Digital Fundamentals

ELEVENTH EDITION

Thomas L. Floyd

ALWAYS LEARNING PEARSON

Eleventh Edition | Global Edition

Thomas L. Floyd

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sa@o Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Product Manager: Lindsey Prudhomme Gill

Program Manager: Maren Beckman

Project Manager: Rex Davidson

Editorial Assistant: Nancy Kesterson

Team Lead Program Manager: Laura Weaver

Team Lead Project Manager: JoEllen Gohr

Head of Learning Asset Acquisition, Global Editions: Laura Dent
Acquisitions Editor, Global Editions: Karthik Subramanian
Project Editor, Global Editions: K.K. Neelakantan

Senior Production Manufacturing Controller, Global Editions: Trudy Kimber
Director of Marketing: David Gesell

Senior Marketing Coordinator: Stacey Martinez

Senior Marketing Assistant: Les Roberts

Procurement Specialist: Deidra M. Skahill

Media Project Manager: Noelle Chun

Media Project Coordinator: April Cleland

Media Production Manager, Global Editions: Vikram Kumar
Creative Director: Andrea Nix

Art Director: Diane Y. Ernsberger

Cover Designer: Lumina Datamatics Ltd.

Cover Image: © echo3005/Shutterstock

Full-Service Project Management: Sherrill Redd/iEnergizer Aptara®, Inc.

Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page
within text.

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The right of Thomas L. Floyd to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents
Act 1988.

Authorized adaptation from the United States edition, entitled Digital Fundamentals,11th edition, ISBN 978-0-13-273796-8, by Thomas L. Floyd, published
by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any
trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
1514 13121110987 654321

ISBN 10: 1-292-07598-8
ISBN 13: 978-1-292-07598-3

Typeset by Aptara®, Inc. in Times Roman.
Printed and bound by Courier Kendallville in The United States of America.

PREFACE

This eleventh edition of Digital Fundamentals continues a long tradition of presenting
a strong foundation in the core fundamentals of digital technology. This text
provides basic concepts reinforced by plentiful illustrations, examples, exercises,
and applications. Applied Logic features, Implementation features, troubleshooting
sections, programmable logic and PLD programming, integrated circuit technologies,
and the special topics of signal conversion and processing, data transmission, and data
processing and control are included in addition to the core fundamentals. New topics
and features have been added to this edition, and many other topics have been enhanced.

The approach used in Digital Fundamentals allows students to master the all-important
fundamental concepts before getting into more advanced or optional topics. The range
of topics provides the flexibility to accommodate a variety of program requirements.
For example, some of the design-oriented or application-oriented topics may not be
appropriate in some courses. Some programs may not cover programmable logic and
PLD programming, while others may not have time to include data transmission or data
processing. Also, some programs may not cover the details of “inside-the-chip” circuitry.
These and other areas can be omitted or lightly covered without affecting the coverage of
the fundamental topics. A background in transistor circuits is not a prerequisite for this
textbook, and the coverage of integrated circuit technology (inside-the-chip circuits) is
optionally presented.

New in This Edition

e New page layout and design for better visual appearance and ease of use
¢ Revised and improved topics
* Obsolete devices have been deleted.

e The Applied Logic features (formerly System Applications) have been revised and
new topics added. Also, the VHDL code for PLD implementation is introduced and
illustrated.

* A new boxed feature, entitled Implementation, shows how various logic functions
can be implemented using fixed-function devices or by writing a VHDL program for
PLD implementation.

e Boolean simplification coverage now includes the Quine-McCluskey method and the
Espresso method is introduced.

e A discussion of Moore and Mealy state machines has been added.
e The chapter on programmable logic has been modified and improved.
* A discussion of memory hierarchy has been added.

* A new chapter on data transmission, including an extensive coverage of standard
busses has been added.

* The chapter on computers has been completely revised and is now entitled “Data
Processing and Control.”

* A more extensive coverage and use of VHDL. There is a tutorial on the website at
www.pearsonglobaleditions.com/floyd

e More emphasis on D flip-flops

Preface

Standard Features

L]

Full-color format

Core fundamentals are presented without being intermingled with advanced or
peripheral topics.

InfoNotes are sidebar features that provide interesting information in a condensed
form.

A chapter outline, chapter objectives, introduction, and key terms list appear on the
opening page of each chapter.

Within the chapter, the key terms are highlighted in color boldface. Each key term is
defined at the end of the chapter as well as in the comprehensive glossary at the end
of the book. Glossary terms are indicated by black boldface in the text.

Reminders inform students where to find the answers to the various exercises and
problems throughout each chapter.

Section introduction and objectives are at the beginning of each section within a
chapter.

Checkup exercises conclude each section in a chapter with answers at the end of the
chapter.

Each worked example has a Related Problem with an answer at the end of the
chapter.

Hands-On Tips interspersed throughout provide useful and practical information.

Multisim files (newer versions) on the website provide circuits that are referenced in
the text for optional simulation and troubleshooting.

The operation and application of test instruments, including the oscilloscope, logic
analyzer, function generator, and DMM, are covered.

Troubleshooting sections in many chapters
Introduction to programmable logic

Chapter summary

True/False quiz at end of each chapter
Multiple-choice self-test at the end of each chapter

Extensive sectionalized problem sets at the end of each chapter with answers to odd-
numbered problems at the end of the book.

Troubleshooting, applied logic, and special design problems are provided in many
chapters.

Coverage of bipolar and CMOS IC technologies. Chapter 15 is designed as a “floating
chapter” to provide optional coverage of IC technology (inside-the-chip circuitry) at
any point in the course. Chapter 15 is online at www.pearsonglobaleditions.com/floyd

Accompanying Student Resources

MultiSim -

FIGURE P-1

Multisim Circuits. The MultiSim files on the website includes selected circuits from
the text that are indicated by the icon in Figure P-1.

Other student resources available on the website:

1. Chapter 15, “Integrated Circuit Technologies”
2. VHDL tutorial

Verilog tutorial

MultiSim tutorial

Altera Quartus II tutorial

Xilinx ISE tutorial

Five-variable Karnaugh map tutorial

Hamming code tutorial

L XD W

Quine-McCluskey method tutorial
10. Espresso algorithm tutorial
11. Selected VHDL programs for downloading

12. Programming the elevator controller using Altera Quartus II

Using Website VHDL Programs

VHDL programs in the text that have a corresponding VHDL file on the website are indi-
cated by the icon in Figure P-2. These website VHDL files can be downloaded and used
in conjunction with the PLD development software (Altera Quartus II or Xilinx ISE) to
implement a circuit in a programmable logic device.

FIGURE P-2

Instructor Resources
e [Image Bank This is a download of all the images in the text.

e Instructor’s Resource Manual Includes worked-out solutions to chapter problems,
solutions to Applied Logic Exercises, and a summary of Multisim simulation results.

e TestGen This computerized test bank contains over 650 questions.

* Download Instructor Resources from the Instructor Resource Center

To access supplementary materials online, instructors need to request an instructor
access code. Go to www.pearsonglobaleditions.com/floyd to register for an instruc-
tor access code. Within 48 hours of registering, you will receive a confirming e-mail
including an instructor access code. Once you have received your code, locate your
text in the online catalog and click on the Instructor Resources button on the left side
of the catalog product page. Select a supplement, and a login page will appear. Once
you have logged in, you can access instructor material for all Pearson textbooks. If
you have any difficulties accessing the site or downloading a supplement, please
contact Customer Service at http://247pearsoned.custhelp.com/.

lllustration of Book Features

Chapter Opener Each chapter begins with an opener, which includes a list of the sections
in the chapter, chapter objectives, introduction, a list of key terms, and a website reference
for chapter study aids. A typical chapter opener is shown in Figure P-3.

Section Opener Each section in a chapter begins with a brief introduction that includes a
general overview and section objectives. An illustration is shown in Figure P-4.

Section Checkup Each section ends with a review consisting of questions or exercises that
emphasize the main concepts presented in the section. This feature is shown in Figure P-4.
Answers to the Section Checkups are at the end of the chapter.

Worked Examples and Related Problems There is an abundance of worked out examples
that help to illustrate and clarify basic concepts or specific procedures. Each example ends

Preface

Logic Gates

CHAPTER

CHAPTER OUTLINE
3-1 The Inverter

3-2 The AND Gate

3-3 The OR Gate

3-4 The NAND Gate

3-5 The NOR Gate

3-6 The Exclusive-OR and Exclusive-NOR Gates
3-7 Programmable Logic

3-8 Fixed-Function Logic Gates

39 Troubleshooting

CHAPTER OBJECTIVES

Describe the operation of the inverter, the AND
gate, and the OR gate

Describe the operation of the NAND gate and the
NOR gate

Express the operation of NOT, AND, OR, NAND,
and NOR gates with Boolean algebra

Describe the operation of the exclusive-OR and
exclusive-NOR gates

Use logic gates in simple applications

Recognize and use both the distinctive shape logic
gate symbols and the rectangular outline logic gate
symbols of ANSI/IEEE Standard 91-1984/Std.
91a-1991

Construct timing diagrams showing the proper time
relationships of inputs and outputs for the various
logic gates

Discuss the basic concepts of programmable logic
Make basic comparisons between the major IC
technologies—CMOS and bipolar (TTL)

Explain how the different series within the CMOS
and bipolar (TTL) families differ from each other
Define propagation delay time, power dissipation,
speed-power product, and fan-out in relation to
logic gates

List specific fixed-function integrated circuit devices
that contain the various logic gates

Troubleshoot logic gates for opens and shorts by
using the oscilloscope

KEY TERMS

Key terms are in order of appearance in the chapter.
Inverter EPROM
Truth table EEPROM
Boolean algebra Flash
Complement SRAM
AND gate Target device
OR gate JTAG
NAND gate VHDL
NOR gate CcMOS
Exclusive-OR gate Bipolar
Exclusive-NOR gate Propagation delay
AND array time
Fuse Fan-out
Antifuse Unit load

VISIT THE WEBSITE

Study aids for this chapter are available at
http:/A

INTRODUCTION

The emphasis in this chapter is on the operation,
application, and troubleshooting of logic gates. The
relationship of input and output waveforms of a gate
using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates
are in accordance with ANSV/IEEE Standard 91-1984/
Std. 91a-1991. This standard has been adopted by
private industry and the military for use in internal
documentation as well as published literature.

FIGURE P-3

Answers are at the end of the chapter.
1. Determine the output (I or 0) of a 4-variable AND-OR-Tnvert cireuit for each of the
following input conditions:
@A=1LB=0C=1D=0 ()A=1LB=1.C=0D=1

©A=0B=1C=1D=1
2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input
conditions:
(@ A=1B= b A=1B=1
© A=0B @ A=0B=0

w

. Develop the truth table for a certain 3-input logic circuit with the output expression

X = ABC + ABC + ABC + ABC + ABC.

4. Draw the logic diagram for an exclusive-NOR circuit

5. Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a
Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-
ered in Chapter 4 is also included.
After completing this section, you should be able to

 Implement a logic circuit from a Boolean expression

 Implement a logic circuit from a truth table

+ Minimize a logic circuit

From a Boolean Expression to a Logic Circuit
Let’s examine the following Boolean expression:
X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE,
with a domain of five variables. The first term is formed by ANDing A with B, and the
second term is formed by ANDing C, D, and E. The two terms are then ORed to form the
output X. These operations are indicated in the structure of the expression as follows:

AND
X = AB + CDE

r
OR

Note that in this particular expression, the AND operations forming the two individual
terms, AB and CDE, must be performed before the terms can be ORed.

‘To implement this Boolean expression, a 2-input AND gate is required to form the term
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then
required to combine the two AND terms. The resulting logic circuit is shown in Figure 5-9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

For every Boolean expression there
is a logic circuit, and for every logic
circuit there s a Boolean expression.

InfoNote

Many control programs require
ogic operations to be performed
by a computer. A driver program
is a control program that is used
with computer peripherals. For
example, a mouse driver requires
Togic tests to determine if a button
has been pressed and further
logic operations to determine if

it has moved, either horizontally
or vertically. Within the heart of a
microprocessor is the arithmetic
Togic unit (ALU), which performs
these logic operations as directed
by program instructions. Al of the
ogic described in this chapter can
also be performed by the ALU,
given the proper instructions.

FIGURE P-4

Preface 7

with a Related Problem that reinforces or expands on the example by requiring the student
to work through a problem similar to the example. A typical worked example with Related
Problem is shown in Figure P-5.

Solution

All the intermediate waveforms and the final output waveform are shown in the timing
diagram of Figure 5-34(c).

Related Problem

Determine the waveforms ¥y, Ya, Y3, ¥, and X if input waveform A is inverted.

EXAMPLE 5-15

Determine the output waveform X for the circuit in Example 5-14, Figure 5-34(a), directly from the output expression.

Solution
‘The output expression for the circuit is developed in Figure 5-35. The SOP form indicates that the output is HIGH when A
is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

FIGURE 5-35

‘The result is shown in Figure 5-36 and is the same as the one obtained by the intermediate-waveform method in Example
5-14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

|

|

D

iE

X=AC+BC+CD

FIGURE 5-36

Related Problem
Repeat this example if all the input waveforms are inverted.

1. One pulse with 1y = 50 s is applied to one of the inputs of an exclusive-OR cir-
cuit. A second positive pulse with fyy = 10 s is applied to the other input beginning
15 ps after the leading edge of the first pulse. Show the output in relation to the

inputs.

The pulse waveforms A and B in Figure 5-31 are applied to the exclusive-NOR cir-
cuit in Figure 5-32. Develop a complete timing diagram.

FIGURE P-5

Troubleshooting Section Many chapters include a troubleshooting section that relates to
the topics covered in the chapter and that emphasizes troubleshooting techniques and the
use of test instruments and circuit simulation. A portion of a typical troubleshooting section
is illustrated in Figure P-6.

SECTION 7-6 CHECKUP

1. Explain the difference in operation between an astable multivibrator and a monosta-
ble multivibrator.

2. For a certain astable multivibrator, t;; = 15 ms and 7 =
cycle of the output?

0 ms. What is the duty
CLKA

@

7 Troubleshooting CLKB

Itis standard practice to test a new circuit design to be sure that it is operating as specified.
New fixed-function designs are “breadboarded” and tested before the design is finalized.
‘The term breadboard refers to a method of temporarily haoking up a circuit so that its
operation can be verified and any design flaws worked out before a prototype unit s bult

After completing this section, you should be able to
 Describe how the timing of a circuit can produce erroncous glitches

« Approach the troubleshooting of a new design with greater insight and awareness
of potential problems

“The circuit shown in Figure 7-61(a) generates two clock waveforms (CLK A and CLK B)
that have an alternating occurrence of pulses. Each waveform is to be one-half the fre-
quency of the original clock (CLK), as shown in the ideal timing diagram in part (b).

FIGURE 7-61 Two-phase clock generator with ideal waveforms. Open file F07-61and MultiSim
verify the operation. Q3

When the circuit is tested with an oscilloscope or logic analyzer, the CLK A and CLK B
waveforms appear on the display screen as shown in Figure 7-62(a). Since glitches occur
on both waveforms, something is wrong with the circuit either in its basic design or in the
way it is connected. Further investigation reveals that the glitches are caused by a race
condition between the CLK signal and the Q and 0 signals at the inputs of the AND gates.
As displayed in Figure 7-62(b), the propagation delays between CLK and Q and 0 create
a short-duration coincidence of HIGH levels at the leading edges of alternate clock pulses.
Thus, there is a basic design flaw.

‘The problem can be corrected by using a negative edge-triggered flip-flop in place of
the positive edge-triggered device, as shown in Figure 7
tion delays between CLK and Q and 0 still exist, they are initiated on the trailing edges
of the clock (CLK), thus eliminating the glitches, as shown in the timing diagram of
Figure 7-63(b).

a). Although the propaga-

(2) Oscilloscope display of CLK Aand CLK B waveforms with (b) Oscilloscope display showing propagation delay that creates
glithes indicated by the “spikes”.

" FIGURE P-6

[

CLKA

S glitch on CLK A waveform

FIGURE 7-62 Oscilloscope displays for the circuit in Figure 7-61

:

T

r

1

:

MultiSim FIGURE 7-63 Two-phase clock generator using negative edge-triggered flip-flop to
2 eliminate giitches. Open file F07-63 and verify the operation.

Glitches that occur in digital systems are very fast (extremely short in duration) and can be difficultto
see onan osciloscope, particularly at lower sweep rates. A logic analyzer, however, can show a glitch
easily. To look for glitches using a logic analyzer, select “latch” mode or (if available) transitional
sampling. In the latch mode, the analyzer looks for a voltage level change. When a change oceurs,
even if it is of extremely short duration (a few nanoseconds), the information is “latched into the
analyzer's memory as another sampled data point. When the data are displayed, the glitch vill show
as an obvious change in the sampled data, making it easy to identify.

1. Can a negative edge-triggered J-K flip-flop be used in the circuit of Figure 7-63?

2. What device can be used to provide the clock for the circuit in Figure 7-637

Preface

Applied Logic Appearing at the end of many chapters, this feature presents a practical
application of the concepts and procedures covered in the chapter. In most chapters, this
feature presents a “real-world” application in which analysis, troubleshooting, design,
VHDL programming, and simulation are implemented. Figure P-7 shows a portion of a
typical Applied Logic feature.

Floor Counter

Applied Logic R library ieee; jece.numeric_std_all is inc

Elevator Controller: Part 2 use feee.std_logic_H64.all; pigped identifier. Unsizne

ed to enable casting of

FloorCnt is converted to

use ieee.numeric_std.all; std_logic_vector
entity FLOORCOUNTER is ! LI\P_ DOWN: k ‘\um count
port (UP, DOWN, Sensor: in std_logic: S
FLRCODE: out std_logic_vector(2 downto 0)); | crsor

or car floor

In this section, the elevator controller that was introduced in the Applied Logic in Chap-
ter 9 will be programmed for implementation in a PLD. Refer to Chapter 9 to review the

elevator operation. The logic diagram is repeated in Figure 10-62 with labels changed to end entity FLOORCOUNTER;) FLRCODE: 3-digit floor
o . count
facilitate programming. architecture LogicOperation of FLOORCOUNTER is
PanclCode signal FloorCnt: unsigned(2 downto 0) := “000"; Floor count is initialized to 000
=R Numeric Fl
N process(UP, DOWN, Sensor, FloorCat) - e
N verted to std_logic_vector data type
CallCode —— ! begin and sent (o std_log tor output
o — FLRCODE <=std_logic_vector(FloorCnt); FIRCODE.
CallEn . 5 —GE
Not CallEn T if (Sensor EVENT and Sensor = I') then) seor event high pulse causes the
if UP="1" and DOWN = ‘0’ then floor count to increment when UP
CLK FloorCnt <= FloorCnt + 1; [is set high or decrement by one
elsif Up = ‘0’ and DOWN =1 then when DOWN is set low
FloorCnt <= FloorCnt — 1;
end if;
end if;
Request FlrCodeln end process;
CLK CALL/REQ Code Register Sys Clk end architecture LogicOperation;
FlrCodeOut
ca
mretour <5 TV FLRCALL/FLRCNT Comparator
‘Comparator library icee;
use icee.std_logic_1164.all;
L1 FirCodeCall . TR
. use icee.std_logic_arith.all;
e {ity FLRCALLCOMPARATOR i
ent is
Counter DOWN FirCodeCall, FirCodeCnt e] 5
Wi | T FirCodeCnt Compared values | port (FIrCodeCall, FIrCodeCnt: in std_logic_vector(2 downto 0):
! UP. DOWN, STOP: Ouiput | UP, DOWN, STOP: inout std_logic;
x -5 e control signals end entity FLRCALLCOMPARATOR:
<I 71> FroNT
1 P architecture LogicOperation of FLRCALLCOMPARATOR is
| gicOper
UP DOWN o [N . !
iy 7-Segment |5 .ﬁﬁ:;e; begin .
Lo Decoder 5 foor number STOP <= ‘1" when (FIrCodeCall = FlrCodeCnt) else ‘0"; | STOP, UP, and DOWN
I UP <= ‘1" when (FIrCodeCall > FlrCodeCnt) else ‘0’ “1"“1“ R ‘{“"‘
€ ased on =, >, and
DOWN <= 1" when (FlrCodeCall < FlrCodeCnt) else 0 | .01 coroirivons
FIGURE 10-62 Programming model of the elevator controller. end architecture LogicOperation: J

The VHDL program code for the elevator controller will include component definitions
for the Floor Counter, the FLRCALL/FLRCNT Comparator, the Code Register, the Timer,
the Seven-Segment Decoder, and the CALL/REQ Flip-Flop. The VHDL program codes
for these six components are as follows. (Blue annotated notes are not part of the program.)

FIGURE P-7

End of Chapter

The following features are at the end of each chapter:

e Summary

e Key term glossary
e True/false quiz

e Self-test

¢ Problem set that includes some or all of the following categories in addition to core prob-
lems: Troubleshooting, Applied Logic, Design, and Multisim Troubleshooting Practice.

e Answers to Section Checkups
e Answers to Related Problems for Examples
* Answers to True/False quiz

e Answers to Self-Test

End of Book

The following features are at the end of the book.

* Answers to selected odd-numbered problems
e Comprehensive glossary

¢ Index

To the Student

Digital technology pervades almost everything in our daily lives. For example, cell phones
and other types of wireless communications, television, radio, process controls, automotive
electronics, consumer electronics, aircraft navigation— to name only a few applications—
depend heavily on digital electronics.

A strong grounding in the fundamentals of digital technology will prepare you for
the highly skilled jobs of the future. The single most important thing you can do is to
understand the core fundamentals. From there you can go anywhere.

In addition, programmable logic is important in many applications and that topic in
introduced in this book and example programs are given along with an online tutorial.
Of course, efficient troubleshooting is a skill that is also widely sought after by potential
employers. Troubleshooting and testing methods from traditional prototype testing to more
advanced techniques such as boundary scan are covered.

To the Instructor

Generally, time limitations or program emphasis determines the topics to be covered in a
course. It is not uncommon to omit or condense topics or to alter the sequence of certain
topics in order to customize the material for a particular course. This textbook is specifi-
cally designed to provide great flexibility in topic coverage.

Certain topics are organized in separate chapters, sections, or features such that if they are
omitted the rest of the coverage is not affected. Also, if these topics are included, they flow
seamlessly with the rest of the coverage. The book is organized around a core of fundamental
topics that are, for the most part, essential in any digital course. Around this core, there are other
topics that can be included or omitted, depending on the course emphasis and/or other factors.
Even within the core, selected topics can be omitted. Figure P-8 illustrates this concept.

Programmable Logic
and
PLD programming

Core
Fundamentals

Troubleshooting

Applied Logic

Integrated
Circuit
Technologies

Special Topics

FIGURE P-8

@ Core Fundamentals The fundamental topics of digital technology should be cov-
ered in all programs. Linked to the core are several “satellite” topics that may be
considered for omission or inclusion, depending on your course goals. All topics
presented in this text are important in digital technology, but each block surrounding
the core can be omitted, depending on your particular goals, without affecting the
core fundamentals.

@ Programmable Logic and PLD Programming Although they are important topics,
programmable logic and VHDL can be omitted; however, it is highly recommended
that you cover this topic if at all possible. You can cover as little or as much as you
consider appropriate for your program.

Preface

@ Troubleshooting Troubleshooting sections appear in many chapters and include
the application and operation of laboratory instruments.

@ Applied Logic Selected real-world applications appear in many chapters.

@ Integrated Circuit Technologies Chapter 15 is an online chapter. Some or all of the
topics in Chapter 15 can be covered at selected points if you wish to discuss details of
the circuitry that make up digital integrated circuits. Chapter 15 can be omitted with-
out any impact on the rest of the book.

@ Special Topics These topics are Signal Interfacing and Processing, Data Transmis-
sion, and Data Processing and Control in Chapters 12, 13, and 14 respectively, as
well as selected topics in other chapters. These are topics that may not be essential
for your course or are covered in another course. Also, within each block in Figure
P-8 you can choose to omit or deemphasize some topics because of time constraints
or other priorities in your particular program. For example in the core fundamentals,
the Quine-McCluskey method, cyclic redundancy code, carry look-ahead adders, or
sequential logic design could possibly be omitted. Additionally, any or all of Multi-
sim features throughout the book can be treated as optional. Other topics may also be
candidates for omission or light coverage. Whether you choose a minimal coverage
of only core fundamentals, a full-blown coverage of all the topics, or anything in
between, this book can be adapted to your needs.

Acknowledgments

This revision of Digital Fundamentals has been made possible by the work and skills of
many people. I think that we have accomplished what we set out to do, and that was to further
improve an already very successful textbook and make it even more useful to the student and
instructor by presenting not only basics but also up-to-date and leading-edge technology.

Those at Pearson Education who have, as always, contributed a great amount of time,
talent, and effort to move this project through its many phases in order to produce the
book as you see it, include, but are not limited to, Rex Davidson, Lindsey Gill, and Vern
Anthony. Lois Porter has done another excellent job of manuscript editing. Doug Joksch
contributed the VHDL programming. Gary Snyder revised and updated the Multisim
circuit files. My thanks and appreciation go to all of these and others who were indirectly
involved in the project.

In the revision of this and all textbooks, I depend on expert input from many users
as well as nonusers. My sincere thanks to the following reviewers who submitted many
valuable suggestions and provided lots of constructive criticism:

Dr. Cuiling Gong, Zane Gastineau,

Texas Christian University; Harding University; and
Jonathan White, Dr. Eric Bothur,

Harding University; Midlands Technical College.

I also want to thank all of the members of the Pearson sales force whose efforts have
helped make this text available to a large number of users. In addition, I am grateful to all
of you who have adopted this text for your classes or for your own use. Without you we
would not be in business. I hope that you find this eleventh edition of Digital Fundamentals
to be even better than earlier editions and that it will continue to be a valuable learning tool
and reference for the student.

Tom Floyd

Pearson would like to thank and acknowledge Sanjay H.S., M.S. Ramaiah Institute
of Technology for his contributions to the Global Edition, and Moumita Mitra Manna,
Bangabasi College, and Piyali Sengupta for reviewing the Global Edition.

CONTENTS

CHAPTER 1 Introductory Concepts 15
1-1 Digital and Analog Quantities 16
1-2 Binary Digits, Logic Levels, and Digital Waveforms 19
1-3 Basic Logic Functions 25
1-4 Combinational and Sequential Logic Functions 27
1-5 Introduction to Programmable Logic 34
1-6 Fixed-Function Logic Devices 40
1-7 Test and Measurement Instruments 43
1-8 Introduction to Troubleshooting 54

CHAPTER2 Number Systems, Operations, and Codes 65
2-1 Decimal Numbers 66
2-2 Binary Numbers 67
2-3 Decimal-to-Binary Conversion 71
2-4 Binary Arithmetic 74
2-5 Complements of Binary Numbers 77
2-6 Signed Numbers 79
2-7 Arithmetic Operations with Signed Numbers 85
2-8 Hexadecimal Numbers 92
2-9 Octal Numbers 98
2-10 Binary Coded Decimal (BCD) 100
2-11 Digital Codes 104
2-12 Error Codes 109

CHAPTER 3 Logic Gates 125
3-1 The Inverter 126
3-2 The AND Gate 129
3-3 The OR Gate 136
3-4 The NAND Gate 140
3-5 The NOR Gate 145
3-6 The Exclusive-OR and Exclusive-NOR Gates 149
3-7 Programmable Logic 153
3-8 Fixed-Function Logic Gates 160
3-9 Troubleshooting 170

CHAPTER 4 Boolean Algebra and Logic Simplification 191
4-1 Boolean Operations and Expressions 192
4-2 Laws and Rules of Boolean Algebra 193
4-3 DeMorgan’s Theorems 199

11

Contents

4-4 Boolean Analysis of Logic Circuits 203

4-5 Logic Simplification Using Boolean Algebra 205
4-6 Standard Forms of Boolean Expressions 209
4-7 Boolean Expressions and Truth Tables 216

4-8 The Karnaugh Map 219

4-9 Karnaugh Map SOP Minimization 222

4-10 Karnaugh Map POS Minimization 233

4-11 The Quine-McCluskey Method 237

4-12 Boolean Expressions with VHDL 240

Applied Logic 244

CHAPTERS5 Combinational Logic Analysis 261
5-1 Basic Combinational Logic Circuits 262
5-2 Implementing Combinational Logic 267
5-3 The Universal Property of NAND and NOR gates 272
5-4 Combinational Logic Using NAND and NOR Gates 274
5-5 Pulse Waveform Operation 279
5-6 Combinational Logic with VHDL 283
5-7 Troubleshooting 288
Applied Logic 294

CHAPTER 6 Functions of Combinational Logic 313
6-1 Half and Full Adders 314
6-2 Parallel Binary Adders 317
6-3 Ripple Carry and Look-Ahead Carry Adders 324
6-4 Comparators 327
6-5 Decoders 331
6-6 Encoders 341
6-7 Code Converters 345
6-8 Multiplexers (Data Selectors) 347
6-9 Demultiplexers 356
6-10 Parity Generators/Checkers 358
6-11 Troubleshooting 362
Applied Logic 365

CHAPTER 7 Latches, Flip-Flops, and Timers 387
7-1 Latches 388
7-2 Flip-Flops 395
7-3 Flip-Flop Operating Characteristics 406
7-4 Flip-Flop Applications 409
7-5 One-Shots 414
7-6 The Astable Multivibrator 423
7-7 Troubleshooting 427
Applied Logic 429

Contents

CHAPTER 8 Shift Registers 449
8-1 Shift Register Operations 450
8-2 Types of Shift Register Data I/Os 451
8-3 Bidirectional Shift Registers 462
8-4 Shift Register Counters 465
8-5 Shift Register Applications 469
8-6 Logic Symbols with Dependency Notation 476
8-7 Troubleshooting 478
Applied Logic 480

CHAPTER9 Counters 497
9-1 Finite State Machines 498
9-2 Asynchronous Counters 500
9-3 Synchronous Counters 507
9-4 Up/Down Synchronous Counters 515
9-5 Design of Synchronous Counters 519
9-6 Cascaded Counters 527
9-7 Counter Decoding 531
9-8 Counter Applications 534
9-9 Logic Symbols with Dependency Notation 539
9-10 Troubleshooting 541
Applied Logic 545

CHAPTER 10 Programmable Logic 561
10-1 Simple Programmable Logic Devices (SPLDs) 562
10-2 Complex Programmable Logic Devices (CPLDs) 567
10-3 Macrocell Modes 574
10-4 Field-Programmable Gate Arrays (FPGAs) 577
10-5 Programmable Logic software 585
10-6 Boundary Scan Logic 595
10-7 Troubleshooting 602
Applied Logic 608

CHAPTER 11 Data Storage 627
11-1 Semiconductor Memory Basics 628
11-2 The Random-Access Memory (RAM) 633
11-3 The Read-Only Memory (ROM) 646
11-4 Programmable ROMs 652
11-5 The Flash Memory 655
11-6 Memory Expansion 660
11-7 Special Types of Memories 666
11-8 Magnetic and Optical Storage 670
11-9 Memory Hierarchy 676
11-10 Cloud Storage 680
11-11 Troubleshooting 683

Contents

CHAPTER 12 Signal Conversion and Processing 697

12-1
12-2
12-3
12-4
12-5

Analog-to-Digital Conversion 698

Methods of Analog-to-Digital Conversion 704
Methods of Digital-to-Analog Conversion 715
Digital Signal Processing 723

The Digital Signal Processor (DSP) 724

CHAPTER 13 Data Transmission 739

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9

Data Transmission Media 740

Methods and Modes of Data Transmission 745
Modulation of Analog Signals with Digital Data 750
Modulation of Digital Signals with Analog Data 753
Multiplexing and Demultiplexing 759

Bus Basics 764

Parallel Buses 769

The Universal Serial Bus (USB) 775

Other Serial Buses 778

13-10 Bus Interfacing 784

CHAPTER 14 Data Processing and Control 801

14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9

The Computer System 802

Practical Computer System Considerations 806
The Processor: Basic Operation 812

The Processor: Addressing Modes 817

The Processor: Special Operations 823
Operating Systems and Hardware 828
Programming 831

Microcontrollers and Embedded Systems 838
System on Chip (SoC) 844

ON WEBSITE: http://www.pearsonglobaleditions.com/floyd
CHAPTER 15 Integrated Circuit Technologies 855

15-1
15-2
15-3
15-4
15-5
15-6
15-7

Basic Operational Characteristics and Parameters 856
CMOS Circuits 863

TTL (Bipolar) Circuits 868

Practical Considerations in the Use of TTL 873
Comparison of CMOS and TTL Performance 880
Emitter-Coupled Logic (ECL) Circuits 881

PMOS, NMOS, and EXCMOS 883

ANSWERS TO ODD-NUMBERED PROBLEMS A-1

GLOSSARY A-31
INDEX A-42

— EVAAAE T Y0101 1
1])(]) (](O) 01 01 ‘]Q 1101 o1 ?? 00 01 t,:(‘> \
111110 OOU,)H 00 11 'QO;)M;
011,00 100001 45,1055
‘ 01 11 10 01 .OO

CHAPTER

Introductory Concepts

|
CHAPTER OUTLINE KEY TERMS
1-1 Digital and Analog Quantities Key terms are in order of appearance in the chapter.
1-2 Binary Digits, Logic Levels, and Digital Analog NOT
Waveforms Digital Inverter
1-3 Basic Logic Functions B'g AND
1-4 Combinational and Sequential Logic Functions !nary
1-5 Introduction to Programmable Logic Bit OR '
1-6 Fixed-Function Logic Devices Pulse Programmable logic
1-7 Test and Measurement Instruments Duty cycle SPLD
1-8 Introduction to Troubleshooting Clock CPLD
Timing diagram FPGA
CHAPTER OBJECTIVES Data Microcontroller
Serial Embedded system
Explain the bg;ic differences between digital and Parallel Compiler
analog quantities . oo
Logic Integrated circuit (IC)
Show how voltage levels are used to represent | Fixed-f ion logi
digital quantities nput Ixed- unctloh ogic
Describe various parameters of a pulse waveform Output Troubleshooting
such as rise time, fall time, pulse width, frequency, Gate

period, and duty cycle

Explain the basic logic functions of NOT, AND,
and OR

Describe several types of logic operations and
explain their application in an example system

Describe programmable logic, discuss the
various types, and describe how PLDs are
programmed

Identify fixed-function digital integrated circuits
according to their complexity and the type of circuit
packaging

Identify pin numbers on integrated circuit packages
Recognize various instruments and understand
how they are used in measurement and
troubleshooting digital circuits and systems

Describe basic troubleshooting methods

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The term digital is derived from the way operations
are performed, by counting digits. For many years,
applications of digital electronics were confined

to computer systems. Today, digital technology is
applied in a wide range of areas in addition to com-
puters. Such applications as television, communi-
cations systems, radar, navigation and guidance
systems, military systems, medical instrumentation,
industrial process control, and consumer electron-
ics use digital techniques. Over the years digital
technology has progressed from vacuum-tube circuits

15

Introductory Concepts

to discrete transistors to complex integrated circuits, This chapter introduces you to digital electronics
many of which contain millions of transistors, and and provides a broad overview of many important
many of which are programmable. concepts, components, and tools.

1-1 Digital and Analog Quantities

Electronic circuits can be divided into two broad categories, digital and analog. Digital
electronics involves quantities with discrete values, and analog electronics involves quan-
tities with continuous values. Although you will be studying digital fundamentals in this
book, you should also know something about analog because many applications require
both; and interfacing between analog and digital is important.

After completing this section, you should be able to

+ Define analog

*

Define digital

*

Explain the difference between digital and analog quantities

*

State the advantages of digital over analog

+ Give examples of how digital and analog quantities are used in electronics

An analog* quantity is one having continuous values. A digital quantity is one having
a discrete set of values. Most things that can be measured quantitatively occur in nature in
analog form. For example, the air temperature changes over a continuous range of values.
During a given day, the temperature does not go from, say, 70° to 71° instantaneously; it
takes on all the infinite values in between. If you graphed the temperature on a typical sum-
mer day, you would have a smooth, continuous curve similar to the curve in Figure 1-1.
Other examples of analog quantities are time, pressure, distance, and sound.

Temperature

(°F)

100 —

95 —
90
85
80
75
70

Time of day

FIGURE 1-1 Graph of an analog quantity (temperature versus time).

Rather than graphing the temperature on a continuous basis, suppose you just take a
temperature reading every hour. Now you have sampled values representing the temperature
at discrete points in time (every hour) over a 24-hour period, as indicated in Figure 1-2.

*All bold terms are important and are defined in the end-of-book glossary. The blue bold terms are key terms
and are included in a Key Term glossary at the end of each chapter.

Digital and Analog Quantities

Temperature
B
100 —
95 3 [B B3
90 — ®
85 -
80 —
75 6=

S

AM. PM

Time of day
10 11 12

7 809
FIGURE 1-2 Sampled-value representation (quantization) of the analog quantity in
Figure 1—1. Each value represented by a dot can be digitized by representing it as a digital
code that consists of a series of 1s and 0s.

You have effectively converted an analog quantity to a form that can now be digitized by
representing each sampled value by a digital code. It is important to realize that Figure 1-2
itself is not the digital representation of the analog quantity.

The Digital Advantage

Digital representation has certain advantages over analog representation in electronics applica-
tions. For one thing, digital data can be processed and transmitted more efficiently and reli-
ably than analog data. Also, digital data has a great advantage when storage is necessary. For
example, music when converted to digital form can be stored more compactly and reproduced
with greater accuracy and clarity than is possible when it is in analog form. Noise (unwanted
voltage fluctuations) does not affect digital data nearly as much as it does analog signals.

An Analog System

A public address system, used to amplify sound so that it can be heard by a large audience, is
one simple example of an application of analog electronics. The basic diagram in Figure 1-3
illustrates that sound waves, which are analog in nature, are picked up by a microphone and
converted to a small analog voltage called the audio signal. This voltage varies continuously as
the volume and frequency of the sound changes and is applied to the input of a linear amplifier.
The output of the amplifier, which is an increased reproduction of input voltage, goes to the
speaker(s). The speaker changes the amplified audio signal back to sound waves that have a
much greater volume than the original sound waves picked up by the microphone.

= (0) el und
\y riginal sound waves

Microphone Reproduced

sound waves
Linear amplifier — >
Audio signal
Speaker

Amplified audio signal

FIGURE 1-3 A basic audio public address system.

Introductory Concepts

Electronic controls

A System Using Digital and Analog Methods

The compact disk (CD) player is an example of a system in which both digital and analog
circuits are used. The simplified block diagram in Figure 1—4 illustrates the basic principle.
Music in digital form is stored on the compact disk. A laser diode optical system picks up
the digital data from the rotating disk and transfers it to the digital-to-analog converter
(DAC). The DAC changes the digital data into an analog signal that is an electrical repro-
duction of the original music. This signal is amplified and sent to the speaker for you to
enjoy. When the music was originally recorded on the CD, a process, essentially the reverse
of the one described here, using an analog-to-digital converter (ADC) was used.

CD drive

i /\/\l\l\[l\
10110011101 Digital-to-analog Linear amplifier
Digital data | converter Analog
reproduction
Speaker

of music audio
signal

Sound
waves

FIGURE 1-4 Basic block diagram of a CD player. Only one channel is shown.

Mechatronics

Both digital and analog electronics are used in the control of various mechanical systems.
The interdisciplinary field that comprises both mechanical and electronic components is
known as mechatronics.

Mechatronic systems are found in homes, industry, and transportation. Most home appliances
consist of both mechanical and electronic components. Electronics controls the operation of a
washing machine in terms of water flow, temperature, and type of cycle. Manufacturing indus-
tries rely heavily on mechatronics for process control and assembly. In automotive and other
types of manufacturing, robotic arms perform precision welding, painting, and other functions
on the assembly line. Automobiles themselves are mechatronic machines; a digital computer
controls functions such as braking, engine parameters, fuel flow, safety features, and monitoring.

Figure 1-5(a) is a basic block diagram of a mechatronic system. A simple robotic arm is
shown in Figure 1-5(b), and robotic arms on an automotive assembly line are shown in part (c).

Electromechanical
interface

Robotic unit

(a) Mechatronic system block diagram

(b) Robotic arm (c) Automotive assembly line

FIGURE 1-5 Example of a mechatronic system and application. Part (b) Beawolf/Fotolia;
Part (c) Small Town Studio/Fotolia.

Binary Digits, Logic Levels, and Digital Waveforms

The movement of the arm in any quadrant and to any specified position is accomplished with
some type of digital control such as a microcontroller.

SECTION 1-1 CHECKUP

Answers are at the end of the chapter.
1. Define analog.
2. Define digital.
3. Explain the difference between a digital quantity and an analog quantity.

4. Give an example of a system that is analog and one that is a combination of both
digital and analog. Name a system that is entirely digital.

5. What does a mechatronic system consist of?

1-2 Binary Digits, Logic Levels, and Digital Waveforms

Digital electronics involves circuits and systems in which there are only two possible
states. These states are represented by two different voltage levels: A HIGH and a LOW.
The two states can also be represented by current levels, bits and bumps on a CD or DVD,
etc. In digital systems such as computers, combinations of the two states, called codes, are
used to represent numbers, symbols, alphabetic characters, and other types of information.
The two-state number system is called binary, and its two digits are 0 and 1. A binary digit
is called a bit.

After completing this section, you should be able to
+ Define binary
¢ Define bit
+ Name the bits in a binary system
+ Explain how voltage levels are used to represent bits
+ Explain how voltage levels are interpreted by a digital circuit
+ Describe the general characteristics of a pulse
¢ Determine the amplitude, rise time, fall time, and width of a pulse
¢ Identify and describe the characteristics of a digital waveform
+ Determine the amplitude, period, frequency, and duty cycle of a digital waveform
+ Explain what a timing diagram is and state its purpose

+ Explain serial and parallel data transfer and state the advantage and disadvantage
of each

Binary Digits

Each of the two digits in the binary system, 1 and 0, is called a bit, which is a contraction
of the words binary digit. In digital circuits, two different voltage levels are used to repre-
sent the two bits. Generally, 1 is represented by the higher voltage, which we will refer to
as a HIGH, and a 0 is represented by the lower voltage level, which we will refer to as a
LOW. This is called positive logic and will be used throughout the book.

HIGH =1 and LOW =0

InfoNote

The concept of a digital computer
can be traced back to Charles
Babbage, who developed a crude
mechanical computation device in
the 1830s. John Atanasoff was the
first to apply electronic processing
to digital computing in 1939. In
1946, an electronic digital compu-
ter called ENIAC was implemented
with vacuum-tube circuits. Even
though it took up an entire room,
ENIAC didn’t have the computing
power of your handheld calculator.

Introductory Concepts

A
VH(max)
HIGH
(binary 1)
VH(min)
Unacceptable
VL (max)
LOW
(binary 0)
VL (min)

FIGURE 1-6 Logic level ranges
of voltage for a digital circuit.

Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is
called negative logic.

Groups of bits (combinations of 1s and 0s), called codes, are used to represent numbers,
letters, symbols, instructions, and anything else required in a given application.

Logic Levels

The voltages used to represent a 1 and a O are called logic levels. Ideally, one voltage level
represents a HIGH and another voltage level represents a LOW. In a practical digital circuit,
however, a HIGH can be any voltage between a specified minimum value and a specified
maximum value. Likewise, a LOW can be any voltage between a specified minimum and a
specified maximum. There can be no overlap between the accepted range of HIGH levels
and the accepted range of LOW levels.

Figure 1-6 illustrates the general range of LOWs and HIGHs for a digital circuit. The
variable Viymax) represents the maximum HIGH voltage value, and Viyyy) represents the
minimum HIGH voltage value. The maximum LOW voltage value is represented by Vi imax),
and the minimum LOW voltage value is represented by Vi iin). The voltage values between
Wi max) and Viymin) are unacceptable for proper operation. A voltage in the unacceptable
range can appear as either a HIGH or a LOW to a given circuit. For example, the HIGH
input values for a certain type of digital circuit technology called CMOS may range from
2V to 3.3V and the LOW input values may range from 0 V to 0.8 V. If a voltage of 2.5V
is applied, the circuit will accept it as a HIGH or binary 1. If a voltage of 0.5 V is applied,
the circuit will accept it as a LOW or binary 0. For this type of circuit, voltages between
0.8 V and 2 V are unacceptable.

Digital Waveforms

Digital waveforms consist of voltage levels that are changing back and forth between the
HIGH and LOW levels or states. Figure 1-7(a) shows that a single positive-going pulse
is generated when the voltage (or current) goes from its normally LOW level to its HIGH
level and then back to its LOW level. The negative-going pulse in Figure 1-7(b) is gener-
ated when the voltage goes from its normally HIGH level to its LOW level and back to its
HIGH level. A digital waveform is made up of a series of pulses.

HIGH -- HIGH
Rising or / Falling or Falling or Rising or
leading edge trailing edge leading edge trailing edge
LOW LOW —--
Iy 4
(a) Positive—going pulse (b) Negative—going pulse

FIGURE 1-7 Ideal pulses.

The Pulse

As indicated in Figure 1-7, a pulse has two edges: a leading edge that occurs first at time £,
and a trailing edge that occurs last at time ¢,. For a positive-going pulse, the leading edge
is a rising edge, and the trailing edge is a falling edge. The pulses in Figure 1-7 are ideal
because the rising and falling edges are assumed to change in zero time (instantaneously).
In practice, these transitions never occur instantaneously, although for most digital work
you can assume ideal pulses.

Figure 1-8 shows a nonideal pulse. In reality, all pulses exhibit some or all of these
characteristics. The overshoot and ringing are sometimes produced by stray inductive and

Binary Digits, Logic Levels, and Digital Waveforms

Overshoot

Ringing

T

Amplitude

1 l
| ; :
50% o<t v
: Pulse width :
| |
| |
| | Ringing
! | ! ! inging
B - T“ - | | : |
ase lne : : | : Undershoot
™ "
t, [/.
Rise time Fall time

FIGURE 1-8 Nonideal pulse characteristics.

capacitive effects. The droop can be caused by stray capacitive and circuit resistance, form-
ing an RC circuit with a low time constant.

The time required for a pulse to go from its LOW level to its HIGH level is called the
rise time (¢,), and the time required for the transition from the HIGH level to the LOW level
is called the fall time (¢). In practice, it is common to measure rise time from 10% of the
pulse amplitude (height from baseline) to 90% of the pulse amplitude and to measure the
fall time from 90% to 10% of the pulse amplitude, as indicated in Figure 1-8. The bottom
10% and the top 10% of the pulse are not included in the rise and fall times because of
the nonlinearities in the waveform in these areas. The pulse width (#yy) is a measure of the
duration of the pulse and is often defined as the time interval between the 50% points on
the rising and falling edges, as indicated in Figure 1-8.

Waveform Characteristics

Most waveforms encountered in digital systems are composed of series of pulses, some-
times called pulse trains, and can be classified as either periodic or nonperiodic. A periodic
pulse waveform is one that repeats itself at a fixed interval, called a period (7"). The
frequency (f) is the rate at which it repeats itself and is measured in hertz (Hz). A non-
periodic pulse waveform, of course, does not repeat itself at fixed intervals and may be
composed of pulses of randomly differing pulse widths and/or randomly differing time
intervals between the pulses. An example of each type is shown in Figure 1-9.

| L L |

s

Period = T\ = T, = T =
Frequency = l
(a) Periodic (square wave) (b) Nonperiodic

FIGURE 1-9 Examples of digital waveforms.

The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The
relationship between frequency and period is expressed as follows:

f=

T =

Sl= N =

Equation 1-1

Equation 1-2

Introductory Concepts

An important characteristic of a periodic digital waveform is its duty cycle, which is the
ratio of the pulse width (#y) to the period (T'). It can be expressed as a percentage.

t
Duty cycle = <?W>100% Equation 1-3

A portion of a periodic digital waveform is shown in Figure 1-10. The measurements
are in milliseconds. Determine the following:

(a) period (b) frequency (c) duty cycle

= T
Lo

t (ms
0 1 10 11 (ms)

FIGURE 1-10

Solution

(a) The period (T) is measured from the edge of one pulse to the corresponding edge
of the next pulse. In this case T is measured from leading edge to leading edge, as
indicated. T equals 10 ms.

1
b = — = = 100 H
® f T 10 ms z
tw 1 ms
(¢) Dutycycle = | — |100% = { — |]100% = 10%
T 10 ms

Related Problem*

A periodic digital waveform has a pulse width of 25 us and a period of 150 us. Deter-
mine the frequency and the duty cycle.

*Answers are at the end of the chapter.

A Digital Waveform Carries Binary Information

InfoNote Binary information that is handled by digital systems appears as waveforms that represent
sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform

The speed at which a computer is LOW, a binary 0 is present. Each bit in a sequence occupies a defined time interval called

can operate depends on the type a bit time.

of microprocessor used in the

system. The speed specifica- The Clock

tion, for example 3.5 GHz, of
a computer is the maximum
clock frequency at which the
microprocessor can run.

In digital systems, all waveforms are synchronized with a basic timing waveform called the
clock. The clock is a periodic waveform in which each interval between pulses (the period)
equals the time for one bit.

An example of a clock waveform is shown in Figure 1-11. Notice that, in this case, each
change in level of waveform A occurs at the leading edge of the clock waveform. In other
cases, level changes occur at the trailing edge of the clock. During each bit time of the
clock, waveform A is either HIGH or LOW. These HIGHs and LOWSs represent a sequence

Binary Digits, Logic Levels, and Digital Waveforms

e plinipiginpigiginigininh

1		
A 0 I I I I		
		:

: | | | | | |
Bit sequence | : | | | | | | | | | |
represented by : 1 10 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 :
waveform A | : | | | | | | | | | |
FIGURE 1-11 Example of a clock waveform synchronized with a waveform representation

of a sequence of bits.

of bits as indicated. A group of several bits can contain binary information, such as a num-
ber or a letter. The clock waveform itself does not carry information.

Timing Diagrams

A timing diagram is a graph of digital waveforms showing the actual time relationship of
two or more waveforms and how each waveform changes in relation to the others. By look-
ing at a timing diagram, you can determine the states (HIGH or LOW) of all the waveforms
at any specified point in time and the exact time that a waveform changes state relative
to the other waveforms. Figure 1-12 is an example of a timing diagram made up of four
waveforms. From this timing diagram you can see, for example, that the three waveforms
A, B, and C are HIGH only during bit time 7 (shaded area) and they all change back LOW
at the end of bit time 7.

-

A, B, and C HIGH

FIGURE 1-12 Example of a timing diagram.

Data Transfer

Data refers to groups of bits that convey some type of information. Binary data, which
are represented by digital waveforms, must be transferred from one device to another
within a digital system or from one system to another in order to accomplish a given
purpose. For example, numbers stored in binary form in the memory of a computer must
be transferred to the computer’s central processing unit in order to be added. The sum of
the addition must then be transferred to a monitor for display and/or transferred back to
the memory. As illustrated in Figure 1-13, binary data are transferred in two ways: serial
and parallel.

When bits are transferred in serial form from one point to another, they are sent one bit
at a time along a single line, as illustrated in Figure 1-13(a). During the time interval from
1y to t1, the first bit is transferred. During the time interval from #; to #,, the second bit is
transferred, and so on. To transfer eight bits in series, it takes eight time intervals.

InfoNote

Universal Serial Bus (USB) is a
serial bus standard for device
interfacing. It was originally devel-
oped for the personal computer
but has become widely used on
many types of handheld and
mobile devices. USB is expected
to replace other serial and parallel
ports. USB operated at 12 Mbps
(million bits per second) when
first introduced in 1995, but it now
provides transmission speeds of
up to 5 Gbps.

Introductory Concepts

Sending
device

Receiving
device

Sending o b Iy 5 I Iy Receiving
device device R

(a) Serial transfer of 8 bits of binary data. Interval £, to t; is first. (b) Parallel transfer of 8 bits of binary data. The beginning time is #,.

FIGURE 1-13 lllustration of serial and parallel transfer of binary data. Only the data lines
are shown.

When bits are transferred in parallel form, all the bits in a group are sent out on separate
lines at the same time. There is one line for each bit, as shown in Figure 1-13(b) for the
example of eight bits being transferred. To transfer eight bits in parallel, it takes one time
interval compared to eight time intervals for the serial transfer.

To summarize, an advantage of serial transfer of binary data is that a minimum of only
one line is required. In parallel transfer, a number of lines equal to the number of bits to be
transferred at one time is required. A disadvantage of serial transfer is that it takes longer to
transfer a given number of bits than with parallel transfer at the same clock frequency. For
example, if one bit can be transferred in 1 us, then it takes 8 us to serially transfer eight
bits but only 1 us to parallel transfer eight bits. A disadvantage of parallel transfer is that it
takes more lines than serial transfer.

(a) Determine the total time required to serially transfer the eight bits contained in
waveform A of Figure 1-14, and indicate the sequence of bits. The left-most bit is
the first to be transferred. The 1 MHz clock is used as reference.

(b) What is the total time to transfer the same eight bits in parallel?

aws—| L L] LT LI L L] L L

A | | |

FIGURE 1-14

]

Solution
(a) Since the frequency of the clock is 1 MHz, the period is

1 1

= 1pus
z

It takes 1 ws to transfer each bit in the waveform. The total transfer time for 8 bits is

8 X 1us =8us

To determine the sequence of bits, examine the waveform in Figure 1-14 during
each bit time. If waveform A is HIGH during the bit time, a 1 is transferred. If
waveform A is LOW during the bit time, a 0 is transferred. The bit sequence is
illustrated in Figure 1-15. The left-most bit is the first to be transferred.

FIGURE 1-15
(b) A parallel transfer would take 1 us for all eight bits.

Related Problem

If binary data are transferred on a USB at the rate of 480 million bits per second
(480 Mbps), how long will it take to serially transfer 16 bits?

SECTION 1-2 CHECKUP

1. Define binary.

. What does bit mean?

. What are the bits in a binary system?

. How are the rise time and fall time of a pulse measured?

. Knowing the period of a waveform, how do you find the frequency?
. Explain what a clock waveform is.

. What is the purpose of a timing diagram?

L N &N Ut A WN

. What is the main advantage of parallel transfer over serial transfer of binary data?

1-3 Basic Logic Functions

In its basic form, logic is the realm of human reasoning that tells you a certain proposi-
tion (declarative statement) is true if certain conditions are true. Propositions can be
classified as true or false. Many situations and processes that you encounter in your
daily life can be expressed in the form of propositional, or logic, functions. Since such
functions are true/false or yes/no statements, digital circuits with their two-state char-
acteristics are applicable.

After completing this section, you should be able to
+ List three basic logic functions
¢ Define the NOT function
¢ Define the AND function

+ Define the OR function

Several propositions, when combined, form propositional, or logic, functions. For exam-
ple, the propositional statement “The light is on” will be true if “The bulb is not burned out”
is true and if “The switch is on” is true. Therefore, this logical statement can be made: The
light is on only if the bulb is not burned out and the switch is on. In this example the first
statement is true only if the last two statements are true. The first statement (“The light is on™)

Basic Logic Functions

Introductory Concepts

is then the basic proposition, and the other two statements are the conditions on which the
proposition depends.

In the 1850s, the Irish logician and mathematician George Boole developed a math-
ematical system for formulating logic statements with symbols so that problems can be
written and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known
today, is applied in the design and analysis of digital systems and will be covered in detail
in Chapter 4.

The term logic is applied to digital circuits used to implement logic functions. Several
kinds of digital logic circuits are the basic elements that form the building blocks for such
complex digital systems as the computer. We will now look at these elements and discuss
their functions in a very general way. Later chapters will cover these circuits in detail.

Three basic logic functions (NOT, AND, and OR) are indicated by standard distinctive
shape symbols in Figure 1-16. Alternate standard symbols for these logic functions will be
introduced in Chapter 3. The lines connected to each symbol are the inputs and outputs.
The inputs are on the left of each symbol and the output is on the right. A circuit that per-
forms a specified logic function (AND, OR) is called a logic gate. AND and OR gates can
have any number of inputs, as indicated by the dashes in the figure.

> D D

NOT AND OR

FIGURE 1-16 The basic logic functions and symbols.

In logic functions, the true/false conditions mentioned earlier are represented by a
HIGH (true) and a LOW (false). Each of the three basic logic functions produces a unique
response to a given set of conditions.

NOT

The NOT function changes one logic level to the opposite logic level, as indicated in
Figure 1-17. When the input is HIGH (1), the output is LOW (0). When the input is LOW,
the output is HIGH. In either case, the output is not the same as the input. The NOT func-
tion is implemented by a logic circuit known as an inverter.

HIGH (1) —D% LOW (0) LOW (0) 4[>% HIGH (1)

FIGURE 1-17 The NOT function.

AND

The AND function produces a HIGH output only when all the inputs are HIGH, as indi-
cated in Figure 1-18 for the case of two inputs. When one input is HIGH and the other
input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW.
The AND function is implemented by a logic circuit known as an AND gate.

HIGH (1) —
HIGH (1) —

LOW (0) —
HIGH (1) —

HIGH (1) LOW (0)

HIGH (1) —} LOW (0) —} LOW (0)

LOW (0)
LOW (0) — LOW (0) —

FIGURE 1-18 The AND function.

Combinational and Sequential Logic Functions

OR

The OR function produces a HIGH output when one or more inputs are HIGH, as indicated
in Figure 1-19 for the case of two inputs. When one input is HIGH or the other input is
HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the output
is LOW. The OR function is implemented by a logic circuit known as an OR gate.

HIGH (1 LOW (0
():D—HIGHU) ():D—HIGH(D

HIGH (1) HIGH (1)

HIGH (1) LOW (0)
HIGH (1) LOW (0)

LOW (0) LOW (0)

FIGURE 1-19 The OR function.

SECTION 1-3 CHECKUP

1. When does the NOT function produce a HIGH output?
2. When does the AND function produce a HIGH output?
3. When does the OR function produce a HIGH output?

4. What is an inverter?

5. What is a logic gate?

1-4 Combinational and Sequential Logic Functions

The three basic logic functions AND, OR, and NOT can be combined to form various other
types of more complex logic functions, such as comparison, arithmetic, code conversion,
encoding, decoding, data selection, counting, and storage. A digital system is an arrange-
ment of the individual logic functions connected to perform a specified operation or pro-
duce a defined output. This section provides an overview of important logic functions and
illustrates how they can be used in a specific system.

After completing this section, you should be able to
+ List several types of logic functions
+ Describe comparison and list the four arithmetic functions
+ Describe code conversion, encoding, and decoding
+ Describe multiplexing and demultiplexing
+ Describe the counting function
+ Describe the storage function

+ Explain the operation of the tablet-bottling system

The Comparison Function

Magnitude comparison is performed by a logic circuit called a comparator, covered in
Chapter 6. A comparator compares two quantities and indicates whether or not they are
equal. For example, suppose you have two numbers and wish to know if they are equal
or not equal and, if not equal, which is greater. The comparison function is represented in

Introductory Concepts

InfoNote

In a microprocessor, the arith-

metic logic unit (ALU) performs
the operations of add, subtract,

multiply, and divide as well as the
logic operations on digital data as
directed by a series of instructions.

A typical ALU is constructed of
many thousands of logic gates.

Comparator Comparator
A A>B |—— Binary A>B ——LOW
code for 2
Two
binary A=B Outputs A=B —— LOW
numbers)
B Bn“lary
A<B — code for 5 A<B |— HIGH

(a) Basic magnitude comparator (b) Example: A is less than B (2 < 5) as indicated by

the HIGH output (A < B)

FIGURE 1-20 The comparison function.

Figure 1-20. One number in binary form (represented by logic levels) is applied to input A, and
the other number in binary form (represented by logic levels) is applied to input B. The
outputs indicate the relationship of the two numbers by producing a HIGH level on the
proper output line. Suppose that a binary representation of the number 2 is applied to input
A and a binary representation of the number 5 is applied to input B. (The binary represen-
tation of numbers and symbols is discussed in Chapter 2.) A HIGH level will appear on
the A < B (A is less than B) output, indicating the relationship between the two numbers
(2 is less than 5). The wide arrows represent a group of parallel lines on which the bits are
transferred.

The Arithmetic Functions
Addition

Addition is performed by a logic circuit called an adder, covered in Chapter 6. An adder
adds two binary numbers (on inputs A and B with a carry input C;,) and generates a sum
(2) and a carry output (C,,,), as shown in Figure 1-21(a). Figure 1-21(b) illustrates the
addition of 3 and 9. You know that the sum is 12; the adder indicates this result by pro-
ducing 2 on the sum output and 1 on the carry output. Assume that the carry input in this
example is 0.

Adder Adder
Binary
A A
. s Sum code for 3 %, Binary
wo code for 2
binary
numbers 5 Cout [Carry out Binary 5 Coyt [Binary 1
L code for 9
Carry in —>{ G}, Binary 0 ——{ C;,
Binary
code for 12

(a) Basic adder

(b) Example: A plus B(3+9 =12)
FIGURE 1-21 The addition function.

Subtraction

Subtraction is also performed by a logic circuit. A subtracter requires three inputs: the
two numbers that are to be subtracted and a borrow input. The two outputs are the differ-
ence and the borrow output. When, for instance, 5 is subtracted from 8 with no borrow
input, the difference is 3 with no borrow output. You will see in Chapter 2 how subtrac-
tion can actually be performed by an adder because subtraction is simply a special case
of addition.

Combinational and Sequential Logic Functions

Multiplication

Multiplication is performed by a logic circuit called a multiplier. Numbers are always mul-
tiplied two at a time, so two inputs are required. The output of the multiplier is the product.
Because multiplication is simply a series of additions with shifts in the positions of the
partial products, it can be performed by using an adder in conjunction with other circuits.

Division
Division can be performed with a series of subtractions, comparisons, and shifts, and thus it

can also be done using an adder in conjunction with other circuits. Two inputs to the divider
are required, and the outputs generated are the quotient and the remainder.

The Code Conversion Function

A code is a set of bits arranged in a unique pattern and used to represent specified informa-
tion. A code converter changes one form of coded information into another coded form.
Examples are conversion between binary and other codes such as the binary coded decimal
(BCD) and the Gray code. Various types of codes are covered in Chapter 2, and code con-
verters are covered in Chapter 6.

The Encoding Function

The encoding function is performed by a logic circuit called an encoder, covered in Chap-
ter 6. The encoder converts information, such as a decimal number or an alphabetic char-
acter, into some coded form. For example, one certain type of encoder converts each of the
decimal digits, O through 9, to a binary code. A HIGH level on the input corresponding to
a specific decimal digit produces logic levels that represent the proper binary code on the
output lines.

Figure 1-22 is a simple illustration of an encoder used to convert (encode) a calculator
keystroke into a binary code that can be processed by the calculator circuits.

HIGH
Encoder

Binary
code for 9

L&)
@G

Calculator keypad

O =N WA O 0O

FIGURE 1-22 An encoder used to encode a calculator keystroke into a binary code
for storage or for calculation.

The Decoding Function

The decoding function is performed by a logic circuit called a decoder, covered in Chapter 6.
The decoder converts coded information, such as a binary number, into a noncoded form,
such as a decimal form. For example, one particular type of decoder converts a 4-bit binary
code into the appropriate decimal digit.

Figure 1-23 is a simple illustration of one type of decoder that is used to activate a
7-segment display. Each of the seven segments of the display is connected to an output
line from the decoder. When a particular binary code appears on the decoder inputs, the
appropriate output lines are activated and light the proper segments to display the decimal
digit corresponding to the binary code.

Introductory Concepts

Decoder

Binary-coded input pa—

7-segment display

FIGURE 1-23 A decoder used to convert a special binary code into a 7-segment
decimal readout.

The Data Selection Function

Two types of circuits that select data are the multiplexer and the demultiplexer. The multi-
plexer, or mux for short, is a logic circuit that switches digital data from several input lines
onto a single output line in a specified time sequence. Functionally, a multiplexer can be
represented by an electronic switch operation that sequentially connects each of the input
lines to the output line. The demultiplexer (demux) is a logic circuit that switches digital
data from one input line to several output lines in a specified time sequence. Essentially,
the demux is a mux in reverse.

Multiplexing and demultiplexing are used when data from several sources are to be
transmitted over one line to a distant location and redistributed to several destinations. Fig-
ure 1-24 illustrates this type of application where digital data from three sources are sent
out along a single line to three terminals at another location.

IHHHHHU U U LI ;IUUUUUL Demultiplexer

Multiplexer
A D
Data from Data from Data from Data from o0
\‘ AtoD BtoE CtoF AtoD)/
Aty Az
At At At At
B \ 1 2 3 1 E
> > > > O
Aty Aty
Aty Aty E
—o [
Switching Switching
sequence sequence

InfoNote

control input

The internal computer memories,
RAM and ROM, as well as the
smaller caches are semiconduc-
tor memories. The registers in a
microprocessor are constructed of
semiconductor flip-flops. Opto-
magnetic disk memories are used
in the internal hard drive and for

the CD-ROM.

control input

FIGURE 1-24 lllustration of a basic multiplexing/demultiplexing application.

In Figure 1-24, data from input A are connected to the output line during time interval Az,
and transmitted to the demultiplexer that connects them to output D. Then, during interval
At,, the multiplexer switches to input B and the demultiplexer switches to output E. During
interval Az;, the multiplexer switches to input C and the demultiplexer switches to output F.

To summarize, during the first time interval, input A data go to output D. During the
second time interval, input B data go to output E. During the third time interval, input C
data go to output F. After this, the sequence repeats. Because the time is divided up among
several sources and destinations where each has its turn to send and receive data, this pro-
cess is called time division multiplexing (TDM).

The Storage Function

Storage is a function that is required in most digital systems, and its purpose is to retain binary
data for a period of time. Some storage devices are used for short-term storage and some

Combinational and Sequential Logic Functions

are used for long-term storage. A storage device can “memorize” a bit or a group of bits and
retain the information as long as necessary. Common types of storage devices are flip-flops,
registers, semiconductor memories, magnetic disks, magnetic tape, and optical disks (CDs).

Flip-flops

A flip-flop is a bistable (two stable states) logic circuit that can store only one bit at a time,
either a 1 or a 0. The output of a flip-flop indicates which bit it is storing. A HIGH output
indicates that a 1 is stored and a LOW output indicates that a 0 is stored. Flip-flops are
implemented with logic gates and are covered in Chapter 7.

Registers

A register is formed by combining several flip-flops so that groups of bits can be stored.
For example, an 8-bit register is constructed from eight flip-flops. In addition to storing
bits, registers can be used to shift the bits from one position to another within the register
or out of the register to another circuit; therefore, these devices are known as shift registers.
Shift registers are covered in Chapter 8.

The two basic types of shift registers are serial and parallel. The bits are stored in a serial shift
register one at a time, as illustrated in Figure 1-25. A good analogy to the serial shift register
is loading passengers onto a bus single file through the door. They also exit the bus single file.

Serial bits
on input line

0101—0 010

Initially, the register contains only invalid
data or all zeros as shown here.

First bit (1) is shifted serially into the
register.

010— 1 010

Second bit (0) is shifted serially into
register and first bit is shifted right.

01— 0—-1 0

Third bit (1) is shifted into register and
the first and second bits are shifted right.

0
0
0
0— 1—-0—11|0

Fourth bit (0) is shifted into register and

— O —>1 —>O —>1 the first, second, and third bits are shifted
right. The register now stores all four bits
and is full.

FIGURE 1-25 Example of the operation of a 4-bit serial shift register. Each block
represents one storage “cell” or flip-flop.

The bits are stored in a parallel register simultaneously from parallel lines, as shown in
Figure 1-26. For this case, a good analogy is loading and unloading passengers on a roller
coaster where they enter all of the cars in parallel and exit in parallel.

onmputines O 101
-
000 0

Initially, the register is empty,
containing only nondata zeros.

All bits are shifted in and

O 1 0 1 stored simultaneously.

FIGURE 1-26 Example of the operation of a 4-bit parallel shift register.

Introductory Concepts

output lines
) J I

Input pulses

Semiconductor Memories

Semiconductor memories are devices typically used for storing large numbers of bits. In
one type of memory, called the read-only memory or ROM, the binary data are perma-
nently or semipermanently stored and cannot be readily changed. In the random-access
memory or RAM, the binary data are temporarily stored and can be easily changed. Memo-
ries are covered in Chapter 11.

Magnetic Memories

Magnetic disk memories are used for mass storage of binary data. An example is a com-
puter’s internal hard disk. Magnetic tape is still used to some extent in memory applications
and for backing up data from other storage devices.

Optical Memories

CDs, DVDs, and Blu-ray Discs are storage devices based on laser technology. Data are
represented by pits and lands on concentric tracks. A laser beam is used to store the data on
the disc and to read the data from the disc.

The Counting Function

The counting function is important in digital systems. There are many types of digital
counters, but their basic purpose is to count events represented by changing levels or
pulses. To count, the counter must “remember” the present number so that it can go to
the next proper number in sequence. Therefore, storage capability is an important charac-
teristic of all counters, and flip-flops are generally used to implement them. Figure 1-27
illustrates the basic idea of counter operation. Counters are covered in Chapter 9.

Parallel
Binary | Binary | Binary | Binary | Binary
Counter code code code code code
for 1 for 2 for 3 for 4 for 5

Sequence of binary codes that represent
the number of input pulses counted.

FIGURE 1-27 lllustration of basic counter operation.

A Process Control System

A system for bottling vitamin tablets is shown in the block diagram of Figure 1-28. This
example system shows how the various logic functions that have been introduced can be
used together to form a total system. To begin, the tablets are fed into a large funnel-type
hopper. The narrow neck of the hopper creates a serial flow of tablets into a bottle on
the conveyor belt below. Only one tablet at a time passes the sensor, so the tablets can
be counted. The system controls the number of tablets into each bottle and displays a
continually updated readout of the total number of tablets bottled.

General Operation

The maximum number of tablets per bottle is entered from the keypad, changed to a code
by the Encoder; and stored in Register A. Decoder A changes the code stored in the register
to a form appropriate for turning on the display. Code converter A changes the code to a
binary number and applies it to the A input of the Comparator (Comp).

An optical sensor in the neck of the hopper detects each tablet that passes and produces
a pulse. This pulse goes to the Counter and advances it by one count; thus, any time during
the filling of a bottle, the binary state of the counter represents the number of tablets in the
bottle. The binary count is transferred from the counter to the B input of the comparator
(Comp). The A input of the comparator is the binary number for the maximum tablets per
bottle. Now, let’s say that the present number of tablets per bottle is 50. When the binary

Combinational and Sequential Logic Functions

@ Encoder Decoder

@ ' Register A
I '

@)

Keypad for entering
number of tablets

Tablets / bottle

Number of
tablets per bottle

per bottle Binary code for preset number
Code of tablets per bottle
converter /
/
A ’ Comp
A
A=B
HIGH closes valve
and advances Binary code for B
\ conveyor. LOW actual number of
° keeps valve open. tablets in bottle
\
<_I New total
Valve Adder | sum
Sensor Counter A z Register
[9) One pulse B
{] [] [] from sensor
for each tablet B Cou Dec];)der
d
Conveyor — 201\;2?552 1 HIGH causes new
Coniig] ¥ sum to be stored.
MUX

Pulse resets counter to zero
when next bottle is in place.

Current total sum

The binary code representing the number of tablets bottled each time
Register B has reached the maximum accumulated count.

DEMUX

To computer for accumulation and storage of total
number of tablets bottled over time

1

FIGURE 1-28 Block diagram of a tablet-bottling system.

number in the counter reaches 50, the A = B output of the comparator goes HIGH, indicat-
ing that the bottle is full.

The HIGH output of the comparator causes the valve in the neck of the hopper to close and
stop the flow of tablets. At the same time, the HIGH output of the comparator activates the
conveyor, which moves the next empty bottle into place under the hopper. When the bottle is in
place, the conveyor control issues a pulse that resets the counter to zero. As a result, the output
of the comparator goes back LOW and causes the hopper valve to restart the flow of tablets.

For each bottle filled, the maximum binary number in the counter is transferred to the
A input of the Adder. The B input of the adder comes from Register B that stores the total
number of tablets bottled up through the last bottle filled. The adder produces a new cumu-
lative sum that is then stored in register B, replacing the previous sum. This keeps a running
total of the tablets bottled during a given run.

The cumulative sum stored in register B goes to Decoder B, which detects when Regis-
ter B has reached its maximum capacity and enables the MUX, which converts the binary
from parallel to serial form for transmission to the remote DEMUX. The DEMUX converts
the data back to parallel form for storage.

1

\

N
Switching sequence
control input

1-5

Introductory Concepts

SECTION 1-4 CHECKUP

1. What does a comparator do?

2. What are the four basic arithmetic operations?

. Describe encoding and give an example.

. Describe decoding and give an example.

. Explain the basic purpose of multiplexing and demultiplexing.

. Name four types of storage devices.

N Nt AW

. What does a counter do?

Introduction to Programmable Logic

Programmable logic requires both hardware and software. Programmable logic devices
can be programmed to perform specified logic functions and operations by the manu-
facturer or by the user. One advantage of programmable logic over fixed-function logic
(covered in Section 1-6) is that the devices use much less board space for an equiva-
lent amount of logic. Another advantage is that, with programmable logic, designs can
be readily changed without rewiring or replacing components. Also, a logic design can
generally be implemented faster and with less cost with programmable logic than with
fixed-function logic. To implement small segments of logic, it may be more efficient to
use fixed-function logic.

After completing this section, you should be able to
+ State the major types of programmable logic and discuss the differences

+ Discuss the programmable logic design process

Programmable Logic Devices (PLDs)

Many types of programmable logic are available, ranging from small devices that can
replace a few fixed-function devices to complex high-density devices that can replace
thousands of fixed-function devices. Two major categories of user-programmable logic are
PLD (programmable logic device) and FPGA (field-programmable gate array), as indi-
cated in Figure 1-29. PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).

Programmable logic

l l

PLDs FPGAs

1 1

SPLDs CPLDs

FIGURE 1-29 Programmable logic hierarchy.

Introduction to Programmable Logic

Fixed OR
array and
programmable
output logic

=T

— — D> D—

ED— — D O—
: Programmable : Fixed OR : : Reprogrammable
| Ay | g TRy
| | | |

(a) PAL (b) GAL

FIGURE 1-30 Block diagrams of simple programmable logic devices (SPLDs).

Simple Programmable Logic Device (SPLD)

The SPLD was the original PLD and is still available for small-scale applications. Generally,
an SPLD can replace up to ten fixed-function ICs and their interconnections, depending
on the type of functions and the specific SPLD. Most SPLDs are in one of two categories:
PAL and GAL. A PAL (programmable array logic) is a device that can be programmed one
time. It consists of a programmable array of AND gates and a fixed array of OR gates, as
shown in Figure 1-30(a). A GAL (generic array logic) is a device that is basically a PAL
that can be reprogrammed many times. It consists of a reprogrammable array of AND gates
and a fixed array of OR gates with programmable ouputs, as shown in Figure 1-30(b). A
typical SPLD package is shown in Figure 1-31 and generally has from 24 to 28 pins.

Complex Programmable Logic Device (CPLD)

As technology progressed and the amount of circuitry that could be put on a chip (chip
density) increased, manufacturers were able to put more than one SPLD on a single chip
and the CPLD was born. Essentially, the CPLD is a device containing multiple SPLDs and
can replace many fixed-function ICs. Figure 1-32 shows a basic CPLD block diagram with
four logic array blocks (LABs) and a programmable interconnection array (PIA). Depend-
ing on the specific CPLD, there can be from two to sixty-four LABs. Each logic array block
is roughly equivalent to one SPLD.

LAB LAB

L1

PIA

LAB LAB

L1

FIGURE 1-32 General block diagram of a CPLD.

Generally, CPLDs can be used to implement any of the logic functions discussed ear-
lier, for example, decoders, encoders, multiplexers, demultiplexers, and adders. They are
available in a variety of configurations, typically ranging from 44 to 160 pin packages.
Examples of CPLD packages are shown in Figure 1-33.

FIGURE 1-31
package.

A typical SPLD

Introductory Concepts

?(
M.
i

.
<Je
)|l
QL“"M’U’I‘"{)
<) e \\l‘“ 1 \U\\L §
gl

(a) 80-pin PQFP (b) 128-pin PQFP

FIGURE 1-33 Typical CPLD plastic quad flat packages (PQFP).

Field-Programmable Gate Array (FPGA)

An FPGA is generally more complex and has a much higher density than a CPLD,
although their applications can sometimes overlap. As mentioned, the SPLD and the CPLD
are closely related because the CPLD basically contains a number of SPLDs. The FPGA,
however, has a different internal structure (architecture), as illustrated in Figure 1-34. The
three basic elements in an FPGA are the logic block, the programmable interconnections,
and the input/output (I/0O) blocks.

Programmable
interconnections

1/0 1/0 1/0 __J/____1| TO
block block block block
1/0 1/0
block block
Logic Logic Logic | Logic
block block block block
1/0 1/0
block block
Logic Logic Logic | Logic
block block block block
1/0 1/0
block | | | | block
			I	
: Logic Logic Logic | Logic :

: block block block block :
1/0 1/0
block block
1/0 1/0 vw | 1/0
block block block block

FIGURE 1-34 Basic structure of an FPGA.

The logic blocks in an FPGA are not as complex as the logic array blocks (LABs) in a
CPLD, but generally there are many more of them. When the logic blocks are relatively
simple, the FPGA architecture is called fine-grained. When the logic blocks are larger and

Introduction to Programmable Logic

(a) Top view (b) Bottom view

FIGURE 1-35 Atypical ball-grid array (BGA) package.

more complex, the architecture is called coarse-grained. The 1/0 blocks are on the outer
edges of the structure and provide individually selectable input, output, or bidirectional
access to the outside world. The distributed programmable interconnection matrix provides
for interconnection of the logic blocks and connection to inputs and outputs. Large FPGAs
can have tens of thousands of logic blocks in addition to memory and other resources. A
typical FPGA ball-grid array package is shown in Figure 1-35. These types of packages
can have over 1000 input and output pins.

The Programming Process

An SPLD, CPLD, or FPGA can be thought of as a “blank slate”” on which you implement a
specified circuit or system design using a certain process. This process requires a software
development package installed on a computer to implement a circuit design in the program-
mable chip. The computer must be interfaced with a development board or programming
fixture containing the device, as illustrated in Figure 1-36.

PLD development board

Programmable logic device

FIGURE 1-36 Basic setup for programming a PLD or FPGA. Graphic entry of a logic
circuit is shown for illustration. Text entry such as VHDL can also be used. (Photo courtesy
of Digilent, Inc.)

Several steps, called the design flow, are involved in the process of implementing a digi-
tal logic design in a programmable logic device. A block diagram of a typical programming
process is shown in Figure 1-37. As indicated, the design flow has access to development
software.

Introductory Concepts

Design entry
HDL or graphic

Functional
simulation

Development
software

Synthesis

Implementation

Timing
simulation .
Compiler

Download

FIGURE 1-37 Basic programmable logic design flow block diagram.

Design Entry

This is the first programming step. The circuit or system design must be entered into the
design application software using text-based entry, graphic entry (schematic capture), or
state diagram description. Design entry is device independent. Text-based entry is accom-
plished with a hardware description language (HDL) such as VHDL, Verilog, or AHDL.
Graphic (schematic) entry allows prestored logic functions to be selected, placed on the
screen, and then interconnected to create a logic design. State-diagram entry requires spec-
ification of both the states through which a sequential logic circuit progresses and the
conditions that produce each state change. VHDL will be used in this textbook to illustrate
text-based entry of a digital design. A VHDL tutorial is available on the website.

Once a design has been entered, it is compiled. A compiler is a program that controls
the design flow process and translates source code into object code in a format that can be
logically tested or downloaded to a target device. The source code is created during design
entry, and the object code is the final code that actually causes the design to be imple-
mented in the programmable device.

Functional Simulation

The entered and compiled design is simulated by software to confirm that the logic circuit
functions as expected. The simulation will verify that correct outputs are produced for a
specified set of inputs. A device-independent software tool for doing this is generally called
a waveform editor. Any flaws demonstrated by the simulation would be corrected by going
back to design entry and making appropriate changes.

Synthesis

Synthesis is where the design is translated into a netlist, which has a standard form and is
device independent.

Introduction to Programmable Logic

Implementation

Implementation is where the logic structures described by the netlist are mapped into the
actual structure of the specific device being programmed. The implementation process is
called fitting or place and route and results in an output called a bitstream, which is device
dependent.

Timing Simulation

This step comes after the design is mapped into the specific device. The timing simula-
tion is basically used to confirm that there are no design flaws or timing problems due to
propagation delays.

Download

Once a bitstream has been generated for a specific programmable device, it has to be down-
loaded to the device to implement the software design in hardware. Some programmable
devices have to be installed in a special piece of equipment called a device programmer or
on a development board. Other types of devices can be programmed while in a system—
called in-system programming (ISP)—using a standard JTAG (Joint Test Action Group)
interface. Some devices are volatile, which means they lose their contents when reset or
when power is turned off. In this case, the bitstream data must be stored in a memory and
reloaded into the device after each reset or power-off. Also, the contents of an ISP device
can be manipulated or upgraded while it is operating in a system. This is called “on-the-
fly” reconfiguration.

The Microcontroller

A microcontroller is different than a PLD. The internal circuits of a microcontroller are
fixed, and a program (series of instructions) directs the microcontroller operation in order
to achieve a specific outcome. The internal circuitry of a PLD is programmed into it, and
once programmed, the circuitry performs required operations. Thus, a program determines
microcontroller operation, but in a PLD a program determines the logic function. Micro-
controllers are generally programmed with either the C language or the BASIC language.

A microcontroller is basically a special-purpose small computer. Microcontrollers are
generally used for embedded system applications. An embedded system is a system that is
designed to perform one or a few dedicated functions within a larger system. By contrast,
a general-purpose computer, such as a laptop, is designed to perform a wide range of func-
tions and applications.

Embedded microcontrollers are used in many common applications. The embedded
microcontroller is part of a complete system, which may include additional electronics and
mechanical parts. For example, a microcontroller in a television set displays the input from
the remote unit on the screen and controls the channel selection, audio, and various menu
adjustments like brightness and contrast. In an automobile a microcontroller takes engine
sensor inputs and controls spark timing and fuel mixture. Other applications include home
appliances, thermostats, cell phones, and toys.

SECTION 1-5 CHECKUP

1. List three major categories of programmable logic devices and specify their
acronyms.

2. How does a CPLD differ from an SPLD?
3. Name the steps in the programming process.
4. Briefly explain each step named in question 3.

5. What are the two main functional characteristics of a microcontroller?

Introductory Concepts

1-6 Fixed-Function Logic Devices

All the logic elements and functions that have been discussed are generally available in
integrated circuit (IC) form. Digital systems have incorporated ICs for many years because
of their small size, high reliability, low cost, and low power consumption. Despite the trend
toward programmable logic, fixed-function logic continues to be used although on a more
limited basis in specific applications. It is important to be able to recognize the IC pack-
ages and to know how the pin connections are numbered, as well as to be familiar with
the way in which circuit complexities and circuit technologies determine the various IC
classifications.

After completing this section, you should be able to

+ Recognize the difference between through-hole devices and surface-mount
fixed-function devices

+ Identify dual in-line packages (DIP)

+ Identify small-outline integrated circuit packages (SOIC)
+ Identify plastic leaded chip carrier packages (PLCC)

+ Identify leadless ceramic chip carrier packages (LCC)

+ Determine pin numbers on various types of IC packages

+ Explain the complexity classifications for fixed-function ICs

A monolithic integrated circuit (IC) is an electronic circuit that is constructed entirely
on a single small chip of silicon. All the components that make up the circuit—transistors,
diodes, resistors, and capacitors—are an integral part of that single chip. Fixed-function
logic and programmable logic are two broad categories of digital ICs. In fixed-function
logic devices, the logic functions are set by the manufacturer and cannot be altered.

Figure 1-38 shows a cutaway view of one type of fixed-function IC package with the
circuit chip shown within the package. Points on the chip are connected to the package pins
to allow input and output connections to the outside world.

Plastic

FIGURE 1-38 Cutaway view of one type of fixed-function IC package (dual in-line
package) showing the chip mounted inside, with connections to input and output pins.

IC Packages

Integrated circuit (IC) packages are classified according to the way they are mounted on
printed circuit boards (PCBs) as either through-hole mounted or surface mounted. The
through-hole type packages have pins (leads) that are inserted through holes in the PCB
and can be soldered to conductors on the opposite side. The most common type of through-
hole package is the dual in-line package (DIP) shown in Figure 1-39(a).

Fixed-Function Logic Devices

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

FIGURE 1-39 Examples of through-hole and surface-mounted devices. The DIP is larger
than the SOIC with the same number of leads. This particular DIP is approximately 0.785 in.
long, and the SOIC is approximately 0.385 in. long.

Another type of IC package uses surface-mount technology (SMT). Surface mounting
is a space-saving alternative to through-hole mounting. The holes through the PCB are
unnecessary for SMT. The pins of surface-mounted packages are soldered directly to con-
ductors on one side of the board, leaving the other side free for additional circuits. Also, for
a circuit with the same number of pins, a surface-mounted package is much smaller than a
dual in-line package because the pins are placed closer together. An example of a surface-
mounted package is the small-outline integrated circuit (SOIC) shown in Figure 1-39(b).

Various types of SMT packages are available in a range of sizes, depending on the
number of leads (more leads are required for more complex circuits and lead configura-
tions). Examples of several types are shown in Figure 1-40. As you can see, the leads of the
SSOP (shrink small-outline package) are formed into a “gull-wing” shape. The leads of the
PLCC (plastic-leaded chip carrier) are turned under the package in a J-type shape. Instead
of leads, the LCC (leadless ceramic chip) has metal contacts molded into its ceramic body.
The LQFP (low-profile quad flat package) also has gull-wing leads. Both the CSP (chip
scale package) and the FBGA (fine-pitch ball grid array) have contacts embedded in the
bottom of the package.

