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pre face

A P P R O A C H

This book is designed to serve as a first course in an electrical engineering or
an electrical engineering and computer science curriculum, providing students
at the sophomore level a transition from the world of physics to the world of
electronics and computation. The book attempts to satisfy two goals: Combine
circuits and electronics into a single, unified treatment, and establish a strong
connection with the contemporary worlds of both digital and analog systems.

These goals arise from the observation that the approach to introduc-
ing electrical engineering through a course in traditional circuit analysis is fast
becoming obsolete. Our world has gone digital. A large fraction of the student
population in electrical engineering is destined for industry or graduate study
in digital electronics or computer systems. Even those students who remain in
core electrical engineering are heavily influenced by the digital domain.

Because of this elevated focus on the digital domain, basic electrical engi-
neering education must change in two ways: First, the traditional approach
to teaching circuits and electronics without regard to the digital domain must
be replaced by one that stresses the circuits foundations common to both the
digital and analog domains. Because most of the fundamental concepts in cir-
cuits and electronics are equally applicable to both the digital and the analog
domains, this means that, primarily, we must change the way in which we
motivate circuits and electronics to emphasize their broader impact on digital
systems. For example, although the traditional way of discussing the dynam-
ics of first-order RC circuits appears unmotivated to the student headed into
digital systems, the same pedagogy is exciting when motivated by the switching
behavior of a switch and resistor inverter driving a non-ideal capacitive wire.
Similarly, we motivate the study of the step response of a second-order RLC
circuit by observing the behavior of a MOS inverter when pin parasitics are
included.

Second, given the additional demands of computer engineering, many
departments can ill-afford the luxury of separate courses on circuits and on
electronics. Rather, they might be combined into one course.1 Circuits courses

1. In his paper, ‘‘Teaching Circuits and Electronics to First-Year Students,’’ in Int. Symp. Circuits
and Systems (ISCAS), 1998, Yannis Tsividis makes an excellent case for teaching an integrated
course in circuits and electronics.

xix
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treat networks of passive elements such as resistors, sources, capacitors,
and inductors. Electronics courses treat networks of both passive elements
and active elements such as MOS transistors. Although this book offers
a unified treatment for circuits and electronics, we have taken some pains
to allow the crafting of a two-semester sequence one focused on cir-
cuits and another on electronics from the same basic content in the
book.

Using the concept of ‘‘abstraction,’’ the book attempts to form a bridge
between the world of physics and the world of large computer systems. In
particular, it attempts to unify electrical engineering and computer science as the
art of creating and exploiting successive abstractions to manage the complexity
of building useful electrical systems. Computer systems are simply one type of
electrical system.

In crafting a single text for both circuits and electronics, the book takes
the approach of covering a few important topics in depth, choosing more con-
temporary devices when possible. For example, it uses the MOSFET as the
basic active device, and relegates discussions of other devices such as bipolar
transistors to the exercises and examples. Furthermore, to allow students to
understand basic circuit concepts without the trappings of specific devices, it
introduces several abstract devices as examples and exercises. We believe this
approach will allow students to tackle designs with many other extant devices
and those that are yet to be invented.

Finally, the following are some additional differences from other books in
this field:

� The book draws a clear connection between electrical engineering and
physics by showing clearly how the lumped circuit abstraction directly
derives from Maxwell’s Equations and a set of simplifying assumptions.

� The concept of abstraction is used throughout the book to unify
the set of engineering simplifications made in both analog and digital
design.

� The book elevates the focus of the digital domain to that of analog.
However, our treatment of digital systems emphasizes their analog aspects.
We start with switches, sources, resistors, and MOSFETs, and apply KVL,
KCL, and so on. The book shows that digital versus analog behavior is
obtained by focusing on particular regions of device behavior.

� The MOSFET device is introduced using a progression of models of
increased refinement the S model, the SR model, the SCS model, and
the SU model.

� The book shows how significant amounts of insight into the static and
dynamic operation of digital circuits can be obtained with very simple
models of MOSFETs.
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� Various properties of devices, for example, the memory property of capaci-
tors, or the gain property of amplifiers, are related to both their use in analog
circuits and digital circuits.

