving devices as ten for a line with one driver (transmitting device) compared 
to one receiving device for the RS-232. The RS-423 bus is similar to the RS-232 in that 
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it is single-ended, but it has a higher data rate and longer cable length. The RS-485 bus is 
a differential standard and can accommodate multiple drivers and receivers. Table 13–9 
summarizes some of the features of the RS (EIA) buses.

Table 13–9

Specifications RS-232 RS-423 RS-422 RS-485

Operation Single-ended Single-ended Differential Differential
Drivers/Receivers 1/1 1/10 1/10 32/32
Cable length 50 ft 4000 ft 4000 ft 4000 ft
Max data rate 20 kbps 100 kbps 10 Mbps 10 Mbps
Driver output signal 
level (+/− min/max)

5 V/15 V 3.6 V/6 V 2 V/6 V 1.5 V/6 V

The SPI Bus

The serial-to-peripheral interface (SPI) bus is a synchronous serial communications bus 
that uses four wires for communication between a “master” device and a “slave” device. 
This standard was developed by Motorola; it operates in full-duplex mode up to a data rate 
of 10 Mbps and can accommodate multiple slaves. The four signal wires are

	 1.	 MOSI (master out slave in) is initiated by the master and received by the slave.

	 2.	 MISO (master in slave out) is initiated by the slave and received by the master.

	 3.	 SCLK (serial clock) is generated by the master for synchronizing data transfers.

	 4.	 SS (slave select) is generated by the master to select an individual slave.

Other names are sometimes assigned to these signals such as SDI (serial data in) for MOSI 
and SDO (serial data out) for MISO. Figure 13–69 shows a master with a single slave.

SlaveMaster

MOSI

MISO

SCLK

SS

MOSI

MISO

SCLK

SS

FIGURE 13–69  SPI master/slave configuration.

The SPI bus is typically used in embedded systems and on PCBs for communication 
between microprocessors or microcontrollers and peripheral IC chips or between two pro-
cessors. Much PCB “real estate” can be saved compared to using an internal parallel bus 
with many more connections.

SPI applications include digital audio, signal processing, and telecommunications. SPI 
is used to communicate with various types of peripherals such as sensors, camera lenses, 
flash memory, LCD displays, and video games. Many microprocessors and microcon-
trollers include SPI controllers that can be used as either a master or a slave.

The I2C Bus

I2C bus (pronounced I squared C) is also stated at I2C (I two C) and stands for inter-
integrated circuit. It is an internal serial bus primarily for connecting ICs on a PCB. A main 
advantage is that it requires only two lines (plus ground) and therefore saves considerable 
board space compared to a parallel bus. Two signals (SDA and SCL) are used to commu-
nicate between compatible devices. Data are sent serially on the SDA line, and a clock is 

M13_FLOY5983_11_GE_C13.indd Page 780  12/11/14  9:38 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Other Serial Buses	 781

sent on the SCL line. Like SPI, I2C is based on the master/slave concept where the master 
device drives the clock line and the slaves respond to the master. Only the master can initi-
ate a transfer over the bus, but slaves can transfer data under control of the master using 
clock rates up to 100 kHz in the standard mode. Two other modes, enhanced and high-
speed, allow 400 kbps and 3.4 Mbps, respectively.

When transferring data from master to slave, the master device sends a start bit, fol-
lowed by a slave address, and a write bit. The master waits for an acknowledge (ACK) sig-
nal from the slave and then sends the data and waits for an acknowledge before sending a 
stop bit, as illustrated in Figure 13–70(a). The yellow segments are from the master and the 
gray elements are from the slave. Similarly, when the master requires data from the slave, 
it sends a start bit followed by the address and a read bit. The slave returns an acknowledge 
followed by the data. When the master receives the data, it issues an acknowledge and a 
stop bit, as shown in Figure 13–70(b).

Start Write StopDataACK ACKAddress

Start Read StopDataACK ACKAddress

(a) Data transfer from master to slave

(b) Data transfer from slave to master

FIGURE 13–70  I2C data transfers. Yellow is from master. Gray is from slave.

The CAN Bus

The controller area network (CAN) bus, a differential serial bus, was developed for auto-
motive applications and is also commonly used in aerospace systems, as well as other 
applications. The bus consists of a terminated twisted pair of signal lines, called CAN 
H and CAN L, plus ground. Vehicles sold in the United States are required by the SAE 
(Society of Automotive Engineers) to use the CAN bus protocol. The European Union has 
similar requirements.

Devices, called nodes, can be connected to the bus but are not assigned specific addresses 
as in the I2C bus. Two CAN specifications are in use. The standard or basic CAN 2.0A has 
11-bit message identifiers and can operate up to 250 kbps, and the full CAN has 29-bit 
message identifiers and can be used up to 1 Mbps. The message identifier is a label for the 
contents of a message and goes to each node on the bus. Each receiving node performs a 
test on the identifier to determine if it is relevant to that node and is used to arbitrate the 
bus to determine if the message is of highest priority. All of the nodes on the bus can trans-
mit and receive messages. The bus is available to a node with a message with the highest 
priority (dominant) and can override a message with lower priority (recessive). When the 
dominant message has been processed, the recessive message is retransmitted.

The standard CAN data frame is shown in Figure 13–71. Data are transmitted in NRZ 
format. The frame begins with a start-of-frame (SOF) bit followed by an arbitration field and 
a control field. The arbitration field contains the message identifier and a remote transmis-
sion request (RTR) bit. The control field has two reserve bits and a data length code (DLC) 
that specifies the length of the data field that follows and can contain up to 8 bytes. The 
cyclic redundancy check (CRC) field provides for error detection. The acknowledge (ACK) 
verifies the receipt of correct data, and the frame ends with the end-of-frame field (EOF).

SOF Arbitration field Control field Data field CRC field ACK EOF

(1 bit) Identifier (11 bits)
RTR (1 bit)

(0–8 bytes) (16 bits) (2 bits) (7 bits)Reserve (2 bits)
DLC (4 bits)

FIGURE 13–71  Standard CAN data frame format.
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An Application

An automobile typically has many control units (usually several dozen) for various sub-
systems, including the engine control unit and other control units for transmission; ABS; 
cruise control; power steering; audio system; window, door, and mirror controls; airbags; 
and others. Figure 13–72 is a block diagram of a partial automotive control system using 
two CAN buses, one low-speed and one high-speed to control various functions throughout 
the vehicle.

Microcontroller

CAN controller

Transceivers

Engine
control unit

Transmission
control unit

ABS control
unit

Airbag
control unit

Cruise
control unit

Termination

Termination

Climate
control unit

Door
control unit

Proximity
warning

control unit

Lighting
control unit

Window
control unit

Mirror
control unit

Driver
information

unit

CAN 2.0B

CAN 2.0A

CAN H

CAN H

CAN L

CAN L

FIGURE 13–72  The CAN bus in an automotive control system.

Each unit connected to the bus contains sensors and other functions that allow it to carry 
out its unique purpose. For example, the ABS (antilock braking system) can receive a mes-
sage from sensors in each wheel indicating that the brake is about to lock up. A sudden 
and rapid deceleration in the wheel indicates an imminent lock-up condition. The ABS unit 
then sends a message that causes the valve in the brake line to release pressure to allow 
acceleration. Then, when acceleration is sensed, the unit causes a pump to restore the pres-
sure. A rapid release and restore cycle occurs until the brakes are brought under control. A 
pulsing of the brake pedal can be felt when the operation occurs.

As another example, part of the engine control unit’s operation is to sense parameters 
such as engine temperature, oil pressure, fuel consumption, and rpm, and send messages to 
the driver unit. All of the units on the bus operate as a system to keep the vehicle running 
as smoothly and as safely as possible, while providing a comfortable environment for the 
driver and passengers.

The Firewire Bus

Firewire, also known as IEEE-1394 and iLink, is a high-speed external serial bus devel-
oped by Apple Inc. Firewire is used in high-speed communications and real-time data 
transfer. It is used in professional audio and video equipment, camcorders, DVD players, 
external hard drives, and in computers used for audio and video editing, as well as in some 
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auto and aircraft applications. It is similar to the USB except that it has a higher data rate 
and can handle more data.

Three types of connectors are used in the Firewire standard: a 4-pin connector, a 6-pin 
connector, and a 9-pin connector. The cable for the 4-pin connector consists of two twisted 
pairs that carry data. The cable for the 6-pin connector has the two twisted pairs for data 
plus a power line and a ground line. The cable for the 9-pin connector has the same wires as 
the 6-pin configuration plus two wires that provide for a grounded shield and one wire that 
is currently unused. The Firewire symbol is shown in Figure 13–73(a). End views of the 
three connector types are shown in part (b), and the pin designations are shown in part (c).

5 6
43

1 2
5 6 7 8 9

43 21

1234

(a)

(b)

FIGURE 13–73  Firewire symbol with cable and connector wires and pins.

4-PIN 6-PIN 9-PIN Description Wire Color

1 8 +V dc (30 V max) White
2 6 Ground Black

1 3 1 TPB—(diff signal) Orange
2 4 2 TPB+ Blue
3 5 3 TPA—(diff signal) Red
4 6 4 TPA+ Green

5 Shield
7 Unused
9 Shield

The Firewire bus address has a total of 64 bits. Ten are for bus ID, six are for node 
ID, and 48 are for individual addresses. This allows up to 1023 buses, each having up to 
63 nodes. The six transfer modes in the IEEE-1394 standard and its revisions are S100, 
S200, S400, S800, S1600, and S3200. The S100 is the base rate of 98.304 Mbps. The 
S200 is twice the base rate at 196.608 Mbps, and the S400 is four times the base rate at 
393.216 Mbps. The S800 is 786.432 Mbps while the S1600 and S3200 are 16 and 32 
times the base rate, respectively (1.6 Gbps and 3.2 Gbps). Firewire cable length cannot 
exceed 15 ft (4.572 m). To increase this length, up to 16 cables can be connected together.

Firewire versus USB

In general, any capable node can control the bus in a Firewire system, but a single host is 
used to control the bus in USB. USB networks use a tiered-star topology and Firewire uses 
a tree topology. A Firewire device can communicate with any node at any time if the condi-
tions allow, but a USB 2.0 device cannot communicate with the host device unless requested 
by the host. However, USB 3.0 allows Firewire-like communications between devices. USB 
provides 5 V power while Firewire provides up to 30 V. As a result, Firewire can supply 
more power to a device than USB. As mentioned before, Firewire is faster than USB.

Serial SCSI

Serial Attached SCSI (SAS) is a data-transfer technology for transmitting data to and 
from storage devices. It has become a replacement for parallel SCSI bus technology that 
is commonly used in data centers, workstations, and servers. The serial SCSI overcomes 
some of the limitations of the parallel SCSI. The SAS supports up to a 12 Gbps data rate 
and allows up to 65,535 devices to be connected using expanders compared to 15 devices 
for parallel SCSI.
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Bus Signals

With synchronous bus control, the microprocessor (CPU) usually originates all control and 
timing signals. The other devices then synchronize their operations to those control and timing 
signals. With asynchronous bus control, the control and timing signals are generated jointly 
by a source and a receiver using a handshaking routine. A typical handshaking sequence is 
given in Figure 13–75. Handshaking routines may differ from one system to another, as you 
can see by comparing this sequence with the one shown in Figure 13–53.

An important control function is called bus arbitration. Arbitration prevents two 
sources from trying to use the bus at the same time.

SECTION 13–9  Checkup

	 1.	List all the buses introduced in this section.

	 2.	What does SPI stand for?

	 3.	What does I2C stand for?

	 4.	What does CAN stand for?

	 5.	What is another designation for Firewire?

13–10  Bus Interfacing

All the components in a computer or other systems are interconnected by buses, which 
serve as communication paths. Physically, a bus is a set of conductive paths that serves to 
interconnect two or more functional components of a system or several diverse systems. 
Electrically, a bus is a collection of specified voltage levels and/or current levels and sig-
nals that allow the various devices connected to the bus to work properly together.

After completing this section, you should be able to

u	 Discuss the concept of a multiplexed bus

u	 Explain the reason for tri-state outputs

Basic Multiplexed Buses

As you have learned, in computers the microprocessor controls and communicates with the 
memories and the input/output (I/O) devices via the internal bus structure, as indicated in 
Figure 13–74. A bus is multiplexed so that any of the devices connected to it can either send 
or receive data to or from one of the other devices. A sending device is often called a master 
or source, and a receiving device is often called a servant or acceptor. At any given time, 
there is only one source active. For example, the RAM may be sending data to the input/
output (I/O) interface under control of the microprocessor.

Bus

RAMMicroprocessor 
(CPU)

ROM I/O Interface

FIGURE 13–74  The interconnection of microprocessor-based system components by a 
bidirectional, multiplexed bus.
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Connecting Devices to a Bus

Tri-state buffers are normally used to interface the outputs of a source device to a bus. Usu-
ally more than one source is connected to a bus, but only one can have access at any given 
time. All the other sources must be disconnected from the bus to prevent bus contention.

Tri-state circuits are used to connect a source to a bus or disconnect it from a bus, as 
illustrated in Figure 13–76(a) for the case of two sources. The select input is used to connect 
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FIGURE 13–76  Tri-state buffer interface to a bus.

Source

Prepare to receive

Ready to receive

Data ready

Data accepted

Acceptor

1

2

3

4

fg13_03400

FIGURE 13–75  An example of a handshaking sequence.
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either source A or source B but not both at the same time to the bus. When the select input is 
LOW, source A is connected and source B is disconnected. When the select input is HIGH, 
source B is connected and source A is disconnected. A switch equivalent of this action is 
shown in part (b) of the figure.

When the enable input of a tri-state circuit is not active, the device is in a high-impedance 
(high-Z) state and acts like an open switch. Many digital ICs provide internal tri-state buffers 
for the output lines. A tri-state output is indicated by a  symbol as shown in Figure 13–77.

Tri-State Buffer Operation

Figure 13–78(a) shows the logic symbol for a noninverting tri-state buffer with an active-
HIGH enable. Part (b) of the figure shows one with an active-LOW enable.

O0

O1

O2

O3

O4

O5

O6

O7

∆
∆
∆
∆
∆
∆
∆
∆

fg13_03600

FIGURE 13–77  Method of 
indicating tri-state outputs on an 
IC device.

Input

Enable

Output

(a) Active-HIGH enable

Input

Enable

Output

(b) Active-LOW enable 

fg13_03700

FIGURE 13–78  Tri-state buffer symbols.

The basic operation of a tri-state buffer can be understood in terms of switching action 
as illustrated in Figure 13–79. When the enable input is active, the gate operates as a normal 
noninverting circuit. That is, the output is HIGH when the input is HIGH and LOW when 
the input is LOW, as shown in parts (a) and (b) respectively. The HIGH and LOW levels 
represent two of the states. The buffer operates in its third state when the enable input is not 
active. In this state, the circuit acts as an open switch, and the output is completely discon-
nected from the input, as shown in part (c). This is sometimes called the high-impedance or 
high-Z state.

HIGH

HIGH

HIGH

(a)

LOW or
HIGH

LOW

Disconnected
(high-Z )

(c)

LOW

HIGH

LOW

(b)
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FIGURE 13–79  Tri-state buffer operation.

Many microprocessors, memories, and other integrated circuit functions have tri-state 
buffers that serve to interface with the buses. Such buffers are necessary when two or more 
devices are connected to a common bus. To prevent the devices from interfering with each 
other, the tri-state buffers are used to disconnect all devices except the ones that are com-
municating at any given time.

Bus Contention

Bus contention occurs when two or more devices try to output opposite logic levels on the 
same common bus line. The most common form of bus contention is when one device has 
not completely turned off before another device connected to the bus line is turned on. This 
generally occurs in memory systems when switching from the READ mode to the WRITE 
mode or vice versa and is the result of a timing problem.

Multiplexed I/Os

Some devices that send and receive data have combined input and output lines, called I/O 
ports, that must be multiplexed onto the data bus. Bidirectional tri-state buffers interface 
this type of device with the bus, as illustrated in Figure 13–80(a).
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Each I/O port has a pair of tri-state buffers. When the SND>RCV  (Send>Receive) line 
is LOW, the upper tri-state buffer in each pair is enabled and the lower one disabled. In this 
state, the device is acting as a source and sending data to the bus. When the SND>RCV  line 
is HIGH, the lower tri-state buffer in each pair is enabled so that the device is acting as an 
acceptor and receiving data from the bus. This operation is illustrated in Figure 13–80(b). 
Some devices provide for multiplexed I/O operation with internal circuitry.
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FIGURE 13–80  Multiplexed I/O operation.

SECTION 13–10  Checkup

	 1.	Why are tri-state buffers required to interface digital devices to a bus?

	 2.	What is the purpose of a bus system?

Summary

•	 Three essential elements in a data transmission system are sending device, transmission media, 
and receiving device.

•	 The simplest connection between sending and receiving devices is a wire or a conductive trace 
on a printed circuit board (PCB).

•	 A coaxial cable consists of a center conductor within an insulating dielectric material surrounded 
by a copper braided or foil shield encased in a protective jacket.

•	 BNC (Bayonet Neill-Concelman) connectors are typically used for coaxial connections.

•	 A twisted pair minimizes crosstalk when bundled together with other twisted pairs into cables.

•	 Instead of using electrical pulses to transmit information through copper lines, fiber optics uses 
light pulses transmitted through optical fibers.

•	 The transmission of data through air and space without the use of physical connections between 
sending and receiving systems is known as wireless transmission.
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•	 Most data communications occur within the radio wave, microwave, and infrared frequencies.

•	 Three ways in which rf and microwave signals propagate through Earth’s atmosphere (air) are 
ground wave, ionospheric, and line-of-sight.

•	 Two types of data transmission in terms of how a receiving device knows what a sending device 
is transmitting are synchronous and asynchronous.

•	 Two data formats that require separate data and timing are RZ (return to zero) and NRZ  
(nonreturn to zero).

•	 In biphase coding, the timing and data are combined in one signal; also called manchester 
encoding.

•	 Three modes that characterize data channel (media) connections are simplex, half-duplex, and 
full-duplex.

•	 Three major classes of modulation techniques for wireless transmission of digital data are 
amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK).

•	 Multiplexing is a method used to transmit digital data from multiple sources over a single com-
munication channel.

•	 Demultiplexing is the process of separating data from a single channel to multiple channels.

•	 Two major types of multiplexing are time-division and frequency-division.

•	 The physical properties of a bus include the number of conductors, the configuration and length 
of the conductors, and the types and configurations of the connectors.

•	 The electrical properties of a bus include signal format, signal voltage levels, clock frequency, 
data transfer speed, bandwidth, data frame format, data rate, handshaking protocol, error  
detection, impedances, and line termination.

•	 General bus characteristics are width, frequency, transfer speed, and bandwidth.

•	 A synchronous bus contains a clock, and an asynchronous bus is unclocked.

•	 Single-ended operation uses one wire for data and one wire for ground, where the signal voltage 
on the wire is with respect to ground.

•	 Differential operation uses two wires for data and one wire for ground.

•	 The PCI (peripheral component interconnect) bus is an internal synchronous bus for intercon-
necting chips, expansion boards, and processor/memory subsystems.

•	 PCI-Express uses a lane configuration via a switching device.

•	 In addition to PCI buses, other important parallel buses are ISA, IEEE-488, and SCSl.

•	 USB is a widely used standard serial bus for connecting peripherals to a computer.

•	 A USB packet can include the following fields: synchronization, packet identification, address, 
data, end point, CRC, and end of packet.

•	 Four types of USB packets are token, data, handshake, and start-of-frame.

•	 In addition to USB, some important serial buses are RS-232/422/423/485, SPI, I2C, CAN, 
Firewire, and serial SCSI.

•	 Tri-state devices are used to interface circuitry to a bus.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Baud  The number of symbols per second in a data transmission.

Bit rate  The number of bits per second in a data transmission.

Bus  A set of connections and specifications for the transfer of data among two or more devices.

Bus protocol  A set of rules that allow two or more devices to communicate through a bus.

Coaxial cable  A type of data transmission media in which a shielded conductor is used to 
minimize EMI.

Electromagnetic waves  Related to the electromagnetic spectrum which includes radio waves, 
microwaves, infrared, visible, ultraviolet, X-rays, and gamma rays.
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EMI  Electromagnetic interference.

Full-duplex  A connection in which the data flow both ways simultaneously in the same channel.

GPIB  General-purpose interface bus based on the IEEE-488 standard.

Half-duplex  A connection in which the data flow both ways but not at the same time in the same 
channel.

Handshake  A routine by which two devices initiate and complete a bus transfer.

Manchester encoding  A method of encoding called biphase in which a 1 is represented by a 
positive-going transition and a 0 is represented by a negative-going transition.

Modulation  The process of altering a parameter of a higher frequency signal proportional to the 
amplitude of a lower frequency information-carrying signal.

NRZ  Nonreturn to zero. A type of data format in which the signal level remains at one (1) for 
successive 1s.

Optical fiber  A type of data transmission media used for transmitting light signals.

PAM  Pulse amplitude modulation. A method of modulation in which the height or amplitude of 
the pulses are varied according to the modulating analog signal, and each pulse represents a value 
of amplitude of the analog signal.

RS-232  A bus standard, also known as EIA-232, used in industrial and telecommunication appli-
cations as well as scientific instrumentation, but largely replaced by USB in computer applications.

RZ  Return to zero. A type of data format in which the signal level goes to or remains at zero after 
each data bit.

SCSI  Small computer system interface bus.

Simplex  A connection in which data flow in only one direction from the sender (transmitter) to 
the receiver.

Tri-state buffer  A circuit used to interface one device to another to prevent loading.

USB  Universal serial bus. A widely used standard serial bus for connecting peripherals to a computer.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 The simplest connection between devices which receive and send data is a wire.

	 2.	 BNC is a type of connector used for simple wires.

	 3.	 Unshielded twisted pair cables are used for indoor telephone applications.

	 4.	 Crosstalk increases when twisted pairs are bundled together.

	 5.	 Optical fiber cables transmit light pulses through the fibers.

	 6.	 Optical fibers are not suitable for networking.

	 7.	 Communication in the infrared region can be line-of-sight or diffused.

	 8.	 Types of rf and microwave signals that propagate through Earth’s atmosphere are ground wave, 
ionospheric, and line-of-sight.

	 9.	 In general, a given number of bits can be transmitted faster in series than in parallel.

	10.	 In asynchronous systems, the sending and receiving devices operate with separate oscillators 
having different clock frequencies.

	11.	 In asynchronous transmissions, data is sent in bursts.	

12.	 Bit rate is always less than or equal to the baud.

	13.	 The efficiency of a data transmission channel is the ratio of data bits to the total bits in a 
packet.

	14.	 Three modes that characterize data channel connections are simplex, half-duplex and full-
duplex modes.

	15.	 In full-duplex mode, data flows in a single way only.
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Self-Test

Answers are at the end of the chapter.

	 1.	 Crosstalk is minimized using
(a)	 wire connections	 (b)	 twisted pair cables
(c)	 insulated cables	 (d)	 both (a) and (b)

	 2.	 UTP is color-coded according to
(a)	 a 10-pair color code	 (b)	 a 25-pair color code
(c)	 the resistor color code	 (d)	 the primary colors

	 3.	 Advantages that fiber-optic systems have over electrical transmission media are
(a)	 higher data rate, less susceptible to noise, and longer transmission distance
(b)	 lower cost, higher data rate, and simplicity
(c)	 higher data rate, higher EMI, less distortion
(d)	 higher baud, availability, and reliability

	 4.	 The modes of light propagation in optical fibers are
(a)	 simplex and duplex	 (b)	 multimode and single-mode
(c)	 synchronous and asynchronous	 (d)	 scatter and direct

	16.	 Quadrature amplitude modulation (QAM) is a combination of ASK and PSK.

	17.	 BASK stands for binary amplitude-shift keying.

	18.	 PSK applications include wireless LAN and bluetooth.

	19.	 In quadrature amplitude modulation there are eight phase quadrants.

	20.	 QAM is widely used in telecommunications and in digital cable TV.

	21.	 PPM is derived from PWM using different techniques of modulation.

	22.	 In pulse position modulation, the position of each pulse relative to a reference or timing signal 
is varied proportional to the modulating signal waveform.

	23.	 Pulse code modulation involves sampling of an analog signal amplitude at regular intervals.

	24.	 The three main data transmission combinations are digital-to-analog, analog-to-digital, and 
digital-to-digital.

	25.	 TDM stands for Time Division Multiplexing.

	26.	 FDM is a baseband technique in which the total bandwidth available to a system is divided into 
frequency sub-bands and information is sent in analog form.

	27.	 A bus connects two or more devices to allow them to communicate.

	28.	 A bus is only defined by the wires and connectors.

	29.	 A parallel bus is always faster than a serial bus.

	30.	 Bus width is the width of each conductor in a parallel bus.

	31.	 Handshaking is not a part of the bus protocol.

32.	 A single-ended transmission is simpler and lower in cost compared to a differential transmission.

	33.	 A tri-state driver has a HIGH state, a LOW state, and a shorted state.

	34.	 PCI stands for peripheral computer interface.

	35.	 Two types of PCI buses are PCI-X and PCI-E.

	36.	 IEEE-488 is known as the GPIB.

	37.	 SCSI stands for serial computer system interface.

	38.	 USB is a widely used standard serial bus for connecting peripherals to a computer.

	39.	 The SPI bus is typically used in embedded systems and on PCBs for communications between 
microprocessors or microcontrollers and peripheral IC chips or between two processors.

	40.	 An internal serial bus primarily for connecting ICs on a PCB is the I2C bus.	

41.	 Most automotive systems use the Firewire bus.

	42.	 CAN stands for computer area node.

M13_FLOY5983_11_GE_C13.indd Page 790  19/11/14  9:49 AM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Self-Test	 791

	 5.	 The electromagnetic spectrum does not include
(a)	 UV rays	 (b)	 radio waves
(c)	 microwaves	 (d)	 sonic waves

	 6.	 The signals of ham radio bounce off the
(a)	 troposphere	 (b)	 hydrosphere
(c)	 ionosphere	 (d)	 stratosphere

	 7.	 Night vision uses
(a)	 radio waves	 (b)	 IR-rays
(c)	 ultraviolet rays	 (d)	 x-rays

	 8.	 An asynchronous counter has
(a)	 many oscillators with the same clock frequency
(b)	 one oscillator with a single clock frequency
(c)	 many oscillators with different clock frequencies
(d)	 both (b) and (c)

	 9.	 All of the following are transmission modes except:
(a)	 simplex
(b)	 complex
(c)	 half-duplex
(d)	 full-duplex

	10.	 The Manchester code format is
(a)	 NRZ	 (b)	 biphase
(c)	 RZ	 (d)	 FDM

	11.	 A synchronous data frame does not contain a(n)
(a)	 preamble	 (b)	 data field
(c)	 address	 (d)	 vector field

	12.	 Three types of data channel connections in terms of data flow are
(a)	 input, output, neutral
(b)	 simplex, half-duplex, full-duplex
(c)	 simplex, duplex, triplex
(d)	 uniplex, diplex, biplex

	13.	 In FSK modulation,
(a)	 the frequency of a carrier signal is varied by a digital signal.
(b)	 the frequency of a digital signal is varied by a carrier signal.
(c)	 the phase of a carrier signal is varied by a digital signal.
(d)	 the amplitude of a carrier signal is varied by a digital signal.

	14.	 Types of modulation in which a parameter of a sine-wave carrier signal is varied by a digital 
signal are
(a)	 PAM, PWM, PPM	 (b)	 QAM, PAM, ASK
(c)	 FSK, PSK, PPM	 (d)	 FSK, ASK, PSK

	15.	 QAM stands for
(a)	 quadrature analysis method
(b)	 quadrature amplitude modulation
(c)	 quasi-amplitude modulation
(d)	 quadratic amplitude modulation

	16.	 In QAM, the parameters that are varied are
(a)	 amplitude and frequency	 (b)	 phase and frequency
(c)	 amplitude and phase	 (d)	 pulse width and position

	17.	 Three methods of modulating a digital signal with analog data are
(a)	 PAM, PWM, PPM	 (b)	 PAM, ASK, PPM
(c)	 FSK, QAM, PAM	 (d)	 QAM, PAM, PWM

	18.	 The most likely type of modulation to be used in motor speed control is
(a)	 PAM	 (b)	 PPM
(c)	 PWM	 (d)	 QAM

	19.	 Pulse amplitude modulation makes use of
(a)	 a sample and hold circuit	 (b)	 a successive approximator
(c)	 a dual-slope ADC	 (d)	 an R/2R setup
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	20.	 PAM stands for
(a)	 pulse and modulator	 (b)	 peripheral analog modulators
(c)	 pulse amplitude modulation	 (d)	 protocol and modulation

	21.	 A PMW uses
(a)	 differentiators	 (b)	 rectifiers
(c)	 flip-flops	 (d)	 both (a) and (b)

	22.	 A certain number of data bits (D) are encoded by a single pulse in one of 2D possible positions 
during a specified fixed period (T ) in
(a)	 TDM	 (b)  PAM 	 (c)  PPM	 (d)  PWM

	23.	 Properties that define a bus include
(a)	 type of connectors
(b)	 length and type of cable or connection
(c)	 data rate and encoding
(d)	 all of these

	24.	 Which of the following is an encoding technique?
(a)	 PAM	 (b)  ASK	 (c)  FSK	 (d)  PSK

	25.	 The method used to transmit digital data from multiple sources over a single communication 
channel is called
(a)	 demultiplexing	 (b)	 multiplexing
(c)	 encoding	 (d)	 decoding

	26.	 PCI is the acronym for
(a)	 peripheral controller interface	 (b)	 peripheral computer interface
(c)	 protocol compatible interface	 (d)	 peripheral component interconnect

	27.	 In a PCI system, the individual paths from switch to peripherals are called
(a)	 pipes	 (b)	 lanes
(c)	 highways	 (d)	 channels

	28.	 The following is not a classification of USB:
(a)	 low-speed	 (b)	 full-speed
(c)	 high-speed	 (d)	 intermediate speed

	29.	 A 3.0 USB cable contains
(a)	 two twisted pairs	 (b)	 one twisted pair
(c)	 three twisted pairs	 (d)	 two straight wires

	30.	 Four types of USB packets are
(a)	 token, data, handshake, and start-of-frame
(b)	 token, data, handshake, and control
(c)	 identification, address, synchronization, and data
(d)	 none of these

	31.	 The RS-232 encoding method is
(a)	 RZ	 (b)	 Manchester
(c)	 biphase	 (d)	 NRZ

	32.	 The bus typically used to connect systems in an automobile is the
(a)	 SPI	 (b)	 CAN
(c)	 I2C	 (d)	 PCI

Problems

Answers to odd-numbered problems are at the end of the book.

Section 13–1  Data Transmission Media
	 1.	 List the essentials of a data transmission system.

	 2.	 Describe the wire connection in data transmissions.

	 3.	 What is crosstalk? How can it be minimized?

	 4.	 How is an optical fiber different from a normal wire?

	 5.	 Describe the single mode in an optical fiber.
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FIGURE 13–81 

	18.	 Describe the different transmission modes.

Section 13–3  Modulation of Analog Signals with Digital Data
	19.	 Determine the binary code represented by the ASK signal in Figure 13–82. Presence of a signal 

is a 1 and absence of a signal is 0.

	 6.	 List the sizes of optical fibers commonly used in different modes of data transmission.

	 7.	 Draw a basic block diagram of a fiber optics communications link.

	 8.	 List the types of connectors used in fiber-optic system.

	 9.	 What are the ways in which radio waves propagate through the Earth’s surface?

Section 13–2  Methods and Modes of Data Transmission
	10.	 If data bits are transmitted serially at a 1 MHz rate, how many bits can be transmitted in 1 ms?

	11.	 If a byte of data takes 2 ms to be transmitted in parallel, what is the data rate in bits per second?

	12.	 Eight voltage levels are being transmitted by a system where each level (symbol) represents a 3-bit 
code. Assuming that 12 symbols are transmitted in 0.5 ms, determine the bit rate and the baud.

	13.	 Assume a 5 bit code is used for each symbol transmitted. If the bit rate is 50 MHz, what is 
the baud?

	14.	 A certain data packet contains a total of 20 bits of which 16 are data bits. Determine the efficiency.

	15.	 Show the data waveform for the bit sequence 101011100011 in NRZ and in RZ formats.

	16.	 For the bit sequence in Problem 15, show the Manchester code.

	17.	 Determine the bit sequence represented by the Manchester code in Figure 13–81.

FIGURE 13–82 

	20.	 Show how you would represent four successive bits (1001) using FSK.

	21.	 Repeat Problem 20 for PSK.

	22.	 Refer to Figure 13–23 and determine the sequence of bits represented by the QAM signal in 
Figure 13–83.

FIGURE 13–83 
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	23.	 Sketch a constellation map for a 4-bit PSK system.

	24.	 Repeat Problem 23 for a 4-bit QAM system.

Section 13–4  Modulation of Digital Signals with Analog Data
	25.	 Describe the PAM method.

	26.	 Develop the PAM and PWM signals for the waveform in Figure 13–84.

	27.	 For a PPM system, with four data bits, and a time period of 2 ms, determine the data rate. How 
many possible pulse positions are there in each time period?

	28.	 Show the NRZ code for the PPM signal in Figure 13–85.

T

01 10 11 01 10 11 01 10 11 01 10 11
PPM

T T T

00000000

FIGURE 13–85 

	29.	 In a PCM code, how many bits are required to represent 8 voltage levels of a modulating 
signal?

	30.	 Show the 4-bit PCM code in NRZ format for four successive samples of an analog waveform. 
The sampled values are 1, 3, 5, and 7.

Section 13–5  Multiplexing and Demultiplexing
	31.	 Explain the difference between multiplexing and demultiplexing.

	32.	 Describe TDM technique.

	33.	 Why are bandpass filter used in FDM systems?

	34.	 What is the frequency separation called between each source in an FDM system?

Section 13–6  Bus Basics
	35.	 Describe the general characteristics of a bus.

	36.	 Describe the different types of buses.

	37.	 A certain bus is specified with a width of 32 bits and a frequency of 100 MHz. Determine the 
bus bandwidth expressed as two different values.

	38.	 What is bus protocol?

	39.	 State an advantage of a differential bus over a single-ended bus.

Section 13–7 Parallel Buses
	40.	 Describe a PCI bus.

	41.	 Explain how the PCI-Express differs from PCI and PCI-X.

(a) PAM

FIGURE 13–84 

(b) PWM
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	42.	 What does x2 mean in a PCI-Express bus?

	43.	 The terms listener and talker are associated with which bus standard?

	44.	 Provide the description of each of the SCSI signals: BSY, SEL, RST, C/D, REQ, ACK, ATN, 
and MSG.

	45.	 Consider the GPIB interface between a talker and a listener as shown in Figure 13–86(a). From 
the handshaking timing diagram in part (b), determine how many data bytes are actually trans-
ferred to the listening device.

DAV

NRFD

NDAC

Transfer
bus

ListenerTalker
Data bus

(a) (b)

DAV

NRFD

NDAC

fg13_04900

FIGURE 13–86 

	46.	 Describe the operations depicted in the GPIB timing diagram of Figure 13–87. Develop a basic 
block diagram of the system involved in this operation.

(DI/O1-DI/O8)

ATN

DAV

NRFD

NDAC

DataDataAddressDataDataAddress

001A 3F 41 001B C8 AD

fg13_05000

FIGURE 13–87 

Section 13–8 The Universal Serial Bus (USB)
	47.	 Identify each of the symbols in Figure 13–88.

(c)(b)(a)

FIGURE 13–88 

	48.	 List the four types of USB packets.

	49.	 Describe each of the fields in the USB data packet in Figure 13–89.

Sync
8/32

PID
8

Data
0-8192

CRC
16

EOP
3

FIGURE 13–89 

	50.	 What type of data encoding is used in USB 3.0?

	51.	 Determine the maximum number of bytes in a USB data field.

	52.	 What is the maximum separation of two USB 2.0 devices?
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FIGURE 13–90 

Section 13–9 Other Serial Buses
	53.	 Describe how RS-232 and RS-422 differ.

	54.	 List the four signals in an SPI bus and describe each one.

	55.	 Describe the main use for the I2C bus.

	56.	 Fill in the field descriptions for the blank CAN bus data format in Figure 13–90.

	57.	 Refer to Figure 13–72 and list additional units that may appear on a CAN automotive system.

	58.	 What is the data rate for the IEEE-1394 bus standard in the S100 mode? What is the data rate 
in the S1600 mode?

Section 13–10 Bus Interfacing
	59.	 In a simple serial transfer of eight data bits from a sending device to an receiving device, the 

handshaking sequence in Figure 13–91 is observed on the four generic bus lines. By analyzing 
the time relationships, identify the function of each signal and indicate if it originates at the 
sender or at the receiver.

fg13_04600

FIGURE 13–91 

	60.	 Determine the signal on the bus line in Figure 13–92 for the data input and enable waveforms 
shown.

Data A

Enable A

Data B

Enable B

Data A

Enable A

Data B

Enable B

Bus line

fg13_04700

FIGURE 13–92 

	61.	 In Figure 13–93(a), data from the two sources are being placed on the data bus under control 
of the select line. The select waveform is shown in Figure 13–93(b). Determine the data bus 
waveforms for the device output codes indicated.
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...
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Device 2Device 1

1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0

D7

D0

(a)

(b)

S

S

Bus (8 lines)

fg13_04800
FIGURE 13–93 

Answers

Section Checkups
Section 13–1 Data Transmission Media
	 1.	 Wire, coaxial cable, twisted pair cable, optical fiber cable, and wireless

	 2.	 The shield protects against EMI.

	 3.	 Ground wave, ionospheric, line-of-sight

	 4.	 Gamma radiation has the highest frequencies

	 5.	 Baseband uses digital modulation (a series of pulses). Broadband uses a digitally modulated 
analog signal.

Section 13–2 Methods and Modes of Data Transmission
	 1.	 Serial data are one bit at a time in sequence. Parallel data are simultaneous multiple bits at a time.

	 2.	 Synchronization allows the receiver to recognize the beginning and end of a data transmission.

	 3.	 RZ, NRZ, biphase are three types of data format.

	 4.	 Simplex, half-duplex, and full-duplex are three modes of data transmission.

Section 13–3 Modulation of Analog Signals with Digital Data
	 1.	 Modulation techniques are ASK, FSK, PSK, and QAM.

	 2.	 The amplitude of the analog signal is changed in ASK.

	 3.	 The frequency of the analog signal is changed in FSK.

	 4.	 QAM is quadrature amplitude modulation.

	 5.	 The phase of the analog signal is changed in PSK.

Section 13–4 Modulation of Digital Signals with Analog Data
	 1.	 Pulse modulation methods are PAM, PWM, PPM, and PCM

	 2.	 Pulse amplitude

	 3.	 Pulse width

	 4.	 Pulse position

	 5.	 A binary code
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Section 13–5 Multiplexing and Demultiplexing
	 1.	 The purpose of multiplexing is to send data from several sources on a single communication 

channel.

	 2.	 TDM is time division multiplexing where data from multiple sources are interleaved on a time 
basis.

	 3.	 FDM is frequency division multiplexing where data from multiple sources are sent simultane-
ously at different frequencies.

	 4.	 Statistical TDM has the higher efficiency.

	 5.	 The guard band is the frequency separation between the frequency bands of the multiple 
sources in FDM.

Section 13–6 Bus Basics
	 1.	 Speed of a parallel bus can be limited by crosstalk, EMI, and clock skew.

	 2.	 An internal bus connects parts of a single system. An external bus connects one system to 
another separate system.

	 3.	 Bus characteristics include width, frequency, transfer rate, and bandwidth.

	 4.	 Bus protocol is a set of rules used by two or more devices to establish and maintain 
communication.

	 5.	 A single-ended system uses one wire for data and one wire for ground, where the signal 
voltage on the wire is with respect to ground. In a differential system, two wires are used 
for data and one wire for ground. The data signal is sent on one wire and its complement 
(inversion) is sent on the other wire. The difference between the two data wires is the  
differential signal.

Section 13–7 Parallel Buses
	 1.	 PCI is peripheral component interconnect.

	 2.	 PCI-Express is also designated PCIe and PCI-E.

	 3.	 A lane is a dedicated path to a single chip known as a switch.

	 4.	 GPIB is IEEE-488.

	 5.	 SCSI is small computer system interface.

Section 13–8 The Universal Serial Bus (USB)
	 1.	 USB is universal serial bus, a widely used standard bus.

	 2.	 USB pins are D+, D−, +5 V, ground.

	 3.	 The twisted pair reduces or eliminates noise.

	 4.	 USB 3.0 can run at higher speeds than USB 2.0. USB 3.0 has shorter cable lengths than 
USB 2.0.

Section 13–9 Other Serial Buses
	 1.	 RS-232, RS-422, RS-423, RS-495, SPI, I2C, CAN, Firewire, and serial SCSI

	 2.	 SPI is serial-to-peripheral interface.

	 3.	 I2C is inter-integrated circuit.

	 4.	 CAN is controller area network.

	 5.	 Firewire is IEEE-1394.

Section 13–10 Bus Interfacing
	 1.	 Tri-state buffers allow devices to be completely disconnected from the bus when not in use, 

thus preventing interference with other devices.

	 2.	 A bus interconnects all the devices in a system and makes communication between devices 
possible.
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Related Problems for Examples
	13–1	 See Figure 13–94.

Clock

Data

Encoded data

and embedded

timing

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FIGURE 13–94

	13–2	 Bit rate = 40 kbps

	13–3	 Efficiency = 0.828 (82.8%)

	13–4	 Eight amplitudes and eight phases can be used to represent a 4-bit code.

	13–5	 There would be more pulses closer together in both cases providing a more accurate represen-
tation of the analog signal.

	13–6	 Data rate = 8 Mbps; 256 pulse positions

	13–7	 Six PCM code bits to represent 64 levels

	13–8	 15.625 MHz

True/False Quiz
	 1.	 T      2.  F      3.  T      4.  F      5.  T      6.  F      7.  T      8.  T      9.  F

	10.	 F    11.  T    12.  F    13.  T    14.  T    15.  F    16.  T    17.  T    18.  T

	19.	 F    20.  T    21.  F    22.  T    23.  T    24.  T    25.  T    26.  F    27.  T

	28.	 F    29.  F     30.  F    31.  F      32.  T    33.  F     34.  F    35.  T    36.  T

	37.	 F    38.  T    39.  T    40.  T    41.  F    42.  F

Self-Test
	 1.	 (b)      2.  (b)      3.  (a)      4.  (b)      5.  (d)      6.  (c)      7.  (b)      8.  (a)

	 9.	 (b)    10.  (b)    11.  (d)    12.  (b)    13.  (a)    14.  (d)    15.  (b)    16.  (c)

	17.	 (a)     18.  (c)    19.  (a)     20.  (c)    21.  (d)    22.  (c)    23.  (d)    24.  (a)

	25.	 (b)     26.  (d)    27.  (b)    28.  (b)    29.  (c)    30.  (a)    31.  (d)    32.  (b)
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14–6	 Operating Systems and Hardware 
14–7	 Programming 
14–8	 Microcontrollers and Embedded Systems 
14–9	 System on Chip (SoC) 

Chapter Objectives

■	 Name the basic units of a computer

■	 Name the computer buses and how they are used

■	 Discuss the considerations for a practical computer 
system

■	 Describe the purpose of buffers, decoders, and 
wait-state generators in a computer system

■	 Define and explain the advantage of DMA

■	 Name the basic elements of a microprocessor

■	 Describe the basic architecture of a microprocessor

■	 Explain basic microprocessor (CPU) operation

■	 List and describe some microprocessor addressing 
modes

■	 Define and describe microprocessor polling, 
interrupts, exceptions, and bus requests

■	 Discuss the operating system of a computer

■	 Explain pipelining, multitasking, and 
multiprocessing

■	 Describe a simple assembly language program

■	 List some typical microprocessor instructions

■	 Distinguish between assembly language and 
machine language

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

This chapter provides a basic introduction to computers, 
microprocessors, and microcontrollers. It gives you a 
fundamental coverage of basic concepts related to data 

■	 CPU

■	 Microprocessor

■	 Main memory

■	 Caching

■	 BIOS

■	 System bus

■	 Signal loading

■	 Buffer

■	 Wait state

■	 Pipelining

■	 ALU

■	 Program

■	 Op-code

■	 Operand

■	 Interrupt

■	 Exception

■	 Interrupt vector table

■	 Bus master

■	 DMA

■	 Hardware

■	 Software

■	 Operating system

■	 Multitasking

■	 Multiprocessing

■	 Machine language

■	 Assembly language

■	 High-level language

■	 Microcontroller

■	 System on chip

Data Processing 
and Control

14CHAPTER 

■	 Describe the architecture of a microcontroller and 
explain how it differs from a microprocessor

■	 Discuss embedded systems

■	 Discuss some microcontroller applications

■	 Describe a system on chip (SoC)

Key Terms

Key terms are in order of appearance in the chapter.
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802	 Data Processing and Control

processing and control. For the most part, a generic ap-
proach is used to present basic concepts of the topics. 
The total computer system with practical considerations 
is covered. Various aspects of a microprocessor and 

its role as the CPU in computer systems are presented 
and programming is briefly discussed. Microcontrollers 
and system on chip (SoC) are also introduced, and 
some applications are described.

14–1  The Computer System

General-purpose computers, with which most are familiar, and special-purpose computers are 
used to control various functions or perform specific tasks in areas such as automotive, con-
sumer appliances, manufacturing processes, and navigation. The general-purpose computer 
system, which can be programmed to do many different things, is the focus in this section.

After completing this section, you should be able to

u	 Describe the basic elements of a general-purpose computer

u	 Discuss each part of a computer

u	 Explain a peripheral device

All computer systems work with information, or data, to produce a desired result. To 
accomplish this, computer systems must perform the following tasks:

•	 Acquire information from data sources, including human operators, sensors, memory 
and storage devices, communication networks, and other computer systems

•	 Process information by interpreting, evaluating, manipulating, converting, format-
ting, or otherwise working with acquired data in some intended fashion as directed 
by a step-by-step set of instructions called a program

•	 Provide information in a meaningful form to data recipients, including human opera-
tors, actuators, memory and storage devices, communication networks, and other 
computer systems

Specific sections and components in computer systems accomplish each of these tasks. 
Information processing is performed by the central processing unit, or CPU, which is the 
brain of the computer system. The CPU acquires information through the input section of 
the computer system, provides information through the output section, and uses the system 
memory and storage to store and retrieve information as needed. The CPU transfers infor-
mation to and from other sections of the computer system over special groups of signal 
lines called buses. Figure 14–1 shows a block diagram of a general-purpose computer 
system. Each block will be discussed in terms of its purpose and function.

Control bus

Data bus

Input/Output
ports

Address bus

Memories/Storage:
RAM, ROM, cache,

hard disk

CPU
(microprocessor)

FIGURE 14–1  Basic computer block diagram.
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The Central Processing Unit

The central processing unit (CPU) performs much of what is associated with the term 
computer. It executes the instruction sequences (called programs) in the computer system, 
directly processes much of the data that pass through the computer system, and controls 
and coordinates the various sections that make up the computer system. To play such a 
large role in the computer system, the CPU consists of four separate units: the arithmetic 
logic unit (ALU), the instruction decoder, the timing and control unit, and the register set. 
The CPU is basically a microprocessor (or simply processor). A single IC package can 
contain two or more processors, forming a multicore processor.

Memory and Storage

Computer systems must have some means of storing and retrieving the information with 
which they work and use two types of devices—memory devices and storage devices—to 
do so. Although the usage and meanings of the terms can overlap somewhat, they primarily 
differ in the construction of the devices and the information they contain. Memory devices 
typically are semiconductor devices that store information electronically, interface with 
the computer system through the system buses, and contain dynamic information, such as 
programs and program variables, that is frequently accessed or modified. Storage devices 
typically store information on some physical medium, interface with the system through 
a peripheral interface, and contain primarily static information, such as program and data 
files, that is accessed or modified relatively infrequently. Memory devices are faster than 
storage devices; however, memory devices have lower storage capacities and higher cost 
per bit than storage devices.

Memory in computer systems can be classified both by the type of memory and the 
function it performs. The different types and characteristics of memory were discussed in 
Chapter 11. Here we examine the functional requirements of memory in computer systems.

Main Memory

The main memory is the computer system memory that contains programs and data asso-
ciated with them, such as program variables, the program stack, and information the oper-
ating system requires to execute the program. The earliest 8-bit processors (for example, 
the Intel 8080, Motorola 6800, and InMOS 6502) had 16-bit address buses that could 
access 216

= 65,536 bytes (64 kilobytes or 64 kB) of memory. However, the main memory 
in 8-bit PCs was actually less than this because other devices in the system used part 
of the address space. The 16-bit computers that followed had 20-bit address buses that 
could access 220

= 1,048,756 bytes (1 megabyte or 1 MB) of memory. Modern comput-
ers require gigabytes of main memory to support the requirements of their graphical user 
interface (GUI) operating systems and application programs. Main memory must meet the 
requirements of a large storage capacity at an economical price and also allow the com-
puter system to modify data within it. Because of these requirements, computer systems 
typically use some form of dynamic RAM (DRAM) for main memory that features large 
capacity, low cost per bit, and read/write capability.

Cache Memory

Cache memory is memory that computer systems use to overcome the relatively slow 
speed of main memory DRAM. Caching is a process that copies frequently accessed 
instructions or data from slow main memory into faster cache memory to reduce access 
time and improve system performance. Because of these requirements, computer systems 
use some form of static RAM (SRAM) for cache memory.

Basic Input/Output System (BIOS) Memory

The design of every computer system differs to some extent from other systems. The basic 
input/output system (BIOS) memory contains system-specific low-level code that runs the 
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power on self-test (POST), installs specialized software called drivers to configure and pro-
vide access to the computer system hardware, and loads the operating system. The BIOS 
memory must retain its contents when power is removed so that the BIOS code is ready to 
run when the computer first powers up. This requires computer systems to use some form 
of nonvolatile memory for BIOS.

The earliest personal computers used read-only memory (ROM) for BIOS, so any 
change to the BIOS required the user to replace the ROM chip (which was often socketed) 
itself. Later computers used a low-power CMOS device with a back-up battery to preserve 
the contents when the system power was shut off. This allowed users to change and save 
BIOS settings when they made changes to system hardware configuration. Most recently, 
computers have used EEPROM and flash devices so that users can easily upgrade the BIOS 
firmware to the latest revision. Firmware is software programs or data that have been written 
into ROM.

Content-Addressable Memory

Computers often use specialized types of memory in addition to those types mentioned 
previously. One specialized type of memory is the content-addressable (or associative) 
memory, whose operation differs from that of conventional memory. Conventional mem-
ory returns the data stored at a specified address. Content-addressable memory returns the 
address that contains a specified data value. Computers use content-addressable memory 
for special data tables that support caching and paging operations.

FIFO

Another specialized type of memory is the FIFO (first-in, first-out) memory. Conventional 
memory, such as SRAM and DRAM, allow computers to store data and to retrieve data 
from any memory location in any order. FIFO memory returns data only in the order in 
which the data were stored. As the acronym FIFO indicates, the first data stored in memory 
must be the first data taken out of memory. Computers use FIFO memory for special data 
structures called queues. Queues temporarily store data for which the sequence of data 
must be preserved, such as program instructions.

Input/Output Ports

Input/output (or I/O) ports are interfaces that allow computers to transfer data to and 
from external entities such as users, peripherals (such as mice, keyboards, video moni-
tors, scanners, printers, modems, and network adapters), and other computers. I/O ports 
vary greatly in complexity and capability. An I/O port can be serial or parallel, operate 
as an input, output, or both, and transfer several thousand to several billion bits per 
second. Many I/O ports, such as RS-232, USB 3.0, SCSI-5, Firewire, and Ethernet 
ports, conform to official or de facto standards to simplify computer system connec-
tions. These standards are usually developed by international organizations and typi-
cally specify not only the type of connectors but also the pin assignments, electrical 
signal levels, signal timing, data transmission rates, and communication protocols (i.e., 
the format, organization, and meaning of data patterns). EIA 802, for example, is the 
international standard for Ethernet communications and IEEE 1394 is the standard for 
Firewire. These standards ensure that all devices that comply with the standard will be 
able to communicate with each other.

Processors support I/O ports and operations in one of two ways. One way is memory-
mapped I/O, in which the processor treats I/O ports as memory locations and external cir-
cuitry converts standard read and write operations into I/O port accesses. The second way 
is direct I/O, in which specific processor pins and instructions are exclusively dedicated to 
data input and output operations. In either case, general-purpose processors require addi-
tional circuitry and program code to implement specific communications standards and 
protocols. Specialized microcontrollers like the Motorola MC68360 and NXP LPC2292 
improve on this by incorporating additional circuitry and embedded firmware to support 
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UART, I2C, Ethernet, CAN, SPI and other popular communication standards on their I/O 
ports with a minimum of driver coding and external interface circuitry.