(a) SSOP (153 X 193 mils) (b) PLCC (350 X 350 mils) (c) LCC (350 X 350 mils)

(d) LQFP (7 X 7 mm) (e) Laminate CSP bottom view (f) FBGA bottom view
(3.5 X 3.5 mm) (4 X 4 mm)

FIGURE 1-40 Examples of SMT package configurations. Parts (e) and (f) show bottom
views.

Introductory Concepts

Pin Numbering

All IC packages have a standard format for numbering the pins (leads). The dual in-
line packages (DIPs) and the shrink small-outline packages (SSOP) have the numbering
arrangement illustrated in Figure 1-41(a) for a 16-pin package. Looking at the top of the
package, pin 1 is indicated by an identifier that can be either a small dot, a notch, or a bev-
eled edge. The dot is always next to pin 1. Also, with the notch oriented upward, pin 1 is
always the top left pin, as indicated. Starting with pin 1, the pin numbers increase as you
go down, then across and up. The highest pin number is always to the right of the notch or
opposite the dot.

The PLCC and LCC packages have leads arranged on all four sides. Pin 1 is indicated by
a dot or other index mark and is located at the center of one set of leads. The pin numbers
increase going counterclockwise as viewed from the top of the package. The highest pin
number is always to the right of pin 1. Figure 1-41(b) illustrates this format for a 20-pin
PLCC package.

Pin 1
identifier
Pin 1
identifier
9 13
(a) DIP or SSOP (b) PLCC or LCC

FIGURE 1-41 Pin numbering for two examples of standard types of IC packages.
Top views are shown.

Complexity Classifications for Fixed-Function ICs

Fixed-function digital ICs are classified according to their complexity. They are listed here
from the least complex to the most complex. The complexity figures stated here for SSI,
MSI, LSI, VLSI, and ULSI are generally accepted, but definitions may vary from one
source to another.

¢ Small-scale integration (SSI) describes fixed-function ICs that have up to ten equiv-
alent gate circuits on a single chip, and they include basic gates and flip-flops.

* Medium-scale integration (MSI) describes integrated circuits that have from 10 to
100 equivalent gates on a chip. They include logic functions such as encoders, decoders,
counters, registers, multiplexers, arithmetic circuits, small memories, and others.

¢ Large-scale integration (LSI) is a classification of ICs with complexities of from
more than 100 to 10,000 equivalent gates per chip, including memories.

¢ Very large-scale integration (VLSI) describes integrated circuits with complexities
of from more than 10,000 to 100,000 equivalent gates per chip.

¢ Ultra large-scale integration (ULSI) describes very large memories, larger micro-
processors, and larger single-chip computers. Complexities of more than 100,000
equivalent gates per chip are classified as ULSI.

Integrated Circuit Technologies

The types of transistors with which all integrated circuits are implemented are either MOSFETS
(metal-oxide semiconductor field-effect transistors) or bipolar junction transistors. A circuit

Test and Measurement Instruments

technology that uses MOSFETs is CMOS (complementary MOS). One type of fixed-
function digital circuit technology uses bipolar junction transistors and is sometimes
called TTL (transistor-transistor logic). BICMOS uses a combination of both CMOS
and bipolar.

All gates and other functions can be implemented with either type of circuit technology.
SSI and MSI circuits are generally available in both CMOS and bipolar. LSI, VLSI, and
ULSI are generally implemented with CMOS because it requires less area on a chip and
consumes less power. There is more on these integrated technologies in Chapter 3. Refer to
Chapter 15 Integrated Circuit Technologies on the website for a thorough coverage.

SECTION 1-6 CHECKUP

1. What is an integrated circuit?
2. Define the terms DIP, SMT, SOIC, SSI, MSI, LSI, VLSI and ULSI.

3. Generally, in what classification does a fixed-function IC with the following number
of equivalent gates fall?

(a) 10

(b) 75

(¢) 500

(d) 15,000
(e) 200,000

1-7 Test and Measurement Instruments

A variety of instruments are available for use in troubleshooting and testing. Some common
types of instruments are introduced and discussed in this section.

After completing this section, you should be able to
+ Distinguish between an analog and a digital oscilloscope
+ Recognize common oscilloscope controls
+ Determine amplitude, period, and frequency of a pulse waveform with an oscilloscope
+ Discuss the logic analyzer and some common formats

+ Describe the purpose of the digital multimeter (DMM), the dc power supply, the
logic probe, and the logic pulser

The Oscilloscope

The oscilloscope (scope for short) is one of the most widely used instruments for general
testing and troubleshooting. The scope is basically a graph-displaying device that traces
the graph of a measured electrical signal on its screen. In most applications, the graph
shows how signals change over time. The vertical axis of the display screen represents
voltage, and the horizontal axis represents time. Amplitude, period, and frequency of a
signal can be measured using the oscilloscope. Also, the pulse width, duty cycle, rise
time, and fall time of a pulse waveform can be determined. Most scopes can display
at least two signals on the screen at one time, enabling their time relationship to be
observed. A typical digital oscilloscopes with a voltage probe connected is shown in
Figure 1-42.

InfoNote

The analog scope was the earli-

est type of oscilloscope, but it has
largely been replaced by the digital
scope although analog scopes may
still occasionally be found. The
analog scope used a cathode ray
tube (CRT) to display waveforms by
sweeping an electron beam across
the screen and controlling its up
and down motion according to the
measured waveform. Analog scopes
were more limited in features than
digital scopes in terms of storing
and displaying waveform details.

Introductory Concepts

Oscilloscope

FIGURE 1-42 Typical digital oscilloscope with voltage probe. Used with permission from

Tektronix, Inc.

A digital scope converts the measured waveform to digital information by a sampling
process in an analog-to-digital converter (ADC). The digital information is then used to
reconstruct the waveform on the screen. Figure 1-43 shows a basic block diagram for a
digital oscilloscope.

Vertical circuits

Acquisition circuits

Processor

1010011010

Board under test

IADC I—’| Memory I

Trigger circuits

1010011010

Reconstruction

Horizontal circuits

FIGURE 1-43 Block diagram of a digital oscilloscope.

and display
circuits

(Photo courtesy of Digilent, Inc.)

Test and Measurement Instruments

Oscilloscope Controls

A front panel view of a typical four-channel digital oscilloscope is shown in Figure 1-44
(Some scopes have only two channels). Instruments vary depending on model and manu-
facturer, but most have certain common features. For example, each of the four vertical
sections contain a Position control, a channel menu button, and a scale (volts/div) control.
The horizontal section also contains a scale (sec/div) control.

Some of the main oscilloscope controls are now discussed. Refer to the user manual for
complete details of your particular scope.

Vertical Controls

In the vertical section of the scope in Figure 1-44, there are identical controls for each
of the four channels (1, 2, 3, and 4). The Position control lets you position a displayed
waveform up or down vertically on the screen. The buttons on the right side of the screen
provide for the selection of several items that appear on the screen, such as the coupling
modes (ac, dc, or ground), coarse or fine adjustment for the scale (volts/div), signal inver-
sion, and other parameters. The volts/div control adjusts the number of volts represented
by each vertical division on the screen. The volts/div setting for each channel is displayed
on the bottom of the screen.

a AutoR: Save/Re I iy
TeKronix TDS 2024C 5555 v - 000 i 0 Sutie Seri) e sty

Force SetTo
View Trig 50%

Cursor 2

CHT 200mY

S =

FIGURE 1-44 A typical digital oscilloscope front panel. Numbers below screen indicate
the values for each division on the vertical (voltage) and horizontal (time) scales and can
be varied using the vertical and horizontal controls on the scope. Used with permission from
Tektronix, Inc.

Horizontal Controls

In the horizontal section, the controls apply to all channels. The Position control lets you
move a displayed waveform left or right horizontally on the screen. The Menu buttons
provide for the selection of several items that appear on the screen such as the main time
base, expanded view of a portion of a waveform, and other parameters. The sec/div control
adjusts the time represented by each horizontal division or main time base. The sec/div set-
ting is displayed at the bottom of the screen.

Trigger Controls

In the Trigger control section, the Level control determines the point on the triggering
waveform where triggering occurs to initiate the sweep to display input waveforms. The

Trigger controls

Horizontal controls

Vertical controls

Channel inputs

Introductory Concepts

Trig Menu button provides for the selection of several items that appear on the screen,
including edge or slope triggering, trigger source, trigger mode, and other parameters.
There is also an input for an external trigger signal.

Triggering stabilizes a waveform on the screen or properly triggers on a pulse that
occurs only one time or randomly. Also, it allows you to observe time delays between two
waveforms. Figure 1-45 compares a triggered to an untriggered signal. The untriggered
signal tends to drift across the screen, producing what appears to be multiple waveforms.

(a) Untriggered waveform display (b) Triggered waveform display

FIGURE 1-45 Comparison of an untriggered and a triggered waveform on an
oscilloscope.

Coupling a Signal into the Scope

Coupling is the method used to connect a signal voltage to be measured into the oscil-
loscope. DC and AC coupling are usually selected from the Vertical menu on a scope. DC
coupling allows a waveform including its dc component to be displayed. AC coupling
blocks the dc component of a signal so that you see the waveform centered at O V. The
Ground mode allows you to connect the channel input to ground to see where the 0 V
reference is on the screen. Figure 1-46 illustrates the result of DC and AC coupling using
a pulse waveform that has a dc component.

OV- OV-

(a) DC coupled waveform (b) AC coupled waveform

FIGURE 1-46 Displays of the same waveform having a dc component.

The voltage probe, shown connected to the oscilloscope in Figure 1-42, is essential for
connecting a signal to the scope. Since all instruments tend to affect the circuit being mea-
sured due to loading, most scope probes provide a high series resistance to minimize load-
ing effects. Probes that have a series resistance ten times larger than the input resistance of
the scope are called X 10 probes. Probes with no series resistance are called X 1 probes.
The oscilloscope adjusts its calibration for the attenuation of the type of probe being used.
For most measurements, the X 10 probe should be used. However, if you are measuring
very small signals, a X 1 may be the best choice.

The probe has an adjustment that allows you to compensate for the input capacitance of
the scope. Most scopes have a probe compensation output that provides a calibrated square

Test and Measurement Instruments

Properly compensated Undercompensated Overcompensated

FIGURE 1-47 Probe compensation conditions.

wave for probe compensation. Before making a measurement, you should make sure that
the probe is properly compensated to eliminate any distortion introduced. Typically, there
is a screw or other means of adjusting compensation on a probe. Figure 1-47 shows scope
waveforms for three probe conditions: properly compensated, undercompensated, and
overcompensated. If the waveform appears either over- or undercompensated, adjust the
probe until the properly compensated square wave is achieved.

Based on the readouts, determine the amplitude and the period of the pulse waveform on
the screen of a digital oscilloscope as shown in Figure 1-48. Also, calculate the frequency.

FIGURE 1-48

Solution

The volts/div setting is 1 V. The pulses are three divisions high. Since each division
represents 1 V, the pulse amplitude is

Amplitude = (3 div)(1 V/div) = 3V

The sec/div setting is 10 us. A full cycle of the waveform (from beginning of one pulse
to the beginning of the next) covers four divisions; therefore, the period is

Period = (4 div)(10 us/div) = 40 us

The frequency is calculated as

1 1
f== = 25kHz

T 40us
Related Problem

For a volts/div setting of 4 V and sec/div setting of 2 ms, determine the amplitude and
period of the pulse shown on the screen in Figure 1-48.

Introductory Concepts

Oscilloscope Specifications

Several key specifications define the performance of a digital oscilloscope.

Bandwidth

The bandwidth describes the frequency range of an input signal that can be processed
by the oscilloscope without being significantly distorted. Bandwidth is the frequency at
which a sinusoidal input signal is attenuated to 70.7 percent of its original amplitude. As
a rule of thumb, use a scope with a minimum bandwidth of at least twice the highest fre-
quency component in the input signal.

Pulse signals have sharp rising and falling edges and are composed of high-frequency
harmonics. For example, a 10 MHz pulse waveform such as a square wave contains a
10 MHz sine wave (fundamental) and a large number of significant higher-frequency sine
waves called harmonics. In order to accurately capture the shape of the signal, the oscillo-
scope must have a bandwidth to capture several of these harmonics. If a sufficient number
of harmonics are not captured, the resulting signal will be distorted and an incorrect mea-
surement will result.

Sampling Rate

The sampling rate is the rate at which the analog-to-digital converter (ADC) in the oscil-
loscope is clocked to digitize the incoming signal. The sampling rate and bandwidth are not
directly related, but the sampling rate should be at least five times the bandwidth. Figure 1-49
illustrates the difference between a low sampling rate and a much higher sampling rate. Part
(a) shows how a sampling rate that is too low distorts the shape of the rising edge. In part (b),
the higher sampling rate results in a much more accurate representation of the rising edge.
When the sampling rate is sufficiently high, the signal can be precisely reproduced.

(a) Low sampling rate (b) Higher sampling rate

FIGURE 1-49 Example of sampling a waveform. The dashed lines represent the clock
(sampling) rate. The incoming signal is black and the resulting representation is blue.
The red dots are the points at which the waveform values are sampled.

Record Length

The record length is the number of samples (data points) that the oscilloscope can capture
and store. The capacity of acquisition memory determines the maximum record length.
The memory must be able to store all the data points that are sampled during a certain time
interval. The relationship between acquisition time, sampling rate, and record length is
L Record length
AchISltIOD time = ———
Sampling rate
Both the acquisition time (length of time that samples are taken) and/or sampling rate
are limited by the record length of the oscilloscope. For example, if the record length is
1 Msample (1 million samples) and the sampling rate is 200 Msample/s, the oscilloscope
acquisition time is 1 Msample + 200 Msample/s = 5 ms. Therefore, one 5 ms segment of
the sampled signal can be captured and stored at a time.

Test and Measurement Instruments

Resolution

The resolution is the number of bits used to digitally represent a sampled value. The num-
ber of discrete voltage levels used to represent a signal is defined as 2%, where x is the reso-
lution in bits. For example, if the resolution is four bits, 2% = 16 levels can be represented.
If the resolution is eight bits, 28 = 256 levels can be represented. The more levels that are
used to represent a signal, the higher the resolution and thus a more accurate representation
is obtained. Also, the higher the resolution, the smaller the signal that can be measured.

Vertical Sensitivity

The vertical sensitivity indicates how much the oscilloscope’s vertical amplifier can amplify
a signal. Vertical sensitivity is usually given in volts, millivolts (mV), or microvolts (uV)
per vertical division on the screen.

Horizontal Accuracy

The horizontal accuracy or time base indicates how accurately the horizontal system can
display the timing of a signal, usually expressed as a percentage. The time base is shown
on the horizontal axis of the screen in units of seconds per division.

The Logic Analyzer

Logic analyzers are used for measurements of multiple digital signals and measurement
situations with difficult trigger requirements. Basically, the logic analyzer came about as
a result of microprocessors in which troubleshooting or debugging required many more
inputs than an oscilloscope offered. Many oscilloscopes have two input channels and some
are available with four. Logic analyzers are typically available with from 16 to 136 input
channels. Generally, an oscilloscope is used either when amplitude, frequency, and other
timing parameters of a few signals at a time or when parameters such an rise and fall times,
overshoot, and delay times need to be measured. The logic analyzer is used when the logic
levels of a large number of signals need to be determined and for the correlation of simul-
taneous signals based on their timing relationships. A typical logic analyzer is shown in
Figure 1-50, and a simplified block diagram is in Figure 1-51.

S \
TLA6404 Logic Analyzer

e | Wil setwn B Trigger 2% Waveform {3 Listing "\’E’ .
LYK I
e v | oten @mswu I acwey OFvaus || & K% S 8

Mok 1O RCusazv|-196 | [& < [Systen Tiggerv][] 1End v

FIGURE 1-50 Typical logic analyzer. Used with permission from Tektronix, Inc.

Introductory Concepts

—_—
—
—|
Channel Inpu;fdu ter Acquisition AH;IZSIS
i \
nputs } sampling memory display
.
—
Clock Trifger logic
circuits and memory
control

FIGURE 1-51 Simplified block diagram of a logic analyzer.

Data Acquisition

The large number of signals that can be acquired at one time is a major factor that distin-
guishes a logic analyzer from an oscilloscope. Generally, the two types of data acquisition
in a logic analyzer are the timing acquisition and the state acquisition. Timing acquisi-
tion is used primarily when the timing relationships among the various signals need to be
determined. State acquisition is used when you need to view the sequence of states as they
appear in a system under test.

It is often helpful to have correlated timing and state data, and most logic analyzers can
simultaneously acquire that data. For example, a problem may initially be detected as an
invalid state. However, the invalid condition may be caused by a timing violation in the
system under test. Without both types of information available at the same time, isolating
the problem could be very difficult.

Channel Count and Memory Depth

Logic analyzers contain a real-time acquisition memory in which sampled data from all
the channels are stored as they occur. Two features that are of primary importance are the
channel count and the memory depth. The acquisition memory can be thought of as having
a width equal to the number of channels and a depth that is the number of bits that can be
captured by each channel during a certain time interval.

Channel count determines the number of signals that can be acquired simultaneously.
In certain types of systems, a large number of signals are present, such as on the data bus
in a microprocessor-based system. The depth of the acquisition memory (record length)
determines the amount of data from a given channel that you can view at any given time.

Analysis and Display

Once data has been sampled and stored in the acquisition memory, it can typically be used
in several different display and analysis modes. The waveform display is much like the
display on an oscilloscope where you can view the time relationship of multiple signals.
The listing display indicates the state of the system under test by showing the values of the
input waveforms (1s and Os) at various points in time (sample points). Typically, this data
can be displayed in hexadecimal or other formats. Figure 1-52 shows simplified versions
of these two display modes. The listing display samples correspond to the sampled points
shown in red on the waveform display. You will study binary and hexadecimal (hex) num-
bers in the next chapter.

Two more modes that are useful in computer and microprocessor-based system testing
are the instruction trace and the source code debug. The instruction trace determines and
displays instructions that occur, for example, on the data bus in a microprocessor-based
system. In this mode the op-codes and the mnemonics (English-like names) of instructions

Test and Measurement Instruments

1

(a) Waveform display (b) Listing display

FIGURE 1-52 Two logic analyzer display modes.

are generally displayed as well as their corresponding memory address. Many logic ana-
lyzers also include a source code debug mode, which essentially allows you to see what is
actually going on in the system under test when a program instruction is executed.

Probes

Three basic types of probes are used with logic analyzers. One is a multichannel probe, as
shown in Figure 1-53, that can be attached to points on a circuit board under test. Another
type of multichannel probe, similar to the one shown, plugs into dedicated sockets mounted
on a circuit board. A third type is a single-channel clip-on probe.

\

FIGURE 1-53 A typical multichannel logic analyzer probe. Used with permission from
Tektronix, Inc.

Signal Generators
Logic Signal Source

These instruments are also known as pulse generators and function generators. They are
specifically designed to generate digital signals with precise edge placement and ampli-
tudes and to produce the streams of 1s and Os needed to test computer buses, microproces-
sors, and other digital systems.

Introductory Concepts

Arbitrary Waveform Generators and Function Generators

The arbitrary waveform generator can be used to generate standard signals like sine waves,
triangular waves, and pulses as well as signals with various shapes and characteristics.
Waveforms can be defined by mathematical or graphical input. A typical arbitrary wave-
form generator is shown in Figure 1-54(a).

(a) Arbitrary waveform generator

(b) Function generator
FIGURE 1-54 Typical signal generators. Used with permission from Tektronix, Inc.

The function generator, shown in part (b), provides pulse, sine, and triangular wave-
forms, often with programmable capability. Signal generators have logic-compatible out-
puts to provide the proper level and drive for inputs to digital circuits.

The Digital Multimeter (DMM)

The digital multimeter (DMM) is a versatile instrument found on virtually all workbenches.
All DMMs can make basic ac and dc voltage, current, and resistance measurements. Volt-
age and resistance measurements are the principal quantities measured with DMMs. For
current measurements, the leads are switched to a separate set of jacks and placed in series
with the current path. In this mode, the meter acts like a short circuit, so serious problems
can occur if the meter is incorrectly placed in parallel.

In addition to the basic measurements, most DMMs can also test diodes and capacitors and
frequently will have other capabilities such as frequency measurements. Most new DMMs
have an autoranging feature, meaning that the user is not required to select a range for making
a measurement. If the range is not set automatically, the user needs to set the range switch for
voltage measurements higher than the expected reading to avoid damage to the meter.

In digital circuits, DMMs are the preferred instrument for setting dc power supply volt-
ages or checking the supply voltage on various points in the circuit. Because digital signals
are nonsinusoidal, the DMM is generally not used for measurements of digital signals
(although the average or rms value can be determined in some cases). For signal measure-
ments, the oscilloscope is the preferred instrument.

In addition, DMMs are used in digital circuits for testing continuity between points in
a circuit and checking resistors with the ohmmeter function. For checking a circuit path or
looking for a short, DMMs are the instrument of choice. Many DMMs sound a beep or tone
when there is continuity between the leads, making it handy to trace paths without having
to look at the display. If the DMM is not equipped with a continuity test, the ohmmeter
function can be used instead. Measurements of continuity or resistance are never done in
“live” circuits, as any circuit voltage will disrupt the readings and can be dangerous.

Typical test bench and handheld DMMs are shown in Figure 1-55.

The DC Power Supply

This instrument is an indispensable instrument on any test bench. The power supply con-
verts ac power from the standard wall outlet into regulated dc voltage. All digital circuits
require dc voltage. Most logic circuits require from 1.2 V to 5 V to operate. The power
supply is used to power circuits during design, development, and troubleshooting when in-
system power is not available. A typical test bench dc power supply is shown in Figure 1-56.

Test and Measurement Instruments

® 12))))
el ¥ lolc

(a) Bench-type DMM (b) Handheld DMM

FIGURE 1-55 Typical DMMs. Used with permission from (a) B+K Precision®; (b) Fluke

FIGURE 1-56 Typical bench-type dc power supply. Used with permission from Tektronix, Inc.

The Logic Probe and Logic Pulser

The logic probe is a convenient, inexpensive handheld tool that provides a means of trou-
bleshooting a digital circuit by sensing various conditions at a point in a circuit. A probe
can detect high-level voltage, low-level voltage, single pulses, repetitive pulses, and opens
on a PCB. The probe lamp indicates the condition that exists at a certain point, as indicated
in the figure.

The logic pulser produces a repetitive pulse waveform that can be applied to any point
in a circuit. You can apply pulses at one point in a circuit with the pulser and check another
point for resulting pulses with a logic probe.

SECTION 1-7 CHECKUP

1. What is the basic function of an oscilloscope?

. Name two main differences between an oscilloscope and a logic analyzer?
. What does the volts/div control on an oscilloscope do?

. What does the sec/div control on an oscilloscope do?

. What is record length in relation to a digital oscilloscope?

S Ui A W N

. What is the purpose of a function generator?

1-8

Introductory Concepts

Introduction to Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure
in a system. To be an effective troubleshooter, you must understand how the system works
and be able to recognize incorrect performance. Troubleshooting can be at the system level,
the circuit board level, or the component level. Today, troubleshooting down to the board
level is usually sufficient. Once a board is determined to be defective, it is usually replaced
with a new one. However, if the circuit board is to be saved, component-level troubleshoot-
ing may be necessary.

After completing this section, you should be able to
+ Describe the steps in a troubleshooting procedure
+ Discuss the half-splitting method

+ Discuss the signal-tracing method

Basic Hardware Troubleshooting Methods

Troubleshooting at a system level requires good detective work. When a problem occurs,
the list of potential causes is usually quite large. You must gather a sufficient amount of
detailed information and systematically narrow the list of potential causes to determine the
problem. As a general guide to troubleshooting a system, the following steps should be
followed:

1. Gather information on the problem.
Identify the symptoms and possible failures.
Isolate point(s) of failure.
Apply proper tools to determine the cause of the problem.

Dok Wb

Fix the problem.

Check the Obvious

After collecting information on the problem, make sure to first check for obvious faults:
absence of DC power, blown fuses, tripped circuit breakers, faulty burned out indica-
tors such as lamps, loose connectors, broken or loose wires, switches in the wrong
position, physical damages, boards not properly inserted, wire fragments or solder
splashes shorting components, and poor quality contacts on printed circuit boards. For
any troubleshooting task, you must have a system/circuit diagram. Other useful docu-
ments are a table of signal characteristics and a prewritten troubleshooting guide for
the specific system.

Proper grounding is important when you set up to take measurements or work on a system. Properly
grounding the oscilloscope protects you from shock, and grounding yourself protects circuits from
damage. Grounding the oscilloscope means to connect it to earth ground by plugging the three-
prong power cord into a grounded outlet. Grounding yourself means using a wrist-type grounding
strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value
resistor between the strap and ground for protection against accidental contact with a voltage source.

For accurate measurements, make sure that the ground in the circuit you are testing is the same
as the scope ground. This can be done by connecting the ground lead on the scope probe to a known
ground point in the circuit, such as the metal chassis or a ground point on the circuit.

Introduction to Troubleshooting

Replacement

Assume that a given system has multiple circuit boards. The simplest and quickest way to fix
a problem is by replacing the circuit boards one by one with a known good board until the
problem is corrected. This approach, of course, requires that duplicate boards be available.
Another drawback to this approach is that an outside source may be causing the fault, such
as a short in a connector; and by replacing the board, the fault is transferred to the new board.

Reproducing the Symptoms

Once the symptoms of a faulty system are identified, find a way to reproduce the problem.
If the problem can be reproduced, it can be isolated and resolved. In some systems, the
symptom may be self-evident, but in others it may have to be induced by application of a
level or signal at a given point. Once this is done, then a systematic approach can be used
to isolate the cause or causes of a problem. You should always consider the possibility that
there is more than one fault.

If the symptoms are intermittent, the task of troubleshooting becomes more difficult.
For example, in some cases a component may be temperature sensitive and fail only when
the temperature is too high or too low. In these cases, the temperature can be varied by the
simple process of blowing cool air on the component of concern to lower the temperature
or using a heat gun to raise it, while monitoring the operation of the system.

Half-Splitting Method

In this procedure, you check for the presence or absence of a signal at a point halfway
between input and output. If the signal is present, you know the fault is in the second half. If
the signal is absent, you know the fault is in the first half. Then you split the defective half
in half and check for a signal. The process is continued until a certain area of the system has
been isolated. This may be a single circuit board in a system with many circuit boards or a
component on a given circuit board. In a large system, this procedure can save a lot of time
over moving down the line checking each block or stage as you go. This method is usually
best applied in large complex systems. Figure 1-57 is a simple illustration of this method.
The system is represented with the four green blocks. Additional steps are added to left or
right for additional blocks.

Starting point

Signal missing
or incorrect?

Signal missing <«—— YES NO —— Signal missing
or incorrect? or incorrect?

YES NO —l l— YES NO

Fault is in Fault is in
Block B. Block C.

TP 1

FIGURE 1-57 Concept of the half-splitting method. The blue arrows indicate the test points.

Signal-Tracing Method

Signal tracing is the procedure of tracking signals as they progress through a system from
input to output. Signal tracing can be used with half-splitting, where you check for a signal
at each point from where the absence of a signal was detected. Signal tracing can also begin

Introductory

:

Concepts

Starting point

Signal missing
or incorrect?

YES NO — Signal missing Signal missing Signal missing
or incorrect? | or incorrect? | or incorrect?
YES NO

YES NO YES NO
Check
input
source.
Fault is in Fault is in Fault is in Fault is in
Block A. Block B. Block C. Block D.
A B C D
— — — — —
TP 1 Symptom:
No output
FIGURE 1-58 Concept of the signal-tracing method. Input to output is shown. The same
applies if you start at the output and go toward the input.
at the output where there is an incorrect or absent signal and go back toward the input from
point to point until a correct signal is found. Also, you can begin at the input and check the
signal and move toward the output from point to point until the correct signal is lost. In
both cases, the fault would be between the point and the output. Of course, you must know
what the signal is supposed to look like in order to know if anything is wrong. Figure 1-58
illustrates the concept of signal tracing.
Signal Substitution and Injection
Signal substitution is used when the system being tested has been separated from its signal
source. A generator signal is used to replace the normal signal that comes from the source
when the system or portion of a system is recombined with the part that normally produces
the input signal. Signal injection can be used to insert a signal at certain points in the system
using the half-splitting approach.
SECTION 1-8 CHECKUP
1. List five steps in the troubleshooting procedure.
2. Name two troubleshooting methods.
3. List five obvious things to look for in a failed system.
4. Is it important to know about the relationship between a cause and a symptom?
SUMMARY

* An analog quantity has continuous values.
e A digital quantity has a discrete set of values.
e A binary digit is called a bit.

e A pulse is characterized by rise time, fall time, pulse width, and amplitude.

e The frequency of a periodic waveform is the reciprocal of the period. The formulas relating

frequency and period are

1
= d 7T=-—
f an F;

~ |-

Key Terms

e The duty cycle of a pulse waveform is the ratio of the pulse width to the period, expressed by
the following formula as a percentage:

Iw
Duty cycle = T 100%
e A timing diagram is an arrangement of two or more waveforms showing their relationship with

respect to time.

e Three basic logic operations are NOT, AND, and OR. The standard symbols for these are given

in Figure 1-59.

NOT AND OR

FIGURE 1-59

¢ The basic logic functions are comparison, arithmetic, code conversion, decoding, encoding, data
selection, storage, and counting.

¢ Two types of SPLDs (simple programmable logic devices) are PAL (programmable array logic)
and GAL (generic array logic).

e The CPLD (complex programmable logic device) contains multiple SPLDs with programmable
interconnections.

e The FPGA (field-programmable gate array) has a different internal structure than the CPLD and
is generally used for more complex circuits and systems.

¢ The two broad physical categories of IC packages are through-hole mounted and surface mounted.
e Three families of fixed-function integrated circuits are CMOS, bipolar, and BiCMOS.
* Bipolar is also known as TTL (transistor-transistor logic).

e The categories of ICs in terms of circuit complexity are SSI (small-scale integration), MSI
(medium-scale integration), LSI, VLSI, and ULSI (large-scale, very large-scale, and ultra large-
scale integration).

e Common instruments used in testing and troubleshooting digital circuits are the oscilloscope,
logic analyzer, arbitrary waveform generator, data pattern generator, function generator, dc
power supply, digital multimeter, logic probe, and logic pulser.

* Two basic methods of troubleshooting are the half-splitting method and the signal-tracing method.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Analog Being continuous or having continuous values.

AND A basic logic operation in which a true (HIGH) output occurs only when all the input con-
ditions are true (HIGH).

Binary Having two values or states; describes a number system that has a base of two and utilizes
1 and 0 as its digits.

Bit A binary digit, which can be either a 1 or a 0.
Clock The basic timing signal in a digital system; a periodic waveform used to synchronize operation.

Compiler A program that controls the design flow process and translates source code into object
code in a format that can be logically tested or downloaded to a target device.

CPLD A complex programmable logic device that consists basically of multiple SPLD arrays
with programmable interconnections.

Data Information in numeric, alphabetic, or other form.
Digital Related to digits or discrete quantities; having a set of discrete values.

Duty cycle The ratio of the pulse width to the period of a digital waveform, expressed as a percentage.

Introductory Concepts

TRUE/FALSE QUIZ

Embedded system Generally, a single-purpose system, such as a processor, built into a larger
system for the purpose of controlling the system.

Fixed-function logic A category of digital integrated circuits having functions that cannot be altered.
FPGA Field-programmable gate array.

Gate A logic circuit that performs a basic logic operation such as AND or OR.

Input The signal or line going into a circuit.

Integrated circuit (IC) A type of circuit in which all of the components are integrated on a single
chip of semiconductive material of extremely small size.

Inverter A NOT circuit; a circuit that changes a HIGH to a LOW or vice versa.

Logic In digital electronics, the decision-making capability of gate circuits, in which a HIGH
represents a true statement and a LOW represents a false one.

Microcontroller An integrated circuit consisting of a complete computer on a single chip and
used for specified control functions.

NOT A basic logic operation that performs inversions.

OR A basic logic operation in which a true (HIGH) output occurs when one or more of the input
conditions are true (HIGH).

Output The signal or line coming out of a circuit.

Parallel In digital systems, data occurring simultaneously on several lines; the transfer or
processing of several bits simultaneously.

Programmable logic A category of digital integrated circuits capable of being programmed to
perform specified functions.

Pulse A sudden change from one level to another, followed after a time, called the pulse width, by
a sudden change back to the original level.

Serial Having one element following another, as in a serial transfer of bits; occurring in sequence
rather than simultaneously.

SPLD Simple programmable logic device.

Timing diagram A graph of digital waveforms showing the time relationship of two or more
waveforms.

Troubleshooting The technique or process of systematically identifying, isolating, and
correcting a fault in a circuit or system.

SELF-TEST

Answers are at the end of the chapter.

1. An analog quantity is one having continuous values.

. A digital quantity has no discrete values.

. There are two digits in the binary system.

. The term bit is short for binary digit.

. In positive logic, a LOW level represents a binary 1.

. A periodic wave repeats itself at a fixed interval.

. A timing diagram shows the timing relationship of two or more digital waveforms.

. An AND function is implemented by a logic circuit known as an inverter.

o 0 N N Ut AW

. A flip-flop is a bistable logic circuit that can store only two bits at a time.

i
1=

. Two broad types of digital integrated circuits are fixed-function and programmable.

Answers are at the end of the chapter.

1. A quantity having discrete numerical values is
(a) an analog quantity (b) a digital quantity
(¢) abinary quantity (d) anatural quantity

Problems

2. The term bit means

(a) a small amount of data (b)alora0
(c¢) binary digit (d) both answers (b) and (c)
3. The time interval between the 50% points on the rising and falling edges is
(a) rise time (b) fall time
(¢) pulse width (d) period
4. A pulse in a certain waveform has a frequency of 50 Hz. It repeats itself every
(a) 1 ms (b) 20 ms (¢) 50 ms (d) 100 ms
5. In a certain digital waveform, the period is four times the pulse width. The duty cycle is
(a) 25% (b) 50% (¢) 75% (d) 100%

6. An inverter
(a) performs the NOT operation (b) changes a HIGH to a LOW

(c) changes a LOW to a HIGH (d) does all of the above
7. The output of an OR gate is LOW when
(a) any input is HIGH (b) all inputs are HIGH
(¢) no inputs are HIGH (d) Both (a) and (b)
8. The output of an AND gate is LOW when
(a) any input is LOW (b) all inputs are HIGH
(¢) no inputs are HIGH (d) Both (a) and (c)
9. The device used to convert a binary number to a 7-segment display format is the
(a) multiplexer (b) encoder
(¢) decoder (d) register
10. An example of a data storage device is
(a) the logic gate (b) the flip-flop (¢) the comparator
(d) the register (e) both answers (b) and (d)
11. VHDL is a
(a) logic device (b) PLD programming language
(c) computer language (d) very high density logic
12. ACPLDisa
(a) controlled program logic device (b) complex programmable logic driver
(¢) complex programmable logic device (d) central processing logic device
13. An FPGA is a
(a) field-programmable gate array (b) fast programmable gate array
(¢) field-programmable generic array (d) flash process gate application
14. A fixed-function IC package containing four AND gates is an example of
(a) MSI (b) SMT (c) SOIC (d) SSI
15. An LSI device has a circuit complexity of from
(a) 10 to 100 equivalent gates (b) more than 100 to 10,000 equivalent gates
(¢) 2000 to 5000 equivalent gates (d) more than 10,000 to 100,000 equivalent gates
PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 1-1 Digital and Analog Quantities
1. Name two advantages of digital data as compared to analog data.
2. Which quantities are more affected by noise: analog or digital?

3. List any three common products that measure analog quantities.

Section 1-2 Binary Digits, Logic Levels, and Digital Waveforms
4. Can a digital system exist over a complete interval of time? Why or why not?
5. Define the sequence of bits (1s and 0s) represented by each of the following sequences of levels:

(a) HIGH, HIGH, LOW, LOW, LOW, LOW, HIGH, HIGH
(b) HIGH, LOW, HIGH, LOW, HIGH, LOW, HIGH, LOW

Introductory Concepts

6. List the sequence of levels (HIGH and LOW) that represent each of the following bit sequences:
(a) 10000101 (M) 11110011
7. For the pulse shown in Figure 1-60, graphically determine the following:

(a) rise time (b) fall time (c) pulse width (d) amplitude
Volts
10 q
5
0 1 (us)
0 1 2 3 4
FIGURE 1-60

8. Can the digital waveform in Figure 1-61 be called a pulse train?
9. What is the frequency of the waveform in Figure 1-61?
10. Is the pulse waveform in Figure 1-61 periodic or nonperiodic?

11. Determine the duty cycle of the waveform in Figure 1-61.

0 f f f f f f f f f 1 (ms)

FIGURE 1-61

12. Determine the bit sequence represented by the waveform in Figure 1-62. A bit time is 1 us in
this case.

13. What is the total serial transfer time for the eight bits in Figure 1-62? What is the total parallel
transfer time?

14. What is the period if the clock frequency is 4 kHz?

L

—
=

w»

o

=

w»

w

=

w

IN

=

w

W

‘: -—— e ——]
w

N

‘: _———— - —]
w

N

=

w

©

L —

w

FIGURE 1-62

Section 1-3 Basic Logic Functions
15. Form a single logical statement from the following information:

(a) The light is ON if SW1 is closed.
(b) The light is ON if SW2 is closed.
(¢) The light is OFF if both SW1 and SW2 are open.

16. The output of a logic gate is an inversion of the input. What type of logic gate is it?

17. A basic 2-input logic circuit has a HIGH on one input and a LOW on the other, and the output is
HIGH. Identify the circuit.

18. A basic 3-input logic circuit has a LOW on one input and a HIGH on the other two inputs, and
the output is LOW. What type of logic circuit is it?

Problems

Section 1-4 Combinational and Sequential Logic Functions

19. Name the logic function of each block in Figure 1-63 based on your observation of the inputs
and outputs.

4 5 4 HIGH — 4 —— HIGH
LOW — ,
8 — | 1]010|1 —— LOW
0 LOW —
2 2 HIGH —— 2 — LOW
[
Select inputs

(@) (b) (© (d)

FIGURE 1-63

20. A pulse waveform with a frequency of 20 kHz is applied to the input of a counter. During 40 ms,
how many pulses are counted?

21. Consider a register that can store eight bits. Assume that it has been reset so that it contains
zeros in all positions. If you transfer four alternating bits (0101) serially into the register, begin-
ning with a 1 and shifting to the right, what will the total content of the register be as soon as
the fourth bit is stored?

Section 1-5 Introduction to Programmable Logic

22. Describe each of the following programming steps:

(a) Synthesis (b) Implementation (¢) Compiler
23. What do each of the following stand for?
(a) SPLD (b) CPLD (c) HDL (d) FPGA (e) GAL

24. Define each of the following PLD programming terms:
(a) design entry (b) simulation (¢) compilation (d) download

25. Describe the process of place-and-route.

Section 1-6 Fixed-Function Logic Devices
26. How are integrated circuit packages classified?
27. What are LSI circuits?

28. Label the pin numbers on the packages in Figure 1-64. Top views are shown.

(b)

FIGURE 1-64

Section 1-7 Test and Measurement Instruments

29. A pulse is displayed on the screen of an oscilloscope, and you measure the base line as 2 V and
the top of the pulse as 10 V. What is the amplitude?

30. A waveform is measured on the oscilloscope and its amplitude covers two vertical divisions. If
the vertical control is set at 1 V/div, what is the total amplitude of the waveform?

31. The period of a pulse waveform measures four horizontal divisions on an oscilloscope. If the
time base is set at 2 ms/div, what is the frequency of the waveform?

Introductory Concepts

32. What record length is required if an oscilloscope has a sampling rate of 12 Msamples/s and the
input waveform is sampled for 2 ms?

Section 1-8 Introduction to Troubleshooting
33. Define troubleshooting.

34. Explain the half-splitting method of troubleshooting.
35. Explain the signal-tracing method of troubleshooting.
36. Discuss signal substitution and injection.

37. Give some examples of the type of information that you look for when a system is reported to
have failed.

38. If the symptom in a particular system is no output, name two possible general causes.
39. If the symptom of a particular system is an incorrect output, name two possible causes.
40. What obvious things should you look for before starting the troubleshooting process?
41. How would you isolate a fault in a system?

42. Name two common instruments used in troubleshooting.

43. Assume that you have isolated the problem down to a specific circuit board. What are your
options at this point?

ANSWERS

SECTION CHECKUPS
Section 1-1 Digital and Analog Quantities
1. Analog means continuous.
2. Digital means discrete.
3. A digital quantity has a discrete set of values and an analog quantity has continuous values.
4. A public address system is analog. A CD player is analog and digital. A computer is all digital.

5. A mechatronic system consists of both mechanical and electronic components.

Section 1-2 Binary Digits, Logic Levels, and Digital Waveforms

. Binary means having two states or values.

. A bit is a binary digit.

. The bits are 1 and 0.

. Rise time: from 10% to 90% of amplitude. Fall time: from 90% to 10% of amplitude.

. Frequency is the reciprocal of the period.

. A clock waveform is a basic timing waveform from which other waveforms are derived.

. A timing diagram shows the time relationship of two or more waveforms.

R NN RA W N =

. Parallel transfer is faster than serial transfer.

Section 1-3 Basic Logic Functions
1. When the input is LOW
2. When all inputs are HIGH
3. When any or all inputs are HIGH
4. An inverter is a NOT circuit.

5. A logic gate is a circuit that performs a logic operation (AND, OR).

Section 1-4 Combinational and Sequential Logic Functions
1. A comparator compares the magnitudes of two input numbers.
2. Add, subtract, multiply, and divide

. Encoding is changing a familiar form such as decimal to a coded form such as binary.

4. Decoding is changing a code to a familiar form such as binary to decimal.

. Multiplexing puts data from many sources onto one line. Demultiplexing takes data from one

line and distributes it to many destinations.

6. Flip-flops, registers, semiconductor memories, magnetic disks

. A counter counts events with a sequence of binary states.

Section 1-5 Introduction to Programmable Logic

1.

Simple programmable logic device (SPLD), complex programmable logic device (CPLD), and
field-programmable gate array (FPGA)

2. A CPLD is made up of multiple SPLDs.

. Design entry, functional simulation, synthesis, implementation, timing simulation, and

download

. Design entry: The logic design is entered using development software. Functional

simulation: The design is software simulated to make sure it works logically. Synthesis:
The design is translated into a netlist. Implementation: The logic developed by the netlist is
mapped into the programmable device. Timing simulation: The design is software simu-
lated to confirm that there are no timing problems. Download: The design is placed into the
programmable device.

. The microcontroller has fixed internal circuits and its operation is directed by a program.

Section 1-6 Fixed-Function Logic Devices

1.
2.

An IC is an electronic circuit with all components integrated on a single silicon chip.

DIP—dual in-line package; SMT—surface-mount technology;

SOIC—small-outline integrated circuit; SSI—small-scale integration; MSI—medium-scale
integration; LSI—Ilarge-scale integration; VLSI—very large-scale integration; ULSI—ultra
large-scale integration

. (a) SSI

(b) MSI
(c) LSI

(d) VLSI
(e) ULSI

Section 1-7 Test and Measurement Instruments

1. The oscilloscope measures, processes, and displays electrical waveforms.

[

A U A W

. The logic analyzer has more channels than the oscillosope and has more than one data display

format.

. The volts/div control sets the voltage for each division on the screen.
. The sec/div control sets the time for each division on the screen.
. The function generator produces various types of waveforms.

. The record length is the maximum number of samples that can be acquired during a given time

interval.

Section 1-8 Introduction to Troubleshooting

1.

Gather information, identify symptoms and possible causes, isolate point(s) of failure, apply
proper tools to determine cause, and fix problem.

. Half-splitting and signal tracing

. Blown fuse, absence of DC power, loose connections, broken wires, loosely connected circuit

board

. Yes

Answers

Introductory Concepts

RELATED PROBLEMS FOR EXAMPLES
1-1 f = 6.67 kHz; Duty cycle = 16.7%

1-2 Serial transfer: 3.33 ns

1-3 Amplitude = 12 V; T = 8 ms

TRUE/FALSE QUIZ
1.T 22F 3.T 4T 5.F 6T 7.T 8 F 9.F 10. T

SELF-TEST
1. (b) 2. (¢
10. (e) 11. (¢)

3.a 4.(b) 5.(@ 6.(7.(0) 8 (@ 9.
12. (a) 13. (d) 14. (d) 15. (b)

— EVAAAE T Y0101 1
1])(]) (](O) 01 01 ‘]Q 1101 o1 ?? 00 01 t,:(‘> \
111110 OOU,)H 00 11 'QO;)M;
011,00 100001 45,1055
‘ 01 11 10 01 .OO

Number Systems,

CHAPTER

Operations, and Codes

CHAPTER OUTLINE

2-1 Decimal Numbers

2-2 Binary Numbers

2-3 Decimal-to-Binary Conversion
2—-4 Binary Arithmetic

2-5 Complements of Binary Numbers
2-6 Signed Numbers

2-7 Arithmetic Operations with Signed Numbers
2-8 Hexadecimal Numbers

2-9 Octal Numbers

2—-10 Binary Coded Decimal (BCD)
2-11 Digital Codes

2—12 Error Codes

CHAPTER OBJECTIVES

Review the decimal number system
Count in the binary number system

Convert from decimal to binary and from binary
to decimal

Apply arithmetic operations to binary numbers

Determine the 1’s and 2’s complements of a binary
number

Express signed binary numbers in sign-magnitude,
1’s complement, 2’s complement, and floating-point
format

Carry out arithmetic operations with signed binary
numbers

Convert between the binary and hexadecimal
number systems

Add numbers in hexadecimal form

Convert between the binary and octal number
systems

Express decimal numbers in binary coded decimal
(BCD) form

Add BCD numbers

Convert between the binary system and the Gray
code

Interpret the American Standard Code for
Information Interchange (ASCII)

Explain how to detect code errors
Discuss the cyclic redundancy check (CRC)

KEY TERMS

Key terms are in order of appearance in the chapter.
LSB BCD
MSB Alphanumeric
Byte ASCII
Floating-point number Parity
Hexadecimal Cyclic redundancy
Octal check (CRC)

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The binary number system and digital codes are
fundamental to computers and to digital electronics

in general. In this chapter, the binary number system
and its relationship to other number systems such as
decimal, hexadecimal, and octal are presented. Arith-
metic operations with binary numbers are covered to
provide a basis for understanding how computers and
many other types of digital systems work. Also, digital
codes such as binary coded decimal (BCD), the Gray
code, and the ASCII are covered. The parity method
for detecting errors in codes is introduced. The TI-36X
calculator is used to illustrate certain operations. The
procedures shown may vary on other types.

65

Number Systems, Operations, and Codes

2-1 Decimal Numbers

The decimal number system has
ten digits.

The decimal number system has
a base of 10.

The value of a digit is determined by
its position in the number.

You are familiar with the decimal number system because you use decimal numbers every
day. Although decimal numbers are commonplace, their weighted structure is often not
understood. In this section, the structure of decimal numbers is reviewed. This review
will help you more easily understand the structure of the binary number system, which is
important in computers and digital electronics.

After completing this section, you should be able to
+ Explain why the decimal number system is a weighted system
+ Explain how powers of ten are used in the decimal system

¢ Determine the weight of each digit in a decimal number

In the decimal number system each of the ten digits, O through 9, represents a certain
quantity. As you know, the ten symbols (digits) do not limit you to expressing only ten
different quantities because you use the various digits in appropriate positions within a
number to indicate the magnitude of the quantity. You can express quantities up through
nine before running out of digits; if you wish to express a quantity greater than nine, you
use two or more digits, and the position of each digit within the number tells you the mag-
nitude it represents. If, for example, you wish to express the quantity twenty-three, you use
(by their respective positions in the number) the digit 2 to represent the quantity twenty and
the digit 3 to represent the quantity three, as illustrated below.

The digit 2 has a weight of The digit 3 has a weight
10 in this position. l l of 1 in this position.

\J)

20 + 3

Ifl
23

The position of each digit in a decimal number indicates the magnitude of the quantity
represented and can be assigned a weight. The weights for whole numbers are positive
powers of ten that increase from right to left, beginning with 10° = 1.

... 10°10*10° 102 10" 10°

For fractional numbers, the weights are negative powers of ten that decrease from left to
right beginning with 107,

10210 10%.107' 10721073

L Decimal point

The value of a decimal number is the sum of the digits after each digit has been multi-
plied by its weight, as Examples 2—1 and 2-2 illustrate.

Express the decimal number 47 as a sum of the values of each digit.

Solution

The digit 4 has a weight of 10, which is 10, as indicated by its position. The digit 7 has
a weight of 1, which is 10°, as indicated by its position.

47 = (4 x 10" + (7 x 109
=@4X10) +(7X1)=40 + 7
Related Problem*

Determine the value of each digit in 939.

*Answers are at the end of the chapter.

Express the decimal number 568.23 as a sum of the values of each digit.

Solution
The whole number digit 5 has a weight of 100, which is 10?, the digit 6 has a weight of 10,
which is 10!, the digit 8 has a weight of 1, which is 10°, the fractional digit 2 has a weight
of 0.1, which is 1071, and the fractional digit 3 has a weight of 0.01, which is 1072,
568.23 = (5 X 10%) + (6 X 10 + 8 X 10% + 2 x 107 + (3 X 107?)
=03 X100) +(6X10) + @ X 1) +(2X0.1) +(3x0.01)
= 500 + 60 + 8 + 0.2 + 0.03

Related Problem
Determine the value of each digit in 67.924.

SECTION 2-1 CHECKUP

Answers are at the end of the chapter.
1. What weight does the digit 7 have in each of the following numbers?
(a) 1370 (b) 6725 (c) 7051 (d) 58.72
2. Express each of the following decimal numbers as a sum of the products obtained by
multiplying each digit by its appropriate weight:
(a) 51 (b) 137 (c) 1492 (d) 106.58

2-2 Binary Numbers

The binary number system is another way to represent quantities. It is less complicated than
the decimal system because the binary system has only two digits. The decimal system with
its ten digits is a base-ten system; the binary system with its two digits is a base-two system.
The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates
its weight, or value within the number, just as the position of a decimal digit determines the
value of that digit. The weights in a binary number are based on powers of two.

Binary Numbers

CALCULATOR SESSION
Powers of Ten

Find the value of 10%.
TI-36X Step1: BB
step2: B (-]

1000

Number Systems, Operations, and Codes

The binary number system has two
digits (bits).

The binary number system has
a base of 2.

InfoNote

In processor operations, there
are many cases where adding
or subtracting 1 to a number
stored in a counter is necessary.
Processors have special
instructions that use less time
and generate less machine code

than the ADD or SUB instructions.

For the Intel processors, the INC
(increment) instruction adds 1

to a number. For subtraction, the
corresponding instruction is DEC
(decrement), which subtracts 1
from a number.

The value of a bit is determined by
its position in the number.

CALCULATOR SESSION

Powers of Two
Find the value of 25.

TI-36X Step1: B
step2: @ (-]

32

After completing this section, you should be able to
¢ Count in binary

+ Determine the largest decimal number that can be represented by a given number
of bits

+ Convert a binary number to a decimal number

Counting in Binary

To learn to count in the binary system, first look at how you count in the decimal system.
You start at zero and count up to nine before you run out of digits. You then start another
digit position (to the left) and continue counting 10 through 99. At this point you have
exhausted all two-digit combinations, so a third digit position is needed to count from 100
through 999.

A comparable situation occurs when you count in binary, except that you have only two
digits, called bits. Begin counting: 0, 1. At this point you have used both digits, so include
another digit position and continue: 10, 11. You have now exhausted all combinations of
two digits, so a third position is required. With three digit positions you can continue to
count: 100, 101, 110, and 111. Now you need a fourth digit position to continue, and so on.
A binary count of zero through fifteen is shown in Table 2—1. Notice the patterns with
which the 1s and Os alternate in each column.

Decimal
Number Binary Number
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

As you have seen in Table 2—1, four bits are required to count from zero to 15. In general,
with 7 bits you can count up to a number equal to 2" — 1.

Largest decimal number = 2" — 1
For example, with five bits (n = 5) you can count from zero to thirty-one.
2 -1=32-1=3l1
With six bits (n = 6) you can count from zero to sixty-three.

X —-1=64—-1=63

An Application

Learning to count in binary will help you to basically understand how digital circuits can
be used to count events. Let’s take a simple example of counting tennis balls going into a
box from a conveyor belt. Assume that nine balls are to go into each box.

The counter in Figure 2—1 counts the pulses from a sensor that detects the passing of a
ball and produces a sequence of logic levels (digital waveforms) on each of its four par-
allel outputs. Each set of logic levels represents a 4-bit binary number (HIGH = 1 and
LOW = 0), as indicated. As the decoder receives these waveforms, it decodes each set of
four bits and converts it to the corresponding decimal number in the 7-segment display.
When the counter gets to the binary state of 1001, it has counted nine tennis balls, the dis-
play shows decimal 9, and a new box is moved under the conveyor belt. Then the counter
goes back to its zero state (0000), and the process starts over. (The number 9 was used only
in the interest of single-digit simplicity.)

Binary Numbers

Ball count 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Ist ball l l l

2nd ball ojltrjoltrjofrfofl1]o]1

9th ball Counter

¢

Decoder

7”}1 M11|0 o[t 1]o o

FIGURE 2-1 lllustration of a simple binary counting application.

The Weighting Structure of Binary Numbers

A binary number is a weighted number. The right-most bit is the LSB (least significant bit)
in a binary whole number and has a weight of 20 = 1. The weights increase from right to
left by a power of two for each bit. The left-most bit is the MSB (most significant bit); its
weight depends on the size of the binary number.

Fractional numbers can also be represented in binary by placing bits to the right of the
binary point, just as fractional decimal digits are placed to the right of the decimal point.
The left-most bit is the MSB in a binary fractional number and has a weight of 27! = 0.5.
The fractional weights decrease from left to right by a negative power of two for each bit.

The weight structure of a binary number is

ol 23029190 plo72 o

where 7 is the number of bits from the binary point. Thus, all the bits to the left of the
binary point have weights that are positive powers of two, as previously discussed for whole
numbers. All bits to the right of the binary point have weights that are negative powers of
two, or fractional weights.

The powers of two and their equivalent decimal weights for an 8-bit binary whole num-
ber and a 6-bit binary fractional number are shown in Table 2-2. Notice that the weight
doubles for each positive power of two and that the weight is halved for each negative
power of two. You can easily extend the table by doubling the weight of the most signifi-
cant positive power of two and halving the weight of the least significant negative power of
two; for example, 2° = 512 and 277 = 0.0078125.

W ELEIETE

The weight or value of a bit increases
from right to left in a binary number.

InfoNote

Processors use binary numbers
to select memory locations. Each
location is assigned a unique
number called an address. Some
microprocessors, for example,
have 32 address lines which can
select 232 (4,294,967,296) unique
locations.

Number Systems, Operations, and Codes

Binary weights.

Positive Powers of Two
(Whole Numbers)

28 27 26 25 24

Negative Powers of Two
(Fractional Number)

23 22 21 20 271 272 273 274 275 276

256 128 64 32 16

8 4 2 1 172 1/4 1/8 1/16 1/32 1/64
0.5 0.25 0.125 0.625 0.03125 0.015625

Add the weights of all 1s in a binary
number to get the decimal value.

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that
are 1 and discarding the weights of all bits that are 0.

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1, and then find the sum of the weights to get
the decimal number.

Weight: 2022423222120

Binarynumber: 1 1 0 1 1 0 1

1101101 = 26 + 25 + 23 + 22 + 20
=64 +32+8+4+1=109

Related Problem
Convert the binary number 10010001 to decimal.

Convert the fractional binary number 0.1011 to decimal.

Solution

Determine the weight of each bit that is a 1, and then sum the weights to get the decimal
fraction.

Weight: 27t 272 273 o
Binary number: 0.1 0 1 1
0.1011 =271 + 273 + 27*

= 0.5 + 0.125 + 0.0625 = 0.6875

Related Problem
Convert the binary number 10.111 to decimal.

SECTION 2-2 CHECKUP

1. What is the largest decimal number that can be represented in binary with eight bits?
2. Determine the weight of the 1 in the binary number 10000.
3. Convert the binary number 10111101.011 to decimal.

Decimal-to-Binary Conversion

2-3 Decimal-to-Binary Conversion

In Section 2-2 you learned how to convert a binary number to the equivalent decimal num-
ber. Now you will learn two ways of converting from a decimal number to a binary number.

After completing this section, you should be able to
+ Convert a decimal number to binary using the sum-of-weights method

+ Convert a decimal whole number to binary using the repeated division-by-2
method

+ Convert a decimal fraction to binary using the repeated multiplication-by-2
method

Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is to deter-
mine the set of binary weights whose sum is equal to the decimal number. An easy way
to remember binary weights is that the lowest is 1, which is 2°, and that by doubling any
weight, you get the next higher weight; thus, a list of seven binary weights would be 64, 32,
16, 8,4, 2, 1 as you learned in the last section. The decimal number 9, for example, can be
expressed as the sum of binary weights as follows:

9=8+1 or 9=2+20

Placing 1s in the appropriate weight positions, 2° and 2°, and Os in the 2% and 2! positions
determines the binary number for decimal 9.

23 22 ol 20

1 0 0 1 Binary number for decimal 9

Convert the following decimal numbers to binary:

(a 12 (b) 25
() 58 d) 82

Solution

(@ 12=8+4=2 +2? 1100
) 25=16+8 + 1 =2%+23 + 20 11001
(© 58=32+16+8 +2=2 +2%+2 42! 111010
d 82 =64+ 16+2=2°+2%+2! 1010010

Related Problem

Convert the decimal number 125 to binary.

Repeated Division-by-2 Method

A systematic method of converting whole numbers from decimal to binary is the repeated
division-by-2 process. For example, to convert the decimal number 12 to binary, begin by
dividing 12 by 2. Then divide each resulting quotient by 2 until there is a 0 whole-number
quotient. The remainders generated by each division form the binary number. The first
remainder to be produced is the LSB (least significant bit) in the binary number, and the

To get the binary number for a given
decimal number, find the binary
weights that add up to the decimal
number.

To get the binary number for a given
decimal number, divide the decimal
number by 2 until the quotient is 0.
Remainders form the binary number.

Number Systems, Operations, and Codes

last remainder to be produced is the MSB (most significant bit). This procedure is illus-
trated as follows for converting the decimal number 12 to binary.

Remainder

12 6 0
Zl;l

6

— =3 0
i_l

3

— =1 1
j_l
L
2

Stop when the 1 1 0 0
whole-number quotient is 0.
MSB I T LSB
Convert the following decimal numbers to binary:
(@ 19 (b) 45
Solution
(a) Remainder (b) Remainder
19 45 _
5 = 9 1 > = 22 1
9 _ 2 _
5= 4 1 > = 11 0
4 _ 11
>~ 2 0 5= 5 1
2 _ 5
5= 1 0 5 =2 1
CALCULATOR SESSION l -0 1 2 .
Conversion of a Decimal 2 2 I v
Number to a Binary Number
Convert decimal 57 to binary. 10011 1
=0 1
DEC MSB — T LsB 2
TI-36X Step1: [] (EE]
sep2 @ 6 101101
MSB—] T LsB
BIN
Step3: [][] Related Problem
111001 Convert decimal number 39 to binary.

Decimal-to-Binary Conversion

Converting Decimal Fractions to Binary

Examples 2-5 and 2-6 demonstrated whole-number conversions. Now let’s look at
fractional conversions. An easy way to remember fractional binary weights is that the
most significant weight is 0.5, which is 27!, and that by halving any weight, you get
the next lower weight; thus a list of four fractional binary weights would be 0.5, 0.25,
0.125, 0.0625.

Sum-of-Weights

The sum-of-weights method can be applied to fractional decimal numbers, as shown in the
following example:

0.625 = 0.5 + 0.125 =271 + 273 = 0.101

There is a 1 in the 27! position, a 0 in the 272 position, and a 1 in the 27> position.

Repeated Multiplication by 2

As you have seen, decimal whole numbers can be converted to binary by repeated divi-
sion by 2. Decimal fractions can be converted to binary by repeated multiplication by 2.
For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying
0.3125 by 2 and then multiplying each resulting fractional part of the product by 2 until
the fractional product is zero or until the desired number of decimal places is reached.
The carry digits, or carries, generated by the multiplications produce the binary number.
The first carry produced is the MSB, and the last carry is the LSB. This procedure is
illustrated as follows:

MSB 1 r LSB

Carry 0101

\
0.3125 X 2 = 0.625 0 4/[

0.625 X2 =125 1

\ﬁl

025X2=050 0

—

0.50 X 2 =1.00 1

Continue to the desired number of decimal places j
or stop when the fractional part is all zeros.

SECTION 2-3 CHECKUP
1. Convert each decimal number to binary by using the sum-of-weights method:
(a) 23 (b) 57 (c) 455

2. Convert each decimal number to binary by using the repeated division-by-2 method
(repeated multiplication-by-2 for fractions):

(a) 14 (b) 21 (c) 0.375

Number Systems, Operations, and Codes

2-4 Binary Arithmetic

Inbinary 1 + 1 = 10, not 2.

Binary arithmetic is essential in all digital computers and in many other types of digital
systems. To understand digital systems, you must know the basics of binary addition, sub-
traction, multiplication, and division. This section provides an introduction that will be
expanded in later sections.

After completing this section, you should be able to
¢ Add binary numbers
+ Subtract binary numbers
¢ Multiply binary numbers

+ Divide binary numbers

Binary Addition
The four basic rules for adding binary digits (bits) are as follows:

0+0=0 Sumof0with acarry of 0
0+1=1 Sum of 1 with a carry of 0
1+0=1 Sum of 1 with a carry of 0
1+ 1=10 Sum of0 with a carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the addition of two
1s yields a binary two (10). When binary numbers are added, the last condition creates a
sum of 0 in a given column and a carry of 1 over to the next column to the left, as illustrated
in the following addition of 11 + 1:

Carry Carry

1 1
0 1 1
+0 0 1

1 Lo Lo

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middle
column, 1 + I + 0 = 0 with a carry of 1 to the next column to the left. In the left column,
1+0+0=1.

When there is a carry of 1, you have a situation in which three bits are being added (a bit
in each of the two numbers and a carry bit). This situation is illustrated as follows:

+0+0=01 Sum of 1 with a carry of 0
+1+0=10 Sum of 0 with a carry of 1
+0+1=10 Sum of 0 with a carry of 1
+1+1=11 Sum of 1 with a carry of 1

Add the following binary numbers:

(@ 11 + 11 (b) 100 + 10
(¢ 111 + 11 (d 110 + 100

Solution

The equivalent decimal addition is also shown for reference.

(@ 11 3 M) 100 4

+11 +3 +10 +2
1m 6 1m0 6
© 11 7 @ 110 6
+11 +3 +100 +4
1010 10 1010 10

Related Problem
Add 1111 and 1100.

Binary Subtraction

The four basic rules for subtracting bits are as follows:
0-0=0
1-1=0
1-0=1

10—-1=1 0 — 1 with a borrow of 1

When subtracting numbers, you sometimes have to borrow from the next column to the
left. A borrow is required in binary only when you try to subtract a 1 from a 0. In this case,
when a 1 is borrowed from the next column to the left, a 10 is created in the column being
subtracted, and the last of the four basic rules just listed must be applied. Examples 2—8
and 2-9 illustrate binary subtraction; the equivalent decimal subtractions are also shown.

EXAMPLE 2-8

Perform the following binary subtractions:

(@ 11 — 01 () 11 — 10
Solution
@ 11 3 () 11 3
-01 -1 -10 -2
10 2 01 1

No borrows were required in this example. The binary number 01 is the same as 1.

Related Problem
Subtract 100 from 111.

Subtract 011 from 101.

Solution
101
—011 -3
010 2

Binary Arithmetic

In binary 10 — 1 = 1, not 9.

Number Systems, Operations, and Codes

Binary multiplication of two bits is
the same as multiplication of the
decimal digits 0 and 1.

A calculator can be used to perform
arithmetic operations with binary
numbers as long as the capacity of
the calculator is not exceeded.

Let’s examine exactly what was done to subtract the two binary numbers since a borrow
is required. Begin with the right column.

Left column: Middle column:
When a 1 is borrowed, Borrow 1 from next column
aOisleft,so0 — 0 =0. to the left, making a 10 in
_\/ this column, then 10 — 1 = 1.
0
1'o1 Right column:

=011 1-1=0
010¢———!

Related Problem
Subtract 101 from 110.

Binary Multiplication

The four basic rules for multiplying bits are as follows:

0X0=0
0X1=0
1 X0=0
1 X1=1

Multiplication is performed with binary numbers in the same manner as with decimal num-
bers. It involves forming partial products, shifting each successive partial product left one
place, and then adding all the partial products. Example 2—10 illustrates the procedure; the
equivalent decimal multiplications are shown for reference.

Perform the following binary multiplications:
(a) 11 X 11 (b) 101 X 111
Solution
(a) 11 3 (b) 111 7
X 11 X 3 X 101 X5
Partial { 11 9 Partial 11 35
products | +11 products 000
1001 +111
100011
Related Problem
Multiply 1101 X 1010.

Binary Division
Division in binary follows the same procedure as division in decimal, as Example 2—-11
illustrates. The equivalent decimal divisions are also given.

Perform the following binary divisions:

(@ 110 = 11 () 110 + 10

Complements of Binary Numbers

Solution
10 2 11 3
@@ 11110 3)6 M) 10)110 2)6
11 6 10 6
000 0 10 0
10
00
Related Problem
Divide 1100 by 100.

SECTION 2-4 CHECKUP

1. Perform the following binary additions:

(a) 1101 + 1010 (b) 10111 + 01101
2. Perform the following binary subtractions:

(a) 1101 — 0100 (b) 1001 — 0111
3. Perform the indicated binary operations:

(a) 110 X 111 (b) 1100 + 011

2-5 Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important because
they permit the representation of negative numbers. The method of 2’s complement arith-
metic is commonly used in computers to handle negative numbers.

After completing this section, you should be able to
+ Convert a binary number to its 1’s complement

+ Convert a binary number to its 2’s complement using either of two methods

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to Os and all Os to Is, Change each bit in a number to get
as illustrated below: the 1’s complement.

10110010 Binary number
WL

01001101 1’s complement

The simplest way to obtain the 1’s complement of a binary number with a digital circuit
is to use parallel inverters (NOT circuits), as shown in Figure 2-2 for an 8-bit binary number.

TYYYYTYY

FIGURE 2-2 Example of inverters used to obtain the 1’s complement of a binary number.

Number Systems, Operations, and Codes

Finding the 2’s Complement

Add 1 to the 1’s complement to get The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement.

the 2’s complement. , ,
2’s complement = (1’s complement) + 1

Find the 2’s complement of 10110010.

Solution
10110010 Binary number
01001101 1’s complement
+ 1 Add 1
01001110 2’s complement

Related Problem
Determine the 2’s complement of 11001011.

Change all bits to the left of the least ~ An alternative method of finding the 2’s complement of a binary number is as follows:

significant 1 to get 2’s complement.
1. Start at the right with the LSB and write the bits as they are up to and including the

first 1.

2. Take the 1’s complements of the remaining bits.

Find the 2’s complement of 10111000 using the alternative method.

Solution
10111000 Binary number

, 01001000 2’s complement
1’s complements —— =

of original bits T These bits stay the same.

Related Problem
Find the 2’s complement of 11000000.

The 2’s complement of a negative binary number can be realized using inverters and an
adder, as indicated in Figure 2-3. This illustrates how an 8-bit number can be converted to
its 2’s complement by first inverting each bit (taking the 1’s complement) and then adding
1 to the 1°s complement with an adder circuit.

Negative number

1 0 1 0 1 0 1 0
1’s complement Y Y Y Y }O/ Y % Y

Input bits
Adder C%)
Output bits (sum)
o
2’s complement 0 1 0 1 0 1 1 0

FIGURE 2-3 Example of obtaining the 2’'s complement of a negative binary number.

To convert from a 1’s or 2’s complement back to the true (uncomplemented) binary form,
use the same two procedures described previously. To go from the 1’s complement back to
true binary, reverse all the bits. To go from the 2’s complement form back to true binary,
take the 1°s complement of the 2’s complement number and add 1 to the least significant bit.

SECTION 2-5 CHECKUP

1. Determine the 1’s complement of each binary number:

(a) 00011010 (b) 11110111 (c) 10001101
2. Determine the 2’s complement of each binary number:
(a) 00010110 (b) 11111100 (c) 10010001

2-6 Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative
numbers. A signed binary number consists of both sign and magnitude information. The
sign indicates whether a number is positive or negative, and the magnitude is the value of
the number. There are three forms in which signed integer (whole) numbers can be repre-
sented in binary: sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s
complement is the most important and the sign-magnitude is the least used. Noninteger and
very large or small numbers can be expressed in floating-point format.

After completing this section, you should be able to
+ Express positive and negative numbers in sign-magnitude
+ Express positive and negative numbers in 1’s complement
+ Express positive and negative numbers in 2’s complement
+ Determine the decimal value of signed binary numbers

+ Express a binary number in floating-point format

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the
number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign
bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-
mented) binary for both positive and negative numbers. For example, the decimal number
+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

0011004
Sign bitQA T—Magnitude bits
The decimal number —25 is expressed as
10011001

Notice that the only difference between +25 and —25 is the sign bit because the magnitude
bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits as the
corresponding positive number but the sign bit is a 1 rather than a zero.

Signed Numbers

Number Systems, Operations, and Codes

InfoNote

Processors use the 2's
complement for negative integer
numbers in arithmetic operations.
The reason is that subtraction

of a number is the same as
adding the 2’s complement of

the number. Processors form the
2’s complement by inverting the
bits and adding 1, using special
instructions that produce the same
result as the adder in Figure 2-3.

1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive
sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the cor-
responding positive numbers. For example, using eight bits, the decimal number —25 is
expressed as the 1’s complement of +25 (00011001) as

11100110

In the 1’s complement form, a negative number is the 1’s complement of the cor-
responding positive number.

2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the sign-
magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the
corresponding positive numbers. Again, using eight bits, let’s take decimal number —25 and
express it as the 2’s complement of +25 (00011001). Inverting each bit and adding 1, you get

—25 = 11100111

In the 2’s complement form, a negative number is the 2’s complement of the cor-
responding positive number.

Express the decimal number —39 as an 8-bit number in the sign-magnitude, 1’s com-
plement, and 2’s complement forms.

Solution
First, write the 8-bit number for +39.
00100111

In the sign-magnitude form, —39 is produced by changing the sign bit to a 1 and
leaving the magnitude bits as they are. The number is

10100111

In the I’s complement form, —39 is produced by taking the 1’s complement of +39
(00100111).

11011000

In the 2°s complement form, —39 is produced by taking the 2’s complement of +39
(00100111) as follows:

11011000
+ 1
11011001 2’s complement

1’s complement

Related Problem

Express +19 and —19 as 8-bit numbers in sign-magnitude, 1’s complement, and 2’s
complement.

The Decimal Value of Signed Numbers
Sign-Magnitude

Decimal values of positive and negative numbers in the sign-magnitude form are determined
by summing the weights in all the magnitude bit positions where there are 1s and ignoring
those positions where there are zeros. The sign is determined by examination of the sign bit.

Determine the decimal value of this signed binary number expressed in sign-magnitude:
10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:
260 25 2t 2P 22 2l 2O
0 o0 1 0 1 0 1

Summing the weights where there are 1s,

16 +4+1=21

The sign bit is 1; therefore, the decimal number is —21.

Related Problem

Determine the decimal value of the sign-magnitude number 01110111.

1’s Complement

Decimal values of positive numbers in the 1’s complement form are determined by sum-
ming the weights in all bit positions where there are 1s and ignoring those positions where
there are zeros. Decimal values of negative numbers are determined by assigning a nega-
tive value to the weight of the sign bit, summing all the weights where there are s, and
adding 1 to the result.

Determine the decimal values of the signed binary numbers expressed in 1’s complement:

(a) 00010111 (b) 11101000

Solution
(a) The bits and their powers-of-two weights for the positive number are as follows:
=27 26 25 2% 23 22 ol 90
0 0 0 1 0 1 1 1
Summing the weights where there are 1s,

16+4+2+1= +23

(b) The bits and their powers-of-two weights for the negative number are as follows.
Notice that the negative sign bit has a weight of —27 or —128.

—27 26 2% 2t 23 22 2t 9f
1 1 1 o 1 0 0 O
Summing the weights where there are 1s,

—128 + 64 + 32+ 8 = —-24
Adding 1 to the result, the final decimal number is

24 +1=-23

Related Problem

Determine the decimal value of the 1’s complement number 11101011.

Signed Numbers

Number Systems, Operations, and Codes

2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are deter-
mined by summing the weights in all bit positions where there are 1s and ignoring those
positions where there are zeros. The weight of the sign bit in a negative number is given a
negative value.

Determine the decimal values of the signed binary numbers expressed in 2’s complement:

(a) 01010110 (b) 10101010

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:
—27 26 2> 2t 23 22 2t 20
0 1 0 1 0 1 1 0
Summing the weights where there are 1s,

64+ 16 +4 +2 = +86

(b) The bits and their powers-of-two weights for the negative number are as follows.
Notice that the negative sign bit has a weight of —27 = —128.

Summing the weights where there are 1s,

—128 +32+8+2= —86

Related Problem

Determine the decimal value of the 2’s complement number 11010111.

From these examples, you can see why the 2’s complement form is preferred for rep-
resenting signed integer numbers: To convert to decimal, it simply requires a summation
of weights regardless of whether the number is positive or negative. The 1’s complement
system requires adding 1 to the summation of weights for negative numbers but not for
positive numbers. Also, the 1’s complement form is generally not used because two repre-
sentations of zero (00000000 or 11111111) are possible.

Range of Signed Integer Numbers

The range of magnitude values We have used 8-bit numbers for illustration because the 8-bit grouping is common in most
represented by binary numbers computers and has been given the special name byte. With one byte or eight bits, you can
depends on the number of bits (). represent 256 different numbers. With two bytes or sixteen bits, you can represent 65,536

different numbers. With four bytes or 32 bits, you can represent 4.295 X 10° different
numbers. The formula for finding the number of different combinations of 7 bits is

Total combinations = 2"
For 2’s complement signed numbers, the range of values for n-bit numbers is
Range = —(2" Hto+2" ' = 1)

where in each case there is one sign bit and » — 1 magnitude bits. For example, with four bits
you can represent numbers in 2’s complement ranging from —(2%) = —8t02° — 1 = +7.
Similarly, with eight bits you can go from —128 to +127, with sixteen bits you can go from

—32,768 to +32,767, and so on. There is one less positive number than there are negative
numbers because zero is represented as a positive number (all zeros).

Floating-Point Numbers

To represent very large integer (whole) numbers, many bits are required. There is also a
problem when numbers with both integer and fractional parts, such as 23.5618, need to be
represented. The floating-point number system, based on scientific notation, is capable of
representing very large and very small numbers without an increase in the number of bits
and also for representing numbers that have both integer and fractional components.

A floating-point number (also known as a real number) consists of two parts plus a
sign. The mantissa is the part of a floating-point number that represents the magnitude of
the number and is between 0 and 1. The exponent is the part of a floating-point number
that represents the number of places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in understanding the basic concept of floating-point
numbers. Let’s consider a decimal number which, in integer form, is 241,506,800. The
mantissa is .2415068 and the exponent is 9. When the integer is expressed as a floating-
point number, it is normalized by moving the decimal point to the left of all the digits so
that the mantissa is a fractional number and the exponent is the power of ten. The floating-
point number is written as

0.2415068 X 10°

For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985
in three forms: single-precision, double-precision, and extended-precision. These all have the
same basic formats except for the number of bits. Single-precision floating-point numbers
have 32 bits, double-precision numbers have 64 bits, and extended-precision numbers have 80
bits. We will restrict our discussion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers

In the standard format for a single-precision binary number, the sign bit (S) is the left-most
bit, the exponent (E) includes the next eight bits, and the mantissa or fractional part (F)
includes the remaining 23 bits, as shown next.
<t 32 bits
‘ S ‘ Exponent (E) Mantissa (fraction, F)
1 bit 8 bits 23 bits

Y

In the mantissa or fractional part, the binary point is understood to be to the left of
the 23 bits. Effectively, there are 24 bits in the mantissa because in any binary number the
left-most (most significant) bit is always a 1. Therefore, this 1 is understood to be there
although it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-
ing 127 to the actual exponent. The purpose of the bias is to allow very large or very
small numbers without requiring a separate sign bit for the exponents. The biased exponent
allows a range of actual exponent values from —126 to +128.

To illustrate how a binary number is expressed in floating-point format, let’s use
1011010010001 as an example. First, it can be expressed as 1 plus a fractional binary num-
ber by moving the binary point 12 places to the left and then multiplying by the appropriate
power of two.

1011010010001 = 1.011010010001 X 2'2

Assuming that this is a positive number, the sign bit (S) is 0. The exponent, 12, is expressed
as a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is
expressed as the binary number 10001011. The mantissa is the fractional part (F) of the
binary number, .011010010001. Because there is always a 1 to the left of the binary point

Signed Numbers

InfoNote

In addition to the CPU (central
processing unit), computers

use coprocessors to perform
complicated mathematical
calculations using floating-point
numbers. The purpose is to increase
performance by freeing up the CPU
for other tasks. The mathematical
coprocessor is also known as the
floating-point unit (FPU).

Number Systems, Operations, and Codes

in the power-of-two expression, it is not included in the mantissa. The complete floating-
point number is
S E F

‘ 0 ‘ 10001011 | 01101001000100000000000

Next, let’s see how to evaluate a binary number that is already in floating-point format.
The general approach to determining the value of a floating-point number is expressed by
the following formula:

Number = (—1)5(1 + F)2E~1%7)

To illustrate, let’s consider the following floating-point binary number:
S E F

| 1] 10010001 | 10001110001000000000000 |

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

Number = (—1)" (1.10001110001)(2"43~127)
= (—=1)(1.10001110001)(2'®) = —1100011100010000000

This floating-point binary number is equivalent to —407,688 in decimal. Since the expo-
nent can be any number between —126 and + 128, extremely large and small numbers can
be expressed. A 32-bit floating-point number can replace a binary integer number having
129 bits. Because the exponent determines the position of the binary point, numbers con-
taining both integer and fractional parts can be represented.

There are two exceptions to the format for floating-point numbers: The number 0.0 is repre-
sented by all Os, and infinity is represented by all 1s in the exponent and all Os in the mantissa.

EXAMPLE 2-18

Convert the decimal number 3.248 X 10*to a single-precision floating-point binary number.

Solution
Convert the decimal number to binary.
3.248 X 10* = 32480 = 111111011100000, = 1.11111011100000 x 24

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-
tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased
exponent is

14 + 127 = 141 = 10001101,

The complete floating-point number is

‘ 0 ‘ 10001101 11111011100000000000000

Related Problem
Determine the binary value of the following floating-point binary number:
010011000 10000100010100110000000

SECTION 2-6 CHECKUP

1. Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.

2. Express the decimal number —33 as an 8-bit binary number in the 1’s complement
system.

3. Express the decimal number —46 as an 8-bit binary number in the 2’s complement
system.

4. List the three parts of a signed, floating-point number.

Arithmetic Operations with Signed Numbers

2-7 Arithmetic Operations with Signed Numbers

In the last section, you learned how signed numbers are represented in three different forms. In
this section, you will learn how signed numbers are added, subtracted, multiplied, and divided.
Because the 2’s complement form for representing signed numbers is the most widely used
in computers and microprocessor-based systems, the coverage in this section is limited to 2’s
complement arithmetic. The processes covered can be extended to the other forms if necessary.

After completing this section, you should be able to
¢ Add signed binary numbers
+ Define overflow
+ Explain how computers add strings of numbers
¢ Subtract signed binary numbers
¢ Multiply signed binary numbers using the direct addition method
+ Multiply signed binary numbers using the partial products method

+ Divide signed binary numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum.
There are four cases that can occur when two signed binary numbers are added.

1. Both numbers positive

2. Positive number with magnitude larger than negative number

3. Negative number with magnitude larger than positive number

4. Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples. The equivalent decimal
numbers are shown for reference.

Both numbers positive: 00000111 7
+ 00000100 + 4
00001011 11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111 15
+ 11111010 + —6
Discard carry ——> 1 00001001 9

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented)
binary.

Negative number with magnitude larger than positive number:

00010000 16

+ 11101000 + —24

11111000 -8

The sum is negative and therefore in 2’s complement form.
Both numbers negative: 11111011 =5
+ 11110111 + -9
Discard carry ——> 1 11110010 —14

The final carry bit is discarded. The sum is negative and therefore in 2’s complement form.

Addition of two positive numbers
yields a positive number.

Addition of a positive number and
a smaller negative number yields a
positive number.

Addition of a positive number and
a larger negative number or two
negative numbers yields a negative
number in 2’s complement.

Number Systems, Operations, and Codes

Subtraction is addition with the sign
of the subtrahend changed.

In a computer, the negative numbers are stored in 2’s complement form so, as you can
see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds
the number of bits in the two numbers, an overflow results as indicated by an incorrect sign
bit. An overflow can occur only when both numbers are positive or both numbers are nega-
tive. If the sign bit of the result is different than the sign bit of the numbers that are added,
overflow is indicated. The following 8-bit example will illustrate this condition.

01111101 125

+ 00111010 + 58

10110111 183
——

Sign incorrect 4/])

Magnitude incorrect
In this example the sum of 183 requires eight magnitude bits. Since there are seven mag-
nitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which pro-
duces the overflow indication.
Numbers Added Two at a Time

Now let’s look at the addition of a string of numbers, added two at a time. This can be accom-
plished by adding the first two numbers, then adding the third number to the sum of the first
two, then adding the fourth number to this result, and so on. This is how computers add strings
of numbers. The addition of numbers taken two at a time is illustrated in Example 2—-19.

Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011 Add st two numbers
95 01011111 1st sum

+ 14 + 00001110 Add 3rd number
109 01101101 2nd sum

+ 18 + 00010010 Add 4th number
127 01111111 Final sum

Related Problem
Add 00110011, 10111111, and 01100011. These are signed numbers.

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend)
from +9 (the minuend) is equivalent to adding —6 to +9. Basically, the subtraction opera-
tion changes the sign of the subtrahend and adds it to the minuend. The result of a subtrac-
tion is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s
complement.

Arithmetic Operations with Signed Numbers

For example, when you take the 2’s complement of the positive number 00000100
(+4), you get 11111100, which is —4 as the following sum-of-weights evaluation
shows:

—128+64+32+16+8 +4=—4

As another example, when you take the 2’s complement of the negative number 11101101
(—19), you get 00010011, which is +19 as the following sum-of-weights evaluation
shows:

16+2+1=19

Since subtraction is simply an addition with the sign of the subtrahend changed, the
process is stated as follows:

To subtract two signed numbers, take the 2’s complement of the subtrahend and
add. Discard any final carry bit.

Example 2-20 illustrates the subtraction process.

Perform each of the following subtractions of the signed numbers:

(a) 00001000 — 00000011 (b) 00001100 — 11110111
(¢) 11100111 — 00010011 (d) 10001000 — 11100010
Solution

Like in other examples, the equivalent decimal subtractions are given for reference.
(a) Inthiscase,8 —3 = 8+ (—3) = 5.
00001000 Minuend (+38)

+ 11111101 2’s complement of subtrahend (—3)
Discard carry —— 1 00000101 Difference (+5)

(b) Inthiscase, 12 — (—=9) = 12+ 9 = 21.

00001100 Minuend (+12)
+ 00001001 2’s complement of subtrahend (+9)
00010101 Difference (+21)

(¢) Inthiscase, =25 — (+19) = =25+ (—19) = —44.

11100111 Minuend (—25)
+ 11101101 2’s complement of subtrahend (—19)
Discard carry 1 11010100 Difference (—44)

(d) In this case, —120 — (—=30) = —120+ 30 = —90.

10001000 Minuend (—120)
+ 00011110 2’s complement of subtrahend (+30)
10100110 Difference (—90)

Related Problem
Subtract 01000111 from 01011000.

When you subtract two binary
numbers with the 2’s complement
method, it is important that both
numbers have the same number
of bits.

Number Systems, Operations, and Codes

Multiplication is equivalent to
adding a number to itself a number
of times equal to the multiplier.

Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product.
These are illustrated in the following decimal multiplication:

8 Multiplicand
X 3 Multiplier
24 Product

The multiplication operation in most computers is accomplished using addition. As you have
already seen, subtraction is done with an adder; now let’s see how multiplication is done.

Direct addition and partial products are two basic methods for performing multiplica-
tion using addition. In the direct addition method, you add the multiplicand a number of
times equal to the multiplier. In the previous decimal example (8 X 3), three multiplicands
are added: 8 + 8 + 8 = 24. The disadvantage of this approach is that it becomes very
lengthy if the multiplier is a large number. For example, to multiply 350 X 75, you must
add 350 to itself 75 times. Incidentally, this is why the term times is used to mean multiply.

When two binary numbers are multiplied, both numbers must be in true (uncomple-
mented) form. The direct addition method is illustrated in Example 2-21 adding two binary
numbers at a time.

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier)
using the direct addition method.
Solution

Since both numbers are positive, they are in true form, and the product will be positive. The
decimal value of the multiplier is 4, so the multiplicand is added to itself four times as follows:

01001101 Ist time
+ 01001101 2nd time
10011010 Partial sum
+ 01001101 3rd time
11100111 Partial sum
+ 01001101 4th time
100110100 Product

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the
bits in the product are magnitude bits.

Related Problem
Multiply 01100001 by 00000110 using the direct addition method.

The partial products method is perhaps the more common one because it reflects
the way you multiply longhand. The multiplicand is multiplied by each multiplier digit
beginning with the least significant digit. The result of the multiplication of the multi-
plicand by a multiplier digit is called a partial product. Each successive partial product
is moved (shifted) one place to the left and when all the partial products have been pro-
duced, they are added to get the final product. Here is a decimal example.