� The state variable viewpoint of transient problems is emphasized for its
intuitive appeal and since it motivates computer solutions of both linear or
nonlinear network problems.

� Issues of energy and power are discussed in the context of both analog and
digital circuits.

� A large number of examples are picked from the digital domain emphasizing
VLSI concepts to emphasize the power and generality of traditional circuit
analysis concepts.

With these features, we believe this book offers the needed foundation
for students headed towards either the core electrical engineering majors
including digital and RF circuits, communication, controls, signal processing,
devices, and fabrication or the computer engineering majors including
digital design, architecture, operating systems, compilers, and languages.

MIT has a unified electrical engineering and computer science department.
This book is being used in MIT’s introductory course on circuits and elec-
tronics. This course is offered each semester and is taken by about 500 students
a year.

O V E R V I E W

Chapter 1 discusses the concept of abstraction and introduces the lumped
circuit abstraction. It discusses how the lumped circuit abstraction derives
from Maxwell’s Equations and provides the basic method by which electrical
engineering simplifies the analysis of complicated systems. It then introduces
several ideal, lumped elements including resistors, voltage sources, and current
sources.

This chapter also discusses two major motivations of studying electronic
circuits modeling physical systems and information processing. It introduces
the concept of a model and discusses how physical elements can be modeled
using ideal resistors and sources. It also discusses information processing and
signal representation.

Chapter 2 introduces KVL and KCL and discusses their relationship to
Maxwell’s Equations. It then uses KVL and KCL to analyze simple resis-
tive networks. This chapter also introduces another useful element called the
dependent source.

Chapter 3 presents more sophisticated methods for network analysis.
Chapter 4 introduces the analysis of simple, nonlinear circuits.
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Chapter 5 introduces the digital abstraction, and discusses the second major
simplification by which electrical engineers manage the complexity of building
large systems.2

Chapter 6 introduces the switch element and describes how digital logic
elements are constructed. It also describes the implementation of switches using
MOS transistors. Chapter 6 introduces the S (switch) and the SR (switch-
resistor) models of the MOSFET and analyzes simple switch circuits using
the network analysis methods presented earlier. Chapter 6 also discusses the
relationship between amplification and noise margins in digital systems.

Chapter 7 discusses the concept of amplification. It presents the SCS
(switch-current-source) model of the MOSFET and builds a MOSFET amplifier.

Chapter 8 continues with small signal amplifiers.
Chapter 9 introduces storage elements, namely, capacitors and inductors,

and discusses why the modeling of capacitances and inductances is necessary
in high-speed design.
Chapter 10 discusses first order transients in networks. This chapter also
introduces several major applications of first-order networks, including digital
memory.

Chapter 11 discusses energy and power issues in digital systems and
introduces CMOS logic.

Chapter 12 analyzes second order transients in networks. It also discusses
the resonance properties of RLC circuits from a time-domain point of view.

Chapter 13 discusses sinusoidal steady state analysis as an alternative to
the time-domain transient analysis. The chapter also introduces the concepts of
impedance and frequency response. This chapter presents the design of filters
as a major motivating application.

Chapter 14 analyzes resonant circuits from a frequency point of view.
Chapter 15 introduces the operational amplifier as a key example of the

application of abstraction in analog design.
Chapter 16 discusses diodes and simple diode circuits.
The book also contains appendices on trignometric functions, complex

numbers, and simultaneous linear equations to help readers who need a quick
refresher on these topics or to enable a quick lookup of results.

2. The point at which to introduce the digital abstraction in this book and in a corresponding
curriculum was arguably the topic over which we agonized the most. We believe that introducing
the digital abstraction at this point in the course balances (a) the need for introducing digital systems
as early as possible in the curriculum to excite and motivate students (especially with laboratory
experiments), with (b) the need for providing students with enough of a toolchest to be able to
analyze interesting digital building blocks such as combinational logic. Note that we recommend
introduction of digital systems a lot sooner than suggested by Tsividis in his 1998 ISCAS paper,
although we completely agree his position on the need to include some digital design.
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C O U R S E O R G A N I Z A T I O N

The sequence of chapters has been organized to suit a one or two semester
integrated course on circuits and electronics. First and second order circuits are
introduced as late as possible to allow the students to attain a higher level of
mathematical sophistication in situations in which they are taking a course on
differential equations at the same time. The digital abstraction is introduced as
early as possible to provide early motivation for the students.