System Bus

As you have learned, computers acquire, process, and provide information. Computers 
must be able (a) to specify where to acquire and return information, (b) to transfer the 
information from its source to its destination, and (c) to coordinate the movement of data 
within the computer system. The mechanism by which the computer accomplishes this is 
the system bus, which consists of three component buses: the address bus, the data bus, 
and the control bus.

The Address Bus

The address bus is the means by which a processor specifies the system location from 
which data are to be read or to which data are to be written. For example, the processor sends 
an address code to the memory specifying where certain data are stored. If the address bus 
is 32 bits wide, 232 or 4,294,967,296 memory locations can be accessed.

The Data Bus

The data bus consists of signal lines over which the computer system transfers information 
from one device to another. Because the processor can both read data from and write data 
to system devices, each data line is bidirectional. The number of data lines determines the 
width of the data bus, which is a factor in how quickly the processor can process data. The 
earliest microprocessors had 4-bit and 8-bit data buses, but modern processors have 64-bit 
data buses.

The Control Bus

The control bus is the collection of signals that controls the transfer of data within the sys-
tem and coordinates the operation of system hardware. Unlike the address and data buses, 
which consist of functionally identical signals that function as a group, the individual sig-
nals lines that make up the control bus vary in characteristics, nature, and function. Con-
trol signals can be unidirectional or bidirectional, can function individually or with other 
control signals, can be active-HIGH or active-LOW, can operate synchronously or asyn-
chronously, and can be edge-oriented or level-oriented. Despite this individual diversity, 
computer systems and processor operations are similar enough that the signals that make 
up the control bus—read, write, interrupt, and others—are also similar.

A Typical Computer System

The block diagram in Figure 14–2 shows the main elements in a typical computer system 
and how they are interconnected. Notice that the computer itself is connected with several 
peripheral units. For the computer to accomplish a given task, it must communicate with 
the “outside world” by interfacing with people, sensing devices, or devices to be controlled 
through input and output ports.

Computer Software

In addition to the hardware, a major part of a computer system is the software. The software 
makes the hardware perform. The two major categories of software used in computers are 
the system software and the application software.

The system software is called the operating system (OS) and allows the user to interface 
with the computer. The most common operating systems are Windows and Mac OS. Many 
other operating systems are used in special-purpose and mainframe computers.

System software performs two basic functions. It manages all the hardware and software 
in a computer. For example, the operating system manages and allots space on the hard 
disk. System software also provides a consistent interface between applications software 

InfoNote

Grace Hopper, a mathematician and 
pioneer programmer, developed 
considerable troubleshooting skills 
as a naval officer working with the 
Harvard Mark I computer in the 
1940s. She found and documented 
in the Mark I’s log the first real 
computer bug. It was a moth that 
had been trapped in one of the 
electromechanical relays inside the 
machine, causing the computer 
to malfunction. From then on, 
when asked if anything was being 
accomplished, those working on 
the computer would reply that they 
were “debugging” the system. The 
term stuck, and finding problems 
in a computer (or other electronic 
system), particularly the software, 
would always be known as 
debugging.
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and hardware. This allows an applications program to work on various computers that may 
differ in hardware details. The operating system on your computer allows you to have several 
programs running at the same time. This is called multitasking.

Application software is used to accomplish a specific job or task, such as word process-
ing, accounting, tax preparation, circuit simulation, graphic design, to name only a very few.

Mouse

Modem

Computer

Control bus

Data bus

Address bus

Monitor Printer

Peripherals

Removable storage:
CDs, CD-RWs

Input/Output
ports

Memories/Storage:
RAM, ROM, cache,

hard disk

CPU

Keyboard

FIGURE 14–2  Basic block diagram of a typical computer system including common 
peripherals. The computer itself is shown in the gray block.

Section 14–1  Checkup

Answers are at the end of the chapter. 

	 1.	What are the major functional blocks in a computer?

	 2.	What are peripherals?

	 3.	What is the difference between computer hardware and computer software?

	 4.	How does content-addressable memory differ from conventional memory?

	 5.	Compare and contrast the characteristics of the address, data, and control buses in a 
computer system.

14–2  Practical Computer System Considerations

Practical computer designs incorporate special circuitry that resolves four issues that exist in 
real-world systems: shared signal lines, signal loading, device selection, and system timing.

After completing this section, you should be able to

u	 Identify design considerations for practical computer systems

u	 Explain the role and operation of buffers, decoders, and wait-state generators in 
practical computer systems
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Figure 14–3 shows a block diagram of a practical computer system, based on the consid-
eration for shared signal lines, signal loading, device selection, and system timing.

Wait-state
generator

Data acknowledge

Address bus

Data bus

Control bus

Processor
Data

buffer

Data
buffer

System
input/output
(system I/O)

CS

Random-
access

memory
(RAM)

CS

Address
decoder

Data
buffer

Read-only
memory
(ROM)

CS

FIGURE 14–3  Block diagram of a practical computer system.

Shared Signal Lines

When the outputs of two or more devices connect to the same signal line, the potential for 
bus contention exists. Bus contention occurs when device outputs attempt to drive a signal 
line to different voltage levels. This causes high current to flow from one output into the 
other, which can damage the devices. Typically, bus contention occurs when device outputs 
are at different logic levels. However, even when devices are at the same logic level, the 
variation for different devices will cause some device output voltages to be higher than oth-
ers so that bus contention will occur. Two special types of output, the tri-state output and 
open collector output, allow devices to share signal lines, while avoiding bus contention.

The term tri-state is a registered trademark of National Semiconductor but is often used 
interchangeably with the generic terms three-state or 3-state. As the name suggests, the tri-
state output adds a third output state, called the high-impedance or high-Z state, to the usual 
logic LOW and HIGH states. The tri-state switch is effectively a switch that disconnects 
the output of the tri-state device from the signal line so that it does not interfere with other 
devices from driving the line. When a tri-state device is enabled, it outputs a logic LOW 
or HIGH as other digital devices. When a tri-state device is disabled, the output assumes 
the high-Z state and the output is said to be tri-stated. When tri-state outputs share a signal 
line, only one output at a time must be enabled to ensure that bus contention will not occur. 
Figure 14–4 shows the operation of tri-state outputs.

Devices that are designed to connect to processor buses, such as memory and interface 
devices, typically have tri-state outputs built into them. Devices that do not have tri-state 
outputs or open-collector outputs must use tri-state buffers to connect to buses.
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Signal Loading and Buffering

Digital outputs are affected by the inputs of the devices to which they connect. There is a 
limit to the number of digital inputs that the outputs can reliably drive; this limit is called 
the device fan-out. When the number of inputs exceeds the fan-out of an output device, 
the operation of that output device may not meet the specified voltages or timing for that 
device. The issue of inputs affecting the performance of an output to which they are con-
nected is called signal loading. To avoid problems with signal loading, special digital 
devices called buffers are used to ensure that device fan-outs are not exceeded. A buffer is 
a special circuit that isolates the output of a device from the loading effects of other devices.

Figure 14–5 illustrates the use of buffers to prevent the nine input devices from exceed-
ing the eight-load fan-out of the output device. Note that up to seven input devices could 

Input Output Output

Enable

Input

Enable

Tri-state circuit
enabled

Tri-state circuit
disabled

Logic
circuit

Logic
circuit

FIGURE 14–4  Logic devices with tri-state outputs.
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Input
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Input
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Input
device
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Input
device
1 load
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device
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Input
device
1 load

Output
device

Fan-out
= 8 loads

(a) Nine input device loads exceed
     8-load fan-out of output device

(b) Buffering of output device prevents signal loading

Buffer

Fan-out = 8 loads
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Fan-out = 8 loads

Output
device

Fan-out
= 8 loads

Input
device
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Input
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Input
device
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Input
device
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Input
device
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Input
device
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Input
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Input
device
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Input
device
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FIGURE 14–5  Buffers are used to prevent overloading of driving device.
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have been connected directly to the output device and a single buffer used to connect the 
remaining input devices. This would have reduced the parts count, but one characteristic of 
buffers is that each buffer will increase the propagation delay. If a single buffer were used, 
the response of the input devices connected to the buffer would be slower than that of the 
input devices connected directly to the output device. Using two buffers as shown helps 
match the propagation delay to all the input devices.

The buffers shown in Figure 14–5 are simple noninverting buffers, which means that the 
buffer output signal is identical to the buffer input signal. There are other types of buffers 
to ensure that devices will not degrade the performance of a device to which they are con-
nected. These buffers include tri-state buffers like those mentioned previously, inverting 
buffers that invert the input signal, bidirectional buffers that can pass information through 
the buffer in both directions as on the data bus, and Schmitt triggers. A Schmitt trigger is a 
special device that helps prevent logic devices from acting erratically due to system noise 
affecting slowly changing inputs.

Device Selection

The processor uses the address bus to access ROM, RAM, hardware I/O ports, and other 
system devices. A question that naturally arises is how a device knows when the processor 
is attempting to access it rather than some other system device. The answer is that these 
devices have a special input, usually called a chip select (CS) or chip enable (CE), that 
enables the device. When the processor must access a specific device, it must assert the 
select line of the intended device.

While in theory processors could provide separate control lines to select system 
devices, this is not practical for general-purpose computers because there is no way for 
the system designers to know what devices a system will contain. Instead, system design-
ers use PLDs or dedicated hardware decoders, similar to that in Figure 14–6, to decode 
processor addresses and generate the device select lines. For this example, the processor 
uses a 16-bit address bus where the upper (most significant) four bits are used to generate 
device select outputs.

Device select outputs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

D

C

B

A

Device address
from address bus

FIGURE 14–6  Address decoding for the purpose of device selection.
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System Timing

A final issue with practical computer systems is system timing. In a computer system, the 
processor signals must meet the setup and hold times for each peripheral so that data are 
properly stored and accessed. As you have seen, decoding logic or buffers in the system 
can slow the processor signals. In some cases, the processor runs much faster than the 
peripherals that are available; in other cases, fast peripherals are available but their cost 
prohibits designers from using them. In addition, some peripherals, such as SRAM, are 
inherently faster than others, such as DRAM, so the signal timing that meets the setup and 
hold times for some devices will not meet the setup and hold times for others. To resolve 
this issue, three different types of system buses can be used: synchronous, asynchronous, 
and semisynchronous.

Synchronous buses include a synchronizing clock to ensure that signals from the pro-
cessor meet the setup and hold times of the peripheral. Synchronous buses are faster than 
asynchronous or semisynchronous buses.

Asynchronous buses will automatically insert wait states in a bus cycle until a signal 
indicates that the bus cycle can finish. A wait state holds the state of the bus signals 
for one processor clock cycle so that the read or write operation is “frozen” for one 
clock period when the processor is accessing memory or other devices that are slow 
to respond. Several wait states may be necessary. Computer CPUs run at very high 
speeds, while memory technology does not seem to be able to catch up. Typical pro-
cessors like the Intel Core 2 and the AMD Athlon 64 X2 run with a clock of several 
GHz, while the main memory clock generally is in the several hundred to over 1000 
MHz range. Even some second-level CPU caches run slower than the processor core. 
In order to minimize the use of wait states, which slow the computer down, techniques 
such as CPU caches, instruction pipelines, instruction prefetch, and simultaneous mul-
tithreading are used.

Semisynchronous buses are similar to asynchronous buses except that a semisyn-
chronous bus will complete the bus cycle unless a signal indicates that the processor 
should not complete bus cycle. Until the processor can complete the cycle, it will insert 
wait states.

Memory and other peripheral devices do not, as a rule, have signals indicating when 
data are ready. The signals that instruct the processor to insert wait states must be 
generated by an additional logic circuit, called a wait-state generator, which can be 
basically a programmable timer or shift register. The wait-state generator is clocked 
by the same clock as the processor and enabled by the device select line for a specific 
memory or other device. After the wait-state generator is enabled by the device select 
line, it will generate a ready signal after a specific number of clock cycles. Figure 14–7 
shows an 8-bit parallel-in/serial-out shift register circuit that can insert up to six wait 
states for an asynchronous processor by delaying the ready signal to the processor by 
up to six clock cycles.

Device select Ready

Processor clock

D7

LD/SH SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–7  A wait-state generator programmed for one wait state.
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Solution

The initial pattern loaded into the shift register is 111011112. This shifted pattern for 
each clock and the corresponding number of wait states are

Clock 1 (0 wait states): 111101112

Clock 2 (1 wait state): 111110112

Clock 3 (2 wait states): 111111012

Clock 4 (3 wait states): 111111102

On the fourth clock after Device select goes LOW, the most significant bit of the 
SEROUT line for the shift register goes LOW. This causes the Ready output to go 
LOW, terminating the bus cycle. Therefore, the wait-state generator inserts three 
wait states.

Related Problem*

Which data input line of the shift register must be tied LOW for the wait-state generator 
in Figure 14–8 to insert five wait states?

EXAMPLE 14–1

For the wait-state generator in Figure 14–8, how many waits states will be generated 
when the device is selected?

Device select Ready

Processor clock

D7

LD/SH SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–8 

*Answers are at the end of the chapter. 

Section 14–2  Checkup

	 1.	Define bus contention and discuss types of devices used to prevent it.

	 2.	How does a processor enable various devices?

	 3.	Define wait state and give its purpose.

	 4.	What is the purpose of a buffer?

The circuit of Figure 14–7, which inserts wait states for a single device, can be 
expanded to support more than one device. If two or more devices have the same number 
of wait states, their device select lines can be ANDed together (assuming the select lines 
are active-LOW).
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Microprocessor

Register
set

Instruction
decoder

Arithmetic
logic unit

(ALU)

Timing/
Control unit

FIGURE 14–9  Elements of a 
microprocessor (CPU).

Control bus
to ALU and other units

A

B

C

X

General-purpose registers

Address register

Address bus Data bus

Index register

Program counter

Data register

Accumulator

Timing and
control unit

Flag register

Instruction
decoderStack pointer

ALU

FIGURE 14–10  Basic model of a simplified processor.

14–3  The Processor: Basic Operation

As you have learned, a microprocessor forms the CPU of a computer system. A micropro-
cessor is a single integrated circuit that consists of several units, each designed for a specific 
job. The specific units, their design and organization, are called the architecture (do not 
confuse the term with the VHDL element). The architecture determines the instruction set 
and the process for executing those instructions.

After completing this section, you should be able to

u	 Name the four basic elements of a microprocessor

u	 Describe the fetch/execute cycle

u	 Explain the read and write operations

The four basic elements that are common to all microprocessors are the arithmetic logic 
unit (ALU), the instruction decoder, the register set, and the timing and control unit, as 
shown in Figure 14–9.

Figure 14–10 shows a simple block diagram of a microprocessor. The elements shown 
are common to most processors, although the internal arrangement or architecture and com-
plexity vary. This generic block diagram of an 8-bit processor with a small register set is 
used to illustrate fundamental operation. Today, processors have data buses that are 64 bits.
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The Fetch/Execute Cycle

When a program is being run, the processor goes through a repetitive cycle consisting of two 
fundamental phases, as shown in Figure 14–11. One phase is called fetch and the other is 
called execute. During the fetch phase, an instruction is read from the memory and decoded 
by the instruction decoder. During the execute phase, the processor carries out the sequence 
of operations called for by the instruction. As soon as one instruction has been executed, the 
processor returns to the fetch phase to get the next instruction from the memory.

Start Fetch Execute

FIGURE 14–11  The fetch/execute cycle of a processor.

Stage 2 of
execution idle

Stage 3 of
execution idle

2nd instruction
Stage 1 of
execution

Stage 2 of
execution idle

Stage 3 of
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Stage 3 of
execution idle

2nd instruction
Stage 2 of
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Stage 1 of
execution idle

Stage 3 of
execution idle

1st instruction
Stage 3 of
execution

Stage 1 of
execution idle

Stage 2 of
execution idle

2nd instruction
Stage 3 of
execution

Stage 1 of
execution idle

Stage 2 of
execution idle

(a) Nonpipelined execution of a program showing three
     stages of execution

First instruction
in program goes
through three
stages of
execution before
the next
instruction starts
execution.

Second instruction
in program goes
through three
stages of
execution before
the next
instruction starts
execution.

1st instruction
Stage 1 of
execution

Stage 2 of
execution idle

2nd instruction
Stage 1 of
execution

1st instruction
Stage 2 of
execution

3rd instruction
Stage 1 of
execution

2nd instruction
Stage 2 of
execution

4th instruction
Stage 1 of
execution

3rd instruction
Stage 2 of
execution

Stage 3 of
execution idle

Stage 3 of
execution idle

1st instruction
Stage 3 of
execution

2nd instruction
Stage 3 of
execution

First
instruction
complete

(b) Pipelined execution of a program showing three stages

1st instruction
Stage 1 of
execution

FIGURE 14–12  Illustration of pipelining.

Pipelining

A technique where the microprocessor begins executing the next instruction in a program 
before the previous instruction has been completed is called pipelining. That is, several 
instructions are in the pipeline simultaneously, each at a different processing stage.

Typically, a pipeline is divided into stages or segments, and each stage can execute its 
operation concurrently with the other stages. When a segment completes an operation, it 
passes the result to the next segment in the pipeline and fetches the next operation from the 
preceding segment. The final results of each instruction emerge at the end of the pipeline 
in rapid succession. Figure 14–12 is a simplified illustration of nonpipelined processing 
compared to pipelined processing using three stages of execution.
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As shown in the figure, in nonpipelined processing of a program, one instruction at a 
time is executed through all of its stages before the next instruction begins execution. As 
you can see in part (a), all the stages of execution are idle (gray) except the one that is active 
(red). In pipelined processing, as soon as one instruction has finished an execution stage, 
the next instruction begins that stage. Pipelining results in much shorter overall execution 
times. Once the pipeline is “full,” there are no idle processing stages.

Processor Elements
ALU

This part of the processor contains the logic to perform arithmetic and logic operations. 
Data are transferred into the ALU from the accumulator and from the data register. For the 
model in Figure 14–10, the accumulator and data register are 8-bit registers that hold one 
byte of data. Each byte transferred into the ALU is called an operand because it is operated 
on by the ALU. As an example, Figure 14–13 shows an 8-bit number from the accumulator 
being added to an 8-bit number from the data register. The result of this addition operation 
(sum) is put back into the accumulator and replaces the original operand that was stored 
there. When the ALU performs an operation on two operands, the result always goes into 
the accumulator to replace the previous operand.

Operand A = 310 Operand B = 510 Sum = 810

Accumulator Accumulator Data register

0000010100000011

Data register

00000101

ALU ALU

ADD

00001000

(a) ALU adds 011 and 101. (b) The sum 1000 is put into the accumulator.

FIGURE 14–13  Example of the ALU adding two operands.

As demonstrated in Figure 14–13, one function of the accumulator is to store an operand 
prior to an operation by the ALU. Another function is to store the result of the operation 
after it has been performed. The data register temporarily stores data that is to be put onto 
the data bus or that has been taken off of the data bus.

Instruction Decoder and Timing/Control Unit

An instruction is a binary code that tells the processor what it is to do. An orderly arrange-
ment of many different instructions makes up a program. A program is a step-by-step 
procedure used by the processor to carry out a specified task.

The instruction decoder within the processor decodes an instruction code that has been 
transferred on the data bus from the memory. The instruction code is commonly known as 
an op-code. When the op-code is decoded, the instruction decoder provides the timing and 
control unit with this information. The timing and control unit can then produce the proper 
signals and timing sequence to execute the instruction.

Register Set

Processors typically have two categories of registers for temporary storage of data: general-
purpose registers and special-purpose registers. General-purpose registers are used to 
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store any type data that may be required by a program. Special-purpose registers are 
dedicated to a specific function. Some typical special-purpose registers are described 
as follows.

Flag register  This register is sometimes called a condition code register or status reg-
ister. It indicates the status of the contents of the accumulator or certain other conditions 
within the processor. For example, it can indicate a zero result, a negative result, the occur-
rence of a carry, or the occurrence of an overflow from the accumulator.

Program counter  This counter produces the sequence of memory addresses from which 
the program instructions are taken. The content of the program counter is always the mem-
ory address from which the next byte is to be taken. In some processors, the program coun-
ter is known as the instruction pointer.

Address register  This register temporarily stores an address from the program counter 
in order to place it on the address bus. As soon as the program counter loads an address 
into the address register, it is incremented (increased by 1) to the address of the next 
instruction.

Stack pointer  The stack pointer is a register that is mainly used during program subrou-
tines and interrupts. It is used in conjunction with the memory stack.

Index register  The index register is used as one means of addressing the memory in a 
mode of addressing called indexed addressing.

The Processor and the Memory

The processor is connected to a memory with the address bus and data bus. Also, there are 
certain control signals that must be sent between the processor and the memory, such as 
the read and write controls. The address bus is unidirectional so the address bits go only 
one way, from the processor to the memory. The data bus is bidirectional, so data bits are 
transferred between the processor and memory in either direction. This is illustrated in 
Figure 14–14.

Address
bus

Control
bus

Data bus

Processor

Memory

FIGURE 14–14  A processor and memory.

The Read Operation

To transfer data from the memory to the processor, a read operation must be performed, 
as shown in Figure 14–15, using an 8-bit data bus and a 16-bit address bus for illustration. 
To start, the program counter contains the address of the data to be read from the memory. 
This address is loaded into the address register and placed onto the address bus. The pro-
gram counter is then incremented (advanced by one) to the next address and waits. Once 
the address code is on the bus, the processor timing and control unit sends a read signal to 
the memory. At the memory, the address bits are decoded and the desired memory location 
is selected. The read signal causes the contents of the selected address to be placed on the 
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data bus. The data are then loaded into the data register to be used by the processor, com-
pleting the read operation. In this illustration, each memory location contains one byte of 
data. When a byte is read from memory, it is not destroyed but remains in the memory. This 
process of “copying” the contents of a memory location without destroying the contents is 
called nondestructive read.

The Write Operation

To transfer data from the processor to the memory, a write operation is required, as illus-
trated in Figure 14–16. A data byte held in the data register is placed on the data bus, and the 
processor sends the memory a write signal. This causes the byte on the data bus to be stored 
at the memory location selected by the address code. The existing contents of that particular 
memory location are replaced by the new data. This completes the write operation.

READ

Memory

Memory
address
decoder

0

1

2

3

4

5

6

10001100

Data register

10001100

Address register

00000000000000101

2

1

1

Address 510 is placed on address bus and followed by the read signal.

Contents of address 510 in memory is placed on data bus and stored in data register.2

FIGURE 14–15  Illustration of the read operation.

1 Address code for address 610 is placed on address bus.

Data are placed on data bus and followed by the write signal. Data are stored at address 610 in memory.2

WRITE

Memory

Memory
address
decoder

0

1

2

3

4

5

6 10001101

1

2

Address register

00000000000000110

Data register

10001101

FIGURE 14–16  Illustration of the write operation.
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Roles of the CPU

The CPU has three major roles in a computer system. The first role of the CPU is to control 
the system hardware. Specifically, the CPU determines how data move through the com-
puter system, which devices are active, and when specific operations and data transactions 
occur. In computers, some of this control is decentralized by assigning some tasks (such 
as peripheral access and communications and graphics processing) to devices that can per-
form those tasks more quickly and efficiently than the CPU itself. Even so, the CPU still 
coordinates the operation of the computer system as a whole.

The second role of the CPU is to provide hardware support for the operating system 
software. The first computers were large mainframes that were too expensive to devote 
to a single user or program. The operating systems allowed these computers to support 
multiple users and programs, but they required special hardware to ensure that users and 
programs would not accidentally or deliberately interfere with each other. As the operat-
ing systems in personal computers evolved from single-user single-application platforms 
to multitasking and multiprocessing systems, the microprocessors have incorporated the 
features required to support them.

The third role of the CPU is to execute application programs. The CPU accesses the 
system hardware and controls the flow of data through the system largely because some 
application program requires that it do so. This role greatly influenced the development 
of many early complex instruction set computing (CISC) microprocessors. Reduced 
instruction set computing (RISC) processors emphasize smaller and more efficient 
instruction sets than those in CISC processors and place the burden of high-level pro-
gramming support on the compilers, which are programs that convert the source code 
written by programmers to executable code that is executed by the processor.

Section 14–3  Checkup

	 1.	Describe the fetch/execute cycle.

	 2.	Name the four elements in a microprocessor.

	 3.	What is the ALU and its purpose?

	 4.	What happens during a read operation?

	 5.	What happens during a write operation?

14–4  The Processor: Addressing Modes

A processor must address the memory to obtain data or store data. There are several ways 
in which the processor can generate an address when it is executing an instruction. These 
ways are called addressing modes and they provide for wide programming flexibility. Each 
instruction in a processor’s instruction set generally has a certain addressing mode associ-
ated with it. The type and number of addressing modes vary from one processor to another. 
In this section, five common addressing modes are discussed, and generic instructions are 
used for illustration.

After completing this section, you should be able to

u	 Explain inherent addressing

u	 Explain immediate addressing

u	 Explain direct addressing
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u	 Explain indexed addressing

u	 Explain relative addressing

Inherent Addressing

Inherent addressing is sometimes known as implied addressing. The one-byte instructions 
using this mode generally require no operand, or the operand is implied by the op-code, 
which is a mnemonic form of an instruction. An operand is the object to be manipulated 
by the instruction. For example, an instruction used to clear the accumulator (CLRA) has 
an implied operand of all zeros. The implied all-zeros operand ends up in the accumula-
tor after the instruction is executed. Another example is a halt or wait instruction (WAI), 
which requires no operand because it simply tells the processor to stop all operations. The 
sequence that the processor goes through in handling an instruction with inherent address-
ing is illustrated in Figure 14–17. The op-codes used for illustration are similar to the op-
codes of a typical processor.

READ

WAI op-code

WAITiming/
Control unit

Memory

Memory
address
decoder

Data
register

0

1

2

3

4

5

6 00111110

00111110

Address of
WAI op-code

Instruction
decoder

1
2

4
3

Address register

00000000000000110

1 Address code (610) is placed on address bus.

Data are placed on data bus and stored in data register by the read signal.2

3 Instruction is decoded.

Timing/Control unit stops processor operation.4

FIGURE 14–17  Fetch/execute cycle for the wait (WAI) instruction. This illustrates 
inherent addressing.

Immediate Addressing

Immediate addressing is used in conjunction with two-byte instructions where the first 
byte is the op-code and the second byte is the operand. The load accumulator (LDA) 
and the add to accumulator (ADDA) instructions are two examples that use immediate 
addressing.
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The LDA immediate op-code is stored in one memory address, and the operand is stored 
in the address immediately following the op-code. That is, the op-code and operand are 
at consecutive memory addresses. When the LDA immediate instruction is fetched and 
executed, it tells the processor to get the contents of the next memory location (operand) 
and load it into the accumulator, as illustrated in Figure 14–18.

Direct Addressing

For an instruction using direct addressing, the first part is the op-code and the second part 
is the address of the operand, not the operand itself. For example, the LDA instruction uses 
direct addressing as well as immediate addressing. LDA direct has a different op-code than 
LDA immediate. Let’s assume each part is one byte for simplicity.

READ

Memory

First fetch/Execute cycle

Second fetch/Execute cycle

Memory
address
decoder

0

1

2

3

4

5

6

7

10000110

00000110

Timing/
Control unit

Program
counter

Address
register

Data register

Accumulator

LDA
immediate
op-code

Operand

Address of
operand

Address of
op-code

Instruction
decoder

LDA
immediate

10000110/00000110

00000110
0000001/00000010

00000001/0000010

1 Address of LDA immediate op-code (110) is placed on address bus.

LDA immediate op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the operand.4

Address of operand (210) is placed on address bus.5

Operand is placed on data bus and stored in data register by the read signal.6

Operand is loaded into accumulator.7

5

1

4
3

6

2

7

FIGURE 14–18  Illustration of immediate addressing. The process steps are numbered in 
sequence, and the cycle operations are color-coded.
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The LDA direct instruction is used to illustrate direct addressing. Figure 14–19 
shows the LDA direct instruction in memory addresses 1 and 2. The first byte is the 
op-code, and the second byte is the operand address. When the LDA direct instruction 
is fetched and executed, it tells the processor to load the accumulator with the operand 
located at the memory address specified by the second byte of the instruction. The 
process is illustrated in Figure 14–19.

READ

Memory

10000110

10001001

Timing/
Control unit

Address
register

Data
register

Accumulator

LDA direct
op-code

Operand address
Address of

operand
address

Operand
address

Address of
op-code

Instruction
decoder

LDA
direct

Operand

6

00000001/0000010/00000110

First fetch/Execute cycle

Second fetch/Execute cycle

Third fetch/Execute cycle

1 Address of LDA direct op-code (110) is placed on address bus.

LDA direct op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the address of the operand.4

Address of operand address (210) is placed on address bus.5

Operand address is placed on data bus and stored in data register by the read signal.6

Operand address (610) is loaded into address register.7

Operand address (610) is placed on address register.8

Operand is placed on data bus and loaded into data register.9

Operand is loaded into accumulator.10

10

98

7

5

1

3
4

Program counter

0000001/00000010 10001001

10000110/00000110/10001001

Memory
address
decoder

0

1

2

3

4

5

6

7

00000110

2

FIGURE 14–19  Illustration of direct addressing.

Indexed Addressing

Indexed addressing is used in conjunction with the index register. An instruction using 
indexed addressing consists of the op-code and the offset address. When an indexed instruc-
tion is executed, the offset address is added to the contents of the index register to produce 
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an operand address. In Figure 14–20 the LDA (load accumulator) instruction is again used 
to illustrate indexed addressing.

Relative Addressing

Relative addressing is used by a class of instructions known as branch instructions. 
Basically, a branch instruction allows the CPU to go back or skip ahead for a specified 
number of addresses in a program instead of going to the next address in sequence. 
Branching instructions are used to form program loops. For a relative addressing 
instruction (branch instruction), the first byte is the op-code and the second byte is the 
relative address. When a branch instruction is executed, the relative address is added 
to the contents of the program counter to form the address to which the program is 
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FIGURE 14–20  Illustration of indexed addressing.
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FIGURE 14–21  Illustration of relative addressing (branching).

to branch. Figure 14–21 illustrates relative addressing using a branch relative always 
(BRA) instruction that can branch both forward or backward. Forward branching is 
shown.

Section 14–4  Checkup

	 1.	List five types of addressing.

	 2.	What is an op-code?

	 3.	What is an operand?

	 4.	Explain branching.
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14–5  The Processor: Special Operations

During normal operation the CPU fetches instructions from system memory, and these 
instructions are decoded by the instruction decoder. Each decoded instruction affects the 
operation of the timing and control unit, which in turn synchronizes the operation of the 
CPU, system buses, and system components to execute the instruction. In this section, spe-
cific CPU operations (polling, interrupts, exceptions, and bus requests) that occur when 
special circumstances or events arise that preempt normal processor operation are discussed.

After completing this section, you should be able to

u	 Define polling

u	 Define the terms interrupt and exception

u	 Describe the process by which a processor responds to and services an interrupt

u	 Explain how an interrupt service routine differs from a subroutine

u	 Explain why computer systems use bus requests

A computer runs programs that limit what the computer is permitted to do and how it 
will respond to situations that arise. Some situations are predictable and others are not. 
Even when a situation is predictable, just when it will occur may not be. As an example, 
every word processor program must respond to input from a keyboard, but the program 
cannot predict just when someone will press a key.

Polling

One technique to deal with unpredictable events is to have the CPU poll, or repeatedly check, 
the keyboard. The same occurs for other peripheral devices that may require attention from 
the CPU. Each time the CPU polls a device, it must stop the program that it is currently pro-
cessing, go through the polling sequence, provide service if needed, and then return to the 
point where it left off in its current program. This process is inefficient and is suitable only 
for devices that can be serviced at regular and predictable intervals. Figure 14–22 illustrates 
polling, where the CPU sequentially selects each peripheral device via the multiplexer to see 
if it needs service.

Interrupts and Exceptions

A more efficient approach than polling is to have the processor perform its normal opera-
tions and deviate from them only when some special event requires the processor to take 
special action to handle it. Some sources use the term exception for any event that requires 
special handling by the processor. Other sources use exception, software interrupt (SWI), 
or trap for an event due to software and interrupt or hardware interrupt (HWI) for an event 
due to hardware. We will use interrupt to refer to a hardware event and exception for a 
software event that require the CPU to deviate from its normal operation.

When the processor receives an interrupt or an exception, it finishes executing 
the current instruction and then runs a special sequence of instructions called an 
interrupt service routine (ISR) or exception handler. An ISR similar to calling a stan-
dard program subroutine but with three important differences. Because the proces-
sor cannot know when an interrupt will occur, it automatically saves on the register 
stack status information about the program that is executing at the time the interrupt 
or  exception occurs. The information includes the contents of the condition code 
register as well as the address of the next instruction to be executed when the ISR 
is finished. Sometimes the accumulator and condition code register, which make up 
the program status word, are both saved. The ISR must save on the stack any other 
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registers it may use to ensure that the interrupted process will not be affected when 
it resumes executing.

Secondly, the processor obtains the address of the ISR based on the specific inter-
rupt or exception that occurs. In some systems, a programmable interrupt controller 
(PIC) provides the address of the ISR over the data bus when the processor acknowl-
edges an interrupt request. Other systems use autovectored interrupts that obtain the 
address for each interrupt from entries in an interrupt vector table stored in memory. 
Each vector, or ISR address, in the table specifies the starting address of an ISR. The 
programmer must write the ISRs and place the starting address for each in the correct 
location of the interrupt vector table. If no ISR exists for an entry in the vector inter-
rupt table, or if the interrupt vector table is not properly initialized, interrupts and 
exceptions can cause the processor to behave erratically, “hang” (stop responding), or 
“crash” (abort and restart).

A third difference is that the ISR uses a special return from interrupt (RTI) instruc-
tion, which restores the additional status information as well as the address of the next 
instruction. RTI is used rather than a standard return from subroutine (RET) instruction, 
which restores only the address of the next instruction, to exit and return processor 
control to the interrupted process. Before executing the RTI instruction, the ISR must 
restore any registers it saved on the stack.

Specific interrupts and exceptions vary with each processor, but the following list describes 
some typical ones.

Reset  This is sometimes called a cold boot. A cold boot completely restarts the system 
so that the processor runs the power on self-test (POST), initializes the hardware, loads 
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FIGURE 14–22  Basic concept of CPU polling peripheral devices.
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Bus Request Operations

The device in a computer that drives the address bus and the bus control signals is called 
the bus master. In a simple computer architecture, only the CPU can be bus master, which 
means that all communications between I/O devices must involve the CPU. More complex 

RA I/O port
n

Address bus

Data bus

.  .  .

Interrupt request lines

* INTA – Interrupt
acknowledge

 I

PIC M ROM
I/O port

2
I/O port

3
I/O port

1

Peripheral
1

Peripheral
2

Peripheral
3

Peripheral
n

CPU

INTA* NTR

FIGURE 14–23  Basic concept of interrupt control.

the hardware drivers and operating system, and performs all other tasks necessary to 
prepare the system for operation.

Software reset  This is a software exception and is sometimes called a warm boot. This 
also restarts the system but bypasses many of the hardware initialization tasks per-
formed by a cold boot.

Divide by zero  This is a software exception and occurs when the processor attempts to 
divide a number by zero.

System timer  This is a hardware interrupt and occurs when a special timer asserts a 
signal indicating that a specified time interval or “time tick” (such as 1/60th of a sec-
ond) has elapsed since the last occurrence.

Unrecognized instruction  This is a hardware interrupt that occurs when the instruction 
decoder determines that the value it contains is not a valid instruction.

As the above list shows, ISRs must perform a variety of tasks. Just what the ISR does 
can be as complex or simple as the programmer desires. Figure 14–23 shows the basic con-
cept of interrupts where a device called a programmable interrupt controller (PIC) is used 
to monitor peripheral devices for interrupt requests and send the appropriate address to the 
CPU so it can take the required action.
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architectures allow other devices (or multiple CPUs) to take turns at controlling the bus. 
For example, a network controller card can be used to access a disk controller directly 
while the CPU performs other tasks that do not require the bus. Any device can place data 
on the data bus when the CPU reads from that device, but only the bus master drives the 
address bus and control signals.

Although processors operate at high speeds, they are not always efficient at transfer-
ring data. When a processor transfers data from one device to another, it must use a bus 
cycle to read in the data from the source device and use another bus cycle to write the 
data back out to the destination device. The overhead in reading data into the processor 
and writing it out again greatly slows data transfers. The bus request operation allows 
other bus masters to take control of the system buses and rapidly transfer data between 
system devices.

Bus request operations are similar to interrupts and exceptions but differ in three 
important ways. Bus request operations do not complete the current instruction cycle 
before proceeding. Instructions can take hundreds or even thousands of clock cycles, 
and the circumstances that generated the bus request may be too urgent to be delayed. 
For example, a CD drive may be on the verge of a buffer under run and require data 
immediately to refill the buffer, or a memory controller may need to immediately refresh 
the system DRAM to prevent data from being lost. Interrupts and exceptions allow 
the processor to complete the current instruction cycle before processing the interrupt 
or exception.

Secondly, in a bus request operation, the processor passes control of the system buses 
to the requesting device, which then handles all bus operations. The processor continues to 
execute instructions in the ISR or exception handler during interrupts.

A third difference is that once the processor grants the bus request and relinquishes the 
system buses, the processor cannot regain control of the system until the requesting device 
relinquishes control or the processor is reset. The sequence of events during a bus request 
operation is as follows:

	 1.	 The bus master requesting control of the system buses submits a request by asserting 
the processor’s bus request (BR) line.

	 2.	 The processor tri-states the system buses and signals that it has released control of 
the buses by asserting the bus grant (BG) line.

	 3.	 The requesting bus master uses the system address, data, and control lines to transfer 
data between system devices.

	 4.	 After completing the data transfers, the requesting bus master tri-states the system 
buses and signals the end of the bus request operation by asserting the bus grant 
acknowledge (BGACK) line.

Direct Memory Access (DMA)

One important class of bus master is the DMA (direct memory access) controller. These 
devices are designed specifically to transfer large amounts of data between system devices 
in a fraction of the time that the system processor would require. To utilize a DMA con-
troller, the processor first writes the starting source address, starting destination address, 
and number of bytes to transfer to registers within the DMA controller. The processor 
next enables the transfer by writing to a control register within the controller, which then 
initiates the bus request operation. Computer systems typically use DMA controllers to 
transfer data between memory and hardware peripherals, such as when loading a program 
or data file from a hard drive to memory or when transferring a message from system 
memory to the transmit buffer of an Ethernet controller. DMA controllers can also move 
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data between memory devices, for example, when moving data from main memory to 
cache memory.

DMA speeds up data transfers between RAM and certain peripheral devices. Basi-
cally, DMA bypasses the CPU for certain types of data transfers, thus eliminating the 
time consumed by normal fetch and execute cycles required for each CPU read or write 
operation. Transfers between the disk drive and RAM are particularly suited for DMA 
because of the large amount of data and the serial nature of the transfers. Generally, the 
DMA controller can handle data transfers several times faster than the CPU. Figure 14–24 
shows a comparison of a data transfer handled by the CPU (part a) and one handled by 
the DMA (part b).

FIGURE 14–24  Illustration of DMA vs CPU data transfer.

Data bus

Memory read I/O write

CPU

RAM I/O port

Data bus

DMA
controller

I/O port

CPU

RAM

(b) Data transfer handled by the DMA controller

(a) Data transfer handled by the CPU

Bus masters other than DMA controllers also use bus request operations. Processors 
in multiprocessor systems use bus request operations to access shared memory and other 
system resources. Memory controllers use bus request operations to perform background 
memory operations, such as refreshing DRAM and ensuring that the data in main memory 
and cache memory are consistent.

Figure 14–25 shows a computer system block diagram with a DMA controller and 
a PIC.
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FIGURE 14–25  Block diagram of a typical computer.

14–6  Operating Systems and Hardware

Each computer system consists of two main components. The microprocessor, memories, 
interface circuits, peripherals, power supplies, and other electronic components make up 
what is collectively referred to as computer hardware. The programs that the microproces-
sor executes and that control the computer system are collectively referred to as computer 
software. One general rule is anything in a computer system that you can physically touch 
is hardware, and anything that you can’t physically touch is software.

After completing this section, you should be able to

u	 Explain the three basic duties of an operating system

u	 Discuss how an operating system functions in a computer system

Section 14–5  Checkup

	 1.	Compare and contrast exceptions and interrupts.

	 2.	Compare and contrast bus requests and interrupts.

	 3.	Define and explain the purpose of direct memory accesses.
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u	 Compare and contrast the difference between multitasking and nonmultitasking 
operating systems

u	 Differentiate between multitasking and multiprocessing

u	 Identify and discuss the issues presented by multitasking

Operating System Basics

The operating system (OS) of a computer is a special program that establishes the envi-
ronment in which application programs operate. The operating system provides the func-
tional interface between application programs in the system, called processes, and the 
computer hardware. Because the operating system must work closely with the computer 
hardware, it is often written in assembly language or programming language with low-level 
hardware support, such as C++.

An operating system increases the overall complexity of a computer system, but using an 
operating system offers a number of advantages over running stand-alone application pro-
grams. The operating system tests and initalizes hardware in the computer system, eliminat-
ing the need for each application to duplicate these functions. Operating systems also provide 
a standard computing environment so that applications can execute consistently. Finally, 
operating systems provide system services that allow applications access to commonly used 
system resources (such as the real-time clock, I/O ports, and data files), which simplify the 
code for applications programs. A drawback of operating systems is that processes may exe-
cute more slowly; accessing system resources through an operating system can take longer 
than a program accessing them directly. An operating system has three basic duties.

	 1.	 To schedule and allocate system resources (CPU time, memory, access to system 
peripherals)

	 2.	 To protect system processes and resources (preventing accidental or deliberate cor-
ruption of process code and data, unauthorized access to hardware and memory)

	 3.	 To provide system services (messaging between processes, low-level hardware 
drivers)

Multiple Processes

Computers can run multiple processes in two basic ways. The first way, called multitask-
ing, shares a single-core processor among multiple processes. The processor runs more 
than one process but switches between them so that each process uses only part of the 
processor’s available time. Multitasking systems use different techniques to decide when 
to switch between processes. One technique allows a process to run until it must wait for 
some event, such as a keypress, before it can continue and switches to another process that 
is ready to run. Another technique, called preemptive multitasking, allows each process 
to run for a specific amount of time before the operating system switches to another pro-
cess. A third technique, called non-preemptive multitasking, allows a process to run until 
it voluntarily relinquishes the processor to another process. Figure 14–26 illustrates how a 
single-core processor multitasks.

Program 1

Program 2

Processing
program 1

Processing
program 2

Time slice 1 Time slice 2 Time slice 3 Time slice 4

Total time

Processing
program 1

Processing
program 2

Single-core processor

FIGURE 14–26  Simplified model of processor multitasking.
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The second way for a computer system to run multiple processes, called multiprocessing,
uses multiple processors, each of which can either multitask or run a single process. 
Figure 14–27 illustrates the concept of multitasked multiprocessing.
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Processing
program 4
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FIGURE 14–27  Multitasked multiprocessing in a multicore processor.

Supervisor and User States

It is difficult for multiple users or processes to coexist in a computer system if processes have 
unrestricted access to system resources. Once a process takes control of the processor and is 
running, it can modify or disable any software or hardware in the system that exists to control 
it. The solution to this is to restrict what the process can access. Some processors use the 
user/supervisor state bit so only trusted code, like the operating system, can run under certain 
circumstances. For multiprocess or multiuser systems, the processor executes in supervisor 
state when it first powers up, while the operating system is running, and when the processor 
responds to an interrupt. When the operating system loads and transfers control to an applica-
tion program, it first clears the user/supervisor state bit. This places the process in user state 
and prevents it from accessing restricted parts of the computer system’s hardware or software.

Memory Management Unit

One device in the computer system that has not yet been discussed is the memory manage-
ment unit, or MMU. Memory management units are very sophisticated logic devices that 
handle many details associated with accessing memory in computer systems, including 
memory protection, wait-state generation, address translation for handling virtual memory, 
and cache control. As an example, consider a simplified MMU that simply provides mem-
ory protection. The processor can program the MMU with the start and end addresses of 
a memory range. The MMU then acts as a comparator. If the MMU detects a value on the 
address bus that is less than the programmed start address or greater than the programmed 
end address, it will generate a hardware interrupt to the processor.

System Services

Operating systems provide system services that allow applications access to commonly used 
system resources. This is essential for allowing processes to interact and communicate with 
each other to share information, coordinate operations, and otherwise function in unison. 
Interprocess communication uses software interrupts (also called traps). When one process 
wishes to utilize a system service, it loads specific registers with values and then invokes a 
specific trap to pass control to the operating system’s exception handler for that trap.

When the process executes the trap, the processor enters supervisor mode; and the 
exception handler uses the register contents to fulfill the requested service. If, for example, 
the requested service was to send several bytes from one process to another, the exception 
handler would use the starting address of the data and the number of data bytes contained 
in the processor registers to copy the data from the user memory of the source process to 
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the user memory of the destination process. It would then load a condition code indicating 
that the service had been completed successfully (or failed) in one of the processor registers 
and would return processor control to the requesting process.

When processes are meant to interact with other processes, they each must be carefully 
designed to ensure that messages are passed at the right time and in the right order and that 
the processes can recover from communication errors. Otherwise, one process may believe 
that it has sent out a valid message and await a response, while the intended destination 
process is waiting for the first process to send a message to which it can respond. The result 
is that neither process can proceed.

Section 14–6  Checkup

	 1.	What are the three basic duties of an operating system?

	 2.	Compare and contrast multitasking and multiprocessing.

	 3.	Describe how a memory management unit prevents one process from accessing the 
memory space of another process.

	 4.	Explain how an operating system permits two processes to exchange information.

14–7  Programming

Assembly language is a way to express machine language in English-like terms, so there is 
a one-to-one correspondence. Assembly language has limited applications and is not por-
table from one processor to another, so most computer programs are written in high-level 
languages such as C++, JAVA and BASIC. High-level languages are portable and therefore 
can be used in different computers. High-level languages must be converted to the machine 
language for a specific microprocessor by a process called compiling.

After completing this section, you should be able to

u	 Describe some programming concepts

u	 Discuss the levels of programming languages

Levels of Programming Languages

A hierarchy diagram of computer programming languages relative to the computer hard-
ware is shown in Figure 14–28. At the lowest level is the computer hardware (CPU, mem-
ory, disk drive, input/output). Next is the machine language that the hardware understands 
because it is written with 1s and 0s (remember, a logic gate can recognize only a LOW (0) 
or a HIGH (1). The level above machine language is assembly language where the 1s and 
0s are represented by English-like words. Assembly languages are considered low-level 
because they are closely related to machine language and are machine dependent, which 
means a given assembly language can only be used on a specific microprocessor.

The level above assembly language is high-level language, which is closer to human 
language and further from machine language. An advantage of high-level language over 
assembly language is that it is portable, which means that a program can run on a variety of 
computers. Also, high-level language is easier to read, write, and maintain than assembly 
language. Most system software (e.g., Windows), and applications software (e.g., word 
processors and spreadsheets) are written with high-level languages.

Assembly Language

To avoid having to write out long strings of 1s and 0s to represent microprocessor instruc-
tions, English-like terms called mnemonics or op-codes are used. Each type of micro-
processor has its own set of mnemonic instructions that represent binary codes for the 
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instructions. All of the mnemonic instructions for a given microprocessor are called the 
instruction set. Assembly language uses the instruction set to create programs for the micro-
processor; and because an assembly language is directly related to the machine language 
(binary code instructions), it is classified as a low-level language. Assembly language is 
one step removed from machine language.

Assembly language and the corresponding machine language that it represents is spe-
cific to the type of microprocessor or microprocessor family. Assembly language is not 
portable; that is, you cannot directly run an assembly language program written for one 
type of microprocessor on another type of microprocessor. For example, an assembly pro-
gram for the Motorola processors will not work on the Intel processors. Even within a 
given family different microprocessors may have different instruction sets.

An assembler is a program that converts an assembly language program to machine 
language that is recognized by the microprocessor. Also, programs called cross-assemblers 
translate an assembly language program for one type of microprocessor to an assembly 
language for another type of microprocessor.

Assembly language is rarely used to create large application programs. However, 
assembly language is often used in a subroutine (a small program within a larger pro-
gram) that can be called from a high-level language program. Assembly language is 
useful in subroutine applications because it usually runs faster and has none of the 
restrictions of a high-level language. Assembly language is also used in machine con-
trol, such as for industrial processes. Another area for assembly language is in video 
game programming.

Conversion of a Program to Machine Language

All programs written in either an assembly language or a high-level language must be 
converted into machine language in order for a particular computer to recognize the pro-
gram instructions.

Assemblers

An assembler translates and converts a program written in assembly language into machine 
code, as indicated in Figure 14–29. The term source program is often used to refer to 
a program written in either assembly or high-level language. The term object program 
refers to a machine language translation of a source program.

         Assembly language
• English-like terms representing

binary code
• Machine dependent

     High-level language
• Closer to human language
• Portable

Computer hardware (the “machine”)
• CPU
• Memory (RAM, ROM)
• Disk drives
• Input/Output

Machine language
• Binary code (1s and 0s)
• Machine dependent

FIGURE 14–28  Hierarchy of programming languages relative to computer hardware.
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Assembly language
program

(Source program)
Assembler

Machine language
program

(Object program)

FIGURE 14–29  Assembly to machine conversion using an assembler.

High-level language
program

(Source program)
Compiler

Machine language
program

(Object program)

FIGURE 14–30  High-level to machine conversion with a compiler.

All high-level languages, such as C++, will run on any computer. A given high-level 
language is valid for any computer, but the compiler that goes with it is specific to a partic-
ular type of CPU. This is illustrated in Figure 14–31, where the same high-level language 
program (written in C++ in this case) is converted by different machine-specific compilers.

Computer 1
Object program
(machine code)

C++
Source program

Computer 2
Object program
(machine code)

Computer 3
Object program
(machine code)

Compiler
Computer 1 with

CPU A

Compiler
Computer 2 with

CPU B

Compiler
Computer 3 with

CPU C

FIGURE 14–31  Machine independence of a program written in a high-level language.

Example of an Assembly Language Program

For a simple assembly language program, let’s say that we want the computer to add a list 
of numbers from the memory and place the sum of the numbers back into the memory. A 
zero is used as the last number in the list to indicate the end of the list of numbers. The steps 
required to accomplish this task are as follows:

	 1.	 Clear a register (in the microprocessor) for the total or sum of the numbers.

	 2.	 Point to the first number in the memory (RAM).

	 3.	 Check to see if the number is zero. If it is zero, all the numbers have been added.

	 4.	 If the number is not zero, add the number in the memory to the total in the register.

	 5.	 Point to the next number in the memory.

	 6.	 Repeat steps 3, 4, and 5.

Compilers

A compiler is a program that compiles or translates a program written in a high-level language 
and converts it into machine code, as shown in Figure 14–30. The compiler examines the entire 
source program and collects and reorganizes the instructions. Every high-level language comes 
with a specific compiler for a specific computer, making the high-level language independent 
of the computer on which it is used. Some high-level languages are translated using what is 
called an interpreter that translates each line of program code to machine language.
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A flowchart is often used to diagram the sequence of steps in a computer program. Fig-
ure 14–32 shows the flowchart for the program represented by the six steps.

YesIs number
= zero?

No

Point to first
number.

Initialize total
to zero.

End
Add number

to total.

Point to next
number.

Start

FIGURE 14–32  Flowchart for adding a list of numbers.

The working portion of the assembly language program implements the addition prob-
lem shown in the flowchart in Figure 14–32. Two of the registers in the microprocessor 
are named eax and ebx. The comments preceded by a semicolon are not recognized by the 
computer; they are for explanation only.

	 mov eax,0		�  ;Replaces the contents of the eax  
register with zero.

			�   ;Register eax will store the total of 
the addition.

	 mov ebx, OFFSET NumArray		� ;Places memory address of NumArray 
into the ebx register.

next: cmp dword ptr [ebx],0		�  ;Compares the number stored in the ebx 
register to zero.

	 jz done		�  ;If the number in the ebx register is 
zero, jump to “done”.

	 add eax,[ebx]		�  ;Add the number in the ebx register to 
the eax register.

	 add ebx, 4

	 jmp next

done: mov [ebx],eax
	 call WriteInteger		�  ;WriteInteger utility by Floyd to view 

integer values

	 exitProg		�  ;exitProg utility provided by Floyd 
utility to end the executable
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Depending on the assembler, most programs in assembly language will have a num-
ber of assembler directives that are used by the assembler to do a variety of tasks. These 
tasks include setting up segments, using the appropriate instruction set, describing data 
sizes, and performing many other “housekeeping” functions. To simplify the explana-
tion, only two directives were shown in the preceding program. The directives were 
word ptr, which is used to indicate the size of the data pointed to by the ebx register, 
and OFFSET.

EXAMPLE 14–2

Write the instructions for an assembly language program that will find the largest 
unsigned number in the data and place it in the last position. Assume the last data point 
is signaled with a zero.