239 Multiplicand
X 123 Multiplier
717 1st partial product (3 X 239)
478 2nd partial product (2 X 239)
+ 239 3rd partial product (1 X 239)
29,397 Final product

Arithmetic Operations with Signed Numbers

The sign of the product of a multiplication depends on the signs of the multiplicand and
the multiplier according to the following two rules:

o If the signs are the same, the product is positive.

o If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Determine if the signs of the multiplicand and multiplier are the same or differ-
ent. This determines what the sign of the product will be.

Change any negative number to true (uncomplemented) form. Because most
computers store negative numbers in 2’s complement, a 2’s complement oper-
ation is required to get the negative number into true form.

Starting with the least significant multiplier bit, generate the partial products.
When the multiplier bit is 1, the partial product is the same as the multiplicand.
When the multiplier bit is 0, the partial product is zero. Shift each successive
partial product one bit to the left.

Add each successive partial product to the sum of the previous partial products
to get the final product.

If the sign bit that was determined in step 1 is negative, take the 2’s comple-
ment of the product. If positive, leave the product in true form. Attach the sign
bit to the product.

Step 1:

Step 2:

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Solution

The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The
sign bit of the product will be 1 (negative).

Take the 2°s complement of the multiplier to put it in true form.

11000101 —> 00111011

Step 3and 4: The multiplication proceeds as follows. Notice that only the magnitude

bits are used in these steps.

1010011 Multiplicand
X 0111011 Multiplier
1010011 Ist partial product
+ 1010011 2nd partial product
11111001 Sum of 1st and 2nd
+ 0000000 3rd partial product
011111001 Sum
+ 1010011 4th partial product
1110010001 Sum
+ 1010011 Sth partial product
100011000001 Sum
+ 1010011 6th partial product
1001100100001 Sum
-+ 0000000 7th partial product
1001100100001 Final product

Number Systems, Operations, and Codes

Step 5: Since the sign of the product is a 1 as determined in step 1, take the 2’s com-
plement of the product.

1001100100001 —> 0110011011111

Attach the sign bit —
1 0110011011111

Related Problem

Verify the multiplication is correct by converting to decimal numbers and performing
the multiplication.

Division
The numbers in a division are the dividend, the divisor, and the quotient. These are illus-
trated in the following standard division format.

dividend

— = quotient
divisor

The division operation in computers is accomplished using subtraction. Since subtraction
is done with an adder, division can also be accomplished with an adder.

The result of a division is called the quotient; the quotient is the number of times that
the divisor will go into the dividend. This means that the divisor can be subtracted from the
dividend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21 Dividend
-7 Ist subtraction of divisor
14 Ist partial remainder
-7 2nd subtraction of divisor
7 2nd partial remainder
-7 3rd subtraction of divisor
0 Zero remainder

In this simple example, the divisor was subtracted from the dividend three times before a
remainder of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according
to the following two rules:

o If the signs are the same, the quotient is positive.
¢ If the signs are different, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented)
form. The basic steps in a division process are as follows:

Step 1: Determine if the signs of the dividend and divisor are the same or different. This
determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2: Subtract the divisor from the dividend using 2’s complement addition to get
the first partial remainder and add 1 to the quotient. If this partial remainder is
positive, go to step 3. If the partial remainder is zero or negative, the division
is complete.

Step 3: Subtract the divisor from the partial remainder and add 1 to the quotient. If the
result is positive, repeat for the next partial remainder. If the result is zero or
negative, the division is complete.

Continue to subtract the divisor from the dividend and the partial remainders until there is
a zero or a negative result. Count the number of times that the divisor is subtracted and you
have the quotient. Example 2-23 illustrates these steps using 8-bit signed binary numbers.

Arithmetic Operations with Signed Numbers _

Divide 01100100 by 00011001.

Solution
Step 1: The signs of both numbers are positive, so the quotient will be positive. The

quotient is initially zero: 00000000.

Step 2: Subtract the divisor from the dividend using 2’s complement addition

(remember that final carries are discarded).

01100100 Dividend
+ 11100111 2’s complement of divisor
01001011 Positive 1st partial remainder

Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3: Subtract the divisor from the 1st partial remainder using 2’s complement

addition.

01001011 Ist partial remainder
+ 11100111 2’s complement of divisor
00110010 Positive 2nd partial remainder

Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4: Subtract the divisor from the 2nd partial remainder using 2’s complement

addition.

00110010 2nd partial remainder
+ 11100111 2’s complement of divisor
00011001 Positive 3rd partial remainder

Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5: Subtract the divisor from the 3rd partial remainder using 2’s complement

addition.

00011001 3rd partial remainder
+ 11100111 2’s complement of divisor
00000000 Zero remainder

Add 1 to quotient: 00000011 + 00000001 = 00000100 (final quotient). The
process is complete.

Related Problem

Verify that the process is correct by converting to decimal numbers and performing the
division.

N SN AW

SECTION 2-7 CHECKUP

1.
. Add the signed numbers 00100001 and 10111100.

. Subtract the signed numbers 00110010 from 01110111.

. What is the sign of the product when two negative numbers are multiplied?

. Multiply 01111111 by 00000101.

. What is the sign of the quotient when a positive number is divided by a negative number?
. Divide 00110000 by 00001100.

List the four cases when numbers are added.

Number Systems, Operations, and Codes

2-8 Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a compact
way of displaying or writing binary numbers because it is very easy to convert between
binary and hexadecimal. As you are probably aware, long binary numbers are difficult to
read and write because it is easy to drop or transpose a bit. Since computers and micropro-
cessors understand only 1s and Os, it is necessary to use these digits when you program in
“machine language.” Imagine writing a sixteen bit instruction for a microprocessor system
in 1s and 0Os. It is much more efficient to use hexadecimal or octal; octal numbers are covered
in Section 2-9. Hexadecimal is widely used in computer and microprocessor applications.

After completing this section, you should be able to
+ List the hexadecimal characters
¢ Count in hexadecimal
+ Convert from binary to hexadecimal
¢ Convert from hexadecimal to binary
¢ Convert from hexadecimal to decimal
¢ Convert from decimal to hexadecimal
¢ Add hexadecimal numbers
¢ Determine the 2’s complement of a hexadecimal number

+ Subtract hexadecimal numbers

The hexadecimal number system The hexadecimal number system has a base of sixteen; that is, it is composed of 16

consists of digits 0-9 and letters A-F. numeric and alphabetic characters. Most digital systems process binary data in groups
that are multiples of four bits, making the hexadecimal number very convenient because
each hexadecimal digit represents a 4-bit binary number (as listed in Table 2-3).

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Ten numeric digits and six alphabetic characters make up the hexadecimal number sys-
tem. The use of letters A, B, C, D, E, and F to represent numbers may seem strange at
first, but keep in mind that any number system is only a set of sequential symbols. If
you understand what quantities these symbols represent, then the form of the symbols

themselves is less important once you get accustomed to using them. We will use the sub-
script 16 to designate hexadecimal numbers to avoid confusion with decimal numbers.
Sometimes you may see an “h” following a hexadecimal number.

Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with another col-
umn and continue as follows:

....,E,F 10,11,12,13, 14,15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, IE, 1F,
20,21, 22, 23,24, 25, 26,27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, . . .

With two hexadecimal digits, you can count up to FF4, which is decimal 255. To count
beyond this, three hexadecimal digits are needed. For instance, 1004 is decimal 256, 101 ¢
is decimal 257, and so forth. The maximum 3-digit hexadecimal number is FFF ¢, or deci-
mal 4095. The maximum 4-digit hexadecimal number is FFFF,4, which is decimal 65,535.

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break
the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit
group with the equivalent hexadecimal symbol.

Convert the following binary numbers to hexadecimal:

(a) 1100101001010111 (b) 111111000101101001

Solution
(a) 1100101001010111 (b) 00111111000101101001
A S A

Two zeros have been added in part (b) to complete a 4-bit group at the left.

Related Problem
Convert the binary number 1001111011110011100 to hexadecimal.

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process and replace
each hexadecimal symbol with the appropriate four bits.

Determine the binary numbers for the following hexadecimal numbers:

(a) 10A416 (b) CF8E16 (C) 974216

Solution
(a 1 0 A 4) C F 8 E © 9 7 4 2
=4 L Vol Vol
AN A N ot T St S Do m T T
1000010100100 1100111110001110 1001011101000010

In part (a), the MSB is understood to have three zeros preceding it, thus forming a
4-bit group.

Related Problem
Convert the hexadecimal number 6BD3 to binary.

Hexadecimal Numbers

InfoNote

With memories in the gigabyte
(GB) range, specifying a memory
address in binary is quite
cumbersome. For example, it takes
32 hits to specify an address in

a4 GB memory. It is much easier
to express a 32-bit code using

8 hexadecimal digits.

Hexadecimal is a convenient way
to represent binary numbers.

Number Systems, Operations, and Codes

Conversion between hexadecimal
and binary is direct and easy.

A calculator can be used to
perform arithmetic operations with
hexadecimal numbers.

CALCULATOR SESSION

Conversion of a Hexadecimal
Number to a Decimal Number

Convert hexadecimal 28A to
decimal.
HEX

TI-36X Step1: [] ((

A
step 2: ([(] (4]

DEC
Step3: [] (EE)

650

It should be clear that it is much easier to deal with a hexadecimal number than with the
equivalent binary number. Since conversion is so easy, the hexadecimal system is widely
used for representing binary numbers in programming, printouts, and displays.

Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert the
hexadecimal number to binary and then convert from binary to decimal.

Convert the following hexadecimal numbers to decimal:

@ 1Cq () AS854

Solution

Remember, convert the hexadecimal number to binary first, then to decimal.

(a) 1 C
EEES
00011100 = 2* + 23 + 22 =16 + 8 + 4 = 28,
® A 8 5
|l

TATONATAT — A1l 9 A7 2. 40 _ _
101010000101 = 2" + 27 +2/ 4+ 2+ 27 =2048 + 512 + 128 + 4 + 1 = 2693,

Related Problem

Convert the hexadecimal number 6BD to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply
the decimal value of each hexadecimal digit by its weight and then take the sum of these
products. The weights of a hexadecimal number are increasing powers of 16 (from right to
left). For a 4-digit hexadecimal number, the weights are

16> 16> 16" 16°
4096 256 16 1

Convert the following hexadecimal numbers to decimal:

(a) ES56 (b) B2F8;4

Solution
Recall from Table 2-3 that letters A through F represent decimal numbers 10 through
15, respectively.
(@ ESig=EX16)+ G X1)=014X16)+ (5 X1)=224+5=229
(b) B2F8;s = (B X 4096) + (2 X 256) + (F X 16) + (8 X 1)
= (11 X 4096) + (2 X 256) + (15 X 16) + (8 X 1)
45,056 + 512 + 240 + 8 = 45816,

Related Problem
Convert 60A ¢ to decimal.

Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal
number, formed by the remainders of the divisions. The first remainder produced is the least
significant digit (LSD). Each successive division by 16 yields a remainder that becomes a
digit in the equivalent hexadecimal number. This procedure is similar to repeated division
by 2 for decimal-to-binary conversion that was covered in Section 2-3. Example 2-28
illustrates the procedure. Note that when a quotient has a fractional part, the fractional part
is multiplied by the divisor to get the remainder.

EXAMPLE 2-28

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution
Hexadecimal
remainder
650
EZ 40.625 50625 X 16=10= A
40
T6 =25——>05X16=8= 8
2
E=0'125—>0'125X16=2= 2
L Stop when whole number 2 8 A Hexadecimal number
uotient is zero.
. MSD j LLSD

Related Problem
Convert decimal 2591 to hexadecimal.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadeci-
mal digits O through 9 are equivalent to decimal digits O through 9 and that hexadecimal digits
A through F are equivalent to decimal numbers 10 through 15. When adding two hexadeci-
mal numbers, use the following rules. (Decimal numbers are indicated by a subscript 10.)

1. In any given column of an addition problem, think of the two hexadecimal digits in
terms of their decimal values. For instance, 516 = 519 and C15 = 124¢.

2. If the sum of these two digits is 15;(or less, bring down the corresponding hexa-
decimal digit.

3. If the sum of these two digits is greater than 15, bring down the amount of the sum
that exceeds 16,¢ and carry a 1 to the next column.

Add the following hexadecimal numbers:
(a) 2316 + 1616 (b) 5816 + 2216 (C) 2B16 + 8416 (d) DF16 + AC16

Solution
(a) 2316 I'ight column: 316 + 616 = 310 + 610 = 910 = 916
+ 1616 left column: 216 + 116 = 210 + 110 = 310 = 316

3946

Hexadecimal Numbers

CALCULATOR SESSION

Conversion of a Decimal
Number to a Hexadecimal
Number

Convert decimal 650 to hexadecimal.
DEC

TI-36X Step1: [] (EE]
sep22 BB DO

HEX
Step3: (] ((

28A

Number Systems, Operations, and Codes

(b) 5816 right column: 816 + 216 = 810 + 210 = 1010 = A16
+ 2216 left column: 516 + 216 = 510 + 210 = 710 = 716
TA+6
(C) 2B16 I'ight column: B16 + 416 - 1110 + 410 = 1510 = F16
+ 8446 left column: 2y + 816 = 219 + 819 = 10;90 = Ayg
AF16
(d) DF16 I'ight column: F16 + C16 = 1510 + 1210 = 2710
+ AC16 2710 - 1610 = 1110 = B16 with a 1 carry
18By6 left column: Dyg + Ayg + 116 = 1310 + 1050 + 110 = 2410
2419 — 1619 = 819 = 8¢ with a 1 carry
Related Problem
Add 4C ¢ and 3A 4.

Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary numbers.
Since a hexadecimal number can be used to represent a binary number, it can also be used
to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 is
the most common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1: Convert the hexadecimal number to binary. Take the 2’s complement of
the binary number. Convert the result to hexadecimal. This is illustrated
in Figure 2—4.

2’s complement
in binary

2’s complement
in hexadecimal

Hexadecimal Binary

Example:

2A 00101010

11010110 D6

FIGURE 2-4 Getting the 2’'s complement of a hexadecimal number, Method 1.

Method 2: Subtract the hexadecimal number from the maximum hexadecimal
number and add 1. This is illustrated in Figure 2-5.

Subtract from

1’s complement

2’s complement

Hexadecimal . in hexadecimal . X
maximum in hexadecimal
plus 1
Example:
2A FF - 2A D5+ 1 D6

FIGURE 2-5 Getting the 2’'s complement of a hexadecimal number, Method 2.

Method 3:

Write the sequence of single hexadecimal digits. Write the sequence in

reverse below the forward sequence. The 1’s complement of each hex
digit is the digit directly below it. Add 1 to the resulting number to get the
2’s complement. This is illustrated in Figure 2—6.

Hexadecimal Numbers

1’s complement

Hexadecimal 012345678 9ABCDEF ey 2's complement
FEDCBA9876543210 o in hexadecimal
Example:
01[2]3456789[AlBCDEF
2A FECBA987643210 D5+1 D6

FIGURE 2-6 Getting the 2's complement of a hexadecimal number, Method 3.

(@) 8416 — 2A4¢

Solution
(a) 2A; = 00101010

(b) 0B, = 00001011

The difference is B8¢.

Related Problem
Subtract 1734 from BCDy.

2’s complement of 2A s = 11010110 = D644

2’s complement of 0B1g = 11110101 = F5¢

Subtract the following hexadecimal numbers:

(b) C316 — 0By

+ D6y Add
X5A 6 Drop carry, as in 2’s complement addition
The difference is SAq¢.

C36
+F5¢ Add
IB86 Drop carry

(using Method 1)

(using Method 1)

SECTION 2-8 CHECKUP

(a) 10110011

(@ 5716 (b) 3A56
3. Convert 9B30,4 to decimal.

1. Convert the following binary numbers to hexadecimal:
(b) 110011101000

2. Convert the following hexadecimal numbers to binary:

(¢c) F8OB 4

4. Convert the decimal number 573 to hexadecimal.

Number Systems, Operations, and Codes

2-9 Octal Numbers

The octal number system has a
base of 8.

5. Add the following hexadecimal numbers directly:
(a) 1816 + 3446 (b) 3F|¢ + 2A46

6. Subtract the following hexadecimal numbers:
(@) 7516 — 2116 (b) 9416 — 5Cy

Like the hexadecimal number system, the octal number system provides a convenient way
to express binary numbers and codes. However, it is used less frequently than hexadecimal
in conjunction with computers and microprocessors to express binary quantities for input
and output purposes.

After completing this section, you should be able to
+ Write the digits of the octal number system
+ Convert from octal to decimal
+ Convert from decimal to octal

¢ Convert from octal to binary

*

Convert from binary to octal

The octal number system is composed of eight digits, which are
0,1,2,3,4,5,6,7
To count above 7, begin another column and start over:
10, 11,12, 13, 14, 15, 16, 17,20, 21, ...

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not
used. To distinguish octal numbers from decimal numbers or hexadecimal numbers, we
will use the subscript 8 to indicate an octal number. For instance, 15g in octal is equivalent

[P

to 13(in decimal and D in hexadecimal. Sometimes you may see an “o0” or a “Q” follow-
ing an octal number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, each successive digit position is an
increasing power of eight, beginning in the right-most column with 8°. The evaluation of
an octal number in terms of its decimal equivalent is accomplished by multiplying each
digit by its weight and summing the products, as illustrated here for 2374g.
Weight: 8°8>8! g’
Octal number: 2 3 7 4
23743 = 2 X 8% + (3% 8) + (7x8)+ 4 x8Y
=2X512) +3X64)+(7TX8 +@X1
= 1024 + 192 + 56 + 4 = 1276y

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-
by-8 method, which is similar to the method used in the conversion of decimal numbers to
binary or to hexadecimal. To show how it works, let’s convert the decimal number 359 to

octal. Each successive division by 8 yields a remainder that becomes a digit in the equiva-
lent octal number. The first remainder generated is the least significant digit (LSD).

359 Remainder
' 44 875 — 0875 X 8 = 7 ———
44
§=5.5—>O.5X8= 4
5
3= 0.625 —0.625 X8 =5 _l
Stop when whole number 5 4 7 Octal number
quotient is zero. MSD _T T_ LsD

Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very easy to
convert from octal to binary. Each octal digit is represented by three bits as shown in
Table 2-4.

TABLE 2-4
Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit with the
appropriate three bits.

Convert each of the following octal numbers to binary:

(a) 138 (b) 258 (C) 1408 (d) 75268

Solution

@ 1 3 Mb) 2 5 @1 4 0 da 7 5 2 6
I I VLl Ll
001011 010101 001100000 111101010110

Related Problem

Convert each of the binary numbers to decimal and verify that each value agrees with
the decimal value of the corresponding octal number.

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary
conversion. The procedure is as follows: Start with the right-most group of three bits and,
moving from right to left, convert each 3-bit group to the equivalent octal digit. If there
are not three bits available for the left-most group, add either one or two zeros to make a
complete group. These leading zeros do not affect the value of the binary number.

Octal Numbers

CALCULATOR SESSION

Conversion of a Decimal
Number to an Octal Number

Convert decimal 439 to octal.

DEC

TI-36X Step1: [] EE]
sep22 B3 BB

ocT

Step3: []

Octal is a convenient way to
represent binary numbers, but
it is not as commonly used as
hexadecimal.

667

Number Systems, Operations, and Codes

Convert each of the following binary numbers to octal:

(a) 110101 (b) 101111001 (¢) 100110011010 (d) 11010000100

Solution
(a) 110101 (b) 101111001
—— e e e e
I VR
6 5 =65 5 7 1=5714
(¢) 100110011010 (d) 011010000100
NN R e
Vol VN
4 6 3 2=4632 3 2 0 4=3204g

Related Problem
Convert the binary number 1010101000111110010 to octal.

SECTION 2-9 CHECKUP

1. Convert the following octal numbers to decimal:

(a) 73g (b) 1254
2. Convert the following decimal numbers to octal:
(a) 989 (b) 163
3. Convert the following octal numbers to binary:
(a) 464 (b) 7234 (c) 56244
4. Convert the following binary numbers to octal:
(a) 110101111 (b) 1001100010 (c) 10111111001

2-10 Binary Coded Decimal (BCD)

In BCD, 4 bits represent each
decimal digit.

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary
code. There are only ten code groups in the BCD system, so it is very easy to convert
between decimal and BCD. Because we like to read and write in decimal, the BCD code
provides an excellent interface to binary systems. Examples of such interfaces are keypad
inputs and digital readouts.

After completing this section, you should be able to
+ Convert each decimal digit to BCD
+ Express decimal numbers in BCD
¢ Convert from BCD to decimal
+ Add BCD numbers

The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means
that each decimal digit, O through 9, is represented by a binary code of four bits. The desig-
nation 8421 indicates the binary weights of the four bits (23 s 22, 21, 20). The ease of conver-
sion between 8421 code numbers and the familiar decimal numbers is the main advantage

Binary Coded Decimal (BCD)

of this code. All you have to remember are the ten binary combinations that represent the
ten decimal digits as shown in Table 2-5. The 8421 code is the predominant BCD code, and
when we refer to BCD, we always mean the 8421 code unless otherwise stated.

Decimal/BCD conversion.

Decimal Digit 0 1 2 3 4 5 6 7 8 9
BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes

You should realize that, with four bits, sixteen numbers (0000 through 1111) can be repre-
sented but that, in the 8421 code, only ten of these are used. The six code combinations that
are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the
appropriate 4-bit code, as shown by Example 2-33.

Convert each of the following decimal numbers to BCD:

(@ 35 (b) 98 (¢) 170 (d) 2469

Solution

@ 3 5 b)) 9 8
L RS
00110101 10011000

@ 1 7 0 @ 2 4 6 9
IR BRI
000101110000 0010010001101001

Related Problem
Convert the decimal number 9673 to BCD.

It is equally easy to determine a decimal number from a BCD number. Start at the
right-most bit and break the code into groups of four bits. Then write the decimal digit
represented by each 4-bit group.

Convert each of the following BCD codes to decimal:

(a) 10000110 (b) 001101010001 (¢) 1001010001110000

Solution

(a) 10000110 (b) 001101010001 (¢) 1001010001110000
UVLY WY VIWWVL N A A AN A
I Vol N
8 6 3 5 1 9 4 7 0

Related Problem
Convert the BCD code 10000010001001110110 to decimal.

Number Systems, Operations, and Codes

InfoNote

BCD is sometimes used for
arithmetic operations in processors.
To represent BCD numbers in

a processor, they usually are
“packed,” so that eight bits have
two BCD digits. Normally, a
processor will add numbers as if
they were straight binary. Special
instructions are available for
computer programmers to correct
the results when BCD numbers
are added or subtracted. For
example, in Assembly Language,
the programmer will include a
DAA (Decimal Adjust for Addition)
instruction to automatically correct
the answer to BCD following an
addition.

Applications

Digital clocks, digital thermometers, digital meters, and other devices with seven-segment
displays typically use BCD code to simplify the displaying of decimal numbers. BCD is
not as efficient as straight binary for calculations, but it is particularly useful if only limited
processing is required, such as in a digital thermometer.

BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the most
important operation because the other three operations (subtraction, multiplication, and
division) can be accomplished by the use of addition. Here is how to add two BCD
numbers:

Step 1: Add the two BCD numbers, using the rules for binary addition in Section 2—4.
Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated,
it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six
invalid states and return the code to 8421. If a carry results when 6 is added,
simply add the carry to the next 4-bit group.

Example 2-35 illustrates BCD additions in which the sum in each 4-bit column is equal
to or less than 9, and the 4-bit sums are therefore valid BCD numbers. Example 2—36 illus-
trates the procedure in the case of invalid sums (greater than 9 or a carry).

An alternative method to add BCD numbers is to convert them to decimal, perform the
addition, and then convert the answer back to BCD.

Add the following BCD numbers:

(a) 0011 + 0100 (b) 00100011 + 00010101
(¢) 10000110 + 00010011 (d) 010001010000 + 010000010111
Solution
The decimal number additions are shown for comparison.
(a) 0011 3 (b) 0010 0011 23
+ 0100 +4 + 0001 0101 + 15
0111 7 0011 1000 38
(c) 1000 0110 86 (d 0100 0101 0000 450
+ 0001 0011 +13 + 0100 0001 O111 + 417
1001 1001 99 1000 0110 0111 867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are
valid BCD numbers.

Related Problem
Add the BCD numbers: 1001000001000011 + 0000100100100101.

Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001
(¢) 00010110 + 00010101 (d 01100111 + 01010011

Binary Coded Decimal (BCD)

Solution
The decimal number additions are shown for comparison.
(a) 1001 9
+ 0100 +4
1101 Invalid BCD number (>9) 13
+ 0110 Add 6
0001 0011 Valid BCD number
—— ——
1 3
(b) 1001 9
+1001 +9
1 0010 Invalid because of carry 18
+ 0110 Add 6
0001 1000 Valid BCD number
—— —_
I
1 8
(¢ 0001 0110 16
+ 0001 0101 + 15
0010 1011 Right group is invalid (>9), 31
left group is valid.
+ 0110 Add 6 to invalid code. Add
carry, 0001, to next group.
0011 0001 Valid BCD number
—— ——
l I
3 1
(d) 0110 0111 67
+ 0101 0011 + 53
1011 1010 Both groups are invalid (>9) 120
+ 0110 + 0110 Add 6 to both groups
0001 0010 0000 Valid BCD number
~—— —— ——
1 2
Related Problem
Add the BCD numbers: 01001000 + 00110100.

SECTION 2-10 CHECKUP

1. What is the binary weight of each 1 in the following BCD numbers?
(a) 0010 (b) 1000 (c) 0001 (d) 0100

2. Convert the following decimal numbers to BCD:
(a) 6 (b) 15 (c) 273 (d) 849

3. What decimal numbers are represented by each BCD code?
(a) 10001001 (b) 001001111000 (c) 000101010111

4. In BCD addition, when is a 4-bit sum invalid?

Number Systems, Operations, and Codes

2-11 Digital Codes

The single bit change characteristic
of the Gray code minimizes the
chance for error.

Many specialized codes are used in digital systems. You have just learned about the BCD
code; now let’s look at a few others. Some codes are strictly numeric, like BCD, and oth-
ers are alphanumeric; that is, they are used to represent numbers, letters, symbols, and
instructions. The codes introduced in this section are the Gray code, the ASCII code, and
the Unicode.

After completing this section, you should be able to
+ Explain the advantage of the Gray code
+ Convert between Gray code and binary
+ Use the ASCII code

+ Discuss the Unicode

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific
weights assigned to the bit positions. The important feature of the Gray code is that it
exhibits only a single bit change from one code word to the next in sequence. This property
is important in many applications, such as shaft position encoders, where error suscepti-
bility increases with the number of bit changes between adjacent numbers in a sequence.
Table 2-6 is a listing of the 4-bit Gray code for decimal numbers O through 15. Binary
numbers are shown in the table for reference. Like binary numbers, the Gray code can have
any number of bits. Notice the single-bit change between successive Gray code words.
For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to
0110, while the binary code changes from 0011 to 0100, a change of three bits. The only
bit change in the Gray code is in the third bit from the right: the other bits remain the same.

TABLE 2-6

Four-bit Gray code.

Decimal Binary Gray Code Decimal Binary Gray Code
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules
explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the corresponding
MSB in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the next
Gray code bit. Discard carries.

For example, the conversion of the binary number 10110 to Gray code is as follows:

1—-4+—>0-+—>1—-4+—>1-—+—0 Binary
l l l l l
1 1 1 0 1 Gray

The Gray code is 11101.

Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are some differ-
ences. The following rules apply:

1. The most significant bit (left-most) in the binary code is the same as the correspond-
ing bit in the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent position.
Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 1 0 1 1 Gray
A A A A

i/+ ¢/+ ¢/+ ¢/+ l

1 0 0 1 0 Binary

The binary number is 10010.

(a) Convert the binary number 11000110 to Gray code.
(b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:
I-+—=>1-+—-=0-+—>0-+—>0-+—>1-+—>1-+—0

l l l l l l l l
1 0 1 0 0 1 0 1

(b) Gray code to binary:

1 0 1 0 1 1 1 1

l +7 +/'¢ +ﬂ¢ +;'¢ +7'¢ +7'¢ +7'¢
~ - - / ~ - ~

1 1 0 0 1 0 1 0

Related Problem

(a) Convert binary 101101 to Gray code.
(b) Convert Gray code 100111 to binary.

An Application

The concept of a 3-bit shaft position encoder is shown in Figure 2—7. Basically, there are
three concentric rings that are segmented into eight sectors. The more sectors there
are, the more accurately the position can be represented, but we are using only eight
to illustrate. Each sector of each ring is either reflective or nonreflective. As the rings
rotate with the shaft, they come under an IR emitter that produces three separate IR
beams. A 1 is indicated where there is a reflected beam, and a O is indicated where
there is no reflected beam. The IR detector senses the presence or absence of reflected

Digital Codes

Number Systems, Operations, and Codes

] <—
0 IR
| emitter/detector 110

| -—
1 IR
11 | emitter/detector 101 100

101 /§ ———

>

100

(a) Binary code

000 111

] 101
A Vg 000

001
001 110

IR beams

Reflected Nonreflected

(b) Gray code

FIGURE 2-7 A simplified illustration of how the Gray code solves the error problem in
shaft position encoders. Three bits are shown to illustrate the concept, although most shaft
encoders use more than 10 bits to achieve a higher resolution.

beams and produces a corresponding 3-bit code. The IR emitter/detector is in a fixed
position. As the shaft rotates counterclockwise through 360°, the eight sectors move
under the three beams. Each beam is either reflected or absorbed by the sector surface
to represent a binary or Gray code number that indicates the shaft position.

In Figure 2—7(a), the sectors are arranged in a straight binary pattern, so that the detector
output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a reflective
sector, the output is 1; when a beam is aligned over a nonreflective sector, the output is 0. If
one beam is slightly ahead of the others during the transition from one sector to the next, an
erroneous output can occur. Consider what happens when the beams are on the 111 sector and
about to enter the 000 sector. If the MSB beam is slightly ahead, the position would be incor-
rectly indicated by a transitional 011 instead of a 111 or a 000. In this type of application, it
is virtually impossible to maintain precise mechanical alignment of the IR emitter/detector
beams; therefore, some error will usually occur at many of the transitions between sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code.
As shown in Figure 2-7(b), the Gray code assures that only one bit will change between
adjacent sectors. This means that even though the beams may not be in precise alignment,
there will never be a transitional error. For example, let’s again consider what happens when
the beams are on the 111 sector and about to move into the next sector, 101. The only two
possible outputs during the transition are 111 and 101, no matter how the beams are aligned.
A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also letters and other symbols. In
the strictest sense, alphanumeric codes are codes that represent numbers and alphabetic
characters (letters). Most such codes, however, also represent other characters such as sym-
bols and various instructions necessary for conveying information.

At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of the
alphabet, for a total of 36 items. This number requires six bits in each code combination because
five bits are insufficient (25 = 32). There are 64 total combinations of six bits, so there are
28 unused code combinations. Obviously, in many applications, symbols other than just num-
bers and letters are necessary to communicate completely. You need spaces, periods, colons,
semicolons, question marks, etc. You also need instructions to tell the receiving system what to
do with the information. With codes that are six bits long, you can handle decimal numbers, the
alphabet, and 28 other symbols. This should give you an idea of the requirements for a basic
alphanumeric code. The ASCII is a common alphanumeric code and is covered next.

ASCII

ASCII is the abbreviation for American Standard Code for Information Interchange. Pro-
nounced “askee,” ASCII is a universally accepted alphanumeric code used in most comput-
ers and other electronic equipment. Most computer keyboards are standardized with the
ASCII. When you enter a letter, a number, or control command, the corresponding ASCII
code goes into the computer.

ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually,
ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00
through 7F in hexadecimal. The first thirty-two ASCII characters are nongraphic com-
mands that are never printed or displayed and are used only for control purposes. Examples
of the control characters are “null,” “line feed,” “start of text,” and “escape.” The other
characters are graphic symbols that can be printed or displayed and include the letters of
the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs, and other
commonly used symbols.

Table 2-7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary
representations for each character and symbol. The left section of the table lists the names
of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed
in the rest of the table (20 through 7F hexadecimal).

EXAMPLE 2-38

Use Table 27 to determine the binary ASCII codes that are entered from the compu-
ter’s keyboard when the following C language program statement is typed in. Also
express each code in hexadecimal.

if (x > 5)

Solution
The ASCII code for each symbol is found in Table 2-7.

Symbol Binary Hexadecimal
i 1101001 6916
f 1100110 6616
Space 0100000 2016
(0101000 2816
X 1111000 7816
> 0111110 3Eqq
5 0110101 3516
) 0101001 2916

Related Problem

Use Table 2—-7 to determine the sequence of ASCII codes required for the following
C program statement and express each code in hexadecimal:

if (y < 8)

The ASCII Control Characters

The first thirty-two codes in the ASCII table (Table 2—7) represent the control characters.
These are used to allow devices such as a computer and printer to communicate with each
other when passing information and data. The control key function allows a control char-
acter to be entered directly from an ASCII keyboard by pressing the control key (CTRL)
and the corresponding symbol.

Digital Codes

InfoNote

A computer keyboard has a
dedicated microprocessor that
constantly scans keyboard
circuits to detect when a key has
been pressed and released. A
unique scan code is produced by
computer software representing
that particular key. The scan
code is then converted to an
alphanumeric code (ASCII) for
use by the computer.

dL TTITITT LTl [Elel dS ITITT0T1 g6 B d€ TTTITI0 €9 2 A1 TTITT00 1€ SN
dL OITITIT 9Cl ~ q¢ OITI101 Y6 v d¢ OITITIO 29 < q1 OITIT00 0¢ SY
dL TI0TTITT scl { as 10TT101 €6 [(€3 IOLTTTO 19 = al 1011100 6¢ SO
oL O0LTITLT 174! | oS 00IT101 6 \ o€ 00ITTTO 09 > ol 00IT100 8¢C Sd
dL TTOTTTT €Cl } a9 TT0TTOT 16] da¢ ITOTTTO 6S : d1 ITOTT00 LT Dsd
VL OTOTTIT i z \4Y 0101101 06 Z A4 0I0ITTO 8¢ : 4! 0101100 9¢ ans
6L TOOTTTIT 121 £ 6S 100TTOT 68 A 6¢ 100TTTO LS 6 61 1001100 SC INF
8L 000TTIT 0cI1 X 8¢S 000TT0T 88 X 8¢ 000ITT0 9¢ 8 81 0001100 ¥C NVD
LL TTIOTTI 611 M LS [T10101 L8 M LE ITI0TTO 98 L L1 IT10T00 €C a1
9L OTTOITI 811 A 9¢ OTT10T0T 98 A 9¢ OTT0ITO 129 9 91 0TT10T00 C NAS
SL TOTOTTI LT1 n 99 [o10T101 c8 n ce 1010110 €S S Sl 1010100 Ic JIVN
YL 0010111 911 1 129 0010101 8 L 143 0010110 [4S 14 Y1 0010TO0 0C yod
€L ITOOTTT Sl S €S 1100101 €8 S €¢ 1100110 59 € €l 1100100 61 £0d
L 0T00TT1 148! 1 49 0100101 8 d [43 0100110 0¢ 4 4! 0100100 81 oda
1L 1000111 ell b 16 1000101 18 0 1€ 1000110 6t I I 1000100 L1 10d
0L 0000111 48! d 0¢ 0000101 08 d 0¢ 0000110 87 0 0l 0000100 91 q471d
49 ITTT01T 11 o 214 ITTT001L 6L (0] d¢C TTTT1010 Ly / 40 TTTIT000 Sl IS
g9 OITIOLT (U8} u qy OIT1001 8L N q¢ OITIOIO0 9t ' 40 0111000 14! oS
as TOTTOTT 601 w ay T0TTO0T LL W ac T0TTOTO S% - ao T0TT000 €1l €D
D9 00TTO0TT 80T I 0% 00TTO00T 9L 1 ¢ 00TTOTO 4% ¢ D0 0011000 4! a4
a9 TT0TOTT LOT B qv 1101001 SL P dc IT0T0TO (3% + 40 1101000 I LA
Vo9 0101011 901 [N44 0T10T00T YL [Ve 0101010 (44 * VO 0101000 o1 J71
69 100T0TT S0 ! 6% 100T00T €L I 6T 1001010 184 (60 1001000 6 LH
89 0001011 Y01 q 8 0001001 L H 8¢C 0001010 oy) 80 0001000 8 sd
L9 ITT00TT €01 3 Ly 1110001 IL D LT ITT00T0 6¢ ‘ L0 1110000 L 144
99 OTT100TT 01 3 1% 0110001 oL d 9T 0110010 8¢ » 90 0110000 9 DV
SY 101001 T 101 9 %4 1010001 69 q ¢ 1010010 LE % S0 1010000 S ONA
¥9 0010011 001 P 144 0010001 89 a ¥C 0010010 9¢ $ Y0 0010000 ¥ 104
€9 ITO00T T 66 S (34 1100001 L9 0) €C 1100010 83 # €0 1100000 € X1
9 0100011 86 q (44 0100001 99 q C 0100010 143 « 0 0100000 C XIS
19 1000011 L6 € 44 1000001 <9 v 1T 1000010 €€ i 10 1000000 1 HOS
09 0000011 96 y oy 0000001 9 0] 0T 0000010 [43 ooeds 00 0000000 0 TN
XoH Areurg hET(| [oquIAS X9H Lreurg hET(| [oquiig XoH Lreurg Qq [oquIAS XOH Areurg hET(| JwieN
sjoquifs drydean) sId)dRIRY)) [01IU0)

‘(oSsY) mmcmco._wyc_ uoljewloju) 10} 8p0H pJepuels uedllsawy

108

Extended ASCII Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that
were adopted by IBM for use in their PCs (personal computers). Because of the popularity
of the PC, these particular extended ASCII characters are also used in applications other
than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal
80 to hexadecimal FF and can be grouped into the following general categories: foreign
(non-English) alphabetic characters, foreign currency symbols, Greek letters, mathematical
symbols, drawing characters, bar graphing characters, and shading characters.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages
of the world by assigning each character a unique numeric value and name utilizing the
universal character set (UCS). It is applicable in computer applications dealing with multi-
lingual text, mathematical symbols, or other technical characters.

Unicode has a wide array of characters, and their various encoding forms are used in many
environments. While ASCII basically uses 7-bit codes, Unicode uses relatively abstract “code
points”—non-negative integer numbers—that map sequences of one or more bytes, using
different encoding forms and schemes. To permit compatibility, Unicode assigns the first 128
code points to the same characters as ASCIL. One can, therefore, think of ASCII as a 7-bit
encoding scheme for a very small subset of Unicode and of the UCS.

Unicode consists of about 100,000 characters, a set of code charts for visual reference,
an encoding methodology and set of standard character encodings, and an enumeration
of character properties such as uppercase and lowercase. It also consists of a number of
related items, such as character properties, rules for text normalization, decomposition,
collation, rendering, and bidirectional display order (for the correct display of text contain-
ing both right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).

SECTION 2-11 CHECKUP

1. Convert the following binary numbers to the Gray code:
(a) 1100 (b) 1010 (¢) 11010

2. Convert the following Gray codes to binary:
(a) 1000 (b) 1010 (c) 11101

3. What is the ASCII representation for each of the following characters? Express each
as a bit pattern and in hexadecimal notation.

(@ K dr @©S3$ (@ +

2-12 Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error are dis-
cussed. The parity method of error detection is introduced, and the cyclic redundancy
check is discussed. Also, the Hamming code for error detection and correction is presented.

After completing this section, you should be able to
¢ Determine if there is an error in a code based on the parity bit
* Assign the proper parity bit to a code
+ Explain the cyclic redundancy (CRC) check

+ Describe the Hamming code

Error Codes

Number Systems, Operations, and Codes

A parity bit tells if the number of 1s
is odd or even.

Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain
either an even or an odd number of 1s. A parity bit is attached to a group of bits to make
the total number of 1s in a group always even or always odd. An even parity bit makes the
total number of 1s even, and an odd parity bit makes the total odd.

A given system operates with even or odd parity, but not both. For instance, if a system
operates with even parity, a check is made on each group of bits received to make sure the
total number of 1s in that group is even. If there is an odd number of 1s, an error has occurred.

As an illustration of how parity bits are attached to a code, Table 2-8 lists the parity bits
for each BCD number for both even and odd parity. The parity bit for each BCD number is in

the P column.
TABLE 2-8

The BCD code with parity bits.

Even Parity Odd Parity

P BCD P BCD
0 0000 1 0000
1 0001 0 0001
1 0010 0 0010
0 0011 1 0011
1 0100 0 0100
0 0101 1 0101
0 0110 1 0110
1 0111 0 0111
1 1000 0 1000
0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending
on system design. Notice that the total number of 1s, including the parity bit, is always even
for even parity and always odd for odd parity.

Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of errors, which
is very unlikely) but cannot check for two errors in one group. For instance, let’s assume that
we wish to transmit the BCD code 0101. (Parity can be used with any number of bits; we are
using four for illustration.) The total code transmitted, including the even parity bit, is

\Li Even parity bit

00101

N

L BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

F Even parity bit

00001

L Bit error

When this code is received, the parity check circuitry determines that there is only a single
1 (odd number), when there should be an even number of 1s. Because an even number of
1s does not appear in the code when it is received, an error is indicated.

An odd parity bit also provides in a similar manner for the detection of a single error in
a given group of bits.

Error Codes

Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (¢) 101101
(d 1000111001001 (&) 101101011111
Solution

Make the parity bit either 1 or O as necessary to make the total number of 1s even. The
parity bit will be the left-most bit (color).

(a) 01010 (b) 1111000 (¢) 0101101
(d) 0100011100101 (e) 1101101011111

Related Problem
Add an even parity bit to the 7-bit ASCII code for the letter K.

EXAMPLE 2-40

An odd parity system receives the following code groups: 10110, 11010, 110011,
110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of s is incorrect. The
following groups are in error: 110011 and 1100010101010.

Related Problem
The following ASCII character is received by an odd parity system: 00110111. Is it correct?

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a widely used code used for detecting one- and
two-bit transmission errors when digital data are transferred on a communication link.
The communication link can be between two computers that are connected to a network
or between a digital storage device (such as a CD, DVD, or a hard drive) and a PC. If it is
properly designed, the CRC can also detect multiple errors for a number of bits in sequence
(burst errors). In CRC, a certain number of check bits, sometimes called a checksum, are
appended to the data bits (added to end) that are being transmitted. The transmitted data
are tested by the receiver for errors using the CRC. Not every possible error can be identi-
fied, but the CRC is much more efficient than just a simple parity check.

CRC is often described mathematically as the division of two polynomials to generate a
remainder. A polynomial is a mathematical expression that is a sum of terms with positive
exponents. When the coefficients are limited to 1s and Os, it is called a univariate polynomial.
An example of a univariate polynomial is 1x> + 0x*> + 1x! + 1x° or simply x* + x' + x°,
which can be fully described by the 4-bit binary number 1011. Most cyclic redundancy checks
use a 16-bit or larger polynomial, but for simplicity the process is illustrated here with four bits.

TABLE 2-9

Modulo-2 Operations Modulo-2 operation.

Simply put, CRC is based on the division of two binary numbers; and, as you know, division

is just a series of subtractions and shifts. To do subtraction, a method called modulo-2 addi- Input Bits _ Output Bit

tion can be used. Modulo-2 addition (or subtraction) is the same as binary addition with the 00 0
carries discarded, as shown in the truth table in Table 2-9. Truth tables are widely used to 01 1
describe the operation of logic circuits, as you will learn in Chapter 3. With two bits, there 10 1
is a total of four possible combinations, as shown in the table. This particular table describes . 0

the modulo-2 operation also known as exclusive-OR and can be implemented with a logic

Number Systems, Operations, and Codes

gate that will be introduced in Chapter 3. A simple rule for modulo-2 is that the output is 1
if the inputs are different; otherwise, it is 0.

CRC Process

The process is as follows:

1.

Select a fixed generator code; it can have fewer bits than the data bits to be checked.
This code is understood in advance by both the sending and receiving devices and
must be the same for both.

Append a number of Os equal to the number of bits in the generator code to the data bits.

Divide the data bits including the appended bits by the generator code bits using
modulo-2.

If the remainder is 0, the data and appended bits are sent as is.

If the remainder is not 0, the appended bits are made equal to the remainder bits in
order to get a O remainder before data are sent.

At the receiving end, the receiver divides the incoming appended data bit code by
the same generator code as used by the sender.
If the remainder is 0, there is no error detected (it is possible in rare cases for multi-

ple errors to cancel). If the remainder is not 0, an error has been detected in the trans-
mission and a retransmission is requested by the receiver.

Figure 2-8 illustrates the CRC process.

Append data
bits with Divide using
y data bits —{ remainder modulo-2 Ch?Ck
. . remainder.
(initially subtraction.
with x zeros).

Data bits plus appended bits modulo-2

Data bits plus

Data bits plus appended bits appended bits
Send. —

Remainder = 0

x-bit generator code Remainder 7 0

(a) Transmitting end of communication link

No errors. Data bits
Process the
data bits.

Remainder = 0

Divide using

Check
remainder.

subtraction.

Remainder # 0

x-bit generator code

Error(s).
Request
retransmission.

(b) Receiving end of communication link

FIGURE 2-8 The CRC process.

Error Codes

Determine the transmitted CRC for the following byte of data (D) and generator code
(G). Verify that the remainder is 0.

D: 11010011
G: 1010

Solution

Since the generator code has four data bits, add four Os (blue) to the data byte. The
appended data (D) is

D’ = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation until
all bits have been used.

D’ 110100110000

G 1010

1101001100
1010]
1110
1010
1000
1010
1011
1010]
1000
1010
100

Remainder = 0100. Since the remainder is not 0, append the data with the four
remainder bits (blue). Then divide by the generator code (red). The transmitted CRC is
110100110100.

11010011
1010]
1110
1010
1000
1010
1011
1010
1010
1010
00

Remainder = 0

Related Problem

Change the generator code to 1100 and verify that a O remainder results when the CRC
process is applied to the data byte (11010011).

Number Systems, Operations, and Codes

EXAMPLE 2-42

During transmission, an error occurs in the second bit from the left in the appended data
byte generated in Example 2—41. The received data is

D’ = 100100110100

Apply the CRC process to the received data to detect the error using the same generator
code (1010).

Solution

10010011010
1010/
1100
1010
1101
1010
1111
1010
1010
1010 |
0100

Remainder = 0100. Since it is not zero, an error is indicated.

Related Problem

Assume two errors in the data byte as follows: 10011011. Apply the CRC process to
check for the errors using the same received data and the same generator code.

Hamming Code

The Hamming code is used to detect and correct a single-bit error in a transmitted code.
To accomplish this, four redundancy bits are introduced in a 7-bit group of data bits. These
redundancy bits are interspersed at bit positions 2" (n = 0, 1, 2, 3) within the original data
bits. At the end of the transmission, the redundancy bits have to be removed from the data
bits. A recent version of the Hamming code places all the redundancy bits at the end of the
data bits, making their removal easier than that of the interspersed bits. A coverage of the
classic Hamming code is available on the website.

SECTION 2-12 CHECKUP

1. Which odd-parity code is in error?
(a) 1011 (b) 1110 (c) 0101 (d) 1000
2. Which even-parity code is in error?
(a) 11000110 (b) 00101000 (c) 10101010 (d) 11111011
3. Add an even parity bit to the end of each of the following codes.
(a) 1010100 (b) 0100000 (c) 1110111 (d) 1000110
4. What does CRC stand for?
5. Apply modulo-2 operations to determine the following:
(@ 1+1 (b)) 1-1 (¢01—-0 d 0+1

Summary

SUMMARY

A binary number is a weighted number in which the weight of each whole number digit is
a positive power of two and the weight of each fractional digit is a negative power of two.

The whole number weights increase from right to left—from least significant digit to most
significant.

A binary number can be converted to a decimal number by summing the decimal values of the
weights of all the 1s in the binary number.

A decimal whole number can be converted to binary by using the sum-of-weights or the re-
peated division-by-2 method.

A decimal fraction can be converted to binary by using the sum-of-weights or the repeated
multiplication-by-2 method.

The basic rules for binary addition are as follows:

0+0=0
0+1=1
1+0=1
1+1=10

The basic rules for binary subtraction are as follows:

0-0=0
1-1=0
1-0=1
10-1=1

The 1’s complement of a binary number is derived by changing 1s to Os and Os to 1s.
The 2’s complement of a binary number can be derived by adding 1 to the 1’s complement.

Binary subtraction can be accomplished with addition by using the 1’s or 2’s complement
method.

A positive binary number is represented by a 0 sign bit.
A negative binary number is represented by a 1 sign bit.

For arithmetic operations, negative binary numbers are represented in 1’s complement or
2’s complement form.

In an addition operation, an overflow is possible when both numbers are positive or when
both numbers are negative. An incorrect sign bit in the sum indicates the occurrence of an
overflow.

The hexadecimal number system consists of 16 digits and characters, O through 9 followed by
A through F.

One hexadecimal digit represents a 4-bit binary number, and its primary usefulness is in simpli-
fying bit patterns and making them easier to read.

A decimal number can be converted to hexadecimal by the repeated division-by-16 method.
The octal number system consists of eight digits, O through 7.
A decimal number can be converted to octal by using the repeated division-by-8 method.

Octal-to-binary conversion is accomplished by simply replacing each octal digit with its 3-bit
binary equivalent. The process is reversed for binary-to-octal conversion.

A decimal number is converted to BCD by replacing each decimal digit with the appropriate
4-bit binary code.

The ASCII is a 7-bit alphanumeric code that is used in computer systems for input and output of
information.

A parity bit is used to detect an error in a code.

The CRC (cyclic redundancy check) is based on polynomial division using modulo-2
operations.

Number Systems, Operations, and Codes

KEY TERMS

TRUE/FALSE QUIZ

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Alphanumeric Consisting of numerals, letters, and other characters.

ASCII American Standard Code for Information Interchange; the most widely used alphanumeric
code.

BCD Binary coded decimal; a digital code in which each of the decimal digits, O through 9, is
represented by a group of four bits.

Byte A group of eight bits.
Cyclic redundancy check (CRC) A type of error detection code.

Floating-point number A number representation based on scientific notation in which the
number consists of an exponent and a mantissa.

Hexadecimal Describes a number system with a base of 16.

LSB Least significant bit; the right-most bit in a binary whole number or code.
MSB Most significant bit; the left-most bit in a binary whole number or code.
Octal Describes a number system with a base of eight.

Parity In relation to binary codes, the condition of evenness or oddness of the number of 1s in a
code group.

SELF-TEST

Answers are at the end of the chapter.

k.

. The octal number system is a weighted system with eight digits.
. The binary number system is a weighted system with two digits.
. MSB stands for most significant bit.

. In hexadecimal, 9 + 1 = 10.

. The 1’s complement of the binary number 1010 is 0101.

. The 2°s complement of the binary number 1111 is 0000.

. The right-most bit in a signed binary number is the sign bit.

. The hexadecimal number system has 16 characters, six of which are alphabetic characters.

N=J- R - N I SRS I §

. BCD stands for binary coded decimal.

—
<

. An error in a given code can be detected by verifying the parity bit.

o
-

. CRC stands for cyclic redundancy check.
. The modulo-2 sum of 11 and 10 is 100.

-
[\

Answers are at the end of the chapter.

1.3 % 10" + 4 x 10°is

(a) 0.34 (b) 34 (c) 34 (d) 340

2. The decimal equivalent of 1000 is
(a) 2 (b) 4 (c) 6 (d) 8

3. The binary number 11011101 is equal to the decimal number
(a) 121 (b) 221 (c) 441 (d) 256

4. The decimal number 21 is equivalent to the binary number
(a) 10101 (b) 10001 (c) 10000 (@) 11111

5. The decimal number 250 is equivalent to the binary number

(a) 11111010 (b) 11110110 (c) 11111000 (d) 11111011
6. The sum of 1111 + 1111 in binary equals

(a) 0000 (b) 2222 () 11110 (@) 11111

Problems

7. The difference of 1000 — 100 equals
(a) 100 (b) 101 (c) 110 d) 111
8. The 1’s complement of 11110000 is
(a) 11111111 (b) 11111110 (c) 00001111 (d) 10000001
9. The 2’s complement of 11001100 is
(a) 00110011 (b) 00110100 (c) 00110101 (d) 00110110
10. The decimal number +122 is expressed in the 2’s complement form as
(a) 01111010 (b) 11111010 (c) 01000101 (d) 10000101
11. The decimal number —34 is expressed in the 2’s complement form as
(a) 01011110 (b) 10100010 (c) 11011110 (d) 01011101
12. A single-precision floating-point binary number has a total of
(a) 8bits (b) 16bits (c) 24 bits (d) 32 bits
13. In the 2’s complement form, the binary number 10010011 is equal to the decimal number
(a) —19 (b) +109 (c) +91 (d) —109
14. The binary number 101100111001010100001 can be written in octal as
(a) 54712304 (b) 54712414 (c) 26345214 (d) 23162501g
15. The binary number 10001101010001101111 can be written in hexadecimal as
(a) AD467,4 (b) 8C46F 4 (c) 8D46F 4 (d) AE46Fq
16. The binary number for F7A9,4 is
(a) 1111011110101001 (b) 1110111110101001
(c) 1111111010110001 (d) 1111011010101001
17. The BCD number for decimal 473 is
(a) 111011010 (b) 110001110011 (c) 010001110011 (d) 010011110011
18. Refer to Table 2—7. The command STOP in ASCII is
(a) 1010011101010010011111010000 (b) 1010010100110010011101010000
(c) 1001010110110110011101010001 (d) 1010011101010010011101100100
19. The code that has an even-parity error is
(a) 1010011 (b) 1101000 (c) 1001000 (d) 1110111
20. In the cyclic redundancy check, the absence of errors is indicated by
(a) Remainder = generator code (b) Remainder = 0
(¢) Remainder = 1 (d) Quotient = 0
PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 2-1 Decimal Numbers

1.

4.

What is the weight of 7 in each of the following decimal numbers?
(a) 1947 (b) 1799 (c) 1979

. Express each of the following decimal numbers as a power of ten:

(a) 1000 (b) 10000000 (c) 1000000000

. Give the value of each digit in the following decimal numbers:

(a) 263 (b) 5436 (c) 234543

How high can you count with six decimal digits?

Section 2-2 Binary Numbers

S.

6.

Convert the following binary numbers to decimal:

(a) 001 (b) 010 (c) 101) 110
(e) 1010 (f) 1011 (g) 1110 (h) 1111
Convert the following binary numbers into decimal:

(a) 100001 (b) 100111 (c) 101010 (d) 111001

(e) 1100000 (f) 11111101 (g) 11110010 (h) 11111111

Number Systems, Operations, and Codes

7. Convert each binary number to decimal:

(a) 110011.11 (b) 101010.01 (c) 1000001.111
(d) 1111000.101 (e) 1011100.10101 (f) 1110001.0001
(g) 1011010.1010 (h) 1111111.11111

8. What is the highest decimal number that can be represented by each of the following numbers
of binary digits (bits)?
(a) two (b) three (c¢) four (d) five (e) six
(f) seven (g) eight (h) nine (i) ten (j) eleven

9. How many bits are required to represent the following decimal numbers?

(a) 5 (b) 10 (c) 15 (d) 20
(e) 100 # 120 (g) 140 (h) 160
10. Generate the binary sequence for each decimal sequence:
(a) O through 7 (b) 8 through 15 (¢) 16 through 31
(d) 32 through 63 (e) 64 through 75

Section 2-3 Decimal-to-Binary Conversion
11. Convert each decimal number to binary by using the sum-of-weights method:

(a) 12 (b) 15 (c) 25 (d) 50
(e) 65 ® 97 (g) 127 (h) 198

12. Convert each decimal fraction to binary using the sum-of-weights method:
(a) 0.26 (b) 0.762 (c) 0.0975
13. Convert each decimal number to binary using repeated division by 2:

(a) 13 (b) 17 (c) 23 (d) 30
(e) 35 # 40 (g) 49 (h) 60

14. Convert each decimal fraction to binary using repeated multiplication by 2:
(a) 0.76 (b) 0.456 (c) 0.8732

Section 2-4 Binary Arithmetic
15. Add the binary numbers:

(a) 10 + 10 (b) 10 + 11 (c) 100 + 11

(d) 111 + 101 (e) 1111 + 111 (f) 1111 + 1111
16. Use direct subtraction on the following binary numbers:

(a) 10 — 1 (b) 100 — 11 (c) 110 — 100

(d) 1111 — 11 (e) 1101 — 101 (f) 110000 — 1111
17. Perform the following binary multiplications:

(a) 11 X 10 (b) 101 X 11 (¢) 111 X 110

(d) 1100 X 101 (e) 1110 X 1110 (f) 1111 X 1100

18. Divide the binary numbers as indicated:
(a) 110 + 11 (b) 1010 =+ 10 (¢) 1111 = 101

Section 2-5 Complements of Binary Numbers
19. What are two ways of representing zero in 1’s complement form?
20. How is zero represented in 2’s complement form?

21. Determine the 1’s complement of each binary number:

(a) 100 (b) 111 (c) 1100
(d) 10111011 (e) 1001010 (f) 10101010

22. Determine the 2’s complement of each binary number using either method:
(a) 11 (b) 110 (c) 1010 (d) 1001

(e) 101010 (f) 11001 (g) 11001100 (h) 11000111

Problems

Section 2-6 Signed Numbers

23. Express each decimal number in binary as an 8-bit sign-magnitude number:
(a) +29 (b) —85 (¢) +100 (d) —123

24. Express each decimal number as an 8-bit number in the 1’s complement form:
(a) —34 (b) +57 (© —99 (d) +115

25. Express each decimal number as an 8-bit number in the 2’s complement form:
(a) +12 (b) —68 (c) +101 (d) —125

26. Determine the decimal value of each signed binary number in the sign-magnitude form:
(a) 10011001 (b) 01110100 (c) 10111111

27. Determine the decimal value of each signed binary number in the 1’s complement form:
(a) 10011001 (b) 01110100 (c) 10111111

28. Determine the decimal value of each signed binary number in the 2’s complement form:
(a) 10011001 (b) 01110100 (c) 10111111

29. Express each of the following sign-magnitude binary numbers in single-precision floating-
point format:

(a) 0111110000101011 (b) 100110000011000
30. Determine the values of the following single-precision floating-point numbers:

(a) 110000001 01001001110001000000000
(b) 011001100 10000111110100100000000

Section 2-7 Arithmetic Operations with Signed Numbers
31. Convert each pair of decimal numbers to binary and add using the 2’s complement form:
(a) 33 and 15 (b) 56 and —27 (¢c) —46 and 25 (d) —110and —84
32. Perform each addition in the 2’s complement form:
(a) 00010110 + 00110011 (b) 01110000 + 10101111
33. Perform each addition in the 2’s complement form:
(a) 10001100 + 00111001 (b) 11011001 + 11100111
34. Perform each subtraction in the 2’s complement form:
(a) 00110011 — 00010000 (b) 01100101 — 11101000
35. Multiply 01101010 by 11110001 in the 2’s complement form.
36. Divide 10001000 by 00100010 in the 2’s complement form.

Section 2-8 Hexadecimal Numbers

37. Convert each hexadecimal number to binary:

(a) 4656 (b) 5446 (c) B4y (d) 1A346
(e) FAjq (f) ABCyg (g) ABCDyq
38. Convert each binary number to hexadecimal:
(a) 1111 (b) 1011 (¢) 11111
(d) 10101010 (e) 10101100 () 10111011
39. Convert each hexadecimal number to decimal:
(@) 424 (b) 6444 (c) 2By¢ (d) 4Dy
(e) FFi6 () BCye (g) 6F1y¢ (h) ABCjg
40. Convert each decimal number to hexadecimal:
(a) 10 (b) 15 (c) 32 d) 54
(e) 365 (f) 3652 (g) 7825 (h) 8925

41. Perform the following additions:

(a) 2516 + 3315 (b) 4316 + 6244 (¢) Adig + F5¢ (d) FCis + AEqq
42. Perform the following subtractions:

(@) 6016 =391 (b) A5;6 =981 (c) Fljg — Abye (d) ACy6 — 1056

Number Systems, Operations, and Codes

Section 2-9 Octal Numbers

43. Convert each octal number to decimal:

(a) 14y (b) 53g (c) 67g (d) 174g
(e) 635g () 254 (g) 26733 (h) 77773
44. Convert each decimal number to octal by repeated division by 8:
(a) 23 (b) 45 (c) 65 (d) 84
(e) 124 ® 156 (g) 654 (h) 9999
45. Convert each octal number into binary:
(a) 17g (b) 26g (c) 145 (d) 4564

(e) 6533 () 7774

46. Convert each binary number to octal:

(a) 100 (b) 110 (c) 1100
(d) 1111 (e) 11001 (f) 11110
(g) 110011 (h) 101010 (i) 10101111

Section 2-10 Binary Coded Decimal (BCD)
47. Convert each of the following decimal numbers to 8421 BCD:

(a) 10 (b) 13 (© 18 (d) 21 (e) 25) 36
(g) 44 (h) 57 i) 69 () 98 k) 125 () 156

48. Convert each of the decimal numbers in Problem 47 to straight binary, and compare the
number of bits required with that required for BCD.

49. Convert the following decimal numbers to BCD:

(a) 104 (b) 128 (c) 132 (d) 150 (e) 186
(f) 210 (g 359 (h) 547 (i) 1051

50. Convert each of the BCD numbers to decimal:

(a) 0001 (b) 0110 (c) 1001

(d) 00011000 (e) 00011001 (f) 00110010

(g) 01000101 (h) 10011000 (i) 100001110000
51. Convert each of the BCD numbers to decimal:

(a) 10000000 (b) 001000110111

(c) 001101000110 (d) 010000100001

(e) 011101010100 (f) 100000000000

(g) 100101111000 (h) 0001011010000011

(i) 1001000000011000 (j) 0110011001100111
52. Add the following BCD numbers:

(a) 0010 + 0001 (b) 0101 + 0011

(¢) 0111 + 0010 (d) 1000 + 0001

(e) 00011000 + 00010001 (f) 01100100 + 00110011

(g) 01000000 + 01000111 (h) 10000101 + 00010011
53. Add the following BCD numbers:

(a) 1000 + 0110 (b) 0111 + 0101

(¢) 1001 + 1000 (d) 1001 + 0111

(e) 00100101 + 00100111 (f) 01010001 + 01011000

(g) 10011000 + 10010111 (h) 010101100001 + 011100001000
54. Convert each pair of decimal numbers to BCD, and add as indicated:

(a) 4 +3 (b) 5+2 (c) 6 +4 d) 17 + 12

(e) 28 + 23 (f) 65 + 58 (g) 113 + 101 (h) 295 + 157

Section 2-11 Digital Codes

55. In a certain application a 4-bit binary sequence cycles from 1111 to 0000 periodically. There
are four bit changes, and because of circuit delays, these changes may not occur at the same

Answers

instant. For example, if the LSB changes first, the number will appear as 1110 during the
transition from 1111 to 0000 and may be misinterpreted by the system. Illustrate how the Gray
code avoids this problem.

56. Convert each binary number to Gray code:

(a) 11011 (b) 1001010 (c) 1111011101110
57. Convert each Gray code to binary:
(a) 1010 (b) 00010 (c) 11000010001
58. Convert each of the following decimal numbers to ASCII. Refer to Table 2-7.
(a) 1 (b) 3 (© 6 (d) 10 (e) 18
29 (g) 56 (h) 75 i) 107
59. Determine each ASCII character. Refer to Table 2—-7.
(a) 0011000 (b) 1001010 (c) 0111101
(d) 0100011 (e) 0111110 (f) 1000010

60. Decode the following ASCII coded message:

1001000 1100101 1101100 1101100 1101111 0101110
0100000 1001000 1101111 1110111 0100000 1100001
1110010 1100101 0100000 1111001 1101111 1110101
0111111

61. Write the message in Problem 60 in hexadecimal.
62. Convert the following statement to ASCII:
30INPUT A, B

Section 2-12Error Codes
63. Determine which of the following even parity codes are in error:
(a) 100110010 (b) 011101010 (c) 10111111010001010
64. Determine which of the following odd parity codes are in error:
(a) 11110110 (b) 00110001 (c) 01010101010101010
65. Attach the proper even parity bit to each of the following bytes of data:
(a) 10100100 (b) 00001001 (c) 11111110
66. Apply modulo-2 to the following:
(a) 1100 + 1011 (b) 1111 + 0100 (c) 10011001 + 100011100

67. Verity that modulo-2 subtraction is the same as modulo-2 addition by adding the result of each
operation in problem 66 to either of the original numbers to get the other number. This will
show that the result is the same as the difference of the two numbers.

68. Apply CRC to the data bits 10110010 using the generator code 1010 to produce the transmitted
CRC code.

69. Assume that the code produced in problem 68 incurs an error in the most significant bit during
transmission. Apply CRC to detect the error.

ANSWERS

SECTION CHECKUPS
Section 2-1 Decimal Numbers
1. (a) 1370: 10 (b) 6725: 100 (c) 7051: 1000 (d) 58.72: 0.1
2. (@ 51 =(GBX10)+1X1)
(b)137 = (1 X 100) + 3 X 10) + (7 X 1)
(¢) 1492 = (1 X 1000) + (4 X 100) + (9 X 10) + (2 X 1)
(d) 106.58 = (1 X 100) + (0 X 10) + (6 X 1) + (5 X 0.1) + (8 X 0.01)

Number Systems, Operations, and Codes

Section 2-2 Binary Numbers
1.28 — 1 =255
2. Weight is 16.
3. 10111101.011 = 189.375

Section 2-3 Decimal-to-Binary Conversion
1. (a) 23 = 10111 (b) 57 = 111001 (c) 45.5 = 101101.1
2. (a) 14 = 1110 (b) 21 = 10101 (¢) 0.375 = 0.011

Section 2-4 Binary Arithmetic

1. (a) 1101 + 1010 = 10111 (b) 10111 + 01101 = 100100
2. (a) 1101 — 0100 = 1001 (b) 1001 — 0111 = 0010

3. (a) 110 X 111 = 101010 (b) 1100 =+ 011 = 100

Section 2-5 Complements of Binary Numbers
1. (a) 1’s comp of 00011010 = 11100101 (b) 1’scomp of 11110111 = 00001000
(¢) 1’s comp of 10001101 = 01110010
2. (a) 2’s comp of 00010110 = 11101010 (b) 2’scomp of 11111100 = 00000100
(¢) 2’s comp of 10010001 01101111

Section 2-6 Signed Numbers
1. Sign-magnitude: +9 = 00001001
2. I’scomp: —33 = 11011110
3. 2’s comp: —46 = 11010010

4. Sign bit, exponent, and mantissa

Section 2-7 Arithmetic Operations with Signed Numbers

1. Cases of addition: positive number is larger, negative number is larger, both are positive, both
are negative

. 00100001 + 10111100 = 11011101

. 01110111 — 00110010 = 01000101

. Sign of product is positive.

. 00000101 X 01111111 = 01001111011
. Sign of quotient is negative.

. 00110000 + 00001100 = 00000100

N N N AW

Section 2-8 Hexadecimal Numbers
1. (a) 10110011 = B3¢ (b) 110011101000 = CES8¢
2. (a) 57,4 = 01010111 (b) 3A5;6 = 001110100101
(¢) F8OB¢ = 1111100000001011

3. 9B30,6 = 39,7280
4. 57319 = 23Dy¢

5. (a) 18, + 341 = 4Cy¢ (b) 3Fj + 2A;6 = 69,
6. (a) 7516 — 2116 = 5446 (b) 9415 — 5Ci6 = 3846

Section 2-9 Octal Numbers
1. (a) 738 = 5910 (b) 1253 = 8510
2. (a) 98;) = 142 (b) 1639 = 2434

3. (a) 46g = 100110 (b) 7233 = 111010011 (c) 5624 = 101110010100
4. (a) 110101111 = 6574 (b) 1001100010 = 11424 (c) 10111111001 = 2771g

Section 2-10 Binary Coded Decimal (BCD)
1. (a) 0010: 2 (b) 1000: 8 (c) 0001: 1 (d) 0100: 4
2. (a) 6,9 = 0110 (b) 15,9 = 00010101 (¢) 2731, = 001001110011
(d) 849;, = 100001001001
3. (a) 10001001 = 89,5 (b) 001001111000 = 278;5 (c) 000101010111 = 157,

4. A 4-bit sum is invalid when it is greater than 9.

Section 2-11 Digital Codes

1. (a) 1100, = 1010 Gray (b) 1010, = 1111 Gray (¢) 11010, = 10111 Gray
2. (a) 1000 Gray = 1111, (b) 1010 Gray = 1100, (¢) 11101 Gray = 10110,
3. (a) K: 1001011 — 4B (b) 1: 1110010 — 724

(c) $: 0100100 — 24,4 (d) +:0101011 — 2B4

Section 2-12Error Codes
1. (¢) 0101 has an error.
2. (d) 11111011 has an error.
3. (a) 10101001 (b) 01000001 (c) 11101110 (d) 10001101
4. Cyclic redundancy check
5.() 0 (b) 0 () 1 a1

RELATED PROBLEMS FOR EXAMPLES
2-1 9 has a value of 900, 3 has a value of 30, 9 has a value of 9.

2-2 6 has a value of 60, 7 has a value of 7, 9 has a value of 9/10 (0.9), 2 has a value of 2/100
(0.02), 4 has a value of 4/1000 (0.004).

2-3 10010001 = 128 + 16 + 1 = 145

2-4 10.111 =2 + 0.5 + 0.25 + 0.125 = 2.875
2-5 125=64 +32+16+8+4+1=1111101
2-6 39 = 100111

2-7 1111 + 1100 = 11011

2-8 111 — 100 = 011

2-9 110 — 101 = 001

2-10 1101 X 1010 = 10000010

2-11 1100 = 100 = 11

2-12 00110101

2-13 01000000

2-14 See Table 2-10.

TABLE 2-10

Sign-Magnitude 1’s Comp 2’s Comp
+19 00010011 00010011 00010011
—19 10010011 11101100 11101101

2-15 01110111 = +119;,
2-16 11101011 = —20;,
2-17 11010111 = —41,,

Answers

Number Systems, Operations, and Codes

2-18 11000010001010011000000000

2-19 01010101

2-20 00010001

2-21 1001000110

2-22 (83)(—59) = —4897 (10110011011111 in 2’s comp)
2-23 100 = 25 = 4 (0100)

2-24 4F79C¢

2-25 0110101111010011,

2-26 6BDyg = 011010111101 = 210 + 2% + 27 + 2% + 2% + 23 + 22 + 20
1024 + 512 + 128 + 32 + 16 + 8 + 4 + 1 = 1725,

2-27 60A s = (6 X 256) + (0 X 16) + (10 X 1) = 1546
2-28 2591,y = AlF4
2-29 4Cg + 3A1s = 8646
2-30 BCDg — 17316 = AS5Ajq
2-31 (a) 001011, = 11,5 = 134 (b) 010101, = 21,y = 254
(c) 001100000, = 96,5 = 140g (d) 111101010110, = 3926,¢ = 75264
2-32 12507624
2-33 1001011001110011
2-34 82,276,
2-35 1001100101101000
2-36 10000010
2-37 (a) 111011 (Gray) (b) 111010,
2-38 The sequence of codes for if (y < 8) is 69166162016281679163C1638162%916
2-39 01001011
2-40 Yes
2-41 A 0O remainder results
2-42 Errors are indicated.

TRUE/FALSE QUIZ
1. T 2. T 3. T 4. F 5. T 6. F 7. F 8. T 9. T 10.
11. T 12. F

SELF-TEST
1. (¢ 2. (@) 3. (b) 4. (a) 5. (a) 6. (¢ 7. (a) 8. (©
9. (b) 10. (a) 11. (c) 12. (d) 13. (d) 14. (b) 15. (¢) 16. (a)
17. (c) 18. (a) 19. (b) 20. (b)

)0 00 'v' U'I 5 v” 'vl 0100 7' 01 01 1
17100101 101101 of 14 9057 49

001011 & o419 109 19,

1000 01 10 11 1() 10
10 l 01 1001 QO

Logic Gates

CHAPTER OUTLINE

3-1 The Inverter

3-2 The AND Gate

3-3 The OR Gate

3-4 The NAND Gate

3-5 The NOR Gate

3-6 The Exclusive-OR and Exclusive-NOR Gates
3—-7 Programmable Logic

3-8 Fixed-Function Logic Gates

3-9 Troubleshooting

CHAPTER OBJECTIVES

Describe the operation of the inverter, the AND
gate, and the OR gate

Describe the operation of the NAND gate and the
NOR gate

Express the operation of NOT, AND, OR, NAND,
and NOR gates with Boolean algebra

Describe the operation of the exclusive-OR and
exclusive-NOR gates

Use logic gates in simple applications

Recognize and use both the distinctive shape logic
gate symbols and the rectangular outline logic gate

symbols of ANSI/IEEE Standard 91-1984/Std.
91a-1991

Construct timing diagrams showing the proper time
relationships of inputs and outputs for the various
logic gates

Discuss the basic concepts of programmable logic

Make basic comparisons between the major IC
technologies—CMOS and bipolar (TTL)

Explain how the different series within the CMOS
and bipolar (TTL) families differ from each other
Define propagation delay time, power dissipation,
speed-power product, and fan-out in relation to
logic gates

CHAPTER

List specific fixed-function integrated circuit devices
that contain the various logic gates

Troubleshoot logic gates for opens and shorts by
using the oscilloscope

KEY TERMS

Key terms are in order of appearance in the chapter.
Inverter EPROM
Truth table EEPROM
Boolean algebra Flash
Complement SRAM
AND gate Target device
OR gate JTAG
NAND gate VHDL
NOR gate CMOS
Exclusive-OR gate Bipolar

Exclusive-NOR gate Propagation delay

AND array time
Fuse Fan-out
Antifuse Unit load

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The emphasis in this chapter is on the operation,
application, and troubleshooting of logic gates. The
relationship of input and output waveforms of a gate
using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates
are in accordance with ANSI/IEEE Standard 91-1984/
Std. 91a-1991. This standard has been adopted by
private industry and the military for use in internal
documentation as well as published literature.

125

Logic Gates

Both fixed-function logic and programmable age of the devices at the component level can
logic are discussed in this chapter. Because inte- be treated as an optional topic. Digital integrated
grated circuits (ICs) are used in all applications, circuit technologies are discussed in Chapter 15
the logic function of a device is generally of greater on the website, all or parts of which may be intro-
importance to the technician or technologist than duced at appropriate points throughout the text.
the details of the component-level circuit operation Suggestion: Review Section 1-3 before you start
within the IC package. Therefore, detailed cover- this chapter.

3-1 The Inverter

The inverter (NOT circuit) performs the operation called inversion or complementation. The
inverter changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0
andaOtoal.

After completing this section, you should be able to
+ Identify negation and polarity indicators

+ Identify an inverter by either its distinctive shape symbol or its rectangular outline
symbol

+ Produce the truth table for an inverter

+ Describe the logical operation of an inverter

Standard logic symbols for the inverter are shown in Figure 3—1. Part (a) shows the
distinctive shape symbols, and part (b) shows the rectangular outline symbols. In this
textbook, distinctive shape symbols are generally used; however, the rectangular outline
symbols are found in many industry publications, and you should become familiar with
them as well. (Logic symbols are in accordance with ANSI/IEEE Standard 91-1984 and
its supplement Standard 91a-1991.)

—>—
—>—

SN
(a) Distinctive shape symbols (b) Rectangular outline symbols
with negation indicators with polarity indicators

FIGURE 3-1 Standard logic symbols for the inverter (ANSI/IEEE Std. 91-1984/
Std. 91a-1991).

The Negation and Polarity Indicators

The negation indicator is a “bubble” (O) that indicates inversion or complementation when
it appears on the input or output of any logic element, as shown in Figure 3—1(a) for the
inverter. Generally, inputs are on the left of a logic symbol and the output is on the right.
When appearing on the input, the bubble means that a O is the active or asserted input state,
and the input is called an active-LOW input. When appearing on the output, the bubble
means that a 0 is the active or asserted output state, and the output is called an active-
LOW output. The absence of a bubble on the input or output means that a 1 is the active or
asserted state, and in this case, the input or output is called active-HIGH.

The polarity or level indicator is a “triangle” (D) that indicates inversion when it
appears on the input or output of a logic element, as shown in Figure 3—1(b). When appear-
ing on the input, it means that a LOW level is the active or asserted input state. When
appearing on the output, it means that a LOW level is the active or asserted output state.

Either indicator (bubble or triangle) can be used both on distinctive shape symbols and
on rectangular outline symbols. Figure 3—1(a) indicates the principal inverter symbols used
in this text. Note that a change in the placement of the negation or polarity indicator does
not imply a change in the way an inverter operates.

Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW level will appear on its output.
When a LOW level is applied to its input, a HIGH will appear on its output. This operation
is summarized in Table 3—1, which shows the output for each possible input in terms of
levels and corresponding bits. A table such as this is called a truth table.

Inverter Operation

Figure 3-2 shows the output of an inverter for a pulse input, where #; and #, indicate the
corresponding points on the input and output pulse waveforms.

When the input is LOW, the output is HIGH; when the input is HIGH, the output
is LOW, thereby producing an inverted output pulse.

HIGH (1) HIGH (1)
LOW (0) n | > ° —I—I_ LOW (0)
f t])

Input pulse Output pulse

FIGURE 3-2 Inverter operation with a pulse input. Open file FO3-02 to verify inverter
operation. A Multisim tutorial is available on the website.

Timing Diagrams

Recall from Chapter 1 that a timing diagram is basically a graph that accurately displays
the relationship of two or more waveforms with respect to each other on a time basis. For
example, the time relationship of the output pulse to the input pulse in Figure 3-2 can be
shown with a simple timing diagram by aligning the two pulses so that the occurrences of
the pulse edges appear in the proper time relationship. The rising edge of the input pulse
and the falling edge of the output pulse occur at the same time (ideally). Similarly, the fall-
ing edge of the input pulse and the rising edge of the output pulse occur at the same time
(ideally). This timing relationship is shown in Figure 3-3. In practice, there is a very small
delay from the input transition until the corresponding output transition. Timing diagrams
are especially useful for illustrating the time relationship of digital waveforms with mul-
tiple pulses.

A waveform is applied to an inverter in Figure 3—4. Determine the output waveform
corresponding to the input and show the timing diagram. According to the placement of
the bubble, what is the active output state?

1
0 Input 4% Output

FIGURE 3-4

The Inverter

Inverter truth table.

Input Output
LOW (0) HIGH (1)
HIGH (1) LOW (0)
MultiSim

~

A timing diagram shows how two or
more waveforms relate in time.

1k

Input

Output

FIGURE 3-3 Timing diagram
for the case in Figure 3-2.

Logic Gates

Boolean algebra uses variables and

operators to describe a logic circuit.

AADOfX:A

FIGURE 3-6 The inverter

complements an input variable.

Solution

The output waveform is exactly opposite to the input (inverted), as shown in Figure 3-5,
which is the basic timing diagram. The active or asserted output state is 0.

1
Input
0
o 1
utput
0

FIGURE 3-5

Related Problem*

If the inverter is shown with the negative indicator (bubble) on the input instead of the
output, how is the timing diagram affected?

*Answers are at the end of the chapter.

Logic Expression for an Inverter

In Boolean algebra, which is the mathematics of logic circuits and will be covered thor-
oughly in Chapter 4, a variable is generally designated by one or two letters although there
can be more. Letters near the beginning of the alphabet usually designate inputs, while let-
ters near the end of the alphabet usually designate outputs. The complement of a variable
is designated by a bar over the letter. A variable can take on a value of either 1 or 0. If a
given variable is 1, its complement is O and vice versa.

The operation of an inverter (NOT circuit) can be expressed as follows: If the input vari-
able is called A and the output variable is called X, then

X=A

This expression states that the output is the complement of the input, so if A = 0, then X = 1,
and if A = 1, then X = 0. Figure 3-6 illustrates this. The complemented variable A can
be read as “A bar” or “not A.”

An Application

Figure 3-7 shows a circuit for producing the 1’s complement of an 8-bit binary number.
The bits of the binary number are applied to the inverter inputs and the 1’s complement of
the number appears on the outputs.

Binary number

TVYYYYY

1’s complement

FIGURE 3-7 Example of a 1’s complement circuit using inverters.

SECTION 3-1 CHECKUP

Answers are at the end of the chapter.
1. When a 1 is on the input of an inverter, what is the output?

2. An active-HIGH pulse (HIGH level when asserted, LOW level when not) is required
on an inverter input.

(a) Draw the appropriate logic symbol, using the distinctive shape and the negation
indicator, for the inverter in this application.

(b) Describe the output when a positive-going pulse is applied to the input of an
inverter.

3-2 The AND Gate

The AND gate is one of the basic gates that can be combined to form any logic func-
tion. An AND gate can have two or more inputs and performs what is known as logical
multiplication.

After completing this section, you should be able to

+ Identify an AND gate by its distinctive shape symbol or by its rectangular outline
symbol

+ Describe the operation of an AND gate

¢ Generate the truth table for an AND gate with any number of inputs

¢ Produce a timing diagram for an AND gate with any specified input waveforms
+ Write the logic expression for an AND gate with any number of inputs

+ Discuss examples of AND gate applications

The term gate was introduced in Chapter 1 and is used to describe a circuit that performs
a basic logic operation. The AND gate is composed of two or more inputs and a single out-
put, as indicated by the standard logic symbols shown in Figure 3—8. Inputs are on the left,
and the output is on the right in each symbol. Gates with two inputs are shown; however,
an AND gate can have any number of inputs greater than one. Although examples of both
distinctive shape symbols and rectangular outline symbols are shown, the distinctive shape
symbol, shown in part (a), is used predominantly in this book.

D
X
B_

(a) Distinctive shape

A— &
B —

— X

(b) Rectangular outline with the
AND (&) qualifying symbol

FIGURE 3-8 Standard logic symbols for the AND gate showing two inputs (ANSI/IEEE
Std. 91-1984/Std. 91a-1991).

Operation of an AND Gate

An AND gate produces a HIGH output only when all of the inputs are HIGH. When any
of the inputs is LOW, the output is LOW. Therefore, the basic purpose of an AND gate is to
determine when certain conditions are simultaneously true, as indicated by HIGH levels on
all of its inputs, and to produce a HIGH on its output to indicate that all these conditions are

The AND Gate

InfoNote

Logic gates are one of the funda-
mental building blocks of digital
systems. Most of the functions

in a computer, with the exception
of certain types of memory, are
implemented with logic gates used
on a very large scale. For example,
a microprocessor, which is the
main part of a computer, is made
up of hundreds of thousands or
even millions of logic gates.

An AND gate can have more than
two inputs.

Logic Gates

Mq[tiSim

N

For an AND gate, all HIGH inputs
produce a HIGH output.

Truth table for a 2-input
AND gate.

Inputs Output
A B X
0 0 0
0 1 0
1 0 0
1 1 1

1 = HIGH, 0 = LOW

true. The inputs of the 2-input AND gate in Figure 3-8 are labeled A and B, and the output
is labeled X. The gate operation can be stated as follows:

For a 2-input AND gate, output X is HIGH only when inputs A and B are HIGH;
X is LOW when either A or B is LOW, or when both A and B are LOW.

Figure 3-9 illustrates a 2-input AND gate with all four possibilities of input combina-
tions and the resulting output for each.

LOW (0) — LOW (0) —
LOW (0) — HIGH (1) —

LOW (0)

HIGH (1) — HIGH (1) —
} LOW (0) :)— HIGH (1)

LOW (0) —— HIGH (1) ——

FIGURE 3-9 All possible logic levels for a 2-input AND gate. Open file F03-09 to verify

AND gate operation.

AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all input combina-
tions with the corresponding outputs, as illustrated in Table 3-2 for a 2-input AND gate. The
truth table can be expanded to any number of inputs. Although the terms HIGH and LOW tend
to give a “physical” sense to the input and output states, the truth table is shown with 1s and
0Os; a HIGH is equivalent to a 1 and a LOW is equivalent to a O in positive logic. For any AND
gate, regardless of the number of inputs, the output is HIGH only when all inputs are HIGH.

The total number of possible combinations of binary inputs to a gate is determined by
the following formula:

N =2" Equation 3-1

where N is the number of possible input combinations and 7 is the number of input vari-
ables. To illustrate,

For two input variables: N = 22 = 4 combinations

For three input variables: N = 23 = 8 combinations

For four input variables: N = 2* = 16 combinations

You can determine the number of input bit combinations for gates with any number of
inputs by using Equation 3-1.

TABLE3-3
Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

(a) Develop the truth table for a 3-input AND gate.

(b) Determine the total number of possible input combinations for a 4-input AND gate.

Solution

(a) There are eight possible input combinations (23 = 8) for a 3-input AND gate. The
input side of the truth table (Table 3-3) shows all eight combinations of three bits.
The output side is all Os except when all three input bits are 1s.

(b) N = 2% = 16. There are 16 possible combinations of input bits for a 4-input
AND gate.

Related Problem
Develop the truth table for a 4-input AND gate.

AND Gate Operation with Waveform Inputs

In most applications, the inputs to a gate are not stationary levels but are voltage waveforms
that change frequently between HIGH and LOW logic levels. Now let’s look at the operation of
AND gates with pulse waveform inputs, keeping in mind that an AND gate obeys the truth table
operation regardless of whether its inputs are constant levels or levels that change back and forth.