Alternatively, the following chapter sequences can be selected to orga-
nize the course around a circuits sequence followed by an electronics sequence.
The circuits sequence would include the following: Chapter 1 (lumped circuit
abstraction), Chapter 2 (KVL and KCL), Chapter 3 (network analysis), Chapter 5
(digital abstraction), Chapter 6 (S and SR MOS models), Chapter 9 (capacitors
and inductors), Chapter 10 (first-order transients), Chapter 11 (energy and
power, and CMOS), Chapter 12 (second-order transients), Chapter 13 (sinu-
soidal steady state), Chapter 14 (frequency analysis of resonant circuits), and
Chapter 15 (operational amplifier abstraction optional).

The electronics sequence would include the following: Chapter 4 (nonlinear
circuits), Chapter 7 (amplifiers, the SCS MOSFET model), Chapter 8 (small-
signal amplifiers), Chapter 13 (sinusoidal steady state and filters), Chapter 15
(operational amplifier abstraction), and Chapter 16 (diodes and power circuits).

W E B S U P P L E M E N T S

We have gathered a great deal of material to help students and instructors
using this book. This information can be accessed from the Morgan Kaufmann
website:

www.mkp.com/companions/1558607358
The site contains:

� Supplementary sections and examples. We have used the icon W W W in
the text to identify sections or examples.

� Instructor’s manual

� A link to the MIT OpenCourseWare website for the authors’ course,
6.002 Circuits and Electronics. On this site you will find:

� Syllabus. A summary of the objectives and learning outcomes for
course 6.002.

� Readings. Reading assignments based on Foundations of Analog and
Digital Electronic Circuits.

� Lecture Notes. Complete set of lecture notes, accompanying video
lectures, and descriptions of the demonstrations made by the
instructor during class.
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� Labs. A collection of four labs: Thevenin/Norton Equivalents and
Logic Gates, MOSFET Inverting Amplifiers and First-Order Circuits,
Second-Order Networks, and Audio Playback System. Includes an
equipment handout and lab tutorial. Labs include pre-lab exercises,
in-lab exercises, and post-lab exercises.

� Assignments. A collection of eleven weekly homework assignments.

� Exams. Two quizzes and a Final Exam.

� Related Resources. Online exercises in Circuits and Electronics for
demonstration and self-study.

A C K N O W L E D G M E N T S

These notes evolved out of an initial set of notes written by Campbell Searle for
6.002 in 1991. The notes were also influenced by several who taught 6.002 at
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Parker, Dimitri Antoniadis, Steve Umans, David Perreault, Karl Berggren, Gerry
Wilson, Paul Gray, Keith Carver, Mark Horowitz, Yannis Tsividis, Cliff Pollock,
Denise Penrose, Greg Schaffer, and Steve Senturia. We are also grateful to our
reviewers including Timothy Trick, Barry Farbrother, John Pinkston, Stephane
Lafortune, Gary May, Art Davis, Jeff Schowalter, John Uyemura, Mark Jupina,
Barry Benedict, Barry Farbrother, and Ward Helms for their feedback. The help
of Michael Zhang, Thit Minn, and Patrick Maurer in fleshing out problems and
examples; that of Jose Oscar Mur-Miranda, Levente Jakab, Vishal Kapur, Matt
Howland, Tom Kotwal, Michael Jura, Stephen Hou, Shelley Duvall, Amanda
Wang, Ali Shoeb, Jason Kim, Charvak Karpe and Michael Jura in creating
an answer key; that of Rob Geary, Yu Xinjie, Akash Agarwal, Chris Lang,
and many of our students and colleagues in proofreading; and that of Anne
McCarthy, Cornelia Colyer, and Jennifer Tucker in figure creation is also grate-
fully acknowledged. We gratefully acknowledge Maxim for their support of this
book, and Ron Koo for making that support possible, as well as for capturing
and providing us with numerous images of electronic components and chips.
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articulating the quick, intuitive process by which seasoned electrical engineers
analyze circuits our numerous sections on intuitive analysis are a direct result
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the c i rcu i t ab s tract ion 1
‘‘Engineering is the
purposeful use of science.’’
s t e v e s e n t u r i a