Solution

The flowchart is shown in Figure 14–33.

YesIs number
> BIG?

No

Point to first
number.

Initialize BIG
to zero.

Point to
next number.

Last
number?

Yes

End

Replace BIG
with number.

No

fg13_02600

FIGURE 14–33  Flowchart. The variable BIG represents the largest value.

The data are assumed to be the same as before. The program listing (with comments) 
is as follows:

	 mov eax,0		� ;initial value of BIG is in the eax 
register

	 mov ebx,OFFSET NumArray		�;point to the location in memory where 
the data are stored
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Types of Instructions

The programs in this section only show a few of the hundreds of variations of instruc-
tions available to programmers. Generally, an instruction set can be divided into categories, 
which are described here.

Data Transfer

The most basic data transfer instruction MOV was introduced in the example programs. 
The MOV instruction, for example, can be used in several ways to copy a byte, a word  
(16 bits), or a double word (32 bits) between various sources and destinations such as 
registers, memory, and I/O ports. (A better mnemonic for MOV might have been “COPY” 
because this is what the instruction actually does.) Other data transfer instructions include 
IN (get data from a port), OUT (send data to a port), PUSH (copy data onto the stack, a 
separate area of memory), POP (copy data from the stack), and XCHG (exchange).

Arithmetic

There are a number of instructions and variations of these instructions for addition, 
subtraction, multiplication, and division. The ADD instruction was used in both exam-
ple programs. Other arithmetic instructions include INC (increment), DEC (decre-
ment), CMP (compare), SUB (subtract), MUL (multiply), and DIV (divide). Variations 
of these instructions allow for carry operations and for signed or unsigned arithmetic. 
These instructions allow for specification of operands located in memory, registers, 
and I/O ports.

Bit Manipulation

This group of instructions includes those used for three classes of operations: logical 
(Boolean) operations, shifts, and rotations. The logical instructions are NOT, AND, OR, 
XOR, and TEST. An example of a shift instruction is SAR (shift arithmetic right). An 
example of a rotate instruction is ROL (rotate left). When bits are shifted out of an oper-
and, they are lost; but when bits are rotated out of an operand, they are looped back into 
the other end. These logical, shift, and rotate instructions can operate on bytes or words 
in registers or memory.

next:	 cmp dword ptr [ebx],eax  ;is the data point larger than BIG?

	 jbe check		�  ;if the data point is smaller, go  
to “check”

	 mov eax, [ebx]		�  ;otherwise, put the new largest data 
point in eax

check: add ebx,4		�  ;point to the next number in memory 
(four bytes per word)

	 cmp dword ptr [ebx], 0		�  ;test for the last data point

	 jnz next		�  ;continue if the data point is not  
a zero

	 mov [ebx], eax		  ;save BIG in memory

	 call WriteInteger		�  ;WriteInteger utility by Floyd to 
view integer values

	 exitProg		�  ;exitProg utility provided by Floyd 
utility to end the executable

Related Problem

Explain how you could change the flowchart to find the smallest number in the list 
instead of the largest.
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Loops and Jumps

These instructions are designed to alter the normal (one after the other) sequence of instruc-
tions. Most of these instructions test the processor’s flags to determine which instruction should 
be processed next. In Example 14–2, the instructions JBE and JNZ were used to alter the path. 
Other instructions in this group include JMP (unconditional jump), JA (jump above), JO (jump 
overflow), LOOP (decrement the CX register and repeat if not zero) and many others.

Strings

A string is a contiguous (one after the other) sequence of bytes or words. Strings are com-
mon in computer programs. A simple example is a sentence that the programmer wishes 
to display on the screen. There are five basic string instructions that are designed to copy, 
load, store, compare, or scan a string—either as a byte at a time or a word at a time. Exam-
ples of string instructions are MOVSB (copy a string, one byte at a time) and MOVSW 
(copy a string, one word at a time).

Subroutine and Interrupts

A subroutine is a miniprogram that can be used repeatedly but programmed only once. For 
example, if a programmer needs to convert ASCII numbers from a keyboard to a BCD for-
mat, a simple programming structure is to make the required instructions a separate process 
and “call” the process whenever necessary. Instructions in this group include CALL (begin 
the subroutine) and RET (return to the main program).

Processor Control

This is a small group of instructions that allow direct control of some of the processor’s 
flags and other miscellaneous tasks. An example is the STC (set carry flag) instruction.

High-Level Programming

The basic steps to take when you write a high-level computer program, regardless of the 
particular programming language that you use, are as follows:

	 1.	 Determine and specify the problem that is to be solved or task that is to be done.

	 2.	 Create an algorithm; that is, develop a series of steps to accomplish the task.

	 3.	 Express the steps using a particular programming language and enter them on the 
software text editor.

	 4.	 Compile (or assemble) and run the program.

A simple program will show an example of high-level programming. The following 
C++ program implements the same addition problem defined by the flowchart in Figure 
14–32 and implemented using assembly language.

int total = 0;	 //Initialize the total to zero.

int *number = NumArray;	 //Initialize a pointer to the array of integers.

while (*number != 0x00)	 //Loop while the value is not found. The

		  //asterisk preceding the pointer identifier

		  //number says the contents of the

		  //memory location pointed to by the

		  //Identifier number are being evaluated.

{

  total = total + *number;	//Accumulate summation of total

  number++;	 //Increment pointer to next number in memory

}

cout << total;	 //C++ cout statement used to view integer value
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This C++ program is equivalent to the assembly program that adds a series of numbers 
and produces a total value.

	int total = 0;			   mov eax, 0

	int *number = NumArray;			   mov ebx, OFFSET NumArray

	while	(*number != 0x00)		  next: cmp DWORD PTR [ebx], 0

					    jz done

	{ 

	    total = total + *number;	 Equivalent		  add eax, [ebx]

	    number++;			   add ebx, 4

	}

					    jmp next

	cout << total;			   mov [ebx], eax

				   done: mov [ebx], eax

		
[C++]

		  	 call WriteInteger

						      Assembly

Section 14–7  Checkup

	 1.	Define program.

	 2.	What is an op-code?

	 3.	What is a string?

14–8  Microcontrollers and Embedded Systems

Although a general-purpose microprocessor can interface with a variety of devices over its 
system buses, its ability to interface with the real world is limited. Most general-purpose 
microprocessors must use analog-to-digital converters (ADCs), digital-to-analog convert-
ers (DACs), universal asynchronous receivers and transmitters (UARTs) and other com-
munication controllers, peripheral interface adapters (PIAs), external timers, and other 
specialized peripherals to process real-world information. Microcontrollers are used in 
microprocessor-controlled applications called embedded systems that perform a specific 
set of tasks and incorporate both the hardware and firmware required to perform them. 
Embedded systems include personal electronic devices such as cell phones, MP3 players, 
and calculators as well as consumer and industrial products as microwave ovens, auto-
mated assembly systems, and robots.

After completing this section, you should be able to

u	 Describe the general architecture of microcontrollers

u	 Discuss the types of peripherals found in common microcontrollers

u	 Describe how microcontroller peripherals are configured

u	 Describe how microcontrollers are used in various embedded systems

Microcontroller Basics

A special type of processor, called a microcontroller, sometimes abbreviated as mC or 
MCU, combines a microprocessor core, memory, and common peripherals in a single 
package. Microcontrollers can range in complexity from simple devices with a few dozen 
pins to very complex devices with hundreds of pins. A common aspect of all these processors 
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is that the design of each seeks to incorporate all the elements of a microprocessor system 
into a single package. A microcontroller will typically include the following functional 
units:

•	 A microprocessor (called the processor core)

•	 Nonvolatile memory for program code, device configuration data, and similar data 
that must be preserved when power is removed

•	 RAM for program data, internal registers, peripheral device buffers, and other data 
storage

•	 Peripheral devices such as timers, ADCs, DACs, communication controllers, and I/O 
ports

•	 Internal buses to connect the processor core to internal memory

•	 Internal buses to connect the processor core and internal memory to peripheral 
devices

•	 Interface circuitry to connect the microcontroller with external devices

In addition to the above list of microcontroller features, more sophisticated microcon-
trollers can also include the following:

•	 A phase-locked loop (PLL) to multiply a low-frequency external clock to a higher 
internal frequency, increasing the speed of microcontroller operation

•	 DMA controllers to improve data transfer between internal memory and peripheral 
devices

•	 Programmable logic resources, or “fabric”, to implement custom functions

•	 A JTAG interface to support device testing and programming

•	 Special power modes for low-power and standby operation

Figure 14–34 shows a simplified block diagram of a typical microcontroller.

Microcontroller

Peripheral bus

A
dd

re
ss

 b
us

D
at

a b
us

Co
nt

ro
l b

us

Processor
core

Address bus

Control bus

Data bus
Signal

connection

RAM

ROM

Address bus

Data bus

Control bus

Peripheral I/O

Peripheral I/O

Peripheral

Peripheral

External
bus

controller

FIGURE 14–34  Simplified microcontroller block diagram.

Microcontroller Peripherals

Microcontrollers feature a wide variety of peripherals. Manufacturers select the type 
and number of peripherals, as well as the types and amounts of internal memory, to 
meet the requirements of specific applications, such as communication, automotive, and 
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motion-control products. For example, microcontrollers that target communication appli-
cations will include a wide variety and number of communication controllers (such as 
Ethernet, I2C, USB, and UART) to support the transmission and reception of data using 
multiple protocols. In contrast, microcontrollers meant for motion-control applications, 
such as robotic assemblies, will include ADCs, DACs, encoders, and pulse width modula-
tors (PWMs) for position sensing and motor feedback and control.

Many pins on microcontrollers are multifunctional. This not only helps to reduce the 
total pin count and cost of the device but also limits the functions that can be used at the 
same time. The data sheet may state that a communications microcontroller has four USB 
controllers, two UART controllers, an Ethernet controller, an external memory interface, 
and 80 general-purpose I/O (GPIO) lines, but it is unlikely that a design can use all of these. 
A pin on a communications microcontroller, for example, might serve as a transmit line for 
USB communications, a clear-to-signal line for UART communications, a transmit line for 
Ethernet communications, an address line for the external bus controller, or a general-pur-
pose I/O (GPIO) pin; but it can be configured for only one function at a time. Since appli-
cations rarely can change pin functions “on the fly,” the circuit design permanently assigns 
the function of each microcontroller pin. If the circuit designer must use a set of pins for an 
external memory interface but also needs other functions that those pins provide, she either 
must find those functions on other pins (which is why microcontrollers offer more than one 
instance of a type of peripheral) or use external circuits to provide those functions.

The following describes some of the more common types of peripherals on micro-
controllers.

General-Purpose I/O (GPIO)  General-purpose I/O pins are typically the default func-
tion for many microcontroller pins. As the name suggests, these pins can be configured as 
input or outputs to read or write data, either as individual bits (for serial transfer of data) 
or groups of bits (for paraller transfer of data). Typical applications for GPIO lines are to 
read individual switches, to drive LED indicators, or to select or enable latches or buffers.

Communication Controllers  Communication controllers allow microcontrollers to com-
municate with other devices using specific communication protocols. Some standard com-
munication protocols are universal asynchronous receive and transmit (UART), Ethernet, 
universal serial bus (USB), inter-integrated circuit (IIC or I2C), serial peripheral interface 
(SPI), controller area network (CAN), and high-level data link control (HDLC). Because 
the timing, flow control, and data format of these protocols vary so widely, configuring 
communication controller functions is typically much more involved than for other periph-
eral functions.

Timers  Microcontroller timers can have multiple uses. These include setting the fre-
quency for a communication controller, indicating when a preset time interval has elapsed, 
determining the elapsed time between two events, and providing a periodic time tick for a 
system real-time clock.

ADCs and DACs  ADCs and DACs are the means by which digital circuits interact with 
an analog world. As you know, digital circuits must use a limited set of values to represent 
a continuous range of analog data. Microcontrollers use ADCs to convert analog voltage 
and current measurements from sensors into digital values for processing and use DACs to 
convert digital values into analog voltages and currents to control electric and electronic 
circuits.

Quadrature encoders  Quadrature encoders are used to determine the speed, direc-
tion, and position of a moving object, such as a computer mouse or a stepper motor. A 
quadrature encoder represents the present position of a tracked object with a Gray code 
sequence. When the object moves, the Gray code value changes. Each change will incre-
ment or decrement a counter to represent a positive or negative change in position. For 
example, a system could use the sequence 00 S 01 S 11 S 10 S 00 to represent a posi-
tive change so that the sequence 00 S 10 S 11 S 01 S 00 would represent a negative 
change. The counter value represents the position of the tracked object in the physical 
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system relative to the starting point or origin of the tracked object; how fast the counter 
value changes reflects the speed of the tracked object. Quadrature encoders typically use 
32-bit or larger counters to prevent an underflow or overflow condition that would make 
it seem that the tracked device suddenly changed from a maximum or minimum position 
or vice versa. Tracked objects require one encoder for each dimension of movement. An 
object that moves in one dimension, such as a sliding door, needs only one encoder to 
track movement along the line of travel. An object that moves in two dimensions, such as a 
computer mouse, requires two encoders to track movement in the plane of travel. Objects 
that move in three dimensions, such as some robotic assemblies, require three encoders to 
track movement in the space of travel.

Pulse width modulators  As you know, a pulse width modulator modulates, or varies, 
the pulse width of a repetitive digital signal to change the signal’s duty cycle (i.e., the 
ratio of the time that a signal is HIGH to the period of the signal). Pulse width modulators 
are often used in motor control. Although motor controller circuits can use the amplitude 
of winding current to set the speed of some motors, a more typical approach is to keep 
the amplitude of the applied winding current constant and vary the duty cycle to control 
the speed. Microcontrollers can precisely control the duty cycle to accurately set the 
motor’s running speed. Also, microcontrollers can change the duty cycle very quickly in 
response to the effects of motor speed due to line or load variations to maintain a constant 
running speed.

External memory controllers  Although most microcontrollers contain internal ROM, 
RAM, EEPROM, flash, and other memory for code, data, and other program information, 
some applications require more memory than a microcontroller contains. Consequently, many 
microcontrollers feature external memory controllers that permit interfacing the microcon-
troller to external memory devices. Some microcontrollers do not contain any internal mem-
ory, so external memory must be used. External memory controllers often feature decoded 
chip select lines that allow programmers to configure the size of the memory range, the port 
size (8-, 16-, or 32-bits), and the number of wait states for each select line; they can contain 
memory management units that provide memory protection for multitasking applications. 
External memory devices are typically limited to SRAM, SDRAM, flash, and other memory 
types that do not require special bus operations, as do DRAM and EEPROM.

Configuring Peripherals

Microcontroller peripherals must be configured so that they operate the way an applica-
tion requires them to do. Configuring means loading specific registers associated with the 
peripheral with values that control the function and operation of the peripheral. The reg-
ister and values vary with each peripheral, but the registers fall into the general categories 
described next. Depending upon the number of bits required to configure some aspect of 
a peripheral, some categories may share one register, while others may require multiple 
registers to contain the necessary information.

Control Registers  Control registers determine how the peripheral will function. For some 
peripherals a control register may select the specific peripheral as well as the characteristics 
for that peripheral. For example, the control registers for a communication controller could 
specify the specific communication protocol and the data rate, data packet size, error detec-
tion method, and operating mode (interrupt-driven or polled).

Status Registers  Status registers contain information about how the peripheral is oper-
ating and conditions associated with peripheral operation. Applications use status reg-
isters to detect errors, determine when the peripheral has completed some task, and 
decide when conditions require some special handling. The microcontroller may auto-
matically clear some status bits when firmware corrects a detected condition, while in 
other cases firmware may need to manually clear some status bits. For example, if an 
ADC sets the end-of-conversion status bit to indicate it has completed converting an 
analog value, reading the converted value from the ADC data register may automatically 
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clear the bit; firmware may need to specifically clear the status bit to allow the ADC to 
perform another conversion.

Data Registers  Data registers contain information that the peripheral processes in some 
way. The value in a data register can be data for the peripheral to process, data processed 
by the peripheral, or data currently being processed. The contents of data registers might 
not change unless firmware changes them, or operation of the peripheral may automati-
cally update them. For example, the initialization register for a timer contains the initial 
count value that is loaded into the timer and may not change unless firmware writes a new 
value into the register. In contrast, the timer’s count register holds the actual value of the 
timer and may update each time the counter is clocked. Some peripherals have only a few 
configuration registers.

The GPIO pins typically have only two registers: a control register that determines 
whether a pin is an input or output and a data register that contains the signal level of 
the pin. Other peripherals can have many more registers. A communication controller, for 
example, can have a control register to specify the communication parameters, a status 
register to monitor the operation of the controller, a transmit buffer descriptor register to 
specify the memory locations of data to be transmitted, a transmit length register to specify 
the number of bytes to transmit, a receive buffer descriptor register to specify the memory 
locations at which received data are to be stored, a receive length register to indicate the 
number of bytes received, an interrupt status register to signal communication events during 
reception and transmission, and an interrupt mask register to prevent or allow recognition 
of communication events. When configuring microcontroller peripherals, the programmer 
must carefully read the user manual and understand not only the operation of each periph-
eral he intends to use but also which configuration registers must be programmed and the 
configuration values to use.

As the number of products using microcontrollers has grown, manufacturers and 
third-party vendors have visual development and evaluation tools to simplify the pro-
cess of programming microcontrollers. Many tools now allow programmers to use drop-
down lists, check boxes, and other visual controls to generate C or C++ initialization 
code by specifying the peripherals they wish to use and how the peripherals should oper-
ate. While this is convenient and shortens development time, errors are still possible. 
Programmers should always review the code to verify it matches what they expected.

Microcontrollers in Embedded Systems
Personal Handheld Systems

Smart phones, digital media devices, calculators, and portable GPS units are only a few 
examples of portable handheld electronic devices that are microcontroller-based embed-
ded systems. Microcontrollers are widely used in these products because they can easily 
interface with the input and output hardware, rapidly process data, and consume relatively 
little power. Some of the most popular microcontrollers for portable handheld devices are 
those based on the ARM (Advanced RISC Machine) processor.

A block diagram for a microcontroller-based programmable calculator is shown in Fig-
ure 14–35. The calculator incorporates a USB communication port. The ROM contains the 
embedded code that implements the calculator functions and processes while the RAM 
provides storage for the system stack, system data, user data, and programs. The USB 
controller transmits and receives data per the USB communications protocol and interfaces 
to the hardware that makes up the physical USB port. The calculator keypad connects to 
a parallel port formed by multiple GPIO lines, and the calculator LCD display interfaces 
with an LCD driver peripheral in the microcontroller to create the human machine inter-
face, or HMI. A timer inside the microcontroller powers down the calculator after it has 
been active for a preset amount of time to save energy. Other timers in the microcontroller, 
which are not shown, set the communications rate for the USB controller, provide a real-
time clock, and allow the user to set time-of-day alarms.
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Consumer Appliances

Virtually every electronic product today is a “smart” product that can make decisions, 
perform a preprogrammed sequence of events, or be manually programmed to do so. A 
short list of these products includes microwave ovens, coffee makers, washers and dryers, 
refrigerators, ovens, home entertainment components and systems, video game systems, 
and robotic vacuum cleaners.

Automobile Systems

Automobiles use microcontrollers in a number of embedded systems. Embedded systems 
in modern automobiles monitor vehicle operation and control the engine, fuel system, 
brakes, air bags, door locks, environmental system, instrument display, vehicle navigation, 
and virtually every aspect of vehicle operation. One specific factor that can affect micro-
controllers in automotive applications is the operating environment. Microcontrollers must 
be able to operate properly when exposed to the vehicle’s temperature, humidity, vibration, 
and electrical noise that they will encounter when the vehicle is operating.

Automated Systems

Two large areas of embedded applications are robotics and automation. Robotic and auto-
mated assemblies by nature must operate independently, perform repetitive tasks, process 
real-world data, and respond to circumstances that arise during operation. Embedded 
microcontroller systems can perform these tasks very well. One particular aspect of auto-
mated systems with which the microcontroller must deal is motion control. Microcon-
trollers must use feedback from the mechanical system to properly control the speed and 
acceleration of the system to ensure that it operates properly.

Figure 14–36 shows the block diagram for a basic robotics system. Although the block 
diagram is for a system that operates along a single axis, it can be extended to three axes 
for three-dimensional movement by using three microcontroller systems.

The ROM contains the embedded code that implements the robotic functions and pro-
cesses; the RAM provides storage for the system stack and system data. The quadrature 
encoder receives encoded information from a motor position indicator and increments or 
decrements a counter depending upon how the encoded pattern changes. The pulse width 
modulator supplies a pulse train to a motor driver that in turn applies the voltages to the 
motor windings to turn the motor. GPIO lines detect when optical, magnetic, or other sen-
sors indicate that the mechanical assembly has reached its maximum or minimum position.
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FIGURE 14–35  Microcontroller block diagram for programmable calculator.
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844	 Data Processing and Control

When the system first powers up, the microcontroller uses the quadrature encoder and 
pulse width modulator to move the mechanical assembly to its minimum, or home, posi-
tion and clears the counter so that zero corresponds to this home position and initializes 
the system. Once the system is initialized, the microcontroller then moves the mechanical 
assembly as programmed by driving the pulse width modulator to move the motor forward 
or backward and monitor the counter to determine how far and fast the mechanical assem-
bly has moved. In most robotic systems, the microcontroller performs a complex series of 
calculations while monitoring the motor position and driving the motor to ensure that the 
mechanical assembly starts, stops, and operates smoothly.
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FIGURE 14–36  Basic block diagram for a robotics system.

Section 14–8  Checkup

	 1.	How does a microcontroller differ from a microprocessor?

	 2.	What are some common functional units found in a typical microcontroller?

	 3.	Discuss an advantage and disadvantage of multifunctional pins on a microcontroller.

	 4.	Which peripherals allow a microcontroller to interact with the real world?

	 5.	How does an embedded system differ from a personal computer system?

	 6.	 Identify some types of embedded systems in which microcontrollers are found.

14–9  System on Chip (SoC)

The system on chip (SoC) is a major step up in complexity from the microcontroller and is 
what makes smaller and more powerful mobile devices possible. A SoC contains a variety 
of functional blocks integrated on a single semiconductor chip to meet specific application 
requirements. A SoC generally includes data processing, both digital and analog signal 
processing, data conversion, memory, interfacing, and other functions. The SoC is found in 
many devices such as smart phones, tablet computers, and digital cameras. Two important 
advantages of the SoP are small size and reduced power consumption, which make it ideal 
for small mobile devices.

After completing this section, you should be able to

u	 Describe a typical SoC

u	 List the functional elements of a SoC
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A system on chip (SoC) is an integrated circuit that combines all components of a 
computer or other electronic system on a single chip. The SoC offers reduced manufactur-
ing costs and smaller system configurations; Package sizes can be smaller than a dime, as 
shown in Figure 14–37.

(a)     (b)

FIGURE 14–37  A typical SoC ball-grid package. The bottom of the package with the BG 
contacts is shown.  (a) Boris Sosnovyy/Shutterstock (b) Eldad Carin/Shutterstock.

A typical SoC consists of the following functional elements, depending on the 
application:

•	 A single or multiple-processor (CPU) core

•	 A digital signal processor (DSP)

•	 A graphics processor (GPU)

•	 Memory (ROM, RAM, EEPROM, flash)

•	 Analog functions such as ADC and DAC

•	 I/O interfaces such as USB, Firewire, I2C, USART

•	 Timing sources such as oscillators and phase-locked loops (PLL)

•	 Voltage regulators and other power management functions

•	 Bus bridges

•	 Various peripherals

•	 Programmable logic and application specific logic

In a system using a microprocessor as the CPU, a variety of other chips must be 
included to achieve full system capability. The same is true for systems using a microcon-
troller, although a smaller chip set may be required because the microcontroller typically 
has memory and some peripherals on a single chip. Actually, the microcontroller often is 
considered a SoC with limited functionality. The SoC provides all functions necessary for 
a given system application, such as a computer on a single chip. Figure 14–38 illustrates a 
simplified generic SoC block diagram. Actual SoCs feature a number of functions that vary 
from one manufacturer to another.

The CPU (central processing unit) in a typical SoC may feature one or more micro-
processors (MPUs) as well as a graphics processor (GPU). Generally, SoCs use proces-
sors based on ARM architecture. The ARM processors, developed by Advanced RISC 
Machines, Ltd. in the 1980s, were very simple in terms of transistor count and instruction 
set. They used reduced instruction set computer (RISC) architecture which allowed them 
to have high performance and low energy consumption. The GPU (graphics processing 
unit) handles complex games and other video requirements that are found on smart phones, 
tablets, and other devices.

SoCs include various types of memory such as ROM, SRAM, DRAM, and cache as 
well as the accompanying control functions. A DSP (digital signal processor) is also a 
feature on many SoCs along with analog functions such as ADC (analog-to-digital conver-
sion) and DAC (digital-to-analog conversion) elements. Of course, interfacing is a crucial 
part of any system and all SoCs provide a varying number of standard bus and other I/Os. 
These interfacing elements may include USB, SPI, CAN, I2C, AGP, UART, Bluetooth, 
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Wi-Fi, Ethernet, audio, rf, as well as others. The northbridge is a circuit that connect the 
CPU to the memory, and to the PCI internal bus. The southbridge is a circuit that controls 
connections to the I/Os.
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Northbridge
Power

management

Memory controller
MMU/DMA

DSP

Southbridge

I/O
Interfaces

Programmable
logic

Memory
ROM/RAM/

EEPROM/CACHE

Rf
WiFi, 3G, 4G

Peripherals

ADC/DAC

Timing
Oscillator/PLL

Internal bus

FIGURE 14–38  Generic block diagram of a typical SoC.

Section 14–9  Checkup

	 1.	What is a SoC?

	 2.	List two advantages of a SoC.

	 3.	Name at least five functional elements of a SoC.

Summary

•	 The basic functional components of a CPU are the ALU, register set, and timing and control unit.

•	 A microprocessor implements the functional components of a CPU on a single IC.

•	 The three basic computer buses are the address bus, data bus, and the control bus.

•	 Examples of peripheral computer devices include the keyboard, external disk drives, mouse, 
printer, modem, and scanner.

•	 Computer systems use I/O ports to access peripherals such as keyboards, mice, video monitors, 
modems, scanners, and disk drives.

•	 The three tasks of a computer system are to acquire, process, and return data.

•	 Computer systems use different types of memory for specialized functions, such as caching and 
queuing data.
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•	 The functions of a CPU are to control system hardware, to provide hardware support to the 
system operating system, and to execute programs.

•	 A multicore processor has two or more microprocessors (cores), each with its own memory 
cache on a single chip.

•	 Pipelining, multitasking, and multiprocessing are techniques for decreasing the processing time.

•	 Buffers are used to prevent output loading but introduce propagation delays.

•	 Wait states are used to compensate for delays in bus signals due to bus buffers, address decod-
ers, and mismatched timing specifications between hardware.

•	 Two methods for a processor to execute concurrent multiple processes are multitasking and 
multiprocessing.

•	 The three basic duties of a multitasking operating system are to allocate resources, to protect 
process and system resources, and to provide system services.

•	 The basic “language” of a computer is called machine code in which instructions are given as a 
series of binary codes.

•	 In assembly language, machine instructions are replaced with a short alphabetic English mne-
monic that has a one-to-one correspondence to machine code. Assembly language also uses 
directives to allow the programmer to specify other parameters that are not translated directly 
into machine code.

•	 Microcontrollers integrate a microprocessor core with hardware peripherals and are well-suited 
for embedded applications.

•	 Embedded systems primarily process real-world signals and operate in real time rather than 
manipulate application program data.

•	 A system on chip (SoC) is an integrated circuit that combines all components of a computer or 
other electronic system on a single chip.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

ALU  Arithmetic logic unit.

Assembly language  A programming language that uses English-like words and has a one-to-one 
correspondence to machine language.

BIOS  The set of low-level routines that initialize the computer system hardware and allow high-
level programs to interact with the system hardware.

Buffer  A device that prevents loading of an output.

Bus master  Any device that can control and manage the system buses in a computer system.

Caching  The process of copying frequently accessed program instructions from main memory 
into faster memory to increase processing speed.

CPU  Central processing unit; the “brain” of a computer that processes the program instructions.

DMA  Direct memory access.

Exception  Any software event that requires special handling by the processor.

Hardware  The circuitry and physical components of a computer system, as opposed to the 
instructions (called software).

High-level language  A type of computer language closest to human language that is a level above 
assembly language.

Interrupt  Any hardware event that requires special handling by the processor. An event that 
causes the current process to be temporarily stopped while a service routine is run.

Interrupt vector table  A data structure in memory that contains the addresses of interrupt service 
routines for the processor.

Machine language  Computer instructions written in binary code that are understood by a computer; 
the lowest level of programming language.
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Main memory  Memory used by computer systems to hold the bulk of programs and associated data.

Microcontroller  An semiconductor device that combines a microprocessor, memory, and various 
hardware peripherals on a single IC and generally used for special or limited applications.

Microprocessor  A large-scale digital integrated circuit that can be programmed to perform 
arithmetic, logic, or other operations; the CPU of a computer.

Multiprocessing  The use of multiple processors to multitask or run multiple programs.

Multitasking  A technique by which a single processor runs multiple programs concurrently.

Op-code  The mnemonic representation of a computer instruction.

Operand  The object to be manipulated by the instruction.

Operating system  The software that controls the computer system and oversees the execution of 
application software.

Pipelining  A technique where the microprocessor begins executing the next instruction in a 
program before the previous instruction has been completed.

Program  A sequential set of computer instructions designed to accomplish a given task(s).

Signal Loading  The effect of the multiple inputs degrading the voltage or timing specifications of 
an output.

Software  Computer programs; programs that instruct a computer what to do in order to carry out 
a given set of tasks.

System bus  The interconnecting paths in a computer system including the address bus, data bus 
and control bus.

System on Chip (SoC)  An integrated circuit that combines all components of a computer or other 
electronic system on a single chip.

Wait state  A system bus delay equal to one processor clock cycle.

True/False Quiz

Answers are at the end of the chapter.

	 1.	 A CPU consists of an ALU, an instruction decoder, and a timing and control unit.

	 2.	 CPU stands for computer peripheral unit.

	 3.	 Memory devices are semiconductor devices that store information electronically and interface 
with the computer system through buses.

	 4.	 The operating system of a computer is a software component.

	 5.	 The ALU is a key element in a microprocessor.

	 6.	 Microprocessors generally have three types of buses: address, data, and control.

	 7.	 The BIOS memory contains program-specific high-level code.

	 8.	 A multicore processor has one processor and more than one memory.

	 9.	 Pipelining allows a computer to execute a program faster.

	10.	 Three levels of computer programming languages are machine, assembly, and high level.

	11.	 DMA stands for direct memory access.

	12.	 The signals associated with a DMA operation are bus request, bus grant, and bus grant 
acknowledge.

	13.	 Microprocessor and microcontroller are different names for the same thing.

	14.	 Some examples of microcontroller peripherals are GPIOs, ADCs, and quadrature encoders.

	15.	 SoC stands for sequential output computer.

Self-Test

Answers are at the end of the chapter.

	 1.	 Which of the following is a peripheral unit of a computer?
(a)	 Arithmetic and logic unit	 (b)	 Control unit
(c)	 Memory unit	 (d)	 Keyboard
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	 2.	 The operation of the timing and control unit in a microprocessor is affected by
(a)	 the instruction decoder	 (b)	 the accumulator
(c)	 the arithmetic logic unit	 (d)	 the register array

	 3.	 A 10-bit address bus support
(a)	 1,000,000 memory addresses	 (b)	 1024 memory addresses
(c)	 100 memory addresses	 (d)	 1000 memory addresses

	 4.	 A bus that is used to transfer information both to and from the microprocessor is the
(a)	 address bus	 (b)	 data bus
(c)	 both of the above	 (d)	 none of the above

	 5.	 A system bus is composed of
(a)	 address bus	 (b)	 data bus
(c)	 system bus	 (d)	 answers (a), (b), and (c)

	 6.	 The third output state of a tri-state device is called
(a)	 logic 0
(b)	 logic 1
(c)	 high-Z state
(d)	 none of the above

	 7.	 During the fetch cycle of a processor
(a)	 instructions are read from the memory
(b)	 data is stored as a result
(c)	 the data is processed in the ALU
(d)	 the instructions are executed in the processor

	 8.	 The role of the CPU is to
(a)	 control the system hardware
(b)	 provide hardware support to the operating system
(c)	 execute application programs
(d)	 answers (a), (b), and (c)

	 9.	 High level languages are converted to machine level language through
(a)	 an assembler	 (b)	 a debugger
(c)	 a compiler	 (d)	 a translator

	10.	 A computer program is a list of
(a)	 memory addresses that contain data to be used in an operation
(b)	 addresses that contain instructions to be used in an operation
(c)	 instructions arranged to achieve a specific result

	11.	 A type of assembly language instruction that alters the course of the program is called a
(a)	 loop	 (b)	 jump
(c)	 both of the above	 (d)	 none of the above

	12.	 A wait state
(a)	 terminates a bus cycle
(b)	 halts the processor clock for one period
(c)	 places the microprocessor in a low-power mode
(d)	 delays completion of a bus cycle by one processor clock

	13.	 A bus request differs from an interrupt in that
(a)	 an interrupt requires an external bus master to complete the operation
(b)	 a bus request will interrupt a current instruction cycle
(c)	 an interrupt cannot be masked
(d)	 a bus request does not involve a response from the processor

	14.	 An operating system
(a)	 schedules and allocates system resources
(b)	 protects the system processes and resources
(c)	 provides system services
(d)	 answers (a), (b), and (c)

	15.	 Mnemonics or op-codes are a part of
(a)	 assembly level languages	 (b)	 machine level languages
(c)	 high level languages	 (d)	 none of the above
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Problems

Answers to odd-numbered problems are at the end of the book.

Section 14–1 The Computer System
	 1.	 Name the basic elements of a computer.

	 2.	 Name the functional units of a CPU.

	 3.	 What is a bus?

	 4.	 Explain how the control bus signals differ from those of the address and data buses.

Section 14–2 Practical Computer System Considerations
	 5.	 Name two special types of output that allow devices to share signal lines while avoiding bus 

contention.

	 6.	 What causes signal loading?

	 7.	 In Figure 14–5, determine the number of loads that the output is driving in parts (a) and (b).

	 8.	 In a computer system, how does the CPU select a device such as memory or Input/Output?

	 9.	 Explain the purpose of a wait state.

Section 14–3 The Processor: Basic Operation
	10.	 Name the basic elements of a microprocessor.

	11.	 List three operations that a microprocessor performs.

	12.	 List the three microprocessor buses.

	13.	 Explain what happens during a fetch/execute cycle.

	14.	 Explain how pipelining works.

Section 14–4 The Processor: Addressing Modes
	15.	 List the sequence of events for the inherent addressing mode.

	16.	 List the sequence of events for the direct addressing mode.

	17.	 List the sequence of events for the indexed addressing mode.

	18.	 A processor is using the relative addressing mode to execute a branch instruction. If the binary 
number for 12510 is in the program counter and the number 5510 is in the data register, to what 
memory address will the processor branch?

Section 14–5 The Processor: Special Operations
	19.	 Describe the purpose of an interrupt vector table.

	20.	 How does an interrupt service routine differ from a normal subroutine?

	21.	 Describe the sequence of events in a bus request operation.

	22.	 Define DMA and describe its purpose in a computer system.

Section 14–6 Operating Systems and Hardware
	23.	 What are the two groups of software that execute in a computer system and what do they include?

	24.	 List the three basic duties of a multitasking operating system.

	25.	 Identify the two ways that computers execute more than one process concurrently and describe 
how they differ.

	26.	 Describe four difficulties that running multiple concurrent processes can create.

	27.	 What are the functions of a memory management unit?

Section 14–7 Programming
	28.	 What is an assembler?

	29.	 Draw a flowchart for a program that adds the numbers from one to 10 and saves the result in a 
memory location named TOTAL.
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	30.	 Draw a flowchart showing how you could count the number of bytes in a string and place the 
count in a location in memory called COUNT. Assume the string starts at a location named 
START and has a 20H (hexadecimal ASCII code for a space) to signal the end. You should not 
count the space character.

	31.	 Explain what happens when the instruction mov ax,[bx] is executed.

	32.	 What is a compiler?

Section 14–8 Microcontrollers and Embedded Systems
	33.	 What is a microcontroller?

	34.	 Identify the functional components of the microcontroller block diagram shown in Figure 14–39.
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FIGURE 14–39 

	35.	 Why are microcontrollers so widely used in embedded applications?

	36.	 How does a microcontroller differ from a microprocessor?

Section 14–9 System on Chip (SoC)
	37.	 How does a SoC differ from a microcontroller?

	38.	 The processors used in SoCs are generally based on what type of architecture?

Answers

Section Checkups
Section 14–1 The Computer System
	 1.	 The major functional blocks in a computer are CPU, memory/storage, input/output ports.

	 2.	 Peripherals are devices external to the computer.

	 3.	 Hardware is the microprocessor, memory, hard disk, etc. Software is the program that runs the 
computer.

	 4.	 Conventional memory returns the data stored at a specified address. Content-addressable 
memory returns the address that contains a specified data value.

	 5.	 The address bus is unidirectional. The data bus is bidirectional. The control bus consists of 
signals that are bidirectional and operate independently rather than as a single functional 
group.
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Section 14–2 Practical Computer System Considerations
	 1.	 Bus contention is the condition that results when two outputs are connected to the same signal 

line attempt to drive it to different voltage levels. Two types of devices intended to prevent bus 
contention on shared signal lines are tri-state devices and open collector (or open drain) devices.

	 2.	 A processor uses an address decoder to select and enable various devices.

	 3.	 Wait states in a computer system are additional clock cycles inserted in a processor bus cycle to 
satisfy the timing specifications of system devices.

	 4.	 A buffer prevents excess loading of a device and allows multiple devices to share the same bus.

Section 14–3 The Processor: Basic Operation
	 1.	 During a fetch/execute cycle, the CPU retrieves (fetches) an instruction from memory and

carries out (executes) the instruction.

	 2.	 The four elements in a microprocessor are ALU, timing and control unit, register set, and 
instruction decoder.

	 3.	 The ALU is the arithmetic logic unit, which carries out decoded instructions.

	 4.	 During a read operation, data are acquired from memory.

	 5.	 During a write operation, data are stored in memory.

Section 14–4 The Processor: Addressing Modes
	 1.	 Addressing modes are inherent, direct, immediate, indexed, and relative.

	 2.	 An op-code is the representation of an computer program instruction.

	 3.	 An operand is an object that is manipulated by an instruction.

	 4.	 Branching occurs when the processor leaves the normal sequence in a program and branches to 
another place in the program.

Section 14–5 The Processor: Special Operations
	 1.	 Although the terms are sometimes used interchangeably, interrupts are generated by hardware 

sources and exceptions are generated by software sources.

	 2.	 A bus request can interrupt an instruction cycle, cannot be masked, and allows the external 
device to take control of the system buses. An interrupt must permit an instruction cycle to com-
plete, can be masked, and is serviced by the processor which retains control of the system buses.

	 3.	 A direct memory access is a data transfer operation for which a special bus master called a DMA 
controller rather than the microprocessor controls the system buses. Direct memory accesses 
allow data transfers to occur much more rapidly than with the microprocessor because the  
controller does not attempt to process the data for each transfer as would the microprocessor.

Section 14–6 Operating Systems and Hardware
	 1.	 The three basic duties of an operating system are to allocate system resources, to protect 

processes and system resources, and to provide system services.

	 2.	 Multitasking allows a single processor to execute multiple processes concurrently by allocating 
processor time to each process. Multiprocessing allows a system to execute multiple processes 
by operating more than one processor.

	 3.	 A memory management unit prevents a process from accessing the memory space of another 
by comparing the contents of the address bus against a permitted range and generating an inter-
rupt when a violation occurs so that the operating system can take appropriate action.

	 4.	 An operating system allows processes that are restricted to their own memory spaces to 
exchange information by providing a system service, activated by a software interrupt, that has 
the operating system pass the information between the processes.

Section 14–7 Programming
	 1.	 A program is a sequence of computer instructions designed to perform a specified task.

	 2.	 An op-code is an instruction expressed in mnemonic form.

	 3.	 A string is a contiguous sequence of bytes or words.
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Section 14–8 Microcontrollers and Embedded Systems
	 1.	 A microcontroller basically includes many elements of a computer system where a microproc-

essor is only the CPU.

	 2.	 Common functional units found in a typical microcontroller are the processor core, ROM, 
RAM, one or more hardware peripherals, a signal connection block between the microcontroller 
functional blocks, and an external memory controller.

	 3.	 An advantage of multifunctional pins on a microcontroller is that it reduces the number of pins 
and physical size of the device. A disadvantage is that it is not always possible to have access 
to all the microcontroller features that an application may require so that the design requires 
additional external hardware.

	 4.	 Peripherals that allow microcontrollers to interact with the real world include timers, ADCs, 
DACs, communication controllers, GPIOs, quadrature encoders, and PWMs.

	 5.	 An embedded system is designed to interact directly with the real world and perform a specific 
function. A personal computer system processes data and can be configured with application 
software to perform a number of tasks.

	 6.	 Some embedded systems in which microcontrollers are found include personal electronics, 
consumer electronics, automotive systems, and communication devices.

Section 14–9 System on Chip (SoC)
	 1.	 A SoC is a system chip, a complete computer on a single silicon chip.

	 2.	 Small size and reduced power consumption.

	 3.	 Functional elements of a SoC: one or more processors; DSP; GPU; memory; ADC and DAC; 
I/O interfaces; timing sources; power; bus bridges; peripherals; and programmable logic.

Related Problems for Examples
	14–1	 D6 must be LOW.

	14–2	 Change first block (initialization block) to “BIG = FFFF”; this is the largest possible 
unsigned number. Change first question to “Is number 6 BIG?”

True/False Quiz
	 1.	 T    2.  F    3.  T    4.  T  5.  T  6.  T  7.  F  8.  F  9.  T  10.  T  11.  T 

	12.	 F  13.  F  14.  T  15.  F

Self-Test
	 1.	 (d)  2.  (a)  3.  (b)  4.  (b)  5.  (d)  6.  (c)  7.  (a)  8.  (d)  9.  (c)  10.  (c)  11.  (c)

	12.	 (d)  13.  (c)  14.  (d)  15.  (a)
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Chapter Outline

Before beginning this chapter, Section 3–8 should be 
covered.

15–1	 Basic Operational Characteristics and 
Parameters 

15–2	 CMOS Circuits 
15–3	 TTL (Bipolar) Circuits 
15–4	 Practical Considerations in the Use of TTL 
15–5	 Comparison of CMOS and TTL Performance 
15–6	 Emitter-Coupled Logic (ECL) Circuits 
15–7	 PMOS, NMOS, and E2CMOS 

Chapter Objectives

■	 Determine the noise margin of a device from data 
sheet parameters

■	 Calculate the power dissipation of a device

■	 Explain how propagation delay time affects the 
frequency of operation or speed of a circuit

■	 Interpret the speed-power product as a measure 
of performance

■	 Use data sheets to obtain information about a 
specific device

■	 Explain what the fan-out of a gate means

■	 Describe how basic TTL and CMOS gates operate 
at the component level

■	 Recognize the difference between TTL totem-
pole outputs and TTL open-collector outputs and 
understand the limitations and uses of each

■	 Connect circuits in a wired-AND configuration

■	 Describe the operation of tri-state circuits

■	 Properly terminate unused gate inputs

■	 Compare the performance of TTL and CMOS 
families

■	 Handle CMOS devices without risk of damage due 
to electrostatic discharge

Visit the Website

Study aids for this chapter are available at  
http://www.pearsonglobaleditions.com/floyd

Introduction

This chapter is intended to be used as a “floating” 
chapter. That is, all or portions of this chapter can be 
covered at any selected points throughout the book or 
completely omitted, depending on the course objec-
tives. Section 3–8 should be covered before begin-
ning this chapter.

In Chapter 3 (Section 3–8) you learned about basic 
integrated circuit logic gates. This chapter provides an 
introduction to the circuit technology used to imple-
ment those gates, as well as other types of IC devices.

Two major IC technologies, CMOS and bipolar 
(TTL), are covered and their operating parameters are 
defined. Also, the operational characteristics of vari-
ous families within these circuit technologies are com-
pared. Other circuit technologies are also introduced. It 

■	 TTL

■	 CMOS

■	 Noise immunity

■	 Noise margin

■	 Power dissipation

■	 Propagation delay time

■	 Fan-out

■	 Unit load

■	 Current sourcing

■	 Current sinking

■	 Pull-up resistor

■	 Tri-state

■	 Totem pole

■	 Open-collector

■	 ECL

■	 E2CMOS

■	 State the advantages of ECL

■	 Describe the PMOS and NMOS circuits

■	 Describe an E2CMOS cell

Key Terms

Key terms are in order of appearance in the chapter.

Integrated  
Circuit Technologies

15CHAPTER
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856	 Integrated Circuit Technologies

15–1  Basic Operational Characteristics and Parameters

When you work with digital ICs, you should be familiar not only with their logical opera-
tion but also with such operational properties as voltage levels, noise immunity, power dis-
sipation, fan-out, and propagation delay time. In this section, the practical aspects of these 
properties are discussed.

After completing this section, you should be able to

u	 Determine the power and ground connections

u	 Describe the logic levels for CMOS and TTL

u	 Discuss noise immunity

u	 Determine the power dissipation of a logic circuit

u	 Define the propagation delay time of a logic gate

u	 Discuss speed-power product and explain its significance

u	 Discuss loading and fan-out of TTL and CMOS

DC Supply Voltage

The nominal value of the dc supply voltage for TTL (transistor-transistor logic) devices is +5 V. 
TTL is also designated T2L. CMOS (complementary metal-oxide semiconductor) devices are 
available in different supply voltage categories: +5 V, +3.3 V, 2.5 V, and 1.8 V. Although omit-
ted from logic diagrams for simplicity, the dc supply voltage is connected to the VCC pin of an 
IC package, and ground is connected to the GND pin. Both voltage and ground are distributed 
internally to all elements within the package, as illustrated in Figure 15–1 for a 14-pin package.

is important to keep in mind that the particular circuit 
technology used to implement a logic gate has no 
effect on the logic operation of the gate. In terms of 
its truth table operation, a certain type of gate that is 

implemented with CMOS is the same as that type of 
gate implemented with TTL. The only differences in the 
gates are the electrical characteristics such as power 
dissipation, switching speed, and noise immunity.

VCC

14

7

+5 V

(a) Single gate (b) IC dual in-line package

GND

fg14_00100

FIGURE 15–1  Example of VCC and ground connection and distribution in an IC package. 
Other pin connections are omitted for simplicity.

CMOS Logic Levels

Logic levels were discussed briefly in Chapter 1. There are four different logic-level speci-
fications: VIL, VIH, VOL, and VOH. For CMOS circuits, the ranges of input voltages (VIL) 
that can represent an acceptable LOW (logic 0) are from 0 V to 1.5 V for the +5 V logic 
and 0 V to 0.8 V for the 3.3 V logic. The ranges of input voltages (VIH) that can represent an 
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acceptable HIGH (logic 1) are from 3.5 V to 5 V for the 5 V logic and 2 V to 3.3 V for the 
3.3 V logic, as indicated in Figure 15–2. The ranges of values from 1.5 V to 3.5 V for 5 V 
logic and 0.8 V to 2 V for 3.3 V logic are regions of unpredictable performance, and values 
in these ranges are unacceptable. When an input voltage is in one of these ranges, it can be 
interpreted as either a HIGH or a LOW by the logic circuit. Therefore, CMOS gates cannot 
be operated reliably when the input voltages are in these unacceptable ranges.

VOH
VOH(min)

VOL(max)

Logic 0
(LOW)

Logic 1
(HIGH)

UnacceptableUnacceptable

VIH

VIL

5 V

3.5 V

1.5 V

0 V

VIL(max)

VIH(min)

VOL

5 V

4.4 V

0.33 V

0 V

(a) +5 V CMOS

Logic 1 (HIGH)

Logic 0 (LOW)

Input Output

VOH

VOH(min)

VOL(max)

Logic 0
(LOW)

Logic 1
(HIGH)VIH

VIL

3.3 V

2 V

0.8 V

0 V

VIL(max)

VIH(min)

VOL

3.3 V

2.4 V

0.4 V

0 V

(b) +3.3 V CMOS

Logic 1
(HIGH)

Logic 0
(LOW)

Input Output

fg14_00200

Unacceptable Unacceptable

FIGURE 15–2  Input and output logic levels for CMOS.

The ranges of CMOS output voltages (VOL and VOH) for both 5 V and 3.3 V logic are 
also shown in Figure 15–2. Notice that the minimum HIGH output voltage, VOH(min), is 
greater than the minimum HIGH input voltage, VIH(min). Also, notice that the maximum 
LOW output voltage, VOL(max), is less than the maximum LOW input voltage, VIL(max).

TTL Logic Levels

The input and output logic levels for TTL are given in Figure 15–3. Just as for CMOS, there 
are four different logic level specifications: VIL, VIH, VOL, and VOH.

Noise Immunity

Noise is unwanted voltage that is induced in electrical circuits and can present a threat to 
the proper operation of the circuit. Wires and other conductors within a system can pick up 
stray high-frequency electromagnetic radiation from adjacent conductors in which currents 
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858	 Integrated Circuit Technologies

are changing rapidly or from many other sources external to the system. Also, power-line 
voltage fluctuation is a form of low-frequency noise.

In order not to be adversely affected by noise, a logic circuit must have a certain amount 
of noise immunity. This is the ability to tolerate a certain amount of unwanted voltage 
fluctuation on its inputs without changing its output state. For example, if noise voltage 
causes the input of a 5 V CMOS gate to drop below 3.5 V in the HIGH state, the input is 
in the unacceptable region and operation is unpredictable (see Figure 15–2). Thus, the gate 
may interpret the fluctuation below 3.5 V as a LOW level, as illustrated in Figure 15–4(a). 
Similarly, if noise causes a gate input to go above 1.5 V in the LOW state, an uncertain 
condition is created, as illustrated in part (b).

fg14_00300

VOH(max)

VOL(min)

Logic 0 (LOW)

Logic 1
(HIGH)VIH

VIL

5 V

2 V

0.8 V

0 V

VIL(max)

VIH(min)

VOL

5 V

2.4 V

0.4 V

0 V
Logic 0 (LOW)

Logic 1
(HIGH)

VIL(min)

VIH(max)

VOH

VOH(min)

VOL(max)

Input Output

UnacceptableUnacceptable

FIGURE 15–3  Input and output logic levels for TTL.

VOH

VOL

Noise riding on VIL level

Unallowed
region

If excessive noise causes input to go above
VIL(max), the gate may “think” that there is a
HIGH on its input and respond accordingly.

VIL

VIL(max)

VIH

VIH(min)

Unallowed
region

If excessive noise causes input to go below
VIH (min), the gate may “think” that there is a
LOW on its input and respond accordingly.

Potential response
to excessive noise
spike on input

Potential response
to excessive noise
spike on input

Noise riding on VIH level

(b)

(a)

fg14_00400

FIGURE 15–4  Illustration of the effects of input noise on gate operation.
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Noise Margin

A measure of a circuit’s noise immunity is called the noise margin, which is expressed in 
volts. There are two values of noise margin specified for a given logic circuit: the HIGH-
level noise margin (VNH) and the LOW-level noise margin (VNL). These parameters are 
defined by the following equations:

	 VNH � VOH(min) � VIH(min)	 Equation 15–1

	 VNL � VIL(max) � VOL(max)	 Equation 15–2

Sometimes you will see the noise margin expressed as a percentage of VCC. From the equa-
tions, VNH is the difference between the lowest possible HIGH output from a driving gate 
(VOH(min)) and the lowest possible HIGH input that the load gate can tolerate (VIH(min)). 
Noise margin, VNL, is the difference between the maximum possible LOW input that a 
gate can tolerate (VIL(max)) and the maximum possible LOW output of the driving gate 
(VOL(max)). Noise margins are illustrated in Figure 15–5.

VOH(min)

4.4 V

VIH(min)

3.5 V

The voltage on this line will never
be less than 4.4 V unless noise or
improper operation is introduced.

(a) HIGH-level noise margin

VNH
VOL(max)

0.33 V

VIL(max)

1.5 V

The voltage on this line will never
exceed 0.33 V unless noise or
improper operation is introduced.

(b) LOW-level noise margin

VNL

HIGH LOW

HIGH

fg14_00500

FIGURE 15–5  Illustration of noise margins. Values are for 5 V CMOS, but the principle 
applies to any logic family.

EXAMPLE 15–1

Determine the HIGH-level and LOW-level noise margins for CMOS and for TTL by 
using the information in Figures 15–2 and 15–3.