Let’s examine the waveform operation of an AND gate by looking at the inputs with
respect to each other in order to determine the output level at any given time. In Figure 3-10,
inputs A and B are both HIGH (1) during the time interval, #;, making output X HIGH (1)
during this interval. During time interval 7, input A is LOW (0) and input B is HIGH (1),
so the output is LOW (0). During time interval #3, both inputs are HIGH (1) again, and
therefore the output is HIGH (1). During time interval #,, input A is HIGH (1) and input B
is LOW (0), resulting in a LOW (0) output. Finally, during time interval #s, input A is LOW
(0), input B is LOW (0), and the output is therefore LOW (0). As you know, a diagram of
input and output waveforms showing time relationships is called a timing diagram.

| |
1 0 1 0 !
A | |
- Dy
| | |
— L B—
B L 0 | 0,
| | _—
| |
| |
|

|
|
|
_>:
|
|
|
0 |

FIGURE 3-10 Example of AND gate operation with a timing diagram showing input and
output relationships.

If two waveforms, A and B, are applied to the AND gate inputs as in Figure 3—11, what
is the resulting output waveform?

PR e e
LOW (I e A e A
[T T N T I _D_ ¥
[T T N T I
[T T T I B B —
B HIGH [
LOW —I I—I ‘—,—,—" ' I—I l—
I
I
I
I
I

HIGH
P —
X Low
— = —
A and B are both HIGH during these four time intervals;
therefore, X is HIGH.
FIGURE 3-11

Solution

The output waveform X is HIGH only when both A and B waveforms are HIGH as
shown in the timing diagram in Figure 3—11.

Related Problem

Determine the output waveform and show a timing diagram if the second and fourth
pulses in waveform A of Figure 3—11 are replaced by LOW levels.

The AND Gate

Logic Gates

Remember, when analyzing the waveform operation of logic gates, it is important to
pay careful attention to the time relationships of all the inputs with respect to each other
and to the output.

For the two input waveforms, A and B, in Figure 3—12, show the output waveform with
its proper relation to the inputs.

, HIGH
 HIGH — ' B——
LOw m

Inputs

HIGH
-]
Output X LOW I_I | ||
FIGURE 3-12
Solution

The output waveform is HIGH only when both of the input waveforms are HIGH as
shown in the timing diagram.

Related Problem

Show the output waveform if the B input to the AND gate in Figure 3-12 is always
HIGH.

For the 3-input AND gate in Figure 3—13, determine the output waveform in relation to
the inputs.
A [S
IIII::I::I::IIII A
I I A R I B) X
T o
x il e——
FIGURE 3-13
Solution
The output waveform X of the 3-input AND gate is HIGH only when all three input
waveforms A, B, and C are HIGH.
Related Problem
What is the output waveform of the AND gate in Figure 3—13 if the C input is always
HIGH?

The AND Gate

EXAMPLE 3-6

Use Multisim to simulate a 3-input AND gate with input waveforms that cycle through binary numbers 0 through 9.
Solution
Use the Multisim word generator in the up counter mode to provide the combination of waveforms representing the binary
sequence, as shown in Figure 3—14. The first three waveforms on the oscilloscope display are the inputs, and the bottom
waveform is the output.
A Word Generator-XWG1
L WGl i il Ry 1 |¥ ooooonoooooonooooooonooonoooonoo ~
1 i (" Hex 00000000000000000000000000000001 W
::: le::t (" Dec 00000000000000000000000000000010
::: {s Binary 000o0000000000000000000000000011
::: Set... = asci 00000000000000000000000000000100
o O I IR I IO Trigger 00000000000000000000000000000101
' Dienet B 00000000000000000000000000000110
::: Estemal £ £
- IR N I 00000000000000000000000000000111
—— T Frequancy |
- -4 - 00000000000000000000000000001000
- NN I s 1 il"“z 00000000000000000000000000001001 v
o : o 4
e S Resty © Togger(”
......... o A
L N I B
DS N O
i Dscilloscop
4 *
= Time: Channel_& Channel B Channel_C Channel_00 Reverse
: ﬂi 856820 ms 500.000 m* 4.500 % 4500 % 0.000 % E
¢
T GHD
- Timebase ~ Channel_0 Trigger i
Seale [2 ms/Div | gemle |5 wiiv s Edge _F|[F Exf
¥ position [0 | ¥ position I-Z.B D@B Lewel o [
C I
TIT _AiB| £48 | lecl o[B8 -| & & ¢ & | snglNor| Ao |[Fams [2o
FIGURE 3-14
Related Problem MultiSim
Use Multisim software to create the setup and simulate the 3-input AND gate as illustrated in this example. N

Logic Expressions for an AND Gate

The logical AND function of two variables is represented mathematically either by placing
a dot between the two variables, as A + B, or by simply writing the adjacent letters without
the dot, as AB. We will normally use the latter notation.

Logic Gates

InfoNote

Processors can utilize all of the
basic logic operations when it is
necessary to selectively manipulate
certain bits in one or more bytes
of data. Selective bit manipulations
are done with a mask. For exam-
ple, to clear (make all Os) the right
four bits in a data byte but keep
the left four bits, ANDing the data
byte with 11110000 will do the
job. Notice that any bit ANDed with
zero will be 0 and any bit ANDed
with 1 will remain the same. If
10101010 is ANDed with the mask
11110000, the result is 10100000.

When variables are shown together
like ABC, they are ANDed.

TABLE 3-4

A B AB = X
0 0 0-0=0
0 1 0-1=0
1 0 1:0=0
1 1 1-1=1

Boolean multiplication follows the same basic rules governing binary multiplication,
which were discussed in Chapter 2 and are as follows:

0-0=0
0-1=0
1-:0=0
1-1=1

Boolean multiplication is the same as the AND function.

The operation of a 2-input AND gate can be expressed in equation form as follows: If one
input variable is A, if the other input variable is B, and if the output variable is X, then the
Boolean expression is

X = AB

Figure 3—15(a) shows the AND gate logic symbol with two input variables and the output
variable indicated.

A — A —
}X:AE B—}X:ABC }X:ABCD

B — C —

(a) (b) (©)

FIGURE 3-15 Boolean expressions for AND gates with two, three, and four inputs.

iy

SO

To extend the AND expression to more than two input variables, simply use a new letter
for each input variable. The function of a 3-input AND gate, for example, can be expressed
as X = ABC, where A, B, and C are the input variables. The expression for a 4-input AND
gate can be X = ABCD, and so on. Parts (b) and (c) of Figure 3—15 show AND gates with
three and four input variables, respectively.

You can evaluate an AND gate operation by using the Boolean expressions for the output.
For example, each variable on the inputs can be either a 1 or a 0; so for the 2-input AND
gate, make substitutions in the equation for the output, X = AB, as shown in Table 3—4. This
evaluation shows that the output X of an AND gate is a | (HIGH) only when both inputs are
1s (HIGHs). A similar analysis can be made for any number of input variables.

Applications
The AND Gate as an Enable/Inhibit Device

A common application of the AND gate is to enable (that is, to allow) the passage of a
signal (pulse waveform) from one point to another at certain times and to inhibit (prevent)
the passage at other times.

A simple example of this particular use of an AND gate is shown in Figure 3—16, where
the AND gate controls the passage of a signal (waveform A) to a digital counter. The pur-
pose of this circuit is to measure the frequency of waveform A. The enable pulse has a
width of precisely 1 ms. When the enable pulse is HIGH, waveform A passes through the
gate to the counter; and when the enable pulse is LOW, the signal is prevented from passing
through the gate (inhibited).

During the 1 millisecond (1 ms) interval of the enable pulse, pulses in waveform A pass
through the AND gate to the counter. The number of pulses passing through during the
1 ms interval is equal to the frequency of waveform A. For example, Figure 3—16 shows
six pulses in one millisecond, which is a frequency of 6 kHz. If 1000 pulses pass through
the gate in the 1 ms interval of the enable pulse, there are 1000 pulses/ms, or a frequency
of 1 MHz.

|<1 ms—|

S 1NN —

| i } Counter
Enable —,—|—

<—1 ms—
‘ ‘ Register,
Reset to zero —— decoder,
between enable pulses. and
frequency
display

FIGURE 3-16 An AND gate performing an enable/inhibit function for a frequency
counter.

The counter counts the number of pulses per second and produces a binary output
that goes to a decoding and display circuit to produce a readout of the frequency. The
enable pulse repeats at certain intervals and a new updated count is made so that if
the frequency changes, the new value will be displayed. Between enable pulses, the
counter is reset so that it starts at zero each time an enable pulse occurs. The current
frequency count is stored in a register so that the display is unaffected by the resetting
of the counter.

A Seat Belt Alarm System

In Figure 3-17, an AND gate is used in a simple automobile seat belt alarm system to
detect when the ignition switch is on and the seat belt is unbuckled. If the ignition switch
is on, a HIGH is produced on input A of the AND gate. If the seat belt is not properly
buckled, a HIGH is produced on input B of the AND gate. Also, when the ignition switch
is turned on, a timer is started that produces a HIGH on input C for 30 s. If all three con-
ditions exist—that is, if the ignition is on and the seat belt is unbuckled and the timer
is running—the output of the AND gate is HIGH, and an audible alarm is energized to
remind the driver.

HIGH = On Ignition A0
LOW = Off switch
HIGH = Unbuckled Seat 56 Aallldible
LOW = Buckled belt C b irlflrllt
HIGH activates
alarm.
L—I Timer |—

Ignition on = HIGH for 30 s

FIGURE 3-17 A simple seat belt alarm circuit using an AND gate.

1. When is the output of an AND gate HIGH?
2. When is the output of an AND gate LOW?
3. Describe the truth table for a 5-input AND gate.

The AND Gate

Logic Gates

3-3 The OR Gate

An OR gate can have more than two
inputs.

For an OR date, at least one HIGH
input produces a HIGH output.

MquiSim

.

The OR gate is another of the basic gates from which all logic functions are constructed.
An OR gate can have two or more inputs and performs what is known as logical addition.

After completing this section, you should be able to

+ Identify an OR gate by its distinctive shape symbol or by its rectangular outline
symbol

+ Describe the operation of an OR gate

+ Generate the truth table for an OR gate with any number of inputs

¢ Produce a timing diagram for an OR gate with any specified input waveforms
* Write the logic expression for an OR gate with any number of inputs

+ Discuss an OR gate application

An OR gate has two or more inputs and one output, as indicated by the standard logic
symbols in Figure 3—-18, where OR gates with two inputs are illustrated. An OR gate can
have any number of inputs greater than one. Although both distinctive shape and rectangular
outline symbols are shown, the distinctive shape OR gate symbol is used in this textbook.

A A—(21
X — X
B B —

(a) Distinctive shape (b) Rectangular outline with the
OR (= 1) qualifying symbol

FIGURE 3-18 Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE
Std. 91-1984/Std. 91a-1991).

Operation of an OR Gate

An OR gate produces a HIGH on the output when any of the inputs is HIGH. The output is
LOW only when all of the inputs are LOW. Therefore, an OR gate determines when one or
more of its inputs are HIGH and produces a HIGH on its output to indicate this condition.
The inputs of the 2-input OR gate in Figure 3-18 are labeled A and B, and the output is
labeled X. The operation of the gate can be stated as follows:

For a 2-input OR gate, output X is HIGH when either input A or input B is HIGH,
or when both A and B are HIGH; X is LOW only when both A and B are LOW.

The HIGH level is the active or asserted output level for the OR gate. Figure 3—19 illus-
trates the operation for a 2-input OR gate for all four possible input combinations.

LOW (0 LOW (0
():D—LOW(O) © :D—HIGH(U
LOW (0) HIGH (1)
HIGH (1) :Di HIGH (1) :Di
HIGH (1) HIGH (1)
LOW (0) HIGH (1)

FIGURE 3-19 All possible logic levels for a 2-input OR gate. Open file FO03-19 to verify
OR gate operation.

The OR Gate

OR Gate Truth Table

The operation of a 2-input OR gate is described in Table 3-5. This truth table can be m
expanded for any number of inputs; but regardless of the number of inputs, the output is ;
HIGH when one or more of the inputs are HIGH. -g;tg etl?eb le for a 2-input

Inputs Output
X

OR Gate Operation with Waveform Inputs

LN
=]

Now let’s look at the operation of an OR gate with pulse waveform inputs, keeping in
mind its logical operation. Again, the important thing in the analysis of gate operation
with pulse waveforms is the time relationship of all the waveforms involved. For example,
in Figure 3-20, inputs A and B are both HIGH (1) during time interval 7;, making output X
HIGH (1). During time interval t,, input A is LOW (0), but because input B is HIGH (1), the
output is HIGH (1). Both inputs are LOW (0) during time interval #3, so there is a LOW 1 = HIGH, 0 = LOW
(0) output during this time. During time interval 74, the output is HIGH (1) because input

A is HIGH (1).

_—— O O
_— o = O
—_= = O

[S’II N
e

0

L

FIGURE 3-20 Example of OR gate operation with a timing diagram showing input and
output time relationships.

In this illustration, we have applied the truth table operation of the OR gate to each of
the time intervals during which the levels are nonchanging. Examples 3-7 through 3-9
further illustrate OR gate operation with waveforms on the inputs.

If the two input waveforms, A and B, in Figure 3-21 are applied to the OR gate, what is
the resulting output waveform?

Input A

P _,_! T T A D_
[[B X
Input B I—I

Output X I | I | I | I | ~

N
When either input or both inputs are HIGH,
the output is HIGH.

FIGURE 3-21

Logic Gates

Solution

The output waveform X of a 2-input OR gate is HIGH when either or both input wave-
forms are HIGH as shown in the timing diagram. In this case, both input waveforms are
never HIGH at the same time.

Related Problem

Determine the output waveform and show the timing diagram if input A is changed
such that it is HIGH from the beginning of the existing first pulse to the end of the exist-
ing second pulse.

EXAMPLE 3-8

For the two input waveforms, A and B, in Figure 3-22, show the output waveform with
its proper relation to the inputs.

R e T
Inputs B_;_i—i—i—i i i i B:D_X
Output XJ! — — i_i i_
FIGURE 3-22

Solution

When either or both input waveforms are HIGH, the output is HIGH as shown by the
output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if the middle pulse of
input A is replaced by a LOW level.

For the 3-input OR gate in Figure 3-23, determine the output waveform in proper time
relation to the inputs.

AT T T 11 1

B

C

FIGURE 3-23

Solution

The output is HIGH when one or more of the input waveforms are HIGH as indicated
by the output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input C is always LOW.

Logic Expressions for an OR Gate

The logical OR function of two variables is represented mathematically by a + between
the two variables, for example, A + B. The plus sign is read as “OR.”

Addition in Boolean algebra involves variables whose values are either binary 1 or
binary 0. The basic rules for Boolean addition are as follows:

0+0=
0+1=
1+0=
1+1=

—_ = = O

Boolean addition is the same as the OR function.

Notice that Boolean addition differs from binary addition in the case where two 1s are
added. There is no carry in Boolean addition.

The operation of a 2-input OR gate can be expressed as follows: If one input variable is
A, if the other input variable is B, and if the output variable is X, then the Boolean expres-
sion is

X=A+B

Figure 3-24(a) shows the OR gate logic symbol with two input variables and the output
variable labeled.

[Soe N
~
Il
>
+
™
(9]-°1S

£>—X:A+B+C

(a) (b) (©

FIGURE 3-24 Boolean expressions for OR gates with two, three, and four inputs.

(wlg]-rle

To extend the OR expression to more than two input variables, a new letter is used for
each additional variable. For instance, the function of a 3-input OR gate can be expressed
as X = A + B + C. The expression for a 4-input OR gate can be written as X = A +
B + C + D, and so on. Parts (b) and (c) of Figure 3—24 show OR gates with three and four
input variables, respectively.

OR gate operation can be evaluated by using the Boolean expressions for the output X
by substituting all possible combinations of 1 and 0 values for the input variables, as shown
in Table 36 for a 2-input OR gate. This evaluation shows that the output X of an OR gate
is a 1 (HIGH) when any one or more of the inputs are 1 (HIGH). A similar analysis can be
extended to OR gates with any number of input variables.

An Application

A simplified portion of an intrusion detection and alarm system is shown in Figure
3-25. This system could be used for one room in a home—a room with two windows
and a door. The sensors are magnetic switches that produce a HIGH output when open
and a LOW output when closed. As long as the windows and the door are secured,
the switches are closed and all three of the OR gate inputs are LOW. When one of the
windows or the door is opened, a HIGH is produced on that input to the OR gate and
the gate output goes HIGH. It then activates and latches an alarm circuit to warn of the
intrusion.

The OR Gate

When variables are separated by +,
they are ORed.

%—X:AHHCJJ

InfoNote

A mask operation that is used in
computer programming to selec-
tively make certain bits in a data
byte equal to 1 (called setting) while
not affecting any other bit is done
with the OR operation. A mask is
used that contains a 1 in any posi-
tion where a data bit is to be set. For
example, if you want to force the
sign bit in an 8-bit signed number
to equal 1, but leave all other bits
unchanged, you can OR the data
byte with the mask 10000000.

TABLE 3-6

A B A+B=X

0 0 0
0 1 0
1 0 1
1 1 1

+ o+ 4+

0
1
0
1

—_— = O

Logic Gates

Open door/window
sensors

HIGH = Open
LOW = Closed

mi

HIGH activates

alarm.
[D —Y \ Alarm
_L/ circuit

[Di

FIGURE 3-25 A simplified intrusion detection system using an OR gate.

1. When is the output of an OR gate HIGH?
2. When is the output of an OR gate LOW?
3. Describe the truth table for a 3-input OR gate.

3-4 The NAND Gate

The NAND gate is the same as the
AND date except the output is
inverted.

The NAND gate is a popular logic element because it can be used as a universal gate; that
is, NAND gates can be used in combination to perform the AND, OR, and inverter opera-
tions. The universal property of the NAND gate will be examined thoroughly in Chapter 5.

After completing this section, you should be able to

+ Identify a NAND gate by its distinctive shape symbol or by its rectangular outline
symbol

+ Describe the operation of a NAND gate

+ Develop the truth table for a NAND gate with any number of inputs

¢ Produce a timing diagram for a NAND gate with any specified input waveforms
+ Write the logic expression for a NAND gate with any number of inputs

+ Describe NAND gate operation in terms of its negative-OR equivalent

+ Discuss examples of NAND gate applications

The term NAND is a contraction of NOT-AND and implies an AND function with a
complemented (inverted) output. The standard logic symbol for a 2-input NAND gate and
its equivalency to an AND gate followed by an inverter are shown in Figure 3-26(a), where
the symbol = means equivalent to. A rectangular outline symbol is shown in part (b).

A — A — A— &
:Do—x = X S
B — B — B —

(a) Distinctive shape, 2-input NAND gate and its (b) Rectangular outline, 2-input NAND
NOT/AND equivalent gate with polarity indicator

FIGURE 3-26 Standard NAND gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

The NAND Gate

Operation of a NAND Gate

A NAND gate produces a LOW output only when all the inputs are HIGH. When any
of the inputs is LOW, the output will be HIGH. For the specific case of a 2-input NAND
gate, as shown in Figure 3-26 with the inputs labeled A and B and the output labeled X, the
operation can be stated as follows:

For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH; m

X is HIGH when either A or B is LOW, or when both A and B are LOW. Truth table for a 2-input

. . . . NAND gate.
This operation is opposite that of the AND in terms of the output level. In a NAND gate,

the LOW level (0) is the active or asserted output level, as indicated by the bubble on the Inputs Output
output. Figure 3-27 illustrates the operation of a 2-input NAND gate for all four input

A B X
combinations, and Table 3-7 is the truth table summarizing the logical operation of the
2-input NAND gate. 0 0 1
0 1 1
1 0 1
1 1 0

1 = HIGH, 0 = LOW.

LOW (0) — LOW (0) —
© :Do— HIGH (1) © :)o— HIGH (1)
LOW (0) — HIGH (1) —
HIGH (1) HIGH (1)

HIGH (1) HIGH (1) LOW (0)

LOW (0)
FIGURE 3-27 Operation of a 2-input NAND gate. Open file F03-27 to verify NAND gate MultiSim
operation.

S

NAND Gate Operation with Waveform Inputs

Now let’s look at the pulse waveform operation of a NAND gate. Remember from the truth
table that the only time a LOW output occurs is when all of the inputs are HIGH.

If the two waveforms A and B shown in Figure 3-28 are applied to the NAND gate
inputs, determine the resulting output waveform.

| o A — X
| [B }07\
| [—

B _,_‘_E_‘—,_E_E_‘_ Bubble indicates
| [
| [
| [
| [

an active-LOW
output.

— —
A and B are both HIGH during these
four time intervals; therefore, X is LOW.

FIGURE 3-28

Solution

Output waveform X is LOW only during the four time intervals when both input wave-
forms A and B are HIGH as shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform B is
inverted.

Logic Gates

NAND Negative-OR

FIGURE 3-30 ANSI/IEEE
standard symbols representing
the two equivalent operations of
a NAND gate.

Show the output waveform for the 3-input NAND gate in Figure 3-29 with its proper
time relationship to the inputs.

S S
P T [5 —] ¥

x L]

FIGURE 3-29

Solution

The output waveform X is LOW only when all three input waveforms are HIGH as
shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform A is
inverted.

Negative-OR Equivalent Operation of a NAND Gate

Inherent in a NAND gate’s operation is the fact that one or more LOW inputs produce a
HIGH output. Table 3-7 shows that output X is HIGH (1) when any of the inputs, A and
B, is LOW (0). From this viewpoint, a NAND gate can be used for an OR operation that
requires one or more LOW inputs to produce a HIGH output. This aspect of NAND opera-
tion is referred to as negative-OR. The term negative in this context means that the inputs
are defined to be in the active or asserted state when LOW.

For a 2-input NAND gate performing a negative-OR operation, output X is HIGH
when either input A or input B is LOW, or when both A and B are LOW.

When a NAND gate is used to detect one or more LOWS on its inputs rather than all
HIGHs, it is performing the negative-OR operation and is represented by the standard
logic symbol shown in Figure 3—30. Although the two symbols in Figure 3—30 represent
the same physical gate, they serve to define its role or mode of operation in a particular
application, as illustrated by Examples 3—12 and 3—13.

Two tanks store certain liquid chemicals that are required in a manufacturing process. Each
tank has a sensor that detects when the chemical level drops to 25% of full. The sensors
produce a HIGH level of 5 V when the tanks are more than one-quarter full. When the vol-
ume of chemical in a tank drops to one-quarter full, the sensor puts out a LOW level of O V.

It is required that a single green light-emitting diode (LED) on an indicator panel
show when both tanks are more than one-quarter full. Show how a NAND gate can be
used to implement this function.

Solution

Figure 3-31 shows a NAND gate with its two inputs connected to the tank level sensors
and its output connected to the indicator panel. The operation can be stated as follows:
If tank A and tank B are above one-quarter full, the LED is on.

+V
Tank A
Level sensor
HIGH N
LOW Green light
HIGH indicates both
tanks are
greater than
Tank B 1/4 full.

Level sensor

FIGURE 3-31

As long as both sensor outputs are HIGH (5 V), indicating that both tanks are more
than one-quarter full, the NAND gate output is LOW (0 V). The green LED circuit is
connected so that a LOW voltage turns it on. The resistor limits the LED current.

Related Problem

How can the circuit of Figure 3-31 be modified to monitor the levels in three tanks
rather than two?

For the process described in Example 3—12 it has been decided to have a red LED dis-
play come on when at least one of the tanks falls to the quarter-full level rather than
have the green LED display indicate when both are above one quarter. Show how this
requirement can be implemented.

Solution

Figure 3-32 shows a NAND gate operating as a negative-OR gate to detect the occurrence
of at least one LOW on its inputs. A sensor puts out a LOW voltage if the volume in its tank
goes to one-quarter full or less. When this happens, the gate output goes HIGH. The red
LED circuit in the panel is connected so that a HIGH voltage turns it on. The operation can
be stated as follows: If tank A or tank B or both are below one-quarter full, the LED is on.

Tank A
HIGH
HIGH
LOW Red light
> indicates
Tank B one or both
tanks are less
than 1/4 full.

FIGURE 3-32

The NAND Gate

Logic Gates

Notice that, in this example and in Example 3—12, the same 2-input NAND gate is
used, but in this example it is operating as a negative-OR gate and a different gate sym-
bol is used in the schematic. This illustrates the different way in which the NAND and
equivalent negative-OR operations are used.

Related Problem

How can the circuit in Figure 3—32 be modified to monitor four tanks rather than two?

For the 4-input NAND gate in Figure 3-33, operating as a negative-OR gate, determine
the output with respect to the inputs.

Bubbles indicate

active-LOW inputs.
a1 L] \

= el

E

Saw

.

x UL LI

FIGURE 3-33

Solution

The output waveform X is HIGH any time an input waveform is LOW as shown in the
timing diagram.

Related Problem

Determine the output waveform if input waveform A is inverted before it is applied to
the gate.

Logic Expressions for a NAND Gate

A bar over a variable or variables The Boolean expression for the output of a 2-input NAND gate is
indicates an inversion. —
X = AB
This expression says that the two input variables, A and B, are first ANDed and then
_ complemented, as indicated by the bar over the AND expression. This is a description
A B AB = X in equation form of the operation of a NAND gate with two inputs. Evaluating this
0 0 0-0=0=1 cxpression for all possible values of the two input variables, you get the results shown
0 1 0-1=0=1 IinTable3-3.
1 0 1-0=0=1 Once an expression is determined for a given logic function, that function can be evalu-
1 1 1-1=71=g¢ ated for all possible values of the variables. The evaluation tells you exactly what the

output of the logic circuit is for each of the input conditions, and it therefore gives you
a complete description of the circuit’s logic operation. The NAND expression can be
extended to more than two input variables by including additional letters to represent the
other variables.

The NOR Gate

SECTION 3-4 CHECKUP

1. When is the output of a NAND gate LOW?
2. When is the output of a NAND gate HIGH?

3. Describe the functional differences between a NAND gate and a negative-OR gate.
Do they both have the same truth table?

4. Write the output expression for a NAND gate with inputs A, B, and C.

3-5 The NOR Gate

The NOR gate, like the NAND gate, is a useful logic element because it can also be used
as a universal gate; that is, NOR gates can be used in combination to perform the AND,
OR, and inverter operations. The universal property of the NOR gate will be examined
thoroughly in Chapter 5.

After completing this section, you should be able to

+ Identify a NOR gate by its distinctive shape symbol or by its rectangular outline
symbol

¢ Describe the operation of a NOR gate

+ Develop the truth table for a NOR gate with any number of inputs

¢ Produce a timing diagram for a NOR gate with any specified input waveforms
+ Write the logic expression for a NOR gate with any number of inputs

+ Describe NOR gate operation in terms of its negative-AND equivalent

+ Discuss examples of NOR gate applications

The term NOR is a contraction of NOT-OR and implies an OR function with an inverted = The NOR is the same as the OR
(complemented) output. The standard logic symbol for a 2-input NOR gate and its equiva- except the output is inverted.
lent OR gate followed by an inverter are shown in Figure 3-34(a). A rectangular outline
symbol is shown in part (b).

A A A — 5
X = X S X
B B B —

(a) Distinctive shape, 2-input NOR gate and its NOT/OR (b) Rectangular outline, 2-input
equivalent NOR gate with polarity indicator

FIGURE 3-34 Standard NOR gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

Operation of a NOR Gate

A NOR gate produces a LOW output when any of its inputs is HIGH. Only when all of its
inputs are LOW is the output HIGH. For the specific case of a 2-input NOR gate, as shown
in Figure 3-34 with the inputs labeled A and B and the output labeled X, the operation can
be stated as follows:

For a 2-input NOR gate, output X is LOW when either input A or input B is
HIGH, or when both A and B are HIGH; X is HIGH only when both A and B are
LOW.

Logic Gates

MultiSim
e

TABLE 3-9

Truth table for a 2-input
NOR gate.

Inputs Output
A B X
0 0 1
0 1 0
1 0 0
1 1 0

1 = HIGH, 0 = LOW.

LOW (0) LOW (0)

HIGH (1) LOW (0)
LOW (0) HIGH (1)
HIGH (1) HIGH (1)

LOW (0) LOW (0)
LOW (0) HIGH (1)

FIGURE 3-35 Operation of a 2-input NOR gate. Open file F03-35 to verify NOR gate
operation.

This operation results in an output level opposite that of the OR gate. In a NOR gate, the
LOW output is the active or asserted output level as indicated by the bubble on the output.
Figure 3-35 illustrates the operation of a 2-input NOR gate for all four possible input com-
binations, and Table 3-9 is the truth table for a 2-input NOR gate.

NOR Gate Operation with Waveform Inputs

The next two examples illustrate the operation of a NOR gate with pulse waveform inputs.
Again, as with the other types of gates, we will simply follow the truth table operation to
determine the output waveforms in the proper time relationship to the inputs.

If the two waveforms shown in Figure 3-36 are applied to a NOR gate, what is the
resulting output waveform?

Al T
A
1 b

B

L L

FIGURE 3-36

Solution

Whenever any input of the NOR gate is HIGH, the output is LOW as shown by the
output waveform X in the timing diagram.

Related Problem

Invert input B and determine the output waveform in relation to the inputs.

Show the output waveform for the 3-input NOR gate in Figure 3-37 with the proper
time relation to the inputs.

)

x| [

FIGURE 3-37

Solution

The output X is LOW when any input is HIGH as shown by the output waveform X in
the timing diagram.

Related Problem

With the B and C inputs inverted, determine the output and show the timing diagram.

Negative-AND Equivalent Operation of the NOR Gate

A NOR gate, like the NAND, has another aspect of its operation that is inherent in the way
it logically functions. Table 3-9 shows that a HIGH is produced on the gate output only
when all of the inputs are LOW. From this viewpoint, a NOR gate can be used for an AND
operation that requires all LOW inputs to produce a HIGH output. This aspect of NOR
operation is called negative-AND. The term negative in this context means that the inputs
are defined to be in the active or asserted state when LOW.

For a 2-input NOR gate performing a negative-AND operation, output X is HIGH
only when both inputs A and B are LOW.

When a NOR gate is used to detect all LOWSs on its inputs rather than one or more
HIGHEs, it is performing the negative-AND operation and is represented by the standard
symbol in Figure 3-38. Remember that the two symbols in Figure 3—-38 represent the same
physical gate and serve only to distinguish between the two modes of its operation. The
following three examples illustrate this.

A device is needed to indicate when two LOW levels occur simultaneously on its inputs
and to produce a HIGH output as an indication. Specify the device.

Solution

A 2-input NOR gate operating as a negative-AND gate is required to produce a HIGH
output when both inputs are LOW, as shown in Figure 3-39.

LOW
HIGH
LOW

FIGURE 3-39

Related Problem

A device is needed to indicate when one or two HIGH levels occur on its inputs and to
produce a LOW output as an indication. Specify the device.

EXAMPLE 3-18

As part of an aircraft’s functional monitoring system, a circuit is required to indicate the sta-
tus of the landing gears prior to landing. A green LED display turns on if all three gears are
properly extended when the “gear down” switch has been activated in preparation for land-
ing. A red LED display turns on if any of the gears fail to extend properly prior to landing.
When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is
retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

Solution

Power is applied to the circuit only when the “gear down” switch is activated. Use a NOR
gate for each of the two requirements as shown in Figure 3—40. One NOR gate operates as
a negative-AND to detect a LOW from each of the three landing gear sensors. When all
three of the gate inputs are LOW, the three landing gears are properly extended and the

The NOR Gate

) o—="1—
- —

NOR Negative-AND
FIGURE 3-38 Standard
symbols representing the two

equivalent operations of a
NOR gate.

Logic Gates

resulting HIGH output from the negative-AND gate turns on the green LED display. The
other NOR gate operates as a NOR to detect if one or more of the landing gears remain
retracted when the “gear down” switch is activated. When one or more of the landing
gears remain retracted, the resulting HIGH from the sensor is detected by the NOR gate,
which produces a LOW output to turn on the red LED warning display.

Landing gear sensors

Extended = LOW

Retracted = HIGH N Red LED

N Gear retracted

E/ \
_7 »)N
e —
| 4 — O L
L—9
] d
Green LED
S All gear extended
FIGURE 3-40

Related Problem

What type of gate should be used to detect if all three landing gears are retracted after
takeoff, assuming a LOW output is required to activate an LED display?

When driving a load such as an LED with a logic gate, consult the manufacturer’s data sheet for
maximum drive capabilities (output current). A regular IC logic gate may not be capable of handling
the current required by certain loads such as some LEDs. Logic gates with a buffered output, such
as an open-collector (OC) or open-drain (OD) output, are available in many types of IC logic gate
configurations. The output current capability of typical IC logic gates is limited to the wA or relatively
low mA range. For example, standard TTL can handle output currents up to 16 mA but only when the
output is LOW. Most LEDs require currents in the range of about 10 mA to 50 mA.

For the 4-input NOR gate operating as a negative-AND in Figure 3-41, determine the
output relative to the inputs.
N
| |
B : A — 0
=Dy
|
C | D —O
| |
bl | ﬁ
L
L
X J
FIGURE 3-41

The Exclusive-OR and Exclusive-NOR Gates

Solution

Any time all of the input waveforms are LOW, the output is HIGH as shown by output
waveform X in the timing diagram.

Related Problem

Determine the output with input D inverted and show the timing diagram.

Logic Expressions for a NOR Gate

A B A

+
=
[
B

The Boolean expression for the output of a 2-input NOR gate can be written as

X=A+B

o
J’_

=
Il

This equation says that the two input variables are first ORed and then complemented, as
indicated by the bar over the OR expression. Evaluating this expression, you get the results
shown in Table 3—10. The NOR expression can be extended to more than two input vari-
ables by including additional letters to represent the other variables.

+
o
Il

o
+
—
Il
=l == Ol
Il

0 0
0 1
1 0
1 1

—
+
—
Il
Il
S O O =

SECTION 3-5 CHECKUP

1. When is the output of a NOR gate HIGH?
2. When is the output of a NOR gate LOW?

3. Describe the functional difference between a NOR gate and a negative-AND gate.
Do they both have the same truth table?

4. Write the output expression for a 3-input NOR with input variables A, B, and C.

3-6 The Exclusive-OR and Exclusive-NOR Gates

Exclusive-OR and exclusive-NOR gates are formed by a combination of other gates already
discussed, as you will see in Chapter 5. However, because of their fundamental importance
in many applications, these gates are often treated as basic logic elements with their own
unique symbols.

After completing this section, you should be able to

¢ Identify the exclusive-OR and exclusive-NOR gates by their distinctive shape
symbols or by their rectangular outline symbols

+ Describe the operations of exclusive-OR and exclusive-NOR gates
¢ Show the truth tables for exclusive-OR and exclusive-NOR gates

¢ Produce a timing diagram for an exclusive-OR or exclusive-NOR gate with any
specified input waveforms InfoNote

+ Discuss examples of exclusive-OR and exclusive-NOR gate applications Exclusive-OR gates connected to

form an adder circuit allow a proc-

essor to perform addition, subtrac-
The Exclusive-OR Gate tion, multiplication, and division in
its Arithmetic Logic Unit (ALU). An
exclusive-OR gate combines basic
AND, OR, and NOT logic.

Standard symbols for an exclusive-OR (XOR for short) gate are shown in Figure 3—42.
The XOR gate has only two inputs. The exclusive-OR gate performs modulo-2 addition
(introduced in Chapter 2). The output of an exclusive-OR gate is HIGH only when the two

Logic Gates

For an exclusive-OR gate, opposite
inputs make the output HIGH.

Truth table for an exclusive-
OR gate.

Inputs Output
A B X
0 0 0
0 1 1
1 0 1
1 1 0

MultiSim
-

A A =1
D e B o

(a) Distinctive shape (b) Rectangular outline

FIGURE 3-42 Standard logic symbols for the exclusive-OR gate.

inputs are at opposite logic levels. This operation can be stated as follows with reference to
inputs A and B and output X:

For an exclusive-OR gate, output X is HIGH when input A is LOW and input B is
HIGH, or when input A is HIGH and input B is LOW; X is LOW when A and B
are both HIGH or both LOW.

The four possible input combinations and the resulting outputs for an XOR gate are
illustrated in Figure 3—43. The HIGH level is the active or asserted output level and occurs
only when the inputs are at opposite levels. The operation of an XOR gate is summarized
in the truth table shown in Table 3—11.

LOW (0) LOW (0)

LOW (0) w LOW () HIGH (1) w HIGH (1)
HIGH () :D— HIGH (1) oM jD* LOW (0)
LOW (0) (HIGH (1) (

FIGURE 3-43 All possible logic levels for an exclusive-OR gate. Open file F03-43 to
verify XOR gate operation.

A certain system contains two identical circuits operating in parallel. As long as both are
operating properly, the outputs of both circuits are always the same. If one of the circuits
fails, the outputs will be at opposite levels at some time. Devise a way to monitor and
detect that a failure has occurred in one of the circuits.

Solution

The outputs of the circuits are connected to the inputs of an XOR gate as shown in
Figure 3-44. A failure in either one of the circuits produces differing outputs, which
cause the XOR inputs to be at opposite levels. This condition produces a HIGH on the
output of the XOR gate, indicating a failure in one of the circuits.

. HIGH
Circuit A

HIGH (indicates failure)

Circuit B LOW

FIGURE 3-44

Related Problem

Will the exclusive-OR gate always detect simultaneous failures in both circuits of
Figure 3—447? If not, under what condition?

The Exclusive-OR and Exclusive-NOR Gates

The Exclusive-NOR Gate

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Figure 3—45. Like the
XOR gate, an XNOR has only two inputs. The bubble on the output of the XNOR symbol
indicates that its output is opposite that of the XOR gate. When the two input logic levels
are opposite, the output of the exclusive-NOR gate is LOW. The operation can be stated as
follows (A and B are inputs, X is the output):

For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is
HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both

HIGH or both LOW.
A A =1
P —x
(a) Distinctive shape (b) Rectangular outline

FIGURE 3-45 Standard logic symbols for the exclusive-NOR gate.
The four possible input combinations and the resulting outputs for an XNOR gate are ~ Truth table for an exclusive-

shown in Figure 3—46. The operation of an XNOR gate is summarized in Table 3-12. NOR gate.

Notice that the output is HIGH when the same level is on both inputs.

Inputs Output
A B X
LOW (0) LOW (0)
w HIGH (1) :)Do— LOW (0)
LOW (0) HIGH (1) 0 0 1
0 1 0
1 0 0
HIGH (1) w HIGH (1) w 1 1 1
LOW (0) HIGH (1)
LOW (0) HIGH (1)
FIGURE 3-46 All possible logic levels for an exclusive-NOR gate. Open file FO03-46 MultiSim
to verify XNOR gate operation. 4

Operation with Waveform Inputs

As we have done with the other gates, let’s examine the operation of XOR and XNOR
gates with pulse waveform inputs. As before, we apply the truth table operation during
each distinct time interval of the pulse waveform inputs, as illustrated in Figure 3-47 for
an XOR gate. You can see that the input waveforms A and B are at opposite levels during
time intervals 7, and #4. Therefore, the output X is HIGH during these two times. Since both
inputs are at the same level, either both HIGH or both LOW, during time intervals #; and #3,
the output is LOW during those times as shown in the timing diagram.

%
I
o
- |
o
o o>
y
<

X

I____}______

FIGURE 3-47 Example of exclusive-OR gate operation with pulse waveform inputs.

Logic Gates

Determine the output waveforms for the XOR gate and for the XNOR gate, given the
input waveforms, A and B, in Figure 3—48.

[s D

XOR

XNOR

FIGURE 3-48

Solution

The output waveforms are shown in Figure 3—48. Notice that the XOR output is HIGH
only when both inputs are at opposite levels. Notice that the XNOR output is HIGH
only when both inputs are the same.

Related Problem
Determine the output waveforms if the two input waveforms, A and B, are inverted.

An Application

An exclusive-OR gate can be used as a two-bit modulo-2 adder. Recall from Chapter 2 that
the basic rules for binary addition are as follows: 0 + 0 = 0,0 + 1 = 1,1 + 0 = 1, and
1 + 1 = 10. An examination of the truth table for an XOR gate shows that its output is the
binary sum of the two input bits. In the case where the inputs are both 1s, the output is the
sum 0, but you lose the carry of 1. In Chapter 6 you will see how XOR gates are combined
to make complete adding circuits. Table 3—13 illustrates an XOR gate used as a modulo-2
adder. It is used in CRC systems to implement the division process that was described in
Chapter 2.

An XOR gate used to add two bits.

Input Bits Output (Sum)

A B >
0 0
1 1
1 0 1
1 1 0 (without

the 1 carry bit)

Programmable Logic

SECTION 3-6 CHECKUP
1. When is the output of an XOR gate HIGH?
2. When is the output of an XNOR gate HIGH?

3. How can you use an XOR gate to detect when two bits are different?

3-7 Programmable Logic

Programmable logic was introduced in Chapter 1. In this section, the basic concept of
the programmable AND array, which forms the basis for most programmable logic, is
discussed, and the major process technologies are covered. A programmable logic device
(PLD) is one that does not initially have a fixed-logic function but that can be programmed
to implement just about any logic design. As you have learned, two types of PLD are the
SPLD and CPLD. In addition to the PLD, the other major category of programmable logic
is the FPGA. Also, basic VHDL programming is introduced.

After completing this section, you should be able to
+ Describe the concept of a programmable AND array
+ Discuss various process technologies for programming a PLD
+ Discuss downloading a design to a programmable logic device
+ Discuss text entry and graphic entry as two methods for programmable logic design
+ Explain in-system programming

+ Write VHDL descriptions of logic gates

The AND Array

Most types of PLDs use some form of AND array. Basically, this array consists of AND
gates and a matrix of interconnections with a programmable link at each cross point, as
shown in Figure 3—49(a). Programmable links allow a connection between a row line and
a column line in the interconnection matrix to be opened or left intact. For each input to an
AND gate, only one programmable link is left intact in order to connect the desired variable
to the gate input. Figure 3—49(b) illustrates an array after it has been programmed.

Programmable link

X, =AB

X,=AB

X3 [X3 =AB

slsls
slsle

(a) Unprogrammed (b) Programmed

FIGURE 3-49 Concept of a programmable AND array.

Logic Gates

Show the AND array in Figure 3-49(a) programmed for the following outputs:
Xl - AB, X2 - AB, and X3 = AB

Solution
See Figure 3-50.

FIGURE 3-50

Related Problem

How many rows, columns, and AND gate inputs are required for three input variables
in a 3-AND gate array?

Programmable Link Process Technologies

A process technology is the physical method by which a link is made. Several different
process technologies are used for programmable links in PLDs.

Fuse Technology

This was the original programmable link technology. It is still used in some SPLDs. The fuse
is a metal link that connects a row and a column in the interconnection matrix. Before pro-
gramming, there is a fused connection at each intersection. To program a device, the selected
fuses are opened by passing a current through them sufficient to “blow” the fuse and break the
connection. The intact fuses remain and provide a connection between the rows and columns.
The fuse link is illustrated in Figure 3—51. Programmable logic devices that use fuse technol-
ogy are one-time programmable (OTP).

v |\‘ . | AN
(a) Fuse intact before (b) Programming (c) Fuse open after
programming current programming

FIGURE 3-51 The programmable fuse link.

Antifuse Technology

An antifuse programmable link is the opposite of a fuse link. Instead of breaking the con-
nection, a connection is made during programming. An antifuse starts out as an open circuit

whereas the fuse starts out as a short circuit. Before programming, there are no connec-
tions between the rows and columns in the interconnection matrix. An antifuse is basically
two conductors separated by an insulator. To program a device with antifuse technology,
a programmer tool applies a sufficient voltage across selected antifuses to break down the
insulation between the two conductive materials, causing the insulator to become a low-
resistance link. The antifuse link is illustrated in Figure 3-52. An antifuse device is also a
one-time programmable (OTP) device.

Contacts
+
< Insulator
(a) Antifuse is open before (b) Programming voltage (c) Antifuse is effectively
programming. breaks down insulation shorted after programming.

layer to create contact.

FIGURE 3-52 The programmable antifuse link.

EPROM Technology

In certain programmable logic devices, the programmable links are similar to the memory
cells in EPROMs (electrically programmable read-only memories). This type of PLD is pro-
grammed using a special tool known as a device programmer. The device is inserted into
the programmer, which is connected to a computer running the programming software. Most
EPROM-based PLDs are one-time programmable (OTP). However, those with windowed
packages can be erased with UV (ultraviolet) light and reprogrammed using a standard PLD
programming fixture. EPROM process technology uses a special type of MOS transistor,
known as a floating-gate transistor, as the programmable link. The floating-gate device utilizes
a process called Fowler-Nordheim tunneling to place electrons in the floating-gate structure.
In a programmable AND array, the floating-gate transistor acts as a switch to connect the
row line to either a HIGH or a LOW, depending on the input variable. For input variables
that are not used, the transistor is programmed to be permanently off (open). Figure 3-53
shows one AND gate in a simple array. Variable A controls the state of the transistor in the
first column, and variable B controls the transistor in the third column. When a transistor is
off, like an open switch, the input line to the AND gate is at +V (HIGH). When a transistor
is on, like a closed switch, the input line is connected to ground (LOW). When variable A

Transistor turned on or off Transistor permanently
by state of input A programmed off’

A \ a B B
+V —Wy

e

4

3 |||—\0—0

L
[

+V —Wy

-l

|||—o\o—<n |||—o\o—<»
|||—o\o—o |||—o\o—o

oot)

Transistor turned on or off
by state of input B

FIGURE 3-53 A simple AND array with EPROM technology. Only one gate in the array is
shown for simplicity.

Programmable Logic

Logic Gates

InfoNote

Most system-level designs incor-
porate a variety of devices such
as RAMs, ROMs, controllers, and
processors that are interconnected
by a large quantity of general-
purpose logic devices often
referred to as “glue” logic. PLDs
have come to replace many of the
SSl and MSI “glue” devices. The
use of PLDs provides a reduction
in package count.

For example, in memory
systems, PLDs can be used for
memory address decoding and to
generate memory write signals as
well as other functions.

or B is 0 (LOW), the transistor is on, keeping the input line to the AND gate LOW. When A
or B is 1 (HIGH), the transistor is off, keeping the input line to the AND gate HIGH.

EEPROM Technology

Electrically erasable programmable read-only memory technology is similar to EPROM
because it also uses a type of floating-gate transistor in E?CMOS cells. The difference
is that EEPROM can be erased and reprogrammed electrically without the need for UV
light or special fixtures. An E>CMOS device can be programmed after being installed on a
printed circuit board (PCB), and many can be reprogrammed while operating in a system.
This is called in-system programming (ISP). Figure 3-53 can also be used as an example
to represent an AND array with EEPROM technology.

Flash Technology

Flash technology is based on a single transistor link and is both nonvolatile and reprogram-
mable. Flash elements are a type of EEPROM but are faster and result in higher density
devices than the standard EEPROM link. A detailed discussion of the flash memory element
can be found in Chapter 11.

SRAM Technology

Many FPGAs and some CPLDs use a process technology similar to that used in SRAMs
(static random-access memories). The basic concept of SRAM-based programmable logic
arrays is illustrated in Figure 3-54(a). A SRAM-type memory cell is used to turn a transis-
tor on or off to connect or disconnect rows and columns. For example, when the memory
cell contains a 1 (green), the transistor is on and connects the associated row and column
lines, as shown in part (b). When the memory cell contains a O (blue), the transistor is off
so there is no connection between the lines, as shown in part (c).

A A B B
SRAM SRAM SRAM SRAM
cell cell cell cell
SRAM SRAM SRAM SRAM
cell cell cell cell

(a) SRAM-based programmable array

SRAM
cell 1

I

SRAM
cell O

¥

(b) Transistor on

(c) Transistor off

FIGURE 3-54 Concept of an AND array with SRAM technology.

¢

SRAM technology is different from the other process technologies discussed because it
is a volatile technology. This means that a SRAM cell does not retain data when power is
turned off. The programming data must be loaded into a memory; and when power is turned
on, the data from the memory reprograms the SRAM-based PLD.

The fuse, antifuse, EPROM, EEPROM, and flash process technologies are nonvolatile,
so they retain their programming when the power is off. A fuse is permanently open, an
antifuse is permanently closed, and floating-gate transistors used in EPROM and EEPROM-
based arrays can retain their on or off state indefinitely.

Device Programming

The general concept of programming was introduced in Chapter 1, and you have seen
how interconnections can be made in a simple array by opening or closing the program-
mable links. SPLDs, CPLDs, and FPGAs are programmed in essentially the same way.
The devices with OTP (one-time programmable) process technologies (fuse, antifuse, or
EPROM) must be programmed with a special hardware fixture called a programmer. The
programmer is connected to a computer by a standard interface cable. Development soft-
ware is installed on the computer, and the device is inserted into the programmer socket.
Most programmers have adapters that allow different types of packages to be plugged in.

EEPROM, flash, and SRAM-based programmable logic devices are reprogrammable
and can be reconfigured multiple times. Although a device programmer can be used for
this type of device, it is generally programmed initially on a PLD development board, as
shown in Figure 3-55. A logic design can be developed using this approach because any
necessary changes during the design process can be readily accomplished by simply repro-
gramming the PLD. A PLD to which a software logic design can be downloaded is called a
target device. In addition to the target device, development boards typically provide other
circuitry and connectors for interfacing to the computer and other peripheral circuits. Also,
test points and display devices for observing the operation of the programmed device are
included on the development board.

PLD development board

Programmable logic device

FIGURE 3-55 Programming setup for reprogrammable logic devices. (Photo courtesy of
Digilent, Inc.)

Design Entry

As you learned in Chapter 1, design entry is where the logic design is programmed into the
development software. The two main ways to enter a design are by text entry or graphic
(schematic) entry, and manufacturers of programmable logic provide software packages to
support their devices that allow for both methods.

Programmable Logic

P =)

Logic Gates

Text entry in most development software, regardless of the manufacturer, supports two
or more hardware development languages (HDLs). For example, all software packages
support both IEEE standard HDLs, VHDL, and Verilog. Some software packages also sup-
port certain proprietary languages such as AHDL.

In graphic (schematic) entry, logic symbols such as AND gates and OR gates are
placed on the screen and interconnected to form the desired circuit. In this method you
use the familiar logic symbols, but the software actually converts each symbol and inter-
connections to a text file for the computer to use; you do not see this process. A simple
example of both a text entry screen and a graphic entry screen for an AND gate is shown
in Figure 3-56. As a general rule, graphic entry is used for less-complex logic circuits
and text entry, although it can also be used for very simple logic, is used for larger, more
complex implementation.

. Vhdilvhd |

enticty VHDL1 is=s
end entity VHDL1;
architecture ANDfunction of VHDL1 is

begin

end architecture ANDfunction;

port{f, B: in bit: X: out bit);

X <= A and B;

(a) VHDL text entry

(b) Equivalent graphic (schematic) entry

FIGURE 3-56 Examples of design entry of an AND gate.

In-System Programming (ISP)

Certain CPLDs and FPGAs can be programmed after they have been installed on a system
printed circuit board (PCB). After a logic design has been developed and fully tested on a
development board, it can then be programmed into a “blank” device that is already soldered
onto a system board in which it will be operating. Also, if a design change is required, the
device on the system board can be reconfigured to incorporate the design modifications.

In a production situation, programming a device on the system board minimizes handling
and eliminates the need for keeping stocks of preprogrammed devices. It also rules out the
possibility of wrong parts being placed in a product. Unprogrammed (blank) devices can

be kept in the warehouse and programmed on-board as needed. This minimizes the capital
a business needs for inventories and enhances the quality of its products.

JTAG

The standard established by the Joint Test Action Group is the commonly used name for
IEEE Std. 1149.1. The JTAG standard was developed to provide a simple method, called
boundary scan, for testing programmable devices for functionality as well as testing circuit
boards for bad connections—shorted pins, open pins, bad traces, and the like. Also, JTAG
has been used as a convenient way of configuring programmable devices in-system. As the
demand for field-upgradable products increases, the use of JTAG as a convenient way of
reprogramming CPLDs and FPGAs increases.

JTAG-compliant devices have internal dedicated hardware that interprets instructions
and data provided by four dedicated signals. These signals are defined by the JTAG stan-
dard to be TDI (Test Data In), TDO (Test Data Out), TMS (Test Mode Select), and TCK
(Test Clock). The dedicated JTAG hardware interprets instructions and data on the TDI and
TMS signals, and drives data out on the TDO signal. The TCK signal is used to clock the
process. A JTAG-compliant PLD is represented in Figure 3-57.

System PCB

JTAG-compliant PLD

TCK |
TDI
TDO \ J.TAfG hardware
: inside the PLD
interface T™MS

FIGURE 3-57 Simplified illustration of in-system programming via a JTAG interface.

Embedded Processor

Another approach to in-system programming is the use of an embedded microprocessor
and memory. The processor is embedded within the system along with the CPLD or FPGA
and other circuitry, and it is dedicated to the purpose of in-system configuration of the
programmable device.

As you have learned, SRAM-based devices are volatile and lose their programmed data
when the power is turned off. It is necessary to store the programming data in a PROM (pro-
grammable read-only memory), which is nonvolatile. When power is turned on, the embedded
processor takes control of transferring the stored data from the PROM to the CPLD or FPGA.

Also, an embedded processor is sometimes used for reconfiguration of a programmable
device while the system is running. In this case, design changes are done with software, and
the new data are then loaded into a PROM without disturbing the operation of the system. The
processor controls the transfer of the data to the device “on-the-fly” at an appropriate time.

VHDL Descriptions of Logic Gates

Hardware description languages (HDLs) differ from software programming languages because
HDLs include ways of describing logic connections and characteristics. An HDL implements
a logic design in hardware (PLD), whereas a software programming language, such as C or
BASIC, instructs existing hardware what to do. The two standard HDLs used for programming

Programmable Logic

Logic Gates

PLDs are VHDL and Verilog. Both of these HDLs have their advocates, but VHDL will be used
in this textbook. A VHDL tutorial is available on the website.

Figure 3-58 shows VHDL programs for gates described in this chapter. Two gates are
left as Checkup exercises. VHDL has an entity/architecture structure. The entity defines
the logic element and its inputs/outputs or ports; the architecture describes the logic oper-
ation. Keywords that are part of the VHDL syntax are shown bold for clarity.

D |
x T
B — B

X=A X =AB X=A+B
entity Inverter is entity ANDgate is entity ORgate is
port (A: in bit; X: out bit); port (A, B: in bit; X: out bit); port (A, B: in bit; X: out bit);
end entity Inverter; end entity ANDgate; end entity ORgate;
architecture NOTfunction of Inverter is architecture ANDfunction of ANDgate is architecture ORfunction of ORgate is
begin begin begin
X <=not A; X <= A and B; X <= A orB;
end architecture NOTfunction; end architecture ANDfunction; end architecture ORfunction;
(a) Inverter (b) AND gate (c) OR gate
A— A
B — X X
C— B
X =ABC X =AB +AB
entity NANDgate is entity XNORgate is
port (A, B, C: in bit; X: out bit); port (A, B: in bit; X: out bit);
end entity NANDgate; end entity XNORgate;
architecture NANDfunction of NANDgate is architecture XNORfunction of XNORgate is
begin begin
X <= A nand B nand C; X <= A xnor B;
end architecture NANDfunction; end architecture XNORfunction;
(d) NAND gate (e) XNOR gate

FIGURE 3-58 Logic gates described with VHDL.

SECTION 3-7 CHECKUP

1. List six process technologies used for programmable links in programmable logic.

2. What does the term volatile mean in relation to PLDs and which process technology
is volatile?

. What are two design entry methods for programming PLDs and FPGAs?
. Define JTAG.

. Write a VHDL description of a 3-input NOR gate.

. Write a VHDL description of an XOR gate.

A Ui A W

3-8 Fixed-Function Logic Gates

Fixed-function logic integrated circuits have been around for a long time and are avail-
able in a variety of logic functions. Unlike a PLD, a fixed-function IC comes with logic
functions that cannot be programmed in and cannot be altered. The fixed-function logic
is on a much smaller scale than the amount of logic that can be programmed into a PLD.
Although the trend in technology is definitely toward programmable logic, fixed-function
logic is used in specialized applications where PLDs are not the optimum choice. Fixed-

Fixed-Function Logic Gates

function logic devices are sometimes called “glue logic” because of their usefulness in
tying together larger units of logic such as PLDs in a system.

After completing this section, you should be able to
+ List common 74 series gate logic functions

+ List the major integrated circuit technologies and name some integrated circuit
families

+ Obtain data sheet information
* Define propagation delay time
* Define power dissipation

* Define unit load and fan-out

* Define speed-power product

All of the various fixed-function logic devices currently available are implemented in
two major categories of circuit technology: CMOS (complementary metal-oxide semi-
conductor) and bipolar (also known as TTL, transistor-transistor logic). A type of bipo-
lar technology that is available in very limited devices is ECL (emitter-coupled logic).
BiCMOS is another integrated circuit technology that combines both bipolar and CMOS.
CMOS is the most dominant circuit technology.

74 Series Logic Gate Functions

The 74 series is the standard fixed-function logic devices. The device label format includes
one or more letters that indentify the type of logic circuit technology family in the IC
package and two or more digits that identify the type of logic function. For example,
74HCO04 is a fixed-function IC that has six inverters in a package as indicated by 04. The
letters, HC, following the prefix 74 identify the circuit technology family as a type of
CMOS logic.

Type of IC technology family
Type of logic function

T4xxyy

AND Gate

Figure 3-59 shows three configurations of fixed-function AND gates in the 74 series. The
74xx08 is a quad 2-input AND gate device, the 74xx11 is a triple 3-input AND gate device,

Vee Vee Vee
14 14 14
| | |
1) 1 N
— 3 2 12 1
2 13) % 6
4 5
— 6
5) ==)t
9 5
— 8
10 0 0
12 ‘ 9 I\ 12
:)—— 11 10 8 13
13 ‘ 11 | I
[[[
7 7 7
GND GND GND
(a) 74xx08 (b) 74xx11 (c) 74xx21

FIGURE 3-59 74 series AND gate devices with pin numbers.

Logic Gates

Vee
14
|
T s
2 ‘
s et
5 ‘
o — 8
10
12 1
13
|
7
GND
(a) 74xx00
Vee
14
|
! — 3
2_
7 — 6
5 pu——
o — 8
10 —
12— 1
13—
|
7
GND
T4xx32

FIGURE 3-61 74 series OR
gate device.

and the 74xx21 is a dual 4-input AND gate device. The label xx can represent any of the
integrated circuit technology families such as HC or LS. The numbers on the inputs and
outputs are the IC package pin numbers.

NAND Gate

Figure 3—-60 shows four configurations of fixed-function NAND gates in the 74 series. The
74xx00 is a quad 2-input NAND gate device, the 74xx10 is a triple 3-input NAND gate
device, the 74xx20 is a dual 4-input NAND gate device, and the 74xx30 is a single 8-input
NAND gate device.

Vee Vee Vee
14 14 14

W=

(9 BNV
Q
Z < — |
=)
—_ N R W N =

—_

Do —
[o)}

—
WO\
oo

[>]

——
—O\0

(d) 74xx30

(b) 74xx10 (c) 74xx20

FIGURE 3-60 74 series NAND gate devices with package pin numbers.

OR Gate

Figure 3-61 shows a fixed-function OR gate in the 74 series. The 74xx32 is a quad 2-input
OR gate device.

NOR Gate

Figure 3-62 shows two configurations of fixed-function NOR gates in the 74 series. The
74xx02 is a quad 2-input NOR gate device, and the 74xx27 is a triple 3-input NOR gate
device.

Vee Vee
14 14
| |
> =T
33— 13 —
5 —
DT =
8
D S
11— 99—
b) e =) Dot
| |
7 7
GND GND
(a) 74xx02 (b) 74xx27

FIGURE 3-62 74 series NOR gate devices.

XOR Gate

Figure 3—63 shows a fixed-function XOR (exclusive-OR) gate in the 74 series. The 74xx86
is a quad 2-input XOR gate.

IC Packages

All of the 74 series CMOS are pin-compatible with the same types of devices in bipolar.
This means that a CMOS digital IC such as the 74HCO00 (quad 2-input NAND), which con-
tains four 2-input NAND gates in one IC package, has the identical package pin numbers for
each input and output as does the corresponding bipolar device. Typical IC gate packages,
the dual in-line package (DIP) for plug-in or feedthrough mounting and the small-outline
integrated circuit (SOIC) package for surface mounting, are shown in Figure 3—64. In some
cases, other types of packages are also available. The SOIC package is significantly smaller
than the DIP. Packages with a single gate are known as little logic. Most logic gate func-
tions are available and are implemented in a CMOS circuit technology. Typically, the gates
have only two inputs and have a different designation than multigate devices. For example,
the 74xx1GO00 is a single 2-input NAND gate.

<—0

<«— 0.740 - 0.770 in.—>|

14 13 12 11 10 9

Fixed-Function Logic Gates

VCC
14
|
1 pE——
2 —:D__ :
4 —
5 —:D__ 0
9 pu——
10 —:D__ ’
12 —
13 —:D__ a
|
7
GND
T4xx86
FIGURE 3-63 74 series XOR
gate.
1335 —0.334 in.

;

3

@

14

0.250 £0.010 in. 0.228 — 0.244 in.
) - 1 2
Pin no.1 Ny Lead no.1
identifiers identifier
(dot or notch) 14
1

0.060 in. TYP l

0.145 - 0.200 in. 0.053 - 0.069 in. T]

[T T T]

0.125 - 0.150 in.

0.014 - 0.023 in. TYP—>|L—
0.100 £0.010 in. TYP

o

(a) 14-pin dual in-line package (DIP) for feedthrough mounting

FIGURE 3-64 Typical dual in-line (DIP) and small-outline (SOIC) packages showing pin
numbers and basic dimensions.

-

0.050 in. TYP 0.014 - 0.020 in. TYP

(b) 14-pin small outline package (SOIC) for surface mounting

Handling Precautions for CMOS

if not handled properly as follows:

Store and ship in conductive foam.
Connect instruments to earth ground.

Do not remove devices from circuit with power on.
Do not apply signal voltage when power is off.

G > 80O =

CMOS logic is very sensitive to static charge and can be damaged by ESD (electrostatic discharge)

Connect wrist to earth ground through a large series resistor.

Logic Gates

High-speed logic has a short
propagation delay time.

74 Series Logic Circuit Families

Although many logic circuit families have become obsolete and some are rapidly on the
decline, others are still very active and available. CMOS is the most available and most
popular type of logic circuit technology, and the HC (high-speed CMOS) family is the
most recommended for new projects. For bipolar, the LS (low-power schottky) family is
the most widely used. The HCT, which a variation of the HC family, is compatible with
bipolar devices such as LS.

Table 3—14 lists many logic circuit technology families. Because the active status of any
given logic family is always in flux, check with a manufacturer, such as Texas Instruments,
for information on active/nonactive status and availability for a logic function in a given
circuit technology.

TABLE 3-14

74 series logic families based on circuit technology.

Circuit Type Description Circuit Technology
ABT Advanced BiCMOS BiCMOS
AC Advanced CMOS CMOS
ACT Bipolar compatible AC CMOS
AHC Advanced high-speed CMOS CMOS
AHCT Bipolar compatible AHC CMOS
ALB Advanced low-voltage BICMOS BiCMOS
ALS Advanced low-power Schottky Bipolar
ALVC Advanced low-voltage CMOS CMOS
AUC Advanced ultra-low-voltage CMOS CMOS
AUP Advanced ultra-low-power CMOS CMOS
AS Advanced Schottky Bipolar
AVC Advanced very-low-power CMOS CMOS
BCT Standard BICMOS BiCMOS
F Fast Bipolar
FCT Fast CMOS technology CMOS
HC High-speed CMOS CMOS
HCT Bipolar compatible HC CMOS
LS Low-power Schottky Bipolar
LV-A Low-voltage CMOS CMOS
LV-AT Bipolar compatible LV-A CMOS
LVC Low-voltage CMOS CMOS
LVT Low-voltage biCMOS BiCMOS
S Schottky Bipolar

The type of integrated circuit technology has nothing to do with the logic function itself.
For example, the 74HCO00, 74HCTO00, and 74LS00 are all quad 2-input NAND gates with
identical package pin configurations. The differences among these three logic devices are
in the electrical and performance characteristics such as power consumption, dc supply
voltage, switching speed, and input/output voltage levels. CMOS and bipolar circuits are
implemented with two different types of transistors. Figures 3—65 and 3-66 show partial
data sheets for the 74HCOOA quad 2-input NAND gate in CMOS and in bipolar technolo-
gies, respectively.

Performance Characteristics and Parameters

Several things define the performance of a logic circuit. These performance characteris-
tics are the switching speed measured in terms of the propagation delay time, the power

Fixed-Function Logic Gates

Quad 2-Input NAND Gate High-Performance Silicon-Gate CMOS

The MC54/74HCO0A is identical in pinout to the LS00. The device inputs are compatible with Standard

CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. MAXIMUM RATINGS*
« Output Drive Capability: 10 LSTTL Loads Symbol P. " val Unit
 Outputs Directly Interface to CMOS, NMOS and TTL MC54/74HCO00A Yoo aramc‘ hal 2ue o
« Operating Voltage Range: 2 t0 6 V Vee | DC Supply Voltage (Referenced to GND) -0.5t0+7.0 N
« Low Input Current: 1 uA J SUFFIX Vin | DC Input Voltage (Referenced to GND) -05t0Vee+05| V
* High Noise Immunity Characteristic of CMOS Devices N CERAMIC PACKAGE Vou | DC Output Voltage (Referenced to GND) -0.5t0Vec+05| vV
* In Compliance With the JEDEC Standard No. 7A CASE 632-08 1 DCT Pi o A
Requirements in C Input Current, per Pin +20 m
« Chip Complexity: 32 FETs or 8 Equivalent Gates 14 Iouwr | DC Output Current, per Pin +25 mA
LOGIC DIAGRAM 1 Icc | DC Sup[?ly.Cu?'ren.l, V(_?C ar.xd GN]? Pins . +50 mA
1 N SUFFIX Pp Power Dissipation in Still Air, Plastic or Ceramic DIP} 750 mW
Al 3 N PLASTIC PACKAGE SOIC Package 500
. 2 Y1 CASE 646-06 TSSOP Packagef 450
14 Ty | Storage Temperature —65to + 150 °C
Al 6 1 T Lead Temperature, I mm from Case for 10 Seconds °C
:DO— Y2 / b SUFFIX Plastic DIP, SOIC or TSSOP Package 260
B2 i 300
YoAB 14 \& SOIC PACKAGE Ceramic DIP
9 B 1 CASE 751A-03 * Maximum Ratings are those values beyond which damage to the device may occur.
A3 8 Functional operation should be restricted to the Recommended Operating Conditions.
53 A0 Y3 + Derating — Plastic DIP: — 10 mW/°C from 65° to 125° C
14 DT SUFFIX Ceramic DIP: — 10 mW/°C from 100° to 125° C
2 TSSOP PACKAGE SOIC Package: — 7 mW/°C from 65° to 125° C
Ad :D_n va 1 CASE 948G-01 TSSOP Package: — 6.1 mW/°C from 65° to 125° C
13
B4 ORDERING INFORMATION
PIN 14 = Vec MCS54HCXXAJ Ceramic RECOMMENDED OPERATING CONDITIONS
PIN 7=GND MCT74HCXXAN Plastic n - .
MC74HCXXAD SOIC Symbol Parameter in Max | Unit
Pinout: 14—Load Packages (Top View) MC74HCXXADT TSSOP Vee | DC Supply Voltage (Referenced to GND) 2.0 6.0 v
Ve B4 A4 YA B3 A3 Y3 Vins Vour | DC Input Voltage, Output Voltage (Referenced to GND) 0 Vee v
T Operating Temperature, All Package Types =55 +125 °C
14] [13]1 2] 1] [0l [o 1 s FUNCTION TABLE A
,_l ,_l ,_l ,_l ,_l ,_l ,_l Tnouts Output ty, ty [Input Rise and Fall Time Vee=2.0V 0 1000 ns
P P Vee=45V | 0 500
A B Y Vee=60V | 0 400
L L H
L H H
DG W L

DC CHARACTERISTICS (Voltages Referenced to GND) MC54/74HCO0A
Vee Guaranteed Limit
Symbol Parameter Condition V |-55t025°C| <85°C <125°C | Unit
Vig | Minimum High-Level Input Voltage | Vou = 0.1V or Ve - 0.1V 2.0 1.50 1.50 1.50 \
[Touel <201A 3.0 2.10 2.10 2.10
4.5 3.15 3.15 3.15
6.0 4.20 4.20 4.20
Vi | Maximum Low-Level Input Voltage | V= 0.1V or Ve - 0.1V 2.0 0.50 0.50 0.50 v
[Lou| <20uA 3.0 0.90 0.90 0.90
4.5 1.35 1.35 1.35
6.0 1.80 1.80 1.80
Von | Minimum High-Level Output Voltage | Vi, = Vi or Vi 2.0 19 1.9 19 N
[Tout| < 20pA 45 44 44 44
6.0 5.9 5.9 5.9
Vin=VigorVip |yl £24mA | 3.0 2.48 2.34 2.20
[Low| €4.0mA | 45 3.98 3.84 3.70
[Tou| £52mA | 6.0 5.48 5.34 5.20
VoL | Maximum Low-Level Output Voltage | Vi, = Vyy or Vi, 2.0 0.1 0.1 0.1 N
[Toue| < 20uA 4.5 0.1 0.1 0.1
6.0 0.1 0.1 0.1
Vin=VorViL [yl €24mA | 3.0 0.26 0.33 0.40
[Tou| <4.0mA | 45 0.26 0.33 0.40
[l €52mA | 6.0 0.26 0.33 0.40
i, | Maximum Input Leakage Current Vin = Ve or GND 6.0 0.1 +1.0 +1.0 HA
Icc | Maximum Quiescent Supply Vin = Ve or GND 6.0 1.0 10 40 HA
Current (per Package) Tour = OuA
AC CHARACTERISTICS (Cy, = 50 pF, Input t . = t; = 6 ns)
Vee Guaranteed Limit
Symbol Parameter V | -55t025°C <85°C <125°C Unit
tpLy, | Maximum Propagation Delay, Input A or B to Output Y 2.0 75 95 110 ns
tpHL 3.0 30 40 55
45 15 19 22
6.0 13 16 19
trey. | Maximum Output Transition Time, Any Output 2.0 75 95 110 ns
trHL 3.0 27 32 36
4.5 15 19 22
6.0 13 16 19
Cj, | Maximum Input Capacitance 10 10 10 pF

[Typical @ 25°C, Ve =50V, Vg =0V |
Power Dissipation Capacitance (Per Buffer) | 22 | pF

| Cpp

FIGURE 3-65 CMOS logic. Partial data sheet for a 54/74HCO0A quad 2-input NAND
gate. The 54 prefix indicates military grade and the 74 prefix indicates commercial grade.

Logic Gates

QUAD 2-INPUT NAND GATE SN54/74LS00

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

« ESD > 3500 Volts Limits
Symbol Parameter Min Typ Max Unit Test Conditions
Vin Input HIGH Voltage 2.0 v Guaranteed Input HIGH Voltage for
All Inputs
v Input LOW Voltage 54 0.7 v Guaranteed Input LOW Voltage for
IL
SN54/74L.S00 74 038 All Inputs
Vik Input Clamp Diode Voltage —-0.65 -1.5 N Vee =MIN, [jy =-18 mA
54 2.5 35 A% = = =
Vou | Ouput HIGH Voltage VC\C] M“\; [?}*:T t’;AX’ Vin=Vin
QUAD 2-INPUT NAND GATE 74 27 35 V| O Vu per Truth Table
54,74 0.25 0.4 v = = =
LOW POWER SCHOTTKY VoL | Ouput LOW Voltage . lor =4.0mA | Vee=Vee MIN, Viy = Vi
74 0.35 0.5 v Ior = 8.0 mA | or Vi per Truth Table
20 A Vee=MAX,V|y=27V
Iy Input HIGH Current “ e N
R J SUFFIX 0.1 mA | Vee=MAX,V|y=7.0V
\ CCAI;%/EI;AZI%S I Input LOW Current -0.4 mA Vee=MAX, Iy=04V
14 Ios Short Circuit Current (Note 1) -20 -100 mA Vee =MAX
1 Power Supply Current
N SUFFIX Icc Total, Output HIGH 1.6 mA Vee = MAX
\ PLASTIC Total, Output LOW 4.4
CASE 646-06 -
14 NOTE 1: Not more than one output should be shorted at a time, nor for more than 1 second.
1 AC CHARACTERISTICS (T, = 25°C)
/ D SUFFIX Limits
14 SOIC
1 CASE 751A-02 Symbol Parameter Min Typ Max Unit Test Conditions
tpry | Turn-Off Delay, Input to Output 9.0 15 ns Vee=5.0V
ORDERING INFORMATION Torn-On Delaw. T o T T Cp = 15pF
SNS4LSXXJ Ceramic tpHL urn-On Delay, Input to Output ns L
SN74LSXXN Plastic
SN74LSXXD SOIC
GUARANTEED OPERATING RANGES
Symbol Parameter Min Typ Max Unit
Vee Vee | Supply Voltage 54 4.5 5.0 55 \
14] [13] [12] [11] [10] [9] [3] 74 4.75 5.0 525
II_:,D—l II_:,D—l Ta Operating Ambient 54 =55 25 125 °C
Temperature Range 74 0 25 70
|_|:|D°‘| ,_,—,Dj Ion | Output Current — High 54,74 04 | maA
II_, B Ii, Ii, Ii, Ii, 7 ToL Output Current — Low ;Z :g mA
GND i

FIGURE 3-66 Bipolar logic. Partial data sheet for a 54/74LS00 quad 2-input NAND gate.

dissipation, the fan-out or drive capability, the speed-power product, the dc supply voltage,
and the input/output logic levels.

Propagation Delay Time

This parameter is a result of the limitation on switching speed or frequency at which a logic
circuit can operate. The terms low speed and high speed, applied to logic circuits, refer to
the propagation delay time. The shorter the propagation delay, the higher the switching
speed of the circuit and thus the higher the frequency at which it can operate.

Propagation delay time, 7p, of a logic gate is the time interval between the transition
of an input pulse and the occurrence of the resulting transition of the output pulse. There
are two different measurements of propagation delay time associated with a logic gate that
apply to all the types of basic gates:

e tpyr- The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing from
the HIGH level to the LOW level (HL).

* tpry- The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing from
the LOW level to the HIGH level (LH).

For the HCT family CMOS, the propagation delay is 7 ns, for the AC family it is 5 ns,
and for the ALVC family it is 3 ns. For standard-family bipolar (TTL) gates, the typical
propagation delay is 11 ns and for F family gates it is 3.3 ns. All specified values are depen-
dent on certain operating conditions as stated on a data sheet.

Show the propagation delay times of an inverter.

Solution

An input/output pulse of an inverter is shown in Figure 3—67, and the propagation delay
times, 7py; and tpyy, are indicated. In this case, the delays are measured between the
50% points of the corresponding edges of the input and output pulses. The values of
tpyr and tp; are not necessarily equal but in many cases they are the same.

H
Input 50%
| |
| |
L | |
| |
| |
| |
H |
| |
| |
Output | |
| | | |
| | | |
L | | |
| | | |
[™
TpHL TpHL

FIGURE 3-67

Related Problem

One type of logic gate has a specified maximum #p; 5 and tpy; of 10 ns. For another
type of gate the value is 4 ns. Which gate can operate at the highest frequency?

DC Supply Voltage (Vcc)

The typical dc supply voltage for CMOS logic is either 5V, 3.3V, 2.5V, or 1.8V, depend-
ing on the category. An advantage of CMOS is that the supply voltages can vary over a
wider range than for bipolar logic. The 5 V CMOS can tolerate supply variations from 2 V
to 6 V and still operate properly although propagation delay time and power dissipation
are significantly affected. The 3.3 V CMOS can operate with supply voltages from 2 V to
3.6 V. The typical dc supply voltage for bipolar logic is 5.0 V with a minimum of 4.5 V and
a maximum of 5.5 V.

Power Dissipation

The power dissipation, Pp, of a logic gate is the product of the dc supply voltage and
the average supply current. Normally, the supply current when the gate output is LOW is
greater than when the gate output is HIGH. The manufacturer’s data sheet usually desig-
nates the supply current for the LOW output state as I-cy and for the HIGH state as I-cy.
The average supply current is determined based on a 50% duty cycle (output LOW half the
time and HIGH half the time), so the average power dissipation of a logic gate is

Icch + ICCL>

Equation 3-2
2 quation

Py = Vec (

CMOS gates have very low power dissipations compared to the bipolar family. How-

ever, the power dissipation of CMOS is dependent on the frequency of operation. At zero

frequency the quiescent power is typically in the microwatt/gate range, and at the maximum

operating frequency it can be in the low milliwatt range; therefore, power is sometimes

specified at a given frequency. The HC family, for example, has a power of 2.75 uW/gate at
0 Hz (quiescent) and 600 uW/gate at 1 MHz.

Fixed-Function Logic Gates

A lower power dissipation means less
current from the dc supply.

Logic Gates

A higher fan-out means that a gate
output can be connected to more
date inputs.

Power dissipation for bipolar gates is independent of frequency. For example, the ALS
family uses 1.4 mW/gate regardless of the frequency and the F family uses 6 mW/gate.

Input and Output Logic Levels

Vi is the LOW level input voltage for a logic gate, and Vi is the HIGH level input volt-
age. The 5 V CMOS accepts a maximum voltage of 1.5 V as Vj; and a minimum voltage
of 3.5 V as Viy. Bipolar logic accepts a maximum voltage of 0.8 V as Vy; and a minimum
voltage of 2V as Viy.

VoL is the LOW level output voltage and Vpy is the HIGH level output voltage. For
5 V CMOS, the maximum Vg is 0.33 V and the minimum Vgy is 4.4 V. For bipolar
logic, the maximum V(y is 0.4 V and the minimum Vg is 2.4 V. All values depend on
operating conditions as specified on the data sheet.

Speed-Power Product (SPP)

This parameter (speed-power product) can be used as a measure of the performance of a
logic circuit taking into account the propagation delay time and the power dissipation. It is
especially useful for comparing the various logic gate series within the CMOS and bipolar
technology families or for comparing a CMOS gate to a TTL gate.

The SPP of a logic circuit is the product of the propagation delay time and the power
dissipation and is expressed in joules (J), which is the unit of energy. The formula is

SPP = t,Pp Equation 3-3

A certain gate has a propagation delay of 5 ns and Iccy = | mA and Io¢c, = 2.5 mA
with a dc supply voltage of 5 V. Determine the speed-power product.

Solution

Iccu + IccL I mA + 2.5mA
o[t s (AR

SPP = (5ns) (8.75 mW) = 43.75 pJ

P) = 5V(1.75mA) = 8.75 mW

Related Problem

If the propagation delay of a gate is 15 ns and its SPP is 150 pJ, what is its average
power dissipation?

Fan-Out and Loading

The fan-out of a logic gate is the maximum number of inputs of the same series in an
IC family that can be connected to a gate’s output and still maintain the output voltage
levels within specified limits. Fan-out is a significant parameter only for bipolar logic
because of the type of circuit technology. Since very high impedances are associated
with CMOS circuits, the fan-out is very high but depends on frequency because of
capacitive effects.

Fan-out is specified in terms of unit loads. A unit load for a logic gate equals one input
to a like circuit. For example, a unit load for a 74LS00 NAND gate equals one input to
another logic gate in the 74LS family (not necessarily a NAND gate). Because the current
from a LOW input (/1) of a 74LS00 gate is 0.4 mA and the current that a LOW output
(Iop) can accept is 8.0 mA, the number of unit loads that a 74LS00 gate can drive in the
LOW state is

Io, _ 80mA

Unit loads = & = =
s = .~ 04maA

20

Fixed-Function Logic Gates

Driving gate

—1>

Load gate

20

T

FIGURE 3-68 The LS family NAND gate output fans out to a maximum of 20 LS family
gate inputs.

Figure 3-68 shows LS logic gates driving a number of other gates of the same circuit
technology, where the number of gates depends on the particular circuit technology. For
example, as you have seen, the maximum number of gate inputs (unit loads) that a 74LS
family bipolar gate can drive is 20.

Unused gate inputs for bipolar (TTL) and CMOS should be connected to the appropriate logic level
(HIGH or LOW). For AND/NAND, it is recommended that unused inputs be connected to /¢ (through
a 1.0 kQ resistor with bipolar) and for OR/NOR, unused inputs should be connected to ground.

+Vee +Vee

Unused —» Used --
Used inputs - | I Unused - -

Bipolar (TTL) CMOS CMOS/Bipolar

SECTION 3-8 CHECKUP

S unn B

1.
2.
3.

How is fixed-function logic different than PLD logic?

List the two types of IC technologies that are the most widely used.
Identify the following IC logic designators:

(a) LS (b) HC (¢c) HCT

. Which IC technology generally has the lowest power dissipation?
. What does the term hex inverter mean? What does quad 2-input NAND mean?

. A positive pulse is applied to an inverter input. The time from the leading edge of the

input to the leading edge of the output is 10 ns. The time from the trailing edge of the input
to the trailing edge of the output is 8 ns. What are the values of 7p; 5 and 7py; ?

. A certain gate has a propagation delay time of 6 ns and a power dissipation of 3 mW.

Determine the speed-power product?

. Define Iccy, and Iccp.
. Define Vi and Vig.
10.

Define V1, and Vpy.

Logic Gates

3-9 Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure
in a circuit or system. To be an effective troubleshooter, you must understand how the
circuit or system is supposed to work and be able to recognize incorrect performance. For
example, to determine whether or not a certain logic gate is faulty, you must know what the
output should be for given inputs.

After completing this section, you should be able to

+ Test for internally open inputs and outputs in IC gates

+ Recognize the effects of a shorted IC input or output
¢ Test for external faults on a PCB board

+ Troubleshoot a simple frequency counter using an oscillosope

Internal Failures of IC Logic Gates

Opens and shorts are the most common types of internal gate failures. These can occur on
the inputs or on the output of a gate inside the IC package. Before attempting any trouble-
shooting, check for proper dc supply voltage and ground.

Effects of an Internally Open Input

An internal open is the result of an open component on the chip or a break in the tiny
wire connecting the IC chip to the package pin. An open input prevents a signal on that
input from getting to the output of the gate, as illustrated in Figure 3—69(a) for the case
of a 2-input NAND gate. An open TTL (bipolar) input acts effectively as a HIGH level,
so pulses applied to the good input get through to the NAND gate output as shown in
Figure 3-69(b).

Open input Open input
No pulses |_| |.| |.| |.|
HIGH ——— IE—
(a) Application of pulses to the open input will produce no pulses (b) Application of pulses to the good input will produce output pulses for
on the output. bipolar NAND and AND gates because an open input typically acts as a

HIGH. It is uncertain for CMOS.
FIGURE 3-69 The effect of an open input on a NAND gate.

Conditions for Testing Gates

When testing a NAND gate or an AND gate, always make sure that the inputs that are not
being pulsed are HIGH to enable the gate. When checking a NOR gate or an OR gate,
always make sure that the inputs that are not being pulsed are LOW. When checking an
XOR or XNOR gate, the level of the nonpulsed input does not matter because the pulses on
the other input will force the inputs to alternate between the same level and opposite levels.

Troubleshooting an Open Input

Troubleshooting this type of failure is easily accomplished with an oscilloscope and func-
tion generator, as demonstrated in Figure 3—70 for the case of a quad 2-input NAND gate
package. When measuring digital signals with a scope, always use dc coupling.

Troubleshooting

Square wave
from function
generator

Square wave
from function
generator

Scope probe
HIGH _probe
+Vee
GND GND
(a) Pin 13 input and pin 11 output OK (b) Pin 12 input is open.

FIGURE 3-70 Troubleshooting a NAND gate for an open input.

The first step in troubleshooting an IC that is suspected of being faulty is to make sure
that the dc supply voltage (V) and ground are at the appropriate pins of the IC. Next,
apply continuous pulses to one of the inputs to the gate, making sure that the other input is
HIGH (in the case of a NAND gate). In Figure 3—70(a), start by applying a pulse waveform
to pin 13, which is one of the inputs to the suspected gate. If a pulse waveform is indicated
on the output (pin 11 in this case), then the pin 13 input is not open. By the way, this also
proves that the output is not open. Next, apply the pulse waveform to the other gate input
(pin 12), making sure the other input is HIGH. There is no pulse waveform on the output at
pin 11 and the output is LOW, indicating that the pin 12 input is open, as shown in Figure
3-70(b). The input not being pulsed must be HIGH for the case of a NAND gate or AND
gate. If this were a NOR gate, the input not being pulsed would have to be LOW.

Effects of an Internally Open Output

An internally open gate output prevents a signal on any of the inputs from getting to the
output. Therefore, no matter what the input conditions are, the output is unaffected. The
level at the output pin of the IC will depend upon what it is externally connected to. It could
be either HIGH, LOW, or floating (not fixed to any reference). In any case, there will be no
signal on the output pin.

Troubleshooting an Open Output

Figure 3-71 illustrates troubleshooting an open NOR gate output. In part (a), one of the
inputs of the suspected gate (pin 11 in this case) is pulsed, and the output (pin 13) has no
pulse waveform. In part (b), the other input (pin 12) is pulsed and again there is no pulse
waveform on the output. Under the condition that the input that is not being pulsed is at a
LOW level, this test shows that the output is internally open.

Shorted Input or Output

Although not as common as an open, an internal short to the dc supply voltage, ground,
another input, or an output can occur. When an input or output is shorted to the supply volt-
age, it will be stuck in the HIGH state. If an input or output is shorted to ground, it will be

Logic Gates

Square wave
from function
generator

Square wave
from function
generator

(a) Pulse input on pin 11. No pulse output. (b) Pulse input on pin 12. No pulse output.

FIGURE 3-71 Troubleshooting a NOR gate for an open output.

stuck in the LOW state (0 V). If two inputs or an input and an output are shorted together,
they will always be at the same level.

External Opens and Shorts

Many failures involving digital ICs are due to faults that are external to the IC package.
These include bad solder connections, solder splashes, wire clippings, improperly etched
printed circuit boards (PCBs), and cracks or breaks in wires or printed circuit intercon-
nections. These open or shorted conditions have the same effect on the logic gate as the
internal faults, and troubleshooting is done in basically the same ways. A visual inspection
of any circuit that is suspected of being faulty is the first thing a technician should do.