1.1 T H E P O W E R O F A B S T R A C T I O N

Engineering is the purposeful use of science. Science provides an understanding
of natural phenomena. Scientific study involves experiment, and scientific laws
are concise statements or equations that explain the experimental data. The
laws of physics can be viewed as a layer of abstraction between the experimental
data and the practitioners who want to use specific phenomena to achieve their
goals, without having to worry about the specifics of the experiments and
the data that inspired the laws. Abstractions are constructed with a particular
set of goals in mind, and they apply when appropriate constraints are met.
For example, Newton’s laws of motion are simple statements that relate the
dynamics of rigid bodies to their masses and external forces. They apply under
certain constraints, for example, when the velocities are much smaller than the
speed of light. Scientific abstractions, or laws such as Newton’s, are simple and
easy to use, and enable us to harness and use the properties of nature.

Electrical engineering and computer science, or electrical engineering for
short, is one of many engineering disciplines. Electrical engineering is the
purposeful use of Maxwell’s Equations (or Abstractions) for electromagnetic
phenomena. To facilitate our use of electromagnetic phenomena, electrical
engineering creates a new abstraction layer on top of Maxwell’s Equations
called the lumped circuit abstraction. By treating the lumped circuit abstrac-
tion layer, this book provides the connection between physics and electrical
engineering. It unifies electrical engineering and computer science as the art
of creating and exploiting successive abstractions to manage the complexity of
building useful electrical systems. Computer systems are simply one type of
electrical system.

The abstraction mechanism is very powerful because it can make the
task of building complex systems tractable. As an example, consider the force
equation:

F = ma. (1.1)

3
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The force equation enables us to calculate the acceleration of a particle with
a given mass for an applied force. This simple force abstraction allows us to
disregard many properties of objects such as their size, shape, density, and
temperature, that are immaterial to the calculation of the object’s acceleration.
It also allows us to ignore the myriad details of the experiments and observa-
tions that led to the force equation, and accept it as a given. Thus, scientific
laws and abstractions allow us to leverage and build upon past experience and
work. (Without the force abstraction, consider the pain we would have to go
through to perform experiments to achieve the same result.)

Over the past century, electrical engineering and computer science have
developed a set of abstractions that enable us to transition from the physical
sciences to engineering and thereby to build useful, complex systems.

The set of abstractions that transition from science to engineering and
insulate the engineer from scientific minutiae are often derived through the
discretization discipline. Discretization is also referred to as lumping. A discipline
is a self-imposed constraint. The discipline of discretization states that we choose
to deal with discrete elements or ranges and ascribe a single value to each
discrete element or range. Consequently, the discretization discipline requires
us to ignore the distribution of values within a discrete element. Of course, this
discipline requires that systems built on this principle operate within appropriate
constraints so that the single-value assumptions hold. As we will see shortly,
the lumped circuit abstraction that is fundamental to electrical engineering and
computer science is based on lumping or discretizing matter.1 Digital systems
use the digital abstraction, which is based on discretizing signal values. Clocked
digital systems are based on discretizing both signals and time, and digital
systolic arrays are based on discretizing signals, time and space.

Building upon the set of abstractions that define the transition from physics
to electrical engineering, electrical engineering creates further abstractions to
manage the complexity of building large systems. A lumped circuit element
is often used as an abstract representation or a model of a piece of mate-
rial with complicated internal behavior. Similarly, a circuit often serves as an
abstract representation of interrelated physical phenomena. The operational
amplifier composed of primitive discrete elements is a powerful abstraction
that simplifies the building of bigger analog systems. The logic gate, the digital
memory, the digital finite-state machine, and the microprocessor are themselves
a succession of abstractions developed to facilitate building complex computer
and control systems. Similarly, the art of computer programming involves
the mastery of creating successively higher-level abstractions from lower-level
primitives.