Solution

For 5 V CMOS,

 VIH(min) = 3.5 V

 VIL(max) = 1.5 V

 VOH(min) = 4.4 V

 VOL(max) = 0.33 V

 VNH = VOH(min) - VIH(min) = 4.4 V - 3.5 V = 0.9 V

 VNL = VIL(max) - VOL(max) = 1.5 V - 0.33 V = 1.17 V

For TTL,

 VIH(min) = 2 V

 VIL(max) = 0.8 V

 VOH(min) = 2.4 V

 VOL(max) = 0.4 V

 VNH = VOH(min) - VIH(min) = 2.4 V - 2 V = 0.4 V

 VNL = VIL(max) - VOL(max) = 0.8 V - 0.4 V = 0.4 V

A TTL gate is immune to up to 0.4 V of noise for both the HIGH and LOW input states.
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Power Dissipation

A logic gate draws current from the dc supply voltage source, as indicated in Figure 15–6. 
When the gate is in the HIGH output state, an amount of current designated by ICCH is 
drawn; and in the LOW output state, a different amount of current, ICCL, is drawn.

Related Problem*

Based on the preceding noise margin calculations, which family of devices, 5 V CMOS 
or TTL, should be used in a high-noise environment?

*Answers are at the end of the chapter.

(a)

LOW
HIGH

(b)

HIGH
LOW

HIGH

+VCC+VCC

ICCLICCH

fg14_00600

FIGURE 15–6  Currents from the dc supply. Conventional current direction is shown. 
Electron flow notation is opposite.

As an example, if ICCH is specified as 1.5 mA when VCC is 5 V and if the gate is in a 
static (nonchanging) HIGH output state, the power dissipation (PD) of the gate is

PD = VCCICCH = (5 V)(1.5 mA) = 7.5 mW

When a gate is pulsed, its output switches back and forth between HIGH and LOW, and 
the amount of supply current varies between ICCH and ICCL. The average power dissipation 
depends on the duty cycle and is usually specified for a duty cycle of 50%. When the duty 
cycle is 50%, the output is HIGH half the time and LOW the other half. The average supply 
current is therefore

	 ICC �
ICCH � ICCL

2
	 Equation 15–3

The average power dissipation is

	 PD � VCCICC	 Equation 15–4

EXAMPLE 15–2

A certain gate draws 2 mA when its output is HIGH and 3.6 mA when its output is 
LOW. What is its average power dissipation if VCC is 5 V and the gate is operated on a 
50% duty cycle?

Solution

The average ICC is

ICC =
ICCH + ICCL

2
=

2.0 mA + 3.6 mA

2
= 2.8 mA
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Power dissipation in a TTL circuit is essentially constant over its range of operating 
frequencies. Power dissipation in CMOS, however, is frequency dependent. It is extremely 
low under static (dc) conditions and increases as the frequency increases. These character-
istics are shown in the general curves of Figure 15–7. For example, the power dissipation 
of a low-power Schottky (LS) TTL gate is a constant 2.2 mW. The power dissipation of an 
HCMOS gate is 2.75 mW under static conditions and 170 mW at 100 kHz.

Propagation Delay Time

When a signal passes (propagates) through a logic circuit, it always experiences a time 
delay, as illustrated in Figure 15–8. A change in the output level always occurs a short time, 
called the propagation delay time, later than the change in the input level that caused it.

As mentioned in Chapter 3, there are two propagation delay times specified for logic 
gates:

•	 tPHL: The time between a designated point on the input pulse and the corresponding 
point on the output pulse when the output is changing from HIGH to LOW.

•	 tPLH: The time between a designated point on the input pulse and the corresponding 
point on the output pulse when the output is changing from LOW to HIGH.

These propagation delay times are illustrated in Figure 15–9, with the 50% points on the 
pulse edges used as references.

The propagation delay time of a gate limits the frequency at which it can be operated. 
The greater the propagation delay time, the lower the maximum frequency. Thus, a higher-
speed circuit is one that has a smaller propagation delay time. For example, a gate with a 
delay of 3 ns is faster than one with a 10 ns delay.

Speed-Power Product

The speed-power product provides a basis for the comparison of logic circuits when both 
propagation delay time and power dissipation are important considerations in the selection 
of the type of logic to be used in a certain application. The lower the speed-power product, 
the better. The unit of speed-power product is the picojoule (pJ). For example, HCMOS has 
a speed-power product of 1.2 pJ at 100 kHz while LS TTL has a value of 22 pJ.

Loading and Fan-Out

When the output of a logic gate is connected to one or more inputs of other gates, a load 
on the driving gate is created, as shown in Figure 15–10. There is a limit to the number 
of load gate inputs that a given gate can drive. This limit is called the fan-out of the gate. 
Fan-out is expressed as unit loads. One gate input represents a unit load to a driving gate 
of the same logic family.

CMOS Loading

Loading in CMOS differs from that in TTL because the type of transistors used in CMOS logic 
present a predominantly capacitive load to the driving gate, as illustrated in Figure 15–11. In 
this case, the limitations are the charging and discharging times associated with the output 

The average power dissipation is

PD = VCCICC = (5 V)(2.8 mA) = 14 MW

Related Problem

A certain IC gate has an ICCH = 1.5 mA and ICCL = 2.8 mA. Determine the average 
power dissipation for 50% duty cycle operation if VCC is 5 V.

CM
OS

TTL

0
0

f 

Power

fg14_00700
FIGURE 15–7  Power-versus-
frequency curves for TTL and 
CMOS.

HIGH

Delay

Input Output

t

fg14_00800

FIGURE 15–8  A basic 
illustration of propagation delay 
time.

H

Input
Output

H

L

H

L

Input

Output

H = HIGH
L = LOW

tPLH tPHL

fg14_00900

FIGURE 15–9  Propagation 
delay times.

A

B

Driving gate Load gates

fg14_01000

FIGURE 15–10  Loading a gate 
output with gate inputs.
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resistance of the driving gate and the input capacitance of the load gates. When the output of 
the driving gate is HIGH, the input capacitance of the load gate is charging through the output 
resistance of the driving gate. When the output of the driving gate is LOW, the capacitance is 
discharging, as indicated in Figure 15–11.

When more load gate inputs are added to the driving gate output, the total capacitance 
increases because the input capacitances effectively appear in parallel. This increase in capac-
itance increases the charging and discharging times, thus reducing the maximum frequency 
at which the gate can be operated. Therefore, the fan-out of a CMOS gate depends on the 
frequency of operation. The fewer the load gate inputs, the greater the maximum frequency.

TTL Loading

A TTL driving gate sources current to a load gate input in the HIGH state (IIH) and sinks 
current from the load gate in the LOW state (IIL). Current sourcing and current sinking 
are illustrated in simplified form in Figure 15–12, where the resistors represent the internal 
input and output resistance of the gate for the two conditions.

+

–
IDISCH

LOW

(b) Discharging

+ 5 V

+

–
ICHARGE

HIGH

(a) Charging

fg14_01100

FIGURE 15–11  Capacitive loading of a CMOS gate.

+ 5 V

LOW

(b) Current sinking

+ 5 V

HIGH

IIH

(a) Current sourcing

HIGH

HIGH

Driver

Load

LOW
IIL

fg14_01200

FIGURE 15–12  Basic illustration of current sourcing and current sinking in logic gates.

As more load gates are connected to the driving gate, the loading on the driving gate 
increases. The total source current increases with each load gate input that is added, as illus-
trated in Figure 15–13. As this current increases, the internal voltage drop of the driving gate 

+ 5 V

HIGH

Total
source I

IIH(1) IIH(2) IIH(n)

VOH

fg14_01300

FIGURE 15–13  HIGH-state TTL loading.
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increases, causing the output, VOH, to decrease. If an excessive number of load gate inputs 
are connected, VOH drops below VOH(min), and the HIGH-level noise margin is reduced, thus 
compromising the circuit operation. Also, as the total source current increases, the power 
dissipation of the driving gate increases.

The fan-out is the maximum number of load gate inputs that can be connected without 
adversely affecting the specified operational characteristics of the gate. For example, low-
power Schottky (LS) TTL has a fan-out of 20 unit loads.

The total sink current also increases with each load gate input that is added, as shown 
in Figure 15–14. As this current increases, the internal voltage drop of the driving gate 
increases, causing VOL to increase. If an excessive number of loads are added, VOL exceeds 
VOL(max), and the LOW-level noise margin is reduced.

+ 5 V

Total sink I IIL(1)

IIL(2)

IIL(n)

LOWVOL

+ 5 V

+ 5 V

fg14_01400

FIGURE 15–14  LOW-stage TTL loading.

In TTL, the current-sinking capability (LOW output state) is the limiting factor in deter-
mining the fan-out.

SECTION 15–1  Checkup

Answers are at the end of the chapter.

	 1.	Define VIH, VIL, VOH, and VOL.

	 2.	 Is it better to have a lower value of noise margin or a higher value?

	 3.	Gate A has a greater propagation delay time than gate B. Which gate can operate at a 
higher frequency?

	 4.	How does excessive loading affect the noise margin of a gate?

15–2  CMOS Circuits

Basic internal CMOS circuitry and its operation are discussed in this section. The abbre-
viation CMOS stands for complementary metal-oxide semiconductor. The term comple-
mentary refers to the use of two types of transistors in the output circuit. An n-channel 
MOSFET (MOS field-effect transistor) and a p-channel MOSFET are used.

After completing this section, you should be able to

u	 Identify a MOSFET by its symbol

u	 Discuss the switching action of a MOSFET
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u	 Describe the basic operation of a CMOS inverter circuit

u	 Describe the basic operation of CMOS NAND and NOR gates

u	 Explain the operation of a CMOS gate with an open-drain output

u	 Discuss the operation of tri-state CMOS gates

u	 List the precautions required when handling CMOS devices

The MOSFET

Metal-oxide semiconductor field-effect transistors (MOSFETs) are the active switching 
elements in CMOS circuits. These devices differ greatly in construction and internal opera-
tion from bipolar junction transistors used in bipolar (TTL) circuits, but the switching 
action is basically the same: they function ideally as open or closed switches, depending 
on the input.

Figure 15–15(a) shows the symbols for both n-channel and p-channel MOSFETs. As 
indicated, the three terminals of a MOSFET are gate, drain, and source. When the gate 
voltage of an n-channel MOSFET is more positive than the source, the MOSFET is on 
(saturation), and there is, ideally, a closed switch between the drain and the source. When 
the gate-to-source voltage is zero, the MOSFET is off (cutoff), and there is, ideally, an open 
switch between the drain and the source. This operation is illustrated in Figure 15–15(b). 
The p-channel MOSFET operates with opposite voltage polarities, as shown in part (c).

Drain (D)

Gate
(G)

Source (S)
n-channel

Drain

Source
p-channel

(a) MOSFET symbols (b) n-channel switch

ON
+5 V

+5 V +5 V

S

ON

OFF

0 V

+5 V +5 V

S

OFF

GG

(c) p-channel switch 

ON
0 V

+5 V +5 V

D

ON

OFF
+5 V

+5 V +5 V

D

OFF

GG

SS

D D

Gate

fg14_01500

FIGURE 15–15  Basic symbols and switching action of MOSFETs.

Sometimes a simplified MOSFET symbol as shown in Figure 15–16 is used.

CMOS Inverter

Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as its 
basic element. A complementary pair uses both p-channel and n-channel enhancement 
MOSFETs, as shown in the inverter circuit in Figure 15–17.

fg14_01600

FIGURE 15–16  Simplified 
MOSFET symbol.
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When a HIGH is applied to the input, as shown in Figure 15–18(a), the p-channel 
MOSFET Q1 is off and the n-channel MOSFET Q2 is on. This condition connects the out-
put to ground through the on resistance of Q2, resulting in a LOW output. When a LOW 
is applied to the input, as shown in Figure 15–18(b), Q1 is on and Q2 is off. This condition 
connects the output to +VDD (dc supply voltage) through the on resistance of Q1, resulting 
in a HIGH output.

Q1

Q2

Drain (D)

Drain (D)
Output

Source (S)

Source (S)

+VDD

Input

Gate (G)

Gate (G)

fg14_01700

FIGURE 15–17  A CMOS inverter circuit.

Q1

Q2

LOW

OFF

+VDD

HIGH

ON

(a) HIGH input, LOW output

Q1

Q2

HIGH

ON

+VDD

LOW

OFF

(b) LOW input, HIGH output

fg14_01800

FIGURE 15–18  Operation of a CMOS inverter.

CMOS NAND Gate

Figure 15–19 shows a CMOS NAND gate with two inputs. Notice the arrangement of the 
complementary pairs (n-channel and p-channel MOSFETs).

The operation of a CMOS NAND gate is as follows:

•	 When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off. The output is 
pulled HIGH through the on resistance of Q1 and Q2 in parallel.

•	 When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are off. 
The output is pulled HIGH through the low on resistance of Q1.

•	 When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are on. 
The output is pulled HIGH through the low on resistance of Q2.

•	 Finally, when both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on. In this 
case, the output is pulled LOW through the on resistance of Q3 and Q4 in series to ground.
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CMOS NOR Gate

Figure 15–20 shows a CMOS NOR gate with two inputs. Notice the arrangement of the 
complementary pairs.

Q1

Q3

Q4

Q2

Input A

Input B

Output

+VDD

A B XQ1

L S H
L S H
H C H
H

L
H
L
H C

Q2

S
C
S
C

Q3

C
C
S
S

Q4

C
S
C
S L

C = cutoff (off)
S = saturation (on)
H = HIGH
L = LOW

FIGURE 15–19  A CMOS NAND gate circuit.

Q4

Q1

Q2

Input A
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Output
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A B XQ1

L S H
L S L
H C L
H

L
H
L
H C

Q2

S
C
S
C

Q3

C
C
S
S

Q4

C
S
C
S L

FIGURE 15–20  A CMOS NOR gate circuit.

The operation of a CMOS NOR gate is as follows:

•	 When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off. As a result, the 
output is pulled HIGH through the on resistance of Q1 and Q2 in series.

•	 When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are off. 
The output is pulled LOW through the low on resistance of Q4 to ground.

•	 When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are on. 
The output is pulled LOW through the on resistance of Q3 to ground.

•	 When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on. The output is 
pulled LOW through the on resistance of Q3 and Q4 in parallel to ground.
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Open-Drain Gates

The term open-drain means that the drain terminal of the output transistor is unconnected 
and must be connected externally to VDD through a load. An open-drain gate is the CMOS 
counterpart of an open-collector TTL gate (discussed in Section 15–3). An open-drain 
output circuit is a single n-channel MOSFET as shown in Figure 15–21(a). An external 
pull-up resistor must be used, as shown in part (b), to produce a HIGH output state. Also, 
open-drain outputs can be connected in a wired-AND configuration, a concept that is dis-
cussed in Section 15–4 in relation to TTL.

Rest
of

CMOS
circuit

Rest
of

CMOS
circuit

+V

(a) Unconnected output (b) With pull-up resistor

Rp

Output Output

fg14_02100
FIGURE 15–21  Open-drain CMOS gates.

Tri-state CMOS Gates

Tri-state outputs are available in both CMOS and TTL logic. The tri-state output combines the 
advantages of the totem-pole and open-collector circuits. As you recall, the three output states 
are HIGH, LOW, and high-impedance (high-Z). When selected for normal logic-level opera-
tion, as determined by the state of the enable input, a tri-state circuit operates in the same way 
as a regular gate. When a tri-state circuit is selected for high-Z operation, the output is effec-
tively disconnected from the rest of the circuit by the internal circuitry. Figure 15–22 illustrates 
the operation of a tri-state circuit. The inverted triangle (�) designates a tri-state output.

HIGH LOW

∆

LOW
(enable)

LOW HIGH

∆

LOW
(enable)

X

∆

HIGH
(disable)

OPEN

(a) Enabled for normal logic operation (b) High-Z state

don't care

fg14_02200
FIGURE 15–22  The three states of a tri-state circuit.

The circuitry in a tri-state CMOS gate, as shown in Figure 15–23, allows each of the output 
transistors Q1 and Q2 to be turned off at the same time, thus disconnecting the output from the 
rest of the circuit. When the enable input is LOW, the device is enabled for normal logic opera-
tion. When the enable input is HIGH, both Q1 and Q2 are off and the circuit is in the high-Z state.

Precautions for Handling CMOS

All CMOS devices are subject to damage from electrostatic discharge (ESD). Therefore, 
they must be handled with special care. Review the following precautions:

	 1.	 All CMOS devices are shipped in conductive foam to prevent electrostatic charge 
buildup. When they are removed from the foam, the pins should not be touched.

	 2.	 The devices should be placed with pins down on a grounded surface, such as a metal 
plate, when removed from protective material. Do not place CMOS devices in poly-
styrene foam or plastic trays.
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	 3.	 All tools, test equipment, and metal workbenches should be earth-grounded. A per-
son working with CMOS devices should, in certain environments, have his or her 
wrist grounded with a length of cable and a large-value series resistor. The resistor 
prevents severe shock should the person come in contact with a voltage source.

	 4.	 Do not insert CMOS devices (or any other ICs) into sockets or PCBs with the power on.

	 5.	 All unused inputs should be connected to the supply voltage or ground as indicated 
in Figure 15–24. If left open, an input can acquire electrostatic charge and “float” to 
unpredicted levels.

	 6.	 After assembly on PCBs, protection should be provided by storing or shipping 
boards with their connectors in conductive foam. The CMOS input and output pins 
may also be protected with large-value resistors connected to ground.

Output
Input

Enable
Q1

Q2

+V

fg14_02300

FIGURE 15–23  A tri-state CMOS inverter.

+V

Unused input

Unused input

fg14_02400

FIGURE 15–24  Handling 
unused CMOS inputs.

SECTION 15–2  Checkup

	 1.	What type of transistor is used in CMOS logic?

	 2.	What is meant by the term complementary MOS?

	 3.	Why must CMOS devices be handled with care?

15–3  TTL (Bipolar) Circuits

The internal circuit operation of TTL (bipolar) logic gates with totem-pole outputs is cov-
ered in this section. Also, the operation of TTL gates with open-collector outputs and the 
operation of tri-state gates are covered.

After completing this section, you should be able to

u	 Identify a bipolar junction transistor (BJT) by its symbol

u	 Describe the switching action of a BJT

u	 Describe the basic operation of a TTL inverter circuit

u	 Explain what a totem-pole output is

u	 Describe the basic operation of a TTL NAND gate

u	 Explain the operation and use a TTL gate with an open-collector output

u	 Explain the operation of a gate with a tri-state output
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The Bipolar Junction Transistor

The bipolar junction transistor (BJT) is the active switching element used in all TTL 
circuits. Figure 15–25 shows the symbol for an npn BJT with its three terminals; base, 
emitter, and collector. A BJT has two junctions, the base-emitter junction and the base-
collector junction.

The basic switching operation is as follows: When the base is approximately 0.7 V more 
positive than the emitter and when sufficient current is provided into the base, the transistor 
turns on and goes into saturation. In saturation, the transistor ideally acts like a closed switch 
between the collector and the emitter, as illustrated in Figure 15–26(a). When the base is less 
than 0.7 V more positive than the emitter, the transistor turns off and becomes an open switch 
between the collector and the emitter, as shown in part (b). To summarize in general terms, a 
HIGH on the base turns the transistor on and makes it a closed switch. A LOW on the base 
turns the transistor off and makes it an open switch. In TTL, some BJTs have multiple emitters.

Collector (C)

Base (B)

Emitter (E)

fg14_02500

FIGURE 15–25  The symbol for 
a BJT.

+VCC

IC

ON+V
IB

+VCC +VCC

OFF0 V

+VCC

(a) Saturated (ON) transistor
and ideal switch equivalent

(b) OFF transistor and
ideal switch equivalent

fg14_02600

FIGURE 15–26  The ideal switching action of the BJT. Conventional current direction is 
shown. Electron flow notation is opposite.

TTL Inverter

The logic function of an inverter or any type of gate is always the same, regardless of the 
type of circuit technology that is used. Figure 15–27 shows a standard TTL circuit for an 
inverter. In this figure Q1 is the input coupling transistor, and D1 is the input clamp diode. 
Transistor Q2 is called a phase splitter, and the combination of Q3 and Q4 forms the output 
circuit often referred to as a totem-pole arrangement.

R2
1.6 k� 

Q1
OutputInput

+VCC

R1
4 k� 

R3
130 � 

Q2

Q4

D2

Q3D1
R4
1.0 k� 

fg14_02700

FIGURE 15–27  A standard TTL inverter circuit.

When the input is a HIGH, the base-emitter junction of Q1 is reverse-biased, and the 
base-collector junction is forward-biased. This condition permits current through R1 and 

M15_FLOY5983_11_GE_C15.indd Page 869  11/11/14  8:16 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



870	 Integrated Circuit Technologies

the base-collector junction of Q1 into the base of Q2, thus driving Q2 into saturation. As a 
result, Q3 is turned on by Q2, and its collector voltage, which is the output, is near ground 
potential. Therefore, there is a LOW output for a HIGH input. At the same time, the collec-
tor of Q2 is at a sufficiently low voltage level to keep Q4 off.

When the input is LOW, the base-emitter junction of Q1 is forward-biased, and the 
base-collector junction is reverse-biased. There is current through R1 and the base-emitter 
junction of Q1 to the LOW input. A LOW provides a path to ground for the current. There 
is no current into the base of Q2, so it is off. The collector of Q2 is HIGH, thus turning Q4 
on. A saturated Q4 provides a low-resistance path from VCC to the output; therefore, there 
is a HIGH on the output for a LOW on the input. At the same time, the emitter of Q2 is at 
ground potential, keeping Q3 off.

Diode D1 in the TTL circuit prevents negative spikes of voltage on the input from 
damaging Q1. Diode D2 ensures that Q4 will turn off when Q2 is on (HIGH input). In 
this condition, the collector voltage of Q2 is equal to the base-to-emitter voltage, VBE, 
of Q3 plus the collector-to-emitter voltage, VCE, of Q2. Diode D2 provides an additional 
VBE equivalent drop in series with the base-emitter junction of Q4 to ensure its turn-off 
when Q2 is on.

The operation of the TTL inverter for the two input states is illustrated in Figure 15–28. 
In the circuit in part (a), the base of Q1 is 2.1 V above ground, so Q2 and Q3 are on. In the 
circuit in part (b), the base of Q1 is about 0.7 V above ground—not enough to turn Q2 and 
Q3 on.

Q1 LOW
HIGH

R1

Q4

Q3

+ 5 V

R4

R3

ON

ON

OFF

R2

≈ 0.7 V

0.7 V

2.1 V

1.4 V

Reverse
bias

D1

D2

Q2

(a) (b)

Q2LOW
(0 V)

0.7 V

IC = 0

0 V

Q1 HIGH

R1

Q4

Q3

+ 5 V

R4

R3

OFF

ON

R2

D1

D2OFF

fg14_02800

FIGURE 15–28  Operation of a TTL inverter.

TTL NAND Gate

A 2-input TTL NAND gate is shown in Figure 15–29. Basically, it is the same as the 
inverter circuit except for the additional input emitter of Q1. In TTL technology, multiple-
emitter transistors are used for the input devices. These multiple-emitter transistors can be 
compared to the diode arrangement, as shown in Figure 15–30.

Perhaps you can understand the operation of this circuit better by visualizing Q1 in 
Figure 15–29 replaced by the diode arrangement in Figure 15–30. A LOW on either 
input A or input B forward-biases the corresponding diode and reverse-biases D3 (Q1 
base-collector junction). This action keeps Q2 off and results in a HIGH output in the 
same way as described for the TTL inverter. Of course, a LOW on both inputs will do 
the same thing.
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A HIGH on both inputs reverse-biases both input diodes and forward-biases D3 (Q1 
base-collector junction). This action turns Q2 on and results in a LOW output in the same 
way as described for the TTL inverter. You should recognize this operation as that of the 
NAND function: The output is LOW only if all inputs are HIGH.

Open-Collector Gates

In addition to the totem-pole output circuit; another type of output available in TTL inte-
grated circuits is the open-collector output. This is comparable to the open-drain output of 
CMOS. A standard TTL inverter with an open-collector is shown in Figure 15–31(a). The 
other types of gates are also available with open-collector outputs.

Q3

Q2

D3

R2
1.6 k� 

Q1
OutputInput A

R1
4 k� 

R3
130 �

R4
1.0 k� 

Input B

+VCC

D1 D2

Q4

fg14_02900

FIGURE 15–29  A TTL NAND gate circuit.

E1

E2

B

C

B

C
D1

D2

D3
E1

E2

fg14_03000

FIGURE 15–30  Diode equivalent of a TTL multiple-emitter transistor.
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(a) Open-collector inverter circuit

Input
Output

R1

Q1 Q2

R2
R (external)

Q3

R3

D1

(b) With external pull-up resistor

+VCC

fg14_03100

FIGURE 15–31  TTL inverter with open-collector output.
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Notice that the output is the collector of transistor Q3 with nothing connected to it, 
hence the name open collector. In order to get the proper HIGH and LOW logic levels out 
of the circuit, an external pull-up resistor must be connected to VCC from the collector of 
Q3, as shown in Figure 15–31(b). When Q3 is off, the output is pulled up to VCC through 
the external resistor. When Q3 is on, the output is connected to near-ground through the 
saturated transistor.

The ANSI/IEEE standard symbol that designates an open-collector output is shown in 
Figure 15–32 for an inverter and is the same for an open-drain output.

Tri-state TTL Gates

Figure 15–33 shows the basic circuit for a TTL tri-state inverter. When the enable input is 
LOW, Q2 is off, and the output circuit operates as a normal totem-pole configuration, in 
which the output state depends on the input state. When the enable input is HIGH, Q2 is on. 
There is thus a LOW on the second emitter of Q1, causing Q3 and Q5 to turn off, and diode 
D1 is forward biased, causing Q4 also to turn off. When both totem-pole transistors are 
off, they are effectively open, and the output is completely disconnected from the internal 
circuitry, as illustrated in Figure 15–34.

Input

Enable

+VCC

Output

R1 R3 R4

Q1

Q4

Q5

D2Q3

R2

Q2
R5

D1

fg14_03300
FIGURE 15–33  Basic tri-state inverter circuit.

R4

High-Z output

Q4

Q5

+VCC

fg14_03400

FIGURE 15–34  An 
equivalent circuit for 
the tri-state output in 
the high-Z state.

Schottky TTL

The basic or standard TTL NAND gate circuit was discussed earlier. It is a current-
sinking type of logic that draws current from the load when in the LOW output state 
and sources negligible current to the load when in the HIGH output state. Most TTL 
logic is some form of Schottky TTL, which provides a faster switching time by incor-
porating Schottky diodes to prevent the transistors from going into saturation, thereby 
decreasing the time for a transistor to turn on or off. Figure 15–35 shows a Schottky 
gate circuit. Notice the symbols for the Schottky transistor and Schottky diodes. 
Schottky devices are designated by an S in their part number, such as 74S00. Other 
types of Schottky TTL are low-power Schottky designated by LS, advanced Schottky 
designated by AS, advanced low-power Schottky designated by ALS, and fast desig-
nated by F.

fg14_03200

FIGURE 15–32  Open-collector 
symbol in an inverter.
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FIGURE 15–35  Schottky TTL NAND gate.

SECTION 15–3  Checkup

	 1.	An npn BJT is on when the base is more negative than the emitter. (T or F)

	 2.	 In terms of switching action, what do the on and off states of a BJT represent?

	 3.	What are the two major types of output circuits in TTL?

	 4.	Explain how tri-state logic differs from normal, two-state logic.

15–4  Practical Considerations in the Use of TTL

Although CMOS is the more predominant IC technology in industry and commercial appli-
cations, TTL is still used but is on the decline. In educational applications, TTL is usually 
preferred because it does not have the handling restrictions that CMOS does due to ESD. 
Because of this, several practical considerations in the use and application of TTL circuits 
will be covered using standard TTL for illustration.

After completing this section, you should be able to

u	 Describe current sinking and current sourcing

u	 Use an open-collector circuit for wired-AND operation

u	 Describe the effects of connecting two or more totem-pole outputs

u	 Use open-collector gates to drive LEDs and lamps

u	 Explain what to do with unused TTL inputs

Current Sinking and Current Sourcing

The concepts of current sinking and current sourcing were introduced in Section 15–1. 
Now that you are familiar with the totem-pole-output circuit configuration used in TTL, 
let’s look closer at the sinking and sourcing action.

Figure 15–36 shows a standard TTL inverter with a totem-pole output connected to the 
input of another TTL inverter. When the driving gate is in the HIGH output state, the driver 
is sourcing current to the load, as shown in Figure 15–36(a). The input to the load gate is 
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FIGURE 15–36  Current sinking and sourcing action in TTL.

EXAMPLE 15–3

When a standard TTL NAND gate drives five TTL inputs, how much current does the 
driver output source, and how much does it sink? (Refer to Figure 15–36.)

Solution

Total source current (in HIGH output state):

 IIH(max) = 40 mA per input

 IT(source) = (5 inputs)(40 mA>input) = 5(40 mA) = 200 mA

like a reverse-biased diode, so there is practically no current required by the load. Actually, 
since the input is nonideal, there is a maximum of 40 mA from the totem-pole output of the 
driver into the load gate input.

When the driving gate is in the LOW output state, the driver is sinking current from the 
load, as shown in Figure 15–36(b). This current is 1.6 mA maximum for standard TTL and 
is indicated on a data sheet with a negative value because it is out of the input.
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Using Open-Collector Gates for Wired-AND Operation

The outputs of open-collector gates can be wired together to form what is called a wired-AND 
configuration. Figure 15–37 illustrates how four inverters are connected to produce a 4-input 
negative-AND gate. A single external pull-up resistor, Rp, is required in all wired-AND circuits.

When one (or more) of the inverter inputs is HIGH, the output X is pulled LOW because 
an output transistor is on and acts as a closed switch to ground, as illustrated in Figure 
15–38(a). In this case only one inverter has a HIGH input, but this is sufficient to pull the 
output LOW through the saturated output transistor Q1 as indicated.

For the output X to be HIGH, all inverter inputs must be LOW so that all the open-
collector output transistors are off, as indicated in Figure 15–38(b). When this condition 
exists, the output X is pulled HIGH through the pull-up resistor. Thus, the output X is 
HIGH only when all the inputs are LOW. Therefore, we have a negative-AND function, as 
expressed in the following equation:

X = A B C D

Total sink current (in LOW output state):

 IIL(max) = -1.6 mA per input

 IT(sink) = (5 inputs)(-1.6 mA/input) = 5(-1.6 mA) = -8.0 mA

Related Problem

Repeat the calculations for an LS TTL NAND gate that drives five inputs. Refer to a 
data sheet available at www.ti.com.

EXAMPLE 15–4

Refer to the data sheet available at www.ti.com, and determine the fan-out of the 7400 
NAND gate.

Solution

According to the data sheet, the current parameters are as follows:

 IIH(max) = 40 mA   IOH(max) = -400 mA

 IIL(max) = -1.6 mA  IOL(max) = 16 mA

Fan-out for the HIGH output state is calculated as follows: Current IOH(max) is the max-
imum current that the gate can source to a load. Each load input requires an IIH(max) of 
40 mA. The HIGH-state fan-out is2 IOH(max)

IIH(max)

2 =
400 mA

40 mA
= 10 unit loads

For the LOW output state, fan-out is calculated as follows: IOL(max) is the maximum 
current that the gate can sink. Each load input produces an IIL(max) of -1.6 mA. The 
LOW-state fan-out is 2 IOL(max)

IIL(max)

2 =
16 mA

1.6 mA
= 10 unit loads

In this case both the HIGH-state fan-out and the LOW-state fan-out are the same.

Related Problem

Determine the fan-out for a 74LS00 NAND gate.

Rp

A

B

C

D

X = ABCD

+5 V

fg14_03700

FIGURE 15–37  A wired-AND 
configuration of four inverters.
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FIGURE 15–38  Open-collector wired negative-AND operation with inverters.
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FIGURE 15–39 

EXAMPLE 15–5

Write the output expression for the wired-AND configuration of open-collector AND 
gates in Figure 15–39.

Solution

The output expression is

X = ABCDEFGH

The wired-AND connection of the four 2-input AND gates creates an 8-input AND 
gate.

Related Problem

Determine the output expression if NAND gates are used in Figure 15–39.
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Connection of Totem-Pole Outputs

Totem-pole outputs cannot be connected together because such a connection might pro-
duce excessive current and result in damage to the devices. For example, in Figure 15–41, 
when Q1 in device A and Q2 in device B are both on, the output of device A is effectively 
shorted to ground through Q2 of device B.

Open-Collector Buffer/Drivers

A TTL circuit with a totem-pole output is limited in the amount of current that it can sink in 
the LOW state (IOL(max)) to 16 mA for standard TTL and 8 mA for LS TTL. In many special 
applications, a gate must drive external devices, such as LEDs, lamps, or relays, that may 
require more current than that.

Because of their higher voltage and current-handling capability, circuits with open-
collector outputs are generally used for driving LEDs, lamps, or relays. However, totem-
pole outputs can be used, as long as the output current required by the external device does 
not exceed the amount that the TTL driver can sink.

A

B
C

D
E

F

X

Rp

+5 V

fg14_04000
FIGURE 15–40 

EXAMPLE 15–6

Three open-collector AND gates are connected in a wired-AND configuration as shown 
in Figure 15–40. Assume that the wired-AND circuit is driving four standard TTL 
inputs (-1.6 mA each).

(a)	 Write the logic expression for X.

(b)	 Determine the minimum value of Rp if IOL(max) for each gate is 30 mA and VOL(max) 
is 0.4 V.

Solution

(a)	 X = ABCDEF

(b)	 4(1.6 mA) = 6.4 mA

 IRP
= IOL(max) - 6.4 mA = 30 mA - 6.4 mA = 23.6 mA

 RP =
VCC - VOL(max)

IRP

=
5 V - 0.4 V

23.6 mA
= 195 �

Related Problem

Show the wired-AND circuit for a 10-input AND function using 74LS09 quad 2-input 
AND gates.
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878	 Integrated Circuit Technologies

With an open-collector TTL gate, the collector of the output transistor is connected to an 
LED or incandescent lamp, as illustrated in Figure 15–42. In part (a) the limiting resistor, 
RL, is used to keep the current below maximum LED current. When the output of the gate 
is LOW, the output transistor is sinking current, and the LED is on. The LED is off when 
the output transistor is off and the output is HIGH. A typical open-collector buffer gate can 
sink up to 40 mA. In part (b) of the figure, the lamp requires no limiting resistor because the 
filament is resistive. Typically, up to +30 V can be used on the open collector, depending 
on the particular logic family.

Q2

Rest
of

circuit

Q1

ON

OFF

Q2

Q1

ON

OFF

Rest
of

circuit

A B

I

+5 V +5 V

fg14_04100

FIGURE 15–41  Totem-pole outputs wired together. Such a connection may cause 
excessive current through Q1 of device A and Q2 of device B and should never be used.
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A
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+20 V

LOW

X
OFF HIGH

+5 V

LOW

X
OFF

+20 V

HIGH

No
current

No
current

(a) Driving an LED

(b) Driving a low-current lamp
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FIGURE 15–42  Some applications of open-collector drivers.

EXAMPLE 15–7

Determine the value of the limiting resistor, RL, in the open-collector circuit of Figure 
15–43 if the LED current is to be 20 mA. Assume a 1.5 V drop across the LED when it 
is forward-biased and a LOW-state output voltage of 0.1 V at the output of the gate.
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Unused TTL Inputs

An unconnected input on a TTL gate acts as a HIGH because an open input results in a reverse-
biased emitter junction on the input transistor, just as a HIGH level does. This effect is illus-
trated in Figure 15–44. However, because of noise sensitivity, it is best not to leave unused 
TTL inputs unconnected (open). There are several alternative ways to handle unused inputs.

+5 V

A
RL

B

fg14_04300

FIGURE 15–43 

Solution

 VRL
= 5 V - 1.5 V - 0.1 V = 3.4 V

 RL =
VRL

I
=

3.4 V

20 mA
= 170 �

Related Problem

Determine the value of the limiting resistor, RL, if the LED requires 35 mA.

+5 V

Unconnected

+5 V

HIGH

+5 V

Reverse-biased diode
is like an open

Diode equivalent of
emitter junction with

unconnected input

TTL input transistor

fg14_04400

FIGURE 15–44  Comparison of an open TTL input and a HIGH-level input.

Tied-Together Inputs

The most common method for handling unused gate inputs is to connect them to a used 
input of the same gate. For AND gates and NAND gates, all tied-together inputs count as 
one unit load in the LOW state; but for OR gates and NOR gates, each input tied to another 
input counts as a separate unit load in the LOW state. In the HIGH state, each tied-together 
input counts as a separate load for all types of TTL gates. In Figure 15–45(a) are two 
examples of the connection of two unused inputs to a used input.

The AND and NAND gates present only a single unit load no matter how many inputs 
are tied together, whereas OR and NOR gates present a unit load for each tied-together 
input. This is because the NAND gate uses a multiple-emitter input transistor; so no mat-
ter how many inputs are LOW, the total LOW-state current is limited to a fixed value. The 
NOR gate uses a separate transistor for each input; therefore, the LOW-state current is the 
sum of the currents from all the tied-together inputs.

Inputs to VCC or Ground

Unused inputs of AND and NAND gates can be connected to VCC through a 1.0 k� resis-
tor. This connection pulls the unused inputs to a HIGH level. Unused inputs of OR and 
NOR gates can be connected to ground. These methods are illustrated in Figure 15–45(b).
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Inputs to Unused Output

A third method of terminating unused inputs may be appropriate in some cases when an 
unused gate or inverter is available. The unused gate output must be a constant HIGH for 
unused AND and NAND inputs and a constant LOW for unused OR and NOR inputs, as 
illustrated in Figure 15–45(c).

+5 V

Unused

Unused

Used
Used

Used
Used

Two unused inputs
connected to one used input

Two unused inputs
connected to one used input

This connection counts as:
1 unit load in LOW state
3 unit loads in HIGH state

This connection counts as:
3 unit loads in LOW state
3 unit loads in HIGH state

(a) Tied-together inputs

(b) Inputs to VCC or ground

Unused input
HIGH

Unused gate

Unused input
LOW

Unused gate

(c) Inputs to unused output

+5 V

1.0 k� 1.0 k�

fg14_04500

FIGURE 15–45  Methods for handling unused TTL inputs.

SECTION 15–4  Checkup

	 1.	 In what output state does a TTL circuit sink current from a load?

	 2.	Why does a TTL circuit source less current into a TTL load than it sinks?

	 3.	Why can TTL circuits with totem-pole outputs not be connected together?

	 4.	What type of TTL circuit must be used for a wired-AND configuration?

	 5.	Why type of TTL circuit would you use to drive a lamp?

	 6.	An unconnected TTL input acts as a LOW. (T or F)

15–5  Comparison of CMOS and TTL Performance

In this section, the main operational and performance characteristics of selected CMOS 
series are compared with those of the major TTL series and with BiCMOS.

After completing this section, you should be able to

u	 Compare bipolar (TTL), BiMOS, and CMOS devices in terms of propagation 
delay, maximum clock frequency, power dissipation, and drive capability

In the past, the superior characteristic of TTL (bipolar) compared to CMOS was its 
relatively high speed and output current capability. These advantages of TTL have dimin-
ished to the point where CMOS is often equal or superior in many areas and has become 
the dominant IC technology, although TTL is still available and in use. One family of IC 
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logic devices, BiCMOS, combines CMOS logic with TTL output circuitry in an effort to 
combine the advantages of both.

Table 15–1 provides a comparison of the performance of several IC logic families.

Table 15–1

Comparison of selected performance parameters of several 74XX IC families.

Bipolar (TTL) Bicmos CMOS

5 V 3.3 V

F LS ALS ABT HC AC AHC LV LVC ALVC

Speed
Gate propagation  
delay, tp (ns)

      3.3 10   7         3.2   7     5        3.7   9        4.3     3

FF maximum clock  
freq. (MHz)

145 33 45 150 50 160 170 90 100 150

Power Dissipation  
Per Gate
Bipolar: 50% dc (mW)     6     2.2     1.4
CMOS: quiescent (mW)   17       2.75         0.55         2.75       1.6       0.8       0.8

Output Drive
IOL (mA)   20   8   8   64   4   24     8 12   24   24

SECTION 15–5  Checkup

	 1.	What is a BiCMOS circuit?

	 2.	 In general, what is the main advantage of CMOS over bipolar (TTL)?

15–6  Emitter-Coupled Logic (ECL) Circuits

Emitter-coupled logic, like TTL, is a bipolar technology. The typical ECL circuit consists 
of a different amplifier input circuit, a bias circuit, and emitter-follower outputs. ECL is 
much faster than TTL because the transistors do not operate in saturation and is used in 
more specialized high-speed applications.

After completing this section, you should be able to

u	 Describe how ECL differs from TTL and CMOS

u	 Explain the advantages and disadvantages of ECL

An ECL OR/NOR gate is shown in Figure 15–46(a). The emitter-follower outputs pro-
vide the OR logic function and its NOR complement, as indicated by Figure 15–46(b).

Because of the low output impedance of the emitter-follower and the high input 
impedance of the differential amplifier input, high fan-out operation is possible. In this 
type of circuit, saturation is not possible. The lack of saturation results in higher power 
consumption and limited voltage swing (less than 1 V), but it permits high-frequency 
switching.

The VCC pin is normally connected to ground, and the VEE pin is connected to 
-5.2 V from the power supply for best operation. Notice that in Figure 15–46(c) the 
output varies from a LOW level of -1.75 V to a HIGH level of -0.9 V with respect to 
ground. In positive logic, a 1 is the HIGH level (less negative), and a 0 is the LOW 
level (more negative).
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Noise Margin

As you have learned, the noise margin of a gate is the measure of its immunity to undesired 
voltage fluctuations (noise). Typical ECL circuits have noise margins from about 0.2 V to 
0.25 V. These are less than for TTL and make ECL less suitable in high-noise environments.

Comparison of ECL with TTL and CMOS

Table 15–2 shows a comparison of key performance parameters for F, AHC, and ECL.

A B C

Q1 Q2 Q3

D

Q4 Q5

VBB ≅
–1.29 V

VEE
(–5.2 V)

VCC (gnd)

OR output

NOR output

Inputs

Multiple inputs
Differential
amplifier

Bias
circuit

Complementary
outputs

(a)

A
B
C
D

A + B + C + D

A + B + C + D
(b)

(c)

–0.9 V

–1.75 V

O
ut

pu
t V

–1.4 V –1.2 V
Input voltage

fg14_04600

FIGURE 15–46  An ECL OR/NOR gate circuit.

Table 15–2

Comparison of ECL series performance parameters with F and AHC.

Bipolar (TTL) CMOS
F AHC Bipolar (ECL)

Speed
Gate propagation  

delay, tp (ns)
 

       3.3
 

       3.7
 
0.22–1

FF maximum  
clock freq. (MHz)

 
145

 
170

 
330–2800

Power Dissipation  
Per Gate

Bipolar: 50% dc             6 mW 25 mW–73 mW
CMOS: quiescent 2.75 mW

SECTION 15–6  Checkup

	 1.	What is the primary advantage of ECL over TTL?

	 2.	Name two disadvantages of ECL compared with TTL.
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15–7  PMOS, NMOS, and E2CMOS

The PMOS and NMOS circuits are used largely in LSI functions, such as long shift regis-
ters, large memories, and microprocessor products. Such use is a result of the low power 
consumption and very small chip area required for MOS transistors. E2CMOS is used in 
reprogrammable PLDs.

After completing this section, you should be able to

u	 Describe a basic PMOS gate

u	 Describe a basic NMOS gate

u	 Describe a basic E2CMOS cell

PMOS

One of the first high-density MOS circuit technologies to be produced was PMOS. It uti-
lizes enhancement-mode p-channel MOS transistors to form the basic gate building blocks. 
Figure 15–47 shows a basic PMOS gate that produces the NOR function in positive logic.

Q1

Q2

A

B

Inputs

VGG

Q3

Output

VCC or ground

fg14_04700

FIGURE 15–47  Basic PMOS gate.

The operation of the PMOS gate is as follows: The supply voltage VGG is a negative 
voltage, and VCC is a positive voltage or ground (0 V). Transistor Q3 is permanently biased 
to create a constant drain-to-source resistance. Its sole purpose is to function as a current-
limiting resistor. If a HIGH (VCC) is applied to input A or B, then Q1 or Q2 is off, and the 
output is pulled down to a voltage near VGG, which represents a LOW. When a LOW volt-
age (VGG) is applied to both input A and input B, both Q1 and Q2 are turned on. This causes 
the output to go to a HIGH level (near VCC). Since a LOW output occurs when either or 
both inputs are HIGH, and a HIGH output occurs only when all inputs are LOW, we have 
a NOR gate.

NMOS

The NMOS devices were developed as processing technology improved. The n-channel 
MOS transistor is used in NMOS circuits, as shown in Figure 15–48 for a NAND gate and 
a NOR gate.

	 PMOS, NMOS, and E2CMOS	 883
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In Figure 15–48(a), Q3 acts as a resistor to limit current. When a LOW (VGG or ground) 
is applied to one or both inputs, then at least one of the transistors (Q1 or Q2) is off, and 
the output is pulled up to a HIGH level near VCC. When HIGHs (VCC) are applied to both 
A and B, both Q1 and Q2 conduct, and the output is LOW. This action, of course, identifies 
this circuit as a NAND gate.

In Figure 15–48(b), Q3 again acts as a resistor. A HIGH on either input turns Q1 or Q2 
on, pulling the output LOW. When both inputs are LOW, both transistors are off, and the 
output is pulled up to a HIGH level.

E2CMOS

E2CMOS (electrically erasable CMOS) technology is based on a combination of CMOS 
and NMOS technologies and is used in programmable devices such as PROMs and CPLDs. 
An E2CMOS cell is built around a MOS transistor with a floating gate that is externally 
charged or discharged by a small programming current. A schematic of this type of cell is 
shown in Figure 15–49.

Q3

Q2

Q1

Output

A

B

Inputs

VCC

VGG or ground

Q3

Q1

Output

VCC

Q2

Input Input

VGG or ground

(a) NAND (b) NOR

A B

fg14_04800

FIGURE 15–48  Two NMOS gates.

Pass transistor

Word line

Floating gate

Control gate

Cell ground

Sense transistor

Bit line

Substrate

fg14_04900
FIGURE 15–49  An E2CMOS cell.
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When the floating gate is charged to a positive potential by removing electrons, the 
sense transistor is turned on, storing a binary zero. When the floating gate is charged to 
a negative potential by placing electrons on it, the sense transistor is turned off, storing a 
binary 1. The control gate controls the potential of the floating gate. The pass transistor 
isolates the sense transistor from the array during read and write operations that use the 
word and bit lines.

The cell is programmed by applying a programming pulse to either the control gate or 
the bit line of a cell that has been selected by a voltage on the word line. During the pro-
gramming cycle, the cell is first erased by applying a voltage to the control gate to make 
the floating gate negative. This leaves the sense transistor in the off state (storing a 1). A 
write pulse is applied to the bit line of a cell in which a 0 is to be stored. This will charge 
the floating gate to a point where the sense transistor is on (storing a 0). The bit stored in 
the cell is read by sensing presence or absence of a small cell current in the bit line. When 
a 1 is stored, there is no cell current because the sense transistor is off. When a 0 is stored, 
there is a small cell current because the sense transistor is on. Once a bit is stored in a cell, 
it will remain indefinitely unless the cell is erased or a new bit is written into the cell.

SECTION 15–7  Checkup

	 1.	What is the main feature of NMOS and PMOS technology in integrated circuits?

	 2.	What is the mechanism for charge storage in an E2CMOS cell?

Summary

•	 Formulas:

	 15–1	 VNH = VOH(min) - VIH(min)	 High-level noise margin

	 15–2	 VNL = VIL(max) - VOL(max)	 Low-level noise margin

	 15–3	 ICC =
ICCH + ICCL

2
	 Average dc supply current

	 15–4	 PD = VCCICC	 Power dissipation

•	 Totem-pole outputs of TTL cannot be connected together.

•	 Open-collector and open-drain outputs can be connected for wired-AND.

•	 CMOS devices offer lower power dissipation than any of the TTL series.

•	 A TTL device is not as vulnerable to electrostatic discharge (ESD) as is a CMOS device.

•	 Because of ESD, CMOS devices must be handled with great care.

•	 ECL is the fastest type of logic circuit.

•	 E2CMOS is used in PROMs and other PLDs.

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

CMOS  Complementary metal-oxide semiconductor; a type of integrated logic circuit that uses 
n- and p-channel MOSFETs (metal-oxide semiconductor field-effect transistors).

Current sinking  The action of a logic circuit in which it accepts current into its output from a load.

Current sourcing  The action of a logic circuit in which it sends current from its output to a load.

ECL  Emitter-coupled logic; a class of integrated logic circuits that are implemented with 
nonsaturating bipolar junction transistors.

E2CMOS  Electrically erasable CMOS; the IC technology used in programmable logic devices 
(PLDs).

Fan-out  The number of equivalent gate inputs of the same family series that a logic gate can drive.
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Noise immunity  The ability of a logic circuit to reject unwanted signals (noise).

Noise margin  The difference between the maximum LOW output of a gate and the maximum ac-
ceptable LOW input of an equivalent gate; also, the difference between the minimum HIGH output 
of a gate and the minimum HIGH input of an equivalent gate. Noise margin is sometimes expressed 
as a percentage of the dc supply voltage.

Open-collector  A type of output for a TTL circuit in which the collector of the output transistor 
is left internally disconnected and is available for connection to an external load that requires rela-
tively high current or voltage.

Power dissipation  The product of the dc supply voltage and the dc supply current in an electronic 
circuit.

Propagation delay time  The time interval between the occurrence of an input transition and the 
occurrence of the corresponding output transition in a logic circuit.

Pull-up resistor  A resistor with one end connected to the dc supply voltage used to keep a given 
point in a logic circuit HIGH when in the inactive state.

Totem pole  A type of output in TTL circuits.

Tri-state  A type of output in logic circuits that exhibits three states: HIGH, LOW, and high Z.

TTL  Transistor-transistor logic; a type of integrated circuit that uses bipolar junction transistors. 
Also called bipolar.

Unit load  A measure of fan-out. One gate input represents a unit load to a driving gate.

True/False Quiz

Answers are at the end of the chapter.
	 1.	 The dc supply voltage for TTL is typically +5 V.

	 2.	 The fan-out of a logic gate is the number of gates in an IC package.

	 3.	 CMOS uses MOSFETs.

	 4.	 BJT stands for binary junction transistor.

	 5.	 An open-collector gate must be connected to an external resistor.

	 6.	 CMOS is the dominant digital IC technology.	

	 7.	 A totem-pole output means that two or more resistors are in series.

	 8.	 CMOS is subject to ESD.

	 9.	 A tri-state output can be HIGH, LOW or high-impedance.

	10.	 Propagation delay is a measure of the speed of a logic gate.

Self-Test

Answers are at the end of the chapter.

	 1.	 When the frequency of the input signal to a CMOS gate is increased, the average power dissipation
(a)	 decreases	 (b)  increases
(c)	 does not change	 (d)  decreases exponentially

	 2.	 CMOS operates more reliably than TTL in a high-noise environment because of its
(a)	 lower noise margin	 (b)  input capacitance
(c)	 higher noise margin	 (d)  smaller power dissipation

	 3.	 Proper handling of a CMOS device is necessary because of its
(a)	 fragile construction
(b)	 high-noise immunity
(c)	 susceptibility to electrostatic discharge
(d)	 low power dissipation

	 4.	 Which of the following is not a TTL circuit?
(a)	 74F00	 (b)  74AS00
(c)	 74HC00	 (d)  74ALS00
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	 5.	 An open TTL NOR gate input
(a)	 acts as a LOW	 (b)  acts as a HIGH
(c)	 should be grounded	 (d)  should be connected to VCC through a resistor
(e)	 answers (b) and (c)	 (f)  answers (a) and (c)

	 6.	 An LS TTL gate can drive a maximum of
(a)	 20 unit loads	 (b)  10 unit loads
(c)	 40 unit loads	 (d)  unlimited unit loads

	 7.	 If two unused inputs of a LS TTL gate are connected to an input being driven by another LS 
TTL gate, the total number of remaining unit loads that can be driven by this gate is
(a)	 seven	 (b)  eight
(c)	 seventeen	 (d)  unlimited

	 8.	 The main advantage of ECL over TTL or CMOS is
(a)	 ECL is less expensive
(b)	 ECL consumes less power
(c)	 ECL is available in a greater variety of circuit types
(d)	 ECL is faster

	 9.	 ECL cannot be used in
(a)	 high-noise environments
(b)	 damp environments
(c)	 high-frequency applications

	10.	 The basic mechanism for storing a data bit in an E2CMOS cell is
(a)	 control gate	 (b)  floating drain
(c)	 floating gate	 (d)  cell current

Problems

Answers to odd-numbered problems are at the end of the book.

Section 15–1  Basic Operational Characteristics and Parameters
	 1.	 A certain logic gate has a VOH(min) = 2.2 V, and it is driving a gate with a VIH(min) = 2.5 V. 