You are checking a 74LS10 triple 3-input NAND gate IC that is one of many ICs
located on a PCB. You have checked pins 1 and 2 and they are both HIGH. Now you
apply a pulse waveform to pin 13, and place your scope probe first on pin 12 and then
on the connecting PCB trace, as indicated in Figure 3—72. Based on your observation of
the scope screen, what is the most likely problem?

Solution

The waveform with the probe in position 1 shows that there is pulse activity on the gate
output at pin 12, but there are no pulses on the PCB trace as indicated by the probe in
position 2. The gate is working properly, but the signal is not getting from pin 12 of the
IC to the PCB trace.

Most likely there is a bad solder connection between pin 12 of the IC and the PCB,
which is creating an open. You should resolder that point and check it again.

Related Problem

If there are no pulses at either probe position 1 or 2 in Figure 3—72, what fault(s) does
this indicate?

Input

Output Input

on trace

Output
on pin 12
Input from
function
generator

FIGURE 3-72

In most cases, you will be troubleshooting ICs that are mounted on PCBs or proto-
type assemblies and interconnected with other ICs. As you progress through this book,
you will learn how different types of digital ICs are used together to perform system
functions. At this point, however, we are concentrating on individual IC gates. This
limitation does not prevent us from looking at the system concept at a very basic and
simplified level.

To continue the emphasis on systems, Examples 3-26 and 3-27 deal with troubleshoot-
ing the frequency counter that was introduced in Section 3-2.

After trying to operate the frequency counter shown in Figure 373, you find that it
constantly reads out all Os on its display, regardless of the input frequency. Determine
the cause of this malfunction. The enable pulse has a width of 1 ms.

Figure 3—73(a) gives an example of how the frequency counter should be working
with a 12 kHz pulse waveform on the input to the AND gate. Part (b) shows that the
display is improperly indicating O Hz.

Solution
Three possible causes are
1. A constant active or asserted level on the counter reset input, which keeps the
counter at zero.

2. No pulse signal on the input to the counter because of an internal open or short in
the counter. This problem would keep the counter from advancing after being
reset to zero.

Troubleshooting

Logic Gates

+5V
|
14 =
Input signal 1 3 (= kHz
Enable input 2
1 74LS08

L]

Reset pulse

(a) The counter is working properly.

Input signal

Enable input
1 74LS08

7
=

Reset pulse J

(b) The counter is not measuring a frequency.

FIGURE 3-73

3. No pulse signal on the input to the counter because of an open AND gate output
or the absence of input signals, again keeping the counter from advancing from
Zero.

The first step is to make sure that V¢ and ground are connected to all the right
places; assume that they are found to be okay. Next, check for pulses on both inputs to
the AND gate. The scope indicates that there are proper pulses on both of these inputs.
A check of the counter reset shows a LOW level which is known to be the unasserted
level and, therefore, this is not the problem. The next check on pin 3 of the 74LS08
shows that there are no pulses on the output of the AND gate, indicating that the gate
output is open. Replace the 74L.S08 IC and check the operation again.

Related Problem

If pin 2 of the 74LS08 AND gate is open, what indication should you see on the fre-
quency display?

The frequency counter shown in Figure 3—74 appears to measure the frequency of input
signals incorrectly. It is found that when a signal with a precisely known frequency is
applied to pin 1 of the AND gate, the oscilloscope display indicates a higher frequency.
Determine what is wrong. The readings on the screen indicate time per division.

2
- +5V

14
. 1
Input signal 3
Enable input 2 =
1741508
3
7
- 4_ | - J
FIGURE 3-74
Solution

Recall from Section 3-2 that the input pulses were allowed to pass through the AND
gate for exactly 1 ms. The number of pulses counted in 1 ms is equal to the frequency in
hertz. Therefore, the 1 ms interval, which is produced by the enable pulse on pin 2 of
the AND gate, is very critical to an accurate frequency measurement. The enable pulses
are produced internally by a precision oscillator circuit. The pulse must be exactly 1 ms
in width and in this case it occurs every 3 ms to update the count. Just prior to each
enable pulse, the counter is reset to zero so that it starts a new count each time.

Since the counter appears to be counting more pulses than it should to produce a
frequency readout that is too high, the enable pulse is the primary suspect. Exact time-
interval measurements must be made on the oscilloscope.

An input pulse waveform of exactly 10 kHz is applied to pin 1 of the AND gate and
the frequency counter incorrectly shows 12 kHz. The first scope measurement, on the
output of the AND gate, shows that there are 12 pulses for each enable pulse. In the
second scope measurement, the input frequency is verified to be precisely 10 kHz
(period = 100 ws). In the third scope measurement, the width of the enable pulse is
found to be 1.2 ms rather than 1 ms.

The conclusion is that the enable pulse is out of calibration for some reason.

Related Problem

What would you suspect if the readout were indicating a frequency less than it should be?

Troubleshooting

Logic Gates

SUMMARY

Proper grounding is very important when setting up to take measurements or work on a circuit.
Properly grounding the oscilloscope protects you from shock and grounding yourself protects your
circuits from damage. Grounding the oscilloscope means to connect it to earth ground by plugging the
three-prong power cord into a grounded outlet. Grounding yourself means using a wrist-type ground-
ing strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value
resistor between the strap and ground for protection against accidental contact with a voltage source.

Also, for accurate measurements, make sure that the ground in the circuit you are testing is the
same as the scope ground. This can be done by connecting the ground lead on the scope probe to a
known ground point in the circuit, such as the metal chassis or a ground point on the PCB. You can
also connect the circuit ground to the GND jack on the front panel of the scope.

SECTION 3-9 CHECKUP

1. What are the most common types of failures in ICs?

2. If two different input waveforms are applied to a 2-input bipolar NAND gate and the
output waveform is just like one of the inputs, but inverted, what is the most likely
problem?

3. Name two characteristics of pulse waveforms that can be measured on the oscilloscope.

e The inverter output is the complement of the input.

e The AND gate output is HIGH only when all the inputs are HIGH.

e The OR gate output is HIGH when any of the inputs is HIGH.

e The NAND gate output is LOW only when all the inputs are HIGH.

e The NAND can be viewed as a negative-OR whose output is HIGH when any input is LOW.
e The NOR gate output is LOW when any of the inputs is HIGH.

e The NOR can be viewed as a negative-AND whose output is HIGH only when all the inputs are
LOW.

e The exclusive-OR gate output is HIGH when the inputs are not the same.
e The exclusive-NOR gate output is LOW when the inputs are not the same.

» Distinctive shape symbols and truth tables for various logic gates (limited to 2 inputs) are shown
in Figure 3-75.

O[22 [P >

00 0 00 0 00 1 00 1
01 0 01 1 01 1 — 01 1
10 0 10 1 10 1 — 10 1
11 1 11 1 11 0 11 0
AND OR NAND Negative-OR Inverter

00 1 00 1 00 0 00 1

01 0 — 01 0 01 1 01 0

10 0 — 10 0 10 1 10 0

11 0 11 0 11 0 11 1

NOR Negative-AND Exclusive-OR Exclusive-NOR

Note: Active states are shown in yellow.

FIGURE 3-75

* Most programmable logic devices (PLDs) are based on some form of AND array.
¢ Programmable link technologies are fuse, antifuse, EPROM, EEPROM, flash, and SRAM.

* A PLD can be programmed in a hardware fixture called a programmer or mounted on a
development printed circuit board.

¢ PLDs have an associated software development package for programming.

e Two methods of design entry using programming software are text entry (HDL) and graphic
(schematic) entry.

e ISP PLDs can be programmed after they are installed in a system, and they can be repro-
grammed at any time.

* JTAG stands for Joint Test Action Group and is an interface standard (IEEE Std. 1149.1) used
for programming and testing PLDs.

¢ An embedded processor is used to facilitate in-system programming of PLDs.
e In PLDs, the circuit is programmed in and can be changed by reprogramming.
e The average power dissipation of a logic gate is

Po = Ve (ICCH ‘2“ ICCL)
¢ The speed-power product of a logic gate is

SPP = t,Pp
e Asarule, CMOS has a lower power consumption than bipolar.

¢ In fixed-function logic, the circuit cannot be altered.

KEY TERMS

Key Terms

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

AND array An array of AND gates consisting of a matrix of programmable interconnections.
AND gate A logic gate that produces a HIGH output only when all of the inputs are HIGH.

Antifuse A type of PLD nonvolatile programmable link that can be left open or can be shorted
once as directed by the program.

Bipolar A class of integrated logic circuits implemented with bipolar transistors; also known as TTL.
Boolean algebra The mathematics of logic circuits.

CMOS Complementary metal-oxide semiconductor; a class of integrated logic circuits that is
implemented with a type of field-effect transistor.

Complement The inverse or opposite of a number. LOW is the complement of HIGH, and 0 is
the complement of 1.

EEPROM A type of nonvolatile PLD reprogrammable link based on electrically erasable
programmable read-only memory cells and can be turned on or off repeatedly by programming.

EPROM A type of PLD nonvolatile programmable link based on electrically programmable
read-only memory cells and can be turned either on or off once with programming.

Exclusive-NOR (XNOR) gate A logic gate that produces a LOW only when the two inputs are at
opposite levels.

Exclusive-OR (XOR) gate A logic gate that produces a HIGH output only when its two inputs
are at opposite levels.

Fan-out The number of equivalent gate inputs of the same family series that a logic gate can drive.
Flash A type of PLD nonvolatile reprogrammable link technology based on a single transistor cell.

Fuse A type of PLD nonvolatile programmable link that can be left shorted or can be opened once
as directed by the program.

Inverter A logic circuit that inverts or complements its input.
JTAG Joint Test Action Group; an interface standard designated IEEE Std. 1149.1.
NAND gate A logic gate that produces a LOW output only when all the inputs are HIGH.

Logic Gates

TRUE/FALSE QUIZ

NOR gate A logic gate in which the output is LOW when one or more of the inputs are HIGH.
OR gate A logic gate that produces a HIGH output when one or more inputs are HIGH.

Propagation delay time The time interval between the occurrence of an input transition and the
occurrence of the corresponding output transition in a logic circuit.

SRAM A type of PLD volatile reprogrammable link based on static random-access memory cells
and can be turned on or off repeatedly with programming.

Target device A PLD mounted on a programming fixture or development board into which a
software logic design is to be downloaded.

Truth table A table showing the inputs and corresponding output(s) of a logic circuit.

Unit load A measure of fan-out. One gate input represents one unit load to the output of a gate
within the same IC family.

VHDL A standard hardware description language that describes a function with an entity/
architecture structure.

SELF-TEST

Answers are at the end of the chapter.

k.

. An inverter performs a NOT operation.

. A NOT gate cannot have more than one input.

. If any input to an OR gate is zero, the output is zero.

. If all inputs to an AND gate are 1, the output is 0.

. A NAND gate can be considered as an AND gate followed by a NOT gate.
. A NOR gate can be considered as an OR gate followed by an inverter.

. The output of an exclusive-OR is 0 if the inputs are opposite.

. Two types of fixed-function logic integrated circuits are bipolar and NMOS.

o X N U AW

. Once programmed, PLD logic can be changed.

—
<

. Fan-out is the number of similar gates that a given gate can drive.

Answers are at the end of the chapter.

1. When the input to an inverter is LOW (0), the output is

(a) HIGH or 0 (b) LOW or 0 (¢c) HIGH or 1 (d) LOWorl
2. An inverter performs an operation known as

(a) complementation (b) assertion (¢) inversion (d) both answers (a) and (c)
3. The output of an AND gate with inputs A, B and C is 0 (LOW) when

@A=0,B=0,C=0 b)A=0,B=1,C=1 (¢) both answers (a) and (b)
4. The output of an OR gate with inputs A, B and C is 0 (LOW) when

@A=0,B=0,C=0 b)A=0,B=1,C=1 (¢) both answers (a) and (b)

5. A pulse is applied to each input of a 2-input NAND gate. One pulse goes HIGH at r = 0 and
goes back LOW at# = 1 ms. The other pulse goes HIGH at r = 0.8 ms and goes back LOW at
t = 3 ms. The output pulse can be described as follows:
(a) It goes LOW atr = 0 and back HIGH at r = 3 ms.
(b) It goes LOW atr = 0.8 ms and back HIGH at r = 3 ms.
(c) It goes LOW atr = 0.8 ms and back HIGH atr = 1 ms.
(d) It goes LOW atr = 0.8 ms and back LOW at¢ = 1 ms.

6. A pulse is applied to each input of a 2-input NOR gate. One pulse goes HIGH at + = 0 and
goes back LOW at# = 1 ms. The other pulse goes HIGH at + = 0.8 ms and goes back LOW at
t = 3 ms. The output pulse can be described as follows:
(a) It goes LOW ats = 0 and back HIGH at 7 = 3 ms.
(b) It goes LOW atr = 0.8 ms and back HIGH at r = 3 ms.
(c) It goes LOW atr = 0.8 ms and back HIGH atr = 1 ms.
(d) It goes HIGH at r = 0.8 ms and back LOW at7 = 1 ms.

Problems

7. A pulse is applied to each input of an exclusive-OR gate. One pulse goes HIGH at t = 0 and
goes back LOW at r = 1 ms. The other pulse goes HIGH at r = 0.8 ms and goes back LOW at
t = 3 ms. The output pulse can be described as follows:
(a) It goes HIGH at t = 0 and back LOW at# = 3 ms.
(b) It goes HIGH at t = 0 and back LOW at# = 0.8 ms.
(c) It goes HIGH at# = 1 ms and back LOW at¢ = 3 ms.
(d) both answers (b) and (¢)

8. A positive-going pulse is applied to an inverter. The time interval from the leading edge of the
input to the leading edge of the output is 7 ns. This parameter is
(a) speed-power product (b) propagation delay, tpy;.
(c) propagation delay, 7p; (d) pulse width

9. Most PLDs utilize an array of
(a) NOT gates
(b) NOR gates
(c) OR gates
(d) AND gates
10. The rows and columns of the interconnection matrix in an SPLD are connected using

(a) fuses (b) switches
(c) gates (d) transistors

11. An antifuse is formed using
(a) two insulators separated by a conductor (b) two conductors separated by an insulator
(¢) an insulator packed beside a conductor (d) two conductors connected in a series

12. An EPROM can be programmed using

(a) transistors (b) diodes
(¢) a multiprogrammer (d) adevice programmer
13. Two ways to enter a logic design using PLD development software are
(a) text and numeric (b) text and graphic
(¢) graphic and coded (d) compile and sort
14. JTAG stands for
(a) Joint Test Action Group (b) Java Top Array Group
(c¢) Joint Test Array Group (d) Joint Time Analysis Group
15. In-system programming of a PLD typically utilizes
(a) an embedded clock generator (b) an embedded processor
(¢) an embedded PROM (d) both (a) and (b)

(e) both (b) and (c¢)

16. To measure the period of a pulse waveform, you must use

(a) a DMM (b) alogic probe
(¢) an oscilloscope (d) alogic pulser
17. Once you measure the period of a pulse waveform, the frequency is found by
(a) using another setting (b) measuring the duty cycle
(¢) finding the reciprocal of the period (d) using another type of instrument
PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 3-1 The Inverter

1. The input waveform shown in Figure 3-76 is applied to a system of two inverters connected in
a series. Draw the output waveform across each inverter in proper relation to the input.

woon LI LTLIL
N Low

FIGURE 3-76

Logic Gates

2. A combination of inverters is shown in Figure 3-77. If a LOW is applied to point A, determine
the net output at points E and F.

FIGURE 3-77

3. If the waveform in Figure 376 is applied to point A in Figure 3—77, determine the waveforms
at points B through F.

Section 3-2 The AND Gate
4. Draw the rectangular outline symbol for a 3-input AND gate.

5. Determine the output, X, for a 2-input AND gate with the input waveforms shown in Figure
3-78. Show the proper relationship of output to inputs with a timing diagram.

FIGURE 3-78

6. The waveforms in Figure 3—79 are applied to points A and B of a 2-input AND gate followed
by an inverter. Draw the output waveform.

L]

i B

I

I

L

FIGURE 3-79

7. The input waveforms applied to a 3-input AND gate are as indicated in Figure 3—80. Show the
output waveform in proper relation to the inputs with a timing diagram.

A

=D
C_

|

o
]
]
]

FIGURE 3-80

8. The input waveforms applied to a 4-input AND gate are as indicated in Figure 3—-81. The
output of the AND gate is fed to an inverter. Draw the net output waveform of this system.

O

Tt

FIGURE 3-81

Problems

Section 3-3 The OR Gate
9. Draw the rectangular outline symbol for a 3-input OR gate.
10. Write the expression for a 4-input OR gate with inputs A, B, C, D, and output X.

11. Determine the output for a 2-input OR gate when the input waveforms are as in Figure 3-79
and draw a timing diagram.

12. Repeat Problem 7 for a 3-input OR gate.
13. Repeat Problem 8 for a 4-input OR gate.

14. For the waveforms given in Figure 3-82, A and B are ANDed with output F, D and E are ANDed
with output G, and C, F, and G are ORed. Draw the net output waveform.

%S I S I I S A Iy B I
I

CW

]

m

| |

H

0

I_‘

FIGURE 3-82

15. Draw the rectangular outline symbol for a 4-input OR gate.

16. Show the truth table for a system of a 3-input OR gate followed by an inverter.

Section 3-4 The NAND Gate

17. For the set of input waveforms in Figure 3-83, determine the output for the gate shown and
draw the timing diagram.

s P

FIGURE 3-83

18. Determine the gate output for the input waveforms in Figure 3—-84 and draw the timing
diagram.

A

FIGURE 3-84

19. Determine the output waveform in Figure 3-85.

EL:
T
1
Y

FIGURE 3-85

Logic Gates

20. As you have learned, the two logic symbols shown in Figure 3—86 represent equivalent
operations. The difference between the two is strictly from a functional viewpoint. For the
NAND symbol, look for two HIGHs on the inputs to give a LOW output. For the negative-
OR, look for at least one LOW on the inputs to give a HIGH on the output. Using these
two functional viewpoints, show that each gate will produce the same output for the given
inputs.

STHTH

FIGURE 3-86

Section 3-5 The NOR Gate
21. Repeat Problem 17 for a 2-input NOR gate.

22. Determine the output waveform in Figure 3—-87 and draw the timing diagram.

—

FIGURE 3-87

23. Repeat Problem 19 for a 4-input NOR gate.

24. The NAND and the negative-OR symbols represent equivalent operations, but they are func-
tionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a
LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH
output. Using these two functional points of view, show that both gates in Figure 3—-88 will
produce the same output for the given inputs.

AT L L

P FTLLLTT a—y

B —O

FIGURE 3-88

Section 3-6 The Exclusive-OR and Exclusive-NOR Gates

25. How does an exclusive-OR gate differ from an OR gate in its logical operation?
26. Repeat Problem 17 for an exclusive-OR gate.

27. Repeat Problem 17 for an exclusive-NOR gate.

28. Determine the output of an exclusive-NOR gate for the inputs shown in Figure 3-79 and draw
a timing diagram.

Problems

Section 3-7 Programmable Logic

29. In the simple programmed AND array with programmable links in Figure 3-89, determine the
Boolean output expressions.

FIGURE 3-89

30. Determine by row and column number which fusible links must be blown in the program-
mable AND array of Figure 3-90 to implement each of the following product terms:
X, = ABC, X, = ABC, X3 = ABC.

N N N N N N
ENENENENENEN .
ENENENENENEN r}
1 N N N N N N
ENENENENENEN .
ENEENENENEN r}
NN N N NN
ENENENENENEN
ENEEENENEN r}

31. Describe a 4-input AND gate using VHDL.
32. Describe a 5-input NOR gate using VHDL.

Logic Gates

Section 3-8 Fixed-Function Logic Gates

33. In the comparison of certain logic devices, it is noted that the power dissipation for one particular

34.

35.

type increases as the frequency increases. Is the device bipolar or CMOS?
Using the data sheets in Figures 3—65 and 3-66, determine the following:

(a) 74LS00 power dissipation at maximum supply voltage and a 50% duty cycle

(b) Minimum HIGH level output voltage for a 74LS00

(¢) Maximum propagation delay for a 74L.S00

(d) Maximum LOW level output voltage for a 74HCOOA

(e) Maximum propagation delay for a 74HCO0A

Determine tp; i and tpy; from the oscilloscope display in Figure 3-91. The readings indicate
volts/div and sec/div for each channel.

Input

Output

FIGURE 3-91

36.

37.

38.

Gate A has tp;y = tpy; = 6 ns. Gate B has tp;y = tpy; = 10 ns. Which gate can be operated
at a higher frequency?

If a logic gate operates on a dc supply voltage of +5 V and draws an average current of 4 mA,
what is its power dissipation?

The variable I-cy represents the dc supply current from V¢ when all outputs of an IC are
HIGH. The variable /¢y represents the dc supply current when all outputs are LOW. For a
74LS00 IC, determine the typical power dissipation when all four gate outputs are HIGH.
(See data sheet in Figure 3-66.)

Section 3-9 Troubleshooting

39.

=D

Examine the conditions indicated in Figure 3-92, and identify the faulty gates.

0

0 0 1 1
1
(d)

(e) ()

FIGURE 3-92

40.

A T A_TLI a1
p T T

Determine the faulty gates in Figure 3-93 by analyzing the timing diagrams.

iy x L x T

(c) (@)

FIGURE 3-93

41. Using an oscilloscope, you make the observations indicated in Figure 3-94. For each observa-
tion determine the most likely gate failure.

Input

(b)
FIGURE 3-94

42. The seat belt alarm circuit in Figure 3—17 has malfunctioned. You find that when the ignition
switch is turned on and the seat belt is unbuckled, the alarm comes on and will not go off. What
is the most likely problem? How do you troubleshoot it?

43. Every time the ignition switch is turned on in the circuit of Figure 3—17, the alarm comes on
for thirty seconds, even when the seat belt is buckled. What is the most probable cause of this
malfunction?

44. What failure(s) would you suspect if the output of a 3-input NAND gate stays HIGH no matter
what the inputs are?

Problems

Logic Gates

ANSWERS

MultiSim

N

Special Design Problems
45. Modify the frequency counter in Figure 3—16 to operate with an enable pulse that is active-
LOW rather than HIGH during the 1 ms interval.

46. Assume that the enable signal in Figure 3—16 has the waveform shown in Figure 3-95. Assume
that waveform B is also available. Devise a circuit that will produce an active-HIGH reset pulse
to the counter only during the time that the enable signal is LOW.

EnableJi _I
P | B | |

47. Design a circuit to fit in the beige block of Figure 3-96 that will cause the headlights of an
automobile to be turned off automatically 15 s after the ignition switch is turned off;, if the light
switch is left on. Assume that a LOW is required to turn the lights off.

LOW turns off the lights.

Ignition HIGH = On
switch LOW = Off

Headlight
control

Light HIGH =On
switch LOW = Off

FIGURE 3-96

48. Modify the logic circuit for the intrusion alarm in Figure 3-25 so that two additional rooms,
each with two windows and one door, can be protected.

49. Further modify the logic circuit from Problem 48 for a change in the input sensors where
Open = LOW and Closed = HIGH.

50. Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a
vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is
exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure
or the temperature is excessive. Design a circuit for this application.

51. In a certain automated manufacturing process, electrical components are automatically inserted
in a PCB. Before the insertion tool is activated, the PCB must be properly positioned, and
the component to be inserted must be in the chamber. Each of these prerequisite conditions is
indicated by a HIGH voltage. The insertion tool requires a LOW voltage to activate it. Design a
circuit to implement this process.

Multisim Troubleshooting Practice

52. Open file P03-52. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

53. Open file P03-53. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

54. Open file P03-54. For the observed behavior indicated, predict the fault in the circuit. Then
introduce the suspected fault and verify whether your prediction is correct.

55. Open file PO3-55. For the observed behavior indicated, predict the fault in the circuit. Then
introduce the suspected fault and verify whether your prediction is correct.

SECTION CHECKUPS
Section 3-1 The Inverter
1. When the inverter input is 1, the output is 0.

2. (a) D

(b) A negative-going pulse is on the output (HIGH to LOW and back HIGH).

Section 3-2 The AND Gate
1. An AND gate output is HIGH only when all inputs are HIGH.
2. An AND gate output is LOW when one or more inputs are LOW.

3. Five-input AND: X = 1 when ABCDE = 11111, and X = 0 for all other combinations of
ABCDE.

Section 3-3 The OR Gate
1. An OR gate output is HIGH when one or more inputs are HIGH.
2. An OR gate output is LOW only when all inputs are LOW.
3. Three-input OR: X = 0 when ABC = 000, and X = 1 for all other combinations of ABC.

Section 3-4 The NAND Gate
1. A NAND gate output is LOW only when all inputs are HIGH.
2. A NAND gate output is HIGH when one or more inputs are LOW.

3. NAND: active-LOW output for all HIGH inputs; negative-OR: active-HIGH output for one or
more LOW inputs. They have the same truth tables.

4. X = ABC

Section 3-5 The NOR Gate
1. A NOR gate output is HIGH only when all inputs are LOW.
2. A NOR gate output is LOW when one or more inputs are HIGH.

3. NOR: active-LOW output for one or more HIGH inputs; negative-AND: active-HIGH output
for all LOW inputs. They have the same truth tables.

4. X=A+B+C

Section 3-6 The Exclusive-OR and Exclusive-NOR Gates
1. An XOR gate output is HIGH when the inputs are at opposite levels.
2. An XNOR gate output is HIGH when the inputs are at the same levels.
3. Apply the bits to the XOR gate inputs; when the output is HIGH, the bits are different.

Section 3-7 Programmable Logic
1. Fuse, antifuse, EPROM, EEPROM, flash, and SRAM

2. Volatile means that all the data are lost when power is off and the PLD must be reprogrammed;
SRAM-based
3. Text entry and graphic entry
4. JTAG is Joint Test Action Group; the IEEE Std. 1149.1 for programming and test interfacing.
5. entity NORgate is
port (A, B, C: in bit; X: out bit);
end entity NORgate;
architecture NORfunction of NORgate is
begin
X <= A nor B nor C;
end architecture NORfunction;
6. entity XORgate is
port (A, B: in bit; X: out bit);
end entity XORgate;
architecture XORfunction of XORgate is
begin
X <= A xor B;
end architecture XORfunction;

Section 3-8 Fixed-Function Logic Gates
1. Fixed-function logic cannot be changed. PLDs can be programmed for any logic function.
2. CMOS and bipolar (TTL)

Answers

Logic Gates

3. (a) LS—Low-power Schottky
(b) HC—High-speed CMOS
(¢) HCT—HC CMOS TTL compatible
. Lowest power—CMOS
. Six inverters in a package; four 2-input NAND gates in a package
. tprg = 10 ns; tpyy = 8 ns
18 pJ
. Iccp—dc supply current for LOW output state; /ccy—dc supply current for HIGH output state

IR I NV RN

. ViL—LOW input voltage; Viy—HIGH input voltage
10. Vo —LOW output voltage; Vog—HIGH output voltage

Section 3-9 Troubleshooting
1. Opens and shorts are the most common failures.
2. An open input which effectively makes input HIGH
3. Amplitude and period

RELATED PROBLEMS FOR EXAMPLES
3-1 The timing diagram is not affected.
3-2 See Table 3-15.

Inputs Output Inputs Output

ABCD X ABCD X
0000 0 1000 0
0001 0 1001 0
0010 0 1010 0
0011 0 1011 0
0100 0 1100 0
0101 0 1101 0
0110 0 1110 0
0111 0 1111 1

3-3 See Figure 3-97.

;
-
-

E

=

T

FIGURE 3-97

3-4 The output waveform is the same as input A.
3-5 See Figure 3-98.

3-6 Results are the same as example.

3-7 See Figure 3-99.

C=HiGH x LML

FIGURE 3-98 FIGURE 3-99

3-8 See Figure 3-100.
3-9 See Figure 3-101.

FIGURE 3-100

3-10 See Figure 3-102.
3-11 See Figure 3-103.

UL
|

F

x |

FIGURE 3-102

3-12 Use a 3-input NAND gate.

Answers

s LU
SRR NRERRRRRNRERRE
XII..II..II..II..II..
C=LOW

FIGURE 3-101

FIGURE 3-103

3-13 Use a 4-input NAND gate operating as a negative-OR gate.

3-14 See Figure 3—-104.

FIGURE 3-104

3-15 See Figure 3-105.
3-16 See Figure 3-106.

a_[] [1
’ —
¥ n

FIGURE 3-105

FIGURE 3-106

Logic Gates

3-17 Use a 2-input NOR gate.
3-18 A 3-input NAND gate.
3-19 The output is always LOW. The output is a straight line.

3-20 The exclusive-OR gate will not detect simultaneous failures if both circuits produce the
same outputs.

3-21 The outputs are unaffected.

3-22 6 columns, 9 rows, and 3 AND gates with three inputs each

3-23 The gate with 4 ns tp; 5 and 7py; can operate at the highest frequency.

3-24 10 mW

3-25 The gate output or pin 13 input is internally open.

3-26 The display will show an erratic readout because the counter continues until reset.

3-27 The enable pulse is too short or the counter is reset too soon.

TRUE/FALSE QUIZ
1. T 2. T 3. F 4. F 5.T
6. T 7. F 8. F 9. T 10. T

SELF-TEST
1. (¢ 2. (d) 3. (c) 4. (a) 5. (o) 6. (a) 7. (d) 8. (b) 9. (d)
10. (@) 11. (b) 12.(d) 13.(b) 14.(a) 15.(d) 16. (c) 17. (c)

U 1T U1 2Val liginl o 0

)0 00 'TUTF=THIE0T 09 ~' 01 g9 4
0 11100101 191101 of 17 2 01 g9 4
11,710 001011 Sollyq 1000 5
100001 & 4,410 40 .5

o1 1100 11 00
0 01 (i i O 10 01 10 000

CHAPTER

Boolean Algebra and

Logic Simplification

CHAPTER OUTLINE

4-1 Boolean Operations and Expressions

4-2 Laws and Rules of Boolean Algebra

4-3 DeMorgan’s Theorems

4-4 Boolean Analysis of Logic Circuits

4-5 Logic Simplification Using Boolean Algebra

4-6 Standard Forms of Boolean Expressions

4-7 Boolean Expressions and Truth Tables

4-8 The Karnaugh Map

4-9 Karnaugh Map SOP Minimization

4-10 Karnaugh Map POS Minimization

4-11 The Quine-McCluskey Method

4-12 Boolean Expressions with VHDL
Applied Logic

CHAPTER OBJECTIVES

Apply the basic laws and rules of Boolean algebra
Apply DeMorgan’s theorems to Boolean expressions

Describe gate combinations with Boolean
expressions

Evaluate Boolean expressions

Simplify expressions by using the laws and rules of
Boolean algebra

Convert any Boolean expression into a sum-
of-products (SOP) form

Convert any Boolean expression into a product
of-sums (POS) form

Relate a Boolean expression to a truth table

Use a Karnaugh map to simplify Boolean expressions
Use a Karnaugh map to simplify truth table functions
Utilize “don’t care” conditions to simplify logic functions

Use the Quine-McCluskey method to simplify
Boolean expressions

Write a VHDL program for simple logic

Apply Boolean algebra and the Karnaugh map
method in an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Variable Product-of-sums
Complement (POS)

Sum term Karnaugh map
Product term Minimization
Sum-of-products (SOP) “Don’t care”

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In 1854, George Boole published a work titled An
Investigation of the Laws of Thought, on Which Are
Founded the Mathematical Theories of Logic and
Probabilities. It was in this publication that a “logi-
cal algebra,” known today as Boolean algebra, was
formulated. Boolean algebra is a convenient and
systematic way of expressing and analyzing the
operation of logic circuits. Claude Shannon was
the first to apply Boole’s work to the analysis and
design of logic circuits. In 1938, Shannon wrote a
thesis at MIT titled A Symbolic Analysis of Relay
and Switching Circuits.

This chapter covers the laws, rules, and theorems
of Boolean algebra and their application to digital cir-
cuits. You will learn how to define a given circuit with
a Boolean expression and then evaluate its operation.
You will also learn how to simplify logic circuits using
the methods of Boolean algebra, Karnaugh maps,
and the Quine-McCluskey method.

Boolean expressions using the hardware descrip-
tion language VHDL are also covered.

191

Boolean Algebra and Logic Simplification

4-1 Boolean Operations and Expressions

InfoNote

In a microprocessor, the
arithmetic logic unit (ALU)
performs arithmetic and Boolean
logic operations on digital

data as directed by program
instructions. Logical operations
are equivalent to the basic gate
operations that you are familiar
with but deal with a minimum

of 8 bits at a time. Examples

of Boolean logic instructions

are AND, OR, NOT, and XOR,
which are called mnemonics.

An assembly language program
uses the mnemonics to specify
an operation. Another program
called an assembler translates the
mnemonics into a binary code
that can be understood by the
microprocessor.

The OR operation is the Boolean
equivalent of addition.

Boolean algebra is the mathematics of digital logic. A basic knowledge of Boolean algebra
is indispensable to the study and analysis of logic circuits. In the last chapter, Boolean
operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and
NOR gates were introduced.

After completing this section, you should be able to
¢ Define variable
¢ Define literal
+ Identify a sum term
+ Evaluate a sum term
+ Identify a product term
+ Evaluate a product term
+ Explain Boolean addition

+ Explain Boolean multiplication

Variable, complement, and literal are terms used in Boolean algebra. A variable is a sym-
bol (usually an italic uppercase letter or word) used to represent an action, a condition, or
data. Any single variable can have only a 1 or a 0 value. The complement is the inverse of a
variable and is indicated by a bar over the variable (overbar). For example, the complement
of the variable Ais A.If A = 1,then A = 0.If A = 0, then A = 1. The complement of the
variable A is read as “not A” or “A bar.” Sometimes a prime symbol rather than an overbar is
used to denote the complement of a variable; for example, B” indicates the complement of B.
In this book, only the overbar is used. A literal is a variable or the complement of a variable.

Boolean Addition

Recall from Chapter 3 that Boolean addition is equivalent to the OR operation. The basic
rules are illustrated with their relation to the OR gate in Figure 4—1.

0+0=0 0+1=1 1+0=1 1+1=1

FIGURE 4-1

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is pro-
duced by an OR operation with no AND operations involved. Some examples of sum terms
are A+ B,A+BA+ B+ C,andA + B+ C+ D.

A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term
is equal to O only if each of the literals is 0.

Determine the values of A, B, C, and D that make the sumterm A + B + C + D equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0,
B=1sothat B=0,C =0,and D = 1sothatD = 0.

A+B+C+D=0+1+0+1=0+0+0+0=0

Laws and Rules of Boolean Algebra

Related Problem*

Determine the values of A and B that make the sum term A + B equal to 0.

*Answers are at the end of the chapter.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND operation. The AND operation is the Boolean
The basic rules are illustrated with their relation to the AND gate in Figure 4-2. equivalent of multiplication.

1-0=0 lel=1

~ololglo

In Boolean algebra, a product term is the product of literals. In logic circuits, a product
term is produced by an AND operation with no OR operations involved. Some examples of
product terms are AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product term
is equal to O when one or more of the literals are 0.

FIGURE 4-

EXAMPLE 4-2

Determine the values of A, B, C, and D that make the product term ABCD equal to 1.

Solution

For the productjerm to be 1, each of the literals in tEe term must be 1. Therefore, A = 1,
B =0sothatB=1,C =1,and D = O0sothatD = 1.

ABCD=1-0-1-0=1-1-1-1=1
Related Problem

Determine the values of A and B that make the product term A B equal to 1.

SECTION 4-1 CHECKUP

Answers are at the end of the chapter.
1. If A = 0, what does A equal?
2. Determine the values of A, B, and C that make the sum term A + B + C equal to 0.
3. Determine the values of A, B, and C that make the product term ABC equal to 1.

4-2 Laws and Rules of Boolean Algebra

As in other areas of mathematics, there are certain well-developed rules and laws that must
be followed in order to properly apply Boolean algebra. The most important of these are
presented in this section.

After completing this section, you should be able to
+ Apply the commutative laws of addition and multiplication
+ Apply the associative laws of addition and multiplication
+ Apply the distributive law

+ Apply twelve basic rules of Boolean algebra

Boolean Algebra and Logic Simplification

MultiSim

N

Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and multiplication,
the associative laws for addition and multiplication, and the distributive law—are the same
as in ordinary algebra. Each of the laws is illustrated with two or three variables, but the
number of variables is not limited to this.

Commutative Laws

The commutative law of addition for two variables is written as

A+B=B+A Equation 4-1

This law states that the order in which the variables are ORed makes no difference. Remember,
in Boolean algebra as applied to logic circuits, addition and the OR operation are the same.
Figure 4-3 illustrates the commutative law as applied to the OR gate and shows that it doesn’t
matter to which input each variable is applied. (The symbol = means “equivalent to.”)

FIGURE 4-3 Application of commutative law of addition.

The commutative law of multiplication for two variables is
AB = BA Equation 4-2

This law states that the order in which the variables are ANDed makes no difference.
Figure 4—4 illustrates this law as applied to the AND gate. Remember, in Boolean algebra
as applied to logic circuits, multiplication and the AND function are the same.

AB = BA
B — A —

FIGURE 4-4 Application of commutative law of multiplication.

Associative Laws
The associative law of addition is written as follows for three variables:
A+B+0C=A+B+C Equation 4-3

This law states that when ORing more than two variables, the result is the same regardless of
the grouping of the variables. Figure 4-5 illustrates this law as applied to 2-input OR gates.

A A
A+B+0C) A+B
= B
B =
B+C A+B)+C
C C

FIGURE 4-5 Application of associative law of addition. Open file F04-05 to verify.
A Multisim tutorial is available on the website.

The associative law of multiplication is written as follows for three variables:
A(BC) = (AB)C Equation 4-4

This law states that it makes no difference in what order the variables are grouped when AND-
ing more than two variables. Figure 4-6 illustrates this law as applied to 2-input AND gates.

Laws and Rules of Boolean Algebra

= =
A(BC) _D—EB
= B —
?)—I c B }(AB)C
B
C _]

FIGURE 4-6 Application of associative law of multiplication. Open file F04-06 to verify.

Cc —

Distributive Law
The distributive law is written for three variables as follows:
AB + C) = AB + AC Equation 4-5

This law states that ORing two or more variables and then ANDing the result with a single
variable is equivalent to ANDing the single variable with each of the two or more variables
and then ORing the products. The distributive law also expresses the process of factoring in
which the common variable A is factored out of the product terms, for example, AB + AC =
A(B + C). Figure 4-7 illustrates the distributive law in terms of gate implementation.

AB

B
A —— AC

X=AB +0) X =AB + AC

FIGURE 4-7 Application of distributive law. Open file F04-07 to verify.

Rules of Boolean Algebra

Table 4-1 lists 12 basic rules that are useful in manipulating and simplifying Boolean
expressions. Rules 1 through 9 will be viewed in terms of their application to logic gates.
Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously
discussed.

TABLE 4-1

Basic rules of Boolean algebra.

.A+0=4 7.A-A=A

2.A+1=1 8. A-A=0

3.A-0=0 9. A=A

4. A-1=A 10. A+ AB=A
5$A+tA=A 11.A+ AB=A+B

6. A+A=1 12. (A + BYA + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.
Rule 1: A + 0 = A A variable ORed with 0 is always equal to the variable. If the input

variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which
is also equal to A. This rule is illustrated in Figure 4—8, where the lower input is fixed at O.

FIGURE 4-8

MultiSim

N

MultiSim

N

Boolean Algebra and Logic Simplification

Rule 2: A +1 =1 A variable ORed with 1 is always equal to 1. A 1 on an input to an
OR gate produces a 1 on the output, regardless of the value of the variable on the other
input. This rule is illustrated in Figure 4-9, where the lower input is fixed at 1.

FIGURE 4-9

Rule 3: A-0 =0 A variable ANDed with 0 is always equal to 0. Any time one input to
an AND gate is O, the output is 0, regardless of the value of the variable on the other input.
This rule is illustrated in Figure 4-10, where the lower input is fixed at 0.

A=1— A=0—
X=0 X=0
0 — 0 —i

FIGURE 4-10

Rule4: A-1 =A A variable ANDed with 1 is always equal to the variable. If A is 0, the
output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs
are now 1s. This rule is shown in Figure 4-11, where the lower input is fixed at 1.

A=0— A=1—
X=0 X=1
1 —— 1 —

FIGURE 4-11

Rule 5: A + A=A A variable ORed with itself is always equal to the variable. If A is 0,
then0 + 0 = 0;andif Ais I,then 1 + 1 = 1. This is shown in Figure 4-12, where both
inputs are the same variable.

FIGURE 4-12

Rule 6: A + A =1 A variable ORed with its ~complement is always equal to 1. If A is
0,then0 + 0 =0+ 1= 1.IfAisl,thenl + 1 = 1 + 0 = 1. See Figure 4-13, where
one input is the complement of the other.

FIGURE 4-13

Laws and Rules of Boolean Algebra

Rule 7: A-A = A A variable ANDed with itself is always equal to the variable. If
A = 0,then0 ‘0 = 0;andif A = 1,then 1 -1 = 1. Figure 414 illustrates this rule.

X=0 X=1
A=0 A=1

FIGURE 4-14

Rule 8: A - A =0 A variable ANDed with its complement is always equal to 0. Either A
or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will
be 0 also. Figure 4—15 illustrates this rule.

A=1— A=0—
_ X=0 _ X=0
A=0— A=1—

FIGURE 4-15

Rule 9: A = A The double complement of a variable is always equal to the variable. If
you start with the variable A and complement (invert) it once, you get A. If you then take
A and complement (invert) it, you get A, which is the original variable. This rule is shown
in Figure 4-16 using inverters.

FIGURE 4-16

Rule 10: A + AB = A This rule can be proved by applying the distributive law, rule 2,
and rule 4 as follows:

A+ AB =A-1+ AB = A(1 + B) Factoring (distributive law)
=A-1 Rule2: (1 + B) =1
=A Rule4:A-1=A

The proof is shown in Table 4-2, which shows the truth table and the resulting logic circuit
simplification.

MultiSim

Rule 10: A + AB = A Open file T04-02 to verify. -
A B AB A+ AB
0 0 0 0 A
0 1 0 0
1 0 0 1 B
1 1 1 1 l
T T straight connection
equal

Boolean Algebra and Logic Simplification

MultiSim
~

Rule 11: A + AB = A + B This rule can be proved as follows:

A+ AB = (A + AB) + AB Rule 10:A = A + AB
= (AA + AB) + AB Rule 7: A = AA
= AA + AB + AA + AB Rule 8: adding AA = 0
= (A + A)YA + B) Factoring
=1-(A+ B) Rule6:A + A = 1
=A+8B Rule 4: drop the 1

The proof is shown in Table 4-3, which shows the truth table and the resulting logic
circuit simplification.

TABLE 4-3

Rule 11: A + AB = A + B. Open file T04-03 to verify.
AB A+AB | A+B

0 A
B

T— equal —T 2

—
—

- —_- o o | »
- o = o |W

S O© = O
—_ = = O

Rule 12: (A + B)(A + C) = A + BC This rule can be proved as follows:
(A+ B)YA + C) = AA + AC + AB + BC Distributive law
=A+AC+ AB + BC Rule7:AA =A
= A(l + C) + AB + BC Factoring (distributive law)

=A-1+ AB + BC Rule2:1 + C =1
= A(l + B) + BC Factoring (distributive law)
=A-1+ BC Rule2:1 + B=1
= A + BC Rule4:A-1=A

The proof is shown in Table 4—4, which shows the truth table and the resulting logic circuit

Ml!!ﬁSim simplification.
N

TABLE 4-4

Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify.
A B C A+B A+C A+B)A+0O) BC A +BC
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 a
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1 c
1 0 0 1 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 1 1 1 0 1 A 5D7

B

1 1 1 1 1 1 1 1 C

equal

SECTION 4-2 CHECKUP

1. Apply the associative law of addition to the expression A + (B + C + D).
2. Apply the distributive law to the expression A(B + C + D).

4-3 DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important
part of Boolean algebra. In practical terms, DeMorgan’s theorems provide mathematical
verification of the equivalency of the NAND and negative-OR gates and the equivalency of
the NOR and negative-AND gates, which were discussed in Chapter 3.

After completing this section, you should be able to
+ State DeMorgan’s theorems

+ Relate DeMorgan’s theorems to the equivalency of the NAND and negative-OR
gates and to the equivalency of the NOR and negative-AND gates

+ Apply DeMorgan’s theorems to the simplification of Boolean expressions

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements
of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables.

The formula for expressing this theorem for two variables is
XY=X+Y Equation 4-6
DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements
of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables.

The formula for expressing this theorem for two variables is

X+Y=XY Equation 4-7

Figure 4-17 shows the gate equivalencies and truth tables for Equations 4-6
and 4-7.

As stated, DeMorgan’s theorems also apply to expressions in which there are more than
two variables. The following examples illustrate the application of DeMorgan’s theorems
to 3-variable and 4-variable expressions.

DeMorgan’s Theorems

To apply DeMorgan’s theorem, break
the bar over the product of variables
and change the sign from AND to
OR.

Boolean Algebra and Logic Simplification

Inputs Output
XY XY X+Y

X — _ x L
Xy = :D—X+Y
Yy — Y

NAND Negative-OR

_— = O O
— o = O
S = = =
O = = =

Inputs Output

X X —J ——
:Do— X+v = :)— Xv o0 | 1 1
Y Yy —O
0 1 0 0
NOR Negative-AND 1 0 0 0
1 1 0 0

FIGURE 4-17 Gate equivalencies and the corresponding truth tables that illustrate
DeMorgan’s theorems. Notice the equality of the two output columns in each table. This
shows that the equivalent gates perform the same logic function.

EXAMPLE 4-3

Apply DeMorgan’s theorems to the expressions XYZ and X + Y + Z.
Solution
XYZ=X+Y+2Z
X+Y+Z=XYZ

Related Problem
Apply DeMorgan’s theorem to the expression X + Y + Z.

EXAMPLE 4-4

Apply DeMorgan’s theorems to the expressions WXYZand W + X + Y + Z.

Solution
WXYZ=W+X+Y+Z

W+X+Y+Z=WXYZ

Related Problem
Apply DeMorgan’s theorem to the expression WX YZ.

Each variable in DeMorgan’s theorems as stated in Equations 4-6 and 47 can also repre-
sent a combination of other variables. For example, X can be equal to the term AB + C,and Y
can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two variables
as stated by XY = X + Y to the expression (AB + C)(A + BC), you get the following result:

(AB+ O)A+BC)=MAB+ C) + (A + BO

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of
which you can again apply DeMorgan’s theorem X + Y = XY individually, as follows:

(AB + C) + (A + BC) = (AB)C + A(BOC)

Notice that you still have two terms in the expression to which DeMorgan’s theorem can
again be applied. These terms are AB and BC. A final application of DeMorgan’s theorem
gives the following result:

(AB)C + A(BC) = (A + B)C + A(B + C)
Although this result can be simplified further by the use of Boolean rules and laws,
DeMorgan’s theorems cannot be used any more.

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean
algebra to the specific expression

A + BC + DE + F)

Step 1: Identify the terms to which you can apply DeMorgan’s theorems, and think of
each term as a single variable. Let A + BC = Xand D(E + F) = Y.
Step 2: Since X + Y = X7,

(A + BC) + (D(E + F)) = (A + BO)DEE + F))

Step 3: Use rule 9 (Z = A) to cancel the double bars over the left term (this is not part
of DeMorgan’s theorem).

(A + BC)D(E + F)) = (A + BC)D(E + F))

Step 4: Apply DeMorgan’s theorem to the second term.
(A + BC)YD(E + F)) = (A + BO)XD + (E + F))

Step 5: Use rule 9 (X = A) to cancel the double bars over the E + F part of the term.
(A+ BC)YD+E+F)=(A+BC)D +E+F)

The following three examples will further illustrate how to use DeMorgan’s theorems.

EXAMPLE 4-5

Apply DeMorgan’s theorems to each of the following expressions:
@ (A+B+OD

(b) ABC + DEF

(¢) AB + CD + EF

Solution

(@ LetA + B+ C = Xand D = Y. The expression (A + B + C)D is of the form
XY = X + Y and can be rewritten as

A+B+CD=A+B+C+D
Next, apply DeMorgan’s theorem to the term A + B + C.
A+B+C+D=ABC+D

(b) Let ABC fﬁX and DEF = Y. The expression ABC + DEF is of the form
X + Y = XY and can be rewritten as

ABC + DEF = (ABC)(DEF)
Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.

(ABCYDEF) = (A+ B+ C)D + E + F)

DeMorgan’s Theorems

Boolean Algebra and Logic Simplification

(¢) Let AB=X,CD = Y, and EF = Z. The expression AB + CD + EF is of the
form X + Y + Z = XYZ and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)
Next, apply DeMorgan’s theorem to each of the terms E, G_D, and EF.
(AB)(CD)(EF) = (A + B)(C + D)E + F)
Related Problem
Apply DeMorgan’s theorems to the expression ABC + D + E.

EXAMPLE 4-6

Apply DeMorgan’s theorems to each expression:
@ A+B)+C

®) (A + B) + CD

(© A+BCD+E+F

Solution

@ A+B +C=@A+BC=(A+BC

®) (A+B)+ CD=(A+ BCD = (AB)(C + D) = AB(C + D)

(¢ A+ BCD+E+F=({A+ BCD)E+ F)=(AB + C+ DEF

Related Problem
Apply DeMorgan’s theorems to the expression AB(C + D) + E.

EXAMPLE 4-7

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting
point, use DeMorgan’s theorems and any other rules or laws that are applicable to
develop an expression for the exclusive-NOR gate.

Solution

Start by complementing the exclusive-OR expression and then applying DeMorgan’s
theorems as follows:

AB + AB = (AB)AB) = (A + BYA + B) = (A + B)(A + B)
Next, apply the distributive law and rule 8 (A - A = 0).
(A+ B)A+B)=AA +AB + AB + BB = AB + AB

The final expression for the XNOR is AB + AB. Note that this expression equals 1 any
time both variables are Os or both variables are Is.

Related Problem

Starting with the expression for a 4-input NAND gate, use DeMorgan’s theorems to
develop an expression for a 4-input negative-OR gate.

Boolean Analysis of Logic Circuits

SECTION 4-3 CHECKUP

1. Apply DeMorgan’s theorems to the following expressions:
(a) ABC + (D + E) (b) (A + B)C (¢) A+ B+ C+ DE

4-4 Boolean Analysis of Logic Circuits

Boolean algebra provides a concise way to express the operation of a logic circuit formed
by a combination of logic gates so that the output can be determined for various combina-
tions of input values.

After completing this section, you should be able to
+ Determine the Boolean expression for a combination of gates
+ Evaluate the logic operation of a circuit from the Boolean expression

+ Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left-most
inputs and work toward the final output, writing the expression for each gate. For the example
circuit in Figure 4-18, the Boolean expression is determined in the following three steps:

1. The expression for the left-most AND gate with inputs C and D is CD.

2. The output of the left-most AND gate is one of the inputs to the OR gate and B is the
other input. Therefore, the expression for the OR gate is B + CD.

3. The output of the OR gate is one of the inputs to the right-most AND gate and A is the
other input. Therefore, the expression for this AND gate is A(B + CD), which is the
final output expression for the entire circuit.

C_
D —

CD

B+CD

AB + CD
Do

FIGURE 4-18 A combinational logic circuit showing the development of the Boolean
expression for the output.

B

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that
shows the output for all possible values of the input variables can be developed. The proce-
dure requires that you evaluate the Boolean expression for all possible combinations of values
for the input variables. In the case of the circuit in Figure 418, there are four input variables
(A, B, C, and D) and therefore sixteen (24 = 16) combinations of values are possible.

Evaluating the Expression

To evaluate the expression A(B + CD), first find the values of the variables that make the
expression equal to 1, using the rules for Boolean addition and multiplication. In this case,
the expression equals 1 only if A = 1 and B + CD = 1 because

AB+CD)=1-1=1

A combinational logic circuit can be
described by a Boolean equation.

A combinational logic circuit can be
described by a truth table.

Boolean Algebra and Logic Simplification

Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1
or CD = 1 or if both B and CD equal 1 because

Il
—_

B+CD=1+0
B+CD=0+1=1
B+CD=1+1

|
-

Theterm CD = lonlyif C = land D = 1.

To summarize, the expression A(B + CD) = 1 when A = 1 and B = 1 regardless of
the values of C and D or when A = 1 and C = | and D = 1 regardless of the value of B.
The expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table Format

The first step is to list the sixteen input variable combinations of 1s and Os in a binary
sequence as shown in Table 4-5. Next, place a 1 in the output column for each combination
of input variables that was determined in the evaluation. Finally, place a 0O in the output
column for all other combinations of input variables. These results are shown in the truth
table in Table 4-5.

TABLE 4-5

Truth table for the logic circuit in Figure 4-18.

Inputs Output
A B C D AB + CD)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

EXAMPLE 4-8

Solution

Use Multisim to generate the truth table for the logic circuit in Figure 4-18.

Construct the circuit in Multisim and connect the Multisim Logic Converter to the inputs and output, as shown in Figure 4-19.
Click onthe == —+ 75I% | conversion bar, and the truth table appears in the display as shown.
You can also generate the simplified Boolean expression from the truth table by clicking on T&fr *i'* &g |.

Logic Simplification Using Boolean Algebra

Truth table
Logic Converter-XLC1
- ou &
_ O o0 00 Q00
b N L S M A A) A B C D E F G H ;
1 1 1 | SO 5 T I g D = = Conversions —
oot o oo oo 0
oozl o o 10 / o M
ool oo 1 0
= oo4l o 1 o0 o0 o tols —+* AB
oos| o 10 1 o
2 I U1 bos| o 1 10 0 SElEEEE o
c o7l o 119 0
O ¥ pog|l 1 o0 oo o AIE -+ Tof1
B AND2 ool 11 o 0
BE Em
! OR2 u3 ot1] 1 0 11 1 ' =
o1zl 1 1 0 oo 1
g ¥ oizl 11 o 9 S 15 L1 ST S = S IS
- oi4l 11 1w 1
AND2 o015 1 1 1 1 1 '
| AC D+
Boolean expression
FIGURE 4-19
Related Problem MultiSim
Open Multisim. Create the setup and do the conversions shown in this example. <<

SECTION 4-4 CHECKUP

1. Replace the AND gates with OR gates and the OR gate with an AND gate in Figure 4-18.
Determine the Boolean expression for the output.

2. Construct a truth table for the circuit in Question 1.

4-5 Logic Simplification Using Boolean Algebra

A logic expression can be reduced to its simplest form or changed to a more convenient form
to implement the expression most efficiently using Boolean algebra. The approach taken in
this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and
simplify an expression. This method depends on a thorough knowledge of Boolean algebra
and considerable practice in its application, not to mention a little ingenuity and cleverness.

After completing this section, you should be able to

* Apply the laws, rules, and theorems of Boolean algebra to simplify general
expressions

A simplified Boolean expression uses the fewest gates possible to implement a given
expression. Examples 4-9 through 4—12 illustrate Boolean simplification.

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + BB + C)

Boolean Algebra and Logic Simplification

Simplification means fewer gates for

the same function.

MultiSim

N

Solution

The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as
follows:

AB + AB + AC + BB + BC
Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC
Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC
Step 4: Apply rule 10 (B + BC = B) to the last two terms.
AB + AC + B
Step 5: Apply rule 10 (AB + B = B) to the first and third terms.
B + AC

At this point the expression is simplified as much as possible. Once you gain experience
in applying Boolean algebra, you can often combine many individual steps.

Related Problem
Simplify the Boolean expression AB + A(B + C) + B(B + C).

Figure 4-20 shows that the simplification process in Example 4-9 has significantly
reduced the number of logic gates required to implement the expression. Part (a) shows that
five gates are required to implement the expression in its original form; however, only two
gates are needed for the simplified expression, shown in part (b). It is important to realize
that these two gate circuits are equivalent. That is, for any combination of levels on the A,
B, and C inputs, you get the same output from either circuit.

A
L B
AB+AB +C)+ BB +C) B+AC
ot
C — PR
C_

@ T;These two circuits are equivalent. 4T ®)

FIGURE 4-20 Gate circuits for Example 4-9. Open file F04-20 to verify equivalency.

EXAMPLE 4-10

Simplify the following Boolean expression:
[AB(C + BD) + AB|C

Note that brackets and parentheses mean the same thing: the term inside is multiplied
(ANDed) with the term outside.

Logic Simplification Using Boolean Algebra

Solution
Step 1: Apply the distributive law to the terms within the brackets.

(ABC + ABBD + AB)C
Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.
(ABC+A-0-D + AB)C
Step 3: Applyrule 3 (A - 0 - D = 0) to the second term within the parentheses.
(ABC + 0 + AB)C

Step 4: Apply rule 1 (drop the 0) within the parentheses.

(ABC + AB)C
Step 5: Apply the distributive law.

ABCC + ABC
Step 6: Apply rule 7 (CC = C) to the first term.

ABC + ABC
Step 7: Factor out BC.
BCA + A)
Step8: Applyrule 6 (A + A = 1).
BC- 1
Step 9: Apply rule 4 (drop the 1).
BC

Related Problem
Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4-11

Simplify the following Boolean expression:

ABC + ABC + ABC + ABC + ABC

Solution
Step 1: Factor BC out of the first and last terms.

BCA + A) + ABC + ABC + ABC

Step 2: Applyrule 6 (A + A = 1) to the term in parentheses, and factor AB from the
second and last terms.

BC-1+ AB(C + C) + ABC

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term
in parentheses.

BC + AB-1 + ABC
Step 4: Apply rule 4 (drop the 1) to the second term.
BC + AB + ABC

Boolean Algebra and Logic Simplification

Step 5: Factor B from the second and third terms.
BC + B(A + AC)

Step 6: Apply rule 11 (A + AC = A + C) to the term in parentheses.
BC + B(A + C)

Step 7: Use the distributive and commutative laws to get the following expression:
BC + AB + BC

Related Problem
Simplify the Boolean expression ABC + ABC + ABC + ABC.

Simplify the following Boolean expression:

AB + AC + ABC
Solution
Step 1: Apply DeMorgan’s theorem to the first term.

(AB)(AC) + ABC

Step 2: Apply DeMorgan’s theorem to each term in parentheses.

(A+ BYA + C) + ABC
Step 3: Apply the distributive law to the two terms in parentheses.

AA + AC + AB + BC + ABC
Step 4: Apply rule 7 (A X_ = A) to the first term, and apply rule 10
[AB + ABC = AB(1 + C) = AB] to the third and last terms.

A+ AC+ AB + BC

Step 5: Applyrule 10 [A + AC = A(1 + C) = A] to the first and second terms.
A+ AB + BC
Step 6: Apply rule 10 [A + AB = A(1 + B) = A] to the first and second terms.
A+ BC

Related Problem
Simplify the Boolean expression AB + AC + ABC.

EXAMPLE 4-13

Use Multisim to perform the logic simplification shown in Figure 4-20.

Solution

Step 1: Connect the Multisim Logic Converter to the circuit as shown in Figure 4-21.
Step 2: Generate the truth table by clickingon = -+ 7am|.

Step 3: Generate the simplified Boolean expression by clicking on &z sif'® age |.
Step 4: Generate the simplified logic circuit by clickingon _as - == |.

Standard Forms of Boolean Expressions

XLC1
T-———=as8
ogic Converfer-XLC1
EBRRRREE
o i i = B B
A B C D E F G H . _
ggﬁl g g ? g - — anwersions —
3 ooz 010 } = —+ 101
E A U1 ggi ? E' é ? 1ol — AE
| el 4 B R =
nnT 11 1 1
AND2 3 = =
AE — T
BD ﬁ AlE —+ NapnD
[
c
o—
=
AND2
A B C
: 2
3
1
FIGURE 4-21
Related Problem
Open Multisim. Create the setup and perform the logic simplification illustrated in this MI.!ItiSim
example. 2

SECTION 4-5 CHECKUP

1. Simplify the following Boolean expressions:
(a) A+ AB + ABC (b) (A + B)C + ABC (¢) ABC(BD + CDE) + AC

2. Implement each expression in Question 1 as originally stated with the appropriate logic
gates. Then implement the simplified expression, and compare the number of gates.

4-6 Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of two stan-
dard forms: the sum-of-products form or the product-of-sums form. Standardization makes
the evaluation, simplification, and implementation of Boolean expressions much more sys-
tematic and easier.

After completing this section, you should be able to
+ Identify a sum-of-products expression
¢ Determine the domain of a Boolean expression
¢ Convert any sum-of-products expression to a standard form
+ Evaluate a standard sum-of-products expression in terms of binary values

+ Identify a product-of-sums expression

Boolean Algebra and Logic Simplification

An SOP expression can be
implemented with one OR gate and
two or more AND gates.

+ Convert any product-of-sums expression to a standard form
+ Evaluate a standard product-of-sums expression in terms of binary values

+ Convert from one standard form to the other

The Sum-of-Products (SOP) Form

A product term was defined in Section 4—1 as a term consisting of the product (Boolean
multiplication) of literals (variables or their complements). When two or more product
terms are summed by Boolean addition, the resulting expression is a sum-of-products
(SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC
Also, an SOP expression can contain a single-variable term, as in A + ABC + BCD.
Refer to the simplification examples in the last section, and you will see that each of the
final expressions was either a single product term or in SOP form. In an SOP expression, a
single overbar cannot extend over more than one variable; however, more than one varial)lg
in a term can have an overbar. For example, an SOP expression can have the term ABC
but not ABC.

Domain of a Boolean Expression

The domain of a general Boolean expression is the set of variables contained in the expres-
sion in either complemented or uncomplemented form. For example, the domain of the
expression AB + ABC is the set of variables A, B, C and the domain of the expression
ABC + CDE + BCD is the set of variables A, B, C, D, E.

AND/OR Implementation of an SOP Expression

Implementing an SOP expression simply requires ORing the outputs of two or more AND
gates. A product term is produced by an AND operation, and the sum (addition) of two or
more product terms is produced by an OR operation. Therefore, an SOP expression can
be implemented by AND-OR logic in which the outputs of a number (equal to the number
of product terms in the expression) of AND gates connect to the inputs of an OR gate, as
shown in Figure 4-22 for the expression AB + BCD + AC. The output X of the OR gate
equals the SOP expression.

> baw w o>

— X =AB + BCD + AC

C
FIGURE 4-22 Implementation of the SOP expression AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression

NAND gates can be used to implement an SOP expression. By using only NAND gates,
an AND/OR function can be accomplished, as illustrated in Figure 4-23. The first level
of NAND gates feed into a NAND gate that acts as a negative-OR gate. The NAND and
negative-OR inversions cancel and the result is effectively an AND/OR circuit.

Standard Forms of Boolean Expressions

A —_—
B —
B — |
g: X =AB + BCD + AC
A —_—
c —
FIGURE 4-23 This NAND/NAND implementation is equivalent to the AND/OR in

Figure 4-22.

Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-
niques. For example, the expression A(B + CD) can be converted to SOP form by applying
the distributive law:

A(B + CD) = AB + ACD

EXAMPLE 4-14

Convert each of the following Boolean expressions to SOP form:
(a) AB + B(CD + EF) () (A+ BB + C+ D) ¢ A+B) +C

Solution

(a) AB + B(CD + EF) = AB + BCD + BEF

() (A+ BYB+ C+ D)=AB + AC + AD + BB + BC + BD
©0 A+B +C=@A+BC=(A+ B)C =AC + BC

Related Problem
Convert ABC + (A + B)(B + C + AB) to SOP form.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not con-
tain all of the variables in the domain of the expression. For example, the expression
ABC + ABD + ABCD has a domain made up of the variables A, B, C, and D. However,
notice that the complete set of variables in the domain is not represented in the first two
terms of the expression; that is, D or D is missing from the first term and C or C is missing
from the second term.

A standard SOP expression is one in which all the variables in the domain appear in
each product term in the expression. For example, ABCD + ABCD + ABCD is a stan-
dard SOP expression. Standard SOP expressions are important in constructing truth tables,
covered in Section 4-7, and in the Karnaugh map simplification method, which is covered
in Section 4-8. Any nonstandard SOP expression (referred to simply as SOP) can be con-
verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the
domain can be expanded to standard form to include all variables in the domain and their
complements. As stated in the following steps, a nonstandard SOP expression is converted
into standard form using Boolean algebra rule 6 (A + A = 1) from Table 4—1: A variable
added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a
missing variable and its complement. This results in two product terms. As you
know, you can multiply anything by 1 without changing its value.

Boolean Algebra and Logic Simplification

Step 2: Repeat Step | until all resulting product terms contain all variables in the
domain in either complemented or uncomplemented form. In converting a
product term to standard form, the number of product terms is doubled for each
missing variable, as Example 4—15 shows.

EXAMPLE 4-15

Convert the following Boolean expression into standard SOP form:
ABC + AB + ABCD
Solution

The domain of this SOP expressiog is A, B, C, D. Take one term at a time. The first term, ABC, is missing variable D or D,
so multiply the first term by D + D as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two stan(iaid product terms are the restﬂt. - B
The second term, A B, is missing variables C or C and D or D, so first multiply the second term by C + C as follows:

AB = AB(C + C) = ABC + ABC
The two resulting terms are missing variable D or D, so multiply both terms by D + D as follows:
AB = ABC + ABC = ABC(D + D) + ABC(D + D)
= ABCD + ABCD + ABCD + ABCD
In this case, four standard product terms are the result.
The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

ABC + AB + ABCD = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Related Problem
Convert the expression WXY + XYZ + WXY to standard SOP form.

Binary Representation of a Standard Product Term

A standard product term is equal to 1 for only one combination of variable values. For
example, the product term ABCD is equal to l when A = 1,B=0,C =1,D = 0, as
shown below, and is O for all other combinations of values for the variables.

ABCD=1:0-1-0=1-1-1-1=1

In this case, the product term has a binary value of 1010 (decimal ten).
Remember, a product term is implemented with an AND gate whose output is 1 only if each
of its inputs is 1. Inverters are used to produce the complements of the variables as required.

An SOP expression is equal to 1 only if one or more of the product terms in the
expression is equal to 1.

EXAMPLE 4-16

Determine the binary values for which the following standard SOP expression is equal to 1:
ABCD + ABCD + ABCD

Solution

The term ABCD isequalto | when A = 1,B=1,C = l,and D = 1.
ABCD=1-1-1-1=1

Standard Forms of Boolean Expressions

The term ABCD is equaltol whenA = 1,B=0,C =0,and D = 1.
ABCD=1:-0:01=1-1-1-1=1

The term ABCD is equalto l whenA = 0,B=0,C = 0,and D = 0.
ABCD=0-0:-0:-0=1-1-1-1=1

)

The SOP expression equals 1 when any or all of the three product terms is 1.

Related Problem
Determine the binary values for which the following SOP expression is equal to 1:

XYZ + XYZ + XYZ + XYZ + XYZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4—1 as a term consisting of the sum (Boolean addition)
of literals (variables or their complements). When two or more sum terms are multiplied,
the resulting expression is a product-of-sums (POS). Some examples are

(A+B@A+B+ 0
(A+ B+ C)(C+ D+ EXB+ C+ D)
(A+BA+B+ @A+ 0O

A POS expression can contain a single-variable term, as in A(A + B + C)(B + C + D).
In a POS expression, a single overbar cannot extend over more than one variable; however,

more than one variable in a term can have an overbar. For example, a POS expression can
have theterm A + B + CbutnotA + B + C.

Implementation of a POS Expression

Implementing a POS expression simply requires ANDing the outputs of two or more OR
gates. A sum term is produced by an OR operation, and the product of two or more sum
terms is produced by an AND operation. Therefore, a POS expression can be implemented by
logic in which the outputs of a number (equal to the number of sum terms in the expression)
of OR gates connect to the inputs of an AND gate, as Figure 4-24 shows for the expression
(A + B)B + C + D)A + C). The output X of the AND gate equals the POS expression.

}X:(A+B)(B+C+D)(A+C)

008

C
FIGURE 4-24 Implementation of the POS expression (A + B)(B + C + D)(A + C).

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all
of the variables in the domain of the expression. For example, the expression

A+B+C@A+B+D)A+B+C+ D)

has a domain made up of the variables A, B, C, and D. Notice that the complete set of vari-
ﬁ)les in the domain is not represented in tEe first two terms of the expression; that is, D or
D is missing from the first term and C or C is missing from the second term.

Boolean Algebra and Logic Simplification

A standard POS expression is one in which all the variables in the domain appear in
each sum term in the expression. For example,

A+B+C+DA+B+C+D)YA+B+C+D)
is a standard POS expression. Any nonstandard POS expression (referred to simply as
POS) can be converted to the standard form using Boolean algebra.
Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in the domain can
be expanded to standard form to include all variables in the domain and their complements.
As stated in the following steps, a nonstandard POS expression is converted into standard
form using Boolean algebra rule 8 (A + A = 0) from Table 4—1: A variable multiplied by
its complement equals 0.

Step 1: Add to each nonstandard product term a term made up of the product of the
missing variable and its complement. This results in two sum terms. As you
know, you can add O to anything without changing its value.

Step 2: Apply rule 12 from Table 4-1: A + BC = (A + B)(A + O)

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain
in either complemented or uncomplemented form.

EXAMPLE 4-17

Convert the following Boolean expression into standard POS form:
A+B+C(B+C+DA+B+C+D)

Solution

The dgmain of th§ POS expression is A, B, C, D. Take one term at a time. The first term, A + B + C,is missing variable
D or D, so add DD and apply rule 12 as follows:

A+B+C=A+B+C+DD=A+B+C+D)A+B+C+ D)
The second term, B + C + D, is missing variable A or A, so add AA and apply rule 12 as follows:
B+C+D=B+C+D+AA=A+B+C+D)A+B+C+ D)
The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:
A+B+CB+C+DA+B+C+D)= B B L B o
A+B+C+DA+B+C+DA+B+C+DA+B+C+DA+B+C+D)

Related Problem
Convert the expression (A + B)(B + C) to standard POS form.

Binary Representation of a Standard Sum Term

A standard sum term is equal to O for only one combination of variable values. For exam-
ple, the sumterm A + B+ C + Dis 0 when A = 0,B=1,C=0,and D = 1, as
shown below, and is 1 for all other combinations of values for the variables.

A+B+C+D=0+1+0+1=0+0+0+0=0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term
is implemented with an OR gate whose output is 0 only if each of its inputs is 0. Inverters
are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the expres-
sion is equal to 0.

Standard Forms of Boolean Expressions

EXAMPLE 4-18

Determine the binary values of the variables for which the following standard POS
expression is equal to 0:

A+B+C+DA+B+C+DA+B+C+D)
Solution
Theterm A + B + C + DisequaltoOwhen A = 0,B = 0,C = 0,and D = 0.
A+B+C+D=0+0+0+0=0
Theterm A + B + C + DisequaltoOwhenA = 0,B=1,C = 1,and D = 0.
A+B+C+D=0+1+14+0=0+0+0+0=0
Theterm A + B + C + BisequaltOOWhenA =1,B=1,C=1,and D = 1.
A+B+C+D=1+1+14+41=0+0+0+0=0
The POS expression equals O when any of the three sum terms equals 0.
Related Problem
Determine the binary values for which the following POS expression is equal to O:
X+Y+2O)X+Y+2DX+Y+2D)X+Y+2)X+Y+2)

Is this a standard POS expression?

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present
in the equivalent standard POS expression. Also, the binary values that are not represented
in the SOP expression are present in the equivalent POS expression. Therefore, to convert
from standard SOP to standard POS, the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the
binary numbers that represent the product terms.

Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express
in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4-19

Convert the following SOP expression to an equivalent POS expression:

ABC + ABC + ABC + ABC + ABC

Solution
The evaluation is as follows:

000 + 010 + 011 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of eight
23 possible combinations. The SOP expression contains five of these combinations, so
the POS must contain the other three which are 001, 100, and 110. Remember, these are
the binary values that make the sum term 0. The equivalent POS expression is

A+B+CA+B+C)YA+B+C)

Boolean Algebra and Logic Simplification

Related Problem

Verify that the SOP and POS expressions in this example are equivalent by substituting
binary values into each.

SECTION 4-6 CHECKUP

1. Identify each of the following expressions as SOP, standard SOP, POS, or standard

POS:
(a) AB + ABD + ACD (b) (A+ B+ C)YA+ B+ C)
(¢) ABC + ABC (d) (A+ C)A + B)

2. Convert each SOP expression in Question 1 to standard form.

3. Convert each POS expression in Question 1 to standard form.

4-7 Boolean Expressions and Truth Tables

All standard Boolean expressions can be easily converted into truth table format using
binary values for each term in the expression. The truth table is a common way of present-
ing, in a concise format, the logical operation of a circuit. Also, standard SOP or POS
expressions can be determined from a truth table. You will find truth tables in data sheets
and other literature related to the operation of digital circuits.

After completing this section, you should be able to
+ Convert a standard SOP expression into truth table format
+ Convert a standard POS expression into truth table format
+ Derive a standard expression from a truth table

+ Properly interpret truth table data

Converting SOP Expressions to Truth Table Format

Recall from Section 4-6 that an SOP expression is equal to 1 only if at least one of the
product terms is equal to 1. A truth table is simply a list of the possible combinations of
input variable values and the corresponding output values (1 or 0). For an expression with a
domain of two variables, there are four different combinations of those variables (22 = 4).
For an expression with a domain of three variables, there are eight different combinations
of those variables (2° = 8). For an expression with a domain of four variables, there are
sixteen different combinations of those variables (2* = 16), and so on.

The first step in constructing a truth table is to list all possible combinations of binary
values of the variables in the expression. Next, convert the SOP expression to standard
form if it is not already. Finally, place a 1 in the output column (X) for each binary value
that makes the standard SOP expression a 1 and place a O for all the remaining binary values.
This procedure is illustrated in Example 4-20.

EXAMPLE 4-20

Develop a truth table for the standard SOP expression ABC + ABC + ABC.

Solution

There are three variables in the domain, so there are eight possible combinations of
binary values of the variables as listed in the left three columns of Table 4-6. The
binary values that make the product terms in the expressions equal to 1 are

Boolean Expressions and Truth Tables

TABLE 4-6

Inputs Output

A B (o X Product Term
0 0 0 0

0 0 1 1 ABC

0 1 0 0

0 1 1 0

1 0 0 1 ABC

1 0 1 0

1 1 0 0

1 1 1 1 ABC

ABC:001; ABC: 100; and ABC: 111. For each of these binary values, place a 1 in the
output column as shown in the table. For each of the remaining binary combinations,
place a O in the output column.

Related Problem
Create a truth table for the standard SOP expression ABC + ABC.

Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to O only if at least one of the sum terms is equal to
0. To construct a truth table from a POS expression, list all the possible combinations of
binary values of the variables just as was done for the SOP expression. Next, convert the
POS expression to standard form if it is not already. Finally, place a O in the output column
(X) for each binary value that makes the expression a 0 and place a 1 for all the remaining
binary values. This procedure is illustrated in Example 4-21.

EXAMPLE 4-21

Determine the truth table for the following standard POS expression:

A+B+CO)A+B+CA+B+C)A+B+C)A+B+0)

Solution

There are three variables in the domain and the eight possible binary values are listed in
the left three columns of Table 4-7. The binary values that make the sum terms in the
expression equal to 0 are A + B + C:000;A + B + C:010;A + B + C:011;
A+ B+ C:101;and A + B + C: 110. For each of these binary values, place a 0 in
the output column as shown in the table. For each of the remaining binary combina-
tions, place a 1 in the output column.

TABLE 4-7

Inputs Output
A B C X Sum Term
A+ B+ O
(A+B+ 0O
(A+B+ 0

A+ B+ 0
A+ B+

—_—e— e = O O O O
—_—_— O O = = O O
— o —m O = O - O
—_ o O = O O~ O

Boolean Algebra and Logic Simplification

Notice that the truth table in this example is the same as the one in Example 4-20.
This means that the SOP expression in the previous example and the POS expression in
this example are equivalent.

Related Problem
Develop a truth table for the following standard POS expression:

A+B+C)A+B+CA-+B+0)

Determining Standard Expressions from a Truth Table

To determine the standard SOP expression represented by a truth table, list the binary val-
ues of the input variables for which the output is 1. Convert each binary value to the corre-
sponding product term by replacing each 1 with the corresponding variable and each 0 with
the corresponding variable complement. For example, the binary value 1010 is converted
to a product term as follows:

1010 —> ABCD
If you substitute, you can see that the product term is 1:
ABCD=1-0-1-0=1-1-1-1=1

To determine the standard POS expression represented by a truth table, list the binary
values for which the output is 0. Convert each binary value to the corresponding sum term
by replacing each 1 with the corresponding variable complement and each 0 with the cor-
responding variable. For example, the binary value 1001 is converted to a sum term as
follows:

1000l — A+ B+ C+D
If you substitute, you can see that the sum term is 0:

A+B+C+D=1+0+0+1=0+0+0+0=0

EXAMPLE 4-22

From the truth table in Table 4-8, determine the standard SOP expression and the
equivalent standard POS expression.
TABLE 4-8
Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

The Karnaugh Map

Solution
There are four 1s in the output column and the corresponding binary values are 011,
100, 110, and 111. Convert these binary values to product terms as follows:

011 —> ABC

100 —> ABC

110 —> ABC

111 — ABC

The resulting standard SOP expression for the output X is
X = ABC + ABC + ABC + ABC
For the POS expression, the output is O for binary values 000, 001, 010, and 101.
Convert these binary values to sum terms as follows:
000 — A+ B+ C
00l — A+ B+ C
010 —— A+ B+ C
10l — A+B+C
The resulting standard POS expression for the output X is
X=@A+B+0OA+B+CA+B+C)@A+B~+ 0

Related Problem

By substitution of binary values, show that the SOP and the POS expressions derived in
this example are equivalent; that is, for any binary value each SOP and POS term should
either both be 1 or both be 0, depending on the binary value.

SECTION 4-7 CHECKUP

1. If a certain Boolean expression has a domain of five variables, how many binary
values will be in its truth table?

2. In a certain truth table, the output is a 1 for the binary value 0110. Convert this binary
value to the corresponding product term using variables W, X, Y, and Z.

3. In a certain truth table, the output is a O for the binary value 1100. Convert this binary
value to the corresponding sum term using variables W, X, Y, and Z.

4-8 The Karnaugh Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and,
if properly used, will produce the simplest SOP or POS expression possible, known as
the minimum expression. As you have seen, the effectiveness of algebraic simplification
depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on
your ability to apply them. The Karnaugh map, on the other hand, provides a “cookbook”
method for simplification. Other simplification techniques include the Quine-McCluskey
method and the Espresso algorithm.

After completing this section, you should be able to
+ Construct a Karnaugh map for three or four variables
¢ Determine the binary value of each cell in a Karnaugh map
¢ Determine the standard product term represented by each cell in a Karnaugh map

+ Explain cell adjacency and identify adjacent cells

Boolean Algebra and Logic Simplification

The purpose of a Karnaugh map is to
simplify a Boolean expression.

Cells that differ by only one variable
are adjacent.

Cells with values that differ by more
than one variable are not adjacent.

A Karnaugh map is similar to a truth table because it presents all of the possible values
of input variables and the resulting output for each value. Instead of being organized into
columns and rows like a truth table, the Karnaugh map is an array of cells in which each
cell represents a binary value of the input variables. The cells are arranged in a way so
that simplification of a given expression is simply a matter of properly grouping the cells.
Karnaugh maps can be used for expressions with two, three, four, and five variables, but we
will discuss only 3-variable and 4-variable situations to illustrate the principles. A discus-
sion of 5-variable Karnaugh maps is available on the website.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table,
is equal to the total number of possible input variable combinations. For three variables, the
number of cells is 2° = 8. For four variables, the number of cells is 24 = 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells, as shown in Figure 4-25(a). In this
case, A, B, and C are used for the variables although other letters could be used. Binary
values of A and B are along the left side (notice the sequence) and the values of C are across
the top. The value of a given cell is the binary values of A and B at the left in the same row
combined with the value of C at the top in the same column. For example, the cell in the
upper left corner has a binary value of 000 and the cell in the lower right corner has a binary
value of 101. Figure 4-25(b) shows the standard product terms that are represented by each
cell in the Karnaugh map.

c c
00 00 | ABC | ABC
01 01 | ABC | ABC
11 11 [ABC | ABC
10 10 | ABC | ABC

(@ (b)

FIGURE 4-25 A 3-variable Karnaugh map showing Boolean product terms for each cell.

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure 4-26(a).
Binary values of A and B are along the left side and the values of C and D are across the
top. The value of a given cell is the binary values of A and B at the left in the same row
combined with the binary values of C and D at the top in the same column. For example,
the cell in the upper right corner has a binary value of 0010 and the cell in the lower right
corner has a binary value of 1010. Figure 4-26(b) shows the standard product terms that
are represented by each cell in the 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-variable change
between adjacent cells. Adjacency is defined by a single-variable change. In the 3-variable
map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110 cell. The 010 cell is
not adjacent to the 001 cell, the 111 cell, the 100 cell, or the 101 cell.

Physically, each cell is adjacent to the cells that are immediately next to it on any of
its four sides. A cell is not adjacent to the cells that diagonally touch any of its corners.
Also, the cells in the top row are adjacent to the corresponding cells in the bottom row and

The Karnaugh Map

CD CcD
AB 00 01 1110 AB 00 01 1110
00 00 |ABCD|ABCD|ABCD|ABCD
01 01 |ABCD|ABCD|ABCD|ABCD
11 11 |ABCD|ABCD|ABCD|ABCD
10 10 |ABCD|ABCD|ABCD|ABCD
(a) (b)

FIGURE 4-26 A 4-variable Karnaugh map.

the cells in the outer left column are adjacent to the corresponding cells in the outer right
column. This is called “wrap-around” adjacency because you can think of the map as wrap-
ping around from top to bottom to form a cylinder or from left to right to form a cylinder.
Figure 4-27 illustrates the cell adjacencies with a 4-variable map, although the same rules
for adjacency apply to Karnaugh maps with any number of cells.

CD
AB00 v/00\ v/01 N\ v/11 N\ '/IO‘B
+4>+4>*+4>* 4\
@> ‘«»‘«»‘«»‘ -
i I AR A S
Qv ‘«»‘«»‘«»‘ -
i IR AR A

\ACAVAW,
FIGURE 4-27 Adjacent cells on a Karnaugh map are those that differ by only one
variable. Arrows point between adjacent cells.

The Quine-McCluskey Method

Minimizing Boolean functions using Karnaugh maps is practical only for up to four or five
variables. Also, the Karnaugh map method does not lend itself to be automated in the form
of a computer program.

The Quine-McCluskey method is more practical for logic simplification of functions
with more than four or five variables. It also has the advantage of being easily implemented
with a computer or programmable calculator.

The Quine-McCluskey method is functionally similar to Karnaugh mapping, but the
tabular form makes it more efficient for use in computer algorithms, and it also gives a way
to check that the minimal form of a Boolean function has been reached. This method is
sometimes referred to as the tabulation method. An introduction to the Quine-McCluskey
method is provided in Section 4—11.

Espresso Algorithm

Although the Quine-McCluskey method is well suited to be implemented in a computer
program and can handle more variables than the Karnaugh map method, the result is still
far from efficient in terms of processing time and memory usage. Adding a variable to
the function will roughly double both of these parameters because the truth table length
increases exponentially with the number of variables. Functions with a large number of

Boolean Algebra and Logic Simplification

variables have to be minimized with other methods such as the Espresso logic minimizer,
which has become the de facto world standard. An Espresso algorithm tutorial is available
on the website.

Compared to the other methods, Espresso is essentially more efficient in terms of reduc-
ing memory usage and computation time by several orders of magnitude. There is essen-
tially no restrictions to the number of variables, output functions, and product terms of a
combinational logic function. In general, tens of variables with tens of output functions can
be handled by Espresso.

The Espresso algorithm has been incorporated as a standard logic function minimiza-
tion step in most logic synthesis tools for programmable logic devices. For implementing
a function in multilevel logic, the minimization result is optimized by factorization and
mapped onto the available basic logic cells in the target device, such as an FPGA (Field-
Programmable Gate Array).

SECTION 4-8 CHECKUP

1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol-
lowing locations:

(a) upper left corner (b) lower right corner

(¢) lower left corner (d) upper right corner
2. What is the standard product term for each cell in Question 1 for variables X, Y, and Z?
3. Repeat Question 1 for a 4-variable map.

4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z.

4-9 Karnaugh Map SOP Minimization

As stated in the last section, the Karnaugh map is used for simplifying Boolean expressions
to their minimum form. A minimized SOP expression contains the fewest possible terms
with the fewest possible variables per term. Generally, a minimum SOP expression can be
implemented with fewer logic gates than a standard expression. In this section, Karnaugh
maps with up to four variables are covered.

After completing this section, you should be able to
¢ Map a standard SOP expression on a Karnaugh map
¢ Combine the 1s on the map into maximum groups
¢ Determine the minimum product term for each group on the map
¢ Combine the minimum product terms to form a minimum SOP expression

+ Convert a truth table into a Karnaugh map for simplification of the represented
expression

+ Use “don’t care” conditions on a Karnaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for each
product term in the expression. Each 1 is placed in a cell corresponding to the value of
a product term. For example, for the product term ABC, a 1 goes in the 101 cell on a
3-variable map.

Karnaugh Map SOP Minimization

When an SOP expression is completely mapped, there will be a number of 1s on the
Karnaugh map equal to the number of product terms in the standard SOP expression. The
cells that do not have a 1 are the cells for which the expression is 0. Usually, when working
with SOP expressions, the Os are left off the map. The following steps and the illustration
in Figure 4-28 show the mapping process.

Step 1: Determine the binary value of each product term in the standard SOP expres-
sion. After some practice, you can usually do the evaluation of terms mentally.

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell
having the same value as the product term.

C o _ __
AB 0 1 ABC + ABC + ABC + ABC
¥ 000 001 110 100
00 1 | ef—
01
11 1
10 1

FIGURE 4-28 Example of mapping a standard SOP expression.

EXAMPLE 4-23

Map the following standard SOP expression on a Karnaugh map:

ABC + ABC + ABC + ABC

Solution
Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in
Figure 4-29 for each standard product term in the expression.

ABC + ABC + ABC + ABC

001 o010 110 111

c
00 |«+t— ABC
01| 1 ABC
11| 1w] 1=<f—ABC
10 ™ ABC

FIGURE 4-29

Related Problem
Map the standard SOP expression ABC + ABC + ABC on a Karnaugh map.

Boolean Algebra and Logic Simplification

EXAMPLE 4-24

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution

Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in
Figure 4-30 for each standard product term in the expression.

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
0011 0100 1101 1111 1100 0001 1010
D ABCD
AB 00 01 11 10

4 -
00 1 1 ABCD

01
ABCD |
11 1
/
10 1<+— ABCD

f \
ABCD ABCD

ABCD

FIGURE 4-30

Related Problem
Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a Karnaugh map. If an
expression is not in standard form, then it must be converted to standard form by the proce-
dure covered in Section 4—6 or by numerical expansion. Since an expression should be eval-
uated before mapping anyway, numerical expansion is probably the most efficient approach.

Numerical Expansion of a Nonstandard Product Term

Recall that a nonstandard product term has one or more missing variables. For example,
assume that one of the product terms in a certain 3-variable SOP expression is AB. This
term can be expanded numerically to standard form as follows. First, write the binary value
of the two variables and attach a 0 for the missing variable C: 100. Next, write the binary
value of the two variables and attach a 1 for the missing variable C: 101. The two resulting
binary numbers are the values of the standard SOP terms AB C and ABC.

As another example, assume that one of the product terms in a 3-variable expression is
B (remember that a single variable counts as a product term in an SOP expression). This
term can be expanded numerically to standard form as follows. Write the binary value of
the variable; then attach all possible values for the missing variables A and C as follows:

B
010
011
110
111

Karnaugh Map SOP Minimization

The four resulting binary numbers are the values of the standard SOP terms ABC,

ABC, ABC, and ABC.

EXAMPLE 4-25

Solution

FIGURE 4-31

Related Problem
Map the SOP expression BC + A C on a Karnaugh map.

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

The SOP expression is obviously not in standard form because each product term does not
have three variables. The first term is missing two variables, the second term is missing
one variable, and the third term is standard. First expand the terms numerically as follows:

A + AB + ABC
000 100 110
001 101

010

011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the
3-variable Karnaugh map in Figure 4-31.

C

00 1 1

01 1 1

11 1

10 1 1

EXAMPLE 4-26

Solution

1001

BC + AB
0000 1000
0001 1001
1000 1010

1011

Map the following SOP expression on a Karnaugh map:

BC + AB + ABC + ABCD + ABCD + ABCD

The SOP expression is obviously not in standard form because each product term does
not have four variables. The first and second terms are both missing two variables, the
third term is missing one variable, and the rest of the terms are standard. First expand the
terms by including all combinations of the missing variables numerically as follows:

+ ABC + ABCD + ABCD + ABCD
1100 1010 0001 1011

1101

Boolean Algebra and Logic Simplification

C
AB

0

1

00

|

01

11

10

(a)

FIGURE 4-33

Map each of the resulting binary values by placing a 1 in the appropriate cell of the
4-variable Karnaugh map in Figure 4-32. Notice that some of the values in the expanded
expression are redundant.

CD
AB 00 01 11 10

00 1 1

01

11 1 1

10 1 1 1 1

FIGURE 4-32

Related Problem
Map the expression A + CD + ACD + ABCD on a Karnaugh map.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the few-
est possible variables is called minimization. After an SOP expression has been mapped,
a minimum SOP expression is obtained by grouping the 1s and determining the minimum
SOP expression from the map.

Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those
adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize
the number of groups.

c
AB

1. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the
case of a 3-variable map, 23 = 8 cells is the maximum group.

2. Each cell in a group must be adjacent to one or more cells in that same group, but all
cells in the group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in a group in accordance with rule 1.

4. Each 1 on the map must be included in at least one group. The 1s already in a group can
be included in another group as long as the overlapping groups include noncommon 1s.

EXAMPLE 4-27

Group the 1s in each of the Karnaugh maps in Figure 4-33.

00

01

11

10

(b)

CD CD
0 1 AB 00 01 11 10 AB 00 01 11 10
1 1 00 1 1 00 1 1
1 01 1 1 1 1 01 1 1 1
1 11 11 1 1 1
1 1 10 1 1 10 1 1 1

(c) ()

Karnaugh Map SOP Minimization

Solution

The groupings are shown in Figure 4-34. In some cases, there may be more than one way to group the 1s to form maximum
groupings.

Wrap-around adjacency Wrap-around adjacency

x
c c cD CD/
AB 1 AN 01 AN 00 01 1110 AN /00 o111 \10

0
| o[@CT [T ol 1) al
No KD (@D [
|G [®] o] | i ulla]]
‘ @ -[ED oL |0

(a) (b) (© (d)

1 1

P

FIGURE 4-34

Related Problem

Determine if there are other ways to group the 1s in Figure 4-34 to obtain a minimum number of maximum
groupings.

Determining the Minimum SOP Expression from the Map

When all the 1s representing the standard product terms in an expression are properly
mapped and grouped, the process of determining the resulting minimum SOP expression
begins. The following rules are applied to find the minimum product terms and the mini-
mum SOP expression:

1. Group the cells that have 1s. Each group of cells containing 1s creates one product
term composed of all variables that occur in only one form (either uncomple-
mented or complemented) within the group. Variables that occur both uncomple-
mented and complemented within the group are eliminated. These are called
contradictory variables.

2. Determine the minimum product term for each group.
(a) For a 3-variable map:
(1) A 1-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2-variable product term
(3) A 4-cell group yields a 1-variable term
(4) An 8-cell group yields a value of 1 for the expression
(b) For a 4-variable map:
(1) A 1-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term
(3) A 4-cell group yields a 2-variable product term
(4) An 8-cell group yields a 1-variable term
(5) A 16-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are
summed to form the minimum SOP expression.

Boolean Algebra and Logic Simplification

EXAMPLE 4-28

Determine the product terms for the Karnaugh map in Figure 4-35 and write the result-
ing minimum SOP expression.

cD
AB 00 01 1110
00 1 1 .
H— AC
\
o1 | 1 1 1 1
(N
0\ 1T 8
1|1 1 1 1
L)
10 1
A
ACD
FIGURE 4-35
Solution

Eliminate variables that are in a grouping in both complemented and uncomplemented
forms. In Figure 4-35, the product term for the 8-cell group is B because the cells
within that group contain both A and A, C and C, and D and D, which are eliminated.
The 4-cell group contains B, B, D, and D, leaving the variables A and C, which form the
product term AC. The 2-cell group contains B and B, leaving variables A, C, and D
which form the product term ACD. Notice how overlapping is used to maximize the
size of the groups. The resulting minimum SOP expression is the sum of these product
terms:

B + AC + ACD

Related Problem

For the Karnaugh map in Figure 4-35, add a 1 in the lower right cell (1010) and deter-
mine the resulting SOP expression.

EXAMPLE 4-29

|

/
01 /ﬁ
1@

10

(a)

FIGURE 4-36

BC

AB
00

01

11

10

(b)

Determine the product terms for each of the Karnaugh maps in Figure 4-36 and write the resulting minimum SOP expression.

B AC D
cD cD
0 1 / AB oo/ o1 11 10 ApN 00/ 01 11 10
(1) 1) ol|(1 | 1 ool 1 1
\ —
1 Ac 01 (1 1 1 1>" AB o1 |1 1 1
N J
(1t AC 11 |l 1 J 1
) aD. av
1 1 10 1 1 0] 1 1 1
(| | HAN
N TN
ABD BC ABC

© (d)

Karnaugh Map SOP Minimization

Solution

The resulting minimum product term for each group is shown in Figure 4-36. The minimum SOP expressions for each of
the Karnaugh maps in the figure are

(@ AB + BC + ABC

(b) B+ AC + AC

(¢ AB + AC + ABD

() D + ABC + BC

Related Problem
For the Karnaugh map in Figure 4-36(d), add a 1 in the 0111 cell and determine the resulting SOP expression.

Use a Karnaugh map to minimize the following standard SOP expression:
ABC + ABC + ABC + ABC + ABC
Solution
The binary values of the expression are
101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells as shown in Figure 4-37.

C
AB_, 0 1
N
00 kl 1
v
01 YA
_/

11

10(1 1]_,_5

FIGURE 4-37

Notice the “wrap around” 4-cell group that includes the top row and the bottom row
of 1s. The remaining 1 is absorbed in an overlapping group of two cells. The group of
four 1s produces a single variable term, B. This is determined by observing that within
the group, B is the only variable that does not change from cell to cell. The group of two
1s produces a 2-variable term AC. This is determined by observing that within the
group, A and C do not change from one cell to the next. The product term for each
group is shown. The resulting minimum SOP expression is

B + AC
Keep in mind that this minimum expression is equivalent to the original standard expression.
Related Problem
Use a Karnaugh map to simplify the following standard SOP expression:
XYZ + XYZ + XYZ + XYZ + XYZ + XYZ

Boolean Algebra and Logic Simplification

EXAMPLE 4-31

Use a Karnaugh map to minimize the following SOP expression:

BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution

The first term B C D must be expanded into ABC D and A B C D to get the standard
SOP expression, which is then mapped; the cells are grouped as shown in Figure 4-38.

BC
cD
AN 00 01 11 10/

A - D
00_1\ b /J

01 1 1

11 1 1

10__1/ (1 \ﬂ

FIGURE 4-38

Notice that both groups exhibit “wrap around” adjacency. The group of eight is
formed because the cells in the outer columns are adjacent. The group of four is formed
to pick up the remaining two 1s because the top and bottom cells are adjacent. The
product term for each group is shown. The resulting minimum SOP expression is

D + BC
Keep in mind that this minimum expression is equivalent to the original standard
expression.

Related Problem
Use a Karnaugh map to simplify the following SOP expression:

WXYZ + WXYZ + WXYZ + WYZ + WXYZ

Mapping Directly from a Truth Table

You have seen how to map a Boolean expression; now you will learn how to go directly
from a truth table to a Karnaugh map. Recall that a truth table gives the output of a Boolean
expression for all possible input variable combinations. An example of a Boolean expres-
sion and its truth table representation is shown in Figure 4-39. Notice in the truth table that
the output X is 1 for four different input variable combinations. The 1s in the output column
of the truth table are mapped directly onto a Karnaugh map into the cells corresponding to
the values of the associated input variable combinations, as shown in Figure 4-39. In the
figure you can see that the Boolean expression, the truth table, and the Karnaugh map are
simply different ways to represent a logic function.

“Don’t Care” Conditions

Sometimes a situation arises in which some input variable combinations are not allowed.
For example, recall that in the BCD code covered in Chapter 2, there are six invalid
combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states

Karnaugh Map SOP Minimization

X = ABC + ABC + ABC + ABC

Inputs | Output AB Q 0 1
ABC X 00'@
000 1

001 0 01

010 0

SR 00
1 00 1 7
101 03‘@
110 1

111 1

FIGURE 4-39 Example of mapping directly from a truth table to a Karnaugh map.

will never occur in an application involving the BCD code, they can be treated as “don’t
care” terms with respect to their effect on the output. That is, for these “don’t care” terms
either a 1 or a 0 may be assigned to the output; it really does not matter since they will
never occur.

The “don’t care” terms can be used to advantage on the Karnaugh map. Figure 4—40
shows that for each “don’t care” term, an X is placed in the cell. When grouping the 1s, the
Xs can be treated as 1s to make a larger grouping or as Os if they cannot be used to advan-
tage. The larger a group, the simpler the resulting term will be.

Inputs Output
ABCD Y
00O00O0 0
00 01 0
0010 0
0011 0
0100 0 cD
0101 0 AR\ 00 01 11 10
0110 0 00
01 11 1
1000 1 B
1 001 1 01 @ ABCD
1 010 X BCD
1011 X 1 (x x |l x x\)
1100 X Don’t cares "V
1101 X 10“1 1) | x X)
1 110 X 7 _\
1111 X A
ABC A
(a) Truth table (b) Without “don’t cares” ¥ = ABC + ABCD

With “don’t cares” Y = A + BCD

FIGURE 4-40 Example of the use of “don’t care” conditions to simplify an expression.

The truth table in Figure 4-40(a) describes a logic function that has a 1 output only
when the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t cares” are used as
1s, the resulting expression for the function is A + BCD, as indicated in part (b). If the
“don’t cares” are not used as Is, the resulting expression is ABC + ABCD; so you can see
the advantage of using “don’t care” terms to get the simplest expression.

Boolean Algebra and Logic Simplification

EXAMPLE 4-32

In a 7-segment display, each of the seven segments is activated for various digits. For
example, segment a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in
Figure 4-41. Since each digit can be represented by a BCD code, derive an SOP expres-
sion for segment a using the variables ABCD and then minimize the expression using a
Karnaugh map.

:Segmenta [e s = R A

b

f
8
C___

e, ' c
AR
d
FIGURE 4-41 7-segment display.

Solution

The expression for segment a is

a=ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Each term in the expression represents one of the digits in which segment a is used. The
Karnaugh map minimization is shown in Figure 4-42. X’s (don’t cares) are entered for
those states that do not occur in the BCD code.

cD
ApN_ 00 0l 1110

OO_J 1 @ w0

01 (1 1\,

A
T N
11 TX X || x| x

10 D 1 \X ();"

FIGURE 4-42
From the Karnaugh map, the minimized expression for segment a is
a=A+C+BD+BD

Related Problem
Draw the logic diagram for the segment-a logic.

SECTION 4-9 CHECKUP

1. Lay out Karnaugh maps for three and four variables.

2. Group the 1s and write the simplified SOP expression for the Karnaugh map in
Figure 4-29.

3. Write the original standard SOP expressions for each of the Karnaugh maps in Fig-
ure 4-36.

Karnaugh Map POS Minimization

4-10 Karnaugh Map POS Minimization

In the last section, you studied the minimization of an SOP expression using a Karnaugh
map. In this section, we focus on POS expressions. The approaches are much the same
except that with POS expressions, Os representing the standard sum terms are placed on the
Karnaugh map instead of 1s.

After completing this section, you should be able to
¢ Map a standard POS expression on a Karnaugh map
+ Combine the Os on the map into maximum groups
¢ Determine the minimum sum term for each group on the map

+ Combine the minimum sum terms to form a minimum POS expression

*

Use the Karnaugh map to convert between POS and SOP

Mapping a Standard POS Expression

For a POS expression in standard form, a 0 is placed on the Karnaugh map for each sum
term in the expression. Each 0 is placed in a cell corresponding to the value of a sum term.
For example, for the sum term A + B + C, a 0 goes in the 010 cell on a 3-variable map.

When a POS expression is completely mapped, there will be a number of Os on the
Karnaugh map equal to the number of sum terms in the standard POS expression. The cells
that do not have a 0 are the cells for which the expression is 1. Usually, when working with
POS expressions, the 1s are left off. The following steps and the illustration in Figure 4-43
show the mapping process.

Step 1: Determine the binary value of each sum term in the standard POS expression.
This is the binary value that makes the term equal to 0.

Step 2: As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-

sponding cell.
C _ o _ _
AB 0 1 (A+B+C)(A+B+C)(A+B+C)(A+B+0)
000 010 110 101
00 0 |
01 0
11 0
10 0

FIGURE 4-43 Example of mapping a standard POS expression.

EXAMPLE 4-33

Map the following standard POS expression on a Karnaugh map:

A+B+C+DA+B+C+DYA+B+C+D)A+B+C+D)A+B-+C+ D)

Solution
Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh map in Figure 4-44 for each standard
sum term in the expression.
A+B+C+DA+B+C+DA+B+C+DA+B+C+D(A+B+C+D)
1100 1011 0010 1111 0011

Boolean Algebra and Logic Simplification

cD A+B+C+D
AB 00 01 11 10
4 _
00 0 O<«f—A+B+C+D
01
1] o 0 A+B+C+D
4
10 / 0
A
\

FIGURE 4-44

Related Problem

Map the following standard POS expression on a Karnaugh map:

A+B+C+DA+B+C+DA+B+C+D)A+B+C+D)

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an SOP expres-
sion except that you group Os to produce minimum sum terms instead of grouping 1s to
produce minimum product terms. The rules for grouping the Os are the same as those for
grouping the 1s that you learned in Section 4-9.

EXAMPLE 4-34

Use a Karnaugh map to minimize the following standard POS expression:
A+B+C0OA+B+O0OA+B+0OA+B+C@A+B+0)
Also, derive the equivalent SOP expression.

Solution

The combinations of binary values of the expression are
O+0+00+0+1DHO+1T+0)O+1+ (A +1+0)

Map the standard POS expression and group the cells as shown in Figure 4-45.

c
AB 0 1
00 |(0 0 4
O\
o1 {0 0
B+ C N -
B
il o (1) 4c
N4
N
10](1 1
AN
-/
AB

FIGURE 4-45

Karnaugh Map POS Minimization

Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the O in
the 4-cell group. The sum term for each blue group is shown in the figure and the result-
ing minimum POS expression is

AB + O)

Keep in mind that this minimum POS expression is equivalent to the original standard
POS expression.

Grouping the 1s as shown by the gray areas yields an SOP expression that is equiva-
lent to grouping the Os.

AC + AB = AB + O)
Related Problem
Use a Karnaugh map to simplify the following standard POS expression:

X+Y+2O)X+Y+2)X+Y+2X+Y+ 2

EXAMPLE 4-35

Use a Karnaugh map to minimize the following POS expression:

B+C+DA+B+C+DA+B+C+D)A+B+C+D)YA+ B+ C+ D)

Solution

The first term must be expanded into A + B + C + Dand A + B + C + D to get a standard POS expression, which is
then mapped; and the cells are grouped as shown in Figure 4-46. The sum term for each group is shown and the resulting
minimum POS expression is

(C+D)YA+ B+ D)A+B+ 0O

Keep in mind that this minimum POS expression is equivalent to the original standard POS expression.

A+B+D

cD
ARNC 0001 1110 /
7%

w |(©) (o]
0

01

C+D

(O\ (=)

B
‘\

A+B+C

FIGURE 4-46

Related Problem
Use a Karnaugh map to simplify the following POS expression:

W+X+Y+2ZW+X+Y+ 2 W+X+Y+2)W+ X+ 2Z)

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the equivalent SOP form
directly from the Karnaugh map. Also, given a mapped SOP expression, an equivalent POS
expression can be derived directly from the map. This provides a good way to compare

Boolean Algebra and Logic Simplification

both minimum forms of an expression to determine if one of them can be implemented
with fewer gates than the other.

For a POS expression, all the cells that do not contain Os contain 1s, from which the SOP
expression is derived. Likewise, for an SOP expression, all the cells that do not contain
Is contain 0s, from which the POS expression is derived. Example 4-36 illustrates this
conversion.

EXAMPLE 4-36

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP
expression, and a minimum SOP expression.

A+B+C+DA+B+C+DA+B+C+DA+B+C+DYA+B+C+D)A+B+C+ D)

Solution

The Os for the standard POS expression are mapped and grouped to obtain the minimum POS expression in Figure 4—47(a).
In Figure 4-47(b), 1s are added to the cells that do not contain Os. From each cell containing a 1, a standard product term is
obtained as indicated. These product terms form the standard SOP expression. In Figure 4—47(c), the 1s are grouped and a
minimum SOP expression is obtained.
D A+B+C cp ABCD ABCD
AB 00 . 01 . 11 10 AB 00 01 11 10

7 7 .

00 @ (o | o) of "] o |/ | o | ABP
% o

01 @ or| o | 1| 1] 1<d— Asch

B+C+D _
11 0 11 0 f] 1 l<4+— ABCD
X

10 m 10| 1 / 0 1 1<4+— ABCD
} } V.4 4
t A ey B
B+C+D ABCD ABCD ABCD ABCD

(a) Minimum POS: (A + B+ C)(B+ C + D)(B + C + D) (b) Standard SOP:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +

ABCD + ABCD + ABCD + ABCD

cD BD
AN, 00 01 11/ 10
00 U o [/0 | o
(N
orf o (1 1) 1\ s
)
1| o kl . 1
|
10 m o (Lt [1 b,
X
BCD

(¢) Minimum SOP: AC + BC + BD + BCD
FIGURE 4-47
Related Problem
Use a Karnaugh map to convert the following expression to minimum SOP form:

WH+X+Y+2ZW+X+Y+2(W+HX+Y+2)W+ X+ 2Z)

The Quine-McCluskey Method

SECTION 4-10 CHECKUP

1. What is the difference in mapping a POS expression and an SOP expression?
2. What is the standard sum term for a O in cell 1011?
3. What is the standard product term for a 1 in cell 0010?

4-11 The Quine-McCluskey Method

For Boolean functions up to four variables, the Karnaugh map method is a powerful minimi-
zation method. When there are five variables, the Karnaugh map method is difficult to apply
and completely impractical beyond five. The Quine-McCluskey method is a formal tabular
method for applying the Boolean distributive law to various terms to find the minimum sum
of products by eliminating literals that appear in two terms as complements. (For example,
ABCD + ABCD = ABC). A Quine-McCluskey method tutorial is available on the website.

After completing this section, you should be able to
¢ Describe the Quine-McCluskey method
+ Reduce a Boolean expression using the Quine-McCluskey method

Unlike the Karnaugh mapping method, Quine-McCluskey lends itself to the computer-
ized reduction of Boolean expressions, which is its principal use. For simple expressions,
with up to four or perhaps even five variables, the Karnaugh map is easier for most people
because it is a graphic method.

To apply the Quine-McCluskey method, first write the function in standard minterm
(SOP) form. To illustrate, we will use the expression

X = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
and represent it as binary numbers on the truth table shown in Table 4-9. The minterms that
appear in the function are listed in the right column.

TABLE 4-9

ABCD X Minterm
0000 0

0001 1 m
0010 0

0011 1 my
0100 1 my
0101 1 ms
0110 0

0111 0

1000 0

1001 0

1010 1 mio
1011 0

1100 1 mio
1101 1 mi3
1110 0

1111 1 mis

The second step in applying the Quine-McCluskey method is to arrange the minterms in
the original expression in groups according to the number of 1s in each minterm, as shown
in Table 4-10. In this example, there are four groups of minterms. (Note that if m(had been
in the original expression, there would be five groups.)

Boolean Algebra and Logic Simplification

TABLE 4-10

Number of 1s Minterm ABCD
1 my 0001

my 0100

2 m3 0011

ms 0101

mig 1010

min 1100

mis 1101

4 mis 1111

Third, compare adjacent groups, looking to see if any minterms are the same in every
position except one. If they are, place a check mark by those two minterms, as shown in
Table 4-11. You should check each minterm against all others in the following group, but
it is not necessary to check any groups that are not adjacent. In the column labeled First
Level, you will have a list of the minterm names and the binary equivalent with an x as the
placeholder for the literal that differs. In the example, minterm m; in Group 1 (0001) is
identical to m3 in Group 2 (0011) except for the C position, so place a check mark by these
two minterms and enter 00x1 in the column labeled First Level. Minterm my4 (0100) is iden-
tical to ms (0101) except for the D position, so check these two minterms and enter 010x in
the last column. If a given term can be used more than once, it should be. In this case, notice
that m; can be used again with ms in the second row with the x now placed in the B position.

TABLE 4-11

Number of 1s
in Minterm Minterm ABCD First Level
1 my 0001 v (my, m3) 00x1
My 0100 v (my, ms) 0x01
2 ms 0011 v (my, ms) 010x
ms 0101 v (my, my5) x100
myo 1010 (ms, my3) x101
myy 1100 v (mqa, my3) 110x
3 mi3 1101 v (my3, mys) 11x1
4 mis 1111 v

In Table 4-11, minterm m,4 and minterm m, are identical except for the A position. Both
minterms are checked and x100 is entered in the First Level column . Follow this proce-
dure for groups 2 and 3. In these groups, ms and m ;3 are combined and so are m, and m3
(notice that m, was previously used with my and is used again). For groups 3 and 4, both
my3 and my 5 are added to the list in the First Level column .

In this example, minterm m;y does not have a check mark because no other minterm
meets the requirement of being identical except for one position. This term is called an
essential prime implicant, and it must be included in our final reduced expression.

The terms listed in the First Level have been used to form a reduced table (Table 4—12)
with one less group than before. The number of 1s remaining in the First Level are counted
and used to form three new groups.

Terms in the new groups are compared against terms in the adjacent group down. You
need to compare these terms only if the x is in the same relative position in adjacent groups;
otherwise go on. If the two expressions differ by exactly one position, a check mark is

The Quine-McCluskey Method

TABLE 4-12

First Level Number of 1s in First Level Second Level
(my, m3) 00x1 1 (my, ms, mya, my3) x10x
(my, ms) 0x01 (my, ms, myo, my3) x10x

(my, ms) 010x v/
(my, my2) x100 v

(ms, m13) x101 v 2
(m12, m13) 110x v
(my3, my5) 11x1 3

placed next to both terms as before and all of the minterms are listed in the Second Level
list. As before, the one position that has changed is entered as an x in the Second Level.

For our example, notice that the third term in Group 1 and the second term in Group 2
meet this requirement, differing only with the A literal. The fourth term in Group 1 also can
be combined with the first term in Group 2, forming a redundant set of minterms. One of
these can be crossed off the list and will not be used in the final expression.

With complicated expressions, the process described can be continued. For our exam-
ple, we can read the Second Level expression as BC. The terms that are unchecked will
form other terms in the final reduced expression. The first unchecked term is read as ABD.
The next one is read as A CD. The last unchecked term is ABD. Recall that m;, was an
essential prime implicant, so is picked up in the final expression. The reduced expression
using the unchecked terms is:

X =BC+ ABD + ACD + ABD + ABCD

Although this expression is correct, it may not be the minimum possible expression.
There is a final check that can eliminate any unnecessary terms. The terms for the expres-
sion are written into a prime implicant table, with minterms for each prime implicant
checked, as shown in Table 4—13.

TABLE 4-13

Minterms
Prime Implicants my ms3 my ms my myy my3 mys
BC (my, ms, my, m;3) v v v v
ABD (my, m3) v v
ACD (my, ms) v v
ABD (my3, mys) v v
ABCD (m,) v

If a minterm has a single check mark, then the prime implicant is essential and must
be included in the final expression. The term ABD must be included because m,5 is only
covered by it. Likewise m; is only covered by ABCD, so it must be in the final expression.
Notice that the two minterms in A CD are covered by the prime implicants in the first two
rows, so this term is unnecessary. The final reduced expression is, therefore,

X = BC + ABD + ABD + ABCD

SECTION 4-11 CHECKUP

1. What is a minterm?

2. What is an essential prime implicant?

Boolean Algebra and Logic Simplification

4-12 Boolean Expressions with VHDL

The ability to create simple and compact code is important in a VHDL program. By
simplifying a Boolean expression for a given logic function, it is easier to write and
debug the VHDL code; in addition, the result is a clearer and more concise program.
Many VHDL development software packages contain tools that automatically optimize
a program when it is compiled and converted to a downloadable file. However, this does
not relieve you from creating program code that is clear and concise. You should not
only be concerned with the number of lines of code, but you should also be concerned
with the complexity of each line of code. In this section, you will see the difference in
VHDL code when simplification methods are applied. Also, three levels of abstraction
used in the description of a logic function are examined. A VHDL tutorial is available
on the website.

After completing this section, you should be able to

+ Write VHDL code to represent a simplified logic expression and compare it to the
code for the original expression

+ Relate the advantages of optimized Boolean expressions as applied to a target device
+ Understand how a logic function can be described at three levels of abstraction

+ Relate VHDL approaches to the description of a logic function to the three levels
of abstraction

Boolean Algebra in VHDL Programming

The basic rules of Boolean algebra that you have learned in this chapter should be applied
to any applicable VHDL code. Eliminating unnecessary gate logic allows you to create
compact code that is easier to understand, especially when someone has to go back later
and update or modify the program.

In Example 4-37, DeMorgan’s theorems are used to simplify a Boolean expression,
and VHDL programs for both the original expression and the simplified expression are
compared.

EXAMPLE 4-37

First, write a VHDL program for the logic described by the following Boolean expres-
sion. Next, apply DeMorgan’s theorems and Boolean rules to simplify the expression.
Then write a program to reflect the simplified expression.

X = (AC + BC + D) + BC

Solution
The VHDL program for the logic represented by the original expression is

. Four inputs and one output are

entity OrlgmalLoglc. is . «——described.

port (A, B, C, D: in bit; X: out bit);
end entity OriginalLogic; The original logic contains four
architecture Expressionl of OriginalLogic is inputs. 3 AND gates, 2 OR
begin / gates, and 3 inverters.

X <= not((A and C) or not(B and not C) or D) or not(not(B and C));
end architecture Expressionl;

Boolean Expressions with VHDL

By selectively applying DeMorgan’s theorem and the laws of Boolean algebra, you
can reduce the Boolean expression to its simplest form.

(AC + BC + D) + BC = (AC)(BO)D + BC Apply DeMorgan
= (AC)(BC)D + BC Cancel double complements
= (A + C)BCD + BC Apply DeMorgan and factor
= ABCD + BCD + BC Distributive law

= BCD(1 + A) + BC Factor
= BCD + BC Rule:1 + A =1
The VHDL program for the logic represented by the reduced expression is
entity ReducedLogic is /3 inputs and 1 output are described.
port (B, C, D: in bit; X: out bit);
end entity ReducedLogic; The simplified logic contains

architecture Expression2 of ReducedLogicis three inputs, 3 AND gates,
begin «— 1 OR gate, and 2 inverters.

X <= (B and not C and not D) or (B and C);
end architecture Expression2;

As you can see, Boolean simplification is applicable to even simple VHDL programs.

Related Problem

Write the VHDL architecture statement for the expression X = (A + B + C)D as
stated. Apply any applicable Boolean rules and rewrite the VHDL statement.

Example 4-38 demonstrates a more significant reduction in VHDL code complexity,
using a Karnaugh map to reduce an expression.

EXAMPLE 4-38

(a) Write a VHDL program to describe the following SOP expression.

(b) Minimize the expression and show how much the VHDL program is simplified.
X =ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution

(a) The VHDL program for the SOP expression without minimization is large and
hard to follow as you can see in the following VHDL code. Code such as this is
subject to error. The VHDL program for the original SOP expression is as follows:

entity OriginalSOP is
port (A, B, C, D: in bit; X: out bit);
end entity OriginalSOP;
architecture Equation! of OriginalSOP is
begin
X <= (not A and not B and not C and not D) or
(not A and not B and not C and D) or
(not A and B and not C and not D) or
(not A and B and C and not D) or
(not A and not B and C and not D) or
(A and not B and not C and not D) or
(A and not B and C and not D) or
(A and B and C and not D) or
(A and B and not C and not D) or

Boolean Algebra and Logic Simplification

(A and not B and not C and D) or
(not A and B and not C and D) or
(A and B and not C and D);

end architecture Equationl;

(b) Now, use a four-variable Karnaugh map to reduce the original SOP expression to a
minimum form. The original SOP expression is mapped in Figure 4-48.

C
CD
AB 00 01’ 11 10 ! 5
00 /1\ 1\ 1
01 1 1 1
11 1 1 1
1 1 1 1
ALY N

FIGURE 4-48

The original SOP Boolean expression that is plotted on the Karnaugh map in Figure
4-48 contains twelve 4-variable terms as indicated by the twelve 1s on the map. Recall
that only the variables that do not change within a group remain in the expression for
that group. The simplified expression taken from the map is developed next.

Combining the terms from the Karnaugh map, you get the following simplified
expression, which is equivalent to the original SOP expression.

X=C+D

Using the simplified expression, the VHDL code can be rewitten with fewer terms,
making the code more readable and easier to modify. Also, the logic implemented in a
target device by the reduced code consumes much less space in the PLD. The VHDL
program for the simplified SOP expression is as follows:

entity SimplifiedSOP is
port (A, B, C, D: in bit; X: out bit);
end entity SimplifiedSOP;
architecture Equation2 of SimplifiedSOP is
begin
X <= not C or not D
end architecture Equation?2;

Related Problem

Write a VHDL architecture statement to describe the logic for the expression

X = A(BC + D)

As you have seen, the simplification of Boolean logic is important in the design of
any logic function described in VHDL. Target devices have finite capacity and therefore
require the creation of compact and efficient program code. Throughout this chapter, you
have learned that the simplification of complex Boolean logic can lead to the elimination
of unnecessary logic as well as the simplification of VHDL code.

Levels of Abstraction

A given logic function can be described at three different levels. It can be described by a
truth table or a state diagram, by a Boolean expression, or by its logic diagram (schematic).

Boolean Expressions with VHDL

Highest level: The truth table or state diagram

—_-———o o | »
—----o o | &
—----o o | O

————— — O b
—_———-0 O |

Middle level: The Boolean expression, which can be
derived from a truth table or schematic

X=AB +CD Logic function

Lowest level: The logic diagram (schematic)

FIGURE 4-49 lllustration of the three levels of abstraction for describing a logic function.

The truth table and state diagram are the most abstract ways to describe a logic function.
A Boolean expression is the next level of abstraction, and a schematic is the lowest level
of abstraction. This concept is illustrated in Figure 4-49 for a simple logic circuit. VHDL
provides three approaches for describing functions that correspond to the three levels of
abstraction.

e The data flow approach is analogous to describing a logic function with a Boolean
expression. The data flow approach specifies each of the logic gates and how the data
flows through them. This approach was applied in Examples 4-37 and 4-38.

e The structural approach is analogous to using a logic diagram or schematic to
describe a logic function. It specifies the gates and how they are connected, rather
than how signals (data) flow through them. The structural approach is used to develop
VHDL code for describing logic circuits in Chapter 5.

e The behavioral approach is analogous to describing a logic function using a state
diagram or truth table. However, this approach is the most complex; it is usually
restricted to logic functions whose operations are time dependent and normally
require some type of memory.

SECTION 4-12 CHECKUP

1. What are the advantages of Boolean logic simplification in terms of writing a VHDL
program?

2. How does Boolean logic simplification benefit a VHDL program in terms of the
target device?

3. Name the three levels of abstraction for a combinational logic function and state the
corresponding VHDL approaches for describing a logic function.

Boolean Algebra and Logic Simplification

Applied Logic

Seven-Segment Disla

Seven-segment displays are used in many types of products that you see every day. A
7-segment display was used in the tablet-bottling system that was introduced in Chap-
ter 1. The display in the bottling system is driven by logic circuits that decode a binary
coded decimal (BCD) number and activate the appropriate digits on the display. BCD-
to-7-segment decoder/drivers are readily available as single IC packages for activating
the ten decimal digits.

In addition to the numbers from O to 9, the 7-segment display can show certain letters.
For the tablet-bottling system, a requirement has been added to display the letters A, b, C,
d, and E on a separate common-anode 7-segment display that uses a hexadecimal keypad
for both the numerical inputs and the letters. These letters will be used to identify the type
of vitamin tablet that is being bottled at any given time. In this application, the decoding
logic for displaying the five letters is developed.

The 7-Segment Display

Two types of 7-segment displays are the LED and the LCD. Each of the seven segments in
an LED display uses a light-emitting diode to produce a colored light when there is current
through it and can be seen in the dark. An LCD or liquid-crystal display operates by polar-
izing light so that when a segment is not activated by a voltage, it reflects incident light and
appears invisible against its background; however, when a segment is activated, it does not
reflect light and appears black. LCD displays cannot be seen in the dark.

The seven segments in both LED and LCD displays are arranged as shown in Figure 4-50
and labeled a, b, ¢, d, e, f, and g as indicated in part (a). Selected segments are activated to
create each of the ten decimal digits as well as certain letters of the alphabet, as shown in part
(b). The letter b is shown as lowercase because a capital B would be the same as the digit 8.
Similarly, for d, a capital letter would appear as a 0.

a
— I T e T sy s o O
f, ’,, I el i e T w O
e I B gl gl R
— [o o e R |
e, "' |
A | I I |
d
(a) Segment arrangement (b) Formation of the ten digits

and certain letters

FIGURE 4-50 Seven-segment display.

Exercise

1. List the segments used to form the digit 2.

. List the segments used to form the digit 5.

. List the segments used to form the letter A.

. List the segments used to form the letter E.

. Is there any one segment that is common to all digits?
. Is there any one segment that is common to all letters?

AUk W

Applied Logic

Display Logic

The segments in a 7-segment display can be used in the formation of various letters as
shown in Figure 4-50(b). Each segment must be activated by its own decoding circuit that
detects the code for any of the letters in which that segment is used. Because a common-
anode display is used, the segments are turned on with a LOW (0) logic level and turned
off with a HIGH (1) logic level. The active segments are shown for each of the letters re-
quired for the tablet-bottling system in Table 4—14. Even though the active level is LOW
(lighting the LED), the logic expressions are developed exactly the same way as discussed
in this chapter, by mapping the desired output (1, 0, or X) for every possible input, group-
ing the 1s on the map, and reading the SOP expression from the map. In effect, the reduced
logic expression is the logic for keeping a given segment OFF. At first, this may sound
confusing, but it is simple in practice and it avoids an output current capability issue with
bipolar (TTL) logic (discussed in Chapter 15 on the website).

TABLE 4-14

Active segments for each of the five
letters used in the system display.

Letter Segments Activated
A a,b,c,e.f, g
b c,dyef. g
C a,d,e,f
d b,c,d,e, g
E a,d,e,f, g

A block diagram of a 7-segment logic and display for generating the five letters is
shown in Figure 4-51(a), and the truth table is shown in part (b). The logic has four hexa-
decimal inputs and seven outputs, one for each segment. Because the letter F is not used as
an input, we will show it on the truth table with all outputs set to 1 (OFF).

ok Hexadecimal Inputs Segment Ouputs

X 1 -
to-7-segment Letter H; Hy Hy H, abcdefg

decoder

Hy ? , A 1 0 1 0 0001000
H d - b 1 0 1 1 1100000
. e C 1 10 0 0110001
’ / d 11 0 1 1000010
¢ E 1 1 1 0 0110000
F 11 1 1 1111111

(a) (b)

FIGURE 4-51 Hexadecimal-to-7-segment decoder for letters A through E, used in the
system.

Karnaugh Maps and the Invalid BCD Code Detector

To develop the simplified logic for each segment, the truth table information in Figure
4-51 is mapped onto Karnaugh maps. Recall that the BCD numbers will not be shown on
the letter display. For this reason, an entry that represents a BCD number will be entered
as an “X” (“don’t care”) on the K-maps. This makes the logic much simpler but would put
some strange outputs on the display unless steps are taken to eliminate that possibility.
Because all of the letters are invalid BCD characters, the display is activated only when
an invalid BCD code is entered into the keypad, thus allowing only letters to be displayed.

Boolean Algebra and Logic Simplification

H3H,

(a)

Expressions for the Segment Logic

Using the table in 4-51(b), a standard SOP expression can be written for each segment and
then minimized using a K-map. The desired outputs from the truth table are entered in the
appropriate cells representing the hex inputs. To obtain the minimum SOP expressions for
the display logic, the 1s and Xs are grouped.

Segment a Segment a is used for the letters A, C, and E. For the letter A, the hexadecimal
code is 1010 or, in terms of variables, H3HQH ,ﬁo. For the letter C, the hexadecimal code is
1100 or H3H,H, H,,. For the letter E, the code is 1110 or H3H,H,H,,. The complete standard
SOP expression for segment a is

@ = H3E2H]ﬁ0 + H3H2FIIEO arF H3H2H]H0

Because a LOW is the active output state for each segment logic circuit, a 0 is entered on
the Karnaugh map in each cell that represents the code for the letters in which the segment
is on. The simplification of the expression for segment a is shown in Figure 4-52(a) after
grouping the 1s and Xs.

Segment b Segment b is used for the letters A and d. The complete standard SOP expres-
sion for segment b is

b = H;H,H,H, + H;H,H,H,
The simplification of the expression for segment b is shown in Figure 4-52(b).

Segment ¢ Segment c is used for the letters A, b, and d. The complete standard SOP ex-
pression for segment c is

c = H3H2H|HO aF H3ﬁ2H]H0 aF H3H2HIHO

The simplification of the expression for segment ¢ is shown in Figure 4-52(c).

Hy H,\H, H\H, HH, H,H, H,H,
H\H, H\H, HH,

00 01 11 10 H:H, /0_(% 01 /1% 10 HyH, /()0\' 01 11 10
00 X X X X 00 X X X X 00 X X X X
01 X X X X 01 X X ﬁ(Xw 01 X X X X
11 0 1 1 0 11 1 0 b 1) 11 1 0 1 1 l
10 X X 1 0 10 X X 1 0 10 X X 0 0

| \”/ N N
a=H, b= HHy+ HHy + HyH, ¢ = HHy+ HyH,

(b) (©)
FIGURE 4-52 Minimization of the expressions for segments a, b, and c.

Exercise

7. Develop the minimum expression for segment d.
8. Develop the minimum expression for segment e.
9. Develop the minimum expression for segment f.
10. Develop the minimum expression for segment g.

The Logic Circuits

From the minimum expressions, the logic circuits for each segment can be implemented.
For segment a, connect the H input directly (no gate) to the a segment on the display. The
segment b and segment ¢ logic are shown in Figure 4-53 using AND or OR gates. Notice
that two of the terms (H,H, and H,H,) appear in the expressions for both 5 and ¢ logic so
two of the AND gates can be used in both, as indicated.

Applied Logic

FIGURE 4-53 Segment-b and

segment-c logic circuits.

a3

g

Exercise

11. Show the logic for segment d.
12. Show the logic for segment e.
13. Show the logic for segment f.
14. Show the logic for segment g.

L5

Describing the Decoding Logic with VHDL

The 7-segment decoding logic can be described using VHDL for implementation in a pro-
grammable logic device (PLD). The logic expressions for segments a, b, and ¢ of the

display are as follows:

a:HO

b = HH, + HH, + H,H,

Cc = H]HO A H2H1
+ The VHDL code for segment a is

entity SEGLOGIC is
port (HO: in bit; SEGa: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin
SEGa <= HO;
end architecture LogicFunction;

+ The VHDL code for segment b is

entity SEGLOGIC is

port (HO, H1, H2: in bit; SEGb: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin

SEGb <= (not H1 and not HO) or (H1 and HO) or (H2 and H1);

end architecture LogicFunction;
+ The VHDL code for segment c is

entity SEGLOGIC is

port (HO, H1, H2: in bit; SEGc: out bit);
end entity SEGLOGIC;
architecture LogicFunction of SEGLOGIC is
begin

SEGc <= (not H1 and not HO) or (H2 and H1)

end architecture LogicFunction;

Boolean Algebra and Logic Simplification

Exercise
15. Write the VHDL code for segments d, e, f, and g.

Simulation

The decoder simulation using Multisim is shown in Figure 4-54 with the letter E selected.
Subcircuits are used for the segment logic to be developed as activities or in the lab. The
purpose of simulation is to verify proper operation of the circuit.

'_Eﬁﬁgz 2 S;}Léuaﬁiii-é ;;; - AR 11| ERNE
.

FIGURE 4-54 Multisim circuit screen for decoder and display.

Mu!ﬁSim Open file ALO4 in the Applied Logic folder on the website. Run the simulation of
the decoder and display using your Multisim software. Observe the operation for the
specified letters.

Putting Your Knowledge to Work

How would you modify the decoder for a common-cathode 7-segment display?

SUMMARY

e Gate symbols and Boolean expressions for the outputs of an inverter and 2-input gates are
shown in Figure 4-55.

D D T
A A AB A+B +

FIGURE 4-55

¢ Commutative laws: A + B=B + A
AB = BA
e Associativelaws: A+ (B+ C)= (A + B) + C
A(BC) = (AB)C
¢ Distributive law: A(B + C) = AB + AC

e Booleanrules: 1. A+0=A LAA=A
2.A+1=1 CACA=(
3.A-0=0 A=
4. A-1=A 10 A+ AB=A
5 A+A=A 1. A+AB=A+B
6. A+A=1 12. (A + B)A + C) = A + BC

e DeMorgan’s theorems:

1. The complement of a product is equal to the sum of the complements of the terms in the product.

XY=X+Y

2. The complement of a sum is equal to the product of the complements of the terms in the sum.

X+Y=XY
e Karnaugh maps for 3 variables have 8 cells and for 4 variables have 16 cells.

¢ Quinn-McCluskey is a method for simplification of Boolean expressions.
¢ The three levels of abstraction in VHDL are data flow, structural, and behavioral.

KEY TERMS

True/False Quiz

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.
Complement The inverse or opposite of a number. In Boolean algebra, the inverse function,
expressed with a bar over a variable. The complement of a 1 is 0, and vice versa.

“Don’t care” A combination of input literals that cannot occur and can be used as a 1 or a 0 on
a Karnaugh map for simplification.

Karnaugh map An arrangement of cells representing the combinations of literals in a Boolean
expression and used for a systematic simplification of the expression.

Minimization The process that results in an SOP or POS Boolean expression that contains the
fewest possible literals per term.

Product-of-sums (POS) A form of Boolean expression that is basically the ANDing of ORed terms.

Product term The Boolean product of two or more literals equivalent to an AND operation.

Sum-of-products (SOP) A form of Boolean expression that is basically the ORing of ANDed terms.

Sum term The Boolean sum of two or more literals equivalent to an OR operation.

Variable A symbol used to represent an action, a condition, or data that can have a value of
1 or 0, usually designated by an italic letter or word.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

1. Variable, complement, and literal are all terms used in Boolean algebra.

. Addition in Boolean algebra is equivalent to the NOR function.

. Multiplication in Boolean algebra is equivalent to the AND function.

. The commutative law, associative law, and distributive law are all laws in Boolean algebra.

. The complement of 0 is O itself.

A U A W N

. When a Boolean variable is multiplied by its complement, the result is the variable.

Boolean Algebra and Logic Simplification

SELF-TEST

. “The complement of a product of variables is equal to the sum of the complements of each

variable” is a statement of DeMorgan’s theorem.

8. SOP means sum-of-products.

. Karnaugh maps can be used to simplify Boolean expressions.
10.
11.
12.

A 3-variable Karnaugh map has six cells.
VHDL is a type of hardware definition language.

A VHDL program consists of an entity and an architecture.

Answers are at the end of the chapter.

1.

10.

11.

12.

13.

14.

A variable is a symbol in Boolean algebra used to represent

(a) data (b) a condition
(¢) an action (d) answers (a), (b), and (c)
. The Boolean expression A + B + Cis
(a) asum term (b) a literal term
(¢) an inverse term (d) a product term
. The Boolean expression ABCD is
(a) asum term (b) a literal term
(¢) an inverse term (d) a product term
. The domain of the expression ABCD + AB + CD + Bis
(a) Aand D (b) B only
(¢) A,B,C,and D (d) none of these

. According to the associative law of addition,

(@@ A+B=B+A MA=A+A
© A+B +C=A+@B+0) A+0=A4A

. According to commutative law of multiplication,

(a) AB = BA (b) A = AA
(¢) (AB)C = A(BC) (d) A0 =A

. According to the distributive law,

(a) ABB+ C) =AB + AC (b) A(BC) = ABC

) AA+1H=A dA+AB=A

- Which one of the following is not a valid rule of Boolean algebra?
@A+1=1 by A=A

() AA=A @A+0=4

. Which of the following rules states that if one input of an AND gate is always 1, the output is

equal to the other input?

@A+1=1 b)A+A=A

(c) ArA=A dA-1=A

According to DeMorgan’s theorems, the complement of a product of variables is equal to
(a) the complement of the sum (b) the sum of the complements

(c¢) the product of the complements (d) answers (a), (b), and (c)

The Boolean expression X = (A + B)(C + D) represents

(a) two ORs ANDed together (b) two ANDs ORed together
(c) A 4-input AND gate (d) a4-input OR gate

An example of a sum-of-products expression is

(a) A + B(C + D) (b) AB + AC + ABC

© A+B+C@A+B+ 0 (d) both answers (a) and (b)

An example of a product-of-sums expression is

(a) AB + C) + AC (b) (A + B@A + B+ 0
(¢) A+ B+ BC (d) both answers (a) and (b)
An example of a standard SOP expression is

(a) AB + ABC + ABD (b) ABC + ACD

(¢) AB + AB + AB (d) ABCD + AB + A

Problems

15. A 4-variable Karnaugh map has

(a) four cells (b) eight cells
(¢) sixteen cells (d) thirty-two cells

16. In a 4-variable Karnaugh map, a 2-variable product term is produced by
(a) a2-cell group of 1s (b) an 8-cell group of 1s
(c) a4-cell group of 1s (d) a4-cell group of Os

17. The Quine-McCluskey method can be used to
(a) replace the Karnaugh map method (b) simplify expressions with 5 or more variables
(¢) both (a) and (b) (d) none of the above

18. VHDL is a type of
(a) programmable logic (b) hardware description language
(¢) programmable array (d) logical mathematics

19. In VHDL, a port is
(a) atype of entity (b) atype of architecture
(¢) an input or output (d) atype of variable

20. Using VDHL, a logic circuit’s inputs and outputs are described in the
(a) architecture (b) component
(c) entity (d) data flow

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 4-1 Boolean Operations and Expressions

1. Using Boolean notation, write an expression that is a 0 only when all of its variables (A, B, C,
and D) are Os.

2. Write an expression that is a 1 when one or more of its variables (A, B, C, D, and E) are 0s.
3. Write an expression that is a 0 when one or more of its variables (A, B, and C) are 0s.

4. Evaluate the following operations:

@o0+0+0+0 Mb)0+0+0+1 @ 1l+1+1+1
@d@1-1+0-0+1 e1-0-1-0 #®1-0+1-0+0-1+0-1
5. Find the values of the variables that make each product term 1 and each sum term 0.
(a) ABC b A+B+C () ABC @dA+B+C
) A+ B+C ® A+B+C
6. Find the value of X for all possible values of the variables.
@A X=A+B+C (b) X = (A + B)C © X=(A+ BB+ C)

d X=@A+B) +(AB+ BC) (¢e) X= (A + B)A + B)

Section 4-2 Laws and Rules of Boolean Algebra

7. Identify the law of Boolean algebra upon which each of the following equalities is based:
(a) A+ AB + ABC + ABCD = ABCD + ABC + AB + A
(b) A + AB + ABC + ABCD = DCBA + CBA + BA + A
(¢) AB(CD + CD + EF + EF) = ABCD + ABCD + ABEF + ABEF

8. Identify the Boolean rule(s) on which each of the following equalities is based:
(a) AB + CD + EF = AB + CD + EF (b) AAB + ABC + ABB = ABC
(¢) A(BC + BC) + AC = A(BC) + AC (d) AB(C + C) + AC = AB + AC
(e) AB + ABC = AB (f) ABC + AB + ABCD = ABC + AB + D

Section 4-3 DeMorgan’s Theorems
9. Apply DeMorgan’s theorems to each expression:
(@ A+B (b) AB ©A+B+C (d ABC
(&) ABB + O) (f) AB+ CD (g) AB+ CD (h) (A + B)(C + D)

Boolean Algebra and Logic Simplification

(b)

10. Apply DeMorgan’s theorems to each expression:
(a) AB(C + D) (b) AB(CD + EF)
(¢) A+ B+ C+ D)+ ABCD d) (A + B+ C + D)ABCD)
(e) AB(CD + EF)(AB + CD)

11. Apply DeMorgan’s theorems to the following:
() (ABO)(EFG) + (HII)(KLM) (b) (A + BC + CD) + BC
(¢) (A + B)C + D)E + F)(G + H)

Section 4-4 Boolean Analysis of Logic Circuits

12. Write the Boolean expression for each of the logic gates in Figure 4-56.

A A A
D D D D
B B C
(b) (©)

(a)
FIGURE 4-56

13. Write the Boolean expression for each of the logic circuits in Figure 4-57.

Dy D P

(©) (d)
FIGURE 4-57

14. Draw the logic circuit represented by each of the following expressions:
(@@ A+B+C+D (b) ABCD

(¢) A + BC (d) ABC + D

15. Draw the logic circuit represented by each expression:
(a) AB + AB (b) ABCD
(¢c) A+ BC (d) ABC + D

16. (a) Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs,
ASSERT and READY, are both LOW.

(b) Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input,
LOAD, is LOW and the input, READY, is HIGH.

17. Develop the truth table for each of the circuits in Figure 4-58.

VCR RTS —
CAMI ENABLE —
SEND

) Record
RDY jo BUSY jo

(a) (d)
FIGURE 4-58

18. Construct a truth table for each of the following Boolean expressions:

@ A+B+C (b) ABC (¢) AB + BC + CA
(d) (4 + BYB + C)(C + A) (e) AB+ BC + CA

Section 4-5 Logic Simplification Using Boolean Algebra
19. Using Boolean algebra techniques, simplify the following expressions as much as possible:

(a) A(A + B) (b) A(A + AB) (¢) BC + BC
(d) A(A + AB) (e) ABC + ABC + ABC

20. Using Boolean algebra, simplify the following expressions:
@ (A + BA + O (b) AB + ABC + ABCD + ABCDE
(¢) BC + BCD + B (d) (B + B)(BC + BCD)
(e) BC + (B + O)D + BC

21. Using Boolean algebra, simplify the following expressions:
(a) CE + C(E + F) + E(E + G) (b) BCD + (B+ C + D) + BCDE

(¢) (C + CD)(C + CD)(C + E) (d) BCDE + BC(DE) + (BC)DE
(e) BCD[BC + D(CD + BD)]

22. Determine which of the logic circuits in Figure 4-59 are equivalent.

A_

B —
A —

> W OO
|

D_
A A
B — B —

(a) (b)

A —
B —]
A —

C —
D —

(©) (d)
FIGURE 4-59

Section 4-6 Standard Forms of Boolean Expressions
23. Convert the following expressions to sum-of-product (SOP) forms:

(a) (C + D)A + D) (b) A(AD + C) () (A + O)(CD + AC)
24. Convert the following expressions to sum-of-product (SOP) forms:

(a) BC + DE(BC + DE) (b) BC(CD + CE) (¢) B+ C[BD + (C + D)E]
25. Define the domain of each SOP expression in Problem 23 and convert the expression to stand-
ard SOP form.

26. Convert each SOP expression in Problem 24 to standard SOP form.

27. Determine the binary value of each term in the standard SOP expressions from Problem 25.
28. Determine the binary value of each term in the standard SOP expressions from Problem 26.
29. Convert each standard SOP expression in Problem 25 to standard POS form.

30. Convert each standard SOP expression in Problem 26 to standard POS form.

Section 4-7 Boolean Expressions and Truth Tables
31. Develop a truth table for each of the following standard SOP expressions:
(a) ABC + ABC + ABC (b) XYZ + XYZ + XYZ + XYZ + XYZ
32. Develop a truth table for each of the following standard SOP expressions:
(a) ABCD + ABCD + ABCD + ABCD
(b) WXYZ + WXYZ + WXYZ + WXYZ + WXYZ
33. Develop a truth table for each of the SOP expressions:
(a) AB + ABC + AC + ABC () X+ YZ+ WZ+ XYZ

_C— X

Problems

Boolean Algebra and Logic Simplification

34. Develop a truth table for each of the standard POS expressions:
@ A+B+C)A+B+C)YA+B+C)
bB)A+B+C+DYA+B+C+DYA+B+C+D)A+B+C+D)
35. Develop a truth table for each of the standard POS expressions:
(@) A+ BA+OA+B+0
M) (A+BA+B+C(B+C+D)A+B+C+ D)
36. For each truth table in Table 4-15, derive a standard SOP and a standard POS expression.

TABLE 4-15

ABCD| X ABCD| X
0000 | 1 0000 | 0
0001 | 1 0001 |0
0010 | 0 0010 | 1
0011 |1 0011 |0
0100 | 0 0100 | 1
0101 | 1 0101 | 1
0110 1 0110 | 0
ABC| X ABC| X 01110 0111 |1
000 | 0 000 | 0 1000 | 0 1000 | 0
001 | 1 001 |0 1001 | 1 1001 |0
010 | 0 010 |0 1010 |0 1010 | 0
011 |0 011 |0 1011 [0 1011 |1
100 | 1 100 | 0 1100 | 1 1100 | 1
101 | 1 101 |1 1101] 0 1101 |0
110 |0 110 | 1 11100 1110 |0
111 |1 111 |1 1111)0 1111 |1
@ ®) © ()

Section 4-8 The Karnaugh Map

37. Draw a 3-variable Karnaugh map and label each cell according to its binary value.
38. Draw a 4-variable Karnaugh map and label each cell according to its binary value.
39. Write the standard product term for each cell in a 3-variable Karnaugh map.

Section 4-9 Karnaugh Map SOP Minimization
40. Use a Karnaugh map to find the minimum SOP form for each expression:
(a) ABC + ABC + ABC (b) ACB + C)
(¢) A(BC + BC) + A(BC + BC) (d) ABC + ABC + ABC + ABC
41. Use a Karnaugh map to simplify each expression to a minimum SOP form:
(a) ABC + ABC + ABC + ABC (b) AC[B + B(B + O)]
(¢) DEF + DEF + DEF
42. Expand each expression to a standard SOP form:
(a) AB + ABC + ABC (b) A + BC
(¢) ABCD + ACD + BCD + ABCD (d) AB + ABCD + CD + BCD + ABCD
43. Minimize each expression in Problem 42 with a Karnaugh map.
44. Use a Karnaugh map to reduce each expression to a minimum SOP form:
(a) A+ BC + CD
(b) ABCD + ABCD + ABCD + ABCD
(¢) AB(CD + CD) + AB(CD + CD) + ABCD
(d) (AB + AB)(CD + CD)
() AB+AB + CD + CD

Problems

45. Reduce the function specified in truth Table 4-16 to its minimum SOP form by using a
Karnaugh map.

46. Use the Karnaugh map method to implement the minimum SOP expression for the logic
function specified in truth Table 4-17.

47. Solve Problem 46 for a situation in which the last six binary combinations are not allowed.

TABLE 4-16 TABLE 4-17

Inputs | Output Inputs Output
ABC X A B CD X
000 1 0000 0
001 1 0001 1
010 0 0010 1
011 1 0011 0
100 1 0100 0
101 1 01 01 0
110 0 0110 1
111 1 01 11 1
1 000 1
1 001 0
1 010 1
1 011 0
1100 1
1101 1
1 110 0
1111 1

Section 4-10 Karnaugh Map POS Minimization
48. Use a Karnaugh map to find the minimum POS for each expression:
@ A+B+COA+B+CA+B+ 0
b X+NX+2DX+Y+2)X+Y+2)
© AB+OA+O0OA+B+OA+B+ 0
49. Use a Karnaugh map to simplify each expression to minimum POS form:
@ A+B+C+DA+B+C+DA+B+C+D)
b X+YW+D)X+Y+2)W+ X+ Y+ 2)

50. For the function specified in Table 416, determine the minimum POS expression using a
Karnaugh map.

51. Determine the minimum POS expression for the function in Table 4-17.

52. Convert each of the following POS expressions to minimum SOP expressions using a
Karnaugh map:

(@) (A+ BYA + OA + B+ O)
M) A+BA+B+COB+C+D)YA+B+C+D)

Section 4-11 The Quine-McCluskey Method
53. List the minterms in the expression
X = ABC + ABC + ABC + ABC + ABC
54. List the minterms in the expression
X =ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
55. Create a table for the number of 1s in the minterms for the expression in Problem 54 (similar to
Table 4-10).

56. Create a table of first level minterms for the expression in Problem 54 (similar to Table 4—11).

Boolean Algebra and Logic Simplification

ANSWERS

MultiSim
~

57. Create a table of second level minterms for the expression in Problem 54 (similar to Table 4—12).
58. Create a table of prime implicants for the expression in Problem 54 (similar to Table 4—13).

59. Determine the final reduced expression for the expression in Problem 54.

Section 4-12Boolean Expressions with VHDL
60. Write a VHDL program for the logic circuit in Figure 4-60.

A —
B —
C —
D —
E — X
F —
G —
H —
] —

FIGURE 4-60

61. Write a program in VHDL for the expression
Y = ABC + ABC + ABC + ABC

Applied Logic

62. If you are required to choose a type of digital display for low light conditions, will you select
LED or LCD 7-segment displays? Why?

63. Explain the purpose of the invalid code detector.

64. For segment ¢, how many fewer gates and inverters does it take to implement the minimum
SOP expression than the standard SOP expression?

65. Repeat Problem 64 for the logic for segments d through g.

Special Design Problems

66. The logic for segments b and ¢ in Figure 4-53 produces LOW outputs to activate the segments.
If a type of 7-segment display is used that requires a HIGH to activate a segment, modify the
logic accordingly.

67. Redesign the logic for segment a in the Applied Logic to include the letter F in the display.

68. Repeat Problem 67 for segments b through g.

69. Design the invalid code detector.

Multisim Troubleshooting Practice

70. Open file PO4-70. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

71. Open file PO4-71. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

72. Open file P04-72. For the observed behavior indicated, predict the fault in the circuit. Then
introduce the suspected fault and verify whether your prediction is correct.

SECTION CHECKUPS

Section 4-1 Boolean Operations and Expressions
LA=0=1
22A=1,B=1,C=0A+B+C=1+14+0=0+0+0=0
33.A=1,B=0,C=1ABC=1-0-1=1-1-1-=

Section 4-2 Laws and Rules of Boolean Algebra

LA+B+C+D)=A+B+C+D
2.AB + C + D) = AB + AC + AD

Answers

Section 4-3 DeMorgan’s Theorems
1.(a) ABC+(D+E)=A+B+C+DE () (A+BC=AB+C
(¢ A+B+C+DE=ABC+D+E

Section 4-4 Boolean Analysis of Logic Circuits
1.(C+ DB+ A

2. Abbreviated truth table: The expression is a 1 when A is 1 or when B and C are 1s or when B
and D are 1s. The expression is O for all other variable combinations.

Section 4-5 Logic Simplification Using Boolean Algebra
1. (a) A + AB+ ABC = A (b) (A + B)C + ABC = C(A + B)
(¢) ABC(BD + CDE) + AC = A(C + BDE)
2. (a) Original: 2 AND gates, 1 OR gate, 1 inverter; Simplified: No gates (straight connection)
(b) Original: 2 OR gates, 2 AND gates, 1 inverter; Simplified: 1 OR gate, 1 AND gate, 1 inverter

(¢) Original: 5 AND gates, 2 OR gates, 2 inverters; Simplified: 2 AND gates, 1 OR gate,
2 inverters

Section 4-6 Standard Forms of Boolean Expressions
1. (a) SOP (b) standard POS (¢) standard SOP (d) POS
2. (a) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
(¢) Already standard
3. (b) Already standard
dA+B+OA@+B+0OA+B+OA+B+ 0

Section 4-7 Boolean Expressions and Truth Tables
1.2°=32 2. 0110 — WXYZ 3.1100— W+ X+Y+Z

Section 4-8 The Karnaugh Map

1. (a) upper left cell: 000 (b) lower right cell: 101
(¢) lower left cell: 100 (d) upper right cell: 001

2. (a) upper left cell: XYZ (b) lower right cell: XYZ
(c) lower left cell: XYZ (d) upper right cell: XYZ

3. (a) upper left cell: 0000 (b) lower right cell: 1010
(c) lower left cell: 1000 (d) upper right cell: 0010

4. (a) upper left cell: WXYZ (b) lower right cell: WXYZ
(c) lower left cell: WXYZ (d) upper right cell: WXYZ

Section 4-9 Karnaugh Map SOP Minimization
1. 8-cell map for 3 variables; 16-cell map for 4 variables
2. AB + BC + ABC
3. (a) ABC + ABC + ABC + ABC
(b) ABC + ABC + ABC + ABC + ABC + ABC
(¢) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

(d) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD

Section 4-10 Karnaugh Map POS Minimization

1. In mapping a POS expression, Os are placed in cells whose value makes the standard sum term
zero; and in mapping an SOP expression 1s are placed in cells having the same values as the
product terms.

Boolean Algebra and Logic Simplification

2. 0inthe 1011 cel: A+ B+ C+ D
3. 1in the 0010 cell: ABCD

Section 4-11 The Quine-McCluskey Method

1. A minterm is a product term in which each variable appears once, either complemented or
uncomplemented.

2. An essential prime implicant is a product term that cannot be further simplified by combining
with other terms.

Section 4-12Boolean Expressions with VHDL
1. Simplification can make a VHDL program shorter, easier to read, and easier to modify.

2. Code simplification results in less space used in a target device, thus allowing capacity for
more complex circuits.

3. Truth table: Behavioral
Boolean expression: Data flow
Logic diagram: Structural

RELATED PROBLEMS FOR EXAMPLES
41 A+ B=0whenA = 1andB = 0.

42 AB = 1whenA =0and B = 0.

4-3 XYZ

44 W+X+Y+Z

4-5 ABCDE

4-6 (A + B+ CD)E

47 ABCD=A+B+C+D

4-8 Results should be same as example.

49 AB

4-10 CD

4-11 ABC + AC + AB

4-12A+B+C

4-13 Results should be same as example.

4-14 ABC + AB + AC + AB + BC

4-15 WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ
4-16 011, 101, 110, 010, 111. Yes
4-17A+B+CA+B+CA+B+CA+B+ 0O
4-18 010, 100, 001, 111, 011. Yes

4-19 SOP and POS expressions are equivalent.

4-20 See Table 4-18.

4-21 See Table 4-19.

A B C X A B C X
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1
1 1 1 0 1 1 1 0

4-22 The SOP and POS expressions are equivalent.
4-23 See Figure 4-61.
4-24 See Figure 4-62.

C CD
AN 01 ARNL 00 01 11 10
00 00
01 1 01 1
11 11 1 1 1
10 1 1 10
FIGURE 4-61 FIGURE 4-62
4-25 See Figure 4-63.
4-26 Sece Figure 4-64.
C CD
AN 01 ARNL 00 01 11 10
00 1 00 1
01 1 1 01 1 1
11 1 11 1 1 1 1
10 10 1 1 1 1
FIGURE 4-63 FIGURE 4-64
4-27 No other ways
4-28 X = B + AC + ACD + CD
4-29 X = D + ABC + BC + AB
430 0=X+Y
4-31 Q = XYZ + WXZ + WYZ
4-32 See Figure 4-65.
4-33 See Figure 4-66.
A CD
ABNL 00 01 11 10
B
00 0 0
01 0
C a
% 11
b4 |> - 10 0

FIGURE 4-65 FIGURE 4-66

Answers

Boolean Algebra and Logic Simplification

4-34 X+ VX +2)X+Y+2)
435X+ Y+ 2W+X+2W+X+Y+ 2D W+ X+ Y+ 2
436 YZ + XZ + WY + XYZ
4-37 architecture RelProb_1 of Example4_37 is
begin
X <= (not A or B or C) and D;
end architecture RelProb_1;

architecture RelProb_2 of Example4_37 is
begin

X <= (not A and D or B and D or C and D);
end architecture RelProb_2;

4-38 architecture RelProb of Example4_38 is
begin
X <= not(A and ((B and C) or not D))
end architecture RelProb;

TRUE/FALSE QUIZ
1. T 2. F 3. T 4. T 5. F 6. F
7. T 8. T 9. T 10. F 11. F 12. T

SELF-TEST
1. (d) 2. (a) 3. (d) 4. (¢) 5. (¢) 6. (a) 7. (a)
8. (b) 9. (d) 10. (b) 11. (a) 12. (b) 13. (b) 14. (¢)
15. (¢) 16. (c) 17. (¢) 18. (b) 19. (¢) 20. (¢)

U = I'T Ul ¥Y 1 s \ZA -
)0 00 'PVEES 10T 00 0107 1
0 11100101 :8 1101 04 1 ?801 00 1
00 1 0011 _-00101

11710 00 01) 1
01,700 105 1011 _~10 1007

o 0111 10 1001 . 10000

Combinational
Logic Analysis

CHAPTER OUTLINE

5-1 Basic Combinational Logic Circuits
5-2 Implementing Combinational Logic

5-3 The Universal Property of NAND and
NOR Gates

5-4 Combinational Logic Using NAND and
NOR Gates

5-5 Pulse Waveform Operation
5-6 Combinational Logic with VHDL
5—-7 Troubleshooting

Applied Logic

CHAPTER OBJECTIVES

Analyze basic combinational logic circuits, such

as AND-OR, AND-OR-Invert, exclusive-OR, and
exclusive-NOR

Use AND-OR and AND-OR-Invert circuits to
implement sum-of-products (SOP) and product-of-
sums (POS) expressions

Write the Boolean output expression for any
combinational logic circuit

Develop a truth table from the output expression for
a combinational logic circuit

Use the Karnaugh map to expand an output
expression containing terms with missing variables
into a full SOP form

Design a combinational logic circuit for a given
Boolean output expression

Design a combinational logic circuit for a given
truth table

Simplify a combinational logic circuit to its minimum
form

Use NAND gates to implement any combinational
logic function

CHAPTER

Use NOR gates to implement any combinational
logic function

Analyze the operation of logic circuits with pulse inputs
Write VHDL programs for simple logic circuits
Troubleshoot faulty logic circuits

Troubleshoot logic circuits by using signal tracing
and waveform analysis

Apply combinational logic to an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Universal gate Signal
Negative-OR Node
Negative-AND Signal tracing
Component

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In Chapters 3 and 4, logic gates were discussed on an
individual basis and in simple combinations. You were
introduced to SOP and POS implementations, which
are basic forms of combinational logic. When logic gates
are connected together to produce a specified output for
certain specified combinations of input variables, with no
storage involved, the resulting circuit is in the category
of combinational logic. In combinational logic, the out-
put level is at all times dependent on the combination

of input levels. This chapter expands on the material
introduced in earlier chapters with a coverage of the
analysis, design, and troubleshooting of various combi-
national logic circuits. The VHDL structural approach is
introduced and applied to combinational logic.

261

Combinational Logic Analysis

5-1 Basic Combinational Logic Circuits

AND-OR logic produces an SOP

expression.

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each
product term and one OR gate for summing all of the product terms. As you know, this SOP
implementation is called AND-OR logic and is the basic form for realizing standard Boolean
functions. In this section, the AND-OR and the AND-OR-Invert are examined; the exclusive-
OR and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

After completing this section, you should be able to

¢ Analyze and apply AND-OR circuits

¢ Analyze and apply AND-OR-Invert circuits
+ Analyze and apply exclusive-OR gates

¢ Analyze and apply exclusive-NOR gates

AND-OR Logic

Figure 5-1(a) shows an AND-OR circuit consisting of two 2-input AND gates and one
2-input OR gate; Figure 5—1(b) is the ANSI standard rectangular outline symbol. The Boolean
expressions for the AND gate outputs and the resulting SOP expression for the output X are
shown on the diagram. In general, an AND-OR circuit can have any number of AND gates,
each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5—1. The interme-
diate AND gate outputs (the AB and CD columns) are also shown in the table.

| A & | =1
AB SOP s
B _ —
X=AB+CD x
c—| &
C P
D CD D —
(a) Logic diagram (ANSI standard distinctive (b) ANSI standard rectangular outline symbol

shape symbols)

MultiSim FIGURE 5-1 An example of AND-OR logic. Open file F05-01 to verify the operation.

N

A Multisim tutorial is available on the website.

Truth table for the AND-OR logic in Figure 5—1.

Inputs Output
A B (o D AB CD X
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1

Basic Combinational Logic Circuits

An AND-OR circuit directly implements an SOP expression, assuming the complements
(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5-1
is stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and
input B are HIGH (1) or both input C and input D are HIGH (1).

EXAMPLE 5-1

In a certain chemical-processing plant, a liquid chemical is used in a manufacturing
process. The chemical is stored in three different tanks. A level sensor in each tank
produces a HIGH voltage when the level of chemical in the tank drops below a speci-
fied point.

Design a circuit that monitors the chemical level in each tank and indicates when the
level in any two of the tanks drops below the specified point.

Solution

The AND-OR circuit in Figure 5-2 has inputs from the sensors on tanks A, B, and C as
shown. The AND gate G, checks the levels in tanks A and B, gate G, checks tanks A
and C, and gate G5 checks tanks B and C. When the chemical level in any two of the
tanks gets too low, one of the AND gates will have HIGHSs on both of its inputs, causing
its output to be HIGH; and so the final output X from the OR gate is HIGH. This HIGH
input is then used to activate an indicator such as a lamp or audible alarm, as shown in
the figure.

T
T

Low-level
indicator

FIGURE 5-2

Related Problem*
Write the Boolean SOP expression for the AND-OR logic in Figure 5-2.

*Answers are at the end of the chapter.

AND-OR-Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-
Invert circuit. Recall that AND-OR logic directly implements SOP expressions. POS expres-
sions can be implemented with AND-OR-Invert logic. This is illustrated as follows, starting
with a POS expression and developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 5-3(a) shows an AND-OR-Invert circuit with four inputs
and the development of the POS output expression. The ANSI standard rectangular outline
symbol is shown in part (b). In general, an AND-OR-Invert circuit can have any number of
AND gates, each with any number of inputs.

Combinational Logic Analysis

& | =1
A — AB POS A—
B —— AB +CD Dézﬂw = (A+B)(C +D) B —
X
C— c—| &
D cD |

(@

(b)

MultiSim FIGURE 5-3 An AND-OR-Invert circuit produces a POS output. Open file F05-03

N

to verify the operation.

The operation of the AND-OR-Invert circuit in Figure 5-3 is stated as follows:

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if both input
A and input B are HIGH (1) or both input C and input D are HIGH (1).

A truth table can be developed from the AND-OR truth table in Table 5—1 by simply chang-
ing all 1s to Os and all Os to 1s in the output column.

EXAMPLE 5-2

The sensors in the chemical tanks of Example 5—1 are being replaced by a new model
that produces a LOW voltage instead of a HIGH voltage when the level of the chemical
in the tank drops below a critical point.

Modify the circuit in Figure 5-2 to operate with the different input levels and still
produce a HIGH output to activate the indicator when the level in any two of the tanks
drops below the critical point. Show the logic diagram.

Solution

The AND-OR-Invert circuit in Figure 5—4 has inputs from the sensors on tanks A, B,
and C as shown. The AND gate G, checks the levels in tanks A and B, gate G, checks
tanks A and C, and gate G5 checks tanks B and C. When the chemical level in any two
of the tanks gets too low, each AND gate will have a LOW on at least one input, caus-
ing its output to be LOW and, thus, the final output X from the inverter is HIGH. This
HIGH output is then used to activate an indicator.

A B C
b
Gs
I— G X | Low-level
. - indicator
G,
FIGURE 5-4

Related Problem

Write the Boolean expression for the AND-OR-Invert logic in Figure 54 and show
that the output is HIGH (1) when any two of the inputs A, B, and C are LOW (0).

Basic Combinational Logic Circuits

Exclusive-OR Logic

The exclusive-OR gate was introduced in Chapter 3. Although this circuit is considered a The XOR gate is actually a
type of logic gate with its own unique symbol, it is actually a combination of two AND combination of other dates.
gates, one OR gate, and two inverters, as shown in Figure 5-5(a). The two ANSI standard

exclusive-OR logic symbols are shown in parts (b) and (c).

A
X = AB + AB
B B B —
(a) Logic diagram (b) ANSI distinctive (c) ANSI rectangular
shape symbol outline symbol
FIGURE 5-5 Exclusive-OR logic diagram and symbols. Open file F05-05 to verify the MultiSim
operation.

N

The output expression for the circuit in Figure 5-5 is
X = AB + AB

Evaluation of this expression results in the truth table in Table 5-2. Notice that the output m
is HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-

tor @ is often used, so the expression X = AB + AB can be stated as “X is equal to A
exclusive-OR B” and can be written as

X=A®DB

Truth table for an exclusive-
OR.

S
=
~

Exclusive-NOR Logic

—_——O O
— o == O
S = = O

As you know, the complement of the exclusive-OR function is the exclusive-NOR, which
is derived as follows:

X =AB + AB = (AB)(AB) = (A + B)A + B) = AB + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.

The exclusive-NOR can be implemented by simply inverting the output of an exclusive-
OR, as shown in Figure 5-6(a), or by directly implementing the expression AB + AB, as
shown in part (b).

XOR

! A >01 AB
>O_:*

B AB

(@) X=AB + AB (b)X=AB + AB

FIGURE 5-6 Two equivalent ways of implementing the exclusive-NOR. Open files MultiSim
F05-06 (a) and (b) to verify the operation.

N

Combinational Logic Analysis

Use exclusive-OR gates to implement an even-parity code generator for an original
4-bit code.

Solution

Recall from Chapter 2 that a parity bit is added to a binary code in order to provide
error detection. For even parity, a parity bit is added to the original code to make the
total number of 1s in the code even. The circuit in Figure 5-7 produces a 1 output
when there is an odd number of 1s on the inputs in order to make the total number of
Is in the output code even. A 0 output is produced when there is an even number of 1s
on the inputs.

Data bits Even parity bit

T Data bits

FIGURE 5-7 Even-parity generator.

Related Problem

How would you verify that a correct even-parity bit is generated for each combination
of the four data bits?

Use exlusive-OR gates to implement an even-parity checker for the 5-bit code generated
by the circuit in Example 5-3.

Solution

The circuit in Figure 5-8 produces a 1 output when there is an error in the five-bit code
and a 0 when there is no error.

Data bits

Error

Even parity bit

FIGURE 5-8 Even-parity checker.

Related Problem

How would you verify that an error is indicated when the input code is incorrect?

Implementing Combinational Logic

SECTION 5-1 CHECKUP

Answers are at the end of the chapter.

1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the
following input conditions:

aA=1,B=0,C=1,D=0
0 A=0,B=1,C=1,D=1

2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input
conditions:

(a A=1,B=0 b)) A=1,B=1
(c) A=0,B=1 d A=0,B=0

3. Develop the truth table for a certain 3-input logic circuit with the output expression

X = ABC + ABC + ABC + ABC + ABC.

4. Draw the logic diagram for an exclusive-NOR circuit.

by A=1,B=1,C=0,D=1

5-2 Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a
Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-
ered in Chapter 4 is also included.

After completing this section, you should be able to
+ Implement a logic circuit from a Boolean expression
+ Implement a logic circuit from a truth table

+ Minimize a logic circuit

From a Boolean Expression to a Logic Circuit
Let’s examine the following Boolean expression:
X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE,
with a domain of five variables. The first term is formed by ANDing A with B, and the
second term is formed by ANDing C, D, and E. The two terms are then ORed to form the
output X. These operations are indicated in the structure of the expression as follows:

[1 AND
X = AB + CDE
T OR

Note that in this particular expression, the AND operations forming the two individual
terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then
required to combine the two AND terms. The resulting logic circuit is shown in Figure 5-9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

For every Boolean expression there
is a logic circuit, and for every logic
circuit there is a Boolean expression.

InfoNote

Many control programs require
logic operations to be performed
by a computer. A driver program
is a control program that is used
with computer peripherals. For
example, a mouse driver requires
logic tests to determine if a button
has been pressed and further
logic operations to determine if

it has moved, either horizontally
or vertically. Within the heart of a
microprocessor is the arithmetic
logic unit (ALU), which performs
these logic operations as directed
by program instructions. All of the
logic described in this chapter can
also be performed by the ALU,
given the proper instructions.

Combinational Logic Analysis

A —)AB
B_

:D—X=AB+CDE

—_)
—1 JpE

FIGURE 5-9 Logic circuit for X = AB + CDE.

Dlwle}

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed.
The term CD + EF is formed by first ANDing C and D and ANDing E and F, and
then ORing these two terms. This structure is indicated in relation to the expression as
follows:

AND

NOT
g ORr
X = AB(CD + EF)

/r T AND

Before you can implement the final expression, you must create the sum term CD + EF;
but before you can get this term; you must create the product terms CD and EF; but before
you can get the term CD, you must create D. So, as you can see, the logic operations must
be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

1. One inverter to form D

2. Two 2-input AND gates to form CD and EF
3. One 2-input OR gate to form CD + EF

4. One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 5-10(a). Notice that there is a
maximum of four gates and an inverter between an input and output in this circuit (from
input D to output). Often the total propagation delay time through a logic circuit is a major
consideration. Propagation delays are additive, so the more gates or inverters between input
and output, the greater the propagation delay time.

Unless an intermediate term, such as CD + EF in Figure 5-10(a), is required as an out-
put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to
reduce the overall propagation delay time. The expression is converted to SOP as follows,
and the resulting circuit is shown in Figure 5-10(b).

CD

EF

AB(CD + EF) = ABCD + ABEF

A —
_ B ABCD
}X:AB(CD + EF) c
D
X = ABCD + ABEF
CD + EF L]
E —] ABEF

(b) Sum-of-products implementation of the circuit in part (a)

FIGURE 5-10 Logic circuits for X = AB(CD + EF) = ABCD + ABEF.

Implementing Combinational Logic

Inputs Output

A B C X Product Term
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 ABC

1 0 0 1 ABC

1 0 1 0

1 1 0 0

1 1 1 0

From a Truth Table to a Logic Circuit

If you begin with a truth table instead of an expression, you can write the SOP expression
from the truth table and then implement the logic circuit. Table 5-3 specifies a logic function.

The Boolean SOP expression obtained from the truth table by ORing the product terms
for which X = 11is

X = ABC + ABC

The first term in the expression is formed by ANDing the three variables A, B, and C. The
second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters to
form the A, B, and C variables; two 3-input AND gates to form the terms ABC and ABC;
and one 2-input OR gate to form the final output function, ABC + ABC.

The implementation of this logic function is illustrated in Figure 5—-11.

A >o A —\isc
: L/
A
B >o 8) D ximcaic
I —
c >C —L__J upc
C
FIGURE 5-11 Logic circuit for X = ABC + ABC. Open file F05-11 to verify the MultiSim
operation. o

N

Design a logic circuit to implement the operation specified in the truth table of Table 5—4.

TABLE 5-4

Inputs Output

A B C X Product Term
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 ABC
1 0 0 0

1 0 1 1 ABC
1 1 0 1 ABC
1 1 1 0

Solution

Notice that X = 1 for only three of the input conditions. Therefore, the logic expression is

X = ABC + ABC + ABC

Combinational Logic Analysis

The logic gates required are three inverters, three 3-input AND gates and one 3-input
OR gate. The logic circuit is shown in Figure 5-12.

FIGURE 5-12 Open file F05-12 to
verify the operation.
MultiSim

N

a
>~}
b

DAEC DX

Related Problem

Determine if the logic circuit of Figure 5—12 can be simplified.

Develop a logic circuit with four input variables that will only produce a 1 output when
exactly three input variables are 1s.
Solution

Out of sixteen possible combinations of four variables, the combinations in which there are
exactly three 1s are listed in Table 5-5, along with the corresponding product term for each.

A B C D Product Term
0 1 1 1 ABCD
1 0 1 1 ABCD
1 1 0 1 ABCD
1 1 1 0 ABCD

The product terms are ORed to get the following expression:
X = ABCD + ABCD + ABCD + ABCD
This expression is implemented in Figure 5—-13 with AND-OR logic.

D C B A FIGURE 5-13 Open file
F05-13 to verify the operation.

MultiSim

N

YYYY
V..

ABCD

ABCD

) ABCD

Implementing Combinational Logic

Related Problem

Determine if the logic circuit of Figure 5-13 can be simplified.

Reduce the combinational logic circuit in Figure 5—14 to a minimum form.

FIGURE 5-14
Open file F05-14 to

verify that this circuit is
B D—Do—< equivalent to the gate

X in Figure 5—-15.

c Mq!tiSim
N
D
Solution

The expression for the output of the circuit is
X = (ABC)C + ABC + D
Applying DeMorgan’s theorem and Boolean algebra,
X=@A+B+OC+A+B+C+D
=AC+BC+CC+A+B+C+D
=AC+BC+C+A+B+€ +D

—CA+B+1)+A+B+D
X=A+B+C+D

The simplified circuit is a 4-input OR gate as shown in Figure 5-15.

= o

IO

FIGURE 5-15

Related Problem
Verify the minimized expression A + B + C + D using a Karnaugh map.

EXAMPLE 5-8

Minimize the combinational logic circuit in Figure 5-16. Inverters for the comple-
mented variables are not shown.

[-
—]

0 G G

D
P

TN O A TN e Qi

FIGURE 5-16

Combinational Logic Analysis

Solution
The output expression is
X = ABC + ABCD + ABCD + ABCD
Expanding the first term to include the missing variables D and D,
X = ABC(D + D) + ABCD + ABCD + ABCD
= ABCD + ABCD + ABCD + ABCD + ABCD

This expanded SOP expression is mapped and simplified on the Karnaugh map in Fig-
ure 5—17(a). The simplified implementation is shown in part (b). Inverters are not shown.

CD
AN\, 20 o1 11 10

00 [{ 1 1| BC
ul .
C
01 D
o X
11 /1\ ACD _
B P
a c
10 1 1
N_/
T
(a) (b)
FIGURE 5-17

Related Problem
Develop the POS equivalent of the circuit in Figure 5-17(b). See Section 4—10.

SECTION 5-2 CHECKUP

1. Implement the following Boolean expressions as they are stated:
(a) X = ABC + AB + AC (b) X = AB(C + DE)

2. Develop a logic circuit that will produce a 1 on its output only when all three inputs
are 1s or when all three inputs are Os.

3. Reduce the circuits in Question 1 to minimum SOP form.

5-3 The Universal Property of NAND and NOR Gates

Up to this point, you have studied combinational circuits implemented with AND gates,
OR gates, and inverters. In this section, the universal property of the NAND gate and the
NOR gate is discussed. The universality of the NAND gate means that it can be used as
an inverter and that combinations of NAND gates can be used to implement the AND,
OR, and NOR operations. Similarly, the NOR gate can be used to implement the inverter
(NOT), AND, OR, and NAND operations.