Are these gates compatible for HIGH-state operation? Why?

	 2.	 A certain logic gate has a VOL(max) = 0.45 V, and it is driving a gate with a VIL(max) = 0.75 V. 
Are these gates compatible for LOW-state operation? Why?

	 3.	 A TTL gate has the following actual voltage level values: VIH(min) = 2.25 V, VIL(max) = 0.65 V. 
Assuming it is being driven by a gate with VOH(min) = 2.4 V and VOL(max) = 0.4 V, what are the 
HIGH- and LOW-level noise margins?

	 4.	 What is the maximum amplitude of noise spikes that can be tolerated on the inputs in both the 
HIGH state and the LOW state for the gate in Problem 3?

	 5.	 Voltage specifications for three types of logic gates are given in Table 15–3. Select the gate that 
you would use in a high-noise industrial environment.

Table 15–3

VOH(min) VOL(max) VIH(min) VIL(max)

Gate A 2.4 V 0.4 V 2 V 0.8 V
Gate B 3.5 V 0.2 V 2.5 V 0.6 V
Gate C 4.2 V 0.2 V 3.2 V 0.8 V

	 6.	 A certain gate draws a dc supply current from a +5 V source of 2 mA in the LOW state and 
3.5 mA in the HIGH state. What is the power dissipation in the LOW state? What is the power dis-
sipation in the HIGH state? Assuming a 50% duty cycle, what is the average power dissipation?

	 7.	 Each gate in the circuit of Figure 15–50 has a tPLH and a tPHL of 4 ns. If a positive-going pulse 
is applied to the input as indicated, how long will it take the output pulse to appear?
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	 8.	 For a certain gate, tPLH = 3 ns and tPHL = 2 ns. What is the average propagation delay time?

	 9.	 Table 15–4 lists parameters for three types of gates. Basing your decision on the speed-power 
product, which one would you select for best performance?

HIGH
HIGH

LOW

+5 V
0

Output

fg14_05000

FIGURE 15–50 

Table 15–4

tPLH tPHL PD

Gate A   1 ns 1.2 ns 15 mW
Gate B   5 ns   4 ns   8 mW
Gate C 10 ns 10 ns 0.5 mW

	10.	 Which gate in Table 15–4 would you select if you wanted the gate to operate at the highest pos-
sible frequency?

	11.	 A standard TTL gate has a fan-out of 10 unit loads. Are any of the gates in Figure 15–51 over-
loaded? If so, which ones?
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A1

A2

G1

G2 G3

G4

G5

G9

G8

G11

G10

G7

G6

X1

X0

fg14_05100
FIGURE 15–51 

	12.	 Which CMOS gate network in Figure 15–52 can operate at the highest frequency?

X0

X1

X2

A2

A3

A4

A0

A1

(a)

X0

X1

X2

A2

A3

A4

A0

A1

(b)

X0

X1

A2
A3

A4

A0

A1

(c)

fg14_05200

FIGURE 15–52 
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	 Problems	 889

Section 15–2  CMOS Circuits
	13.	 Determine the state (on or off) of each MOSFET in Figure 15–53.

+5 V

(a)

HIGH

(b)

HIGH

(c)

LOW

(d)

LOW

+5 V +5 V +5 V

fg14_05300
FIGURE 15–53 

	14.	 The CMOS gate network in Figure 15–54 is incomplete. Indicate the changes that should be made.

*

A

B

C

D

*

Output

* unused inputs

*

fg14_05400

FIGURE 15–54 

	15.	 Devise a circuit, using appropriate CMOS logic gates and/or inverters, with which signals from 
four different sources can be connected to a common line at different times without interfering 
with each other.

Section 15–3  TTL (Bipolar) Circuits
	16.	 Determine which BJTs in Figure 15–55 are off and which are on.

+5 V

+5 V

(a) (b) (d)

+5 V+5 V

0 V

(c)

+5 V

0.3 V +5 V

fg14_05500

FIGURE 15–55 

	17.	 Determine the output state of each TTL gate in Figure 15–56.

(a)

HIGH
HIGH
LOW

(b)

HIGH

LOW

(c)

HIGH

HIGH

(d)

HIGH

HIGH

HIGH

+5 V

fg14_05600

FIGURE 15–56 
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890	 Integrated Circuit Technologies

	18.	 The TTL gate network in Figure 15–57 is incomplete. Indicate the changes that should be made.

*

A

B

C

D
*

Output

* unused inputs

*

fg14_05700

FIGURE 15–57 

Section 15–4  Practical Considerations in the Use of TTL
	19.	 Determine the output level of each TTL gate in Figure 15–58.

(a)

+5 V
+5 V
Open

(b)

0 V

Open

(c)

LOW

+5 V
+5 V

fg14_05800

FIGURE 15–58 

	20.	 For each part of Figure 15–59, tell whether each driving gate is sourcing or sinking current. 
Specify the maximum current out of or into the output of the driving gate or gates in each case. 
All gates are standard TTL.

LOW

LOW

(a)

HIGH

HIGH

(b)

LOW

HIGH

G1
G2

G3

G1
G2

G3

G1 G2 G3 G4

(c)

fg14_05900

FIGURE 15–59 

	21.	 Use open-collector inverters to implement the following logic expressions:

(a)	 X = A B C
(b)	 X = ABCD
(c)	 X = ABCD E F

	22.	 Write the logic expression for each of the circuits in Figure 15–60.
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	 Problems	 891

	23.	 Determine the minimum value for the pull-up resistor in each circuit in Figure 15–60 if 
IOL(max) = 40 mA and VOL(max) = 0.25 V for each gate. Assume that 10 standard TTL 
unit loads are being driven from output X and the supply voltage is 5 V.

	24.	 A certain relay requires 60 mA. Devise a way to use open-collector NAND gates with 
IOL(max) = 40 mA to drive the relay.

Section 15–5  Comparison of CMOS and TTL Performance
	25.	 Select the IC family with the best speed-power product in Table 15–1.

	26.	 Determine from Table 15–1 the logic family that is most appropriate for each of the following 
requirements:

(a)	 shortest propagation delay time
(b)	 fastest flip-flop toggle rate
(c)	 lowest power dissipation
(d)	 best compromise between speed and power for a logic gate

	27.	 Determine the total propagation delay from each input to each output for each circuit in 
Figure 15–61.

A
Rp

+V

A

B

C

D

X

(a)

Rp

A

X

(b)

B
C

D

E

F

G

Rp

X

(c)

B

C

D

E

F

G

H

+V +V

fg14_06000

FIGURE 15–60 

A
B
C

X

D

A

B

C

D

(b) 74HCXX gates(a) 74FXX gates

B

A

D

C

(c) 74AHCXX gates

X

X1

X2

X3

fg14_06100

FIGURE 15–61 
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892	 Integrated Circuit Technologies

Section 15–6  Emitter-Coupled Logic (ECL) Circuits
	29.	 What is the basic difference between ECL circuitry and TTL circuitry?

	30.	 Select ECL, CMOS HC series, or the appropriate TTL series for each of the following 
requirements:

(a)	 highest speed
(b)	 lowest power
(c)	 best compromise between high speed and low power (speed-power product)

50 ns

CLK

HC

Q

HIGH

(a)

CLK

LS

Q

60 ns

HIGH

(b)

CLK

AHC

Q

4 ns

HIGH

(c)

J

K

C

J

K

C

J

K

C

fg14_06200

FIGURE 15–62 

Answers

Section Checkups
Section 15–1  Basic Operational Characteristics and Parameters
	 1.	 VIH: HIGH level input voltage: VIL: LOW level input voltage; VOH: HIGH level output voltage; 

VOL: LOW level output voltage

	 2.	 A higher value of noise margin is better.

	 3.	 Gate B can operate at a higher frequency.

	 4.	 Excessive loading reduces the noise margin of a gate.

Section 15–2  CMOS Circuits
	 1.	 MOSFETs are used in CMOS logic.

	 2.	 A complementary output circuit consists of an n-channel and a p-channel MOSFET.

	 3.	 Because electrostatic discharge can damage CMOS devices

Section 15–3  TTL (Bipolar) Circuits
	 1.	 False, the npn BJT is off.

	 2.	 The on state of a BJT is a closed switch; the off state is an open switch.

	 3.	 Totem-pole and open-collector are types of TTL outputs.

	 4.	 Tri-state logic provides a high-impedance state, in which the output is disconnected from the 
rest of the circuit.

	28.	 One of the flip-flops in Figure 15–62 may have an erratic output. Which one is it if any and why?
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	 Answers	 893

Section 15–4  Practical Considerations in the Use of TTL
	 1.	 Sink current occurs in a LOW output state.

	 2.	 Source current is less than sink current because a TTL load looks like a reverse-biased diode in 
the HIGH state.

	 3.	 The totem-pole transistors cannot handle the current when one output tries to go HIGH and the 
other is LOW.

	 4.	 Wired-AND must use open-collector.

	 5.	 Lamp driver must be open-collector.

	 6.	 False, an unconnected TTL input generally acts as a HIGH.

Section 15–5  Comparison of CMOS and TTL Performance
	 1.	 BiCMOS uses bipolar transistors for input and output circuitry and CMOS in between.

	 2.	 CMOS has lower power dissipation than bipolar.

Section 15–6  Emitter-Coupled Logic (ECL) Circuits
	 1.	 ECL is faster than TTL.

	 2.	 ECL has more power and less noise margin than TTL.

Section 15–7  PMOS, NMOS, and E2CMOS
	 1.	 NMOS and PMOS are high density.

	 2.	 The floating gate is the mechanism for storing charge in an E2CMOS cell.

Related Problems for Examples
	15–1	 CMOS

	15–2	 10.75 mW

	15–3	 IT(source) = 5(20 mA) = 100 mA

		  IT(sink) = 5(-0.4 mA) = -2.0 mA

	15–4	 Fan-out = 20 unit loads

	15–5	 X = (AB)(CD)(EF)(GH) = (A + B)(C + D)(E + F)(G + H)

	15–6	 See Figure 15–63.

	15–7	 RL = 97 �

Rp

A
B

C
D

E
F

G
H

I
J

+5 V

Two 74LS09s

fg14_06300

FIGURE 15–63

True/False Quiz
	 1.	 T    2.  F    3.  T    4.  F    5.  T

	 6.	 T    7.  F    8.  T    9.  T    10.  T

Self-Test
	 1.	 (b)    2.  (c)    3.  (c)    4.  (c)    5.  (e)

	 6.	 (a)    7.  (c)    8.  (d)    9.  (a)    10.  (c)
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A-1

Chapter 1
	 1.	 Digital can be transmitted and stored more efficiently and 

reliably.

	 3.	 Thermometer
Sphygmomanometer
Photometer

	 5.	 (a)	 11000011	 (b)	 10101010

	 7.	 (a)	 550 ns	 (b)   600 ns	 (c)   2.7 ms	 (d)   10 V

	 9.	 250 Hz

	11.	 50%

	13.	 8 ms; 1 ms

	15.	 Lon = SW1 + SW2 + SW1 # SW2

	17.	 OR gate

	19.	 (a)	 Subtractor	 (b)	 Multiplier

		  (c)	 Multiplexer	 (d)	 Comparator

	21.	 01010000

	23.	 SPLD: Simple Programmable Logic Device
CPLD: Complex Programmable Logic Device
HDL: Hardware Description Language
FPGA: Field-Programmable Gate Array
GAL: Generic Array Logic

	25.	 Place-and-route or fitting is the process where the logic 
structures described by the netlist are mapped into the actual 
structure of the specific target device. This results in an 
output called a bitstream.

	27.	 Circuits with complexities of 100 to 10,000 equivalent gates 
are classified as large scale integration (LSI).

	29.	 8 V

	31.	 125 Hz

	33.	 Troubleshooting is the process of recognizing, isolating, and 
correcting a fault or failure in a system.

	35.	 In the signal-tracing method, a signal is tracked as it 
progresses through a system until a point is found where the 
signal disappears or is incorrect.

	37.	 When a failure is reported, determine when and how the 
failure occurred and what are the symptoms.

	39.	 An incorrect output can be caused by an incorrect dc supply 
voltage, improper ground, incorrect component value, or a 
faulty component.

	41.	 To isolate a fault in a system, apply half-splitting or signal 
tracing.

	43.	 When a fault has been isolated to a particular circuit board, 
the options are to repair the board or replace the board with a 
known good board.

Chapter 2
	 1.	 (a)	 1	 (b)   100	 (c)   10

	 3.	 (a)	 200; 60; 3	 (b)   5000; 400; 30; 6

		  (c)	 200000; 30000; 4000; 500; 40; 3

	 5.	 (a)	 1	 (b)   2	 (c)   3	 (d)   6	

		  (e)   10	 (f)   11	 (g)   14	 (h)   15

	 7.	 (a)	 51.75	 (b)   42.25	 (c)   65.875

		  (d)	 120.625	 (e)   92.65625	 (f)   113.0625

		  (g)	 90.625	 (h)   127.96875

	 9.	 (a)	 3 bits	 (b)   4 bits	 (c)   4 bits

		  (d)	 5 bits	 (e)   7 bits	 (f)   7 bits

		  (g)	 8 bits	 (h)   8 bits

	11.	 (a)	 1100	 (b)   1111	 (c)   11001

		  (d)	 110010	 (e)   1000001	 (f)   1100001

		  (g)	 1111111	 (h)   11000110

	13.	 (a)	 1101	 (b)   10001	 (c)   10111

		  (d)	 11110	 (e)   100011	 (f)   101000

		  (g)	 110001	 (h)   111100

	15.	 (a)	 100	 (b)   101	 (c)   111

		  (d)	 1100	 (e)   10110	 (f)   11110

	17.	 (a)	 110	 (b)   1111	 (c)   101010

		  (d)	 111100	 (e)   11000100	 (f)   10110100

	19.	 all 0s or all 1s

	21.	 (a)	 011	 (b)   000	 (c)   0011

		  (d)	 01000100	 (e)   0110101	 (f)   01010101

	23.	 (a)	 00011101	 (b)   11010101

		  (c)	 01100100	 (d)   11111011

	25.	 (a)	 00001100	 (b)   10111100

		  (c)	 01100101	 (d)   10000011

	27.	 (a)	 -102	 (b)   +116	 (c)   -64

	29.	 (a)	 0 10001101 11110000101011000000000

		  (b)	 1 10001010 11000001100000000000000

	31.	 (a)	 00110000	 (b)   00011101

		  (c)	 11101011	 (d)   100111110

	33.	 (a)	 11000101	 (b)   11000000

	35.	 100111001010

	37.	 (a)	 1000110	 (b)   1010100	 (c)   10110100

		  (d)	 110100011	 (e)   11111010

		  (f)	 101010111100	 (g)   1010110010111101

	39.	 (a)	 66	 (b)   100	 (c)   43	 (d)   77

		  (e)	 255	 (f)      188	 (g)   1777	 (h)   2748

	41.	 (a)	 5816	 (b)   A516

		  (c)   19916	 (d)   1AA16

	43.	 (a)	 12	 (b)   43	 (c)   55	 (d)   124

		  (e)	 413	 (f)      172	 (g)   1467	 (h)   4095

	45.	 (a)	 1111	 (b)   10110

		  (c)	 1100101	 (d)   100101110

		  (e)	 110101011	 (f)     111111111

	47.	 (a)	 00010000	 (b)   00010011

		  (c)	 00011000	 (d)   00100001

Answers to Odd-Numbered Problems
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A-2	 answers to odd-numbered problems

		  (e)	 00100101	 (f)   00110110

		  (g)	 01000100	 (h)   01010111

		  (i)	 01101001	 (j)   10011000

		  (k)	 000100100101	 (l)   000101010110

	49.	 (a)	 000100000100	 (b)   000100101000

		  (c)	 000100110010	 (d)   000101010000

		  (e)	 000110000110	 (f)   001000010000

		  (g)	 001101011001	 (h)   010101000111

		  (i)	 0001000001010001

	51.	 (a)	 80	 (b)   237	 (c)   346	 (d)   421	 (e)   754

		  (f)	 800	 (g)   978	 (h)   1683	 (i)   9018	 (j)   6667

	53.	 (a)	 00010100	 (b)   00010010

		  (c)	 00010111	 (d)   00010110

		  (e)	 01010010	 (f)   000100001001

		  (g)	 000110010101	 (h)   0001001001101001

	55.	 The Gray code makes only one bit change at a time when 
going from one number in the sequence to the next.

	57.	 (a)	 1100	 (b)   00011	 (c)   10000011110

	59.	 (a)	 CAN	 (b)   J	 (c)  =

		  (d)	 #	 (e)   7	 (f)   B

	61.	 48 65 6C 6C 6F 2E 20 48 6F 77 20 61 72 65 20 79 6F 75 3F

	63.	 (b)	 is incorrect.

	65.	 (a)	 110100100	 (b)   000001001	 (c)   111111110

	67.	 In each case, you get the other number.

	69.	 The remainder is 0100, indicating an error.

Chapter 3
	 1.	 See Figure P–1.

VIN

C

D

B

E

F

fgp_00200

Figure P–2

Vin

HIGH
LOW

Vout

HIGH
LOW

fgp_00100

Figure P–1

	 3.	 See Figure P–2.

A

B

X

fgp_00300

Figure P–3

	 5.	 See Figure P–3.

	 7.	 See Figure P–4.

A

B

C

X

fgp_00400

Figure P–4

OR

Figure P–5

	 9.	 See Figure P–5.

A

B

Output X

fgp_00500

Figure P–6

	11.	 See Figure P–6.

A

B

C

D

X

fgp_00600

Figure P–7

	13.	 See Figure P–7.

A

X
B

C

D

≥ 1

fgp_00700

Figure P–8

	15.	 See Figure P–8.
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	 answers to odd-numbered problems	 A-3

	31.	 entity 4InputAND is

		    port (A, B, C, D: in bit; X: out bit);

		  end entity 4Input AND;

		  architecture Function of 4InputAND is

		  begin

		    X 6= A and B and C and D;

		  end architecture Function;

	33.	 CMOS

	35.	 tPLH = 4.3 ns; tPHL = 10.5 ns

	37.	 20 mW

	39.	 The gates in parts (b), (c), (e) are faulty.

	41.	 (a)	 defective output (stuck LOW or open)

		  (b)	 Pin 4 input or pin 6 output internally open.

	43.	 The seat belt input to the AND gate is open.

	45.	 Add an inverter to the enable input line of the AND gate.

	47.	 See Figure P–14.

	17.	 See Figure P–9.

A

B

X

fgp_00800

Figure P–9

A

X

B

C

D

fgp_00900

Figure P–10

	19.	 See Figure P–10.

A

B

X

fgp_01000

Figure P–11

	21.	 See Figure P–11.

A

X

B

C

D

fgp_01100

Figure P–12

	23.	 See Figure P–12.

	25.	 XOR = AB + AB; OR = A + B

	27.	 See Figure P–13.

A

B

X

fgp_01200

Figure P–13

	29.	 X1 = AB, X2 = A B, X3 = AB.

Ignition
switch

Lights
switch

Timer produces a LOW output
15 s after AND gate output goes HIGH

To
headlight
control

Timer

fgp_01400
Figure P–14

Board position

Component in chamber
Activate insertion tool

Figure P–15

	49.	 The inputs are now active-LOW. Change the OR gates to 
NAND gates (negative-OR) and add two inverters.

	51.	 See Figure P–15.

	53.	 Input B of NAND gate shorted to VCC.

	55.	 Input B of XOR gate shorted to VCC.

Chapter 4
	 1.	 X = A + B + C + D

	 3.	 X 5 ABCD

	 5.	 (a)	 ABC = 1 when A = B = C = 1

		  (b)	 A + B + C = 0 when A = B = C = 0

		  (c)	 A B C = 1  when A = B = 0 and C = 1

		  (d)	 A + B + C = 0 when A = B = 1 and C = 0

		  (e)	 A + B + C = 0 when A = 0 and B = C = 1

		  (f)	 A + B + C = 0 when A = B = C = 1

	 7.	 (a)	 Commutative

		  (b)	 Commutative

		  (c)	 Distributive
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A-4	 answers to odd-numbered problems

	 9.	 (a)	 AB	 (b)   A + B

		  (c)	 A B C	 (d)   A + B + C

		  (e)	 A + B C	 (f)   A + B + C + D

		  (g)	 (A + B)(C + D)	 (h)   AB + CD

	11.	 (a)	 (A + B + C)(E + F + G)(H + I + J )(K + L + M)

		  (b)	 ABC + BC

		  (c)	 A B C D E F G H

	13.	 (a)	 X = ABCD	 (b)   X = AB + C

		  (c)	 X = AB	 (d)   X = (A + B)C

	15.	 See Figure P–16.

(a) (b)

(c) (d)

AB + BC + CD + DA

AB

BC

CD

DA

A

B

C

D

D

A

B

C

AB + AB

AB

ABA

B
AB(C + D)

ABA

B

C

D

C + D
D

C

(A + B)(B + C)(C + D)(D + A)

A + B

B + C

C + D

D + A

A

B

C

D

D

A

B

C

Figure P–16

Table P–1

Inputs Output

VCR CAMI RDY RECORD

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table P–2

Inputs Output

RTS ENABLE BUSY SEND

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table P–3

A B C X

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

	17.	 (b) See Table P–2.

	19.	 (a)	 A	 (b)   AB	 (c)   C

		  (d)	 A	 (e)   AC + BC

	21.	 (a)	 CE + CF + EG	 (b)   B CD + B CE

		  (c)	 C	 (d)   BC + DE

		  (e)	 BCD

	23.	 (a)	 CD + AC + AD	 (b)   AC + AD

		  (c)	 CD + AC

	25.	 (a)	 Domain: C, D, A

Standard SOP: CDA + CD A + CDA + CDA

		  (b)	 Domain: C, D, A

Standard SOP: CDA + CDA + C DA

		  (c)	 Domain: C, D, A

Standard SOP: CDA + CDA + C DA

	27.	 (a)	 101 + 100 + 111 + 011

		  (b)	 111 + 101 + 001

		  (c)	 111 + 110 + 101

	29.	 (a)	 (C + D + A )(C + D + A )(C + D + A )(C + D + A)

		  (b)	 (C + D + A )(C + D + A )(C + D + A)
(C + D + A ) + (C + D + A )

		  (c)	 (C + D + A )(C + D + A )(C + D + A )

(C + D + A )(C + D + A )

	31.	 (a)	 See Table P–3.

	17.	 (a)	 See Table P–1.
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	 answers to odd-numbered problems	 A-5

	31.	 (b)	 See Table P–4.

Table P–4

X Y Z Q

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

	33.	 (a)	 See Table P–5.

Table P–5

A B C X

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

	33.	 (b)	 See Table P–6.

Table P–6

W X Y Z Q

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

	35.	 (a)	 See Table P–7.

Table P–7

A B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

	35.	 (b)	 See Table P–8.

Table P–8

A B C D X

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

	37.	 See Figure P–17.
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Figure P–17

0 1

00

01

11

10

AB
C

ABC ABC

ABC ABC

ABC ABC

ABC ABC

fgp_01700

Figure P–18

	39.	 See Figure P–18.
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A-6	 answers to odd-numbered problems

	41.	 (a)	 No simplification	 (b)   AC

		  (c)	 D F + EF

	43.	 (a)	 AB + AC

		  (b)	 A + BC

		  (c)	 BCD + ACD + BCD + ACD

		  (d)	 AB + CD

	45.	 B + C

	47.	 A B CD + CD + BC + AD

	49.	 (a)	 No reduction

		  (b)	 (W + X )(W + Z)(X + Y )(W + X + Y + Z)

	51.	 (A + B + D)(A + C + D)(A + B + C)
(B + C + D)(A + B + C + D)

	53.	 Minterms: 1, 3, 5, 6, 7

	55.	 See Table P–9.

Table P–9

Number of 1s Minterm ABCD

0 m0 0000

1 m1 0001

2 m5 0101
m6 0110
m9 1001
m12 1100

	57.	 See Table P–10.

Table P–10

First Level
Number of  

1s in First Level Second Level

(m0, m1) 000x 0 (m0m1) 000x

(m1, m5) 0x01 1 (m1, m5, m9) xx01
(m1, m9) x001

	59.	 X = CD + A B C + ABCD + ABC D

	61.	 The VHDL program:

entity SOP is

  port(A, B, C: in bit; X: out bit);

end entity SOP;

architecture Logic of SOP is

begin

  �  Y 6= (A and not B and C) or (not A and not B 
and C) or (A and not B and not C) or (not A and 
B and C);

end architecture Logic;

	63.	 The purpose of the invalid code detector is to detect the 
codes 1010, 1011, 1100, 1101, 1110, and 1111 to activate the 
display for letters.

	65.	 Segment d: The minimum expression requires one 2-input 
AND gate, one 3-input AND gate, one 2-input OR gate, and 
2 inverters.

		  Segment e: The minimum expression requires one 3-input 
AND gate.

		  Segment f: The minimum expression requires one 2-input 
AND gate.

		  Segment g: The minimum expression requires one 2-input 
AND gate, one 3-input AND gate, one 2 input OR gate, and 
2 inverters.

	67.	 See Figure P–19.

a

H3
H2
H1

H0

Figure P–19

	69.	 The invalid code detector must disable the display when any 
numerical input (0–9) occurs. A HIGH enables the display 
and a LOW disables it. A circuit that detects the numeric 
codes and produces a LOW is shown in Figure P–20.

X

H3

H2

H1

Figure P–20

	71.	 Bottom input of U7 is open.

	 3.	 (a)	 X = ABB	 (b)   X = AB + B

		  (c)	 X = A + B	 (d)   X = (A + B) + AB

		  (e)	 X = ABC	 (f)   X = (A + B)(B + C)

	 5.	 (a)

A B X

0 0 0
0 1 0
1 0 0
1 1 1

	 5.	 (b)

A B X

0 0 0
0 1 1
1 0 0
1 1 1
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F

I
H

J
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Figure P–21

Chapter 5
	 1.	 See Figure P–21.
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	 answers to odd-numbered problems	 A-7

	 5.	 (e)

A B C X

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

	 5.	 (c)

A B X

0 0 1
0 1 1
1 0 0
1 1 1

	 5.	 (d)

A B X

0 0 0
0 1 1
1 0 1
1 1 1

	 5.	 (f)

A B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

	 7.	 X = AB + AB = (A + B)(A + B)

	 9.	 ABCD + EFGH

	11.	 See Figure P–22.

	13.	 See Figure P–23.

A

(a) X = AB + BC

X

A

C (b) X = A(B + C)

X

A
B
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(c) X = AB + AB

X

A

B

(d) X = ABC + B(EF + G)

X

B
C
E
F
G

B

A
C

X

B
B
A

C
D

(e) X = A[BC(A + B + C + D)]

(f) X = B(CDE + EFG) (AB + C)

C

X
B

C

F
G
A

B

D

E

fgp_02000

Figure P–22

X = AB + C

A
B

C

fgp_02100

Figure P–23

	15.	 X = AB

	17.	 (a)	 No simplification

		  (b)	 No simplification

		  (c)	 X = A

		  (d)	 X = A + B + C + EF + G

		  (e)	 X = ABC

		  (f)	 X = BCDE + ABEFG + BCEFG

	19.	 (a)	 X = AC + AD + BC + BD

		  (b)	 X = ACD + BCD

		  (c)	 X = ABD + CD + E

		  (d)	 X = A + B + D

		  (e)	 X = ABD + CD + E

	(f)	 X = A C + A D + B C + B D + E G + E H + F G + F H

	21.	 See Figure P–24.

	23.	 See Figure P–25.

	25.	 See Figure P–26.

	27.	 See Figure P–27.

	29.	 X = A + B; see Figure P–28.

	31.	 X = AB C see Figure P–29.

	33.	 The output pulse width is greater than the specified 
minimum.

	35.	 X 6= A and B and C

A

C

B

X

fgp_02200

Figure P–24
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A-8	 answers to odd-numbered problems
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Figure P–25
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  (b) X = ABC

A

(a) X = ABC
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(c) X = A + B

A

B
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(d) X = A + B + C

C

X

(e) X = AB + CD

C
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A
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(f) X = (A + B)(C + D)
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Figure P–26
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Figure P–29
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B

X
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Figure P–28
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Figure P–27
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	 answers to odd-numbered problems	 A-9

		  begin

		    X 6= (A and B and C) or (D and not E);

		  end architecture DataFlow;

		  –Structural approach

		  entity Fig5_65 is

		    port(IN1, IN2, IN3, IN4, IN5: in bit; OUT: out bit);

		  end entity Fig5_65;

		  architecture Structure of Fig5_65 is

		  component AND_gate is

		    port(A, B: in bit; X: out bit);

		  end component AND_gate;

		  component OR_gate is

		    port(A, B: in bit; X: out bit);

		  end component OR_gate;

		  component Inverter is

		    port(A: in bit; X: out bit);

		  end component Inverter;

		    signal G1OUT, G2OUT, G3OUT INVOUT: bit;

		  begin

		 �   G1: AND_gate port map (A =7 IN1, B =7 IN2, 
X =7 G1OUT);

		 �   G2: AND_gate port map (A =7 G1OUT, B =7 IN3, 
X => G2OUT);

		    INV: Inverter port map (A =7 IN5, X =7 INVOUT);

		 �   G3: AND_gate port map (A =7 IN4, B =7 INVOUT, 
X =7 G3OUT);

		 �   G4: OR_gate port map (A =7 G2OUT, B =7 G3OUT, 
X =7 OUT);

		  end architecture Structure;

	43.	 See Table P–11.

	37.	 (e)	 entity Circuit5_55e is

			     port(A, B, C: in bit; X: out bit);

			   end entity Circuit5_55e;

			   architecture LogicFunction of Circuit5_55e is

			   begin

			     X 6= (not A and B) or B or (B and not C) or

			   (not A and not C) or (B and not C) or not C;

			   end architecture LogicFunction;

		  (f)	 entity Circuit5_55f is

			     port(A, B, C: in bit; X: out bit);

			   end entity Circuit5_55f;

			   architecture LogicFunction of Circuit5_55f is

			   begin

			     X 6= (A or B) and (not B or C);

			   end architecture LogicFunction;

	39.	 Number gates from top to bottom and left to right G1, G2, 
G3, etc. Relabel inputs IN1, IN2, IN3, etc, and output OUT.

		  entity Circuit5_56f is

		 �   port(IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; 
OUT: out bit);

		  end entity Circuit5_56f;

		  architecture LogicFunction of Circuit5_56f is

		  component NAND_gate is

		    port(A, B: in bit; X: out bit);

		  end component NAND_gate;

		 �   signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT, 
G6OUT: bit;

		  begin

		 �   G1: NAND_gate port map (A =7 IN1, B =7 IN2, 
X =7 G1OUT);

		 �   G2: NAND_gate port map (A =7 IN3, B =7 IN4, 
X =7 G2OUT);

		 �   G3: NAND_gate port map (A =7 IN5, B =7 IN6, 
X =7 G3OUT);

		 �   G4: NAND_gate port map (A =7 IN7, B =7 IN8, 
X =7 G4OUT);

		 �   G5: NAND_gate port map (A =7 G1OUT, B =7 G2OUT, 
X =7 G5OUT);

		 �   G6: NAND_gate port map (A =7 G3OUT, B =7 G4OUT, 
X =7 G6OUT);

		 �   G7: NAND_gate port map (A =7 G5OUT, B =7 G6OUT, 
X =7 OUT);

		  end architecture LogicFunction;

	41.	 –Data flow approach

		  entity Fig5_65 is

		    port (A, B, C, D, E: in bit; X: out bit);

		  end entity Fig5_65;

		  architecture DataFlow of Fig5_65 is

Table P–11

Inputs Output
A B C D X

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
1 0 1 0 0
0 1 1 0 0
1 1 1 0 0
0 0 0 1 0
1 0 0 1 0
0 1 0 1 0
1 1 0 1 1
0 0 1 1 0
1 0 1 1 1
0 1 1 1 1
1 1 1 1 1
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A-10	 answers to odd-numbered problems

	45.	 The AND gates are numbered top to bottom G1, G2, G3, G4. 
The OR gate is G5 and the inverters are, top to bottom. G6 
and G7. Change A1, A2, B1, B2 to IN1, IN2, IN3, IN4 respec-
tively. Change X to OUT.

		  entity Circuit5_67 is

		    port (IN1, IN2, IN3, IN4: in bit; OUT: out bit);

		  end entity Circuit5_67;

		  architecture Logic of Circuit5_67 is

		  component AND_gate is

		    port (A, B: in bit; X: out bit);

		  end component AND_gate;

		  component OR_gate is

		    port (A, B, C, D: in bit; X: out bit);

		  end component OR_gate;

		  component Inverter is

		    port (A: in bit; X: out bit);

		  end component Inverter;

		 �   signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT, 
G6OUT, G7OUT: bit;

		  begin

		 �   G1: AND_gate port map (A =7 IN1, B =7 IN2, 
X =7 G1OUT);

		 �   G2: AND_gate port map (A =7 IN2, B =7 G6OUT, 
X =7 G2OUT);

		 �   G3: AND_gate port map (A =7 G6OUT, B =7 G7OUT, 
X =7 G3OUT);

		 �   G4: AND_gate port map (A =7 G7OUT, B =7 IN1, 
X =7 G4OUT);

		 �   G5: OR_gate port map (A =7 G1OUT, B =7 G2OUT, 
C =7 G3OUT, D =7 G4OUT, X =7 OUT);

		    G6: Inverter port map (A =7 IN3, X =7 G6OUT);

		    G7: Inverter port map (A =7 IN4, X =7 G7OUT);

		  end architecture Logic;

	47.	 X = ABC + DE. Since X is the same as the G3 output, 
either G1 or G2 has failed, with its output stick LOW.

	49.	 See Figure P–30.
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Figure P–30

	51.	 (a)	 See Figure P–31.    (b)   X = E    (c)   X = E

A

X

fgp_02900

Figure P–31 

	53.	 The flow sensor measures the solution into the tank. The 
temperature transducer measures the temperature of the 
solution. The level sensors indicate when the solution is at 
the minimum or maximum level.

	55.	 See Figure P–32.

T

Finlet

Lmin Voutlet

NOR gate
functions as

negative-AND

fgp_03000

Figure P–32

Lmin VadditiveT

fgp_03100

Figure P–33

	57.	 See Figure P–33.

	59.	 (a)	� X = lamp on, A = front door switch on, B = back 
door switch on. See Figure P–34.

X
A

B

fgp_03200

Figure P–34 

		  (b)	 entity LampCircuit is

			     port (A, B: in bit; X: out bit);

			   end entity LampCircuit;

			   architecture Function of LampCircuit is

			   begin

			     X 6= A xor B;

			   end architecture Function;

	61.	 Output of U3A shorted to ground.

	63.	 Output of U2A is always HIGH (shorted to VCC).

Chapter 6
	 1.	 (a)	 Cout = 0, © = 1

		  (b)	 Cout = 1, © = 0

		  (c)	 Cout = 0, © = 0

	 3.	 (a)	 © = 1, Cout = 0;

		  (b)	 © = 1, Cout = 0;

		  (c)	 © = 0, Cout = 1;

		  (d)	 © = 1, Cout = 1

	 5.	 101111

	 7.	 ©3©2©1©0 = 1101

	 9.	 ©1 = 0111; ©2 = 1011; ©3 = 1110; ©4 = 1000; ©5 = 0011

	11.	 200 ns
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	 answers to odd-numbered problems	 A-11

	13.	 A = B is HIGH when A0 = B0 and A1 = B1; 
see Figure P–35.

A0

A1

B0

B1

A = B

fgp_03300
Figure P–35

	15.	 (a)	 A 7 B = 0; A 6 B = 1; A = B = 0

		  (b)	 A 7 B = 0; A 6 B = 0; A = B = 1

		  (c)	 A 7 B = 1; A 6 B = 0; A = B = 0

	17.	 See Figure P–36.

	19.	 X = A3A2A1A0 + A3A2A1A0 + A3A2A1

	21.	 See Figure P–37.

	23.	 A3A2A1A0 = 1011, invalid BCD
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Figure P–37
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A-12	 answers to odd-numbered problems

	33.	 See Figure P–41.	25.	 (a)	 2 = 0010 = 00102

		  (b)	 8 = 1000 = 10002

		  (c)	 13 = 00010011 = 11012

		  (d)	 26 = 00100110 = 110102

		  (e)	 33 = 00110011 = 1000012

	27.	 (a)	 1010000000 Gray → 1100000000 binary

		  (b)	 0011001100 Gray → 0010001000 binary

		  (c)	 1111000111 Gray → 1010000101 binary

		  (d)	 0000000001 Gray → 0000000001 binary

		  See Figure P–38.
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Figure P–38 

	29.	 See Figure P–39.
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Figure P–39

	31.	 See Figure P–40.
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Figure P–40
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Figure P–41

	35.	 (a)	 OK

		  (b)	 segment g burned out; output G open

		  (c)	 segment b output stuck LOW

	37.	 (a)	 �The A1 input of the top adder is open: All binary values 
corresponding to a BCD number having a value of 0, 1, 
4, 5, 8, or 9 will be off by 2. This will first be seen for a 
BCD value of 0000 0000.

		  (b)	 �The carry out of the top adder is open: All values not 
normally involving an output carry will be off by 32. 
This will first be seen for a BCD value of 0000 0000.

		  (c)	� The ©4 output of the top adder is shorted to ground: 
Same binary values above 15 will be short by 16. The 
first BCD value to indicate this will be 0001 1000.

		  (d)	 �The ©3 output of the bottom adder is shorted to ground: 
Every other set of 16 values starting with 16 will be 
short 16. The first BCD value to indicate this will be 
0001 0110.

	39.	 1.	 Place a LOW pin 7 (Enable).

		  2.	 Apply a HIGH to D0 and a LOW to D1 through D7.

		  3.	 �Go through the binary sequence on the select inputs and 
check Y and Y  according to Table P–12.

Table P–12

S2 S1 S0 Y Y

0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1
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	 answers to odd-numbered problems	 A-13

		  4.   �Repeat the binary sequence of select inputs for each set 
of data inputs listed in Table P–13. A HIGH on the Y 
output should occur only for the corresponding combina-
tions of select inputs shown.

	41.	 Apply a HIGH in turn to each Data input, D0 through D7 
with LOWs on all the other inputs. For each HIGH applied to 
a data input, sequence through all eight binary combinations 
of select inputs (S2S1S0) and check for HIGH on the corre-
sponding data output and LOWs on all the other data outputs.

	43.	 See Figure P–42.

	45.	 © = A BCin + ABCin + AB Cin + ABCin
Cout = ABCin + ABCin + ABCin + ABCin

		  See Figure P–43.
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Figure P–43

Table P–13

D0 D1 D2 D3 D4 D5 D6 D7 Y Y S2 S1 S0

L H L L L L L L 1 0 0 0 1
L L H L L L L L 1 0 0 1 0
L L L H L L L L 1 0 0 1 1
L L L L H L L L 1 0 1 0 0
L L L L L H L L 1 0 1 0 1
L L L L L L H L 1 0 1 1 0
L L L L L L L H 1 0 1 1 1
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A-14	 answers to odd-numbered problems

	47.	 See the block diagram in Figure P–44.
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decoder
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module
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adder
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No
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No

Yes

BCD
adder

BCD
adder

fgp_04200

Figure P–44
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(6)
A > B
A = B
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(2)
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(4)
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A5
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A7

(12)

(13)

(15)
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B4

B5

B6

B7

(11)

(14)
(1)

(9)

A = B
(2)

(3)
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Figure P–45

	49.	 See Figure P–45.

	 3.	 See Figure P–48.

R

S

Q

fgp_04600

Figure P–48

D

Q

EN

Figure P–49

	 5.	 See Figure P–49.

Q

D

EN

fgp_04800

Figure P–50

	 7.	 See Figure P–50.

Q

CLK

D

Figure P–51

	 9.	 See Figure 51.

Q

CLK

D

fgp_05000Figure P–52

	11.	 See Figure P–52.

Keypad
with

active-LOW
outputs

VCC

4
(7)(1)

(2)

(3)
5

6

3
(13)

2
(12)

1
(11)

(4)
7

(5)
8

(10)
9

74HC147

(8)

(3) (4)

(9) (1) (2)

(6) (5) (6)

(4) (9) (8)

74LS04

1

2

4

8

+5 V

BCD

(16)

Figure P–46

	51.	 See Figure P–46.

	53.	 Cin of U1 is shorted to VCC.

	55.	 Input C of 4-to-16 line decoder is shorted to ground.

R

S

Q

fgp_04500

Figure P–47

Chapter 7
	 1.	 See Figure P–47.
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	 answers to odd-numbered problems	 A-15

	15.	 See Figure P–54.

CLK

J

K

Q

fgp_05200

Figure P–54

Q

D

CLK

Figure P–53

	13.	 See Figure P-53.

CLK

J1

J2

J3

K1

K2

K3

Q

fgp_05300

Figure P–55

	17.	 See Figure P–55.

	19.	 Direct current and dc supply voltage

	21.	 16.66 MHz

	23.	 128 mA, 512 mW

	25.	 divide-by-2; see Figure P–56.

CLK

Q

fgp_05400

Figure P–56

	27.	 0.07 ms

	29.	 C1 = 1 mF, R1 = 454 kæ (use 430 kæ). See Figure P–57.

R1
VCC

Output

RESET

+5 V

430 k�

Trigger

GND

TRIG

THRESH

DISCH
555

OUT

CONT

0.01   FC1 C21   Fµ µ

fgp_05500
Figure P–57

	31.	 R1 = 9.1 kæ, R2 = 4.3 kæ.

	33.	 The wire from pin 6 to pin 10 and the ground wire are 
reversed on the protoboard.

	35.	 CLR shorted to ground.

	37.	 See Figure P–58. Delays not shown.

CLK

QA

Upper NAND
Output

QB

Lower NAND
Output

X

(a)

Upper NAND
Output

QA

Lower NAND
Output

X

(b)

(c) X   = LOW if QB = 1; X = QA if QB = 0

QB
Floating level (HIGH)

Floating level (HIGH)

Upper NAND
Output

QA

Lower NAND
Output

X

(d)

QB

Figure P–58
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A-16	 answers to odd-numbered problems

QE
J

C

K

1

J

C

K

1

J

C

K

1

Switch
pulses

J

C

K

1

J

C

K

1

Box full

fgp_05900

Figure P–61

	43.	 Increase the REXT CEXT time constant of the 25 s one-shot by 
2.4 times.

	45.	 See Figure P–61.

	39.	 See Figure P–59.

		  5 s: C1 = 1 mF, R1 = 4.3 Mæ

		  30 s: C1 = 2.2 mF, R1 = 12 Mæ

0.01   Fµ

R1

C1

VCCRESET

+5 V

Trigger

GND

TRIG

THRESH

DISCH
555

OUT

CONT

fgp_05700

Figure P–59

REXT

VCC

CEXT

RX RX/CX

CLR
Q

Q&≥ 1

fgp_05800

Figure P–60

	41.	 See Figure P–60.

		  5 s: CEXT = 1 mF; REXT = 15 Mæ

		  30 s: CEXT = 10 mF; REXT = 8.2 Mæ

CLK

Q0

Data in

Q1

Q2

Q3

fgp_07400

Figure P–62

21 43 65 87 109 1211 1413 1615 1817 2019

CLK

Data in

Data out

fgp_07500

Figure P–63

	47.	 R input of U1 is shorted to VCC.

	49.	 The clock input is shorted to VCC or ground.

	51.	 The D input of U2 is shorted to ground.

Chapter 8
	 1.	 A digital circuit for data storage and movement.

	 3.	 Refers to movement of data within or into/out of the register.

	 5.	 See Figure P–62.

	 7.	 Initially:	 101001111000

		  CLK1:	 010100111100

		  CLK2:	 001010011110

		  CLK3:	 000101001111

		  CLK4:	 000010100111

		  CLK5:	 100001010011

		  CLK6:	 110000101001

		  CLK7:	 111000010100

		  CLK8:	 011100001010

		  CLK9:	 001110000101

		  CLK10:	 000111000010

		  CLK11:	 100011100001

		  CLK12:	 110001110000

	 9.	 See Figure P–63.
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	 answers to odd-numbered problems	 A-17

CLK 71 3 4 5 6 8 9 102

J

K

SH/LD

CLR

D0

D1

D2

D3

Q0

Q1

Q2

Q3

fgp_08000

Figure P–68

SER

SH/LD

CLK INH

Q7

CLK 71 3 4 5 6 8 9 10 11 12 13 142

fgp_07900

Figure P–67

71 3 4 5 6 8 9 10 11 12 13 142

SER

SH/LD

CLK

CLK INH

Q7

fgp_07800

Figure P–66

CLK

A

Q0

B

CLR

Q1

Q2

Q3 through Q7 remain LOW.

fgp_07700

Figure P–65

21 43 65 87 109 1211 1413 1615 1817 2019
CLK

Data in

Q0

Q1

Q2

Q3

fgp_07600

Figure P–64

	11.	 See Figure P–64.

	13.	 See Figure P–65.

	15.	 See Figure P–66.

	17.	 See Figure P–67.

	19.	 See Figure P–68.
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A-18	 answers to odd-numbered problems

		  (c)	 �The NAND (negative-OR) gate input connected to the 
first column is open or shorted.

		  (d)	 The “2” input to the column encoder is open.

	37.	 (a)	 Contents of data output register remain constant.

		  (b)	 Contents of both registers do not change.

		  (c)	 �Third stage output of data output register remains 
HIGH.

		  (d)	 �Clock generator is disabled after each pulse by 
the flip-flop being continuously SET and then  
RESET.

	39.	 shift register A: 1001

		  shift register C: 00000100

	41.	 Control flip-flop: 74HC76

		  Clock generator: 555

		  Counter: 74HC163

		  Data input register: 74HC164

		  Data output register: 74HC199

		  One-shot: 74121

	43.	 See Figure P–72.

	45.	 See Figure P–73.

	47.	 The D input of FF1 is shorted to ground.

	49.	 The U3 Q’ output of the Johnson counter is connected to 
the U2 D input.

	51.	 The connection between the Q output of U3 and D input of 
U4 is open.

	21.	 Initially (76):	 01001100

		  CLK1:	 10011000	 left

		  CLK2:	 01001100	 right

		  CLK3:	 00100110	 right

		  CLK4:	 00010011	 right

		  CLK5:	 00100110	 left

		  CLK6:	 01001100	 left

		  CLK7:	 00100110	 right

		  CLK8:	 01001100	 left

		  CLK9:	 00100110	 right

		  CLK10:	 01001100	 left

		  CLK11:	 10011000	 left

	23.	 See Figure P–69.

	25.	 (a)	 2	 (b)   4

		  (c)	 6	 (d)   9

	27.	 See Figure P–70.

	29.	 See Figure P–71.

	31.	 An incorrect code may be produced.

	33.	 D3 input open

	35.	 (a)	 �No clock at switch closure because of faulty NAND 
(negative-OR) gate or one-shot; open clock (C) input 
to key code register; open SH/LD input to key code 
register

		  (b)	 �Diode in third row open: Q2 output of ring counter 
open

SH/LD

CLK

CLR

(12)

SRG 4

C
Q3 (12)

SRG 4

C
Q3 (12)

SRG 4

C
Q3

(2)
(3)
(9)
(1)

(2)
(3)
(9)
(1)

(2)
(3)
(9)
(1)

(10) (10) (10)

(2)
(3)
(9)
(1)

(10)

(12)

74HC195

SRG 4

C
Q3

K
J

K
J

K
J

K
J

74HC195 74HC195 74HC195

fgp_08300

Figure P–71

D0 D1 D2 D3

Q0 Q1 Q2 Q3 (12)

S0
S1

CLR

SL SER

SR SER

(10)
(9)
(1)

(2)
(7)

(11)

CLK

SR SER

   SL SER

(11)

(7)
(2)

(10)
(9)
(1)

SRG 4

74HC194

C

(15) Q0 Q1 Q2 Q3

D1 D2 D3D0

C

SRG 4

74HC194

fgp_08100

Figure P–69

CLK

Q1

Q2

Q0

Q3

Q4

Q5

Q6

Q7

Q8

Q9

fgp_08200

Figure P–70
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	 answers to odd-numbered problems	 A-19

+ V

C
K

Q

Q

+ V
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J

C
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K

J
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S S

C T

Detects
stop
bits

+ V Stop
bits 1 2 8

SH/LD
SRG 11

Out

Start bit

C

J

Q

Q

fgp_08500

Figure P–73

D0

C C

SH/LD

CLK

Stop bits
+VCC

SRG 4

74HC195

Q3

SER
74HC195

SRG 8

D1

Data bits

D2 D3 D4 D5 D6 D7
Start bit

Q7

fgp_08400

Figure P–72

CLK

Q0

Q1

fgp_06000

Figure P–75

Logic for
decoding state 9 State 9

Binary
0

Binary
1

Clock

Modulus 10 counter

Binary
9

Present state

State diagram
Moore machine

Combinational
logic

Flip-flops

Figure P–74

Chapter 9
	 1.	 See Figure P–74.

	 3.	 See Figure P–75.

	 5.	 Worst-case delay is 24 ns; it occurs when all flip-flops 
change state from 011 to 100 or from 111 to 000.

	 7.	 8 ns

	 9.	 Initially, each flip-flop is reset.

		  At CLK1:

	 J0 = K0 = 1 Therefore Q0 goes to a 1.

	 J1 = K1 = 0 Therefore Q1 remains a 0.

	 J2 = K2 = 0 Therefore Q2 remains a 0.

	 J3 = K3 = 0 Therefore Q3 remains a 0.

		  At CLK2:

		 J0 = K0 = 1 Therefore Q0 goes to a 0.

		 J1 = K1 = 1 Therefore Q1 goes to a 1.

		 J2 = K2 = 0 Therefore Q2 remains a 0.

		 J3 = K3 = 0 Therefore Q3 remains a 0.

Z01_FLoY5983_11_GE_anS.indd page 19  20/11/14  3:22 pM user /204/pH01677_pIV/9781292075983_FLoYD/FLoYD_DIGITaL_FUnDaMEnTaLS11_pIE_97812920759 ...



A-20	 answers to odd-numbered problems

Q0

J0

C

K0

Q0

Q1

Q2

Q1

Q2

CLK

Q1

J1

C

K1

Q1

Q2

J2

C

K2

Q2

Q2

Q2

Q0

Q0

fgp_06500

Figure P–80

		  At CLK3:

		 J0 = K0 = 1 Therefore Q0 goes to a 1.

		 J1 = K1 = 0 Therefore Q1 remains a 1.

		 J2 = K2 = 0 Therefore Q2 remains a 0.

		 J3 = K3 = 0 Therefore Q3 remains a 0.

		  A continuation of this procedure for the next seven clock 
pulses will show that the counter progresses through the 
BCD sequence.

	11.	 See Figure P–76.

CLK

Q0

Q1

CLR

Q2

Q3

LOW

fgp_06100

Figure P–76

CLK

Q0

Q1

Q2

Q3

ENP

ENT

LOAD

RCO

fgp_06200

Figure P–77

	13.	 See Figure P–77.

	19.	 The sequence is 0000, 1111, 1110, 1101, 1010, 0101. The 
counter “locks up” in the 1010 and 0101 states and alternates 
between them.

	21.	 See Figure P–80.

CLK

Q0

Q1

CTEN

Q2

Q3

0

D/U

LOAD

fgp_06300

Figure P–78

	15.	 See Figure P–78.

CLK

Q0

Q1

CTEN

Q2

Q3

0

0

D/U

LOAD

fgp_06400

Figure P–79

	17.	 See Figure P–79.
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	 answers to odd-numbered problems	 A-21

C

CLK
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CTEN

CTR DIV10

1
100 kHz
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CTR DIV10
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C

CTEN

CTR DIV10
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C

CTEN

CTR DIV10

100 Hz
TC TC TC TC

fgp_06700

Figure P–82

	25.	 See Figure P–82 for divide-by-10,000. Add one more DIV 
10 counter to create a divide-by-100,000.

Q3

J3

C

K3

Q3

CLK

Q1

Q1

Y

Q0

Y

Q2

J2

C

K2

Q2

Q1

Q3

Q1

Q1

Q3

Q1

J1

C

K1

Q1

Q0

J0

C

K0

Q0

Q2

Q3

1             1

Q2

fgp_06600

Figure P–81

	23.	 See Figure P–81.
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Q0
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Q2

Q3

(a)

(MSB)
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Q2

Q3

(b)

(MSB)

Q0
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Q2

Q3

(c)
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Q0
Q1
Q2

Q3

(d)

(MSB)

Q0

Q1

Q2

Q3

(e)

fgp_06800

Figure P–83

	27.	 See Figure P–83.

	29.	 CLK2, output 0; CLK4, outputs 2, 0; CLK6, output 4; CLK8, 
outputs 6, 4, 0; CLK10, output 8; CLK12, outputs 10, 8; 
CLK14, output 12; CLK16, outputs 14, 12, 8

	31.	 A glitch of the AND gate output occurs on the 111 to 000 
transition. Eliminate by ANDing CLK with counter outputs 
(strobe) or use Gray code.