After completing this section, you should be able to

+ Use NAND gates to implement the inverter, the AND gate, the OR gate, and
the NOR gate

+ Use NOR gates to implement the inverter, the AND gate, the OR gate, and
the NAND gate

The Universal Property of NAND and NOR Gates

The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the AND, Combinations of NAND gates can be
the OR, and the NOR functions. An inverter can be made from a NAND gate by connecting used to produce any logic function.
all of the inputs together and creating, in effect, a single input, as shown in Figure 5-18(a)

for a 2-input gate. An AND function can be generated by the use of NAND gates alone,

as shown in Figure 5-18(b). An OR function can be produced with only NAND gates, as

illustrated in part (c). Finally, a NOR function is produced as shown in part (d).

B A—%;

(a) One NAND gate used as an inverter

P D
AB = AB AB
B JE—

(b) Two NAND gates used as an AND gate

.

A_
B_

)

2 |

— A
EO—AB:AH; 5

B G —
/"B

(c) Three NAND gates used as an OR gate

> |

41— | g AB=A+B
S A S
5—4 |6 p—

B
(d) Four NAND gates used as a NOR gate

:

FIGURE 5-18 Universal application of NAND gates. Open files F05-18(a), (b), (c), and MultiSim
(d) to verify each of the equivalencies.

In Figure 5-18(b), a NAND gate is used to invert (complement) a NAND output to form
the AND function, as indicated in the following equation:
X = AB = AB

In Figure 5-18(c), NAND gates G; and G, are used to invert the two input variables
before they are applied to NAND gate G3. The final OR output is derived as follows by
application of DeMorgan’s theorem:

X=AB=A+B

In Figure 5-18(d), NAND gate G4 is used as an inverter connected to the circuit of part (c)
to produce the NOR operation A + B.

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and Combinations of NOR gates can be
NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting used to produce any logic function.
all of the inputs together to effectively create a single input, as shown in Figure 5-19(a)
with a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated
in Figure 5-19(b). An AND gate can be constructed by the use of NOR gates, as shown in

Combinational Logic Analysis

(a) One NOR gate used as an inverter

A A+B A
A+B
B B

A+B

(b) Two NOR gates used as an OR gate

A_
B_

AB

T

A — —
B
B_

(d) Four NOR gates used as a NAND gate

MultiSim FIGURE 5-19 Universal application of NOR gates. Open files F05-19(a), (b), (c), and (d)

4 to verify each of the equivalencies.

Figure 5-19(c). In this case the NOR gates G; and G, are used as inverters, and the final
output is derived by the use of DeMorgan’s theorem as follows:

X=A+B=AB
Figure 5-19(d) shows how NOR gates are used to form a NAND function.

1. Use NAND gates to implement each expression:
(@ X=A+B (b) X=AB

2. Use NOR gates to implement each expression:
(@ X=A+B (b) X=AB

5-4 Combinational Logic Using NAND and NOR Gates

In this section, you will see how NAND and NOR gates can be used to implement a logic
function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent opera-
tion called the negative-OR and that the NOR gate exhibits an equivalent operation called
the negative-AND. You will see how the use of the appropriate symbols to represent the
equivalent operations makes “reading” a logic diagram easier.

After completing this section, you should be able to
+ Use NAND gates to implement a logic function
+ Use NOR gates to implement a logic function

+ Use the appropriate dual symbol in a logic diagram

Combinational Logic Using NAND and NOR Gates

NAND Logic

As you have learned, a NAND gate can function as either a NAND or a negative-OR
because, by DeMorgan’s theorem,

AB=A+B
NAND Q\ b negative-OR
Consider the NAND logic in Figure 5-20. The output expression is developed in the
following steps:
X = (AB)(CD)
= (A + B)(C + D)
= @A+ B+ (C+ D)

=AB + CD
= AB + CD

Aj - AB
B 2
}X:AE+CD
c
S
D C

FIGURE 5-20 NAND logic for X = AB + CD.

As you can see in Figure 5-20, the output expression, AB + CD, is in the form of two
AND terms ORed together. This shows that gates G, and G5 act as AND gates and that
gate Gy acts as an OR gate, as illustrated in Figure 5-21(a). This circuit is redrawn in
part (b) with NAND symbols for gates G, and G5 and a negative-OR symbol for gate G.

Notice in Figure 5-21(b) the bubble-to-bubble connections between the outputs of
gates G, and G3 and the inputs of gate G;. Since a bubble represents an inversion, two

G, acts as AND

A ——
Y o B
BO—AB +CD
s
‘ G acts as OR

G5 acts as AND
(a) Original NAND logic diagram showing effective
gate operation relative to the output expression

Bubbles cancel

A — A——

B —— Ga B — Ga
‘ AB+CD = ‘ AB + CD
C — C —
D — Gs D — Gs
Bubbles cancel
(b) Equivalent NAND/Negative-OR logic diagram (c) AND-OR equivalent

FIGURE 5-21 Development of the AND-OR equivalent of the circuit in Figure 5-20.

Combinational Logic Analysis

connected bubbles represent a double inversion and therefore cancel each other. This
inversion cancellation can be seen in the previous development of the output expres-
sion AB + CD and is indicated by the absence of barred terms in the output expres-
sion. Thus, the circuit in Figure 5-21(b) is effectively an AND-OR circuit, as shown in
Figure 5-21(c).

NAND Logic Diagrams Using Dual Symbols

All logic diagrams using NAND gates should be drawn with each gate represented by
either a NAND symbol or the equivalent negative-OR symbol to reflect the operation of the
gate within the logic circuit. The NAND symbol and the negative-OR symbol are called
dual symbols. When drawing a NAND logic diagram, always use the gate symbols in such
a way that every connection between a gate output and a gate input is either bubble-to-
bubble or nonbubble-to-nonbubble. In general, a bubble output should not be connected to
a nonbubble input or vice versa in a logic diagram.

Figure 5-22 shows an arrangement of gates to illustrate the procedure of using the
appropriate dual symbols for a NAND circuit with several gate levels. Although using all
NAND symbols as in Figure 5-22(a) is correct, the diagram in part (b) is much easier to
“read” and is the preferred method. As shown in Figure 5-22(b), the output gate is repre-
sented with a negative-OR symbol. Then the NAND symbol is used for the level of gates
right before the output gate and the symbols for successive levels of gates are alternated as
you move away from the output.

C_

AT AB ABC =
B | ABCD
D

" EF = ABCD +EF
=(AB +C)D + EF
=(AB +C)D + EF

(a) Several Boolean steps are required to arrive at final output expression.
AND
Bubble cancels bar

AR AND
A — _

A8 AB+C = Bubble
B C (ABC)D cancels

D — bar B
Bubble adds (AB+C)D +EF
bar to C E — OR
r EF Bubble
cancels bar
OR
AND

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

FIGURE 5-22 lllustration of the use of the appropriate dual symbols in a NAND logic
diagram.

The shape of the gate indicates the way its inputs will appear in the output expression
and thus shows how the gate functions within the logic circuit. For a NAND symbol, the
inputs appear ANDed in the output expression; and for a negative-OR symbol, the inputs
appear ORed in the output expression, as Figure 5-22(b) illustrates. The dual-symbol dia-
gram in part (b) makes it easier to determine the output expression directly from the logic
diagram because each gate symbol indicates the relationship of its input variables as they
appear in the output expression.

Combinational Logic Using NAND and NOR Gates

Redraw the logic diagram and develop the output expression for the circuit in Figure 5-23 using the appropriate dual symbols.
s
) _}@1
c— I
P e

5 @
F

]

FIGURE 5-23
Solution

Redraw the logic diagram in Figure 5-23 with the use of equivalent negative-OR symbols as shown in Figure 5-24. Writing
the expression for X directly from the indicated logic operation of each gate gives X = (A + B)C + (D + E)F.

X=(A+B)C+ D +EF

FIGURE 5-24
Related Problem

Derive the output expression from Figure 5-23 and show it is equivalent to the expression in the solution.

Implement each expression with NAND logic using appropriate dual symbols:

(a) ABC + DE (b) ABC+ D+ E

Solution
See Figure 5-25.

g — ABC Bubble cancels bar g JR— ABC Bubble cancels bar
c C — _
ABC + DE D ABC+D+E
b — E
£ — DE Bubble cancels bar Bubbles add bars to D and E
(a) (b)
FIGURE 5-25

Related Problem
Convert the NAND circuits in Figure 5-25(a) and (b) to equivalent AND-OR logic.

NOR Logic

A NOR gate can function as either a NOR or a negative-AND, as shown by DeMorgan’s theorem.

A+B=A

NOR T— negative-AND

Combinational Logic Analysis

X=(A+B)C+D)

FIGURE 5-26 NOR logic for X = (A + B)(C + D).

Consider the NOR logic in Figure 5-26. The output expression is developed as follows:
X=A+B+C+D=A+B)(C+D)=(+ BC+ D)

As you can see in Figure 5-26, the output expression (A + B)(C + D) consists of two
OR terms ANDed together. This shows that gates G, and G5 act as OR gates and gate G
acts as an AND gate, as illustrated in Figure 5-27(a). This circuit is redrawn in part (b) with
a negative-AND symbol for gate G;.

G, acts as OR

Bubbles cancel

» Lo
(A +B)(C+D) } (A+B)(C+D)

c
G acts as AND D

S

o]
o]

T a

G; acts as OR Bubbles cancel

(a) (b)

FIGURE 5-27

NOR Logic Diagram Using Dual Symbols

As with NAND logic, the purpose for using the dual symbols is to make the logic diagram
easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5-28. When the
circuit in part (a) is redrawn with dual symbols in part (b), notice that all output-to-input

A+B+C+D+E+F
(A+B+C+D)E+F)
(A+B+C+D)E+F)
=((A+B)C +D)E +F)
((A+B)C +D)E+F)

(a) Final output expression is obtained after several Boolean steps.

OR
Bubble cancels bar

OR

s @+B)C (A+B)C + D~ Bubble
c —0 cancels bar
D _
} [(A+B)C +D](E+F)
Bubble adds bar to C E :DO_,—C
AND
F E+F " Bubble

cancels

bar
AND

OR

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

FIGURE 5-28 lllustration of the use of the appropriate dual symbols in a NOR logic
diagram.

connections between gates are bubble-to-bubble or nonbubble-to-nonbubble. Again, you
can see that the shape of each gate symbol indicates the type of term (AND or OR) that it
produces in the output expression, thus making the output expression easier to determine
and the logic diagram easier to analyze.

Using appropriate dual symbols, redraw the logic diagram and develop the output
expression for the circuit in Figure 5-29.

- m D A wo»

FIGURE 5-29

Solution

Redraw the logic diagram with the equivalent negative-AND symbols as shown in Fig-
ure 5-30. Writing the expression for X directly from the indicated operation of each gate,

X = (AB + O)(DE + F)

FIGURE 5-30

Related Problem

Prove that the output of the NOR circuit in Figure 5-29 is the same as for the circuit in
Figure 5-30.

SECTION 5-4 CHECKUP

1. Implement the expression X = (A + B + C)DE by using NAND logic.
2. Implement the expression X = ABC + (D + E) with NOR logic.

5-5 Pulse Waveform Operation

General combinational logic circuits with pulse waveform inputs are examined in this sec-
tion. Keep in mind that the operation of each gate is the same for pulse waveform inputs as
for constant-level inputs. The output of a logic circuit at any given time depends on the inputs
at that particular time, so the relationship of the time-varying inputs is of primary importance.

After completing this section, you should be able to
¢ Analyze combinational logic circuits with pulse waveform inputs

+ Develop a timing diagram for any given combinational logic circuit with specified
inputs

Pulse Waveform Operation

Combinational Logic Analysis

The operation of any gate is the same regardless of whether its inputs are pulsed or
constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth
table of a circuit. The examples in this section illustrate the analysis of combinational logic
circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in analyzing com-
binational circuits with pulse waveform inputs:

1. The output of an AND gate is HIGH only when all inputs are HIGH at the same
time.
2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

3. The output of a NAND gate is LOW only when all inputs are HIGH at the same
time.

4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

Determine the final output waveform X for the circuit in Figure 5-31, with input wave-
forms A, B, and C as shown.

I I I I
I I I I A ‘
I I I I
e I T o Bat
I I I I Y

X=AB+C)=AB +AC

FIGURE 5-31

Solution

The output expression, AB + AC, indicates that the output X is LOW when both A and
B are HIGH or when both A and C are HIGH or when all inputs are HIGH. The output
waveform X is shown in the timing diagram of Figure 5-31. The intermediate wave-
form Y at the output of the OR gate is also shown.

Related Problem

Determine the output waveform if input A is a constant HIGH level.

Draw the timing diagram for the circuit in Figure 5-32 showing the outputs of Gy, G»,
and G5 with the input waveforms, A, and B, as indicated.

J S I B G,
LI s *

X =AB + AB

FIGURE 5-32

Solution

FIGURE 5-33

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as
shown in Figure 5-33. Notice that this is an exclusive-NOR circuit. The intermediate
outputs of gates G, and G35 are also shown in Figure 5-33.

4] [1 [

| |
G, output : : I_I
]]

Related Problem

Determine the output X in Figure 5-32 if input B is inverted.

Determine the output waveform X for the logic circuit in Figure 5-34(a) by first finding
the intermediate waveform at each of points Y7, Y5, Y3, and Y. The input waveforms are
shown in Figure 5-34(b).

(a)

(b)

()
FIGURE 5-34

A Y1
;_N
C ————4 {

S

%

o

£

I

|

I

Pulse Waveform Operation

Combinational Logic Analysis

Solution

All the intermediate waveforms and the final output waveform are shown in the timing
diagram of Figure 5-34(c).

Related Problem

Determine the waveforms Yi, Y, Y3, Y4 and X if input waveform A is inverted.

Solution

Determine the output waveform X for the circuit in Example 5—14, Figure 5-34(a), directly from the output expression.

The output expression for the circuit is developed in Figure 5-35. The SOP form indicates that the output is HIGH when A
is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

(A+B)C

X=(A+B)C+CD=(A+B)C+CD=AC +BC+CD

FIGURE 5-35

FIGURE 5-36

Related Problem

A+B |
|> C

C ———4

n | =

The result is shown in Figure 5-36 and is the same as the one obtained by the intermediate-waveform method in Example
5-14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A ! |

Repeat this example if all the input waveforms are inverted.

SECTION 5-5 CHECKUP

1. One pulse with tyy = 50 us is applied to one of the inputs of an exclusive-OR cir-
cuit. A second positive pulse with #yy; = 10 us is applied to the other input beginning
15 us after the leading edge of the first pulse. Show the output in relation to the
inputs.

2. The pulse waveforms A and B in Figure 5-31 are applied to the exclusive-NOR cir-
cuit in Figure 5-32. Develop a complete timing diagram.

Combinational Logic with VHDL

5-6 Combinational Logic with VHDL

The purpose of describing logic using VHDL is so that it can be programmed into a PLD.
The data flow approach to writing a VHDL program was described in Chapter 4. In this
section, both the data flow approach using Boolean expressions and the structural approach
are used to develop VHDL code for describing logic circuits. The VHDL component is
introduced and used to illustrate structural descriptions. Some aspects of software develop-
ment tools are discussed.

After completing this section, you should be able to
+ Describe a VHDL component and discuss how it is used in a program
+ Apply the structural approach and the data flow approach to writing VHDL code

+ Describe two basic software development tools

Structural Approach to VHDL Programming

The structural approach to writing a VHDL description of a logic function can be com-
pared to installing IC devices on a circuit board and interconnecting them with wires. With
the structural approach, you describe logic functions and specify how they are connected
together. The VHDL component is a way to predefine a logic function for repeated use in
a program or in other programs. The component can be used to describe anything from a
simple logic gate to a complex logic function. The VHDL signal can be thought of as a way
to specify a “wire” connection between components.

Figure 5-37 provides a simplified comparison of the structural approach to a hardware
implementation on a circuit board.

Interconnections Inputs defined in port statement
f Signals
Logic
device VHDL
A component
Logic |
Inputs - tput
nputs device sy OU(PU VHDL
C component
Logic JE—
de;‘;ce VHDL
component Output defined
— in port statement
(a) Hardware implementation with fixed-function logic (b) VHDL structural implementation

FIGURE 5-37 Simplified comparison of the VHDL structural approach to a hardware
implementation. The VHDL signals correspond to the interconnections on the circuit
board, and the VHDL components correspond to the 74 series IC devices.

VHDL Components

A VHDL component describes predefined logic that can be stored as a package declaration
in a VHDL library and called as many times as necessary in a program. You can use compo-
nents to avoid repeating the same code over and over within a program. For example, you
can create a VHDL component for an AND gate and then use it as many times as you wish
without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. This
is similar to having, for example, a storage bin of ICs available when you are constructing
a circuit. Every time you need to use one in your circuit, you reach into the storage bin and
place it on the circuit board.

Combinational Logic Analysis

The VHDL program for any logic function can become a component and used whenever
necessary in a larger program with the use of a component declaration of the following
general form. Component is a VHDL keyword.

component name_of_component is
port (port definitions);

end component name_of_component;

For simplicity, let’s assume that there are predefined VHDL descriptions of a 2-input AND
gate with the entity name AND_gate and a 2-input OR gate with the entity name OR_gate,
as shown in Figure 5-38.

entity AND_ gate is
port (A, B: in bit; X: out bit);

A —} end entity AND_ gate;
X
B —

architecture ANDfunction of AND_gate is
begin

X <= A and B;
2-input AND gate end architecture ANDfunction;

entity OR_gate is
port (A, B: in bit; X: out bit);

A :Df end entity OR_gate;
X
B architecture ORfunction of OR_gate is
begin

X <=AorB;
2-input OR gate end architecture ORfunction;

FIGURE 5-38 Predefined programs for a 2-input AND gate and a 2-input OR gate
to be used as components in the structural approach.

Using Components in a Program

Assume that you are writing a program for a logic circuit that has several AND gates.
Instead of rewriting the program in Figure 5-38 over and over, you can use a component
declaration to specify the AND gate. The port statement in the component declaration must
correspond to the port statement in the entity declaration of the AND gate.

component AND_gate is
port (A, B: in bit; X: out bit);
end component AND_ gate;

To use a component in a program, you must write a component instantiation statement for
each instance in which the component is used. You can think of a component instantiation
as a request or call for the component to be used in the main program. For example, the
simple SOP logic circuit in Figure 5-39 has two AND gates and one OR gate. Therefore,
the VHDL program for this circuit will have two components and three component
instantiations or calls.

INT — Gl OUT1
IN2 —
OUT3
IN3 —
G2
IN4d — ouT2

FIGURE 5-39

Combinational Logic with VHDL

Signals

In VHDL, signals are analogous to wires that interconnect components on a circuit board.
The signals in Figure 5-39 are named OUT1 and OUT2. Signals are the internal connec-
tions in the logic circuit and are treated differently than the inputs and outputs. Whereas
the inputs and outputs are declared in the entity declaration using the port statement, the
signals are declared within the architecture using the signal statement. Signal is a VHDL
keyword.

The Program
The program for the logic in Figure 5-39 begins with an entity declaration as follows:
entity AND_OR_Logic is
port (IN1, IN2, IN3, IN4: in bit; OUT3: out bit);
end entity AND_OR_Logic;

The architecture declaration contains the component declarations for the AND gate and
the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is

component AND_gate is Component declaration for the
port (A, B: in bit; X: out bit); ¢« ANDgae

end component AND_gate;

component OR_gate is Component declaration for the

port (A, B: in bit; X: out bit); OR gate
end component OR_gate;
signal OUT1, OUT2: bit; ¢——— Signal declaration
begin
G1: AND_gate port map (A => IN1, B => IN2, X => OUT1);

G2: AND_gate port map (A => IN3, B => IN4, X => OUT2); ¢
G3: OR_gate port map (A => OUTI1, B => OUT2, X => OUT3);/

Component instantiations describe
how the three gates are connected.

end architecture LogicOperation;

Component Instantiations

Let’s look at the component instantiations. First, notice that the component instantia-
tions appear between the keyword begin and the end architecture statement. For
each instantiation an identifier is defined, such as G1, G2, and G3 in this case. Then
the component name is specified. The keyword port map essentially makes all the
connections for the logic function using the operator =>. For example, the first
instantiation,

G1: AND_gate port map (A => IN1, B =>IN2, X => OUT1);

can be explained as follows: Input A of AND gate G1 is connected to input IN1, input B of the
gate is connected to input IN2, and the output X of the gate is connected to the signal OUTI.

The three instantiation statements together completely describe the logic circuit in Fig-
ure 5-39, as illustrated in Figure 5-40.

Although the data flow approach using Boolean expressions would have been easier
and probably the best way to describe this particular circuit, we have used this simple
circuit to explain the concept of the structural approach. Example 5-16 compares the
structural and data flow approaches to writing a VHDL program for an SOP logic circuit.

Combinational Logic Analysis

A=>INI X=>OUTI
IN1
—A OUTI

Gl X
N A => OUTI

/\ X => OUT3

B =>IN2 OUTI /\
A=>IN3 OU{2\/
IN3 = B => OUT2

G2 X
—B ouT2
IN4
B=>IN4 X=>OUT2

FIGURE 5-40 lllustration of the instantiation statements and port mapping applied to the
AND-OR logic. Signals are shown in red.

FIGURE 5-41

Solution

The structural approach:

IN1 —
IN2 —
IN3 —

IN4 —

IN5 — G2
IN6 —

IN7 OUT3
G3
IN8

entity SOP_Logic is
port (IN1, IN2, IN3, IN4, INS, IN6, IN7, INS8: in bit; OUT4: out bit);
end entity SOP_Logic;

OouT2
O

component NAND_gate3 is
port (A, B, C: in bit X: out bit);
end component NAND_ gate3;

component NAND_gate? is
port (A, B: in bit; X: out bit);

end component NAND_ gate2;

signal OUT1, OUT2, OUT3: bit;

Write a VHDL program for the SOP logic circuit in Figure 5-41 using the structural
approach and compare with the data flow approach. Assume that VHDL components
for a 3-input NAND gate and for a 2-input NAND are available. Notice the NAND gate
G4 is shown as a negative-OR.

OUT1
D

O
'B OUT4
Q

The components and component instantiations are highlighted. Lines preceded by two
hyphens are comment lines and are not part of the program.

--Program for the logic circuit in Figure 541

architecture LogicOperation of SOP_Logic is

--component declaration for 3-input NAND gate

--component declaration for 2-input NAND gate

Combinational Logic with VHDL

begin

G1l: NAND_gate3 port map (A =>IN1,B =>1IN2,C => IN3, X => OUT1);

G2: NAND_gate3 port map (A =>IN4, B => IN5, C => IN6, X => OUT2);

G3: NAND_gate2 port map (A =>IN7, B => IN§, X => OUT3);

G4: NAND_gate3 port map (A => OUTI1, B => OUT2, C => OUT3, X => OUT4);

end architecture LogicOperation;

The data flow approach:
The program for the logic circuit in Figure 5-41 using the data flow approach is
written as follows:
entity SOP_Logic is
port (IN1, IN2, IN3, IN4, INS5, IN6, IN7, INS: in bit; OUT4: out bit);
end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is
begin

OUT4 <= (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and INS);
end architecture LogicOperation;

As you can see, the data flow approach results in a much simpler code for this particu-
lar logic function. However, in situations where a logic function consists of many blocks
of complex logic, the structural approach might have an advantage over the data flow
approach.

Related Problem

If another NAND gate is added to the circuit in Figure 5-41 with inputs IN9 and IN10,
write a component instantiation to add to the program.

Applying Software Development Tools

A software development package must be used to implement an HDL design in a target device.
Once the logic has been described using an HDL and entered via a software tool called a code
or text editor, it can be tested using a simulation to verify that it performs properly before actu-
ally programming the target device. Using software development tools allows for the design,
development, and testing of combinational logic before it is committed to hardware.

Typical software development tools allow you to input VHDL code on a text-based
editor specific to the particular development tool that you are using. The VHDL code for
a combinational logic circuit has been written using a text-based editor for illustration
and appears on the computer screen as shown in Figure 5-42. Many code editors provide
enhanced features such as the highlighting of keywords.

After the program has been written into the text editor, it is passed to the compiler. The com-
piler takes the high-level VHDL code and converts it into a file that can be downloaded to the
target device. Once the program has been compiled, you can create a simulation for testing. Sim-
ulated input values are inserted into the logic design and allow for verification of the output(s).

You specify the input waveforms on a software tool called a waveform editor, as shown in
Figure 5-43. The output waveforms are generated by a simulation of the VHDL code that you
entered on the text editor in Figure 5-42. The waveform simulation provides the resulting out-
puts X and Y for the inputs A, B, C, and D in all sixteen combinations from0000,to 1 11 1,.

Recall from Chapter 3 that there are several performance characteristics of logic circuits
to be considered in the creation of any digital system. Propagation delay, for example,
determines the speed or frequency at which a logic circuit can operate. A timing simulation
can be used to mimic the propagation delay through the logic design in the target device.

Combinational Logic Analysis

Text Editor [of

File Edit View Project Assignments Processing Tools Window

entity Combinational is
port (A, B, C, D: in bit; X, Y: out bit);
end entity Combinational;

architecture Example of Combinational is
begin

X <= (A and B) or not C;

Y <= C or not D;
end architecture Example;

KT | 3

FIGURE 5-42 A VHDL program for a combinational logic circuit after entry on a generic
text editor screen that is part of a software development tool.

Al
Name: 50.0 ns 100.0 ns 150.0 ns 200.0 ns 250.0 ns 300.0 ns —
1 1 1 1 1 1
g~ D |
- C I I I
es [T 1 1 T
- A R Rl =Rl EE R R E
- Y | |
- X L | L [
KT o

FIGURE 5-43 A typical waveform editor tool showing the simulated waveforms for the
logic circuit described by the VHDL code in Figure 5-42.

SECTION 5-6 CHECKUP

1. What is a VHDL component?
2. State the purpose of a component instantiation in a program architecture.
3. How are interconnections made between components in VHDL?

4. The use of components in a VHDL program represents what approach?

5-7 Troubleshooting

The preceding sections have given you some insight into the operation of combina-
tional logic circuits and the relationships of inputs and outputs. This type of under-
standing is essential when you troubleshoot digital circuits because you must know
what logic levels or waveforms to look for throughout the circuit for a given set of
input conditions.

In this section, an oscilloscope is used to troubleshoot a fixed-function logic circuit
when a device output is connected to several device inputs. Also, an example of signal
tracing and waveform analysis methods is presented using a scope or logic analyzer for
locating a fault in a combinational logic circuit.

After completing this section, you should be able to

*

*

Define a circuit node

Use an oscilloscope to find a faulty circuit node
Use an oscilloscope to find an open input or output
Use an oscilloscope to find a shorted input or output

Discuss how to use an oscilloscope or a logic analyzer for signal tracing in a
combinational logic circuit

In a combinational logic circuit, the output of a driving device may be connected to two
or more load devices as shown in Figure 5-44. The interconnecting paths share a common
electrical point known as a node.

Driving Load
device device 1
Load
device 2

Node ——

Load
device 3

Load
device n

FIGURE 5-44 lllustration of a node in a logic circuit.

The driving device in Figure 5-44 is driving the node, and the other devices repre-
sent loads connected to the node. A driving device can drive a number of load device
inputs up to its specified fan-out. Several types of failures are possible in this situa-
tion. Some of these failure modes are difficult to isolate to a single bad device because
all the devices connected to the node are affected. Common types of failures are the
following:

1.

2.

Open output in driving device. This failure will cause a loss of signal to all load
devices.

Open input in a load device. This failure will not affect the operation of any of the
other devices connected to the node, but it will result in loss of signal output from the
faulty device.

Shorted output in driving device. This failure can cause the node to be stuck in the
LOW state (short to ground) or in the HIGH state (short to V).

Shorted input in a load device. This failure can also cause the node to be stuck in the
LOW state (short to ground) or in the HIGH state (short to V).

Troubleshooting

Combinational Logic Analysis

Troubleshooting Common Faults
Open Output in Driving Device

In this situation there is no pulse activity on the node. With circuit power on, an open node
will normally result in a “floating” level, as illustrated in Figure 5-45.

There are pulses on
one input with the
other input HIGH.

No pulse activity is indicated
at any point on the node. Scope
may indicate "floating" level.

Output pin of this
gate in IC1 is open

1[T] 1114
2[[@ 1113
3] 1112

4[] 11 g
7T 1138
74HCO00 pin diagram

If there is no pulse activity at the output pin on IC1, there is an internal open. If
there is pulse activity directly on the output pin but not on the node interconnections,
the connection between the pin and the board is open.

from data sheet

FIGURE 5-45 Open output in driving device. Assume a HIGH is on one input.

Open Input in a Load Device

If the check for an open driver output in IC1 is negative (there is pulse activity), then a
check for an open input in a load device should be performed. Check the output of each
device for pulse activity, as illustrated in Figure 5-46. If one of the inputs that is nor-
mally connected to the node is open, no pulses will be detected on that device’s output.

Output or Input Shorted to Ground

When the output is shorted to ground in the driving device or the input to a load device
is shorted to ground, it will cause the node to be stuck LOW, as previously mentioned.
A quick check with a scope probe will indicate this, as shown in Figure 5-47. A short
to ground in the driving device’s output or in any load input will cause this symptom,
and further checks must therefore be made to isolate the short to a particular device.

Signal Tracing and Waveform Analysis

Although the methods of isolating an open or a short at a node point are useful from time
to time, a more general troubleshooting technique called signal tracing is of value in just

When troubleshooting logic circuits, begin with a visual check, looking for obvious problems.
In addition to components, visual inspection should include connectors. Edge connectors are
frequently used to bring power, ground, and signals to a circuit board. The mating surfaces of
the connector need to be clean and have a good mechanical fit. A dirty connector can cause
intermittent or complete failure of the circuit. Edge connectors can be cleaned with a common
pencil eraser and wiped clean with a Q-tip soaked in alcohol. Also, all connectors should be
checked for loose-fitting pins.

Troubleshooting

Pin 4 input of this
gate in IC2 is open
/

1T T114
zg@ T3
30 @:D 12
4[] 111
501 T]10
el
7T 718
74HCO0 pin diagram

from data sheet HIGH

Check the output pin of each device connected to the node with other device inputs HIGH.
No pulse activity on an output indicates an open input or open output.

74HCO00

FIGURE 5-46 Open inputin a load device.

There is a LOW level at all
points connected to the node.

1] 114
2|I@ 113
S5 (s

4[] 11
S0 ot
A (5
70 18

FIGURE 5-47 Shorted output in the driving device or shorted input in a load.

about every troubleshooting situation. Waveform measurement is accomplished with an
oscilloscope or a logic analyzer.

Basically, the signal tracing method requires that you observe the waveforms and their
time relationships at all accessible points in the logic circuit. You can begin at the inputs
and, from an analysis of the waveform timing diagram for each point, determine where an
incorrect waveform first occurs. With this procedure you can usually isolate the fault to a
specific device. A procedure beginning at the output and working back toward the inputs
can also be used.

The general procedure for signal tracing starting at the inputs is outlined as follows:

e Within a system, define the section of logic that is suspected of being faulty.

e Start at the inputs to the section of logic under examination. We assume, for this dis-
cussion, that the input waveforms coming from other sections of the system have
been found to be correct.

Combinational Logic Analysis

» For each device, beginning at the input and working toward the output of the logic
circuit, observe the output waveform of the device and compare it with the input
waveforms by using the oscilloscope or the logic analyzer.

¢ Determine if the output waveform is correct, using your knowledge of the logical
operation of the device.

 If the output is incorrect, the device under test may be faulty. Pull the IC device that
is suspected of being faulty, and test it out-of-circuit. If the device is found to be
faulty, replace the IC. If it works correctly, the fault is in the external circuitry or in
another IC to which the tested one is connected.

« If the output is correct, go to the next device. Continue checking each device until an
incorrect waveform is observed.

Figure 5-48 is an example that illustrates the general procedure for a specific logic
circuit in the following steps:

Step 1: Observe the output of gate G, (test point 5) relative to the inputs. If it is
correct, check the inverter next. If the output is not correct, the gate or its

Step 1 Step 2 Step 3
[If correct, go to step 2. [If correct, go to step 3. O If correct, go to step 4.
O If incorrect, test IC2 and connections. O If incorrect, test IC1 and connections. O If incorrect, test IC2 and connections.

Scope is externally triggered from test point 1 (TP1).

6
T
TP9
TP8
Step 4 Step 5
O If correct, go to step 5. O If correct, circuit is OK.
[If incorrect, test IC2 and connections. O If incorrect, test IC2 and connections.

FIGURE 5-48 Example of signal tracing and waveform analysis in a portion of a printed
circuit board. TP indicates test point.

Troubleshooting

connections are bad; or, if the output is LOW, the input to gate G, may be
shorted.

Step 2: Observe the output of the inverter (TP6) relative to the input. If it is correct,
check gate G, next. If the output is not correct, the inverter or its connections
are bad; or, if the output is LOW, the input to gate G3 may be shorted.

Step 3: Observe the output of gate G, (TP7) relative to the inputs. If it is correct, check
gate G5 next. If the output is not correct, the gate or its connections are bad; or,
if the output is LOW, the input to gate G4 may be shorted.

Step 4: Observe the output of gate G5 (TP8) relative to the inputs. If it is correct, check
gate G4 next. If the output is not correct, the gate or its connections are bad; or,
if the output is LOW, the input to gate G4 (TP7) may be shorted.

Step 5: Observe the output of gate G4 (TP9) relative to the inputs. If it is correct, the
circuit is okay. If the output is not correct, the gate or its connections are bad.

Determine the fault in the logic circuit of Figure 5-49(a) by using waveform analysis. You have observed the waveforms
shown in green in Figure 5—49(b). The red waveforms are correct and are provided for comparison.

G, output u
o I
[|

Iverter W
output == \ |

G output E_LI—I—I
[

o I I
G output -
I
|

:

:

(a) (®)
FIGURE 5-49

Solution

1. Determine what the correct waveform should be for each gate. The correct waveforms are shown in red, superim-
posed on the actual measured waveforms, in Figure 5-49(b).

2. Compare waveforms gate by gate until you find a measured waveform that does not match the correct waveform.

In this example, everything tested is correct until gate G5 is checked. The output of this gate is not correct as the differences in
the waveforms indicate. An analysis of the waveforms indicates that if the D input to gate G5 is open and acting as a HIGH, you will
get the output waveform measured (shown in red). Notice that the output of G4 is also incorrect due to the incorrect input from Gs.

Replace the IC containing G3, and check the circuit’s operation again.

Related Problem

For the inputs in Figure 5-49(b), determine the output waveform for the logic circuit (output of Gy) if the inverter has an
open output.

Combinational Logic Analysis

As you know, testing and troubleshooting logic circuits often require observing and comparing two
digital waveforms simultaneously, such as an input and the output of a device, on an oscilloscope.
For digital waveforms, the scope should always be set to DC coupling on each channel input to
avoid “shifting” the ground level. You should determine where the 0 V level is on the screen for
both channels.

To compare the timing of the waveforms, the scope should be triggered from only one channel
(don’t use vertical mode or composite triggering). The channel selected for triggering should always
be the one that has the lowest frequency waveform, if possible.

SECTION 5-7 CHECKUP

1. List four common internal failures in logic gates.

2. One input of a NOR gate is externally shorted to + V¢. How does this condition af-
fect the gate operation?

3. Determine the output of gate G4 in Figure 5-49(a), with inputs as shown in part (b),
for the following faults:

(a) one input to G shorted to ground
(b) the inverter input shorted to ground

(¢) an open output in G3

Applied Logic

Tank Control

A storage tank system for a pancake syrup manufacturing company is shown in Figure 5-50.
The control logic allows a volume of corn syrup to be preheated to a specified temperature
to achieve the proper viscosity prior to being sent to a mixing vat where ingredients such as
sugar, flavoring, preservative, and coloring are added. Level and temperature sensors in the
tank and the flow sensor provide the inputs for the logic.

System Operation and Analysis

The tank holds corn syrup for use in a pancake syrup manufacturing process. In prepa-
ration for mixing, the temperature of the corn syrup when released from the tank into a
mixing vat must be at a specified value for proper viscosity to produce required flow char-
acteristics. This temperature can be selected via a keypad input. The control logic main-
tains the temperature at this value by turning a heater on and off. The analog output from
the temperature transducer (7y,10) i converted to an 8-bit binary code by an analog-to-
digital converter and then to an 8-bit BCD code. A temperature controller detects when the
temperature falls below the specified value and turns the heater on. When the temperature
reaches the specified value, the heater is turned off.

The level sensors produce a HIGH when the corn syrup is at or above the minimum or at the
maximum level. The valve control logic detects when the maximum level (L,,c) or minimum
level (L,,;,) has been reached and when mixture is flowing into the tank (Fj ;). Based on these
inputs, the control logic opens or closes each valve (Viye and Viger). New corn syrup can be

Inlet valve

Flow sensor y >

N

F inlet

L. Monitoring
" and control T

Level min logic |

sensors Tyl outlet
analog

Vi

inlet

Outlet
valve

transducer :——rl
I

FIGURE 5-50 Tank with level and temperature sensors and controls.

Heater Temperature

To mixing vat

added to the tank via the inlet valve only when the minimum level is reached. Once the inlet
valve is opened, the level in the tank must reach the maximum point before the inlet valve is
closed. Also, once the outlet valve is opened, the level must reach the minimum point before
the outlet valve is closed. New syrup is always cooler than the syrup in the tank. Syrup cannot
be released from the tank while it is being filled or its temperature is below the specified value.

Inlet Valve Control The conditions for which the inlet valve is open, allowing the tank
to fill, are

¢ The solution level is at minimum (Ly;,). B
+ The tank is filling (Fj,er) but the maximum level has not been reached (L y,y)-

Table 5-6 is the truth table for the inlet valve. A HIGH (1) is the active level for the
inlet valve to be open (on).

TABLE 5-6

Truth table for inlet valve control.

Inputs Output
Lmax Lmin F inlet Vinlet Description
0 0 0 1 Level below minimum. No inlet flow.
0 0 1 1 Level below minimum. Inlet flow.
0 1 0 0 Level above min and below max. No inlet flow.
0 1 1 1 Level above min and below max. Inlet flow.
1 0 0 X Invalid
1 0 1 X Invalid
1 1 0 0 Level at maximum. No inlet flow.
1 1 1 0 Level at maximum. Inlet flow.
Exercise

1. Explain why the two conditions indicated in the truth table are invalid.

2. Under how many input conditions is the inlet valve open?

3. Once the level drops below minimum and the tank starts refilling, when does the
inlet valve turn off?

Applied Logic

Combinational Logic Analysis

From the truth table, an expression for the inlet valve control output can be written.
Vinlet = LmaxLminFinlet T LmaxLminFinlet T LmaxLminFinlet

The SOP expression for the inlet valve logic can be reduced to the following simplified
expression using Boolean methods:

Vintet = Lmin T LmaxFintet

Exercise

4. Using a K-map, prove that the simplified expression is correct.
5. Using the simplified expression, draw the logic diagram for the inlet valve control.

Outlet Valve Control The conditions for which the outlet valve is open allowing the tank
to drain are

¢ The syrup level is above minimum and the tank is not filling.
+ The temperature of the syrup is at the specified value.

Table 5-7 is the truth table for the outlet valve. A HIGH (1) is the active level for the
outlet valve to be open (on). (Note: T is both an input and an output, 7 = Temp).

Truth table for outlet valve control.

Inputs Output

Lmax Lmin Finlet
0

Voutlet Description

0 Level below minimum. No inlet flow. Temp low.

Level below minimum. No inlet flow. Temp correct.
Level below minimum. Inlet flow. Temp low.

Level below minimum. Inlet flow. Temp correct.

Level above min and below max. No inlet flow. Temp low.
Level above min and below max. No inlet flow. Temp
correct.

Level above min and below max. Inlet flow. Temp low.
Level above min and below max. Inlet flow. Temp
correct

Invalid

Invalid

Invalid

Invalid

Level at maximum. No inlet flow. Temp low.

Level at maximum. No inlet flow. Temp correct.

Level at maximum. Inlet flow. Temp low.

Level at maximum. Inlet flow. Temp correct.

SO OO OO
——_ 0 O O O
S O = = O
— O = O~ O |MN
— O O O O

S O
——
—_—
= @
S O

— = = = = e = =
—_—— == O O O O
—_—— O O == O O
— o = O = O =0
SO = O XX XX

Exercise

6. Why does the outlet valve control require four inputs and the inlet valve only three?

7. Under how many input conditions is the outlet valve open?

8. Once the level reaches maximum and the tank starts draining, when does the outlet
valve turn off?

From the truth table, an expression for the outlet valve control can be written.

Voutlet i LmameinfinletT + LmameinfinletT

The SOP expression for the outlet valve logic can be reduced to the following simplified
expression:

Voutlet - LminFinletT
Exercise

9. Using a K-map, prove that the simplified expression is correct.
10. Using the simplified expression, draw the logic diagram for the outlet valve control.

Temperature Control The temperature control logic accepts an 8-bit BCD code repre-
senting the measured temperature and compares it to the BCD code for the specified tem-
perature. A block diagram is shown in Figure 5-51.

8-bit 8-bit BCD for
binary code measured temperature
Analog-to- Binary-to- Tempora
Tonatos —>| digital BCD P —— T

control logic

[T

8-bit BCD for
specified temperature

converter converter

FIGURE 5-51 Block diagram for temperature control circuit.

When the measured temperature and the specified temperature are the same, the two
BCD codes are equal and the 7 output is LOW (0). When the measured temperature falls
below the specified value, there is a difference in the BCD codes and the 7 output is HIGH
(1), which turns on the heater. The temperature control logic can be implemented with
exclusive-OR gates, as shown in Figure 5-52. Each pair of corresponding bits from the two

™, \)) >7
Mg
™ \
| I O>—
AY
] >O—
BCD for e A
measured)
temperature
T |)‘—\2) T
A\
AY
™,)Di

\

TSg TS; TSg TSs TSy TS3 TSy TS,

BCD for specified
temperature (75)

FIGURE 5-52 Logic diagram of the temperature control logic.

Applied Logic

Combinational Logic Analysis

BCD codes is applied to an exclusive-OR gate. If the bits are the same, the output of the
XOR gate is 0; and if they are different, the output of the XOR gate is 1. When one or more
XOR outputs equal 1, the 7 output of the OR gate equals 1, causing the heater to turn on.
VHDL Code for Tank Control Logic

The control logic for the inlet valve, outlet valve, and temperature is described with VHDL
using the data flow approach (which is based on the Boolean description of the logic).
Exercise 11 requires the structural approach (which is based on the gates and how they are
connected) for comparison.
entity TankControl is
port (Finlet, Lmax, Lmin, TS1, TS2, TS3, TS4, TS5, TS6, TS7, TS8, TM1, TM2,
TM3, TM4, TMS5, TM6, TM7, TMS: in bit; Vinlet, Voutlet, T: out bit);
end entity TankControl;
architecture ValveTempLogic of Tank Control is
begin
Vinlet <= not Lmin or (not Lmax and Finlet);
Voutlet <= Lmin and not Finlet and T;
T <= (TS1 xor TM1) or (TS2 xor TM?2) or (TS3 xor TM3) or (TS4 xor TM4)
or (TS5 xor TMS) or (TS6 xor TM6) or (TS7 xor TM7) or (TS8 xor TMS);

end architecture ValveTempLogic;
Exercise
11. Write the VHDL code for the tank control logic using the structural approach.

Simulation of the Valve Control Logic

The inlet and outlet valve control logic simulation screen is shown in Figure 5-53. SPDT
switches are used to represent the level and flow sensor inputs and the temperature indica-
tion. Probes are used to indicate the output states.

FIGURE 5-53 Multisim circuit screen for the valve control logic.

Key Terms

Mq!ﬁSim

N

Open file ALOS in the Applied Logic folder on the website. Run the simulation of the
valve-control logic using your Multisim software and observe the operation. Create
a new Multisim file, connect the temperature control logic, and run the simulation.

Putting Your Knowledge to Work

If the temperature of the syrup can never be more than 9°C below the specified value, can
the temperature control circuit be simplified? If so, how?

SUMMARY

¢ AND-OR logic produces an output expression in SOP form.
e AND-OR-Invert logic produces a complemented SOP form, which is actually a POS form.

e The operational symbol for exclusive-OR is @. An exclusive-OR expression can be stated in
two equivalent ways:

AB+AB=A®B
¢ To do an analysis of a logic circuit, start with the logic circuit, and develop the Boolean output

expression or the truth table or both.

¢ Implementation of a logic circuit is the process in which you start with the Boolean output
expressions or the truth table and develop a logic circuit that produces the output function.

e AIl NAND or NOR logic diagrams should be drawn using appropriate dual symbols so
that bubble outputs are connected to bubble inputs and nonbubble outputs are connected to
nonbubble inputs.

* When two negation indicators (bubbles) are connected, they effectively cancel each other.

* A VHDL component is a predefined logic function stored for use throughout a program or in
other programs.

e A component instantiation is used to call for a component in a program.
e A VHDL signal effectively acts as an internal interconnection in a VHDL structural description.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.
Component A VHDL feature that can be used to predefine a logic function for multiple use
throughout a program or programs.

Negative-AND The dual operation of a NOR gate when the inputs are active-LOW.
Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Node A common connection point in a circuit in which a gate output is connected to one or more
gate inputs.

Signal A waveform; a type of VHDL object that holds data.

Signal tracing A troubleshooting technique in which waveforms are observed in a step-by-step
manner beginning at the input and working toward the output or vice versa. At each point the
observed waveform is compared with the correct signal for that point.

Universal gate Either a NAND gate or a NOR gate. The term universal refers to the property of
a gate that permits any logic function to be implemented by that gate or by a combination of that
kind.

Combinational Logic Analysis

TRUE/FALSE QUIZ

Answers are at the end of the chapter.
1. AND-OR logic can have only two 2-input AND gates.
. AOl is an acronym for AND-OR-Invert.
. If the inputs of an exclusive-OR gate are the same, the output is LOW (0).
. If the inputs of an exclusive-NOR gate are different, the output is HIGH (1).
. A parity generator cannot be implemented using exclusive-OR gates.
. NAND gates can be used to produce the AND functions.
. NOR gates cannot be used to produce the OR functions.
. Any SOP expression can be implemented using only NAND gates.
. The dual symbol for a NAND gate is a negative-AND symbol.
. Negative-OR is equivalent to NAND.

o X N U RA W N

[
=3

SELF-TEST

Answers are at the end of the chapter.

1. The output expression for an AND-OR circuit having one AND gate with inputs A, B and C
and one AND gate with inputs D, E and F'is
(a) ABCDEF b)A+B+C+D+E+F
(¢) ABC + DEF d A+B+C)D+E+F)

2. A logic circuit with an output X = AB + ABC consists of
(a) two AND gates and one OR gate
(b) two AND gates, one OR gate and an inverter
(c) two AND gates, two OR gates and two inverters
(d) two AND gates, one OR gate and three inverters

3. To implement the expression X YZ + XYZ + XYZ + XYZ + XYZ, it takes
(a) five AND gates, one OR gate, and eight inverters
(b) four AND gates, two OR gates, and six inverters
(c) five AND gates, three OR gates, and seven inverters
(d) five AND gates, one OR gate, and seven inverters

4. The expression ABCD + ABCD + AB CD B B
(a) cannot be simplified - (b) can be simplified to ABC + AB
(¢) can be simplified to ABCD + ABC (d) None of these answers is correct.

5. The output expression for an AND-OR-Invert circuit having one AND gate with inputs A, B, C
and another AND gate with inputs D, E, F is

(a) ABC + DEF (b) A+B+C)D+E+F)
© A+ B+ C)D+E+F) dMA+B+C+D+E+F
6. An exclusive-NOR function is expressed as B B
(@ AB+AB (b) AB + AB
(¢) (A + B)A + B) (d) (A + B)A + B)
7. The AND operation can be produced with
(a) two NAND gates (b) three NAND gates
(c) one NOR gate (d) three NOR gates
8. The OR operation can be produced with
(a) two NOR gates (b) three NAND gates
(c) four NAND gates (d) both answers (a) and (b)

9. When using dual symbols in a logic diagram,
(a) bubble outputs are connected to bubble inputs
(b) the NAND symbols produce the AND operations
(c) the negative-OR symbols produce the OR operations
(d) All of these answers are true.
(e) None of these answers is true.

Problems

10. All Boolean expressions can be implemented with
(a) NAND gates only
(b) NOR gates only
(¢) combinations of NAND and NOR gates
(d) combinations of AND gates, OR gates, and inverters
(e) any of these

11. A VHDL component
(a) can be used once in each program
(b) is a predefined description of a logic function
(c¢) can be used multiple times in a program
(d) is part of a data flow description
(e) answers (b) and (c)
12. A VHDL component is called for use in a program by using a
(a) signal (b) variable
(¢) component instantiation (d) architecture declaration

Answers to odd-numbered problems are at the end of the book.

Section 5-1 Basic Combinational Logic Circuits

1. Draw the ANSI distinctive shape logic diagram for a 4-wide, 3-input AND-OR-Invert circuit.
Also draw the ANSI standard rectangular outline symbol.

2. Write the output expression for each circuit in Figure 5-54.

A {>c
B
A —4 L
C X
B X *
D —¢ 1
C |:
(@) (b)
FIGURE 5-54

3. Write the output expression for each circuit as it appears in Figure 5-55.

A — A — A
X
B B
X X B

(a) (b) (©

- Y B B

(d) (e (®
FIGURE 5-55

Combinational Logic Analysis

4. Write the output expression for each circuit as it appears in Figure 5-56 and then change each
circuit to an equivalent AND-OR configuration.

5. Develop the truth table for each circuit in Figure 5-55.
6. Develop the truth table for each circuit in Figure 5-56.

7. Show that an exclusive-NOR circuit produces a POS output.

A —

B —

O O % >
S
a
>

(a) (b)

o3

(©) (d)

| |
| |

S=G=n
- D

m U O w o>
!
D
T Q m mb aw »

C

FIGURE 5-56

Section 5-2 Implementing Combinational Logic

8. Develop an AND-OR-Invert logic circuit for a power drive which switches on (logic 1) when
the guard is in place (logic 1) and switches off (logic 0) when the motor is too hot (logic 0).

9. An AOI (AND-OR-Invert) logic chip has two 4-input AND gates connected to a 2-input NOR
gate. Write the Boolean expression for the circuit (assume the inputs are labeled A through H).

10. Use AND gates, OR gates, or combinations of both to implement the following logic
expressions as stated:

@X=A+B+C

(b) X = ABC

(¢c) X=A+ BC

(d) X = AB + CD

(&) X= (A + B)(C + D)

) X=A + BCD

(g) X = ABC + BCD + DEF

(h) X =ABC(D + E+ F) + AC(C+ D + E)

Problems

11. Use AND gates, OR gates, and inverters as needed to implement the following logic expres-
sions as stated:
(a) X = AB + EE‘
(b) X =AB + O)
(¢) X =AB + AB B
(d) X = ABC + B(EF + G)
() X =A[BCA + B+ C+ D)
(f) X = B(CDE + EFG)(AB + C)
12. Use NAND gates, NOR gates, or combinations of both to implement the following logic
expressions as stated:
(a) X =AB + CD + (A + B)(ACD + BE)
(b) X = ABCD + DEF + AF
(¢) X =A[B + C(D + E)]
13. Implement a logic circuit for the truth table in Table 5-8.

TABLE 5-8
Inputs Output
A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

14. Implement a logic circuit for the truth table in Table 5-9.

Inputs Output
A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Combinational Logic Analysis

15. Simplify the circuit in Figure 5-57 as much as possible, and verify that the simplified circuit is
equivalent to the original by showing that the truth tables are identical.

16. Repeat Problem 15 for the circuit in Figure 5-58.

. B
L v
¢ X
c
FIGURE 5-57 FIGURE 5-58

17. Minimize the gates required to implement the functions in each part of Problem 11 in SOP form.

18. Minimize the gates required to implement the functions in each part of Problem 12 in SOP
form.

19. Minimize the gates required to implement the function of the circuit in each part of Figure
5-56 in SOP form.

Section 5-3 The Universal Property of NAND and NOR Gates
20. Implement the logic circuits in Figure 5-54 using only NAND gates.

21. Implement the logic circuit in Figure 5-58 using only NAND gates.

22. Repeat Problem 20 using only NOR gates.

23. Repeat Problem 21 using only NOR gates.

Section 5-4 Combinational Logic Using NAND and NOR Gates

24. Show how the following expressions can be implemented as stated using only NOR gates:
(a) X = ABC B (b)y X=ABC = (X=A+B
@X=A+B+C (e X=AB+CD () X= (A + B)(C + D)
(g) X = AB[C(DE + AB) + BCE]

25. Repeat Problem 24 using only NAND gates.

26. Implement each function in Problem 10 by using only NAND gates.

27. Implement each function in Problem 11 by using only NAND gates.

Section 5-5 Pulse Waveform Operation

28. The output of the logic circuit and input waveforms in Figure 5-59 is passed through an
inverter. Draw the output waveform.

AL L LI L 5
;250 I I I I I I I I I ¥
FIGURE 5-59

29. For the logic circuit in Figure 5-60, draw the output waveform in proper relationship to the
inputs.

AL L Z_‘_DO_O‘—OD_}X

2 [1 —

FIGURE 5-60

30. For the input waveforms in Figure 5-61, what logic circuit will generate the output waveform

shown?

A T

[[T O [

- I 1 I Ll 1 [I

Inputs B _| ol T T T

[I : : : [: I : =T

Cc I | L I Ll I

[[

L : : : : : : [: : [

Output X I I I | I | I | I | I |

FIGURE 5-61

31. Repeat Problem 30 for the waveforms in Figure 5-62.

S [N I R 1
Inputs B _ |

c
Output X I |

FIGURE 5-62

32. For the circuit in Figure 5-63, draw the waveforms at the numbered points in the proper rela-
tionship to each other.

FIGURE 5-63

33. Assuming a propagation delay through each gate of 10 nanoseconds (ns), determine if the
desired output waveform X in Figure 5-64 (a pulse with a minimum #y, = 25 ns positioned as
shown) will be generated properly with the given inputs.

A_ T 1 A ——
— [0
B | B] G
|
| .
D '_! 100 ns pulse width D B =
4
|
|
X 1
——25 ns minimum
FIGURE 5-64

Section 5-6 Combinational Logic with VHDL
34. Describe a 2-input NAND gate with VHDL.
35. Describe a 3-input AND gate with VHDL.

36. Write a VHDL program using the data flow approach (Boolean expressions) to describe the
logic circuit in Figure 5-54(b).

37. Write VHDL programs using the data flow approach (Boolean expressions) for the logic
circuits in Figure 5-55(e) and (f).

Problems

Combinational Logic Analysis

38. Write a VHDL program using the structural approach for the logic circuit in Figure 5-56(d).
Assume component declarations for each type of gate are already available.

39. Repeat Problem 38 for the logic circuit in Figure 5-56(f).

40. Describe the logic represented by the truth table in Table 5-8 using VHDL by first converting it
to SOP form.

41. Develop a VHDL program for the logic in Figure 5-65, using both the data flow and the struc-
tural approach. Compare the resulting programs.

A
e
B

FIGURE 5-65

42. Develop a VHDL program for the logic in Figure 5-66, using both the data flow and the struc-
tural approach. Compare the resulting programs.

o G

B 3 G,

C X
Gs Ga

E

FIGURE 5-66

43. Given the following VHDL program, create the truth table that describes the logic circuit.

entity CombLogic is

port (A, B, C, D: in bit; X: out bit);
end entity CombLogic;
architecture Example of CombLogic is

begin

X <= not((not A and not B) or (not A and not C) or (not A and not D) or
(not B and not C) or (not B and not D) or (not D and not C));

end architecture Example;

44. Describe the logic circuit shown in Figure 5-67 with a VHDL program, using the data flow
approach.

45. Repeat Problem 44 using the structural approach.

FIGURE 5-67

Problems

Section 5-7 Troubleshooting

46. For the logic circuit and the input waveforms in Figure 5-68, the indicated output waveform is
observed. Determine if this is the correct output waveform.

B

¢ o«
P o

A_,_:___!_ Aj

FIGURE 5-68

47. The output waveform in Figure 5-69 is incorrect for the inputs that are applied to the circuit.
Assuming that one gate in the circuit has failed, with its output either an apparent constant HIGH
or a constant LOW, determine the faulty gate and the type of failure (output open or shorted).

e N [

D

I
L G,

FIGURE 5-69

48. Repeat Problem 47 for the circuit in Figure 5-70, with input and output waveforms as shown.

A__ LI L 2]

6
nI (S S

FIGURE 5-70

49. By examining the connections in Figure 5-71, determine the driving gate and load gate(s).
Specity by device and pin numbers.

FIGURE 5-71

Combinational Logic Analysis

50. Figure 5-72(a) is a logic circuit under test. Figure 5-72(b) shows the waveforms as observed

on a logic analyzer. The output waveform is incorrect for the inputs that are applied to the cir-
cuit. Assuming that one gate in the circuit has failed, with its output either an apparent constant
HIGH or a constant LOW, determine the faulty gate and the type of failure.

I | I
B | ! !
B I U S I
| | | ! | | | |
C | | | | : | | |
i i
p i 1 i | T R
1 1 1 : : | | | |
E 1 o
| | | T ! ! | | |
g |] [! | !_
S S I A I B |
(@) (®)
FIGURE 5-72
51. The logic circuit in Figure 5-73 has the input waveforms shown.

(a) Determine the correct output waveform in relation to the inputs.
(b) Determine the output waveform if the output of gate G; is open.
(c) Determine the output waveform if the upper input to gate Gs is shorted to ground.

ﬁwg @ [,

tHH - = x
:I:IIIII: Gs 4

|_]|l_,_l' :I_ID

D
FIGURE 5-73
52. The logic circuit in Figure 5-74 has only one intermediate test point available besides the output,

as indicated. For the inputs shown, you observe the indicated waveform at the test point. Is this
waveform correct? If not, what are the possible faults that would cause it to appear as it does?

Al 11 TP
e}

1 A —(

j B—

|

|

1

e Q

| —(
|

|

[) |>

|

TP_|_|_|_|_|_’ iﬂ

g

5 m Y A

C

FIGURE 5-74

Applied Logic

53.
54.
55.
56.
57.

Describe the function of each of the three sensors in the tank.
Implement the inlet valve logic using NOR gates and inverters.
Repeat Problem 54 for the outlet valve logic.

Implement the temperature control logic using XNOR gates.

Design a circuit to enable an additive to be introduced into the syrup through another inlet only
when the temperature is at the specified value and the syrup level is at the low-level sensor.

Special Design Problems
58. (a) Design a logic circuit to produce a HIGH output only if the input, represented by a 4-bit
binary number, is greater than twelve or less than three. First develop the truth table and
then draw the logic diagram.
(b) Describe the logic using VHDL.
59. (a) Develop the logic circuit necessary to meet the following requirements:

A battery-powered lamp in a room is to be operated from two switches, one at the back
door and one at the front door. The lamp is to be on if the front switch is on and the back
switch is off, or if the front switch is off and the back switch is on. The lamp is to be off if
both switches are off or if both switches are on. Let a HIGH output represent the on condi-
tion and a LOW output represent the off condition.

(b) Describe the logic using VHDL.

60. (a) Develop the NAND logic for a hexadecimal keypad encoder that will convert each key
closure to binary.

(b) Describe the logic using VHDL.

Multisim Troubleshooting Practice
61. Open file PO5-61. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

62. Open file PO5-62. For the specified fault, predict the effect on the circuit. Then introduce the
fault and verify whether your prediction is correct.

63. Open file P05-63. For the observed behavior indicated, predict the fault in the circuit. Then
introduce the suspected fault and verify whether your prediction is correct.

64. Open file PO5-64. For the observed behavior indicated, predict the fault in the circuit. Then
introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

MultiSim

N

Answers

SECTION CHECKUPS
Section 5-1 Basic Combinational Logic Circuits
1.(ay AB+CD=1:-0+1-0=1 (b) AB+CD=1-1+0-1=0
© AB+CD=0:1+1-1=0
2.(d AB+AB=1-0+1-0=1 (b) AB+AB=1-1+1-1=0
(¢c) AB+AB=0:14+0-1=1 d AB+AB=0-0+0-0=0
3. X = 1 when ABC = 000, 011, 101, 110, and 111; X = 0 when ABC = 001, 010, and 100

4. X = AB + AB; the circuit consists of two AND gates, one OR gate, and two inverters. See
Figure 5-6(b) for diagram.

Section 5-2 Implementing Combinational Logic
1. (a) X = ABC + AB + AC: three AND gates, one OR gate
(b) X = AB(C + DE): three AND gates, one OR gate
2. X = ABC + ABC; two AND gates, one OR gate, and three inverters
3.(a) X = AB(C + 1) + AC = AB + AC

(b) X = AB(C + DE) = ABC + ABDE

Section 5-3 The Universal Property of NAND and NOR Gates
1. (a) X = A + B: a 2-input NAND gate with A and B on its inputs.
(b) X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an
inverter.
2. (@) X = A + B: a2-input NOR with inputs A and B, followed by one NOR used as an
inverter.

(b) X = AB: a 2-input NOR with A and B on its inputs.

Combinational Logic Analysis

Section 5-4 Combinational Logic Using NAND and NOR Gates

1. X = (A + B + C)DE: a 3-input NAND with inputs, A, B, and C, with its output connected to
a second 3-input NAND with two other inputs, D and E

2. X =ABC + (D + E): a3-input NOR with inputs A, B, and C, with its output connected to a
second 3-input NOR with two other inputs, D and E

Section 5-5 Pulse Waveform Operation

1. The exclusive-OR output is a 15 us pulse followed by a 25 us pulse, with a separation of 10 us
between the pulses.

2. The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are
LOW.

Section 5-6 Combinational Logic with VHDL
1. A VHDL component is a predefined program describing a specified logic function.
2. A component instantiation is used to call for a specified component in a program architecture.
3. Interconnections between components are made using VHDL signals.

4. Components are used in the structural approach.

Section 5-7 Troubleshooting
1. Common gate failures are input or output open; input or output shorted to ground.
2. Input shorted to V¢ causes output to be stuck LOW.
3. (a) G4 output is HIGH until rising edge of seventh pulse, then it goes LOW.
(b) G4 output is the same as input D.
(¢) G4 output is the inverse of the G, output shown in Figure 5-49(b).

RELATED PROBLEMS FOR EXAMPLES
5-1 X=AB + AC + BC
5-2 X=AB + AC + BC

IfA=0andB=0,X=0-0+0-1+0-1=0=
IfA=0andC=0,X=0-1+0-0+1-0=0
IfB=0andC=0,X=1-0+1-0+0-0=0=

5-3 Determine the even-parity output for all 16 input combinations. Each combination should
have an even number of 1s including the parity bit.

5-4 Apply codes with odd number of 1s and verify output is 1.
5-5 Cannot be simplified

5-6 Cannot be simplified

5-7 X=A+ B+ C + Disvalid.

5-8 See Figure 5-75.

=

X=C(A+B)B+D)

Al Ol

FIGURE 5-75

5-9 X = (ABC)(DEF) = (AB)C + (DE)F = (A + B)C + (D + E)F

5-10 See Figure 5-76.

ABC + DE

T Qe

(a)
FIGURE 5-76

T Awx

(d)

ABC+D+E

5511 X=A+B+CO+D+E+F)=@A+B+C)(D+E+F)=AB+C(DE+F)

5-12 See Figure 5-77.
5-13 See Figure 5-78.

HIGH
A

B M M M
c_ i e e
Il I I Il

FIGURE 5-77

5-14 See Figure 5-79.
5-15 See Figure 5-80.

FIGURE 5-79

Al [1 [
LT
i plp iy
FIGURE 5-78

1

x T O % >

FIGURE 5-80

5-16 G5: NAND_gate2 port map (A => IN9, B => IN10, X => OUT?5);

5-17 See Figure 5-81.

Dt
Gy
FIGURE 5-81

Answers

Combinational Logic Analysis

TRUE/FALSE QUIZ
1. F 2. T 3. T 4. F 5. F
6. T 7. F 8. T 9. F 10. T

SELF-TEST

1. (¢) 2. (d) 3. (a) 4. (a) 5. (¢) 6. (a) 7. (a) 8. (d)
9. (d) 10. (e) 11. (e) 12. (c)

U = T U ZVal | S OOUIO](“}"

000 - - 2011 S oo
)0 1]O(Jl 01 11 01 ol 11 °" o1

HH‘]O
01 11 00
) 0111

B 0]0)
001011 09 11 990 19 1
109001 %4849 1040 .4,

1001 '()O

1011 01
oo 0 /a

Functions of

CHAPTER

Combinational Logic

CHAPTER OUTLINE

6-1 Half and Full Adders
6—-2 Parallel Binary Adders
6-3 Ripple Carry and Look-Ahead Carry Adders
6-4 Comparators
6-5 Decoders
6-6 Encoders
6-7 Code Converters
6—8 Multiplexers (Data Selectors)
6-9 Demultiplexers
6-10 Parity Generators/Checkers
6-11 Troubleshooting
Applied Logic

CHAPTER OBJECTIVES

Distinguish between half-adders and full-adders
Use full-adders to implement multibit parallel binary
adders

Explain the differences between ripple carry and
look-ahead carry parallel adders

Use the magnitude comparator to determine the
relationship between two binary numbers and use
cascaded comparators to handle the comparison of
larger numbers

Implement a basic binary decoder

Use BCD-to-7-segment decoders in display
systems

Apply a decimal-to-BCD priority encoder in a
simple keyboard application

Convert from binary to Gray code, and Gray code
to binary by using logic devices

Apply data selectors/multiplexers in multiplexed
displays and as a function generator

Use decoders as demultiplexers
Explain the meaning of parity

Use parity generators and checkers to detect bit
errors in digital systems

Describe a simple data communications system
Write VHDL programs for several logic functions
Identify glitches, common bugs in digital systems

KEY TERMS

Key terms are in order of appearance in the chapter.
Half-adder Encoder
Full-adder Priority encoder
Cascading Multiplexer (MUX)
Ripple carry Demultiplexer
Look-ahead carry (DEMUX)
Comparator Parity bit
Decoder Glitch

VISIT THE WEBSITE

Study aids for this chapter are available at
http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In this chapter, several types of combinational

logic functions are introduced including adders,
comparators, decoders, encoders, code converters,
multiplexers (data selectors), demultiplexers, and
parity generators/checkers. VHDL implementation
of each logic function is provided, and examples

of fixed-function IC devices are included. Each
device introduced may also be available in other
logic families.

313

Functions of Combinational Logic

6-1 Half and Full Adders

A half-adder adds two bits and
produces a sum and an output carry.

MultiSim

N

TABLE 6-1

Half-adder truth table.

A B Cout)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
> = sum

Coue = output carry
A and B = input variables (operands)

Adders are important in computers and also in other types of digital systems in which
numerical data are processed. An understanding of the basic adder operation is funda-
mental to the study of digital systems. In this section, the half-adder and the full-adder are
introduced.

After completing this section, you should be able to

+ Describe the function of a half-adder

*

Draw a half-adder logic diagram

*

Describe the function of the full-adder

*

Draw a full-adder logic diagram using half-adders

*

Implement a full-adder using AND-OR logic

The Half-Adder

Recall the basic rules for binary addition as stated in Chapter 2.

0+0= 0
0+1=

1+0= 1
1 +1=10

The operations are performed by a logic circuit called a half-adder.

The half-adder accepts two binary digits on its inputs and produces two binary
digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6-1.

— A > —— Sum
Input bits Outputs

—— Carry

FIGURE 6-1 Logic symbol for a half-adder. Open file F06-01 to verify operation.
A Multisim tutorial is available on the website.

Half-Adder Logic

From the operation of the half-adder as stated in Table 6—1, expressions can be derived for
the sum and the output carry as functions of the inputs. Notice that the output carry (Cyyy)
is a 1 only when both A and B are 1s; therefore, C,; can be expressed as the AND of the
input variables.

Cout = AB Equation 6-1

Now observe that the sum output () is a 1 only if the input variables, A and B, are not
equal. The sum can therefore be expressed as the exclusive-OR of the input variables.

X =A®B Equation 6-2

From Equations 6—1 and 6-2, the logic implementation required for the half-adder func-
tion can be developed. The output carry is produced with an AND gate with A and B on the

inputs, and the sum output is generated with an exclusive-OR gate, as shown in Figure 6-2.
Remember that the exclusive-OR can be implemented with AND gates, an OR gate, and
inverters.

T=A®B=AB+AB

A o]
B Cou=AB

FIGURE 6-2 Half-adder logic diagram.

The Full-Adder
The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output
and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an
input carry. A logic symbol for a full-adder is shown in Figure 6-3, and the truth table in
Table 6-2 shows the operation of a full-adder.

2
Input —A > Sum
bits B
Cout | Output carry
Input carry €,

FIGURE 6-3 Logic symbol for a full-adder. Open file F06-03 to verify operation.

TABLE 6-2

Full-adder truth table.

A B C; Cout 2
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
C;, = input carry, sometimes designated as CI
Cou = output carry, sometimes designated as CO
Y = sum

A and B = input variables (operands)

Full-Adder Logic

The full-adder must add the two input bits and the input carry. From the half-adder you
know that the sum of the input bits A and B is the exclusive-OR of those two variables,
A @ B. For the input carry (Cj,) to be added to the input bits, it must be exclusive-ORed
with A @ B, yielding the equation for the sum output of the full-adder.

Y = (A®B) ®Cj, Equation 6-3

Half and Full Adders

A full-adder has an input carry while
the half-adder does not.

Mq!tiSim

N

Functions of Combinational Logic

This means that to implement the full-adder sum function, two 2-input exclusive-OR gates
can be used. The first must generate the term A @ B, and the second has as its inputs the
output of the first XOR gate and the input carry, as illustrated in Figure 6—4(a).

A — A®B
B 7 «

'_)D— S=A®B)®C,
Cin 7

A ®BC,
114; A®B Cou=AB+(A® B)C,
c) T=(A®B)®C, AB
(a) Logic required to form the sum of three bits (b) Complete logic circuit for a full-adder (each half-adder is enclosed

by a shaded area)

MultiSim FIGURE 6-4 Full-adder logic. Open file F06-04 to verify operation.

N

Half-adder

The output carry is a 1 when both inputs to the first XOR gate are 1s or when both inputs
to the second XOR gate are 1s. You can verify this fact by studying Table 6-2. The output
carry of the full-adder is therefore produced by input A ANDed with input B and A @ B
ANDed with Cj,. These two terms are ORed, as expressed in Equation 6—4. This function
is implemented and combined with the sum logic to form a complete full-adder circuit, as
shown in Figure 6—4(b).

Cout = AB + (A ® B)C;, Equation 64

Notice in Figure 6-4(b) there are two half-adders, connected as shown in the block
diagram of Figure 6-5(a), with their output carries ORed. The logic symbol shown in Fig-
ure 6-5(b) will normally be used to represent the full-adder.

Half-adder

A®B 5 Sum

(A®B)® C,,

Input
carry, C;,

| B Cout
A e B, I

AB Output carry, C, Cout

out

AB + (A ® B)Cy, n

(a) Arrangement of two half-adders to form a full-adder (b) Full-adder logic symbol

FIGURE 6-5 Full-adder implemented with half-adders.

For each of the three full-adders in Figure 6-6, determine the outputs for the inputs shown.

)y)Y)y
I1—A 11— A I—A
i D D
0——B I — B 0——B
Coul Coul Cout
00— Gy, 0—GCy, I — Gy

(a) (b) ©
FIGURE 6-6

Solution
(a) The inputbitsare A = 1, B = 0, and C;, = 0.

1 + 0 + 0 = 1 with no carry

Therefore, 2 = 1and Cyy = 0.
(b) The inputbitsare A = 1, B = 1, and C;, = 0.

1+ 1+ 0=0withacarryof 1

Therefore, 2 = 0 and C,, = 1.
(¢) Theinputbitsare A = 1, B = 0, and C;, = 1.

1+0+ 1= 0withacarryof 1
Therefore, 2 = 0 and Cy,; = 1.

Related Problem*
What are the full-adder outputs for A = 1, B = 1, and Cj, = 1?

*Answers are at the end of the chapter.

SECTION 6-1 CHECKUP

Answers are at the end of the chapter.
1. Determine the sum () and the output carry (C,,,) of a half-adder for each set of
input bits:
(a) 01 (b) 00 (¢) 10 (d) 11

2. A full-adder has Cj, = 1. What are the sum () and the output carry (Cyy) when
A=1landB = 1?

6-2 Parallel Binary Adders

Two or more full-adders are connected to form parallel binary adders. In this section,
you will learn the basic operation of this type of adder and its associated input and output
functions.

After completing this section, you should be able to
+ Use full-adders to implement a parallel binary adder
+ Explain the addition process in a parallel binary adder
+ Use the truth table for a 4-bit parallel adder
+ Apply two 74HC283s for the addition of two 8-bit numbers
+ Expand the 4-bit adder to accommodate 8-bit or 16-bit addition
+ Use VHDL to describe a 4-bit parallel adder

As you learned in Section 61, a single full-adder is capable of adding two 1-bit num-
bers and an input carry. To add binary numbers with more than one bit, you must use
additional full-adders. When one binary number is added to another, each column gener-
ates a sum bit and a 1 or O carry bit to the next column to the left, as illustrated here with
2-bit numbers.

Parallel Binary Adders

InfoNote

Addition is performed by
processors on two numbers at a
time, called operands. The source
operand is a number that is to be
added to an existing number called
the destination operand, which is
held in an ALU register, such as
the accumulator. The sum of the
two numbers is then stored back
in the accumulator. Addition is
performed on integer numbers or
floating-point numbers using ADD
or FADD instructions respectively.

Functions of Combinational Logic

MultiSim

N

\l/i Carry bit from right column

1
11

+ 01
100

carry bit from
second column
becomes a sum bit.

To add two binary numbers, a full-adder (FA) is required for each bit in the numbers. So
for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so
on. The carry output of each adder is connected to the carry input of the next higher-order
adder, as shown in Figure 67 for a 2-bit adder. Notice that either a half-adder can be used
for the least significant position or the carry input of a full-adder can be made 0 (grounded)
because there is no carry input to the least significant bit position.

In this case, the

Ay By Ay B
General format, addition
of two 2-bit numbers:

[L
+ BBy A BC A BC,|
in in
2o FA2 FAL
COU[Z C()Ut Z
(MSB)Z; 3, %, (LSB)

FIGURE 6-7 Block diagram of a basic 2-bit parallel adder using two full-adders.
Open file F06-07 to verify operation.

In Figure 67 the least significant bits (LSB) of the two numbers are represented by A;
and By. The next higher-order bits are represented by A, and B,. The three sum bits are
34, 25, and X3. Notice that the output carry from the left-most full-adder becomes the
most significant bit (MSB) in the sum, X5.

Determine the sum generated by the 3-bit parallel adder in Figure 6—8 and show the
intermediate carries when the binary numbers 101 and 011 are being added.

[] [L
A B C, A B G, A B G,
FA3 FA2 FAl
Cou = (GR> Cow Z
[A e il
24 P Py P
1 0 0 0

FIGURE 6-8

Solution

The LSBs of the two numbers are added in the right-most full-adder. The sum bits and
the intermediate carries are indicated in blue in Figure 6-8.

Related Problem
What are the sum outputs when 111 and 101 are added by the 3-bit parallel adder?

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with
four full-adder stages as shown in Figure 6-9. Again, the LSBs (A and B;) in each number
being added go into the right-most full-adder; the higher-order bits are applied as shown
to the successively higher-order adders, with the MSBs (44 and B,) in each number being
applied to the left-most full-adder. The carry output of each adder is connected to the carry
input of the next higher-order adder as indicated. These are called internal carries.

Parallel Binary Adders

Ay By A; By Ay By A B Binary] —]
number A | ——
[—
A B Gy Binary | — |
FA1l (LSB) number B | ———
Cout z -]
C, ‘ Input |
5, carry
(a) Block diagram (b) Logic symbol

FIGURE 6-9 A 4-bit parallel adder.

In keeping with most manufacturers’ data sheets, the input labeled Cj is the input carry
to the least significant bit adder; Cy, in the case of four bits, is the output carry of the most
significant bit adder; and =; (LSB) through X, (MSB) are the sum outputs. The logic
symbol is shown in Figure 6-9(b).

In terms of the method used to handle carries in a parallel adder, there are two types:
the ripple carry adder and the carry look-ahead adder. These are discussed in Section 6-3.

Truth Table for a 4-Bit Parallel Adder

Table 6-3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be called
function tables or functional truth tables. The subscript n represents the adder bits and
can be 1, 2, 3, or 4 for the 4-bit adder. C,,_; is the carry from the previous adder. Carries
Cy, Cy, and Cj are generated internally. Cy is an external carry input and Cy is an output.
Example 6-3 illustrates how to use Table 6-3.

Use the 4-bit parallel adder truth table (Table 6-3) to find the sum and output carry for
the addition of the following two 4-bit numbers if the input carry (C,,—) is O:

A4A3A2Al = 1100 and B4B33231 = 1100

B WN = A WD =

D

S

(>

AW N =

4-bit
sum

Output

carry

TABLE 6-3

Truth table for each stage of

a 4-bit parallel adder.

Cn -1 An Bn 2n Cn
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Functions of Combinational Logic

Solution
Forn = 1: Ay = 0,B; = 0,and C,,—; = 0. From the 1st row of the table,

21=0 and C; =0

Forn = 2: A, = 0,B, = 0,and C,,—; = 0. From the 1st row of the table,
2,=0 and C, =0

Forn = 3: A3 = 1, B3 = 1, and C,,—; = 0. From the 4th row of the table,
23=0 and C; =1

Forn = 4: A4, = 1,B4 = 1,and C,,—; = 1. From the last row of the table,
2,=1 and C4 =1

C,4 becomes the output carry; the sum of 1100 and 1100 is 11000.

Related Problem

Use the truth table (Table 6-3) to find the result of adding the binary numbers 1011
and 1010.

IMPLEMENTATION: 4-BIT PARALLEL ADDER

Fixed-Function Device The 74HC283 and the 74L.S283 are 4-bit parallel adders with
identical package pin configurations. The logic symbol and package pin configuration are
shown in Figure 6-10. Go to ti.com for data sheet information.

Vee
(16)
(5) 1 3
3
—= 12
_as for4 L@
12
12 4y o E
© |, 3113
@ |, 4149
as) |5 (8
an |,
D ¢, o ©
(8)
GND
(a) Pin diagram (b) Logic symbol

FIGURE 6-10 The 74HC283/74LS283 4-bit parallel adder.

Programmable Logic Device (PLD) A 4-bit adder can be described using VHDL and
implemented in a PLD. First, the data flow approach is used to describe the full adder,
which is shown in Figure 6-4(b), for use as a component. (Blue text comments are not part
of the program.)
entity FullAdder is

port (A, B, CIN: in bit; SUM, COUT: out bit); Inputs and outputs declared
end entity FullAdder;

Parallel Binary Adders

architecture LogicOperation of FullAdder is

begin
SUM <= (A xor B) xor CIN; } Boolean expressions for
COUT <= ((A xor B) and CIN) or (A and B); | the outputs

end architecture LogicOperation;

Next, the FullAdder program code is used as a component in a VHDL structural approach
to the 4-bit full-adder in Figure 6-9(a).

entity 4BitFullAdder is
port (Al, A2, A3, A4, B1, B2, B3, B4, CO0: in bit; S1, S2, S3, S4, C4: out bit);
end entity 4BitFullAdder;

Al-A4: Inputs
B1-B4: Inputs

CO: Carry input
S1-S4: Sum outputs

architecture LogicOperation of 4BitFullAdder is

C4: Carry output component FullAdder is
port (A, B, CIN: in bit; SUM, COUT: out bit); Full-adder component
end component FullAdder; declaration
signal Cl, C2, C3: bit;
begin
FA1: FullAdder port map (A=> Al, B=>B1, CIN=>C0, SUM =>S1, COUT =>Cl);
Instantiations for each of FA2: FullAdder port map (A => A2, B=>B2, CIN=>Cl, SUM =>S2, COUT =>C2);
the four full adders FA3: FullAdder port map (A => A3, B=> B3, CIN => C2, SUM => S3, COUT => C3);

FA4: FullAdder port map (A => A4, B=>B4, CIN=>C3, SUM => 5S4, COUT => C4);

end architecture LogicOperation;

Adder Expansion

The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by Adders can be expanded to handle
using two 4-bit adders. The carry input of the low-order adder (Cy) is connected to ground ~ more bits by cascading.

because there is no carry into the least significant bit position, and the carry output of the

low-order adder is connected to the carry input of the high-order adder, as shown in Fig-

ure 6-11. This process is known as cascading. Notice that, in this case, the output carry is

designated Cg because it is generated from the eighth bit position. The low-order adder is

6 Bs Ag A7 Ag As By B3 B, By
G
4321 43 21¢, 4321 43 21¢, l=
N -
B A B A
z z

— "
Cont 4 3 21 Cont 4 3 21
Cs Zg Xg X6 Xs Ty 2,2

FIGURE 6-11 Cascading of two 4-bit adders to form an 8-bit adder.

Functions of Combinational Logic

the one that adds the lower or less significant four bits in the numbers, and the high-order
adder is the one that adds the higher or more significant four bits in the 8-bit numbers.
Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers.

EXAMPLE 6-4

Show how two 74HC?283 adders can be connected to form an 8-bit parallel adder. Show output bits for the following 8-bit
input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and BgB7B6BsB4B3BzBl = 10011110

Solution

Two 74HC283 4-bit parallel adders are used to implement the 8-bit adder. The only connection between the two 74HC283s
is the carry output (pin 9) of the low-order adder to the carry input (pin 7) of the high-order adder, as shown in Figure 6—12.
Pin 7 of the low-order adder is grounded (no carry input).

The sum of the two 8-bit numbers is

292827262524232221 = 101010111

5 = 5 x
A 8 1 As 1 23; 1
A, 0 2 Ag 1 2
(14) A (14) A
R @ N B @
Ayl 4 1 13, Ag 1 4 11 3
5 (1) (1)
13, 2 %
b (13) 2 b (13)
B 0 —94, oy L5 B 1 —2 1 Slao Lo
B‘ @], 4 ——0 3, 35 PN 4 F——0 34
’ 1 0 1
NEEI A P L
By 1 4 By 1 4
N ® 1 7)]
Cy o @ C, Zg

Low-order adder

High-order adder

FIGURE 6-12 Two 74HC283 adders connected as an 8-bit parallel adder (pin
numbers are in parentheses).

Related Problem
Use 74HC283 adders to implement a 12-bit parallel adder.

An Application

An example of full-adder and parallel adder application is a simple voting system that
can be used to simultaneously provide the number of “yes” votes and the number of “no”
votes. This type of system can be used where a group of people are assembled and there is
a need for immediately determining opinions (for or against), making decisions, or voting
on certain issues or other matters.

In its simplest form, the system includes a switch for “yes” or “no” selection at each
position in the assembly and a digital display for the number of yes votes and one for the
number of no votes. The basic system is shown in Figure 6—13 for a 6-position setup, but it
can be expanded to any number of positions with additional 6-position modules and addi-
tional parallel adder and display circuits.

Parallel Binary Adders

||h

Vee
Six-Position Adder Module
1.0 kQ
%,
YES O A z
&—O0—0O > 1
B _,7 2
NO O— COLI[3 A
Cin
4 1
YES O)
Full-adder 1 b
&—O0——0 3
! 4
NO O——— 2, 2
——o-{4 .k
YES O % 4
&—O0—0O e C
c out CO C4
NO o——— 0 Cin
= Parallel adder 1
YES O Full-adder 2
&—O0——0O YES logic
NO 0——
%
o %
YES A
—O0—0 z 1
O B
NO o—— C | 2 A
out 3
O Cin 1
YES O 4)
o Full-adder 3 > 3
NO ! 4
2 2
Switches ————O0A 3 B
z 4
—O— B
Ci Com CO C4
— Parallel adder 2

Full-adder 4
NO logic

100 kQ resistors should be connected from the inputs of the
CMOS full-adders to ground.

FIGURE 6-13 A voting system using full-adders and parallel binary adders.

In Figure 6-13 each full-adder can produce the sum of up to three votes. The sum
and output carry of each full-adder then goes to the two lower-order inputs of a parallel
binary adder. The two higher-order inputs of the parallel adder are connected to ground
(0) because there is never a case where the binary input exceeds 0011 (decimal 3). For
this basic 6-position system, the outputs of the parallel adder go to a BCD-to-7-segment
decoder that drives the 7-segment display. As mentioned, additional circuits must be
included when the system is expanded.

The resistors from the inputs of each full-adder to ground assure that each input is LOW
when the switch is in the neutral position (CMOS logic is used). When a switch is moved
to the “yes” or to the “no” position, a HIGH level (V) is applied to the associated full-
adder input.

|||—|

YES
BCD AW
t() "
7-segment \AA/ ' l
decoder J\M_
W
W
AW
NO
BCD
tO N
7-segment l '
decoder

R

330 Q resistors (typical)

Functions of Combinational Logic

SECTION 6-2 CHECKUP

1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit parallel adder. The input
carry is 1. Determine the sum () and the output carry.

2. How many 74HC283 adders would be required to add two binary numbers each rep-
resenting decimal numbers up through 1000,,?

6-3 Ripple Carry and Look-Ahead Carry Adders

As mentioned in the last section, parallel adders can be placed into two categories based
on the way in which internal carries from stage to stage are handled. Those categories are
ripple carry and look-ahead carry. Externally, both types of adders are the same in terms of
inputs and outputs. The difference is the speed at which they can add numbers. The look-
ahead carry adder is much faster than the ripple carry adder.