	33.	 Hours tens: 0001

		  Hours units: 0010

		  Minutes tens: 0000

		  Minutes units: 0001

		  Seconds tens: 0000

		  Seconds units: 0010

	35.	 68

	37.	 (a)	 Q0 and Q1 will not change from their initial state.

		  (b)	 Normal operation. Q0 and Q1 toggle.

		  (c)	 Q0 toggles and Q1 remains in initial state.

		  (d)	�  0 goes HIGH and remains HIGH. Q1 does not 
change.

		  (e)	 Q0 toggles and Q1 remains LOW.

	39.	 The D input to FF1 is open acting as a HIGH.

	41.	 Q0 input to AND gate open and acting as a HIGH

	43.	 See Table P–14.

	45.	 The decode 6 gate interprets count 4 as a 6 (0110) and clears 
the counter back to 0 (actually 0010 since Q1 is open). The 
apparent sequence of the tens portion of the counter is 0010, 
0011, 0010, 0011, 0110.
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A-22	 answers to odd-numbered problems

	47.	 See Figure P–84. The floor code is hardwired and is unique 
to each floor. The fifth floor logic is shown to illustrate.

	49.	 (a)	 Change floor counter to two bits.

		  (b)	 �Change the Call/Req code register and associated logic 
to two bits.

		  (c)	 Modify the 7-segment decoder for a 2-bit code.

	51.	 See Figure P–85.

	53.	 See Figure P–86.

	55.	 See Figure P–87.

	57.	 See Figure P–88.

	59.	 The input of the U5 AND gate that connects to the Q output 
of U2 shorted to VCC.

	61.	 Line to LOAD’ input always LOW.

Delay
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Pulse
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CALL pulse

HARD WIRED CODE1 10
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button

Three 2-input AND gates
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RCO
D0

0
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0

D2

0

D3

1
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LOAD

74HC161 74HC161 74HC161

fgp_07000

Figure P–85

Table P–14

Stage Open Loaded Count fOUT

1 0 63C1 250.006 Hz
1 1 63C2 250.012 Hz
1 2 63C4 250.025 Hz
1 3 63C8 250.050 Hz
2 0 63D0 250.100 Hz
2 1 63E0 250.200 Hz
2 2 63C0 250 Hz
2 3 63C0 250 Hz
3 0 63C0 250 Hz
3 1 63C0 250 Hz
3 2 67C0 256.568 Hz
3 3 6BC0 263.491 Hz
4 0 73C0 278.520 Hz
4 1 63C0 250 Hz
4 2 63C0 250 Hz
4 3 E3C0 1.383 kHz
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	 answers to odd-numbered problems	 A-23

C
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Figure P–87

Chapter 10
	 1.	 X = A B C + ABC + ABC

	 3.	 See Figure P–89.

	 5.	 A CPLD basically consists of multiple SPLDs that can be 
connected with a programmable interconnect array.

	 7.	 (a)	 ABCD

		  (b)	 ABC(D + E) = ABCD + ABCE

	 9.	 X = AB + AB

	11.	 X1 = ABCD + ABCD + ABCD; 
X2 = ABCD + ABCD + ABCD + ABCD

	13.	 (a)	 Combinational; 1

	 	 (b)	 Registered; 0

Y

A B C DA B C D

Figure P–89
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Figure P–88
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Figure P–86
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A-24	 answers to odd-numbered problems

	15.	 (a)	 Registered        (b)   GCK1

		  (c)	 0	 (d)   0

	17.	 SOP output = A B C + A BC + ABC + ABC + ABC

	19.	 See Figure P–90.

4-input
LUT

2-input
LUT

fgp_08700

Figure P–90

	25.	 Shift input = 1, data are applied to SDI, go through the 
MUX, and are clocked into Capture register A on the  
leading edge of the clock pulse. From the output of Capture 
register A, the data go through the upper MUX and are 
clocked into Capture register B on the trailing edge of the 
clock pulse.

	27.	 PDI/O = 0 and OE = 0. The data are applied to the input 
pin and go through the selected MUX to the internal 
programmable logic.

	29.	 000011001010001111011

		  0	 000011001010001111011

		  1	 000011001010001111011

		  3	 000011001010001111011

		  6	 000011001010001111011

		  12	 000011001010001111011

		  9	 000011001010001111011

		  2	 000011001010001111011

		  5	 000011001010001111011

		  10	 000011001010001111011

		  4	 000011001010001111011

		  8	 000011001010001111011

		  1	 000011001010001111011

		  3	 000011001010001111011

		  7	 000011001010001111011

		  15	 000011001010001111011

		  14	 000011001010001111011

		  13	 000011001010001111011

		  11	 000011001010001111011

	31.	 The AND-OR logic switches either the Call code from the floor 
panel or the Request code from the elevator panel and the asso-
ciated clock into the register based on the state of the flip-flop.

Chapter 11
	 1.	 (a)	 read only (ROM) ie O0–O3

		  (b)   read/write option (RAM) ie I/O0–I/O3

	 3.	 Write – puts a data into a specific address in the memory 
Read – copies the data out of a specified address in the 
memory

	 5.	

Bit 0 Bit 1 Bit 2 Bit 3

Row 0 0 0 0 0
Row 1 0 1 0 0
Row 2 0 0 0 0
Row 3 0 0 0 1

	 7.	 512 row * 128 8-bit columns

	 9.	 a relatively small, high-speed memory that stores the most 
recently used instructions or data from a larger, but slower 
main memory.

(a)
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A3

X
A2

(b)

A
B

D

X
C
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Figure P–91

	21.	 See Figure P–91.
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Figure P–92

	23.	 See Figure P–92.
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	 answers to odd-numbered problems	 A-25

Table P–15

Inputs Outputs
A1 A0 O3 O2 O1 O0

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 1 1 0
1 1 0 0 1 0

0

1

2

3

4

5

6

7

8

9

0 1

1

2

4

8

D0

D1

D2

D3

E3 E2 E1 E0
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Figure P–93

	13.	 See Figure P–93.

	19.	 8 bits, 64k words; 4 bits, 256k words

	21.	 lowest address: FC016

		  highest address: FFF16

	23.	 A hard disk is a rigid platter made of aluminum alloy or 
a mixture of glass and ceramic covered with a magnetic 
coating. It generally comes in three diameter sizes. 3.5 in., 
2.5 in., and 1.8 in. A hard disk drive is hermetically sealed 
to keep the disk dust-free.

	25.	 Seek operation, seek time and latency period.
Access time for the disk drive = average seek time + average 
latency period

	27.	 CD is single sided while DVD can store data on both sides 
and hence DVD has more space than a normal CD.

	29.	 Memory hierarchy refers to an arrangement of various 
memory elements within the computer architecture to 
maximize the processing speed and to minimize the cost.

	31.	 The Hit Rate is defined as the percentage of memory accesses 
that find the requested data in the given level of memory.

	33.	 See Figure P–94.

	35.	 The architecture is the way in which a cloud storage system 
is structured and organized. Generically, a cloud storage 
system consists of a front end that uses access protocols, a 
control that uses data handling protocols, and a back end that 
provides storage.

	37.	 Checksum content is in error.

	39.	 (a)	 ROM 2

		  (b)	 ROM 1

		  (c)	 All ROMs

Server
6

Front
end/

Server
Control

From user
device

Server
1

Server
2

Server
3

Server
4

Server
5

Figure P–94

	15.	 Blown links: 1–17, 19–23, 25–31, 34, 37, 38, 40–47, 53, 55, 
58, 61, 62, 63, 65, 67, 69

	17.	 Use eight 16k * 4 DRAMs with sixteen address lines. Two of 
the address lines are decoded to enable the selected memory 
chips. Four data lines go to each chip.

	11.	 See Table P–15.
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A-26	 answers to odd-numbered problems

	13.	 11, 11, 11

	15.	 See Figure P–97.

	17.	 See Figure P–98.

	19.	 (a)	 33.33%          (b)   3.22%

		  (c)	 0.024%

	21.	 See Figure P–99.

	23.	 By using a sample-and-hold circuit.

Chapter 12
	 1.	 See Figure P–95.

	 3.	 11, 11, 11, 11, 01, 11, 11, 11, 11

	 5.	 See Figure P–96.

	 7.	 200

	 9.	 -33

	11.	 001, 010, 011, 101, 110, 111, 111, 111, 111, 110, 101, 101, 
110, 110, 110, 101, 100, 011, 010, 001
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	 answers to odd-numbered problems	 A-27

Chapter 13
	 1.	 The essential elements of a data transmission system are the 

data source, the receiving device and the transmission medium 
which transmits the data from the source to the receiver.

	 3.	 Cross talk is a type of distortion seen in data transmission, 
which can be minimized by using twisted pair cables, where 
the two wires in each pair are twisted so that they cross each 
other at nearly 90˚ and hence cancel any electromagnetic 
fields generated by the signals in the wires.

	 5.	 In a single mode fiber, the light travels in a straight line 
as a single ray. Also, the core is much smaller in diameter 
than the multimode. The single mode results in an increased 
bandwidth and distance for transmission, but is costlier than 
multimode fibers.

	 7.	 See Figure P–100.

	 9.	 Ground wave

		  Ionosphere

		  Line-of-sight

	11.	 4 Mbps

	13.	 10 Mbaud

	15.	 See Figure P–101.

	17.	 001110011

	19.	 11010111110001000001

	21.	 See Figure P–102.

	23.	 See Figure P–103.

	25.	 A digital-to-analog converter changes a digital code to the 
corresponding analog signal.

	27.	 18.75 million instructions/s

	29.	 1.	 �Program address generate (PG). The program address is 
generated by the CPU.

		  2.	 �Program address send (PS). The program address is sent 
to the memory.

		  3.	 �Program access ready wait (PW). A memory read 
operation occurs.

		  4.	 �Program fetch packet receive (PR). The CPU receives 
the packet of instructions.
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A-28	 answers to odd-numbered problems

	25.	 In pulse amplitude modulation (PAM), the heights or 
amplitudes of the pulses are varied according to the 
modulating analog signal. Each pulse represents a value 
of the analog signal. PAM is the simplest, but least used, 
type of pulse modulation although it is used in the Ethernet 
communications standard.

		  A basic method of producing a PAM representation of an 
analog signal is to use a constant-amplitude pulse source to 
sample the analog wave that has a frequency lower than the 
pulses for a sine wave input. Any form of analog signal can 
be converted to a PAM output. The pulses turn the switch on 
(closed) and off (open) to sample the waveform. When there 
is a pulse, the sample switch is closed and the amplitude 
of the sine wave at that point goes to the hold element that 
maintains the initial analog value occurring at the beginning 
of each pulse for the duration of the pulse. The output goes 
to zero between pulses.

	27.	 Data rate = 2Mbps and pulse positions = 4

	29.	 Three bits

	31.	 Multiplexing ( MUXING): A method used to transmit the 
digital data from multiple sources over a single channel. It is 
widely used in telecommunication and computer networks. 
Muxing is used on the sending end of a data communication 
system. Two major types are time-division and frequency-
division.

		  Demultiplexing (DEMUXING): A method used to separate 
the data from a single channel to multiple channels. Demuxing 
is used on the receiving end.

	33.	 In FDM, band-pass filters are used on the receiving end to 
separate the transmitted signals.

	35.	 Width: The number of bits that a bus can transmit at one 
time. The width of a typical bus may vary from 1 bit for a 
serial bus, till 64 bits for a parallel bus.

		  Frequency: the clock frequency at which a bus can operate.

		  Transfer speed: the number of bytes per clock cycle.

		  Bandwidth: the number of bytes per clock cycle ie the 
number of clock cycles per second. This is also called 
throughput.

	37.	 400 Mbps and 382 Mbps

	39.	 A differential bus provides much higher data rates and longer 
transmission distances than does a single-ended bus.

	41.	 The PCI-Express bus does not use a shared bus as PCI and 
PCI-X do.

	43.	 The terms talker and listener are associated with the IEE-488 
bus (GPIB).

	45.	 Three data bytes are transferred because the NDAC line goes 
HIGH three times, each time indicating that a data byte is 
accepted.

	47.	 (a)	 SCSI

		  (b)	 USB

		  (c)	 Super speed USB (V 3.0)

	49.	 Sync Field: All packets start with a sync (synchronization) 
field. The sync field consists of 8 bits for low and full speed 
or 32 bits for high speed and is used to synchronize the 
receiver clock with that of the transmitter.

		  PID Field: The packet identification field is used to identify 
the type of packet that is being transmitted. There are 4 bits 
in the PID; however, to ensure it is received correctly, the 
4 bits are complemented and repeated, making an 8-bit PID 
code.

		  Data Field: Contains up to 1024 bytes of data.

		  CRC Field: Cyclic Redundancy Checks are performed on the 
data within the packet using from 5 bits to 16 bits, depending 
on the type of packet.

		  EOP Field: This field signals the end of a packet.

	51.	 1024 bytes

	53.	 RS-232 uses single-ended transmission. RS-422 uses dif-
ferential transmission.

	55.	 I2C is an internal serial bus primarily for connecting ICs on a 
PC board.

	57.	 Other possible units on an automotive CAN system include 
wiper control unit, parking control unit, entertainment system 
unit, tire pressure monitor, seat position unit, heads-up 
display unit.

	59.	 See Figure P–104.
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	61.	 See Figure P–105.

Chapter 14
	 1.	 The basic elements of a computer are the CPU, memory/

storage, input/output, and buses.

	 3.	 A bus is a conductor or set of conductors for transferring data 
that meet certain specifications.
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	 answers to odd-numbered problems	 A-29

	 5.	 Tri-state and open-collector outputs

	 7.	 (a)	 Nine loads      (b)   Two loads

	 9.	 The wait-state holds the state of the bus signals for one 
processor clock to allow the processor to complete an access 
operation.

	11.	 The microprocessor controls system hardware, provides 
hardware support for the operating system, and executes 
application programs.

	13.	 During fetch, an instruction is read from memory and 
decoded. During execute, the processor carries out the 
sequence of operations called for by the instruction.

	15.	 (1) Address of op-code placed on address bus; (2) Op-code 
(instruction) placed on data bus and stored in data register; 
(3) Instruction decoded; (4) Instruction carried out.

	17.	 First fetch/execute cycle: (1) Address of indexed op-code 
placed on address bus; (2) Indexed op-code placed on data 
bus and stored in data register; (3) Indexed instruction de-
coded; (4) Address of operand fetched.

		  Second fetch/execute cycle: (5) Offset address selected; 
(6) Offset address placed on data bus and stored in data 
register; (7) Offset address added to contents of index 
register to produce address of operand.

		  Third fetch/execute cycle: (8) Address of operand trans-
ferred to address register; (9) Address of operand placed 
on address bus; (10) Operand address placed on data 
bus and stored in data register; (11) Operand loaded into 
accumulator.

	19.	 The interrupt vector table is used in auto-vectored interrupts 
to obtain the starting address for an interrupt service routine 
(ISR).

	21.	 The sequence of events during a bus request operation is as 
follows:

		  1.	 �The bus master requesting control of the system buses 
submits a request by asserting the processor’s bus re-
quest (BR) line.

		  2.	 �The processor tri-states the system buses and signals that 
it has released control of the buses by asserting the bus 
grant (BG) line.

		  3.	 �The requesting bus master uses the system address, data, 
and control lines to transfer data between system devices.

		  4.	 �After completing the data transfers, the requesting bus 
master tri-states the system buses and signals the end 
of the bus request operation by asserting the bus grant 
acknowledge (BGACK) line.

	23.	 The first group consists of application software, which in-
cludes word processors, spreadsheets, computer games, and 
other programs, written to accomplish some specific task. 
The second group consists of system software, a major por-
tion of which is the operating system. The operating system 
manages the system hardware, supervises the running of 
applications software, provides a standard operating environ-
ment for programs in which they can run and interacts with 
the computer hardware.

	25.	 Two ways in which computers execute more than one 
process are multitasking and multiprocessing.

	27.	 MMUs handle memory accessing including memory protec-
tion, wait state generation, address translation for virtual 
memory, and cache control.

	29.	 One possible flow chart is shown in Figure P–106.

	31.	 Move contents of bx register into ax register.

	33.	 A microcontroller is a device that combines a microprocessor 
with common peripheral units.

	35.	 Microcontrollers are widely used in embedded applications 
because they provide the interface and processing resources 
required by embedded systems.

	37.	 An SoC is a system on a chip and has all the components and 
functions to implement a complete system such as a compu-
ter. A microcontroller is similar to a SoC but generally more 
limited in available functions.

Start

Save in memory
location TOTAL 

Initialize sum
to zero

Set count = 1

Add number to sum

Increment count 
by 1

Count = 10?
YES

NO

Fetch first number

Fetch next number

Figure P–106

Chapter 15
(Chapter 15 is on the website.)

	 1.	 No; VOH(min) 6 VIH(min)

	 3.	 0.15 V in HIGH state; 0.25 V in LOW state.

	 5.	 Gate C

	 7.	 12 ns

	 9.	 Gate C

	11.	 Yes, G2

	13.	 (a)	 on	 (b)   off

		  (c)	 off	 (d)   on
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A-30	 answers to odd-numbered problems

	21.	 See Figure P–108.

	23.	 (a)	 Rp = 198 æ

		  (b)	 Rp = 198 æ

		  (c)	 Rp = 198 æ

	25.	 ALVC

	27.	 (a)	 A, B to X: 9.9 ns

			   C, D to X: 6.6 ns

	(b)	 A to X1, X2, X3: 14 ns

		  B to X1: 7 ns

		  C to X2: 7 ns

		  D to X3: 7 ns

	(c)	 A to X: 11.1 ns

		  B to X: 11.1 ns

		  C to X: 7.4 ns

		  D to X: 7.4 ns

	29.	 ECL operates with nonsaturated BJTs.

	17.	 (a)	 HIGH	 (b)	 Floating

		  (c)	 HIGH	 (d)	 High-Z

	19.	 (a)	 LOW	 (b)	 LOW

		  (c)	 LOW
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	15.	 See Figure P–107 for one possible circuit.
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acceptor  A receiving device on a bus.

access time  The time from the application of a valid memory 
address to the appearance of valid output data.

addend  In addition, the number that is added to another number 
called the augend.

adder  A logic circuit used to add two binary numbers.

address  The location of a given storage cell or group of cells in a 
memory; a unique memory location containing one byte.

address bus  A one-way group of conductors from the 
microprocessor to a memory, or other external device, on 
which the address code is sent.

adjacency  Characteristic of cells in a Karnaugh map in which 
there is a single-variable change from one cell to another cell 
next to it on any of its four sides.

aliasing  The effect created when a signal is sampled at less 
than twice the signal frequency. Aliasing creates unwanted 
frequencies that interfere with the signal frequency.

alphanumeric  Consisting of numerals, letters, and other 
characters.

ALU  Arithmetic logic unit; the key processing element of a 
microprocessor that performs arithmetic and logic operations.

amplitude  In a pulse waveform, the height or maximum value of 
the pulse as measured from its low level.

analog  Being continuous or having continuous values, as 
opposed to having a set of discrete values.

analog-to-digital (A/D) conversion  The process of converting an 
analog signal to digital form.

analog-to-digital converter (ADC)  A device used to convert an 
analog signal to a sequence of digital codes.

AND  A basic logic operation in which a true (HIGH) output 
occurs only when all the input conditions are true (HIGH).

AND array  An array of AND gates consisting of a matrix of 
programmable interconnections.

AND gate  A logic gate that produces a HIGH output only when 
all of the inputs are HIGH.

ANSI  American National Standards Institute.

antifuse  A type of PLD nonvolatile programmable link that 
can be left open or can be shorted once as directed by the 
program.

architecture  The VHDL unit that describes the internal operation 
of a logic function; the internal functional arrangement 
of the elements that give a device its particular operating 
characteristics.

array  In a PLD, a matrix formed by rows of product-term lines 
and columns of input lines with a programmable cell at each 
junction. In VHDL, an array is an ordered set of individual 
items called elements with a single identifier name.

ASCII  American Standard Code for Information Interchange; the 
most widely used alphanumeric code.

ASK  Amplitude shift keying; a form of modulation in which a 
digital signal modulates the amplitude of a higher frequency 
sine wave.

assembler  A program that converts English-like mnemonics into 
machine code.

assembly language  A programming language that uses English-
like words and has a one-to-one correspondence to machine 
language.

associative law  For addition (ORing) and multiplication 
(ANDing) of three or more variables, the order in which the 
variables are grouped makes no difference.

astable  Having no stable state. An astable multivibrator oscillates 
between two quasi-stable states.

asynchronous  Having no fixed time relationship; not occurring 
at the same time.

asynchronous counter  A type of counter in which each stage is 
clocked from the output of the preceding stage.

augend  In addition, the number to which the addend is added.

bandwidth  The frequency at which a sinusoidal input signal is 
attenuated to 70.7 percent of its original amplitude.

bank  A section of memory within a single memory array (chip).

base  One of the three regions in a bipolar junction transistor.

base address  The beginning address of a segment of memory.

baud  The number of symbols per second in a data transmission.

BCD  Binary coded decimal; a digital code in which each of the 
decimal digits, 0 through 9, is represented by a group of four bits.

BEDO DRAM  Burst extended data output dynamic random-
access memory.

BiCMOS  A family of logic circuits that combines CMOS and 
bipolar logic.

bidirectional  Having two directions. In a bidirectional shift 
register, the stored data can be shifted right or left.

binary  Having two values or states; describes a number system 
that has a base of two and utilizes 1 and 0 as its digits.

BIOS  Basic input/output system; a set of programs in ROM that 
interfaces the I/O devices in a computer system.

bipolar  A class of integrated logic circuits implemented with 
bipolar transistors; also known as TTL.

bistable  Having two stable states. Flip-flops and latches are 
bistable multivibrators.

bit  A binary digit, which can be either a 1 or 0.

bit rate  The number of bits per second in a data transmission.

bitstream  A series of bits describing a final design that is sent to 
the target device during programming.

bit time  The interval of time occupied by a single bit in a 
sequence of bits; the period of the clock.

BJT  Bipolar junction transistor; a semiconductor device used for 
switching or amplification. A BJT has two junctions, the base-
emitter junction and the base-collector junction.

Blue-ray  A disc storage technology that uses a blue laser to 
achieve more density and definition than a DVD.

Boolean addition  In Boolean algebra, the OR operation.

Glossary
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A-32	 Glossary

character  A symbol, letter, or numeral.

circuit  An arrangement of electrical and/or electronic 
components interconnected in such a way as to perform a 
specified function.

CLB  Configurable logic block; a unit of logic in an FPGA that 
is made up of multiple smaller logic modules and a local 
programmable interconntect that is used to connect logic 
modules within the CLB.

clear  An asynchronous input used to reset a flip-flop (make the Q 
output 0); to place a register or counter in the state in which it 
contains all 0s.

clock  The basic timing signal in a digital system; a periodic 
waveform used to synchronize operation.

cloud storage  A remote network of servers that is connected to a 
user device through the Internet.

CMOS  Complementary metal oxide semiconductor; a class of 
integrated logic circuits that is implemented with a type of 
field-effect transistor.

coaxial cable  A type of data transmission media in which a 
shielded conductor is used to minimize EMI.

code  A set of bits arranged in a unique pattern and used to 
represent such information as numbers, letters, and other 
symbols; in VHDL, program statements.

codec  A combined coder and decoder.

collector  One of the three regions in a bipolar transistor.

combinational logic  A combination of logic gates interconnected 
to produce a specified Boolean function with no storage or 
memory capability; sometimes called combinatorial logic.

commutative law  In addition (ORing) and multiplication 
(ANDing) of two variables, the order in which the variables 
are ORed or ANDed makes no difference.

comparator  A digital circuit that compares the magnitudes 
of two quantities and produces an output indicating the 
relationship of the quantities.

compiler  An application program in development software 
packages that controls the design flow process and translates 
source code into object code in a format that can be logically 
tested or downloaded to a target device.

complement  The inverse or opposite of a number; in Boolean 
algebra, the inverse function, expressed with a bar over the 
variable. The complement of a 1 is a 0, and vice versa.

component  A VHDL feature that can be used to predefine the logic 
function for multiple use throughout a program or programs.

contiguous  Joined together.

control bus  A set of conductive paths that connects the CPU to 
other parts of the computer to coordinate its operations and to 
communicate with external devices.

controller  An instrument that can specify each of the other 
instruments on the bus as either a talker or a listener for the 
purpose of data transfer.

control unit  The portion within the microprocessor that provides 
the timing and control signals for getting data into and out of 
the microprocessor and for synchronizing the execution of 
instructions.

Boolean algebra  The mathematics of logic circuits.

Boolean expression  A formulation of variables and operators 
used to express the operation of a logic circuit.

Boolean multiplication  In Boolean algebra, the AND operation.

boundary scan  A method for internally testing a PLD based on 
the JTAG standard (IEEE Std. 1149.1).

break point  A flag placed within a program source code to stop a 
program for investigation.

buffer  A circuit that prevents loading of an input or output.

bus  A set of connections and specifications for the transfer of 
data among two or more devices.

bus arbitration  The process that prevents two sources from 
using a bus at the same time.

bus contention  An adverse condition that could occur if two or 
more devices try to communicate at the same time on a bus.

bus master  Any device that can control and manage the system 
buses in a computer system.

bus protocol  A set of rules that allow two or more devices to 
communicate through a bus.

byte  A group of eight bits.

cache memory  A relatively small, high-speed memory that stores 
the most recently used instructions or data from the larger but 
slower main memory.

caching  The process of copying frequently accessed program 
instructions from main memory into faster memory to increase 
processing speed.

capacity  The total number of data units (bits, nibbles, bytes, 
words) that a memory can store.

carry  The digit generated when the sum of two binary digits 
exceeds 1.

carry generation  The process of producing an output carry in a 
full-adder when both input bits are 1s.

carry propagation  The process of rippling an input carry to 
become the output carry in a full-adder when either or both of 
the input bits are 1s and the input carry is a 1.

cascade  To connect “end-to-end” as when several counters are 
connected from the terminal count output of one counter to the 
enable input of the next counter.

cascading  Connecting two or more similar devices in a manner 
that expands the capability of one device.

CCD  Charge-coupled device; a type of semiconductor memory 
that stores data in the form of charge packets and is serially 
accessed.

CD-R  CD-Recordable; an optical disk storage device on which 
data can be stored once.

CD-ROM  An optical disk storage device on which data are 
prestored and can only be read.

CD-RW  CD-Rewritable; an optical disk storage on which data 
can be written and overwritten many times.

cell  An area on a Karnaugh map that represents a unique 
combination of variables in product form; a single storage element 
in a memory; a fused cross point of a row and column in a PLD.
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demultiplexer (demux)  A circuit (digital device) that switches 
digital data from one input line to several output lines in a 
specified time sequence.

dependency notation  A notational system for logic symbols 
that specifies input and output relationships, thus fully 
defining a given function; an integral part of ANSI/IEEE 
Std. 91-1984.

difference  The result of a subtraction.

differential operation  A bus operation that uses two wires for 
data (one for data and one for the complement of the data) and 
one wire for ground.

digit  A symbol used to express a quantity.

digital  Related to digits or discrete quantities; having a set of 
discrete values as opposed to continuous values.

digital signal processor (DSP)  A special type of microprocessor 
that processes data in real time.

digital-to-analog (D/A) conversion  The process of converting a 
sequence of digital codes to an analog form.

digital-to-analog converter (DAC)  A device in which 
information in digital form is converted to analog form.

DIMM  Dual in-line memory module.

diode  A semiconductor device that conducts current in only one 
direction.

DIP  Dual in-line package; a type of IC package whose leads must 
pass through holes to the other side of a PC board.

distributive law  The law that states that ORing several variables 
and then ANDing the result with a single variable is equivalent 
to ANDing the single variable with each of the several 
variables and then ORing the product.

dividend  In a division operation, the quantity that is being 
divided.

divisor  In a division operation, the quantity that is divided into 
the dividend.

DLT  Digital linear tape; a type of magnetic tape format.

DMA  Direct memory access; a method to directly interface a 
peripheral device to memory without using the CPU for control.

domain  All of the variables in a Boolean expression.

“Don’t care”  A combination of input literals that cannot 
occur and can be used as a 1 or a 0 on a Karnaugh map for 
simplification.

downloading  A design flow process in which the logic design is 
transferred from software to hardware.

drain  One of the terminals of a field-effect transistor.

DRAM  Dynamic random-access memory; a type of 
semiconductor memory that uses capacitors as the storage 
elements and is a volatile, read/write memory.

DSP core  The central processing unit of a digital system processor.

DTE  Data terminal equipment.

duty cycle  The ratio of pulse width to period expressed as a 
percentage.

DVD-ROM  Digital versatile disk-ROM; also known as digital 
video disk-ROM; a type of optical storage device on which 
data is prestored with a much higher capacity than a CD-ROM.

counter  A digital circuit capable of counting electronic events, 
such as pulses, by progressing through a sequence of binary 
states.

CPLD  A complex programmable logic device that consists 
basically of multiple SPLD arrays with programmable 
interconnections.

CPU  Central processing unit; the main part of a computer 
responsible for control and processing of data; the core of a 
DSP that processes the program instructions.

cross-assembler  A program that translates an assembly language 
program for one type of microprocessor to an assembly 
language for another type of microprocessor.

crosstalk  The presence of an unwanted signal via an accidental 
coupling.

current sinking  The action of a circuit in which it accepts 
current into its output from a load.

current sourcing  The action of a circuit in which it sends current 
out of its output and into a load.

cyclic redundancy check (CRC)  A type of error detection code.

data  Information in numeric, alphabetic, or other form.

data bus  A bidirectional set of conductive paths on which data 
or instruction codes are transferred into a microprocessor 
or on which the result of an operation is sent out from the 
microprocessor.

data center  A facility that houses a cloud storage system.

data selector  A circuit that selects data from several inputs one at 
a time in a sequence and places them on the output; also called 
a multiplexer.

data sheet  A document that specifies parameter values and 
operating conditions for an integrated circuit or other 
device.

DCE  Data communications equipment.

DDR  Double data rate.

DDR SDRAM  Double data rate, synchronous dynamic random-
access memory.

decade  Characterized by ten states or values.

decade counter  A digital counter having ten states.

decimal  Describes a number system with a base of ten.

decode  The process of interpreting coded information; changing  
data in a coded form into a more common form; a stage of the 
DSP pipeline operation in which instructions are assigned to 
functional units and are decoded.

decoder  A digital circuit (device) that converts coded information 
into another (familiar) or noncoded form.

decrement  To decrease the binary state of a counter by one.

delta modulation  A method of analog-to-digital conversion 
using a 1-bit quantization process.

design flow  The process or sequence of operations carried out to 
program a target device.

D flip-flop  A type of bistable multivibrator in which the output 
assumes the state of the D input on the triggering edge of a 
clock pulse.
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execute  A CPU process in which an instruction is carried out; 
a stage of the DSP pipeline operation in which the decoded 
instructions are carried out.

exponent  The part of a floating-point number that represents the 
number of places that the decimal point (or binary point) is to 
be moved.

fall time  The time interval between the 90% point and the 10% 
point on the negative-going edge of a pulse.

fan-out  The number of equivalent gate inputs of the same family 
series that a logic gate can drive.

FDM  Frequency division multiplexing; a broadband technique in 
which the total bandwidth available to a system is divided into 
frequency sub-bands and information is sent in analog form.

feedback  The output voltage or a portion of it that is connected 
back to the input of a circuit.

FET  Field-effect transistor.

fetch  A CPU process in which an instruction is obtained from 
the memory; a stage of the DSP pipeline operation in which an 
instruction is obtained from the program memory.

FIFO  First in–first out memory.

Firewire  A high-speed external serial bus standard developed by 
Apple Inc. and used in high-speed communications and real-
time data transfer, also known as IEEE-1394.

firmware  Small fixed programs and/or data structures that 
internally control various electronic devices; usually stored in 
ROM.

fixed-function logic  A category of digital integrated circuits 
having functions that cannot be altered.

flag  A bit that indicates the result of an arithmetic or logic 
operation or is used to alter an operation.

flash  A type of PLD nonvolatile reprogrammable link technology 
based on a single transistor cell.

flash ADC  A simultaneous analog-to-digital converter.

flash memory  A nonvolatile read/write random-access 
semiconductor memory in which data is stored as charge on 
the floating gate of a certain FET.

flip-flop  A basic storage circuit that can store only one bit at a 
time; a synchronous bistable device.

floating-point number  A number representation based on 
scientific notation in which the number consists of an exponent 
and a mantissa.

forward bias  A voltage polarity condition that allows a 
semiconductor pn junction in a transistor or diode to conduct 
current.

FPGA  Field-programmable gate array; a programmable logic device 
that uses the LUT as the basic logic elements and generally 
employs either antifuse or SRAM-based process technology.

FPM DRAM  Fast page mode dynamic random-access memory.

frequency ( f )  The number of pulses in one second for a periodic 
waveform. The unit of frequency is the hertz.

FSK  Frequency shift keying; a form of modulation in which a 
digital signal modulates the frequency of a higher frequency 
sine wave.

dynamic memory  A type of semiconductor memory having 
capacitive storage cells that lose stored data over a period of 
time and, therefore, must be refreshed.

ECL  Emitter-coupled logic; a class of integrated logic circuits 
that are implemented with nonsaturating bipolar junction 
transistors.

E2CMOS  Electrically erasable CMOS (EECMOS); the circuit 
technology used for the reprogrammable cells in a PLD.

edge-triggered flip-flop  A type of flip-flop in which the data are 
entered and appear on the output on the same clock edge.

EDIF  Electronic design interchange format; a standard form of 
netlist.

EDO DRAM  Extended data output dynamic random-access 
memory.

EEPROM  Electrically erasable programmable read-only 
memory; a type of nonvolatile PLD reprogrammable link 
based on electrically-erasable programmable read-only 
memory cells and can be turned on or off repeatedly by 
programming.

8 mm  A type of magnetic tape format.

elasticity  The ability of a cloud storage system to deal with 
variations in the amount of data being transferred without 
service interruptions.

electromagnetic waves  Related to the electromagnetic spectrum, 
which includes radio waves, microwaves, infrared, visible, 
ultraviolet, X-rays, and gamma rays.

embedded system  Generally, a single-purpose system, such 
as a processor, built into a larger system for the purpose of 
controlling the system.

EMI  Electromagnetic interference.

emitter  One of the three regions in a bipolar junction transistor.

enable  To activate or put into an operational mode; an input on a 
logic circuit that permits its operation.

encoder  A digital circuit (device) that converts information to a 
coded form.

entity  The VHDL unit that describes the inputs and outputs of a 
logic function.

EPROM  Erasable programmable read-only memory; A type 
of PLD nonvolatile programmable link based on electrically 
programmable read-only memory cells and can be turned 
either on or off once with programming.

error detection  The process of detecting bit errors in a digital 
code.

even parity  The condition of having an even number of 1s in 
every group of bits.

exception  Any software event that requires special handling by 
the processor.

exclusive-NOR (XNOR)gate  A logic gate that produces a LOW 
only when the two inputs are at opposite levels.

exclusive-OR (XOR)  A basic logic operation in which a HIGH 
occurs when the two inputs are at opposite levels.

exclusive-OR (XOR) gate  A logic gate that produces a HIGH 
only when the two inputs are at opposite levels.
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HPIB  Hewlett-Packard interface bus; same as GPIB (general-
purpose interface bus).

hysteresis  A characteristic of a threshold-triggered circuit, such 
as the Schmitt trigger, where the device turns on and off at 
different input levels.

IEEE  Institute of Electrical and Electronics Engineers.

IEEE 488 bus  Same as GPIB (general-purpose interface bus); 
a standard parallel bus used widely for test and measurement 
interfacing.

IEEE 1394  A serial bus for high-speed data transfer; also known 
as FireWire.

I2L  Integrated injection logic; an IC technology.

implementation  The software process where the logic 
structures described by the netlist are mapped into the 
structure of the target device; the physical realization of a 
conceptual design.

increment  To increase the binary state of a counter by one.

inhibit  To prevent the passage of a signal from one point to 
another.

input  The signal or line going into a circuit; a signal that controls 
the operation of a circuit.

input/output (I/O)  A terminal of a device that can be used as 
either an input or as an output.

instruction  One step in a computer program; a unit of 
information that tells the CPU what to do.

in-system programming (ISP)  A method for programming 
SPLDs after they are installed on a printed circuit board and 
operating in a system.

integer  A whole number.

integrated circuit (IC)  A type of circuit in which all of the 
components are integrated on a single chip of semiconductive 
material of very small size.

intellectual property (IP)  Designs owned by the manufacturer of 
programmable logic devices or other products.

interfacing  The process of making two or more electronic 
devices or systems operationally compatible with each other so 
that they function properly together.

interrupt  Any hardware event that requires special handling 
by the processor, an event that causes the current  
process to be temporarily stopped while a service routine  
is run.

inversion  The conversion of a HIGH level to a LOW level or vice 
versa; also called complementation.

inverter  A NOT circuit; a circuit that changes a HIGH to a LOW 
or vice versa.

I/O port  Input/output port; the interface between an internal bus 
and a peripheral.

IP  Instruction pointer; a special register within the CPU 
that holds the offset address of the next instruction to be 
executed.

ISA bus  Industry standard architecture bus; an internal parallel 
bus standard.

full-adder  A digital circuit that adds two bits and an input carry 
to produce a sum and an output carry.

full-duplex  A connection in which the data flow both ways 
simultaneously in the same channel.

functional simulation  A software process that tests the logical or 
functional operation of a design.

fuse  A type of PLD nonvolatile programmable link that can be 
left shorted or can be opened once as directed by the program; 
also called a fusible link.

GAL  Generic array logic; a reprogrammable type of SPLD that is 
similar to a PAL except that it uses a reprogrammable process 
technology, such as EEPROM (E2 CMOS), instead of fuses.

gate  A logic circuit that performs a basic logic operation, such 
as AND or OR; one of the three terminals of a field-effect 
transistor.

glitch  A voltage or current spike of short duration, usually 
unintentionally produced and unwanted.

graphic (schematic) entry  A method of entering a logic 
design into software by graphically creating a logic diagram 
(schematic) on a design screen.

GPIB  General-purpose interface bus based on the IEEE 488 
standard.

Gray code  An unweighted digital code characterized by a single 
bit change between adjacent code numbers in a sequence.

half-adder  A digital circuit that adds two bits and produces a 
sum and an output carry. It cannot handle input carries.

half-duplex  A connection in which the data flow both ways but 
not at the same time in the same channel.

Hamming code  An error detection and correction code used in 
data transmission.

handshaking  The process of signal interchange by which two 
digital devices or systems jointly establish communication.

hard core  A fixed portion of logic in an FPGA that is put in by 
the manufacturer to provide a specific function.

hard disk  A magnetic disk storage device; typically, a stack of 
two or more rigid disks enclosed in a sealed housing.

hardware  The circuitry and physical components of a computer 
system (as opposed to the instructions called software).

HDL  Hardware description language; a language used for 
describing a logic design using software.

hexadecimal  Describes a number system with a base of 16.

high-level language  A type of computer language closest to 
human language that is a level above assembly language.

high-Z  The high-impedance state of a tri-state circuit in which 
the output is effectively disconnected from the rest of the 
circuit.

hit rate  The percentage of memory accesses that find the 
requested data in the given level of memory.

hold time  The time interval required for the control levels to 
remain on the inputs to a flip-flop after the triggering edge of 
the clock in order to reliably activate the device.
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LSI  Large-scale integration; a level of fixed-function IC 
complexity in which there are from more than 100 to 10,000 
equivalent gates per chip.

LUT  Look-up table; a type of memory that can be programmed 
to produce SOP functions.

machine code  The basic binary instructions understood by the 
processor.

machine language  Computer instructions written in binary 
code that are understood by a computer; the lowest level of 
programming language.

macrocell  An SOP logic array with combinational and registered 
outputs; part of a PAL or GAL that generally consists of 
one OR gate and some associated output logic. Multiple 
interconnected macrocells form a CPLD.

magneto-optical disk  A storage device that uses electro-
magnetism and a laser beam to read and write data.

magnitude  The size or value of a quantity.

main memory  Memory used by computer systems to store the 
bulk of programs and associated data.

Manchester encoding  A method of encoding called biphase in 
which a 1 is represented by a positive-going transition and a 0 
is represented by a negative-going transition.

mantissa  The magnitude of a floating-point number.

Mealy state machine  A state machine in which the outputs 
depend on both the internal present state and on the inputs.

mechatronics  Interdisciplinary field that comprises both 
mechanical and electronic components.

memory  The portion of a computer or other system that stores 
binary data.

memory array  An array of memory cells arranged in rows and 
columns.

memory hierarchy  The arrangement of various memory 
elements within a computer architecture to achieve maximum 
performance.

memory latency  The time required to access a memory.

MFLOPS  Million floating-point operations per second.

microcontroller  A semiconductor device that combines a 
microprocessor, memory, and various hardware peripherals on 
a single IC.

microprocessor  A large-scale digital integrated circuit device 
that can be programmed with a series of instructions to 
perform specified functions on data.

minimization  The process that results in an SOP or POS Boolean 
expression that contains the fewest possible terms with the 
fewest possible literals per term.

minterm  A product of literals in which each input variable 
appears exactly once.

minuend  The number from which another number is 
subtracted.

MIPS  Million instructions per second.

miss  A failed attempt by the processor to read or write a block of 
data in a given level of memory.

J-K flip-flop  A type of flip-flop that can operate in the SET, 
RESET, no-change, and toggle modes.

Johnson counter  A type of register in which a specific prestored 
pattern of 1s and 0s is shifted through the stages, creating a 
unique sequence of bit patterns.

JTAG  Joint test action group; the IEEE Std. 1149.1 standard 
interface for in-system programming.

junction  The boundary between an n region and a p region in a BJT.

Karnaugh map  An arrangement of cells representing the 
combinations of literals in a Boolean expression and used for a 
systematic simplification of the expression.

LAB  Logic array block; an SPLD array in a CPLD.

latch  A bistable digital circuit used for storing a bit.

latency  The time between the request for data and the delivery of 
the data to the user.

latency period  The time it takes for the desired sector to spin 
under the head once the head is positioned over the desired 
track of a magnetic hard disk.

LCC  Leadless ceramic chip; an SMT package that has metallic 
contacts molded into its body.

LCD  Liquid crystal display.

leading edge  The first transition of a pulse.

least significant bit (LSB)  Generally, the right-most bit in a 
binary whole number or code.

LED  Light-emitting diode.

LIFO  Last in–first out memory, memory stack.

listener  An instrument capable of receiving data on a GPIB 
(general-purpose interface bus) when it is addressed by the 
computer.

literal  A variable or the complement of a variable.

load  To enter data into a shift register.

loading  The effect of the multiple inputs degrading the voltage or 
timing specifications of an output.

local bus  An internal bus that connects the microprocessor to the 
cache memory, the main memory, the coprocessor, and the PCI 
bus controller.

local interconnect  A set of lines that allows interconnections 
among the eight logic elements in a logic array block without 
using the row and column interconnects.

logic  In digital electronics, the decision-making capability of gate 
circuits, in which a HIGH represents a true statement and a 
LOW represents a false one.

logic array block (LAB)  A group of macrocells that can be 
interconnected with other LABs or to other I/Os using a 
programmable interconnect array; also called a function block.

logic element  The smallest section of logic in an FPGA that 
typically contains an LUT, associated logic, and a flip-flop.

look-ahead carry  A method of binary addition whereby carries 
from preceding adder stages are anticipated, thus eliminating 
carry propagation delays.
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negative-OR  An equivalent NAND gate operation in which the 
HIGH is the active input when one or more of the inputs are 
LOW.

netlist  A detailed listing of information necessary to describe a 
circuit, such as types of elements, inputs, and outputs, and all 
interconnections.

nibble  A group of four bits.

NMOS  An n-channel metal-oxide semiconductor.

node  A common connection point in a circuit in which a gate 
output is connected to one or more gate inputs.

noise immunity  The ability of a circuit to reject unwanted 
signals.

noise margin  The difference between the maximum LOW output 
of a gate and the maximum acceptable LOW input of an 
equivalent gate; the difference between the minimum HIGH 
output of a gate and the minimum HIGH input of an equivalent 
gate; the amount by which the actual signal level exceeds the 
minimum acceptable level for an error-free transmission.

nonvolatile  A term that describes a memory that can retain stored 
data when the power is removed.

NOR gate  A logic gate in which the output is LOW when any or 
all of the inputs are HIGH.

NOT  A basic logic operation that performs inversions.

NRZ  Nonreturn to zero; a type of data format in which the signal 
level remains at one (1) for successive 1s.

numeric  Related to numbers.

Nyquist frequency  The highest signal frequency that can be 
sampled at a specified sampling frequency; a frequency equal 
to or less than half the sampling frequency.

object program  A machine language translation of a high-level 
source program.

octal  Describes a number system with a base of eight.

odd parity  The condition of having an odd number of 1s in every 
group of bits.

offset address  The distance in number of bytes of a physical 
address from the base address.

OLMC  Output logic macrocell; the part of a GAL that can be 
programmed for either combinational or registered outputs; 
a block of logic in a GAL that contains a fixed OR gate and 
other logic for handling inputs and/or outputs.

one-shot  A monostable multivibrator.

op-code  Operation code; the code representing a particular 
microprocessor instruction; a mnemonic.

open-collector  A type of output in a logic circuit in which the 
collector of the output transistor is left disconnected from 
any internal circuitry and is available for external connection; 
normally used for driving higher-current or higher-voltage loads.

operand  The object to be manipulated by the instruction.

operating system  The software that controls the computer 
system and oversees the execution of application software.

operational amplifier (op-amp)  A device with two differential 
inputs that has very high gain, very high input impedance, and 
very low output impedance.

MMACS  Million multiply/accumulates per second.

MMU  Memory management unit; a device responsible for 
handling accesses to memory requested by the CPU.

mnemonic  An English-like instruction that is converted by an 
assembler into a machine code for use by a processor.

modem  A modulator/demodulator for interfacing digital devices 
to analog transmission systems such as telephone lines.

modulation  The process of altering a parameter of a higher 
frequency signal proportional to the amplitude of a lower 
frequency information-carrying signal.

modulus  The number of unique states through which a counter 
will sequence.

monostable  Having only one stable state. A monostable 
multivibrator, commonly called a one-shot, produces a single 
pulse in response to a triggering input.

monotonic  The characteristic of a DAC defined by the absence 
of any incorrect step reversals; one type of digital-to-analog 
linearity.

Moore state machine  A state machine in which the outputs 
depend only on the internal present state.

MOS  Metal-oxide semiconductor; a type of transistor technology.

MOSFET  Metal-oxide semiconductor field-effect transistor.

most significant bit (MSB)  The left-most bit in a binary whole 
number or code.

MSI  Medium-scale integration; a level of fixed-function IC 
complexity in which there are from 10 to 100 equivalent gates 
per chip.

multicore processor  A microprocessor chip with more than one 
processor.

multimode  The characteristic of an optical fiber in which the 
light is propagated in multiple rays.

multiplexer (mux)  A circuit (digital device) that switches digital 
data from several input lines onto a single output line in a 
specified time sequence.

multiplicand  The number that is being multiplied by another number.

multiplier  The number that multiplies the multiplicand.

multiprocessing  A data-processing technique that uses multiple 
processors to multitask or run multiple programs.

multitasking  A technique by which a processor runs multiple 
programs concurrently.

multitenancy  The property of a cloud storage system that allows 
multiple users to share the same software applications, hardware, 
and data storage mechanism without seeing each other’s data.

multithreading  The process of executing different parts of a 
program, called threads, simultaneously.

multivibrator  A class of digital circuits in which the output is 
connected back to the input (an arrangement called feedback) 
to produce either two stable states, one stable state, or no stable 
states, depending on the configuration.

NAND gate  A logic circuit in which a LOW output occurs only if 
all the inputs are HIGH.

negative-AND  An equivalent NOR gate operation in which the 
HIGH is the active input when all inputs are LOW.
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pipeline  As applied to memories, an implementation that 
allows a read or write operation to be initiated before 
the previous operation is completed; part of the DSP 
architecture that allows multiple instructions to be processed 
simultaneously.

pipelining  A technique where the processor begins executing 
the next instruction before the previous instruction has been 
completed.

PLA  Programmable logic array; an SPLD with programmable 
AND and OR arrays.

platform FPGA  An FPGA that contains either or both hard core 
and soft core embedded processors and other functions.

PLCC  Plastic leaded chip carrier; an SMT package whose leads 
are turned up under its body in a J-type shape.

PLD  Programmable logic device; an integrated circuit that can be 
programmed with any specified logic function.

PMOS  A p-channel metal-oxide semiconductor.

pointer  The contents of a register (or registers) that contain an 
address.

polling  The process of checking a series of peripheral devices to 
determine if any require service from the CPU.

port  A physical interface on a computer through which data are 
passed to or from peripherals.

positive logic  The system of representing a binary 1 with a HIGH 
and a binary 0 with a LOW.

power dissipation  The product of the dc supply voltage and the 
dc supply current in an electronic circuit; the amount of power 
required by a circuit.

PPM  Pulse position modulation; a method of modulation in 
which the position of each pulse relative to a reference or 
timing signal is varied proportional to the amplitude of the 
modulating signal waveform.

prefetching  The process of executing instructions at the same 
time as other instructions are “fetched,” eliminating idle time; 
also called pipelining.

preset  An asynchronous input used to set a flip-flop (make the Q 
output 1).

priority encoder  An encoder in which only the highest value 
input digit is encoded and any other active input is ignored.

probe  An accessory used to connect a voltage to the input of an 
oscilloscope or other instrument.

processes  Instances of a computer program that are being executed.

product  The result of a multiplication.

product-of-sums (POS)  A form of Boolean expression that is 
basically the ANDing of ORed terms.

product term  The Boolean product of two or more literals 
equivalent to an AND operation.

program  A list of computer instructions arranged to achieve a 
specific result; software.

programmable interconnect array (PIA)  An array consisting 
of conductors that run throughout the CPLD chip and to which 
connections from the macrocells in each LAB can be made.

programmable logic  A category of digital integrated circuits 
capable of being programmed to perform specified functions.

optical fiber  A type of data transmission media used for 
transmitting light signals.

optical jukebox  A type of auxiliary storage for very large 
amounts of data.

OR  A basic logic operation in which a true (HIGH) output occurs 
when one or more of the input conditions are true (HIGH).

OR gate  A logic gate that produces a HIGH output when one or 
more inputs are HIGH.

oscillator  An electronic circuit that is based on the principle 
of regenerative feedback and produces a repetitive output 
waveform; a signal source.

OTP  One-time programmable.

output  The signal or line coming out of a circuit.

overflow  The condition that occurs when the number of bits in a 
sum exceeds the number of bits in each of the numbers added.

packet  A formatted block of digital data.

PAL  Programmable array logic; a type of one-programmable 
SPLD that consists of a programmable array of AND gates that 
connects to a fixed array of OR gates.

PAM  Pulse amplitude modulation; a method of modulation 
in which the height or amplitude of the pulses are varied 
according to the modulating analog signal, and each pulse 
represents a value of amplitude of the analog signal.

parallel  In digital systems, data occurring simultaneously 
on several lines; the transfer or processing of several bits 
simultaneously.

parallel bus  A bus that consists of multiple conductors and 
carries several data bits simultaneously, one on each conductor.

parity  In relation to binary codes, the condition of evenness or 
oddness of the number of 1s in a code group.

parity bit  A bit attached to each group of information bits to 
make the total number of 1s odd or even for every group of 
bits.

PCI bus  An internal synchronous bus for interconnecting chips, 
expansion boards, and processor/memory subsystems.

PCI-Express  Also designated as PCIe or PCI-E. This bus differs 
from the PCI and PCI-X buses in that it does not use a shared 
bus.

PCI-X  A high-performance enhancement of the PCI bus that is 
backward compatible with PCI.

PCM  Pulse code modulation; A method of modulation that 
involves sampling of an analog signal amplitude at regular 
intervals and converting the sampled values to a digital code.

period (T)  The time required for a periodic waveform to repeat 
itself.

periodic  Describes a waveform that repeats itself at a fixed interval.

peripheral  A device or instrument that provides communication 
with a computer or provides auxiliary services or functions for 
the computer.

physical address  The actual location of a data unit in memory.

PIC  Programable interrupt controller; handles the interrupts on a 
priority basis.
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register  A digital circuit capable of storing and shifting 
binary information; typically used as a temporary storage 
device.

register array  A set of temporary storage locations within the 
microprocessor for keeping data and addresses that need to be 
accessed quickly by the program.

registered  A CPLD macrocell output configuration where the 
output comes from a flip-flop.

relocatable code  A program that can be moved anywhere within 
the memory space without changing the basic code.

remainder  The amount left over after a division.

RESET  The state of a flip-flop or latch when the output is 0; the 
action of producing a RESET state.

resolution  The number of bits used to digitally represent a 
sampled value.

reverse bias  A voltage polarity condition that prevents a pn 
junction of a transistor or diode from conducting current.

ring counter  A register in which a certain pattern of 1s and 0s is 
continuously recirculated.

ripple carry  A method of binary addition in which the output 
carry from each adder becomes the input carry of the next 
higher-order adder.

ripple counter  An asynchronous counter.

rise time  The time required for the positive-going edge of a pulse 
to go from 10% of its full value to 90% of its full value.

ROM  Read-only semiconductor memory, accessed randomly; 
also referred to as mask-ROM.

RS-232  A bus standard, also known as EIA-232, used in 
industrial and telecommunication applications as well as 
scientific instrumentation, but largely replaced by USB in 
computer applications.

RS-422  A bus standard for differential data transmission.

RS-423  A bus standard for single-ended data transmission.

RS-485  A bus standard for differential data transmission.

RZ  Return to zero; a type of data format in which the signal level 
goes to or remains at zero after each data bit.

sampling  The process of taking a sufficient number of discrete 
values at points on a waveform that will define the shape of the 
waveform.

sampling rate  The rate at which the analog-to-digital converter 
(ADC) in an oscilloscope is clocked to digitize the incoming 
signal.

SAS  Serial attached SCSI.

scalability  The ability of a cloud storage system to handle 
increasing amounts of data in a smooth manner. The ability of 
a cloud storage system to improve the movement of data when 
additional resources are added.

schematic (graphic) entry  A method of placing a logic design 
into software using schematic symbols.

Schottky  A specific type of transistor-transistor logic circuit 
technology.

SCSI  Small computer system interface.

PROM  Programmable read-only semiconductor memory; an 
SPLD with a fixed AND array and programmable OR array; 
used as a memory device and normally not as a logic circuit 
device.

propagation delay time  The time interval between the 
occurrence of an input transition and the occurrence of the 
corresponding output transition in a logic circuit.

protocol  A standardized set of software regulations, 
requirements, and procedures that control and regulate 
the transmission, processing, and exchange of data among 
devices.

pseudo-operation  An instruction to the assembler (as opposed to 
a processor).

PSK  Phase shift keying; a form of modulation in which a digital 
signal modulates the phase of a higher frequency sine wave.

pull-up resistor  A resistor with one end connected to the dc 
supply voltage used to keep a given point in a circuit HIGH 
when in the inactive state.

pulse  A sudden change from one level to another, followed after 
a time, called the pulse width, by a sudden change back to the 
original level.

pulse width (tw)  The time interval between the 50% points of 
the leading and trailing edges of the pulse; the duration of the 
pulse.

PWM  Pulse width modulation; a method of modulation in which 
the width or duration of the pulses and duty cycle are varied 
according to the modulating analog signal, and each pulse 
width represents an amplitude value of the analog signal.

QAM  Quadrature amplitude modulation; a form of modulation 
that uses a combination of PSK and amplitude modulation to 
send information.

QIC  Quarter-inch cassette; a type of magnetic tape.

quantization  The process whereby a binary code is assigned to 
each sampled value during analog-to-digital conversion.

queue  A high-speed memory that stores instructions or data.

quotient  The result of a division.

race  A condition in a logic network in which the difference in 
propagation times through two or more signal paths in the 
network can produce an erroneous output.

RAM  Random-access memory; a volatile read/write semi-
conductor memory.

rank  A group of chips that make up a memory module that stores 
data in units such as words or bytes.

read  The process of retrieving data from a memory.

real mode  Operation of an Intel processor in a manner to emulate 
the 8086’s 1 MB of memory.

record length  The number of samples (data points) that an 
oscilloscope can capture and store.

recycle  To undergo transition (as in a counter) from the final or 
terminal state back to the initial state.

refresh  To renew the contents of a dynamic memory by 
recharging the capacitor storage cells.
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source program  A program written in either assembly or high-
level language.

speed-power product  A performance parameter that is 
the product of the propagation delay time and the power 
dissipation in a digital circuit.

SPI  Serial-to-peripheral interface bus; a synchronous serial 
communications bus that uses four wires for communication 
between a “master” device and a “slave” device.

SPLD  Simple programmable logic device; an array of AND gates 
and OR gates that can be programmed to achieve specified 
logic functions. Four types are PROM, PLA, PAL, and GAL.

SRAM  Static random-access memory; a type of PLD volatile 
reprogrammable link based on static random-access memory 
cells and can be turned on or off repeatedly with programming.

SSI  Small-scale integration; a level of fixed-function IC complexity 
in which there are up to 10 equivalent gates per chip.

SSOP  Shrink small-outline package.

stage  One storage element (flip-flop) in a register.

state diagram  A graphic depiction of a sequence of states or 
values.

state machine  A logic system or circuit exhibiting a sequence 
of states conditioned by internal logic and external inputs; any 
sequential circuit exhibiting a specified sequence of states. 
Two types of state machine are Moore and Mealy.

static memory  A volatile semiconductor memory that uses 
flip-flops as the storage cells and is capable of retaining data 
without refreshing.

storage  The capability of a digital device to retain bits; the 
process of retaining digital data for later use.

STP  Shielded twisted pair; a type of data transmission medium.

string  A contiguous sequence of bytes or words.

strobing  A process of using a pulse to sample the occurrence of 
an event at a specified time in relation to the event.

subroutine  A series of instructions that can be assembled 
together and used repeatedly by a program but programmed 
only once.

subtracter  A logic circuit used to subtract two binary numbers.

subtrahend  The number that is being subtracted from the 
minuend.

sum  The result when two or more numbers are added together.

sum-of-products (SOP)  A form of Boolean expression that is 
basically the ORing of ANDed terms.

sum term  The Boolean sum of two or more literals equivalent to 
an OR operation.

synchronous  A condition that describes signals or systems that 
are aligned or synchronized with each other in terms of timed 
events, two or more systems that have the same timing signal.

synchronous counter  A type of counter in which each stage is 
clocked by the same pulse.

synthesis  The software process where the design is translated 
into a netlist.

system bus  The interconnecting paths in a computer system 
including the address bus, data bus and control bus.

SDRAM  Synchronous dynamic random-access memory.

seek time  The time for the read/write head in a hard drive to 
position itself over the desired track for a read operation.

segment  A 64k block of memory.

sequential circuit  A digital circuit whose logic states follow a 
specified time sequence.

serial  Having one element following another, as in a serial 
transfer of bits; occurring, as pulses, in sequence rather than 
simultaneously.

serial bus  A bus that carries data bits sequentially one at a time 
on a single conductor.

server  Any computerized process that shares a resource with one 
or more clients. A computer and software with a large memory 
capacity that responds to requests across a network to provide 
file storage and access as well as services such as file sharing.

SET  The state of a flip-flop or latch when the output is 1; the 
action of producing a SET state.

set-up time  The time interval required for the control levels to be 
on the inputs to a digital circuit, such as a flip-flop, prior to the 
triggering edge of clock pulse.

shared bus  A bus, such as PCI, that is shared by multiple 
devices.

signal  A type of VHDL object that holds data.

signal-to-noise ratio (SNR)  A measure of the signal strength 
relative to background noise, usually expressed in decibels (dB).

signal tracing  A troubleshooting technique in which waveforms 
are observed in a step-by-step manner beginning at the input 
and working toward the output or vice versa. At each point the 
observed waveform is compared with the correct signal for that 
point.

sign bit  The left-most bit of a binary number that designates 
whether the number is positive (0) or negative (1).

SIMM  Single-in-line memory module.

simplex  A connection in which data flows in only one direction 
from the sender (transmitter) to the receiver.

single-ended operation  A bus operation that uses one wire for 
data and one wire for ground.

single mode  The characteristic of an optical fiber in which the 
light tends to propagate in a single beam or ray.

SMT  Surface-mount technology; an IC package technique in 
which the packages are smaller than DIPs and are mounted on 
the printed surface of the PC board.

soft core  A portion of logic in an FPGA; similar to hard core 
except it has some programmable features.

software  Computer programs; programs that instruct a computer 
what to do in order to carry out a given set of tasks.

software interrupt  An instruction that invokes an interrupt 
service routine.

SOIC  Small-outline integrated circuit; an SMT package that 
resembles a small DIP but has its leads bent out in a “gull-
wing” shape.

source  A sending device of a bus; one of the terminals of a field-
effect transistor.
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ULSI  Ultra large-scale integration; a level of IC complexity 
in which there are more than 100,000 equivalent gates per 
chip.

unit load  A measure of fan-out. One gate input represents a unit 
load to the output of a gate within the same IC family.

universal gate  Either a NAND gate or a NOR gate. The term 
universal refers to the property of a gate that permits any logic 
function to be implemented by that gate or by a combination of 
gates of that kind.

universal shift register  A register that has both serial and 
parallel input and output capability.

up/down counter  A counter that can progress in either direction 
through a certain sequence.

USB  Universal serial bus; an external serial bus standard.

UTP  Unshielded twisted pair; a type of data transmission medium.

UV EPROM  Ultraviolet erasable programmable ROM.

variable  symbol used to represent an action, a condition, or data 
that can have a value of 1 or 0, usually designated by an italic 
letter or word.

VHDL  A standard hardware description language; IEEE Std. 
1076-1993.

VLSI  Very large-scale integration; a level of IC complexity in 
which there are from more than 10,000 to 100,000 equivalent 
gates per chip.

volatile  The characteristic of a programmable logic device that 
loses programmed data when power is turned off.

wait state  A system bus delay equal to one processor clock 
cycle. Wait states are used to ensure that the system bus timing 
satisfies the address, data, and control timing specifications of 
a system.

weight  The value of a digit in a number based on its position in 
the number.

word  A group of bits or bytes that acts as a single entity that can 
be stored in one memory location; two bytes.

word capacity  The number of words that a memory can store.

word length  The number of bits in a word.

WORM  Write once-read many; a type of optical storage device.

write  The process of storing data in a memory.

zero suppression  The process of blanking out leading or trailing 
zeros in a digital display.

talker  An instrument capable of transmitting data on a GPIB 
(general-purpose interface bus).

tape library  A type of auxiliary storage for very large amounts 
of data.

target device  A PLD mounted on a programming fixture or 
development board into which a software logic design is to 
be downloaded; the programmable logic device that is being 
programmed.

TDM  Time division multiplexing; a technique in which data from 
several sources are interleaved on a time basis and sent on a 
single communication channel or data link.

terminal count  The final state in a counter’s sequence.

text entry  A method of entering a logic design into software 
using a hardware description language (HDL).

throughput  The average speed with which a program is 
executed.

timer  A circuit that can be used as a one-shot or as an oscillator; 
a circuit that produces a fixed time interval output.

timing diagram  A graph of digital waveforms showing the 
proper time relationship of two or more waveforms and how 
each waveform changes in relation to the others.

timing simulation  A software process that uses information 
on propagation delays and netlist data to test both the logical 
operation and the worst-case timing of a design.

toggle  The action of a flip-flop when it changes state on each 
clock pulse.

totem-pole  A type of output in TTL circuits.

trailing edge  The second transition of a pulse.

transistor  A semiconductor device exhibiting current and/or 
voltage gain. When used as a switching device, it approximates 
an open or closed switch.

trigger  A pulse used to initiate a change in the state of a logic 
circuit.

tri-state  A type of output in logic circuits that exhibits three 
states: HIGH, LOW, and high-Z; also known as 3-state.

tri-state buffer  A circuit used to interface one device to another 
to prevent loading.

troubleshooting  The technique of systematically identifying, 
isolating, and correcting a fault in a circuit or system.

truth table  A table showing the inputs and corresponding output 
level of a logic circuit.

TTL  Transistor-transistor logic; a class of integrated logic 
circuit that uses bipolar junction transistors. Also called 
bipolar.
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A
ABEL (Advanced Boolean Expression 

Language), 587
Abstraction, levels of, 242–243
Acceptor, 784
Access time, ROM, 650–651
Accuracy, DAC, 719
Active-HIGH decoding, 531
Active-LOW decoding, 531
ADC0804 , 711
ADCs. See Analog-to-digital converters
Addend, 85
Adders. See also Combinational logic functions

defined, 28
expansion, 321–322
full-adder, 315–317
half-adder, 314–315
look-ahead carry, 325–327
parallel binary, 317–324
in process control system, 33
ripple carry, 324–325

Addition
associative law of, 194
binary, 74–75, 317–318
Boolean, 139, 192–193
commutative law of, 194
direct, 88
function, 28
hexadecimal, 95–96
numbers two at a time, 86
overflow condition, 86
signed numbers, 85–86
sum, 85

Address access time, 637
Address bus, 630, 805
Address multiplexing, 641–642, 643
Address register, 815
Address setup time, 637
Addresses

binary memory, 93
burst logic, 639
decoding for device selection, 809
defined, 69, 629, 688
example of, 629

Addressing
direct, 819–820
immediate, 818–819
indexed, 815, 820–821
inherent, 818
modes, 817–822
relative, 821–822

Adjacency, cell, 220–221
AHDL (Altera Hardware Description Language), 

38, 587
Aliasing, 699, 731
Alphabetic characters, 92
Alphanumeric codes, 106, 116
ALU (arithmetic logic unit)

combinational logic and, 267
defined, 28, 814, 847
functions, 192
use example, 814

Amplitude, 21
Analog

defined, 16, 57
methods, system using, 18
quantity, 16
sampled-value representation, 17
system, 17

Analog-to-digital conversion
defined, 701

errors, 713–714
incorrect code, 714
methods of, 704–715
missing code, 713
offset, 714
quantization, 701–704
sampling and filtering, 698–700

Analog-to-digital converters (ADCs)
defined, 18, 731
digital scope, 44
dual-slope, 707–709
flash, 705–707
function illustration, 701
implementation, 711
op-amp, 705
as peripherals, 840
resolution, 704
sigma-delta, 711–712
in sound cards, 725
successive-approximation, 709–710
testing, 712–713
throughput, 704

AND array
concept, 153
defined, 153, 177
example, 154

AND dependency, 540
AND function

Boolean multiplication as, 134
defined, 26, 57
illustrated, 26

AND gates
applications, 134–135
Boolean expressions, 134
defined, 27, 129, 177
design entry examples, 158
as enable/inhibit device, 134–135
HIGH output, 129, 130
logic expressions for, 133–134
logic symbols, 129
operation of, 129–130
operation with waveform inputs, 131–133
output, 280
seat belt alarm system application, 134
74 series, 161–162
timing diagram, 131
truth table, 130
VHDL, 160

AND-OR Invert logic
circuit operation, 264
defined, 263
example, 264
logic diagram, 263–264
truth table, 264

AND-OR logic
circuit operation, 263
defined, 262
example, 263
illustrated, 262
SOP expression implementation, 210, 263
truth table, 262

Anti-aliasing filter, 698
Antifuse technology, 154–155, 177
Application software, 806
Applied Logic

elevator controller, 545–549, 608–614
security system, 479–486
seven-segment display, 244–248
tank control, 294–299
traffic signal controller, 365–371, 429–436

Arbitrary waveform generators, 52

Arithmetic functions, 28–29
Arithmetic instructions, 836
Arithmetic logic unit. See ALU
ASCII

characters and symbols, 107, 108
control characters, 107
defined, 107, 116
example, 107
extended characters, 109

ASK (amplitude-shift keying), 750
Assemblers, 192, 342, 832
Assembly language

defined, 831–832, 847
example program, 833–836
use of, 832

Associative laws, 194–195
Astable multivibrators

defined, 387, 437
duty cycle, 425–426
555 timer as, 423–426
frequency of oscillation, 425
as pulse oscillators, 423
with Schmitt trigger, 423

Asynchronous buses, 768, 810
Asynchronous cascading, 527–528
Asynchronous counters. See also Counters

binary state sequence, 501
cascaded, 527–528
decade, 504–506
defined, 497, 500, 549
fixed-function device, 506–507
implementation, 506–507
PLD (programmable logic device), 507
propagation delay, 502–504
as ripple counters, 497, 502
3-bit binary, 501–502
2-bit binary, 500–501

Asynchronous inputs, 402
Asynchronous SRAMs. See also SRAMs (static 

RAMs)
defined, 633
illustrated, 636
logic diagram, 635
memory arrays, 636
organization, 634–636
read and write cycles, 637–638
READ mode, 636–637
tri-state outputs and busses, 635–636
WRITE mode, 637

Asynchronous transmission, 746
Augend, 85
Authentication, 682
Authorization, 682
Automated systems, 843–844
Automobile parking control application, 536–537
Automobile systems, 843
Auxiliary storage, 678

B
Ball-grid array (BGA) package, 37
Bandwidth

bus, 766
defined, 48, 683

Banks, 630
Base, 869
Baseband transmission, 739, 740
Baud, 748, 788
BCD. See Binary coded decimal
BCD decade counter

decoder, 533

Index

Z03_FLOY5983_11_GE_IDX.indd Page 42  12/11/14  9:13 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...



	 Index	 A-43

illustrated, 511
states of, 512
with strobing, 534
timing diagram, 512
truncated binary sequence, 511

BCD-to-7-segment decoder
defined, 338
implementation, 339
logic symbol, 338
zero suppression using, 340

BCD-to-binary conversion, 345–346
BCD-to-decimal decoder

decoding functions, 340
defined, 340
example, 337–338
implementation, 337

Behavioral approach, 243
Biased exponents, 83
BiCMOS, 43, 161
Bidirectional BSC, 597, 598
Bidirectional counters. See Up/down counters
Bidirectional shift registers

defined, 462, 487
example, 463
fixed-function device, 463–464
illustrated, 462
implementation, 463–465
PLD (programmable logic device), 464–465
universal, 463–465

Binary
addition, 74–75, 317–318
arithmetic, 74–77
in computers and digital electronics, 65
counting application, 69
counting in, 68
defined, 19, 57
division, 76–77
floating-point numbers, 83–84
memory addresses, 93
multiplication, 76
subtraction, 75–76
system, 19

Binary coded decimal (BCD)
addition, 102–103
in arithmetic operations, 102
decimal conversion, 101
defined, 29, 100, 116
8421 code, 100–101
number representation, 102

Binary decoder, 332–333
Binary digits, 19
Binary numbers

application, 69
base, 68
bits, 68
complements of, 77–79
defined, 67
signed, 79–91
weighting structure, 69

Binary representation
of BCD bit weights, 345
LSB (least significant bit), 332
product term, 212–213
sum term, 214–215

Binary-to-decimal conversion, 70
Binary-to-Gray code conversion, 104–105, 346–347
Binary-to-octal conversion, 99–100
Binary-weighted-input DAC

defined, 715
disadvantages of, 716
example, 716–717
illustrated, 715

BIOS (basic input/output system), 803–804, 847

Bipolar. See also TTL (transistor-transistor logic)
defined, 161, 177
logic, 166
power dissipation, 167

Bipolar junction transistors (BJTs), 42
Bistable devices

categories of, 387
defined, 388, 437
stable states, 387
synchronous, 395

Bistable multivibrators, 395
Bit manipulation instructions, 836
Bit rate, 748, 788
Bit time, 22
Bit-interleaved TDM, 760–761
Bits

defined, 19, 57, 68, 628
groups of, 20
least significant (LSB), 69
most significant (MSB), 69
parity, 110–111
sign, 79
weight of, 69

Bitstream, 594
BJT (bipolar junction transistor), 869
Blu-ray, 676, 688
Boole, George, 191
Boolean algebra

addition, 139, 192–193
associative laws, 194–195
commutative laws, 194
complements, 192
defined, 128, 177, 192
DeMorgan’s theorems and, 199–203
distributive law, 194, 195
laws of, 194–195
literals, 192
logic simplification using, 205–209
multiplication, 134, 193
operators, 128
product terms, 193, 211–213
rules of, 195–198
variables, 128, 192
in VHDL programming, 240–242

Boolean analysis, 203–205
Boolean expressions

defined, 195
domain of, 210
evaluating, 203–204
AND gates, 134
Karnaugh map and, 219–222
for logic circuits, 203, 267–268
mapping, 222–230
NAND gates, 144
NOR gate, 149
OR gates, 139
product-of-sums (POS), 213–215
rules for manipulating and simplifying, 

195–198
simplification, 205–208
standard forms of, 209–216
sum-of-products (SOP), 210–213
truth tables and, 216–219
with VHDL, 240–243

Boundary scan
concept illustration, 602, 605
defined, 615
instructions, 595–596
logic, 595–602
logic diagram, 597
registers, 595
Test Access Port (TAP), 596–597
testing for multiple devices, 600–602

Boundary scan cell (BSC)
architecture, 597, 598
bidirectional, 597, 598
in boundary scan testing, 605
data paths, 599, 600
operation modes, 597–600

Boundary Scan Description Language (BSDL), 
607

Boundary scan testing
bit pattern, 606
defined, 605
Extest, 606–607
Intest, 606

Breadboard, 427
Break point, 603, 615
Broadband transmission, 739, 740
BSC. See Boundary scan cell
BSDL (Boundary Scan Description Language), 

607
Buffers

defined, 808, 847
noninverting, 809
open-collector, 877–878
use illustration, 808

Burst EDO DRAM (BEDO DRAM), 633, 646
Burst logic, 639
Burst refresh, 644
Bus arbitration, 784
Bus arbitrator, 348
Bus contention, 785, 786
Bus master, 825, 847
Buses

address, 630, 805
asynchronous, 636, 768, 810
bandwidth, 766
basics, 764–769
CAN, 781–782
characteristics, 766–767
connecting devices to, 785–786
control, 805
data, 630, 805
defined, 348, 636, 688, 764, 788
differential, 768–769
external, 765–766
Firewire, 782–783
frequency, 766
function of, 764–765
handshaking, 767–768
I2C, 780–781
interfacing, 784–787
internal, 765
internal structure, 784
multiplexed, 784
parallel, 765, 769–775
parameters, 766
physical and electrical definition of, 765
protocol, 767–768, 788
request operations, 825–826
RS-232, 778–779
RS-422, 779
RS-423, 779–780
RS-485, 780
SCSI, 774
semisynchronous, 810
serial, 765
signals, 784–785
single-ended, 768–769
SPI, 780
synchronous, 768, 810
system, 805
transfer speed, 766
USB (universal serial bus), 775–778
width, 766
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Bypass register, 595
Byte-interleaved TDM, 760–761
Bytes, 82, 116, 628, 688

C
Cache, 329
Cache memory

analogy, 640
block diagram, 640
defined, 639, 803
hit and miss, 679
L1 and L2 caches, 640
in memory hierarchy, 677
SRAMs in, 639–640

Caching, 803, 847
CAD (computer-aided design), 585
CAN (controller area network) bus, 781–782
Capacity

defined, 629, 688
memory, 629–630
word, 663–664

Carries
defined, 73
internal, 319

Carry generation, 325–326
Carry propagation, 325–326
Cascade counters

asynchronous, 527–528
defined, 527, 549
examples, 529
failure example, 542
with maximum modulus, 541
synchronous, 528
troubleshooting, 541–542
with truncated sequences, 530, 541–542

Cascading
asynchronous, 527–528
defined, 321, 371, 527
full-modulus, 530
synchronous, 528

CCD (charge-coupled device) memories, 670
CD-R, 675
CD-ROM, 674–675
CD-RW, 675–676
Cells

adjacency, 220–221
defined, 220, 628, 688
memory, 396
number in Karnaugh map, 220

Channel count, 50
Characters, 92
Checksum, 111
Chip enable access time, 637
Circuits, 26. See also Integrated circuits (ICs); 

Logic circuits
Clear, 402, 437
Clock

defined, 22, 57, 395, 437
example waveform, 23
input, in synchronous counters, 508
synchronization, 395
two-phase generator, 427, 428
waveforms, 427

Cloud storage
architecture, 682
clusters, 681
data center, 680
defined, 680, 688
properties, 682–683
security, 682
servers, 680, 681, 689
with storage redundancy, 681
systems, 680–682

Clusters, 681
CMOS (complementary MOS)

DC supply voltage, 167, 409
defined, 43, 161, 177, 885
ECL performance comparison, 882
handling precautions, 163
inverter, 864–865, 868
loading, 861–862
logic, 165
logic gate implementation, 163
logic levels, 856–857
MOSFETs (metal-oxide semiconductor  

field-effect transistors), 864
NAND gate, 865–866
NOR gate, 866
open-drain gates, 867
performance and lower voltages, 409
power dissipation, 167
precautions, 331, 867–868
protection circuitry, 331
tri-state gates, 867
TTL performance comparison, 880–881
unused gate inputs, 169

Coarse-grained FPGA, 37, 577
Coaxial cable (coax), 740–741, 788
Code conversion function, 29
Code converters

BCD-to-binary conversion, 345–346
binary-to-Gray conversion, 346–347
defined, 29, 345
Gray-to-binary conversion, 346–347
in process control system, 32

Codec, 727
Codes

alphanumeric, 106, 116
ASCII, 107–109
in computers and digital electronics, 65
cyclic redundancy check (CRC), 111–114
defined, 20, 29
digital, 104–109
8421 BCD, 100–102
error, 109–114
Gray, 104–106
Hamming, 114
types of, 29
Unicode, 109

Collector, 869
Combinational logic, 261–312

AND-OR, 262–263
AND-OR Invert, 263–264
from Boolean expression to logic circuit, 

267–269
circuits, 262–267
defined, 261
exclusive-NOR, 265
exclusive-OR, 265, 266
failure types, 289
implementing, 267–272
with NAND gates, 274, 275–277
node in logic circuit, 289, 299
with NOR gates, 274, 277–279
open input in load device, 289, 290, 291
open output in driving device, 289, 290
output level, 261
pulse waveform operation, 279–282
reducing to minimum form, 271
shorted input in load device, 289, 290
shorted output in driving device, 289, 290, 291
signal tracing and waveform analysis,  

290–293
troubleshooting, 288–293
from truth table to logic circuit, 269–272
with VHDL, 283–288

Combinational logic functions
adders, 314–327
code converters, 345–347
comparators, 327–331
decoders, 331–341
demultiplexers (DMUX), 356–358
encoders, 341–344
full-adder, 315–317
half-adder, 314–315
look-ahead carry adder, 325–327
multiplexers (MUX), 347–356
parallel binary adders, 317–324
parity generators/checkers, 358–362
ripple carry adder, 324–325
troubleshooting, 362–364
types of, 313

Combinational mode, 576–577
Common control block, 539
Communication controllers, 840
Commutative laws, 194
Comparators. See also Combinational 

logic functions
basic operation, 328
defined, 27, 327, 371
equality, 328–329
fixed-function, 329
4-bit magnitude, 330
implementation, 330
inequality, 329–331
in process control system, 32
tag address, 329

Comparison function, 27–28
Compilers

defined, 57, 615, 833
design implementation, 592
high-level to machine conversion with, 833

Compiling, 831
Complementary, 863
Complementation, 126
Complements

1’s, 77, 80, 81, 128
2’s, 78–79, 80, 82, 96
converting, 79
defined, 177, 192, 249
double, 197
finding, 77–79
variable, 128

Complex programmable logic device. See CPLD
Components. See also VHDL

defined, 283, 299
instantiations, 285–286
keyword, 284
predefined programs used as, 284
storage, 283
using in programs, 284

Computer system
block diagram, 802, 806, 807, 828
CPU (central processing unit), 803, 817
debugging, 805
device selection, 809
general-purpose, 802
I/O ports, 804–805
memory and storage, 803–804
practical considerations, 806–811
shared signal lines, 807–808
signal loading and buffering, 808–809
system bus, 805
system timing, 810–811
tasks, 802
typical, 805

Computer-aided design (CAD), 585
Configurable logic blocks (CLBs)

defined, 577, 615
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illustrated, 578
logic modules, 579–582

Connectors
dirty, 290
GPIB, 773
optical fiber, 743
USB, 776

Constellation maps, 752–753
Consumer appliances, 843
Contact bounce eliminator application, 391
Content-addressable memory, 804
Control bus, 805
Control dependency, 540
Control programs, 267
Control registers, 841
Controller area network (CAN) bus, 781–782
Conversion, 697–723

analog-to-digital, 698–715
BCD/decimal, 101
BCD-to-binary, 345–346
binary-to-decimal, 70
binary-to-Gray, 104–105, 346–347
binary-to-octal, 99–100
decimal-to-binary, 71–73
decimal-to-hexadecimal, 95
decimal-to-octal, 98–99
Gray-to-binary, 105, 346–347
hexadecimal-to-binary, 93–94
hexadecimal-to-decimal, 94
octal-to-binary, 99
octal-to-decimal, 98
parallel-to-serial, 474

Counters, 497–560
applications, 534–539
asynchronous, 497, 500–507
in automobile parking control, 536–537
cascade, 527–530
decade, 504–506
decoding, 531–534
decoding glitches, 532–534
decrementing, 537
defined, 32
in digital clocks, 535
divisor, 538
faulty, symptoms of, 541
implementation, 522
implemented with individual flip-flops, 543–544
incrementing, 537
Johnson, 465–467
logic symbols with dependency notation,  

539–541
modulus of, 504
next-state table, 433
operation illustration, 32
in parallel-to-serial data conversion, 537–539
in process control system, 32
ring, 465–467
ripple clocking effect, 502
shift register, 465–469
as state machines, 498–499
synchronous, 497, 507–515
time stamp (TSC), 510, 528
traffic signal controller, 432–433
troubleshooting, 541–544
up/down, 515–519

Counting
in binary, 68, 69
flip-flops in, 412–413
function, 32
in hexadecimal, 93
logic functions, 32

CPLDs (complex programmable logic devices)
architecture, 568

block diagram, 567, 569
defined, 35, 57, 567, 615
design flow diagram, 586
essential elements for programming, 586
illustrated, 35, 36
LAB (logic block array), 568
logic elements (LEs), 571
logic function generation types, 573
LUT architecture, 571
macrocell, 568
macrocell diagram, 569
manufacturers, 568, 574
parallel expanders, 571
parameters, 574
PIA (programmable interconnect array), 568
PLA (programmable gate array), 572
range of, 568
shared expanders, 568–571
specific devices, 572–574

CPU (central processing unit), 803, 817, 845, 847
CRC. See Cyclic redundancy check
Cross talk, 741
Cross-assemblers, 832
CSP (chip scale package), 41
Current sinking, 862, 873–874, 885
Current sourcing, 862, 873–874, 885
Cutoff, 864
Cyclic redundancy check (CRC)

check bits, 111
defined, 111, 116
examples, 113–114
illustrated, 112
modulo-2 operations, 111–112
process, 112

D
D flip-flops. See also Flip-flops

defined, 395, 437
edge-triggered operation, 398–401
fixed-function device, 403
in frequency division, 411
implementation, 403–404
logic diagram, 402
negative edge-triggered, 396
operation of, 396
output, 399
PLD (programmable logic device), 404
positive edge-triggered, 396
pulse transition detector, 399
synchronous inputs, 401
transition table, 433
transitions, 400
truth table, 396

DAA (Decimal Adjust for Addition), 102
DACs. See Digital-to-analog converters
Data

centers, 680
defined, 23, 57
packets, 746
selection function, 30
storage. See storage

Data acquisition, 50
Data bus, 630, 805
Data flow approach, 243
Data hold time, 637
Data rate, 748
Data registers, 842
Data selectors

applications, 352–356
defined, 347, 348
eight-input, 351
fixed function device, 350, 351
implementation, 349–350

logic diagram, 349
logic function generator, 353–356
logic symbol, 348
PLD (programmable logic device), 350, 351

Data sheets, 874
Data transfer

defined, 23
instructions, 836
parallel, 24
serial, 23

Data transmission, 739–799
asynchronous, 746
baseband, 739, 740
broadband, 739, 740
categories of, 739
data rate, 748–749
defined, 739
early work in, 740
efficiency, 749
media, 740–744
modes, 749
parallel, 745–746
serial, 745–746
synchronous, 746–748
wireless, 743–744

Data transmission system with error detection
data-select inputs, 360
illustrated, 361
overview, 360
timing diagram, 361–362

DC power supply, 52, 53
DC supply voltage, 167, 856
DDR DRAM, 646
Decade counters

asynchronous recycling, 505
defined, 504, 550
example, 505–506
illustrated, 505
partial decoding, 504
synchronous, 511–513

Decimal Adjust for Addition (DAA), 102
Decimal numbers, 66–67
Decimal value of signed numbers

1’s complement, 81
sign-magnitude, 80–81
2’s complement, 82

Decimal/BCD conversion, 101
Decimal-to-binary conversion

fractions, 73
repeated division-by-2 method, 71–72
sum-of-weights method, 71

Decimal-to-binary encoder
defined, 341
logic diagram, 342
logic symbol, 341
priority encoder, 342

Decimal-to-hexadecimal conversion, 95
Decimal-to-octal conversion, 98–99
Decode, 729, 731
Decoders. See also Combinational logic functions

BCD decade counter, 533
BCD-to-7-segment, 338–339
BCD-to-decimal, 336–338
binary, 332–333
defined, 29, 331, 371
as demultiplexers, 356, 357–358
4-bit, 333–336
illustrated, 30
implementation, 334–335
1-of-16, 334–335
in process control system, 32
strobed, 534
zero suppression for 4-digit display, 340
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Decoding
active-HIGH, 531
active-LOW, 531
counter, 531–534
logic functions, 29–30
partial, 504

Decrementing, counters, 537
Delta modulation, 711
DeMorgan’s theorems

application procedures, 201
applying, 199–200, 201–203
defined, 199
first theorem, 199
second theorem, 199
variables in, 200

Demultiplexers (DMUX)
decoders as, 356, 357–358
defined, 30, 356, 371
4-bit-to-16-line decoder as, 357–358
illustrated, 357
in process control system, 33

Demultiplexing, 759
Design entry

defined, 38
logic design building, 587–589
PLD (programmable logic device), 157–158
programmable logic software, 587–589
programming process, 38
schematic entry, 587, 616
text entry, 587, 616

Design flow
block diagram, 38
defined, 37, 585, 615
diagram, 586

Destination operand, 317
Device programmers, 39
Difference, 86
Differential buses, 768–769
Differential nonlinearity, 721
Digital

defined, 15, 16, 57
methods, system using, 18
quantity, 16
technology, 15–16

Digital clock application, 535–536
Digital codes

alphanumeric, 106, 116
ASCII, 107–108
extended ASCII characters, 109
Gray code, 104–106
Unicode, 109

Digital multimeter (DMM), 52, 53
Digital signal processing, 583
Digital signal processors (DSPs)

applications, 725–727
architecture, 727–728
block diagram, 724, 728
in cellular telephones, 727
data paths in CPU, 729
data processing performance, 729
defined, 724, 731
in filtering, 726
function of, 723
functional units, 729
Harvard architecture, 727–728
in image processing, 726
internal memory and interfaces, 730
as microprocessor, 724
in music processing, 726
packaging, 730
pipeline, 729–730, 732
programming, 725
in radar, 726

specific, 728–730
in speech generation and recognition, 726
in telecommunications, 725
timers, 730

Digital waveforms
binary information, 22–23
characteristics, 21–22
clock, 22–23
comparing in troubleshooting, 294
defined, 20
duty cycle, 22
example of, 21
frequency of, 21
periodic, 21
pulses, 20–21
timing, comparing, 294
timing diagrams, 23

Digital-to-analog conversion
defined, 715
differential nonlinearity, 721
errors, 720–722
low or high gain, 721
methods of, 715–723
nonmonotonicity, 720
offset error, 721

Digital-to-analog converters (DACs)
accuracy, 719
binary-weighted-input, 715–717
defined, 18, 702, 731
linearity, 719
monotonicity, 719
op-amp, 705
output as “stairstep” approximation, 722
performance characteristics of,  

719–720
as peripherals, 840
R/2R ladder, 717–719
reconstruction filter, 722
resolution, 719
settling time, 719
test setup, 719
testing, 720

Digits
binary number system, 68
carry, 73
defined, 66
hexadecimal, 94
hexadecimal number system, 92

DIMMs (dual in-line memory modules), 664, 665
Diodes, 869
DIP (dual in-line package), 40, 42, 163
Direct addition, 88
Direct addressing, 819–820
Direct reset, 402
Direct set, 402
Distributed refresh, 645
Distributive law, 194, 195
Divide by zero, 825
Dividend, 90
Division

binary, 76–77
function, 29
quotient, 90
signed numbers, 90–91

Divisor, 90
DLT tape, 673
DMA (direct memory access)

computer block diagram with, 827–828
controllers, 826–827
CPU data transfer versus, 827
defined, 826, 847
speeds, 827

DMM (digital multimeter), 52, 53

Domains, of Boolean expressions, 210
“Don’t care” conditions

defined, 231, 249
Karnaugh map, 230–232
use example, 231

Double-precision floating-point numbers, 83
Download, 39
Downloading

defined, 594, 615
illustrated, 594

DRAMs (dynamic RAMs). See also RAMs 
(random access memories)

address multiplexing, 641–642, 643
application of, 641
block diagram, 643
Burst EDO (BEDO), 633, 646
capacitance, 396
cell operation, 642
DDR, 646
defined, 633, 641, 688
Extended Data Out (EDO), 633, 645–646
Fast Page Mode (FPM), 633, 643–644, 645
flash versus, 658
MOS cell, 641
organization, 641–645
read and write cycles, 642
refresh cycles, 644–645
refreshing, 633
synchronous (SDRAM), 633, 646
timing for address multiplexing, 643
types of, 633

Drivers
open-collector, 877–878
programs, 267

DSP. See Digital signal processors
DSP core, 728, 731
Dual symbols

defined, 276
NAND logic diagrams using, 276–277
NOR logic diagram using, 278–279
use illustration, 276, 278

Dual-slope ADC
conversion illustration, 708
defined, 707
illustrated, 707
linear discharge, 709

Duty cycle
astable multivibrators, 425–426
defined, 22, 57

DVD-ROM, 676
Dynamic input indicator, 395
Dynamic memory, 640

E
E2CMOS, 870–871
ECL (emitter-coupled logic)

availability, 161
defined, 881, 885
noise margin, 882
OR/NOR gate circuit, 881–882
TTL and CMOS comparison, 882

Edge-sensitive flip-flops, 395
Edge-triggered flip-flops

D, 395–397, 398–400, 403–404
defined, 395, 437
J-K, 397–398, 401, 404–405
types of, 395

Edge-triggering, 399
EDIF (Electronic Design Interchange Format), 

592
EEPROMs

defined, 156, 177, 647, 654
flash versus, 657
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technology, 156
types of, 654

EIA-232, 778
8 mm tape, 673
8421 BCD code. See also Binary coded decimal 

(BCD)
applications, 102
defined, 100–101
interface examples, 100
invalid codes, 101

Elasticity, 683
Electromagnetic spectrum, 744
Electromagnetic waves, 744, 788
Elevator controller

block diagram, 546–547
floor counter state diagram, 547
implementation, 549
initialization, 549
logic diagram, 548
one cycle of operation, 545
operation of, 548–549
overview, 545
programming and PLD implementation 

process, 613–614
programming model for, 608
signals, 546
state diagram, 546
VHDL program code, 608–613

Embedded microcontrollers, 39
Embedded systems, 57, 838
EMI (electromagnetic interference), 740, 789
Emitter, 869
Enable, 134–135
Encoders. See also Combinational logic 

functions
application, 344
decimal-to-BCD, 341–343
defined, 29, 341, 371
illustrated, 29
implementation, 343
keyboard, illustrated, 344
logic diagram, 342
logic symbol, 341
in process control system, 32

Encoding
defined, 341
function, 29

Encryption, 682
EPROMs

defined, 155, 177, 647, 653, 688
flash versus, 657
logic symbol, 653
NMOSFET array, 653
technology, 155–156
timing diagram, 653
types of, 654

Equality comparison, 328–329
Erase operation, 655, 657
Error codes

cyclic redundancy check (CRC), 111–114
defined, 109
Hamming code, 114

Error detection
defined, 110
examples, 111
parity method for, 110–111
process, 110

Espresso algorithm, 221–222
Essential prime implicant, 237
Ethernet, 754
Even parity, 359
Exception handlers, 823–824
Exceptions, 823–825, 847

Exclusive-NOR gates
application, 152
defined, 151, 177
logic levels, 151
logic symbols, 151
operation with waveform inputs, 151
output, 151
timing diagram, 151
truth table, 151
VHDL, 160

Exclusive-NOR logic, 265
Exclusive-OR gates

defined, 149, 177
HIGH output, 149–150
logic combination, 149
logic levels, 150
logic symbols, 150
74 series, 163
truth table, 150

Exclusive-OR logic
defined, 111, 265
examples, 266
logic diagram and symbols, 265
truth table, 265

Execute, 730, 731, 813
Exponents, 83
Extended Data Out DRAM (EDO DRAM), 633, 

645–646
Extended-precision floating-point  

numbers, 83
External buses, 765–766
External memory controllers, 841
Extest, 606–607

F
Factoring, 195
Fall time, 21
Fan-out

defined, 168, 177, 808, 861, 885
number of inputs and, 808
unit loads, 168

Fast Page Mode DRAM (FPM DRAM)
concept, 645
defined, 643
for read operation, 644, 645

FBGA (fine-pitch ball grid array), 41
FDM (frequency-division multiplexing), 763–764
Feedback, regenerative, 388
Fetch, 729, 732, 813
FETs, 654
Field-programmable gate array. See FPGA
FIFO (first in-first out) memories

applications, 666–667
block diagram, 667
defined, 666, 688, 804
examples of, 667
register operation, 666

Filtering
low-pass, 699–700
need for, 699–700

Fine-grained FPGA, 36, 577
Finite state machines, 498–499
Firewire bus, 782–783
First in-first out memories. See FIFO memories
Fitting, 39
5-bit Johnson counter, 466–467
555 timer

as astable multivibrator, 423–426
connected as one-shot, 420
defined, 419
example, 421
functional diagram, 420
monostable operation, 420–421

as one-shot, 419–421
one-shot operation, 421
operation, 419–420
operation in astable mode, 424

Fixed-function logic devices
asynchronous binary counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional universal shift register, 463–464
complexity classifications, 42
D flip-flop, 403
data selector/multiplexer, 350
decimal-to-binary encoder, 343
defined, 39, 57
eight-input data selector/multiplexer, 351
4-bit magnitude comparator, 330
4-bit parallel adder, 320
4-bit synchronous binary counter, 513–514
gated D latch, 394
IC packages, 40–41
J-K flip-flop, 404
1-of-16, 334
parallel load shift register, 458
parallel-access shift register, 460–461
parity generator/checker, 359
pin numbering, 42
ring counter, 471
serial in/parallel out shift register, 455
S-R (SET-RESET) latch, 391
technologies, 42–43
up/down counter, 517–518

Fixed-function logic gates
overview of, 160–161
performance characteristics and parameters, 

164–169
74 series families, 164
74 series functions, 161–163

Flag register, 815
Flash ADC, 705–707
Flash memory

array, 657, 658
cells, 655
defined, 655, 688
DRAM versus, 658
erase operation, 655, 657
operation, 655–657
programming operation, 655
read operation, 656
ROM, EPROM, and EEPROM versus, 657
SRAM versus, 658
storage cell illustration, 655
USB drive, 659

Flash technology, 156, 177
Flip-flop transition tables, 520–521
Flip-flops

applications, 409–414
asynchronous inputs, 402
comparison of, 409
in counting, 412–413
D, 395–397, 398–400, 403–404
defined, 31, 387
edge-sensitive, 395
edge-triggered, 395
in frequency division, 411–412
hold time, 408
inputs, logic expressions for, 522
J-K, 397–398, 401, 404–405
maximum clock frequency, 408
operating characteristics, 406–409
in parallel data storage, 410
power dissipation, 408–409
propagation delay time, 407
pulse widths, 408
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Flip-flops (continued)
resetting, 450
setting, 450
set-up time, 407–408
shift registers, 450
SRAM, 396
synchronous inputs, 401
T, 401
toggle, 401, 437
troubleshooting, 427–428
types of, 395

Floating-gate MOS, 654
Floating-point numbers

binary, 83–84
defined, 83, 116
double-precision, 83
exponent, 83
extended-precision, 83
forms of, 83
mantissa, 83
single-precision, 83–84

Forward-biased, 869
4-bit decoder

decoding functions, 333
defined, 333
example, 335–336
implementation, 334–335
logic symbol, 334
truth table, 333

4-bit Johnson counter, 466–467
4-bit parallel adders. See also Adders; Parallel 

binary adders
defined, 319
expansion, 321–322
fixed-function device, 320
illustrated, 319
implementation, 320–321
PLD (programmable logic device), 320–321
truth table, 319–320

4-bit synchronous binary counter
fixed-function device, 513–514
implementation, 513–514
operation of, 510–511
PLD (programmable logic device), 514
timing diagram, 511

4-bit synchronous decade counter
defined, 511
illustrated, 511
operation of, 512
states of, 512
timing diagram, 512

4-line-to-10-line decoder. See 1-of-10 decoder
4-line-to-16-line decoder. See 1-of-16 decoder
4-variable Karnaugh map, 220, 221
FPGAs (field-programmable gate arrays), 

577–585
block diagram, 584
coarse-grained, 37, 577
configurable logic blocks (CLBs), 577–582
cores, 583
defined, 36, 57, 577, 615
design flow diagram, 586
digital signal processing (DSP)  

functions, 583
embedded functions, 583–584
essential elements for programming, 586
fine-grained, 36, 577
hard-core logic, 583
illustrated, 37
input/output (I/O) blocks, 577
interconnections, 577
logic modules, 579–582
logic-producing elements, 577

manufacturers, 584
parameters, 585
platform, 583
programming setup, 37
range of, 577
soft-core function, 583
specific devices, 584–585
SRAM-based, 582
structure, 36
structure illustration, 578
use of, 561
volatile configurations, 582

Fractions, 73
Frequency divider, 430–431
Frequency division, flip-flops in, 411–412
Frequency waveform, 21
FSK (frequency-shift keying), 750, 751
Full-adder

defined, 315, 371
implementation, 316–317
logic, 315–316
logic diagram, 316
logic symbol, 315
truth table, 315
in voting system application, 323

Full-duplex mode, 749, 789
Full-modulus cascading, 530
Function generators, 52
Function tables, 319
Functional simulation

defined, 589, 615
graphical approach, 589–590
illustrated, 589
output waveform after running, 590
programmable logic software, 589–591
in programming process, 38
test bench approach, 590–591
timing simulation and, 593
troubleshooting with, 603–605

Fuse technology, 154, 177, 652–653

G
GAL (generic array logic). See also SPLDs 

(simple programmable logic devices)
array, 563
defined, 35, 563
general block diagram, 565–566
macrocells, 566
notation for diagrams, 564
programmable interconnection lines, 564

Gated D latch, 393–394
Gated S-R latch, 392–393
Gates. See Logic gates
General-purpose I/O (GPIO), 840
Glitches

capture, 362
decoding, 532–534
defined, 362, 371
eliminating with strobing, 364
interpretation, 362
looking for, 428
output, 363
timing simulation and, 593

GPIB (General-Purpose Interface Bus)
bus connector and pin assignments, 773
connection, 772
defined, 771, 789
handshaking signals, 773
listener and talker, 771
management lines, 773
setup, 771
timing diagram for handshake, 772

Graphic (schematic entry), 158

Gray code
application, 105–106
conversions, 104–105
defined, 29, 104
4-bit, 104
function illustration, 106
number of bits, 104
single bit change, 104

Gray-to-binary code conversion, 105, 346–347
Grounding, 54, 176

H
Half-adder

defined, 314, 372
logic, 314–315
logic diagram, 315
logic symbol, 314
truth table, 314

Half-duplex mode, 749, 789
Half-splitting method, 55
Hamming code, 114
Handshake, 767–768, 785, 789
Hard cores, 583
Hard disks

defined, 671, 688
files, 672
format, 672
illustrated, 671
latency period, 672–673
in memory hierarchy, 678
organization and formatting, 672
performance, 672–673
read/write head principles, 671–672
removable, 673
seek time, 672

Hardware, 828, 847
Harmonics, 698
Harvard architecture, 727–728
HC (high-speed CMOS) family, 164
HDL (hardware description language)

defined, 38, 159
types of, 159–160

Hexadecimal numbers
addition, 95–96
base, 92
characters, 92
counting with, 93
defined, 92, 116
digits, 94
numeric digits, 92
subtraction, 96–98
2’s complement of, 96

Hexadecimal-to-binary conversion, 93–94
Hexadecimal-to-decimal conversion, 94
High-level languages, 831, 833, 847
High-level programming, 837–838
High-Z state, 786, 807, 867
Hit rate, 679
Hit time, 679
Hold time

defined, 408, 437
flip-flops, 408

Horizontal accuracy, 49
Hysteresis, 417

I
I2C bus, 780–781
Identification register, 595
IEEE Std. 1149.1

boundary scan instructions, 595–596
registers, 595
Test Access Port (TAP), 596–597
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IEEE-488 bus
connection, 772
defined, 771
handshaking signals, 773
listener and talker, 771
management lines, 773
setup, 771
timing diagram for handshake, 772

IEEE-1394, 782–783
Immediate addressing, 818–819
Implementation

asynchronous counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional shift registers, 463–465
comparator, 330
counter, 522
D flip-flops, 403–404
data selector, 349–350
decoder, 334–335
defined, 39
encoder, 343
4-bit decoder, 334–335
4-bit parallel adder, 320–321
4-bit synchronous binary counter, 513–514
full-adder, 316–317
J-K flip-flops, 404–405
multiplexer, 350–351
1-of-10 decoder, 337
1-of-16 decoder, 334–335
parallel in/parallel out shift registers,  

460–461
parallel in/serial out shift registers,  

458–459
programmable logic software, 592
ring counter, 471
serial in/parallel out shift registers, 455–456
S-R (SET-RESET) latch, 391–392
timing simulation, 39
up/down counter, 517–518

Incrementing, counters, 537
Index register, 815
Indexed addressing, 815, 820–821
Inequality comparison, 329–331
Inherent addressing, 818
Inhibit, 134–135
Inputs

defined, 26, 58
internally open, 170, 171
shorted, 171–172

Instances, 591
Instruction pointer, 815
Instruction register, 595
Instructions

arithmetic, 836
bit manipulation, 836
boundary scan, 595
data transfer, 836
defined, 332
loops and jumps, 837
processor control, 837
strings, 837
subroutines and interrupts, 837
types of, 836–837

In-system programming. See ISP
Integers, 83
Integrated circuit packages

classification, 40
pin numbering, 42
74 series, 163
types of, 40–41

Integrated circuits (ICs)
in applications, 126

CMOS (complementary MOS), 863–868, 
880–881

DC supply voltage, 856
defined, 40, 58
E2CMOS, 884–885
ECL (emitter-coupled logic), 881–882
fixed-function, 42
grounding and, 176
loading, 861–863
logic levels, 856–857
NMOS, 883–884
noise immunity, 857–858
noise margin, 859–860
operational characteristics and parameters, 

856–863
PMOS, 883
power dissipation, 860–861
propagation delay time, 861
speed-power product (SPP), 861
technologies, 42–43, 855–893
troubleshooting, 170–176
TTL (transistor-transistor logic),  

868–881
Intellectual property, 583, 615
Internal buses, 765, 784
Internal carries, 319
Interpreters, 833
Interrupt service routine (ISR),  

823–824
Interrupt vector table, 824, 847
Interrupts, 823–825, 847
Intest, 606
Inversion

bar over variables indication, 144
defined, 126
negation indicator, 126
polarity indicator, 127

Inverters
application, 128
CMOS, 864–865, 868
defined, 26, 58, 177
distinctive shape symbols, 126
logic expression, 128
logic symbols, 126
NAND gates as, 272
negation indicator, 126–127
1’s complement circuit using, 128
operation, 127
polarity indicator, 126–127
propagation delay time, 167
rectangular outline symbols, 126
timing diagrams, 127–128
truth table, 127
TTL, 869–870
VHDL, 160

I/O ports
defined, 804
multiplexed, 786–787
processor support, 804–805

ISP (in-system programming)
defined, 39, 156
embedded processor, 159
JTAG (Joint Test Action Group), 159

ISR (interrupt service routine), 823–824

J
J-K flip-flops. See also Flip-flops

in counting, 413
defined, 397, 437
edge-triggered operation, 401
fixed-function device, 404
in frequency division, 411
implementation, 404–405

logic diagram, 401
operation of, 397
PLD (programmable logic device), 404–405
positive edge-triggered, 397–398
synchronous inputs, 401
transition table, 520
transitions, 401
truth table, 398

Johnson counter. See also Shift registers
defined, 465
five-bit, 466, 467
four-bit, 466, 467
timing sequence, 467

JTAG (Joint Test Action Group), 39, 159, 177
Jumps, 837
Junctions, 869

K
Karnaugh maps

cell adjacency, 220–221
cells, 220
converting between POS and SOP with, 

235–237
defined, 220, 249
determining minimum expression from, 

227–228
“don’t care” conditions, 230–232
Espresso method and, 221–222
4-variable, 220, 221
grouping 1’s, 226–227
POS minimization, 233–237
Quine-McCluskey method and, 221
seven-segment displays, 245
simplification, 219
simplification of POS expressions,  