After completing this section, you should be able to
+ Discuss the difference between a ripple carry adder and a look-ahead carry adder
+ State the advantage of look-ahead carry addition
* Define carry generation and carry propagation and explain the difference
+ Develop look-ahead carry logic

+ Explain why cascaded 74HC283s exhibit both ripple carry and look-ahead carry
properties

The Ripple Carry Adder

A ripple carry adder is one in which the carry output of each full-adder is connected to
the carry input of the next higher-order stage (a stage is one full-adder). The sum and the
output carry of any stage cannot be produced until the input carry occurs; this causes a time
delay in the addition process, as illustrated in Figure 6—14. The carry propagation delay
for each full-adder is the time from the application of the input carry until the output carry
occurs, assuming that the A and B inputs are already present.

—_—

A BG,||A A BG4 A B C,||4 A B G,
» : »
» » \ »
» ! » | » | »
Cout z x‘ Cout | Cout 2 . Cout z
‘ : A : A ‘
o] o oo o
T MSB | Tt R Tt LB
FA4 FA3 FA2 FAI

[e——— 8 ———P¢——{ng————>¢—— § g —————>&¢—— { ng ————>

32 ns >

FIGURE 6-14 A 4-bit parallel ripple carry adder showing “worst-case” carry propagation
delays.

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is
applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces
an output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output

Ripple Carry and Look-Ahead Carry Adders

carry is produced by FA1 followed by an output carry from FA2, and so on. As you can
see in Figure 614, the input carry to the least significant stage has to ripple through all the
adders before a final sum is produced. The cumulative delay through all the adder stages is
a “worst-case” addition time. The total delay can vary, depending on the carry bit produced
by each full-adder. If two numbers are added such that no carries (0) occur between stages,
the addition time is simply the propagation time through a single full-adder from the appli-
cation of the data bits on the inputs to the occurrence of a sum output; however, worst-case
addition time must always be assumed.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required for the
carries to propagate, or ripple, through all the stages of a parallel adder. One method of speed-
ing up the addition process by eliminating this ripple carry delay is called look-ahead carry
addition. The look-ahead carry adder anticipates the output carry of each stage, and based on
the inputs, produces the output carry by either carry generation or carry propagation.

Carry generation occurs when an output carry is produced (generated) internally by
the full-adder. A carry is generated only when both input bits are 1s. The generated carry,
Co is expressed as the AND function of the two input bits, A and B.

C, = AB Equation 6-5

Carry propagation occurs when the input carry is rippled to become the output carry.
An input carry may be propagated by the full-adder when either or both of the input bits are
1s. The propagated carry, C,, is expressed as the OR function of the input bits.

¢, =A+8B Equation 6-6

The conditions for carry generation and carry propagation are illustrated in Figure 6-15.
The three arrowheads symbolize ripple (propagation).

A B C, A B G, A B C, A B C,
» »
» » »
» » »
COLU 2 COUt 2 COllt Z COU(Z
1 1 1 1
Generated Propagated carry/ Propagated Propagated
carry Generated carry carry carry

FIGURE 6-15 lllustration of conditions for carry generation and carry propagation.

The output carry of a full-adder can be expressed in terms of both the generated carry
(C,) and the propagated carry (C,). The output carry (Cyy) is a 1 if the generated carry is
a 1 OR if the propagated carry is a 1 AND the input carry (Cj,) is a 1. In other words, we
get an output carry of 1 if it is generated by the full-adder (A = 1 AND B = 1) or if the
adder propagates the input carry (A = 1 OR B = 1) AND C;j, = 1. This relationship is
expressed as

Cout = Cg + C,Cy, Equation 6-7

Now let’s see how this concept can be applied to a parallel adder, whose individual
stages are shown in Figure 6-16 for a 4-bit example. For each full-adder, the output carry is

Functions of Combinational Logic

dependent on the generated carry (C,), the propagated carry (C,), and its input carry (Cj,).
The C, and C, functions for each stage are immediately available as soon as the input bits
A and B and the input carry to the LSB adder are applied because they are dependent only
on these bits. The input carry to each stage is the output carry of the previous stage.

A, B, A; By A, B, A, B,

C
Cina Cins Ciny !
A B G, A B C, A B C, A B G,
FA4 FA3 FA2 FA1
Coul E Cout 2’ Coul Z Cout 2
Con [S I S S G
* Cout3 CoutZ Coul 1
Full-adder 4 Full-adder 3 Full-adder 2 Full-adder 1
Cpy=A4B, Cy3=A3B, Cy=A2B, Co=4B,
Cpy=Ay+B, Cpy=As+ By Cp=A+B, C,1=A, +B,

FIGURE 6-16 Carry generation and carry propagation in terms of the input bits to
a 4-bit adder.

Based on this analysis, we can now develop expressions for the output carry, Cyy, Of
each full-adder stage for the 4-bit example.
Full-adder 1:
Cou1 = Cg1 + Cp1Ciny

Full-adder 2:

Cinz = Cout

CoutZ = CgZ + Cp2Cin2 = Cg2 + Cp2C0ut1 = Cg2 + CpZ(Cgl + Cplcinl)
Cyp + CppCyqp + CpaCphiCiny

Full-adder 3:

Cin3 = Cour

Cout3 = Cg3 + Cp3cin3 = Cg3 + Cp3cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + CpZCpICinl)
= Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + CP3CP2CPICin1

Full-adder 4:

Cina = Cougs
Coud = Cga T CpaCing = Cgy + CpsCoys
= Cgy + Cpy(Cy3 + C3Ce0 + C3C10C,1 + Cp3C5C,1Cinp)
= Co + CpaCas + CpaCr3Cer + CpsCp3CraCal + CpaCr3CpaCriCiny

Notice that in each of these expressions, the output carry for each full-adder stage is
dependent only on the initial input carry (Cjyy), the Cg and C,, functions of that stage, and
the C, and C, functions of the preceding stages. Since each of the C, and C, functions can
be expressed in terms of the A and B inputs to the full-adders, all the output carries are
immediately available (except for gate delays), and you do not have to wait for a carry to
ripple through all the stages before a final result is achieved. Thus, the look-ahead carry
technique speeds up the addition process.

The C,, equations are implemented with logic gates and connected to the full-adders to
create a 4-bit look-ahead carry adder, as shown in Figure 6-17.

Comparators

A, B, A; By A, B, A, B,

)
k

—!

A B A B A B) A B
Ca Ca at~C_[0 T Cal4 Cint
> > —[> Coul . >
’
4
J—G“ CoutZ)
] > I
> Cnut} _G
—IC"
[
3 [
|
Cout4 '_0
[
,(MSB) 3, %, %,(LSB)

FIGURE 6-17 Logic diagram for a 4-stage look-ahead carry adder.

Combination Look-Ahead and Ripple Carry Adders

As with most fixed-function IC adders, the 74HC283 4-bit adder that was introduced in
Section 6-2 is a look-ahead carry adder. When these adders are cascaded to expand their
capability to handle binary numbers with more than four bits, the output carry of one adder
is connected to the input carry of the next. This creates a ripple carry condition between
the 4-bit adders so that when two or more 74HC283s are cascaded, the resulting adder is
actually a combination look-ahead and ripple carry adder. The look-ahead carry operation
is internal to each MSI adder and the ripple carry feature comes into play when there is a
carry out of one of the adders to the next one.

SECTION 6-3 CHECKUP
1. The input bits to a full-adder are A = 1 and B = 0. Determine Cg and C,.

2. Determine the output carry of a full-adder when C;;, = 1, C; = 0,and C, = 1.

6-4 Comparators

The basic function of a comparator is to compare the magnitudes of two binary quantities
to determine the relationship of those quantities. In its simplest form, a comparator circuit
determines whether two numbers are equal.

After completing this section, you should be able to
+ Use the exclusive-NOR gate as a basic comparator

+ Analyze the internal logic of a magnitude comparator that has both equality and
inequality outputs

+ Apply the 74HCS85 comparator to compare the magnitudes of two 4-bit numbers
+ Cascade 74HC85s to expand a comparator to eight or more bits

+ Use VHDL to describe a 4-bit magnitude comparator

Functions of Combinational Logic

0
0

1

0
1

) o
) D

Mq!tiSim

N

A comparator determines if two
binary numbers are equal or
unequal.

EXAMPLE 6-5

The input bits are equal.

0 The input bits are not equal.

Equality

As you learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator
because its output is a 0 if the two input bits are not equal and a 1 if the input bits are equal.
Figure 6-18 shows the exclusive-NOR gate as a 2-bit comparator.

0 The input bits are not equal.

1

) 1 The input bits are equal.

o >
) D

FIGURE 6-18 Basic comparator operation.

In order to compare binary numbers containing two bits each, an additional exclusive-
NOR gate is necessary. The two least significant bits (LSBs) of the two numbers are com-
pared by gate Gy, and the two most significant bits (MSBs) are compared by gate G, as
shown in Figure 6-19. If the two numbers are equal, their corresponding bits are the same,
and the output of each exclusive-NOR gate is a 1. If the corresponding sets of bits are not
equal, a 0 occurs on that exclusive-NOR gate output.

LSBs

A=B
HIGH indicates equality.

General format: Binary number A — A A
Binary number B — BB,

FIGURE 6-19 Logic diagram for equality comparison of two 2-bit numbers. Open
file FO6-19 to verify operation.

In order to produce a single output indicating an equality or inequality of two numbers,
an AND gate can be combined with XNOR gates, as shown in Figure 6—19. The output of
each exclusive-NOR gate is applied to the AND gate input. When the two input bits for
each exclusive-NOR are equal, the corresponding bits of the numbers are equal, producing
a | on both inputs to the AND gate and thus a 1 on the output. When the two numbers are
not equal, one or both sets of corresponding bits are unequal, and a 0 appears on at least
one input to the AND gate to produce a 0 on its output. Thus, the output of the AND gate
indicates equality (1) or inequality (0) of the two numbers. Example 6-5 illustrates this
operation for two specific cases.

(a) 10and 10

FIGURE 6-20

Apply each of the following sets of binary numbers to the comparator inputs in Figure 6-20, and determine the output by
following the logic levels through the circuit.

(b) 11 and 10

} 0 — not equal

} 1 — equal

Solution
(a) The output is 1 for inputs 10 and 10, as shown in Figure 6-20(a).
(b) The output is 0 for inputs 11 and 10, as shown in Figure 6-20(b).

Related Problem
Repeat the process for binary inputs of 01 and 10.

Comparators

As you know from Chapter 3, the basic comparator can be expanded to any number of
bits. The AND gate sets the condition that all corresponding bits of the two numbers must
be equal if the two numbers themselves are equal.

Inequality

In addition to the equality output, fixed-function comparators can provide additional out-
puts that indicate which of the two binary numbers being compared is the larger. That is,
there is an output that indicates when number A is greater than number B (A > B) and an
output that indicates when number A is less than number B (A < B), as shown in the logic
symbol for a 4-bit comparator in Figure 6-21.

To determine an inequality of binary numbers A and B, you first examine the highest-
order bit in each number. The following conditions are possible:

1. If A; = 1 and B3 = 0, number A is greater than number B.

2. If A; = O and B3y = 1, number A is less than number B.

3. If A; = Bj, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general pro-
cedure used in a comparator is to check for an inequality in a bit position, starting with
the highest-order bits (MSBs). When such an inequality is found, the relationship of the
two numbers is established, and any other inequalities in lower-order bit positions must be

ignored because it is possible for an opposite indication to occur; the highest-order indica-
tion must take precedence.

EXAMPLE 6-6

Determine the A = B, A > B, and A < B outputs for the input numbers shown on the
comparator in Figure 6-22.

COMP
0 0
| ——
A
1 — A>B —
0 3
A=B [—
I —0
| — I
B A<B
0
0 3
FIGURE 6-22

Solution

The number on the A inputs is 0110 and the number on the B inputs is 0011. The A > B
output is HIGH and the other outputs are LOW.

Related Problem
What are the comparator outputs when A3A4,A1Ay = 1001 and B3B,B By = 1010?

COMP
Ay 0
A, s
A, A>B |——
Aj 3
A=B |——
B, 0
B, A<B |——
B
B,
B, 3
FIGURE 6-21 Logic symbol for

a 4-bit comparator with inequality
indication.

InfoNote

In a computer, the cacheis a very
fast intermediate memory between
the central processing unit (CPU)
and the slower main memory. The
CPU requests data by sending

out its address (unique location)

in memory. Part of this address

is called a fag. The tag address
comparator compares the tag from
the CPU with the tag from the
cache directory. If the two agree,
the addressed data is already in the
cache and is retrieved very quickly.
If the tags disagree, the data

must be retrieved from the main
memory at a much slower rate.

Functions of Combinational Logic

IMPLEMENTATION: 4-BIT MAGNITUDE COMPARATOR

Fixed-Function Device The 74HC85/74LS85 pin diagram and logic symbol are
shown in Figure 6-23. Notice that this device has all the inputs and outputs of the
generalized comparator previously discussed and, in addition, has three cascading
inputs: A < B,A = B, A > B. These inputs allow several comparators to be cascaded
for comparison of any number of bits greater than four. To expand the comparator,
the A < B, A = B, and A > B outputs of the lower-order comparator are connected
to the corresponding cascading inputs of the next higher-order comparator. The low-
est-order comparator must have a HIGH on the A = B input and LOWs onthe A < B
and A > B inputs.

(10) 0 COMP
(12)
(13) A
(15) 3
D Lusp aspl O
Casc.ading { N A=B A=B © } Outputs
puts &A<B A<B(7—)
) 0
(11)
(14) B
(1) 3
Vee(16), GND(8)
(a) Pin diagram (b) Logic symbol

FIGURE 6-23 The 74HC85/74LS85 4-bit magnitude comparator.

Programmable Logic Device (PLD) A 4-bit magnitude comparator can be described
using VHDL and implemented in a PLD. The following VHDL program uses the data flow
approach to implement a simplified comparator (A = B output only) in Figure 6-24. (The
blue comments are not part of the program.)
entity 4BitComparator is

port (A0, Al, A2, A3, BO, B1, B2, B3: in bit; AequalB: out bit);
end entity 4BitComparator; Inputs and outputs declared

architecture LogicOperation of 4BitComparator is
begin

AequalB <= (A0 xnor B0) and (A1 xnor B1) and
(A2 xnor B2) and (A3 xnor B); }

Output in terms of a
Boolean expression

end architecture LogicOperation;

FIGURE 6-24

Decoders

EXAMPLE 6-7

Use 74HC85 comparators to compare the magnitudes of two 8-bit numbers. Show the
comparators with proper interconnections.

Solution

Two 74HCS85s are required to compare two 8-bit numbers. They are connected as
shown in Figure 6-25 in a cascaded arrangement.

LSBs comp MSBs COMP
Ay 0 Ay 0
A A s A
Ay Ag
Ay 13 A 3
—A>B A>B A>B A>B|——
+5V A=B A=B A=B A=B —}Outputs
&—A<B A<B A<B A<B |——
B, 0 By 0
B, 5 Bs 5
B, Bg
B; 3 By 3
4 74HC85 7T4HC85

FIGURE 6-25 An 8-bit magnitude comparator using two 74HC85s.

Related Problem

Expand the circuit in Figure 6-25 to a 16-bit comparator.

Most CMOS devices contain protection circuitry to guard against damage from high static voltages or
electric fields. However, precautions must be taken to avoid applications of any voltages higher than
maximum rated voltages. For proper operation, input and output voltages should be between ground
and V. Also, remember that unused inputs must always be connected to an appropriate logic level
(ground or Vgc). Unused outputs may be left open.

SECTION 6-4 CHECKUP

1. The binary numbers A = 1011 and B = 1010 are applied to the inputs of a 74HCSS.
Determine the outputs.

2. The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit
comparator in Figure 6-25. Determine the states of the outputs on each comparator.

6-5 Decoders

A decoder is a digital circuit that detects the presence of a specified combination of bits
(code) on its inputs and indicates the presence of that code by a specified output level. In
its general form, a decoder has n input lines to handle 7 bits and from one to 2" output lines
to indicate the presence of one or more n-bit combinations. In this section, three fixed-
function IC decoders are introduced. The basic principles can be extended to other types
of decoders.

Functions of Combinational Logic

InfoNote

An instruction tells the processor
what operation to perform.
Instructions are in machine

code (1s and 0s) and, in order

for the processor to carry out

an instruction, the instruction
must be decoded. Instruction
decoding is one of the steps in
instruction pipelining, which are as
follows: Instruction is read from
the memory (instruction fetch),
instruction is decoded, operand(s)
is (are) read from memory
(operand fetch), instruction is
executed, and result is written back
to memory. Basically, pipelining
allows the next instruction to begin
processing before the current one
is completed.

After completing this section, you should be able to
¢ Define decoder
+ Design a logic circuit to decode any combination of bits
¢ Describe the 74HC154 binary-to-decimal decoder
+ Expand decoders to accommodate larger numbers of bits in a code
¢ Describe the 74HC42 BCD-to-decimal decoder
¢ Describe the 74HC47 BCD-to-7-segment decoder
+ Discuss zero suppression in 7-segment displays
+ Use VHDL to describe various types of decoders

+ Apply decoders to specific applications

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-
cuit. An AND gate can be used as the basic decoding element because it produces a HIGH
output only when all of its inputs are HIGH. Therefore, you must make sure that all of the
inputs to the AND gate are HIGH when the binary number 1001 occurs; this can be done
by inverting the two middle bits (the Os), as shown in Figure 6-26.

| ——— A

1 A
0 Ay
0 M

1

(LSB)
0

A —
2 A2

A3
° (MSB)
(@) (b)
FIGURE 6-26 Decoding logic for the binary code 1001 with an active-HIGH output.

The logic equation for the decoder of Figure 6-26(a) is developed as illustrated in Figure
6-26(b). You should verify that the output is O except when Ag = 1, A; = 0, A, = 0, and
Az = 1 are applied to the inputs. A is the LSB and A5 is the MSB. In the representation of
a binary number or other weighted code in this book, the LSB is the right-most bit in a hori-
zontal arrangement and the topmost bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6-26, a LOW output will
indicate the presence of the proper binary code, which is 1001 in this case.

EXAMPLE 6-8

Determine the logic required to decode the binary number 1011 by producing a HIGH
level on the output.

Solution

The decoding function can be formed by complementing only the variables that appear

as 0 in the desired binary number, as follows:
X = A3AA1A) (1011)

This function can be implemented by connecting the true (uncomplemented) variables
Ap, Ay, and As directly to the inputs of an AND gate, and inverting the variable A,

before applying it to the AND gate input. The decoding logic is shown in Figure 6-27.

Decoders

} X =A34,A /4,

FIGURE 6-27 Decoding logic for producing a HIGH output when 1011 is on the
inputs.

Related Problem

Develop the logic required to detect the binary code 10010 and produce an active-LOW
output.

The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are
required (2* = 16). This type of decoder is commonly called either a 4-line-to-16-line
decoder because there are four inputs and sixteen outputs or a /-of-16 decoder because for
any given code on the inputs, one of the sixteen outputs is activated. A list of the sixteen
binary codes and their corresponding decoding functions is given in Table 6—4.

TABLE 6-4

Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

Decimal Binary Inputs Decoding Outputs

Digit Az Ay A Ay Function 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 A3ALA Ay 0 r 1 1 1t 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 AALA A t1 o 1t 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 0 AALA A ! 1t 0 1 1 1t 1 1 1 1 1 1 1 1 1 1
3 0 0 1 1 AALA A 11 1 o0 1 1 1 1 1 1 1 1 1 1 1 1
4 0 1 0 0 AAA A ! 1t 1 1 o0 1 1 1 1 1 1 1 1 1 1 1
5 o 1 0 1 AAA A !t 1 1 1 0 1 1 1 1 1 1 1 1 1 1
6 0o 1 1 0 AAA A ! 1t 1 1 1 1 o0 1 1 1 1 1 1 1 1 1
7 0o 1 1 1 AAA A 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
8 1 0 0 0 A3ALA Ay t(1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
9 1 0 0 1 AALA LA 1t 1 1t 1 1 1 1 1 1 0 1 1 1 1 1 1
10 1 0 1 0 AAA A, ! 1t 1 1 1 1t 1 1 1 1 0 1 1 1 1 1
11 1 0o 1 1 AAA A 11 1 1 1 1 1 1 1 1 1 0 1 1 1 1
12 1 1 0 0 AAA A, ! 1t 1 1 1 1 1 1 1 1 1 1 0 1 1 1
13 1 1 0 1 AAA A ! r 1 1 1 1 1 1 1 1 1 1 1 0 1 1
14 1 1 1 0 AAA A ! ¢+ 1 1 1 1 1 1 1 1 1 1 1 1 0 1
15 11 1 1 AAA A 1 1 1 1 1 1 1 1t 1 1 1 1 1 1 1 0

If an active-LOW output is required for each decoded number, the entire decoder can be
implemented with NAND gates and inverters. In order to decode each of the sixteen binary
codes, sixteen NAND gates are required (AND gates can be used to produce active-HIGH
outputs).

A logic symbol for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs is
shown in Figure 6-28. The BIN/DEC label indicates that a binary input makes the corre-
sponding decimal output active. The input labels 8, 4, 2, and 1 represent the binary weights
of the input bits (2°222129),

Functions of Combinational Logic

[N O

BIN/DEC

O 00 N O L kA WD = O

—_ e = e
w A W= O

MultiSim FIGURE 6-28 Logic symbol for a 4-line-to-16-line (1-of-16) decoder. Open file F06-28 to

¢ verify operation.

IMPLEMENTATION: 1-OF-16 DECODER

Fixed-Function Device The 74HC154 is a good example of a fixed-function IC decoder.
The logic symbol is shown in Figure 6-29. There is an enable function (EN) provided on
this device, which is implemented with a NOR gate used as a negative-AND. A LOW level
on each chip select input, CS; and CS,, is required in order to make the enable gate output
(EN) HIGH. The enable gate output is connected to an input of each NAND gate in the
decoder, so it must be HIGH for the NAND gates to be enabled. If the enable gate is not
activated by a LOW on both inputs, then all sixteen decoder outputs (OUT) will be HIGH
regardless of the states of the four input variables, Ay, A, A,, and As.

50To Vee BIN/DgI(JITO n
OUT1 A0 ouTi b—2
OoUT2 Al out2 b—3
OUT3 A2 outs b—¥
OUT4 A3 OUT4 ON
OUTs cs2 outs p—&
OUT6 csi pppmCI outs p—
OoUT7 OUTI5 4, (22 1, out7 p—8
ouUT8 OuTI4 2, (2D 1, outs b—®
oUT9 ouTi3 a4, 20 Ig outo b1
GUTTo oUTE: outio b
GND OUTI1 ouTi1 b3
outi2 p U4
outi3 b4
outi4 p U9
cs, B d & | ouris -7
cs, 12 4 EN

(a) Pin diagram

(b) Logic symbol

FIGURE 6-29 The 74HC154 1-0f-16 decoder.

Decoders

Programmable Logic Device (PLD) The 1-of-16 decoder can be described using VHDL
and implemented as hardware in a PLD. The decoder consists of sixteen 5-input NAND
gates for decoding, a 2-input negative-AND for the enable function, and four inverters.
The following VHDL program code uses the data flow approach. (Blue text comments are
not part of the program.)

entity lofl6Decoder is
port (A0, Al, A2, A3, CS1, CS2: in bit; OUTO, OUT1, OUT2,
OUT3, OUT4, OUT5, OUT6, OUT7, OUTS, OUTY, OUTI10, g;i‘ll;e;“d outputs
OUT11, OUT12, OUT13, OUT14, OUT15: out bit);

end entity 1ofl6Decoder;

architecture LogicOperation of 1ofl16Decoder is

signal EN: bit;

begin
OUTO <= not(not A0 and not Al and not A2 and not A3 and EN)T
OUT1 <= not(A0 and not A1 and not A2 and not A3 and EN);
OUT2 <= not(not A0 and A1 and not A2 and not A3 and EN);
OUT3 <=not(A0 and A1l and not A2 and not A3 and EN);
OUT4 <= not(not A0 and not A1 and A2 and not A3 and EN);
OUTS5 <=not(A0 and not A1 and A2 and not A3 and EN);
OUT6 <= not(not A0 and Al and A2 and not A3 and EN);
OUT7 <=not(A0O and A1l and A2 and not A3 and EN); .

expressions

OUTS8 <= not(not A0 and not Al and not A2 and A3 and EN); for the sixteen
OUT9 <= not(A0 and not A1 and not A2 and A3 and EN); outputs
OUT10 <= not(not A0 and A1 and not A2 and A3 and EN);
OUT11 <=not(A0 and A1l and not A2 and A3 and EN);
OUT12 <= not(not A0 and not Al and A2 and A3 and EN);
OUT13 <=not(A0 and not Al and A2 and A3 and EN);
OUT14 <=not(not A0 and Al and A2 and A3 and EN);
OUT15 <=not(A0 and Al and A2 and A3 and EN); —
EN <=not CS1 and not CS2;

Boolean

end architecture LogicOperation;

EXAMPLE 6-9

A certain application requires that a 5-bit number be decoded. Use 74HC154 decoders
to implement the logic. The binary number is represented by the format A4AzA,A A.

Solution

Since the 74HC154 can handle only four bits, two decoders must be used to form a
5-bit expansion. The fifth bit, A4, is connected to the chip select inputs, CS; and CS,,
of one decoder, and A, is connected to the CS; and CS, inputs of the other decoder, as
shown in Figure 6-30. When the decimal number is 15 or less, A4 = 0, the low-order
decoder is enabled, and the high-order decoder is disabled. When the decimal number
is greater than 15, A4 = 1 s0 A4 = 0, the high-order decoder is enabled, and the low-
order decoder is disabled.

Functions of Combinational Logic

[S

BIN/DEC

OUTO0
OUT1
OUT2
OuT3
OuUT4
OUT5
OuT6
OUT7
OUT8
OuUT9
OUT10
OUTI11
OUT12
OUTI13
OUT14

& | ouTls

EN

cs,

74HC154

Low-order

0

O 0 N N AW N~

—_

Related Problem
Determine the output in Figure 6-30 that is activated for the binary input 10110.

FIGURE 6-30 A 5-bit decoder using 74HC154s.

Csy

Cs,

0 &N —

BIN/DEC

OuUTO0
OUT1
OUT2
OuUT3
OuUT4
OUT5
OouT6
OUT7
OUT8
OouUT9
OUT10
OUTI11
OUT12
OUT13
OUT14

& | ourls

EN

74HC154

High-order
16

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible deci-
mal digit indications. It is frequently referred as a 4-line-to-10-line decoder or a 1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously dis-
cussed, except that only ten decoding gates are required because the BCD code represents
only the ten decimal digits O through 9. A list of the ten BCD codes and their corresponding
decoding functions is given in Table 6-5. Each of these decoding functions is implemented
with NAND gates to provide active-LOW outputs. If an active-HIGH output is required,
AND gates are used for decoding. The logic is identical to that of the first ten decoding

gates in the 1-of-16 decoder (see Table 6—4).

TABLE 6-5

BCD decoding functions.

Decimal BCD Code Decoding
Digit Ajz A, Ay Ay Function
0 0 0 0 0 AsALA A,

1 0 0 0 1 AsALA A

2 0 0 1 0 AsALA A,

3 0 0 1 1 A3ALA A

4 0 1 0 0 A3AA A,

5 0 1 0 1 A3ALA A,

6 0 1 1 0 A3ALA A,
7 0 1 1 1 A3ALA A,
8 1 0 0 0 A3ALA A,

9 1 0 0 1 A3ALA A,

Decoders

IMPLEMENTATION: BCD-TO-DECIMAL DECODER

Fixed-Function Device The 74HC42 is a fixed-function IC decoder with four BCD in-
puts and ten active-LOW decimal outputs. The logic symbol is shown in Figure 6-31.

BCD/DEC | ()
OUT0 p———

OUT1 P——
ouT2 P——
ouT3 Pp———
ouT4 Pp———
OouTs P———
ouT6 P———
OUT7 Po———
OUT8 Po——
OouT9 Po——

as
a4
a3)
az)

e N S
o~
=)
=

74HC42

FIGURE 6-31 The 74HC42 BCD-to-decimal decoder.

Programmable Logic Device (PLD) The logic of the BCD-to-decimal decoder is similar
to the 1-of-16 decoder except simpler. In this case, there are ten gates and four inverters
instead of sixteen gates and four inverters. This decoder does not have an enable function.
Using the data flow approach, the VHDL program code for the 1-of-16 decoder can be
simplified to implement the BCD-to-decimal decoder.
entity BCDdecoder is
pOrt (AO, Al N A2, A3:in blt, OUTO, OUT1 N OUTZ, OUT3, }]nputs and Outputs
OUT4, OUTS, OUT6, OUT7, OUTS, OUTY: out bit);
end entity BCDdecoder;

declared

architecture LogicOperation of BCDdecoder is

begin
OUTO <= not(not A0 and not Al and not A2 and not A3);*
OUT1 <=not(A0 and not Al and not A2 and not A3);
OUT2 <= not(not A0 and A1 and not A2 and not A3);
OUT3 <=not(A0 and A1l and not A2 and not A3);
OUT4 <= not(not A0 and not Al and A2 and not A3); Boolean expressions
OUTS5 <= not(A0 and not Al and A2 and not A3); for the ten outputs
OUT6 <=not(not A0 and Al and A2 and not A3);
OUT7 <=not(A0 and Al and A2 and not A3);
OUTS8 <= not(not A0 and not A1 and not A2 and A3);
OUT9 <=not(A0 and not Al and not A2 and A3); _

end architecture LogicOperation;

EXAMPLE 6-10

If the input waveforms in Figure 6-32(a) are applied to the inputs of the 74HC42, show
the output waveforms.

Functions of Combinational Logic

Ao | . -
Bcp A g: ;I ;Ii

inputs A,

|
l
|
@ A3 l
|
|
|
|

Decimal

outputs 5 ‘ I

® 9 [

FIGURE 6-32

Solution

The output waveforms are shown in Figure 6-32(b). As you can see, the inputs are
sequenced through the BCD for digits O through 9. The output waveforms in the timing
diagram indicate that sequence on the decimal-value outputs.

Related Problem

Construct a timing diagram showing input and output waveforms for the case where
the BCD inputs sequence through the decimal numbers as follows: 0, 2,4, 6, 8, 1, 3, 5,
and 9.

The BCD-to-7-Segment Decoder

The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs
to drive 7-segment display devices to produce a decimal readout. The logic diagram for a
basic 7-segment decoder is shown in Figure 6-33.

BCD/7-seg
a o——
A b o—
0 1 ¢ b—— | Output lines
BCD | Aj ——2 d connect to
input | A, — 14 K 7-segment
A . e [o—— | display device
3 flo—
§Po—

MultiSim FIGURE 6-33 Logic symbol for a BCD-to-7-segment decoder/driver with active-LOW

3 outputs. Open file F06-33 to verify operation.

Decoders

IMPLEMENTATION: BCD-TO-7-SEGMENT DECODER/DRIVER

Fixed-Function Device The 74HC47 is an example of an IC device that decodes a BCD
input and drives a 7-segment display. In addition to its decoding and segment drive capabil-
ity, the 74HC47 has several additional features as indicated by the LT, RBI, BI/RBO func-
tions in the logic symbol of Figure 6-34. As indicated by the bubbles on the logic symbol,
all of the outputs (a through g) are active-LOW as are the LT (lamp test), RBI (ripple blank-
ing input), and BI/ RBO (blanking input/ripple blanking output) functions. The outputs can
drive a common-anode 7-segment display directly. Recall that 7-segment displays were
discussed in Chapter 4. In addition to decoding a BCD input and producing the appropriate

7-segment outputs, the 74HC47 has lamp test and zero suppression capability.

VCC

(16)
BCD/7-seg @) o
BI/RBO [0———— BI/RBO
(13)
(12)
(11)
(10)

)

@
BCD
inputs _@ |
(©)

o BN o~

as

LT —— LT
(14)

RBI ———| RBI

R~ N /U TR

®)
GND
(a) Pin diagram (b) Logic symbol

FIGURE 6-34 The 74HC47 BCD-to-7-segment decoder/driver.

Lamp Test When a LOW is applied to the LT input and the BI/RBO is HIGH, all of the
seven segments in the display are turned on. Lamp test is used to verify that no segments
are burned out.

Zero Suppression Zero suppression is a feature used for multidigit displays to blank
out unnecessary zeros. For example, in a 6-digit display the number 6.4 may be displayed
as 006.400 if the zeros are not blanked out. Blanking the zeros at the front of a number is
called leading zero suppression and blanking the zeros at the back of the number is called
trailing zero suppression. Keep in mind that only nonessential zeros are blanked. With zero
suppression, the number 030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression in the 74HC47 is accomplished using the RBI and BI/RBO functions.
RBI is the ripple blanking input and RBO is the ripple blanking output on the 74HC47;
these are used for zero suppression. BI is the blanking input that shares the same pin with
RBO; in other words, the BI/RBO pin can be used as an input or an output. When used as
a BI (blanking input), all segment outputs are HIGH (nonactive) when BI is LOW, which
overrides all other inputs. The BI function is not part of the zero suppression capability of
the device.

All of the segment outputs of the decoder are nonactive (HIGH) if a zero code (0000) is
on its BCD inputs and if its RBI is LOW. This causes the display to be blank and produces
a LOW RBO.

Programmable Logic Device (PLD) The VHDL program code is the same as for the
74HC42 BCD-to-decimal decoder, except the 74HC47 has fewer outputs.

Functions of Combinational Logic

Zero suppressi

on results in leading

or trailing zeros in a number not
showing on a display.

Zero Suppression for a 4-Digit Display

The logic diagram in Figure 6—35(a) illustrates leading zero suppression for a whole num-
ber. The highest-order digit position (left-most) is always blanked if a zero code is on its
BCD inputs because the RBI of the most-significant decoder is made LOW by connecting
it to ground. The RBO of each decoder is connected to the RBI of the next lowest-order
decoder so that all zeros to the left of the first nonzero digit are blanked. For example, in
part (a) of the figure the two highest-order digits are zeros and therefore are blanked. The
remaining two digits, 3 and O are displayed.

[l

0000 0 0000 0 0011 1 0000
L[] 1o [1o [1o [
RBI LT 8 4 2 1 RBI LT 8 4 2 1 RBI LT 8 4 2 1 RBI LT 8 4 2 1
BCD-to-7-segment BCD-to-7-segment BCD-to-7-segment BCD-to-7-segment
decoder/driver decoder/driver decoder/driver decoder/driver
e d ¢ b a BI/RBO e d ¢ b a BI/RBO g f e d ¢ b a BI/RBO e d ¢ b a BI/RBO

T O YTy O Yo o o

R ___
Blanked Blanked
(a) Iustration of leading zero suppression
0101 0111 0000 J)j_()()()()
o |1 bo [[]] o |11 2 |1
RBI LT 8 4 2 1 RBI LT 8 4 2 1 RBI LT 8 4 2 1 RBI LT 8 4 2 1
BCD-to-7-segment BCD-to-7-segment BCD-to-7-segment BCD-to-7-segment
decoder/driver decoder/driver decoder/driver decoder/driver
g [e d ¢ b a BIRBO g f e d ¢ b a BIRBO g f e d ¢ b a BIRBO g [e d ¢ b a BI/RBO

[J
dp

|

0 0

|
l

Blanked Blanked

(b) Illustration of trailing zero suppression

FIGURE 6-35 Examples of zero suppression using a BCD-to-7-segment decoder/driver.

The logic diagram in Figure 6-35(b) illustrates trailing zero suppression for a fractional
number. The lowest-order digit (right-most) is always blanked if a zero code is on its BCD
inputs because the RBI is connected to ground. The RBO of each decoder is connected to
the RBI of the next highest-order decoder so that all zeros to the right of the first nonzero
digit are blanked. In part (b) of the figure, the two lowest-order digits are zeros and there-
fore are blanked. The remaining two digits, 5 and 7 are displayed. To combine both leading
and trailing zero suppression in one display and to have decimal point capability, additional
logic is required.

SECTION 6-5 CHECKUP

1. A 3-line-to-8-line decoder can be used for octal-to-decimal decoding. When a binary
101 is on the inputs, which output line is activated?

2. How many 74HC154 1-of-16 decoders are necessary to decode a 6-bit binary
number?

3. Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive
a common-cathode 7-segment LED display?

6-6 Encoders

An encoder is a combinational logic circuit that essentially performs a “reverse” decoder
function. An encoder accepts an active level on one of its inputs representing a digit, such
as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encod-
ers can also be devised to encode various symbols and alphabetic characters. The process
of converting from familiar symbols or numbers to a coded format is called encoding.

After completing this section, you should be able to
¢ Determine the logic for a decimal-to-BCD encoder
+ Explain the purpose of the priority feature in encoders
¢ Describe the 74HC147 decimal-to-BCD priority encoder
+ Use VHDL to describe a decimal-to-BCD encoder

+ Apply the encoder to a specific application

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs corre-
sponding to the BCD code, as shown in Figure 6-36. This is a basic 10-line-to-4-line encoder.

DEC/BCD

Decimal —]
input | |

—— BCD
output

O 00 N N Lt A W N = O
0 AN —

FIGURE 6-36 Logic symbol for a decimal-to-BCD encoder.

The BCD (8421) code is listed in Table 6-6. From this table you can determine the
relationship between each BCD bit and the decimal digits in order to analyze the logic. For
instance, the most significant bit of the BCD code, A3, is always a 1 for decimal digit 8 or
9. An OR expression for bit A3 in terms of the decimal digits can therefore be written as

A3=8+9

Encoders

Functions of Combinational Logic

InfoNote

An assembler can be thought of
as a software encoder because

it interprets the mnemonic
instructions with which a program
is written and carries out the
applicable encoding to convert
each mnemonic to a machine code
instruction (series of 1s and 0s)
that the processor can understand.
Examples of mnemonic
instructions for a processor are
ADD, MOV (move data), MUL
(multiply), XOR, JMP (jump), and
OUT (output to a port).

TABLE 6-6

BCD Code
Decimal Digit Ajz A, Aq Ay
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Bit A, is always a | for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function
as follows:

Ay =4+5+6+7
Bit A; is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as
Al =2+3+6+7
Finally, A is always a 1 for decimal digit 1, 3, 5, 7, or 9. The expression for Ay is
Apg=1+3+54+7+9

Now let’s implement the logic circuitry required for encoding each decimal digit to a
BCD code by using the logic expressions just developed. It is simply a matter of ORing
the appropriate decimal digit input lines to form each BCD output. The basic encoder logic
resulting from these expressions is shown in Figure 6-37.

1
])—4, (LSB)
2_| —
3 I \
) >
: ‘. ,
6
7 L ’
8
. D—m (MSB)

FIGURE 6-37 Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is not
needed because the BCD outputs are all LOW when there are no HIGH inputs.

The basic operation of the circuit in Figure 6-37 is as follows: When a HIGH appears
on one of the decimal digit input lines, the appropriate levels occur on the four BCD output
lines. For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this
condition will produce a HIGH on outputs Ay and A3 and LOWSs on outputs A; and A,,
which is the BCD code (1001) for decimal 9.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously discussed.
A priority encoder also offers additional flexibility in that it can be used in applications
that require priority detection. The priority function means that the encoder will produce a
BCD output corresponding to the highest-order decimal digit input that is active and will
ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both
active, the BCD output is 0110 (which represents decimal 6).

Encoders

IMPLEMENTATION: DECIMAL-TO-BCD ENCODER

-

Fixed-Function Device The 74HC147 is a priority encoder with active-LOW inputs (0)
for decimal digits 1 through 9 and active-LOW BCD outputs as indicated in the logic sym-
bol in Figure 6-38. A BCD zero output is represented when none of the inputs is active.
The device pin numbers are in parentheses.

Vee

(16)
11y | HPRIBCD
DI

—
]

999947945

D2
% s
D5
D6
D7
D8
D9

—

o AN =
%
|

®

GND
(a) Pin diagram (b) Logic diagram
FIGURE 6-38 The 74HC147 decimal-to-BCD encoder (HPRI means highest value input
has priority.

Programmable Logic Device (PLD) The logic of the decimal-to-BCD encoder shown in
Figure 6-38 can be described in VHDL for implementation in a PLD. The data flow approach
is used in this case.

entity DecBCDencoder is
port (D1, D2, D3, D4, D5, D6, D7, D8, D9:
in bit; A0, A1, A2, A3: out bit);

end entity DecBCDencoder;

} Inputs and outputs declared

architecture LogicFunction of DecBCDencoder is

begin
A0 <= (D1 or D3 or D5 or D7 or D9);
Al <= (D2 or D3 or D6 or D7); Boolean expressions for the
A2 <= (D4 or D5 or D6 or D7); four BCD outputs

A3 <= (D8 or DY),
end architecture LogicFunction;

EXAMPLE 6-11

If LOW levels appear on pins, 1, 4, and 13 of the 74HC147 shown in Figure 6-38, indi-
cate the state of the four outputs. All other inputs are HIGH.

Solution

Pin 4 is the highest-order decimal digit input having a LOW level and represents deci-
mal 7. Therefore, the output levels indicate the BCD code for decimal 7 where A is the
LSB and A3 is the MSB. Output Ag is LOW, A; is LOW, A, is LOW, and A3 is HIGH.
Related Problem

What are the outputs of the 74HC147 if all its inputs are LOW? If all its inputs are HIGH?

Functions of Combinational Logic

An Application

The ten decimal digits on a numeric keypad must be encoded for processing by the logic
circuitry. In this example, when one of the keys is pressed, the decimal digit is encoded to
the corresponding BCD code. Figure 6-39 shows a simple keyboard encoder arrangement
using a priority encoder. The keys are represented by ten push-button switches, each with a
pull-up resistor to +V. The pull-up resistor ensures that the line is HIGH when a key is not
depressed. When a key is depressed, the line is connected to ground, and a LOW is applied
to the corresponding encoder input. The zero key is not connected because the BCD output
represents zero when none of the other keys is depressed.

The BCD complement output of the encoder goes into a storage device, and each suc-
cessive BCD code is stored until the entire number has been entered. Methods of storing
BCD numbers and binary data are covered in Chapter 11.

+V

£ 5 3

7l|— s 9o
? ? 7 HPRI/BCD
° ° di
R éR éR 92 B
%) T ’ ﬁi 1 o— 4o
5 2 0— A
ds 4 lo—— Zz BCD complement
F sF ok L d7 $ P— 4,
A —q
o b —d9
% R, é R, é R, Priority encoder
<

oO—4

»—o_
.
[\S)
—O O
.
w
—O O
.

=
S

All BCD complement lines are HIGH indicating a 0.
No encoding is necessary; however, this line may be
connected to other circuits that detect the key press.

O—4¢

ok

FIGURE 6-39 A simplified keyboard encoder.

SECTION 6-6 CHECKUP

1. Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit in
Figure 6-37.

(a) What are the states of the output lines?
(b) Does this represent a valid BCD code?
(¢) What is the restriction on the encoder logic in Figure 6-37?

2. (a) What is the A3 A, A| Ay output when LOWSs are applied to pins 1 and 5 of the
74HC147 in Figure 6-38?

(b) What does this output represent?

Code Converters

6-7 Code Converters

In this section, we will examine some methods of using combinational logic circuits to
convert from one code to another.

After completing this section, you should be able to
+ Explain the process for converting BCD to binary

+ Use exclusive-OR gates for conversions between binary and Gray codes

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion
process is as follows:

1. The value, or weight, of each bit in the BCD number is represented by a binary
number.

2. All of the binary representations of the weights of bits that are 1s in the BCD number
are added.

3. The result of this addition is the binary equivalent of the BCD number.
A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to produce
the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to
understand the relationship between BCD and binary. For instance, you already know that
the decimal number 87 can be expressed in BCD as

1000 0111
o e
8 7
The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That

is, the left-most group has a weight of 10, and the right-most group has a weight of 1.
Within each group, the binary weight of each bit is as follows:

Tens Digit Units Digit
Weight: 80 40 20 10 8 4 2 1
Bit designation: Bj B, By By Az Ay Al Ay

The binary equivalent of each BCD bit is a binary number representing the weight of
that bit within the total BCD number. This representation is given in Table 6—7.

TABLE 6-7

Binary representations of BCD bit weights.

(MSB) Binary Representation (LSB)
BCD Bit BCD Weight 604 32 16 8 4 2 1
Ay 1 0 0 0 0 0 0 1
Ay 2 0 0 0 0 0 1 0
A, 4 0 0 0 0 1 0 0
Az 8 0 0 0 1 0 0 0
By 10 0 0 0 1 0 1 0
By 20 0 0 1 0 1 0 0
B, 40 0 1 0 1 0 0 0
Bs 80 1 0 1 0 0 0 0

Functions of Combinational Logic

If the binary representations for the weights of all the 1s in the BCD number are added,
the result is the binary number that corresponds to the BCD number. Example 6—12 illus-
trates this.

EXAMPLE 6-12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to
binary.
Solution

Write the binary representations of the weights of all 1s appearing in the numbers, and
then add them together.

80 40 20 10 8 4 2 1
0 0 1 0 0111
\% 0000001 1
0000010 2
0000100 4
+ 0010100 20
0011011 Binary number for decimal 27
80 40 20 10 8 4 1
1 0 0 1 10 0
‘ % 0001000 8
0001010 10
+ 1010000 80
1100010 Binary number for decimal 98

Related Problem
Show the process of converting 01000001 in BCD to binary.

Mult|S|m Open file EX06-12 and run the simulation to observe the operation of a

d BCD-to-binary logic circuit.

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR
gates can be used for these conversions. Programmable logic devices (PLDs) can also be
programmed for these code conversions. Figure 6—40 shows a 4-bit binary-to-Gray code
converter, and Figure 641 illustrates a 4-bit Gray-to-binary converter.

Gray Binary
Binary Gray Go B, (LSB)
B
0 G, (LSB)
G, B
B, G, 1
BZ G’) GZ 32
B; G; (MSB) Gy B; (MSB)

Mult|S|m FIGURE 6-40 Four-bit binary-to-
Gray conversion logic. Open file
F06-40 to verify operation.

Mult|S|m FIGURE 6-41 Four-bit Gray-to-
3 binary conversion logic. Open file
F06-41 to verify operation.

\ N

Multiplexers (Data Selectors)

(a) Convert the binary number 0101 to Gray code with exclusive-OR gates.
(b) Convert the Gray code 1011 to binary with exclusive-OR gates.

Solution
(a) 0101,1s 0111 Gray. See Figure 6—42(a).
(b) 1011 Gray is 1101,. See Figure 6-42(b).

Gray Binary
Binary Gray 1 1
! 1
1
0
0 1
! 1 0 1
0 0 1 1

(@) (b)
FIGURE 6-42

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

SECTION 6-7 CHECKUP

1. Convert the BCD number 10000101 to binary.

2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

6-8 Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several sources to

be

routed onto a single line for transmission over that line to a common destination. The

basic multiplexer has several data-input lines and a single output line. It also has data-select
inputs, which permit digital data on any one of the inputs to be switched to the output line.
Multiplexers are also known as data selectors.

After completing this section, you should be able to

*

*

*

Explain the basic operation of a multiplexer

Describe the 74HC153 and the 74HC151 multiplexers
Expand a multiplexer to handle more data inputs

Use the multiplexer as a logic function generator

Use VHDL to describe 4-input and 8-input multiplexers

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6—43. Notice that

there are two data-select lines because with two select bits, any one of the four data-input
lines can be selected.

In a multiplexer, data are switched
from several lines to one line.

Functions of Combinational Logic

InfoNote

A bus is a multiple conductor
pathway along which electrical
signals are sent from one part

of a computer to another. In
computer networks, a shared
bus is one that is connected to

all the microprocessors in the
system in order to exchange
data. A shared bus may contain
memory and input/output devices
that can be accessed by all the
microprocessors in the system.
Access to the shared bus is
controlled by a bus arbiter (a
multiplexer of sorts) that allows
only one microprocessor at a time
to use the system’s shared bus.

MUX

Data [So —0
select S, —1

D, 0 Y Data

output

Data | Dj—1
inputs D, 2

Dy 3

FIGURE 6-43 Logic symbol for a 1-of-4 data selector/multiplexer.

In Figure 643, a 2-bit code on the data-select (S) inputs will allow the data on the
selected data input to pass through to the data output. If a binary 0 (S; = 0 and Sy = 0)
is applied to the data-select lines, the data on input D appear on the data-output line.
If a binary 1 (S; = 0 and Sy = 1) is applied to the data-select lines, the data on input
D, appear on the data output. If a binary 2 (§; = 1 and Sy = 0) is applied, the data
on D, appear on the output. If a binary 3 (§; = 1 and Sy = 1) is applied, the data on
D5 are switched to the output line. A summary of this operation is given in Table 6-8.

TABLE 6-8

Data selection for a 1-of-4-multiplexer.

Data-Select Inputs
S1 So Input Selected
0 0 Dy
0 1 D,
1 0 D,
1 1 D;

Now let’s look at the logic circuitry required to perform this multiplexing operation. The
data output is equal to the state of the selected data input. You can therefore, derive a logic
expression for the output in terms of the data input and the select inputs.

The data output is equal to Dy only if S; = 0 and Sy = 0: Y = DS S,,.
The data output is equal to D, only if S; = O and Sy = 1: Y = D,S,S,,.
The data output is equal to D, only if S; = 1 and S, = 0: Y = D,S,S,.
1: Y = D35,

The data output is equal to D5 only if S; = 1 and S
When these terms are ORed, the total expression for the data output is
Y = DyS|So + D1S;Sy + D,S,Sy + D35,S,
The implementation of this equation requires four 3-input AND gates, a 4-input OR gate,
and two inverters to generate the complements of S; and Sy, as shown in Figure 6-44.

Because data can be selected from any one of the input lines, this circuit is also referred to
as a data selector.

D,

Ds

FIGURE 6-44 Logic diagram for a 4-input multiplexer. Open file F06-44 to

verify operation.

)
L/

)
L/

Multiplexers (Data Selectors)

MultiSim
L

EXAMPLE 6-14

FIGURE 6-45

Solution

(a)

(b)

Related Problem

The data-input and data-select waveforms in Figure 6—45(a) are applied to the multi-
plexer in Figure 6—44. Determine the output waveform in relation to the inputs.

The binary state of the data-select inputs during each interval determines which data
input is selected. Notice that the data-select inputs go through a repetitive binary
sequence 00, 01, 10, 11, 00, 01, 10, 11, and so on. The resulting output waveform is
shown in Figure 6-45(b).

Construct a timing diagram showing all inputs and the output if the Sy and S| wave-
forms in Figure 645 are interchanged.

Functions of Combinational Logic

IMPLEMENTATION: DATA SELECTOR/MULTIPLEXER

Fixed-Function Device The 74HC153 is a dual four-input data selector/multiplexer.
The pin diagram is shown in Figure 6-46(a). The inputs to one of the multiplexers are
110 through 113 and the inputs to the second multiplexer are 210 through 2I3. The data
select inputs are SO and S1 and the active-LOW enable inputs are 1E and 2E. Each of
the multiplexers has an active-LOW enable input.

The ANSI/IEEE logic symbol with dependency notation is shown in Figure 6-46(b).
The two multiplexers are indicated by the partitioned outline, and the inputs common to
both multiplexers are inputs to the notched block (common control block) at the top. The
Gg dependency notation indicates an AND relationship between the two select inputs (A
and B) and the inputs to each multiplexer block.

PRCEIN P
5@ | G

16 —“DnEr MOX
110 —©_{o
1 -9
-4 1
113 -3 |3

v Dy

2G U]

a0
210 ~—" ©

211 an |
2 a2 |

213 a3) |

(a) Pin diagram (b) Logic symbol
FIGURE 6-46 The 74HC153 dual four-input data selector/multiplexer.

Programmable Logic Device (PLD) The logic for a four-input multiplexer like the one
shown in the logic diagram of Figure 6—44 can be described with VHDL. The data flow
approach is used for this particular circuit. Keep in mind that once you have written the
VHDL program for a given logic, the code is then downloaded into a PLD device and
becomes actual hardware just as fixed-function devices are hardware.

entity FourlnputMultiplexer is

port (SO, S1, DO, D1, D2, D3; in bit; Y: out bit); Inputs and outputs declared

end entity FourlnputMultiplexer;

architecture LogicFunction of FourlnputMultiplexer is
begin

Y <= (D0 and not SO and not S1) or (DI and SO and not S1) } Boolean expression

or (D2 and not SO and S1) or (D3 and SO and S1); for the output

end architecture LogicFunction;

Multiplexers (Data Selectors)

IMPLEMENTATION: EIGHT-INPUT DATA SELECTOR/MULTIPLEXER

Internal signals (outputs of
AND gates) declared

Boolean expressions for
fixed outputs

Fixed-Function Device The 74HCI151 has eight data inputs (Dy—D7) and, therefore,
three data-select or address input lines (Sy—S,). Three bits are required to select any one
of the eight data inputs (2° = 8). A LOW on the Enable input allows the selected input
data to pass through to the output. Notice that the data output and its complement are both
available. The pin diagram is shown in Figure 6-47(a), and the ANSI/IEEE logic symbol
is shown in part (b). In this case there is no need for a common control block on the logic
symbol because there is only one multiplexer to be controlled, not two as in the 74HC153.
The Gg label within the logic symbol indicates the AND relationship between the data-
select inputs and each of the data inputs O through 7.

MUX

Enable &O
an
19

&)
G
3
)
@
as)
14
a3
a12)

=
=

o
-
\IC‘)O

&
© 3

~N O R WD = O N

(a) Pin diagram (b) Logic symbol
FIGURE 6-47 The 74HC151 eight-input data selector/multiplexer.

Programmable Logic Device (PLD) The logic for the eight-input multiplexer is imple-
mented by first writing the VHDL code. For the 74HC151, eight 5-input AND gates, one
8-input OR gate, and four inverters are required.
entity EightlnputMUX is
port (S0, S1, S2, DO, D1, D2, D3, D4, D5, D6, D7,
EN: in bit; Y: inout bit; YI: out bit);
end entity EightInputMUX;

}Inputs and outputs declared

architecture LogicOperation of EightInputMUX is
signal ANDO, ANDI, AND2, AND3, AND4, ANDS5, AND6, AND7: bit;
begin
ANDO <=not SO and not S1 and not S2 and DO and not EN;
AND1 <= S0 and not S1 and not S2 and D1 and not EN;
AND2 <=not SO and S1 and not S2 and D2 and not EN;

Boolean
AND3 <= S0 and S1 and not S2 and D3 and not EN; expressions for
AND4 <=not SO and not S1 and S2 and D4 and not EN; internal AND
ANDS5 <= S0 and not S1 and S2 and D5 and not EN; gate outputs

ANDG6 <=not SO and S1 and S2 and D6 and not EN;
AND7 <= S0 and S1 and S2 and D7 and not EN;
Y <= ANDO or ANDI1 or AND2 or AND3 or AND4 or ANDS5 or AND6 or AND7;
{ YI<=notY;
end architecture LogicOperation;

Functions of Combinational Logic

EXAMPLE 6-15

Use 74HC151s and any other logic necessary to multiplex 16 data lines onto a single
data-output line.

Solution

An expansion of two 74HC151s is shown in Figure 6-48. Four bits are required to select
one of 16 data inputs (2* = 16). In this application the Enable input is used as the most
significant data-select bit. When the MSB in the data-select code is LOW, the left 74HC151
is enabled, and one of the data inputs (D through D) is selected by the other three data-
select bits. When the data-select MSB is HIGH, the right 74HC151 is enabled, and one of
the data inputs (Dg through D 5) is selected. The selected input data are then passed through
to the negative-OR gate and onto the single output line.

1/6 74HC04
MUX MUX
&—J EN EN
So 0 0
0 0

5 Gy Gy
S, 2 2
S;

D0 0 D8 0

Dl — 11 D9 1

D, 2 Dy, 2

D 3 Dy, 3 7

D, 4 Y Dy, 4

Dy 5 D, 5 Y

Dg 6 Dy, 6 1/4 74HCO0

D, 7 Dys 7

74HC151 74HC151

FIGURE 6-48 A 16-input multiplexer.

Related Problem

Determine the codes on the select inputs required to select each of the following data
inputs: Do, D4, Dg, and D13.

Applications
A 7-Segment Display Multiplexer

Figure 649 shows a simplified method of multiplexing BCD numbers to a 7-segment dis-
play. In this example, 2-digit numbers are displayed on the 7-segment readout by the use
of a single BCD-to-7-segment decoder. This basic method of display multiplexing can be
extended to displays with any number of digits. The 74HC157 is a quad 2-input multiplexer.

The basic operation is as follows. Two BCD digits (A3A,A 4 and B3B,BB) are applied
to the multiplexer inputs. A square wave is applied to the data-select line, and when it is
LOW, the A bits (A3A,AA() are passed through to the inputs of the 74HC47 BCD-to-7-
segment decoder. The LOW on the data-select also puts a LOW on the A; input of the
74HC139 2-line-to-4-line decoder, thus activating its O output and enabling the A-digit
display by effectively connecting its common terminal to ground. The A digit is now on
and the B digit is off.

Multiplexers (Data Selectors)

LOW selects A;A,A (A

ﬁ HIGH selects B3 B, B B,

Data
select
EN BCD/7-seg
= lci
1_C :
A, 1 MUX A b
B, 1 c
A B d
B,
e
A, C
B, f
A 3 D 8
By
74HC157 74HC47
— —
LSD BCD: A3A,A A , ' , l
E Common-cathode pa— <
MSD BCD: B3 B, B B, displays , l , l
AR AN
LOW enables LSD B digit A digit
HIGH enables MSD (MSD) (LSD)
Decoder

A 1Y, o=
*k
B, 1Y,
*Additional buffer drive 1¥; o—
circuitry may be required.) A G1(EN) 1Y,

LOWSs enable common-anode
7-seg display.

= 3 74HC139

FIGURE 6-49 Simplified 7-segment display multiplexing logic.

When the data-select line goes HIGH, the B bits (B3B,B;B) are passed through to the
inputs of the BCD-to-7-segment decoder. Also, the 74HC139 decoder’s 1 output is acti-
vated, thus enabling the B-digit display. The B digit is now on and the A digit is off: The
cycle repeats at the frequency of the data-select square wave. This frequency must be high
enough to prevent visual flicker as the digit displays are multiplexed.

A Logic Function Generator

A useful application of the data selector/multiplexer is in the generation of combinational logic
functions in sum-of-products form. When used in this way, the device can replace discrete
gates, can often greatly reduce the number of ICs, and can make design changes much easier.

To illustrate, a 74HC151 8-input data selector/multiplexer can be used to implement any
specified 3-variable logic function if the variables are connected to the data-select inputs
and each data input is set to the logic level required in the truth table for that function.
For example, if the function is a 1 when the variable combination is A,A A, the 2 input
(selected by 010) is connected to a HIGH. This HIGH is passed through to the output when
this particular combination of variables occurs on the data-select lines. Example 6—16 will
help clarify this application.

Functions of Combinational Logic

EXAMPLE 6-16

Implement the logic function specified in Table 6-9 by using a 74HC151 8-input data
selector/multiplexer. Compare this method with a discrete logic gate implementation.

TABLE 6-9

Inputs Output
A, Aq Ay Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Solution

Notice from the truth table that Y is a 1 for the following input variable combinations:
001, 011, 101, and 110. For all other combinations, Y is 0. For this function to be imple-
mented with the data selector, the data input selected by each of the above-mentioned
combinations must be connected to a HIGH (5 V). All the other data inputs must be
connected to a LOW (ground), as shown in Figure 6-50.

Ao 0
Input | 4 0
variables ! Gy
Ay

— Y = Ay A\ Ay + AyA Ap + ArA A + A AA,

~N O LR WD = O N

= 74HCI51

FIGURE 6-50 Data selector/multiplexer connected as a 3-variable logic function
generator.

The implementation of this function with logic gates would require four 3-input
AND gates, one 4-input OR gate, and three inverters unless the expression can be
simplified.

Related Problem
Use the 74HC151 to implement the following expression:

Y = szlxo + AzzIZO + ZzAIZ()

Multiplexers (Data Selectors)

Example 6-16 illustrated how the 8-input data selector can be used as a logic function
generator for three variables. Actually, this device can be also used as a 4-variable logic
function generator by the utilization of one of the bits (A) in conjunction with the data
inputs.

A 4-variable truth table has sixteen combinations of input variables. When an 8-bit data
selector is used, each input is selected twice: the first time when A is 0 and the second time
when Ag is 1. With this in mind, the following rules can be applied (Y is the output, and A
is the least significant bit):

1. If Y = 0 both times a given data input is selected by a certain combination of the
input variables, A3A,A1, connect that data input to ground (0).

2. If Y = 1 both times a given data input is selected by a certain combination of the
input variables, A3A,A;, connect the data input to +V (1).

3. If Yis different the two times a given data input is selected by a certain combination
of the input variables, A3A,A;, and if Y = A, connect that data input to A.

4. If Y is different the two times a given data input is selected by a certain combination
of the input variables, A3A,A;, and if ¥ = A, connect that data input to Ay,.

EXAMPLE 6-17

Implement the logic function in Table 6—10 by using a 74HC151 8-input data selector/
multiplexer. Compare this method with a discrete logic gate implementation.

TABLE 6-10
Decimal Inputs Output

Digit A3 A2 A] Ao Y

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 0

15 1 1 1 1 1

Solution

The data-select inputs are A3A,A;. In the first row of the table, A34,4; = 000 and Y = A,.
In the second row, where A3A,A; again is 000, Y = A(. Thus, A is connected to the 0
input. In the third row of the table, A34,A; = 001 and Y = Aj,. Also, in the fourth row,
when A3A,A| again is 001, Y = A. Thus, A is inverted and connected to the 1 input.
This analysis is continued until each input is properly connected according to the speci-
fied rules. The implementation is shown in Figure 6-51.

If implemented with logic gates, the function would require as many as ten 4-input
AND gates, one 10-input OR gate, and four inverters, although possible simplification
would reduce this requirement.

Functions of Combinational Logic

MUX
L9 EN
A, 0
0
Ay G3
A3 2
Ao * 0
1 o -
|> JUN —— ¥ = A3A,A A + AsAyA Ay + A3ALA LA,
sy 3 + A3A)A 1A + A3A0A Ay + A3A,A A
4 +A3A A A + AJA A 1A+ A3A A A
L5 +A34,A444¢
6
— 7
74HC151
FIGURE 6-51 Data selector/multiplexer connected as a 4-variable logic function
generator.
Related Problem
In Table 6-10, if Y = 0 when the inputs are all zeros and is alternately a 1 and a O for the
remaining rows in the table, use a 74HC151 to implement the resulting logic function.

1. In Figure 644, Dy = 1, D; = 0,D, = 1, D3 = 0, Sy = 1, and S = 0. What is
the output?

2. Identify each device.
(a) 74HCI153 (b) 74HC151

3. A 74HC151 has alternating LOW and HIGH levels on its data inputs beginning with
Dy = 0. The data-select lines are sequenced through a binary count (000, 001, 010,
and so on) at a frequency of 1 kHz. The enable input is LOW. Describe the data out-
put waveform.

4. Briefly describe the purpose of each of the following devices in Figure 6—49:
(a) 74HC157 (b) 74HC47 (c) 74HC139

6-9 Demultiplexers

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital
information from one line and distributes it to a given number of output lines. For this rea-
son, the demultiplexer is also known as a data distributor. As you will learn, decoders can
also be used as demultiplexers.

After completing this section, you should be able to
+ Explain the basic operation of a demultiplexer
+ Describe how a 4-line-to-16-line decoder can be used as a demultiplexer

+ Develop the timing diagram for a demultiplexer with specified data and data
selection inputs

Demultiplexers

Figure 6-52 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input ~ In a demultiplexer, data are switched
line goes to all of the AND gates. The two data-select lines enable only one gate at a time, ~ from one line to several lines.
and the data appearing on the data-input line will pass through the selected gate to the
associated data-output line.

Data

input) Dy
—\ D,
L/ Data
So output
Select \a \ D lines
lines _/ 2
S J—OI > L
1 R H
_/ ’

FIGURE 6-52 A 1-line-to-4-line demultiplexer.

EXAMPLE 6-18

The serial data-input waveform (Data in) and data-select inputs (S, and S;) are shown in
Figure 6-53. Determine the data-output waveforms on D, through D5 for the demulti-
plexer in Figure 6-52.

Data
in

LF'
l_[
I_|
T

| | I —
SI: | : ! [
N !
I o I
ol b ! !
N
D, 1 [
T t——
D, | [Tl i toi o
e |
N R
o |
py 1L
FIGURE 6-53
Solution

Notice that the select lines go through a binary sequence so that each successive input
bit is routed to Dy, Dy, D,, and D5 in sequence, as shown by the output waveforms in
Figure 6-53.

Related Problem

Develop the timing diagram for the demultiplexer if the Sy and S| waveforms are both
inverted.

4-Line-to-16-Line Decoder as a Demultiplexer

We have already discussed a 4-line-to-16-line decoder (Section 6-5). This device and other
decoders can also be used in demultiplexing applications. The logic symbol for this device
when used as a demultiplexer is shown in Figure 6-54. In demultiplexer applications, the
input lines are used as the data-select lines. One of the chip select inputs is used as the data-
input line, with the other chip select input held LOW to enable the internal negative-AND
gate at the bottom of the diagram.

Functions of Combinational Logic

DEMUX
0 @ D,
(@)
1 3) Dl
2 @ D,
3 5) D,
4 O—(6) D,
5 D
@’
@) |, 6P—s Ds
Data | g (22) P P
select § 1 (21) G 8 10 Dy
lines 2
9 D,
S"é ﬂ 3 (1 1) 9
; 10
(13) 10
11 (14) 1
12 3—15 o
13 O—() 13
(16) :
14 a7 14
DaFa 18) | & 15 Pp——— Dy,
in (19 EN

FIGURE 6-54 The decoder used as a demultiplexer.

SECTION 6-9 CHECKUP

1. Generally, how can a decoder be used as a demultiplexer?

2. The demultiplexer in Figure 654 has a binary code of 1010 on the data-select lines,
and the data-input line is LOW. What are the states of the output lines?

6-10 Parity Generators/Checkers

Errors can occur as digital codes are being transferred from one point to another within
a digital system or while codes are being transmitted from one system to another. The
errors take the form of undesired changes in the bits that make up the coded informa-
tion; that is, a 1 can change to a 0, or a 0 to a 1, because of component malfunctions or
electrical noise. In most digital systems, the probability that even a single bit error will
occur is very small, and the likelihood that more than one will occur is even smaller.
Nevertheless, when an error occurs undetected, it can cause serious problems in a digital
system.

After completing this section, you should be able to
+ Explain the concept of parity
+ Implement a basic parity circuit with exclusive-OR gates
+ Describe the operation of basic parity generating and checking logic
+ Discuss the 74HC280 9-bit parity generator/checker
+ Use VHDL to describe a 9-bit parity generator/checker
+ Discuss how error detection can be implemented in a data transmission system

The parity method of error detection in which a parity bit is attached to a group of
information bits in order to make the total number of 1s either even or odd (depending on
the system) was covered in Chapter 2. In addition to parity bits, several specific codes also
provide inherent error detection.

Parity Generators/Checkers

Basic Parity Logic

In order to check for or to generate the proper parity in a given code, a basic principle can
be used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of
an odd number of 1s is always 1.

Therefore, to determine if a given code has even parity or odd parity, all the bits in that
code are summed. As you know, the modulo-2 sum of two bits can be generated by an
exclusive-OR gate, as shown in Figure 6-55(a); the modulo-2 sum of four bits can be
formed by three exclusive-OR gates connected as shown in Figure 6-55(b); and so on.
When the number of 1s on the inputs is even, the output X is 0 (LOW). When the number
of s is odd, the output X is 1 (HIGH).

A parity bit indicates if the number
of 1s in a code is even or odd for the
purpose of error detection.

FIGURE 6-55

(a) Summing of two bits

(b) Summing of four bits

IMPLEMENTATION: 9-BIT PARITY GENERATOR/CHECKER

Fixed-Function Device The logic symbol and function table for a 74HC280 are shown
in Figure 6-56. This particular device can be used to check for odd or even parity on a
9-bit code (eight data bits and one parity bit), or it can be used to generate a parity bit for a
binary code with up to nine bits. The inputs are A through /; when there is an even number
of 1s on the inputs, the = Even output is HIGH and the 2 Odd output is LOW.

®

—9 A
o
TN
— 5
Data (12) b (6) Y Even
input —(13) E L 5 0dd
(1) F Number of Inputs Outputs
o ¢ A-Ithat AreHigh | ZEven XO0dd
—H
S 0.2,4.6,8 H L
1,3,5,7,9 L H

(a) Traditional logic symbol (b) Function table

FIGURE 6-56 The 74HC280 9-bit parity generator/checker.

Parity Checker When this device is used as an even parity checker, the number of input
bits should always be even; and when a parity error occurs, the =~ Even output goes LOW
and the £ Odd output goes HIGH. When it is used as an odd parity checker, the number
of input bits should always be odd; and when a parity error occurs, the 2 Odd output goes
LOW and the 2 Even output goes HIGH.

Functions of Combinational Logic

Parity Generator 1If this device is used as an even parity generator, the parity bit is
taken at the = Odd output because this output is a 0 if there is an even number of input
bits and it is a 1 if there is an odd number. When used as an odd parity generator, the
parity bit is taken at the 2 Even output because it is a 0 when the number of inputs bits
is odd.

Programmable Logic Device (PLD) The 9-bit parity generator/checker can be described
using VHDL and implemented in a PLD. We will expand the 4-bit logic circuit in Figure
6-55(b) as shown in Figure 6-57. The data flow approach is used.

AO
A
4,
A3
Ay
As
Aq
Aq
Ag X
Ay
FIGURE 6-57
entity ParityCheck is
port (A0, Al, A2, A3, A4, A5, A6, A7, A8, A9: in bit; |
. Inputs and output declared
X: out bit); J
end entity ParityCheck;
architecture LogicOperation of ParityCheck is
begin
X <= ((A0 xor Al) xor (A2 xor A3)) xor ((A4 xor A5) xor | Output defined by
(A6 xor A7)) xor (A8 xor A9); J Boolean expression

end architecture LogicOperation;

A Data Transmission System with Error Detection

A simplified data transmission system is shown in Figure 6-58 to illustrate an application
of parity generators/checkers, as well as multiplexers and demultiplexers, and to illustrate
the need for data storage in some applications.

In this application, digital data from seven sources are multiplexed onto a single line
for transmission to a distant point. The seven data bits (D through Dg) are applied to the
multiplexer data inputs and, at the same time, to the even parity generator inputs. The =
Odd output of the parity generator is used as the even parity bit. This bit is O if the number
of 1s on the inputs A through / is even and is a 1 if the number of 1s on A through 7 is odd.
This bit is D7 of the transmitted code.

The data-select inputs are repeatedly cycled through a binary sequence, and each data
bit, beginning with Dy, is serially passed through and onto the transmission line (Y). In
this example, the transmission line consists of four conductors: one carries the serial data
and three carry the timing signals (data selects). There are more sophisticated ways of
sending the timing information, but we are using this direct method to illustrate a basic
principle.

Parity Generators/Checkers

Four-conductor transmission line

Error gate
. } Error = 1
MUX I_
9 EN
So =1y DEMUX
—0
S, GY . G P D,
S, 2 5 T1p D,
D, 0 2o D,
D, 1 Y 3o Dy
o— &
D, 2 4o D,
Dy 3 5 Dy
D, 4 6o Dy
Ds 5 70 D+ (Even parity bit)
; : £
Dy ’, 7 =

Even parity bit Storage

’ L,

B B

C €

D D

E

2 Odd E Y Even

F F

G G

H — H

I 1

EVEN parity EVEN parity
generator checker
FIGURE 6-58 Simplified data transmission system with error detection.
InfoNote

At the demultiplexer end of the system, the data-select signals and the serial data stream
are applied to the demultiplexer. The data bits are distributed by the demultiplexer onto
the output lines in the order in which they occurred on the multiplexer inputs. That is, D
comes out on the D output, D; comes out on the D output, and so on. The parity bit comes
out on the D7 output. These eight bits are temporarily stored and applied to the even parity
checker. Not all of the bits are present on the parity checker inputs until the parity bit D5
comes out and is stored. At this time, the error gate is enabled by the data-select code 111.
If the parity is correct, a O appears on the 2 Even output, keeping the Error output at 0. If
the parity is incorrect, all 1s appear on the error gate inputs, and a 1 on the Error output
results.

This particular application has demonstrated the need for data storage. Storage devices
will be introduced in Chapter 7 and covered in Chapter 11.

The timing diagram in Figure 6-59 illustrates a specific case in which two 8-bit words
are transmitted, one with correct parity and one with an error.

Microprocessors perform internal
parity checks as well as parity checks
of the external data and address
buses. In a read operation, the
external system can transfer the parity
information together with the data
bytes. The microprocessor checks
whether the resulting parity is even
and sends out the corresponding
signal. When it sends out an address
code, the microprocessor does not
perform an address parity check, but
it does generate an even parity bit for
the address.

Functions of Combinational Logic

So l | l_‘ l_‘ ‘—‘ l—‘ !
|
| | 1 1 ' | i | ! | i 1 1 | i !
KN S I S A A B
Ly T 1 | I T 1 | I T 1 | I T 1 | |
[N [
R I : : : o I : /1—:—'* Bit received
A S I (T (R (N (R AN S R R R I A incorrectly
I

|

I

! I (0 was transmitted)
Data stream at b

DEMUX input |20 {D1 1D, D Dy | Ds \Dg | P | Do | Dy Dy} D3| Dy | Ds| Dg | P :
| : : : | : | : | | | | | | | '_|
Error ! L L L ! L ! L ! ! ! ! ! ! !
FIGURE 6-59 Example of data transmission with and without error for the system
in Figure 6-58.

SECTION 6-10 CHECKUP

1. Add an even parity bit to each of the following codes:

(a) 110100 (b) 01100011
2. Add an odd parity bit to each of the following codes:
(a) 1010101 (b) 1000001

3. Check each of the even parity codes for an error.
(a) 100010101 (b) 1110111001

6-11 Troubleshooting

In this section, the problem of decoder glitches is introduced and examined from a trouble-
shooting standpoint. A glitch is any undesired voltage or current spike (pulse) of very short
duration. A glitch can be interpreted as a valid signal by a logic circuit and may cause
improper operation.

After completing this section, you should be able to
+ Explain what a glitch is

+ Determine the cause of glitches in a decoder application

+ Use the method of output strobing to eliminate glitches

The 74HC138 is used as a 3-line-to-8-line decoder (binary-to-octal) in Figure 6-60
to illustrate how glitches occur and how to identify their cause. The A,A A inputs of the
decoder are sequenced through a binary count, and the resulting waveforms of the inputs
and outputs can be displayed on the screen of a logic analyzer, as shown in Figure 6—60.
A, transitions are delayed from A transitions and A; transitions are delayed from A, transi-
tions. This commonly occurs when waveforms are generated by a binary counter, as you
will learn in Chapter 9.

The output waveforms are correct except for the glitches that occur on some of the
output signals. A logic analyzer or an oscilloscope can be used to display glitches, which
are normally very difficult to see. Generally, the logic analyzer is preferred, especially
for low repetition rates (less than 10 kHz) and/or irregular occurrence because most logic
analyzers have a glitch capture capability. Oscilloscopes can be used to observe glitches
with reasonable success, particularly if the glitches occur at a regular high repetition rate
(greater than 10 kHz).

Troubleshooting

Point 1 Point 2 Point 3 Point 4
Ag
A4

BIN/OCT

Ay 0p— A,
Al —2 10— 5
A, — 2 10— B
3 o— !
4 fo— 2
+Vee & 5 o— 3
EN 60— Z
7 —
5
— 74HC138 _
- 6
7

FIGURE 6-60 Decoder waveforms with output glitches.

The points of interest indicated by the highlighted areas on the input waveforms in
Figure 6-60 are displayed as shown in Figure 6-61. At point 1 there is a transitional
state of 000 due to delay differences in the waveforms. This causes the first glitch
on the 0 output of the decoder. At point 2 there are two transitional states, 010 and
000. These cause the glitch on the 2 output of the decoder and the second glitch on

Point 2: waveforms on expanded time base Point 3: waveforms on expanded time base
A HIGH; Ay, A, LOW R Ay, A, Ay LOW iy Ay, Ay LOW; A, HIGH
Ao
A
Ay
4
010000 100

& Ao A A, LOW AgLOW: A, Ay HIGH Y, Ay, A; LOW: A, HIGH

Point 1: waveforms on expanded time base \, Point 4: waveforms on expanded time base
AO

Ag

> >
ol
=] S5

4 1 11| 19~
H 19 1l llr-C

N AN BRI =]

000 110100

FIGURE 6-61 Decoder waveform displays showing how transitional input states produce
glitches in the output waveforms.

Functions of Combinational Logic

the 0 output, respectively. At point 3 the transitional state is 100, which causes the
first glitch on the 4 output of the decoder. At point 4 the two transitional states, 110
and 100, result in the glitch on the 6 output and the second glitch on the 4 output,
respectively.

One way to eliminate the glitch problem is a method called strobing, in which the
decoder is enabled by a strobe pulse only during the times when the waveforms are not in
transition. This method is illustrated in Figure 6-62.

Strobe
Ay

Ay

BIN/OCT

S
)

A —2
A, — 4

Strobe — &
EN

TTTTTTTT

~N O AW = O

w |

74HC138

(=)}

~|

FIGURE 6-62 Application of a strobe waveform to eliminate glitches on decoder
outputs.

In addition to glitches that are the result of differences in propagation delays, as you have seen
in the case of a decoder, other types of unwanted noise spikes can also be a problem. Current
and voltage spikes on the Vg and ground lines are caused by the fast switching waveforms in
digital circuits. This problem can be minimized by proper printed circuit board layout. Switching
spikes can be absorbed by decoupling the circuit board with a 1 wF capacitor from V¢ to ground.
Also, smaller decoupling capacitors (0.022 wF to 0.1 wF) should be distributed at various points
between V¢ and ground over the circuit board. Decoupling should be done especially near devices
that are switching at higher rates or driving more loads such as oscillators, counters, buffers, and
bus drivers.

SECTION 6-11 CHECKUP

1. Define the term glitch.

2. Explain the basic cause of glitches in decoder logic.

3. Define the term strobe.

Applied Logic

Applied Logic

Traffic Signal Controller: Part 1

The control logic is developed for a traffic signal at the intersection of a busy main street and
a lightly used side street. The system requirements are established, and a general block dia-
gram is developed. Also, a state diagram is introduced to define the sequence of operation.
The combinational logic unit of the controller is developed in this chapter, and the remaining
units are developed in Chapter 7.

Timing Requirements

The control logic establishes the sequencing of the lights for a traffic signal at the inter-
section of a busy main street and an occasionally used side street. The following are the
timing requirements:

+ The green light for the main street will stay on for a minimum of 25 s or as long as
there is no vehicle on the side street.

+ The green light for the side street will stay on until there is no vehicle on the side
street up to a maximum of 25 s.

+ The yellow caution light will stay on for 4 s between changes from green to red on
both the main street and the side street.

The State Diagram

From the timing requirements, a state diagram can be developed to describe the complete
operation. A state diagram graphically shows the sequence of states, the conditions for
each state, and the requirements for transitions from one state to the next.

Defining the Variables The variables that determine how the system sequences through
the various states are defined as follows:

+ Vs A vehicle is present on the side street.
¢ T1, The 25 s timer (long timer) is on.
¢ Ts The 4 s timer (short timer) is on.

A complemented variable indicates the opposite condition.

State Descriptions A state diagram is shown in Figure 6-63. Each of the four states is
assigned a 2-bit Gray code as indicated. A looping arrow means that the system remains in
a state, and an arrow between states means that the system transitions to the next state. The
Boolean expression or variable associated with each of the arrows in the state diagram indi-
cate the condition under which the system remains in a state or transitions to the next state.

First State The Gray code is 00. In this state, the light is green on the main street and
red on the side street for 25 s when the long timer is on or there is no vehicle on the side
street. This condition is expressed as 7; + V.. The system transitions to the next state
when the long timer goes off and there is a vehicle on the side street. This condition is
expressed as T; V..

Second State The Gray code is 01. In this state, the light is yellow on the main street and
red on the side street. The system remains in this state for 4 s when the short timer is on.
This condition is expressed as 7. The system transitions to the next state when the short
timer goes off. This condition is expressed as Tg.

Functions of Combinational Logic

First state
00
Main: green
Side: red

Fourth state Second state

10 01
Ts Main: red Main: yellow S
Side: yellow Side: red

Third state
11
Main: red
Side:green

TV

s

FIGURE 6-63 State diagram for the traffic signal control.

Third State The Gray code is 11. In this state, the light is red on the main street and
green on the side street for 25 s when the long timer is on as long as there is a vehicle on
the side street. This condition is expressed as 7; V;. The system transitions to the next state
when the long timer goes off or when there is no vehicle on the side street. This condition
is expressed as T;, + V..

Fourth State The Gray code is 10. In this state, the light is red on the main street and
yellow on the side street. The system remains in this state for 4 s when the short timer is
on. This condition is expressed as Ts. The system transitions back to the first state when
the short timer goes off. This condition is expressed as 7.

Exercise

1. How long can the system remain in the first state?

2. How long can the system remain in the fourth state?

3. Write the expression for the condition that produces a transition from the first state
to the second state.

4. Write the expression for the condition that keeps the system in the second state.

Block Diagram

The traffic signal controller consists of three units: combinational logic, sequential logic,
and timing circuits, as shown in Figure 6-64. The combinational logic unit provides out-
puts to turn the signal lights on and off. It also provides trigger outputs to start the long and
short timers. The input sequence to this logic represents the four states described by the
state diagram. The timing circuits unit provides the 25 s and the 4 s timing outputs. A fre-
quency divider in the timing circuits unit divides the system clock down to a 1 Hz clock for
use in producing the 25 s and 4 s signals. The sequential logic unit produces the sequence
of 2-bit Gray codes representing the four states.

Traffic signal controller logic

Applied Logic

Combinational logic
Sequential logic Red
Vehicle G Main § Yellow
0
Sensor ————> S';gz
input G, Green Traffic light
System Red interface unit
clock
Side { Yellow
Green
Short Long
timer timer
L. L. Long trigger
Timing circuits
Short trigger

FIGURE 6-64 Block diagram of the traffic signal controller.

The Combinational Logic

The combinational logic consists of a state decoder, light output logic, and trigger logic, as
shown in Figure 6-65.

State decoder Light output logic
Red — MR
S, L, Mainj Yellow [— MY
'Slaie — G, State S, L, Green —= MG {di%htf?ut?ut};
inputs outputs o traffic lig
(Gray code) =] G; o 3 Ly Red — SR interface unit
Sy L, Sideq Yellow [— SY
Green [—> SG
T, T, Ty Ty
Long trig —
g trig To
Trigger logic timing
circuits
Short trig —>
FIGURE 6-65 Block diagram of the combinational logic unit.

State Decoder This logic decodes the 2-bit Gray code from the sequential logic to deter-
mine which of the four states the system is in. The inputs to the state decoder are the two
Gray code bits G| and G. There are four state outputs S;, S, S3, and S,. For each of the

Functions of Combinational Logic

four input codes, one and only one of the outputs is activated. The Boolean expressions for
the state outputs in terms of the inputs are

S = G,G,
S = ElGO
S3 = GGy
Ss = GG,

The truth table for the state decoder logic is shown in Table 611, and the logic diagram is
shown in Figure 6-66.

TABLE 6-11

Truth table for the state decoder.

State Inputs (Gray Code) State Outputs
G, Gy S1 S, S3 S4
0 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

gl
v

Gray code

state inputs
G, >07

State outputs

g

YYT Y

o5}
=
-

FIGURE 6-66 State decoder logic.

Light Output Logic This logic has the four state outputs (S;—S,) of the state decoder as its
inputs (L;—L,4) and produces six outputs to turn the traffic lights on and off. These outputs
are designated MR, MY, MG (main red, main yellow, main green) and SR, SY, SG (side red,
side yellow, side green).

The state diagram shows that the main red is on in the third state (L3) or in the fourth
state (L), so the Boolean expression is

MR = L; + Ly
The main yellow is on in the second state (L,), so the expression is
MY =1L,
The main green is on in the first state (L;), so the expression is

MG = L,

Applied Logic

Similarly, the state diagram is used to obtain the following expressions for the side street:

SR=1L,+L,
SY:L4
SG =L,

The logic circuit is shown in Figure 6-67.

-9) > MR
Ly
L, My
L . MG
IS5 S
sy
G

FIGURE 6-67 Light output logic.

Exercise

S. Show the logic diagram for the light output logic using specific IC devices with pin
numbers.
6. Develop a truth table for the light output logic.

Trigger Logic The trigger logic produces two outputs, the long trigger output and the
short trigger output. The long trigger output initiates the 25 s timer on a LOW-to-HIGH
transition at the beginning of the first or third states. The short trigger output initiates the 4 s
timer on a LOW-to-HIGH transition at the beginning of the second or fourth states. The
Boolean expressions for this logic are

LongTrig = T\ + T

ShortTrig = T, + T,
Equivalently,

LongTrig = T) + T

ShortTrig = T} + Ty

The logic circuit is shown in Figure 6—68.

T .
) D Lowie
RTTTT) > shonmi
Ty

FIGURE 6-68 Trigger logic.

Exercise

7. Show the logic diagram for the trigger logic using specific IC devices with pin
numbers.

8. Develop a truth table for the trigger logic.

9. Show the complete combinational logic by combining the state decoder, light out-
put logic, and trigger logic. Include specific IC devices and pin numbers.

Functions of Combinational Logic

VHDL Descriptions

The VHDL program for the combinational logic unit of the traffic signal controller can be
written using the data flow approach to describe each of the three functional blocks of the
combinational logic unit. These functional blocks are the state decoder, the light output
logic, and the trigger logic, as shown in Figure 6-65.

¢ The VHDL program code for the state decoder is as follows:

entity StateDecoder is)
port (GO,