234–235
simplification of SOP expressions, 226–230
SOP minimization, 222–232
in synchronous counter design, 521–522
3-variable, 220

Keyboard encoder circuit
illustrated, 475
operation of, 476
shift register, 475–476

L
L1 cache, 640
L2 cache, 640
LAB (logic block array), 568, 615
Lamp test, 339
Lands, 674
Large-scale integration (LSI), 42
Last in-last out memories. See LIFO memories
Latches

defined, 387, 388, 437
gated D, 393–394
gated S-R, 392–393
for multiplexing data onto buses, 388
S-R (SET-RESET), 388–392

Latency
defined, 682
memory, 677
period, 672–673

LCC (leadless ceramic chip), 41, 42
Leading edge, 20
Leading zero suppression, 339
Least significant digit (LSD), 95
LEs (logic elements), 571
Levels of abstraction, 242–243
LIFO (last in-first out) memories

defined, 667–670, 688
POP operation, 669
PUSH operation, 669
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LIFO (continued)
RAM stack, 668–670
register stacks, 667, 668
top-of-stack, 667

Linearity, DAC, 719
Listener, 771
Literals, 192
Little logic, 163
Loading

CMOS, 861–862
defined, 487
parallel, 458–459, 463
signal, 808, 848
TTL, 862–863

Logic. See also Combinational logic; 
Programmable logic

basic form, 25
bipolar, 166
boundary scan, 595–602
burst, 639
circuits, 26
defined, 58
little, 163
negative, 20
registered, 566, 574

Logic analyzers. See also Test/measurement 
instruments

analysis and display, 50–51
block diagram, 50
channel count and memory depth, 50
data acquisition, 50
defined, 49
display modes illustration, 51
illustrated, 49
looking for glitches with, 428
probes, 51

Logic circuits
Boolean analysis of, 203–205
Boolean expression for, 203, 267–268
combinational, 262–267
DC supply voltage, 167
fan-out and loading, 168
input and output logic levels, 168
node in, 289
performance characteristics and parameters, 

164–169
power dissipation, 167–168
propagation delay time, 166–167
seven-segment displays, 246–247
speed-power product (SPP), 168
troubleshooting, 290
truth table construction for, 203–205
truth tables to, 269–272

Logic diagrams
boundary scan, 597
code selection logic, 482
D flip-flop, 402
decimal-to-binary encoder, 342
equality comparison, 328
full-adder, 316
half-adder, 315
J-K flip-flop, 401
look-ahead carry adder, 327
multiplexer, 349
NAND logic, 276–277
NOR logic, 278–279
ring counter, 467
serial-to-parallel data converter, 472

Logic elements (LEs), 571
Logic expressions

AND gate, 133–134
inverter, 128
NAND gate, 144

NOR gate, 149
OR gate, 139

Logic families
CMOS, 409
HC (high-speed CMOS), 164
LS (low-power schottky), 164, 169
74 series, 164, 409
TTL, 409

Logic function generator, 353–356
Logic functions

AND, 26
arithmetic, 28–29
code conversion, 29
comparison, 27–28
counting, 32
data selection, 30
decoding, 29–30
defined, 25
encoding, 29
levels of abstraction, 242–243
NOT, 26
OR, 26, 27
storage, 30–32
symbols, 26

Logic gates
AND, 26, 129–135
conditions for testing, 170
defined, 26, 58
driving LED load with, 148
effects of internally open input,  

170, 171
equivalences, 200
exclusive-NOR, 151–152
exclusive-OR, 149–150
fan-out, 168
fixed-function, 160–169
as fundamental building block, 129
input and output logic levels, 167–168
internal failures of, 170–172
logic symbol representation, 125
LS, 169
NAND, 140–145
NMOS, 884
NOR, 145–149
open input, troubleshooting, 170–171
open-collector, 871–872, 875–877
open-drain, 867
OR, 27, 136–140
PMOS, 883
power dissipation, 167–168
propagation delay time, 166
shorted input or output, 171
tri-state CMOS, 867
troubleshooting, 170–176
universal, 273, 299
VHDL descriptions of, 159–160

Logic levels
defined, 20
exclusive-NOR gate, 151
exclusive-OR gate, 150
input and output, 168

Logic modules
block diagram, 579
configuration, 579
example, 581–582
extended LUT, 580, 581
LUT, 579–581
normal mode, 580
operation modes, 580–581

Logic probes, 53
Logic pulsers, 53
Logic signal source, 51
Logic simplification

with Boolean algebra, 205–209
with “don’t care” conditions, 230–232
gates and, 206
Karnaugh map, 219–223
Karnaugh map, of POS expressions,  

234–235
Karnaugh map, of SOP expressions,  

226–230
Multisim, 208–209
process control system, 206

Logic symbols
BCD-to-7-segment decoder, 338
comparator with inequality indication, 329
counters, 539–541
decimal-to-binary encoder, 341
defined, 125
EPROM, 653
exclusive-NOR gate, 151
exclusive-OR gate, 150
exclusive-OR logic, 265
full-adder, 315
AND gate, 129
half-adder, 314
HIGH output, 136
inverter, 126
multiplexer, 348, 575
NAND gate, 140
nonretriggerable one-shot, 416
NOR gate, 145
1-of-16 decoder, 334
one-shot, 415
operation of, 136
OR gate, 136
retriggerable one-shot, 417
serial in/serial out shift register, 453
74HC164, 477
74HC194, 477
S-R (SET-RESET) latch, 390
truth table, 137

Look-ahead carry adder
carry generation, 325–326
carry propagation, 325–326
defined, 325, 372
logic diagram, 327
ripple carry adder combination, 327

Look-up table (LUT) CPLD
block diagram, 573
CPLD architecture, 571
row/column interconnects, 573
volatile process technology, 571

Look-up tables (LUTs)
concept illustration, 579
configurations in LM, 581
defined, 579, 615
example, 579–580
organization of, 579

Loops, 837
Low-pass filtering, 699–700
LS (low-power schottky) family,  

164, 169
LSB (least significant bit), 69, 71, 116, 332

M
Machine language, 831, 847
Macrocells

combinational mode, 575–576
CPLD, 568, 569, 574–575
defined, 566, 615
illustrated, 575
modes, 574–577
registered logic and, 566
registered mode, 576
SPLD, 566
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Magnetic memories, 32
Magnetic storage

hard disks, 671–673
tape, 673

Magneto-optical disks, 673–674
Magnitude, comparison, 27
Main memory, 677–678, 803, 804, 848
Manchester encoding, 746–747, 789
Mantissa, 83
Mapping. See also Karnaugh maps

directly from truth table, 230, 231
nonstandard SOP expressions, 224–226
standard POS expressions, 233–234
standard SOP expressions, 222–224

Mask ROM, 647–648
Masks, 134, 139
Maximum clock frequency, 408
Mealy state machine

defined, 498
example, 499
illustrated, 499
sequential logic, 498

Mechatronics
defined, 18
example of, 18–19
system block diagram, 18

Medium-scale integration (MSI), 42
Memories

address, 629
banks, 630
basics, 628–633
BIOS, 803–804
block diagrams, 631
cache, 639–640, 803
capacity, 629–630
CCD (charge-coupled device), 670
cells, 396
comparison, 659
content-addressable, 804
defined, 628, 688
first in-first out (FIFO), 666–667, 804
flash, 655–659
key characteristics of, 676
last in-last out (LIFO), 667–670
magnetic, 32
main, 803
multiple-array, 631
nonvolatile, 632
operations, 630–632
optical, 32
processor and, 815–816
RAM (random access memory), 30, 633–646
ranks, 630
read operation, 632
ROM (read-only memory), 30, 646–655
semiconductor, 32
single-array, 631
special types of, 666–670
static, 396
system on chip (SoC), 845–846
troubleshooting, 683–687
volatile, 396
write operation, 630–631

Memory arrays
asynchronous SRAM, 636
defined, 628
2-dimensional, 629

Memory cells, 633
Memory depth, 50
Memory expansion

memory modules, 664–665
word capacity, 663–664
word length, 660–663

Memory hierarchy
auxiliary storage, 678
caches, 677
defined, 677, 688
hard disk, 678
illustrated, 677
main memory, 677–678
performance, 679
registers, 677
relationship of cost, capacity, and access  

time, 678
Memory latency, 677
Memory modules

DIMMs (dual in-line memory modules),  
664, 665

handling precautions, 665
illustrated, 664
SIMMs (single in-line memory  

modules), 664
Metal nitride-oxide silicon (MNOS), 654
MFLOPS, 729, 732
Microcontrollers

in automated systems, 843–844
in automobile systems, 843
basics, 838–839
block diagram, 839
in consumer appliances, 843
defined, 39, 58, 848
embedded, 39
functional units, 839
peripherals, 839–842
in personal handheld systems, 842–843
use of, 838

Microprocessors
addressing modes, 817–820
ALU (arithmetic logic unit), 814
architecture, 812
block diagram, 812
bus request operations, 825
defined, 803, 812, 848
DMA (direct memory access), 826–828
elements of, 812, 814–815
exceptions, 823–825
fetch/execute cycle, 813
instruction decoder and timing/control unit, 

814
interrupts, 823–825
memory and, 815–816
multicore, 803
parity checks, 361
pipelining, 813–814
polling, 823
register set, 814–815
shift register emulation, 469
special operations, 823–828

Minimization
defined, 226, 249
Espresso, 222
Karnaugh map POS, 233–237
Karnaugh map SOP, 222

Minterm, 237
Minuend, 86
MIPS, 729, 732
Miss, 679
MMACS, 729, 732
MMU (memory management units), 830
Mnemonics, 192, 831
MOD10, 504
Mode dependency, 540
Modulation

analog signals with digital data, 750–753
ASK (amplitude-shift keying), 750, 751
constellation map representation, 752–753

defined, 750, 789
digital signals with analog data, 753–759
FSK (frequency-shift keying), 750
M-QAM, 752
PAM (pulse amplitude modulation), 754
PCM (pulse code modulation), 758–759
PPM (pulse position modulation), 756–758
PSK (phase-shift keying), 750–751
PWM (pulse width modulation), 754–756
QAM (quadrature amplitude modulation), 

751–752
Modulo-2 addition, 111, 149
Modulo-2 operations, 111–112
Modulus

of counters, 504
defined, 550

Monostable multivibrators, 387, 414, 437
Monotonic, 719
Moore state machine

defined, 498
example of, 498–499
illustrated, 499
sequential logic, 498

MOSFETs (metal-oxide semiconductor field-
effect transistors), 42–43, 864

M-QAM, 752
MSB (most significant bit), 69, 72, 116, 329
Multicore processors, 803
Multimode light propagation, 742
Multiplexed buses, 784
Multiplexed I/Os, 786–787
Multiplexers (MUX)

applications, 352–356
defined, 30, 347, 372
eight-input, 351
fixed-function device, 350, 351
implementation, 350–351
logic diagram, 349
logic function generator, 353–356
logic symbol, 348, 575
PLD (programmable logic device), 350, 351
in process control system, 33
seven-segment display, 352–353

Multiplexing
defined, 759
FDM (frequency-division multiplexing), 

763–764
TDM (time-division multiplexing), 760–763
types of, 760
use of, 759–760

Multiplicand, 88, 89
Multiplication

associative law of, 194–195
binary, 76
Boolean, 134, 193
commutative law of, 194
function, 29
logical, 129
product, 88
signed numbers, 88–90
times, 88

Multiplier, 88, 89
Multiprocessing, 830
Multisim

logic simplification, 208–209
security system, 486
seven-segment display simulation, 248
traffic signal controller, 371, 436
valve control logic, 298–299

Multitasking
defined, 806, 829, 848
non-preemptive, 829
preemptive, 829
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Multitenancy, 683
Multivibrators

astable, 423–427
bistable, 395
defined, 387, 388
monostable, 414

N
NAND gates

Boolean expression, 144
CMOS, 865–866
combinational logic using, 275–277
combinations of, 273
defined, 140, 141, 177
equivalent operations of, 142
as inverters, 272
logic expressions for, 144
logic symbols, 140
LOW output, 141
LS family, 169
negative-OR equivalent operation of, 142–144
operation of, 141
operation with waveform inputs, 141–142
output, 280
quad 2-input, 165–166
74 series, 162
timing diagram, 142, 144
troubleshooting for open input, 171
truth table, 141
TTL, 870–871
universal application of, 273
universal property of, 272–274
VHDL, 160

NAND logic
bubble representation, 275–276
diagram using dual symbols, 276–277
examples, 277
AND-OR equivalent, 275
output expression, 275

NAND/NAND, 210–211
Negation indicator, 126
Negative logic, 20
Negative-AND

circuit illustration, 298
defined, 274, 277, 299
equivalent operation of NOR gate,  

147–149, 277
Negative-OR

defined, 274, 299
equivalent operation of NAND gate, 142–144, 

275
logic diagram, 275

Netlist, 591–592
Next-state tables, 520
Nibbles, 319, 628
NMOS, 883–884
Nodes, 289, 299
Noise immunity, 857–858, 886
Noise margin, 859–860, 882, 886
Nondestructive read, 632, 816
Nonmonotonicity, 720
Non-preemptive multitasking, 829
Nonretriggerable one-shot. See also One-shots

action illustration, 415
defined, 415
logic symbols, 416
pulse width, setting, 416
Schmitt-trigger symbol, 417

NOR gates
Boolean expression, 149
CMOS, 866
combinational logic using, 277–279
combinations of, 273–274

defined, 145, 178
logic expressions for, 149
logic symbols, 145
LOW output, 146–147
negative-AND equivalent operation of, 

147–149
operation of, 145–146
operation with waveform inputs, 146–147
output, 280
74 series, 162
timing diagram, 146
truth table, 146
universal application of, 274
universal property of, 272–274

NOR logic
defined, 277–278
diagram using dual symbols, 278–279
example, 279
output expression, 278

NOT function, 26, 58
NRZ (nonreturn to zero), 746, 789
Numbers, 79–91

BCD, 100–103
binary, 67–70
decimal, 66–67
floating-point, 83–84
hexadecimal, 92–98
octal, 98–100
signed, 79–91

Nyquist frequency, 699, 732

O
Object programs, 832
Octal numbers

base, 98
conversions, 98–100
defined, 98, 116

Octal-to-binary conversion, 99
Octal-to-decimal conversion, 98
Odd parity, 110, 359
Offset error, 721
1-of-10 decoder

decoding functions, 336
defined, 336
example, 337–338
implementation, 337

1-of-16 decoder
decoding functions, 333
defined, 333
example, 335–336
fixed-function device, 334
implementation, 334–335
logic symbol, 334
PLD (programmable logic device), 335
truth table, 333

1’s complement
decimal value, 81
defined, 77
inverters, 128
negative numbers and, 80
signed numbers, 80

One-shots
application, 418–419
circuit illustration, 414
defined, 387, 414, 437
555 timer as, 419–421
logic symbols, 415
nonretriggerable, 415, 416–417
pulse produced by, 414
retriggerable, 415, 417–418
sequential timing circuit, 419
stable display, 422
trigger input, 414

triggering from pulse generator, 422
with VHDL, 422

On-off keying (OOK), 751
Op-amp (operational amplifier), 705
Op-codes, 814, 831, 848
Open-collector buffer/drivers, 877–879
Open-collector gates

defined, 872, 886
illustrated, 871
symbol, 872
for wired-AND operation, 875–877

Open-drain gates, 867
Operands, 317, 814, 818, 848
Operating system (OS)

defined, 805, 829, 848
MMU (memory management units), 830
processes, 829
supervisor and user states, 830
system services, 830–831

Optical fiber
cable, 741–743
connector types, 743
data communications link, 742–743
defined, 741, 789
illustrated, 741
light propagation, 742

Optical jukebox, 678
Optical memories, 32
Optical storage

Blu-ray, 676
CD-R, 675
CD-ROM, 674–675
CD-RW, 675–676
DVD-ROM, 676
WORM, 675

OR function
Boolean addition as, 139
defined, 27, 58
illustrated, 27

OR gates
application, 139–140
Boolean expressions, 139
defined, 27, 136, 178
intrusion detection system using, 140
logic expressions for, 139
logic symbols, 136
operation with waveform inputs, 137–139
output, 280
74 series, 162
timing diagram, 137
VHDL, 160

Oscilloscopes. See also Test/measurement 
instruments

analog, 43
bandwidth, 48
block diagram, 44
coupling signals into, 46–47
defined, 43
dual-trace analog, 544
front panel illustration, 45
horizontal accuracy, 49
horizontal controls, 45
illustrated, 44
record length, 48
resolution, 49
sampling rate, 48
specifications, 48–49
trigger controls, 45–46
untriggered and triggered waveform 

comparison, 46
vertical controls, 45
vertical sensitivity, 49
voltage probe, 46
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OTP (one-time programmable), 154, 155, 157
Output enable access time, 637
Outputs

defined, 26, 58
open, troubleshooting, 170–171
shorted, 171–172

Overflow, 86

P
Packets, 746
Pads, 748
PAL (programmable array logic). See also SPLDs 

(simple programmable logic devices)
defined, 35, 562
general block diagram, 565–566
macrocells, 566
notation for diagrams, 564
AND/OR structure, 562
programmable interconnection lines, 564
SOP expression implementation, 563

PAM (pulse amplitude modulation), 754, 789
Parallel binary adders

application, 322–323
defined, 317
4-bit, 319–322
3-bit, 318–319
2-bit, 318
voting system application, 322–323

Parallel buses
defined, 765
IEEE-488, 771–773
PCI (peripheral component interconnect), 769
PCI-Express, 770–771
PCI-X, 769
SCSI, 774
serial bus comparison, 765
shared, 770

Parallel data
defined, 537
storage, 410
transfer, 24, 58
transmission, 745–746

Parallel expanders, 571, 572
Parallel in/parallel out shift registers

defined, 460
fixed-function device, 460–461
illustrated, 460
implementation, 460–461
PLD (programmable logic device), 461

Parallel in/serial out shift registers
defined, 456
example, 457–458
fixed-function device, 458
illustrated, 457
implementation, 458–459
PLD (programmable logic device), 458–459

Parallel loading, 463
Parallel-to-serial conversion

counters in, 537–539
logic symbols, 538
shift registers and, 474
timing example, 538

Parity
checks, 361
defined, 110, 116
for error detection, 110
even, 359
logic, 359
odd, 110, 359

Parity bits, 110–111, 358, 359, 372
Parity checker, 359
Parity generator, 360
Partial decoding, 504

Partial products, 88–89
PCI (peripheral component interconnect) bus, 

769, 770
PCI-Express bus, 770–771
PCI-X bus, 769
PCM (pulse code modulation), 758–759
PDM (pulse duration modulation). See PWM 

(pulse width modulation)
Period, 21
Periodic pulse waveform, 21
Peripherals. See also ADCs (analog-to-digital 

converters); DACs (digital-to-analog 
converters)

communication controllers, 840
configuring, 841–842
external memory controllers, 841
general-purpose I/O (GPIO), 840
microcontroller, 839–841
pulse width modulators, 841
quadrature encoders, 840–841
timers, 840

Personal handheld systems, 842–843
Phase splitters, 869
PIA (programmable interconnect array), 568
Pin numbering, 42
Pins, 591
Pipeline operation, 729–730, 732
Pipelining

defined, 332, 813, 848
illustrated, 813
in microprocessors, 813–814

Pits, 674
PLA (programmable logic array), 572, 574
Place and route, 39
Platform FPGAs, 583
PLCC (plastic-leaded chip carrier), 41, 42
PLDs (programmable logic devices)

asynchronous binary counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional universal shift register, 464–465
D flip-flop, 404
data selector/multiplexer, 350
decimal-to-binary encoder, 343
defined, 34, 153
design entry, 157–158
eight-input data selector/multiplexer, 351
4-bit magnitude comparator, 330
4-bit parallel adder, 320–321
4-bit synchronous binary counter, 514
gated D latch, 394
graphic (schematic entry), 158
J-K flip-flop, 404–405
logic description, 561
for memory address decoding, 156
microcontroller versus, 39
1-of-16, 335
OTP, 154, 155
parallel load shift register, 458–459
parity generator/checker, 360
programmable process technologies, 154–157
programming, 157
programming setup, 37, 158
ring counter, 471–472
serial in/parallel out shift register, 456
S-R (SET-RESET) latch, 392
text entry, 158
up/down counter, 518

PMOS, 883
Polarity indicator, 127
Polling, 823, 824
Pop operation, 669
Ports, 591

POS. See Product-of-sums
Power dissipation

average, 860
bipolar gates, 167
CMOS gates, 167
defined, 167, 408, 437, 886
flip-flops, 408–409

PPM (pulse position modulation)
defined, 756
example with timing, 756
method of generating, 756
signal through differentiator, 757
system block diagram, 757

Preemptive multitasking, 829
Preset, 402, 437
Priority encoder, 342, 372
Probes

compensation, 46–47
compensation conditions, 47
logic analyzer, 51
voltage, 46

Process control system, 32–33
Processes

communication and interaction, 830–831
control of processor, 830
defined, 829
multiple, 829–830

Processors. See Microprocessors
Product terms

binary values of, 215
converting to standard SOP, 211–212
defined, 193, 249
numerical expansion of, 224–225
standard, binary representation of, 212–213

Product-of-sums (POS). See also Boolean 
expressions

conversion with Karnaugh map, 235–237
converting standard SOP to, 215–216
converting to truth table format, 217–218
defined, 213, 249
form, 213
implementation of, 213
karnaugh map simplification of, 234–235
standard form, 213–215
sum terms, 214–215

Products
defined, 88
partial, 88–89
sign of, 89

Program counter, 815
Programmable interrupt controller (PIC), 824
Programmable logic, 561–626

AND array and, 153–154
boundary scan, 595–602
defined, 34, 58
design flow block diagram, 38
hierarchy, 34
troubleshooting, 602–607

Programmable logic array (PLA), 572, 574
Programmable logic devices. See PLDs 

(programmable logic devices)
Programmable logic software, 585–595

design entry, 587–589
device programming, 594
functional simulation, 589–591
implementation, 592
synthesis, 591–592
timing simulation, 592–594

Programmable process technologies
antifuse, 154–155, 177
EEPROM, 156
EPROM, 155–156
flash, 156, 177
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Programmable (continued)
fuse, 154, 177
SRAM, 156–157

Programmable ROMs (PROMs)
array, 652
defined, 647, 652, 688
fuse technology, 652–653

Programming
high-level, 837–838
levels of languages, 831
operation, 656

Programming process
design entry, 38
download, 39
functional simulation, 38
implementation, 39
overview, 37
synthesis, 38
timing simulation, 39

Programs
assembly language, 833–836
control, 267
conversion to machine language, 832
defined, 803, 814, 848
driver, 267
object, 832
source, 832
VHDL components in, 284

Propagation delay time
asynchronous counters, 502–504
defined, 166, 178, 407, 437, 886
flip-flops, 407
inverter, 167
for logic gates, 861

Protocols, 682, 767–768, 788
PSK (phase-shift keying), 750–751
Pull-up resistors, 344, 867, 886
Pulse oscillators

defined, 423
in timing waveforms, 387

Pulse trains, 21
Pulse waveform

combinational logic and, 279–282
inputs, 279–280
operation, 279–282

Pulse width modulators, 841
Pulse widths

defined, 21
flip-flops, 408
nonretriggerable one-shot, setting, 416

Pulses
defined, 20, 58
fall time, 21
ideal, 20
leading edge, 20
nonideal, 21
rise time, 21
trailing edge, 20

Push operation, 669
PWM (pulse width modulation)

basic method, 755
defined, 754
example, 755–756
illustrated, 755

Q
QAM (quadrature amplitude modulation), 

751–752
QIC tape, 673
Quad 2-input NAND gate, 165–166
Quadrature encoders, 840–841
Qualifying symbol, 539

Quantization
defined, 701, 732
four levels, 702, 703
sixteen levels, 703, 704
two-bit, 702

Queues, 804
Quine-McCluskey method

applying, 237
defined, 221, 237
minterm, 237–238

Quotients, 90

R
R/2R ladder DAC

analysis illustration, 718
analysis of, 717–719
defined, 717
illustrated, 717

RAM stack
defined, 668
depth, 670
POP operation, 669
PUSH operation, 669

RAMs (random access memories). See also 
DRAMs (dynamic RAMs); SRAMs (static 
RAMs)

checkerboard pattern test, 685–687
defined, 632, 633, 688
family, 633, 634
flowchart for checkerboard test, 686
testing, 685–687
types of, 633
as volatile memory, 632

Range of signed integer numbers, 82–83
Ranks, 630
Read cycle access time, 637
Read operation

asynchronous SRAM, 636–637
defined, 632, 688, 815
DRAM, 642
flash memory, 656
FPM DRAM, 644, 645
illustrated, 632, 816
nondestructive, 632, 816
processor and, 815–816

Real numbers. See Floating-point numbers
Reconstruction filter, 722
Record length, 48
Recycle, 498, 501, 550
Refresh

burst, 644
cycles, 644–645
distributed, 645
operations, 645

Refreshing, 633
Registered logic, 566, 574, 616
Registered mode, 563, 576
Registers. See also Shift registers

address, 815
boundary scan, 595
bypass, 595
clearing, 451
control, 841
data, 842
defined, 31, 450, 487
flag, 815
identification, 595
index, 815
instruction, 595
in memory hierarchy, 677
in process control system, 32, 33
program counter, 815

shift, 31
stack pointer, 815
status, 841–842
storage capacity of, 450
successive-approximation (SAR), 709
top-of-stack, 667

Relative addressing, 821–822
Remainders, in repeated division-by-2 method, 71
Removable hard disks, 673
Repeated division-by-2 method, 71–72
Repeated multiplication-by-2 method, 73
Replacement, troubleshooting method, 55
Reset, 824–825
RESET state, 388, 437
Resolution

ADC, 704
DAC, 719
defined, 49
flash ADC, 705

Retriggerable one-shot. See also One-shots
action illustration, 415
defined, 415
examples, 417–418
logic symbol, 417

Return from interrupt (RTI), 824
Reverse-biased, 869
Ring counter

defined, 467
example, 468–469
fixed-function device, 471
implementation, 471
logic diagram, 467
PLD (programmable logic device), 471–472
sequence, 468

Ripple carry adder
defined, 319, 324, 372
illustrated, 324
look-ahead carry adder combination, 327
total delay, 325

Ripple counters. See Asynchronous counters
Rise time, 21
ROM (read-only memory)

access time, 650–651
array illustration, 648
cells, 647
checksum method, 684–685
contents check, 684
defined, 632, 646, 688 
EEPROM, 156, 177, 647, 654
EPROM, 155–156, 647, 653–654
family, 646
flash versus, 657
flowchart for contents check, 684
internal organization, 650, 651
mask, 647–648
as nonvolatile memory, 632
PROM, 647, 652–654
representation illustration, 649
testing, 683–685
UV EPROM, 647, 654

RS-232 bus, 778–779, 789
RS-422 bus, 779
RS-423 bus, 779–780
RS-485 bus, 780
RZ (return to zero), 746, 789

S
Sample-and-hold operation, 702, 703
Sampled-value representations, 17
Sampling

application, 700
bouncing ball analogy, 699
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defined, 698, 732
process illustration, 698
theorem, 699

Sampling rate, 48
SAS (Serial Attached SCSI), 783
Saturation, 864
Scalability, 683
Schematic entry, 587, 616
Schmitt triggers

astable multivibrator using, 423
defined, 809
symbol, 417

Schottky TTL, 872–873
SCSI, 774, 789
Seat belt alarm system application, 135
Security system

block diagram, 480
block diagram as programming  

model, 483
code-selection logic, 482
components, 484
logic diagram of code-selection  

logic, 482
operation of, 480
overview, 480
security code logic, 481–482
simulation, 486
VHDL, 483–486
VHDL program code, 485–486

Seek time, 672
Semiconductor memories, 32
Sequential logic

Mealy state machine, 498
Moore state machine, 498
optimized, schematic for, 593
schematic entry, 588
traffic signal controller, 432–434, 588, 603

Serial Attached SCSI (SAS), 783
Serial buses, 765
Serial data

defined, 537
format, 473
transmission, 745–746

Serial data transfer
defined, 23, 58
illustrated, 24

Serial in/parallel out shift registers
defined, 454
example, 454
fixed-function device, 455
illustrated, 454
implementation, 455–456
PLD (programmable logic device), 456

Serial in/serial out shift registers
defined, 451
example, 452–453
illustrated, 451
logic symbol, 453
shifting 4-bit code in, 452

Serial-to-parallel data converter
input test pattern, 478, 479
logic diagram, 472
operation of, 472–473
shift registers, 472–474
test setup, 479
timing diagram, 473

Serial-to-peripheral interface (SPI) bus, 780
Servers, 680, 681, 689
SET state, 389, 437
Settling time, DAC, 719
Set-up time

defined, 407, 437
flip-flops, 407–408

Seven-segment displays
block diagram, 245
describing logic with VHDL, 247–248
display logic, 245
expressions for segment logic, 246
function of, 244
illustrated, 244
Karnaugh maps, 245
logic circuits, 246–247
multiplexer, 352–353
simulation, 248
types of, 244
use of, 244

74 series
74AHC74 family, 409
74F74 family, 409
74HC42 decoder, 337
74HC47 decoder/driver, 339
74HC74 flip-flop, 403
74HC74A family, 409
74HC75 latch, 394
74HC85/74LS85 comparator, 330
74HC93 asynchronous binary counter, 

506–507
74HC112 flip-flop, 404, 405
74HC147 encoder, 343
74HC151 data selector/multiplexer, 351
74HC153 data selector/multiplexer, 350
74HC154 decoder, 334
74HC163 counter, 513–514
74HC163 synchronous binary counter, 

539–540
74HC164 shift register, 455
74HC165 shift register, 458
74HC190 up/down counter, 517–518
74HC194 shift register, 463–464
74HC195 shift register, 460–461, 471
74HC279A latch, 391
74HC280 generator/checker, 359–360
74HC283/74LS283 parallel adder, 320
74LS74A family, 409
74LS122 retriggerable one-shot, 417, 419
74121 nonretriggerable one-shot, 416
defined, 161
AND gate, 161–162
IC packages, 163
logic circuit families, 164
logic gate functions, 161–163
NAND gate, 162
NOR gate, 162
OR gate, 162
XOR gate, 163

Shannon, Claude, 191
Shared bus, 348
Shared expanders, 568–571
Shift registers

applications, 469–476
bidirectional, 462–465
counters, 465–469
data movement in, 450
defined, 449, 450
flip-flops, 450
input test pattern, 478, 479
Johnson counter, 465–467
keyboard encoder application, 475–476
logic symbols with dependency notation, 

476–478
operations, 450–451
parallel, 31
parallel in/parallel out, 460–462
parallel in/serial out, 456–459
ring counter, 467–469
sample test pattern, 478

serial, 31
serial in/parallel out, 454–456
serial in/serial out, 451–453
serial-to-parallel data converter application, 

472–474
shift capability, 450
stage, 450, 487
storage capacity, 450
time delay application, 469–470
troubleshooting, 478–479
types of, 451–462
UART application, 474–475
universal, 463–465

Sigma-delta ADC
conversion illustration, 712
conversion process, 713
defined, 711–712
functional block diagram, 712

Sign bit, 79
Signal generators, 51–52
Signal loading, 808, 848
Signal substitution, 56
Signal tracing

defined, 299
example steps, 292–293
illustrated, 292
method, 55–56
procedure, 291–292
in troubleshooting combinational logic, 

290–293
Signals, VHDL, 285, 299
Signed numbers

addition, 85–86
arithmetic operations with, 85–91
decimal value of, 80–82
defined, 79
division, 90–91
floating-point, 83–84
multiplication, 88–90
1’s complement form, 80
range of, 82–83
sign-magnitude form, 79
subtraction, 86–87
2’s complement form, 80

Sign-magnitude
decimal value, 80
form, 79
negative numbers and, 79

SIMMs (single in-line memory  
modules), 664

Simple programmable logic device. See SPLD
Simplex mode, 749, 789
Single-ended buses, 768–769
Single-mode light propagation, 742
Single-precision floating-point binary numbers, 

83–84
Small-scale integration (SSI), 42
SMT (surface-mount technology), 41
Soft cores, 583
Software

application, 806
defined, 805, 828, 848
programmable logic, 585–595
reset, 825
system, 805–806

Software development tools, 287–288
SOIC (small-outline integrated circuit), 41, 163
SOP. See Sum-of-products
Source operand, 317
Source programs, 832
Spatial locality, 679
Speed-power product (SPP), 168, 861
SPI (serial-to-peripheral interface) bus, 780
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SPLDs (simple programmable logic devices)
defined, 35, 58
design flow diagram, 586
essential elements for programming, 586
GAL (generic array logic), 562, 563
general block diagram, 565
illustrated, 35
macrocells, 566
PAL (programmable array logic), 562–563
simplified notation for diagrams, 564
types of, 562

SPP (speed-power product), 168, 861
S-R (SET-RESET) latch

application, 391
as contact bounce eliminator, 391
defined, 388
implementation, 391–392
logic symbols, 390
modes, 389
outputs, 389
RESET state, 388
SET state, 389
truth table, 390
versions of, 388

SRAM-based FPGAs, 582
SRAMs (static RAMs). See also RAMs (random 

access memories)
asynchronous, 633, 634–638
in cache memories, 639–640
defined, 156, 178, 633, 688
flash versus, 658
flip-flops, 396
memory cell, 633–634
static memory cell array, 634
synchronous, 633, 638
technology, 156–157
types of, 633

SSOP (shrink small-outline package), 41, 42
Stack pointer, 815
Stages, 450, 487
Standard POS expressions. See also Product-of-

sums (POS)
converting sum term to, 214
defined, 214
determining from truth table, 218–219
form, 213–214
mapping, 233–234

Standard SOP expressions. See also 
Sum-of-products (SOP)

binary representation of product term, 212–213
converting product terms to, 211–212
defined, 211
determining from truth table, 218–219
mapping, 222–224
seven-segment displays, 246

State diagrams
defined, 519–520, 550
elevator controller, 546
illustrated, 520

State machines
counters as, 498–499
defined, 498, 550
Mealy, 498, 499
Moore, 498–499

Static memory cells
arrays, 634
defined, 633
as volatile memory, 396

Statistical TDM, 762–763
Status registers, 841–842
Storage, 627–696. See also Memories

auxiliary, 678
cloud, 680–683

function, 30–32
long-term, 31
magnetic, 671–673
magneto-optical, 673–674
media, 670–676
short-term, 30
tertiary, 678
troubleshooting, 683–687

Strings, 837
Strobing, 364, 533, 534
Structural approach, 243
Subroutines, 837
Subtraction

binary, 75–76
difference, 86
function, 28
hexadecimal, 96–98
signed numbers, 88–90

Subtrahend, 86
Successive-approximation ADC, 709–710
Sum, 85
Sum terms

converting to standard POS, 214
defined, 192, 249
standard, binary representation of, 214–215

Sum-of-products (SOP). See also Boolean 
expressions; Standard SOP expressions

converting general expression to, 211
converting to standard POS, 215–216
converting to truth table format, 216–217
converting with Karnaugh map, 235–237
defined, 210, 249
form, 210–211
Karnaugh map simplification of, 226–230
mapping, 224–226
NAND/NAND implementation of,  

210–211
numerical expansion of product term,  

224–225
AND/OR implementation, 210, 263
PAL implementation, 563
standard form, 211–213

Sum-of-weights method
defined, 71
example, 71
fractions, 73

Synchronous bistable devices, 395
Synchronous buses, 768, 810
Synchronous cascading, 528
Synchronous counter design

counter implementation, 522
examples, 523–526
flip-flop transition table, 520–521
Karnaugh maps, 521–522
logic expression for flip-flop  

inputs, 522
next-state table, 520
state diagram, 519–520
steps for designing, 519–522
summary of steps, 523

Synchronous counters. See also Counters
cascaded, 528
clock input, 508
decade, 511–513
defined, 497, 507, 550
design of, 519–527
4-bit binary, 510–511, 513–514
3-bit binary, 509–510
2-bit binary, 508–509
up/down, 515–519

Synchronous DRAM (SDRAM), 633, 646
Synchronous frames, 747–748
Synchronous inputs, 401, 437

Synchronous SRAMs. See also SRAMs 
(static RAMs)

block diagram, 638
burst feature, 639
concept, 638
defined, 633, 638

Synchronous TDM, 761–762
Synchronous transmission

defined, 746
synchronization methods, 746–747
synchronous frames, 747–748

Synthesis
defined, 38
logic optimization during, 592
netlist, 591–592
programmable logic software, 591–592

System bus, 805, 848
System on chip (SoC)

block diagram, 846
CPU (central processing unit), 845
defined, 844, 845, 848
elements of, 844, 845
memories, 845–846
package illustration, 845

System software, 805–806
System timer, 825
System timing, 810–811

T
T flip-flops, 401
Tabulation method, 221
Tag address comparator, 329
Talker, 771
Tank control

inlet valve control, 295–296
outlet valve control, 296–297
overview, 294
simulation of logic, 298–299
system operation and analysis, 294–298
tank illustration, 295
temperature control, 297–298
VHDL code for logic, 298

TAP (Test Access Port), 596–597
Tape, magnetic, 673
Tape library, 678
Target devices

defined, 178, 585
finite capacity, 242

TDM (time-division multiplexing)
bit-interleaved, 760–761
byte-interleaved, 761
concept illustration, 760
defined, 30, 760
illustrated, 760
statistical, 762–763
synchronous, 761–762

Temporal locality, 679
Terminal count, 513, 550
Tertiary storage, 678
Test Access Port (TAP), 596–597
Test bench

defined, 590
functional simulation approach,  

590–591
Test/measurement instruments

DC power supply, 52–53
digital multimeter (DMM), 52
logic analyzer, 49–51
logic probe and logic pulser, 53
oscilloscope, 43–49
signal generator, 51–52

Text entry, 158, 587, 616
3-bit asynchronous binary counter, 501–502
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3-bit synchronous binary counter
illustrated, 509
operation of, 510
state sequence, 510
summary of analysis, 510
timing diagram, 509

3-variable Karnaugh map, 220
Throughput, 704, 705
Time delay application, 469–470
Time division multiplexing. See TDM
Time stamp counter (TSC), 510, 528
Time-delay devices, shift registers as, 469–470
Timer circuits, 431–432, 437
Timers, 419, 437, 840
Times, 88
Timing diagrams

asynchronous counters, 500–501
BCD decade counter, 512
data transmission system with error detection, 

361–362
defined, 23, 58, 127, 131
EPROM, 654
example, 23
exclusive-NOR gate, 151
4-bit synchronous binary counter, 511
AND gate, 131
inverter, 127–128
NAND gate, 142, 144
NOR gate, 146
OR gate, 137
read cycle, 637
serial-to-parallel data converter, 473
3-bit synchronous binary counter, 509
two equivalent operations of, 147
2-bit synchronous binary counter, 509
write cycle, 637

Timing section, 423
Timing simulation

defined, 592, 616
functional simulation and, 593
glitches and, 593
results, 594

TMS320C6000 series DSP, 728–730
Toggle, 401, 437
Tone duration, 538
Top-of-stack registers, 667
Totem-pole arrangement, 869, 886
Totem-pole outputs, 877
Traffic signal controller

block diagram, 366–367, 429, 587
combinational logic, 367–369
complete, 435–436
controller programming in VHDL, 430–432
counter, 432–433
frequency divider, 430–431
input logic, 434
light output logic, 368–369
overview, 365
programming model for, 430
sequential logic, 432–434, 588, 603
sequential logic with VHDL, 434–435
simulation, 371, 436
state decoder, 367–368
state descriptions, 365–366
state diagram, 365–366
timer circuits, 431–432
timing circuits, 429–430
timing requirements, 365
trigger logic, 369
variable definition, 365
VHDL descriptions, 370
VHDL program code, 436

Trailing edge, 20

Trailing zero suppression, 339
Transistors, 869
Traps, 830
Triggering, 544
Triggers, 414
Tri-state

CMOS gates, 867
defined, 867, 886
devices, 807
TTL gates, 872

Tri-state buffers
defined, 785, 789
interface illustration, 785
operation, 786
output states, 635–636
symbols, 786

Troubleshooting
with boundary scan testing, 605–607
cascade counters, 541–542
checking the obvious, 54
combinational logic, 288–293
combinational logic functions, 362–364
counters, 541–544
defined, 54, 58, 170
external opens and shorts, 172–175
flip-flops, 427–428
half-splitting method, 55
hardware methods, 54–56
internal failures of IC logic gates, 170–172
logic circuits, 290
logic gates, 170–176
memories, 683–687
open input, 170–171
programmable logic, 602–607
replacement, 55
reproducing the symptoms, 55
shift registers, 478–479
shorted input or output, 171–172
signal substitution and injection, 55–56
signal-tracing method, 55–56
with waveform simulation, 603–604

Truncated sequence
cascade counters with, 530, 541–542
defined, 504

Truth tables
Boolean expressions and, 216–219
constructing for logic circuits, 203–205
converting POS expressions to, 217–218
converting SOP expressions to, 216–217
D flip-flop, 396
defined, 127, 178
exclusive-NOR gate, 151
exclusive-OR gate, 150
exclusive-OR logic, 265
4-bit parallel adder, 319–320
full-adder, 315
functional, 319
AND gate, 130
half-adder, 314
inverter, 127
J-K flip-flops, 398
to logic circuits, 269–272
mapping directly from, 230
modulo-2 operation, 111
NAND gate, 141
NOR gate, 146
1-of-16 decoder, 333
OR gate, 137
AND-OR Invert logic, 264
AND-OR logic, 262
S-R latch, 390
standard expression determination from, 

218–219

TTL (transistor-transistor logic)
BJT, 869
CMOS performance comparison,  

880–881
connection of totem-pole outputs, 877
current sinking, 873–874
current sourcing, 873–874
defined, 161, 868, 886
ECL performance comparison, 882
inputs to unused output, 880
inputs to Vcc or ground, 879–880
inverter, 869–870
loading, 862–863
logic levels, 857
NAND gate, 870–871
open-collector buffer/drivers, 877–879
open-collector gates, 871–872,  

875–877
power dissipation, 861
practical considerations in use of,  

873–880
Schottky, 872–873
standard-family gates, 166
tied-together inputs, 879
tri-state gates, 872
unused inputs, 879–880
wired-AND operation, 675–677

Twisted pair cable, 741
2-bit asynchronous binary counter, 500–501
2-bit parallel binary adders, 318
2-bit synchronous binary counter

illustrated, 508
operation of, 508–509
timing details, 508
timing diagram, 509

Two-phase clock generator, 427, 428
2’s complement

decimal value, 82
defined, 78–79
of hexadecimal number, 96
for negative integer numbers, 80
signed numbers, 80

U
UART (Universal Asynchronous Receiver 

Transmitter)
block diagram, 474
defined, 474
interface, 474
parallel data, 475
serial data, 475

UCS (universal character set), 109
Ultra-large-scale integration (ULSI), 42
Unicode, 109
Unit loads, 168, 178, 861, 886
Univariate polynomial, 111
Universal Asynchronous Receiver Transmitter. 

See UART
Universal character set (UCS), 109
Universal gates, 273, 299
Universal serial bus. See USB
Universal shift registers, 463–465
Unrecognized instruction, 825
Up/down counters. See also Synchronous 

counters
defined, 515
example, 516–517
fixed-function device, 517–518
illustrated, 516
implementation, 517–518
PLD (programmable logic device), 518
reversal, 515
sequence, 515
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USB (universal serial bus)
applications example, 778
cable and connectors, 776
cable length, 775
data format, 776–777
defined, 23, 775, 789
Firewire versus, 783
packets, 777
standard, 775
symbol, 775
USB. 3.0 standard, 777–778

USB flash drives, 659
UTP (unshielded twisted pair) cable, 741
UV EPROMs, 647, 654

V
Variables

ANDed, 196, 197
associative laws for, 194–195
bar over, 144
commutative laws for, 194
complement of, 128
defined, 128, 192, 249
in DeMorgan’s theorems, 200
distributive law for, 195
double complement of, 197
ORed, 195–196

Verilog, 38
Vertical mode triggering, 544
Vertical sensitivity, 49
Very-large-scale integration (VLSI), 42
VHDL

Boolean algebra in, 240–242
Boolean expressions with, 240–243
code, inputting, 287
code complexity reduction, 241–242
combinational logic with, 283–288
defined, 38, 160, 178
development software packages, 240
elevator controller program code, 608–613
example, 286–287
hardware implementation comparison, 283

“if falling edge then” statement, 404, 405
instantiation statements, 285–286
levels of abstraction, 242–243
logic gate descriptions, 159–160
one-shot with, 422
program, 285
seven-segment display logic with, 247–248
signals, 285, 299
software development tools and,  

287–288
structural approach to programming, 283
tank control logic code, 298
traffic signal controller, 370
traffic signal controller programming,  

430–432, 436
traffic signal controller sequential logic, 

434–435
VHDL components

defined, 283, 299
instantiations, 285–286
keyword, 284
predefined programs used as, 284
storage, 283
using in programs, 284

Volatile memory, 396

W
Wait state, 810, 848
Wait-state generator, 810–811
Waveform editor, 38, 288
Waveforms

binary information, 22–23
characteristics, 21–22
clock, 22–23
defined, 20
duty cycle, 22
example of, 21
frequency of, 21
oscilloscope, 46
periodic, 21
pulses, 20–21
simulation, troubleshooting with, 603–605

strobe, 364
timing, comparing, 294
timing diagrams, 23

Weights
binary number representation,  

345–346
binary numbers, 69–70
in binary-to-decimal conversion, 70
digit, 66

Wire connections, 740
Wired-AND operation, 675–677
Wireless transmission

defined, 743
electromagnetic spectrum  

and, 744
signal propagation, 744

Word capacity, 663–664
Word length

examples, 660–663
expansion, 660–663
illustrated, 660, 662

Words, 628, 689
WORM, 675
Write cycle access time, 637
Write operation

asynchronous SRAM, 637
defined, 630, 689, 816
DRAM, 642
illustrated, 631, 816
processor and, 816

X
XNOR. See Exclusive-NOR gates
XOR. See Exclusive-OR gates

Z
Zero suppression

defined, 339
examples of, 340
for four-digit display, 340
leading, 339
trailing, 339

Z03_FLOY5983_11_GE_IDX.indd Page 58  12/11/14  9:13 PM user /204/PH01677_PIV/9781292075983_FLOYD/FLOYD_DIGITAL_FUNDAMENTALS11_PIE_97812920759 ...


	Cover

	Title

	Copyright

	Contents

	Chapter 1 Introductory Concepts

	1–1 Digital and Analog Quantities
	1–2 Binary Digits, Logic Levels, and Digital Waveforms
	1–3 Basic Logic Functions
	1–4 Combinational and Sequential Logic Functions
	1–5 Introduction to Programmable Logic
	1–6 Fixed-Function Logic Devices
	1–7 Test and Measurement Instruments
	1–8 Introduction to Troubleshooting

	Chapter 2 Number Systems, Operations, and Codes

	2–1 Decimal Numbers
	2–2 Binary Numbers
	2–3 Decimal-to-Binary Conversion
	2–4 Binary Arithmetic
	2–5 Complements of Binary Numbers
	2–6 Signed Numbers
	2–7 Arithmetic Operations with Signed Numbers
	2–8 Hexadecimal Numbers
	2–9 Octal Numbers
	2–10 Binary Coded Decimal (BCD)
	2–11 Digital Codes
	2–12 Error Codes

	Chapter 3 Logic Gates

	3–1 The Inverter
	3–2 The AND Gate
	3–3 The OR Gate
	3–4 The NAND Gate
	3–5 The NOR Gate
	3–6 The Exclusive-OR and Exclusive-NOR Gates
	3–7 Programmable Logic
	3–8 Fixed-Function Logic Gates
	3–9 Troubleshooting

	Chapter 4 Boolean Algebra and Logic Simplification

	4–1 Boolean Operations and Expressions
	4–2 Laws and Rules of Boolean Algebra
	4–3 DeMorgan’s Theorems
	4–4 Boolean Analysis of Logic Circuits
	4–5 Logic Simplification Using Boolean Algebra
	4–6 Standard Forms of Boolean Expressions
	4–7 Boolean Expressions and Truth Tables
	4–8 The Karnaugh Map
	4–9 Karnaugh Map SOP Minimization
	4–10 Karnaugh Map POS Minimization
	4–11 The Quine-McCluskey Method
	4–12 Boolean Expressions with VHDL
	Applied Logic

	Chapter 5 Combinational Logic Analysis 

	5–1 Basic Combinational Logic Circuits
	5–2 Implementing Combinational Logic
	5–3 The Universal Property of NAND and NOR Gates
	5–4 Combinational Logic Using NAND and NOR Gates
	5–5 Pulse Waveform Operation
	5–6 Combinational Logic with VHDL
	5–7 Troubleshooting
	Applied Logic

	Chapter 6 Functions of Combinational Logic

	6–1 Half and Full Adders
	6–2 Parallel Binary Adders
	6–3 Ripple Carry and Look-Ahead Carry Adders
	6–4 Comparators
	6–5 Decoders
	6–6 Encoders
	6–7 Code Converters
	6–8 Multiplexers (Data Selectors)
	6–9 Demultiplexers
	6–10 Parity Generators/Checkers
	6–11 Troubleshooting
	Applied Logic

	Chapter 7 Latches, Flip-Flops, and Timers

	7–1 Latches
	7–2 Flip-Flops
	7–3 Flip-Flop Operating Characteristics
	7–4 Flip-Flop Applications
	7–5 One-Shots
	7–6 The Astable Multivibrator
	7–7 Troubleshooting
	Applied Logic

	Chapter 8 Shift Registers

	8–1 Shift Register Operations
	8–2 Types of Shift Register Data I/Os
	8–3 Bidirectional Shift Registers
	8–4 Shift Register Counters
	8–5 Shift Register Applications
	8–6 Logic Symbols with Dependency Notation
	8–7 Troubleshooting
	Applied Logic

	Chapter 9 Counters

	9–1 Finite State Machines
	9–2 Asynchronous Counters
	9–3 Synchronous Counters
	9–4 Up/Down Synchronous Counters
	9–5 Design of Synchronous Counters
	9–6 Cascaded Counters
	9–7 Counter Decoding
	9–8 Counter Applications
	9–9 Logic Symbols with Dependency Notation
	9–10 Troubleshooting
	Applied Logic

	Chapter 10 Programmable Logic

	10–1 Simple Programmable Logic Devices (SPLDs)
	10–2 Complex Programmable Logic Devices (CPLDs)

	10–3 Macrocell Modes
	10–4 Field-Programmable Gate Arrays (FPGAs)
	10–5 Programmable Logic Software
	10–6 Boundary Scan Logic
	10–7 Troubleshooting
	Applied Logic

	Chapter 11 Data Storage

	11–1 Semiconductor Memory Basics
	11–2 The Random-Access Memory (RAM)
	11–3 The Read-Only Memory (ROM)
	11–4 Programmable ROMs
	11–5 The Flash Memory
	11–6 Memory Expansion
	11–7 Special Types of Memories
	11–8 Magnetic and Optical Storage
	11–9 Memory Hierarchy
	11–10 Cloud Storage
	11–11 Troubleshooting

	Chapter 12 Signal Conversion and Processing

	12–1 Analog-to-Digital Conversion
	12–2 Methods of Analog-to-Digital Conversion
	12–3 Methods of Digital-to-Analog Conversion
	12–4 Digital Signal Processing
	12–5 The Digital Signal Processor (DSP)

	Chapter 13 Data transmission

	13–1 Data Transmission Media
	13–2 Methods and Modes of Data Transmission
	13–3 Modulation of Analog Signals with Digital Data
	13–4 Modulation of Digital Signals with Analog Data
	13–5 Multiplexing and Demultiplexing
	13–6 Bus Basics
	13–7 Parallel Buses
	13–8 The Universal Serial Bus (USB)
	13–9 Other Serial Buses
	13–10 Bus Interfacing

	Chapter 14 Data Processing and Control

	14–1 The Computer System
	14–2 Practical Computer System Considerations
	14–3 The Processor: Basic Operation
	14–4 The Processor: Addressing Modes
	14–5 The Processor: Special Operations
	14–6 Operating Systems and Hardware
	14–7 Programming
	14–8 Microcontrollers and Embedded Systems
	14–9 System on Chip (SoC)

	Chapter 15 Integrated Circuit Technologies

	15–1 Basic Operational Characteristics and Parameters
	15–2 CMOS Circuits
	15–3 TTL (Bipolar) Circuits
	15–4 Practical Considerations in the Use of TTL
	15–5 Comparison of CMOS and TTL Performance
	15–6 Emitter-Coupled Logic (ECL) Circuits
	15–7 PMOS, NMOS, and E2CMOS

	Answers to Odd -Numbered Problems

	Glossary

	Index 

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


		2015-05-14T11:24:49+0000
	Preflight Ticket Signature