1. Notice that Newton’s laws of physics are themselves based on discretizing matter. Newton’s laws
describe the dynamics of discrete bodies of matter by treating them as point masses. The spatial
distribution of properties within the discrete elements are ignored.
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F IGURE 1.1 Sequence of
courses and the abstraction layers
introduced in a possible EECS
course sequence that ultimately
results in the ability to create the
computer game “Doom,” or a
mixed-signal (containing both
analog and digital components)
microprocessor supervisory circuit
such as that shown in Figure 1.2.

F IGURE 1.2 A photograph of
the MAX807L microprocessor
supervisory circuit from Maxim
Integrated Products. The chip is
roughly 2.5 mm by 3 mm. Analog
circuits are to the left and center of
the chip, while digital circuits are to
the right. (Photograph Courtesy of
Maxim Integrated Products.)

Figures 1.1 and 1.3 show possible course sequences that students might
encounter in an EECS (Electrical Engineering and Computer Science) or an EE
(Electrical Engineering) curriculum, respectively, to illustrate how each of the
courses introduces several abstraction layers to simplify the building of useful
electronic systems. This sequence of courses also illustrates how a circuits and
electronics course using this book might fit within a general EE or EECS course
framework.

1.2 T H E L U M P E D C I R C U I T A B S T R A C T I O N

Consider the familiar lightbulb. When it is connected by a pair of cables to
a battery, as shown in Figure 1.4a, it lights up. Suppose we are interested in
finding out the amount of current flowing through the bulb. We might go about
this by employing Maxwell’s equations and deriving the amount of current by
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F IGURE 1.3 Sequence of
courses and the abstraction layers
that they introduce in a possible EE
course sequence that ultimately
results in the ability to create a
wireless Bluetooth analog
front-end chip.
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F IGURE 1.4 (a) A simple
lightbulb circuit. (b) The lumped
circuit representation.
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a careful analysis of the physical properties of the bulb, the battery, and the
cables. This is a horrendously complicated process.

As electrical engineers we are often interested in such computations in order
to design more complex circuits, perhaps involving multiple bulbs and batteries.
So how do we simplify our task? We observe that if we discipline ourselves to
asking only simple questions, such as what is the net current flowing through
the bulb, we can ignore the internal properties of the bulb and represent the
bulb as a discrete element. Further, for the purpose of computing the current,
we can create a discrete element known as a resistor and replace the bulb with
it.2 We define the resistance of the bulb R to be the ratio of the voltage applied
to the bulb and the resulting current through it. In other words,

R = V/I.

Notice that the actual shape and physical properties of the bulb are irrelevant
provided it offers the resistance R. We were able to ignore the internal properties
and distribution of values inside the bulb simply by disciplining ourselves not
to ask questions about those internal properties. In other words, when asking
about the current, we were able to discretize the bulb into a single lumped
element whose single relevant property was its resistance. This situation is

2. We note that the relationship between the voltage and the current for a bulb is generally much
more complicated.
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analogous to the point mass simplification that resulted in the force relation in
Equation 1.1, where the single relevant property of the object is its mass.

As illustrated in Figure 1.5, a lumped element can be idealized to the point

Terminal Terminal

Element

F IGURE 1.5 A lumped element.

where it can be treated as a black box accessible through a few terminals. The
behavior at the terminals is more important than the details of the behavior
internal to the black box. That is, what happens at the terminals is more impor-
tant than how it happens inside the black box. Said another way, the black box
is a layer of abstraction between the user of the bulb and the internal structure
of the bulb.

The resistance is the property of the bulb of interest to us. Likewise, the
voltage is the property of the battery that we most care about. Ignoring, for
now, any internal resistance of the battery, we can lump the battery into a
discrete element called by the same name supplying a constant voltage V, as
shown in Figure 1.4b. Again, we can do this if we work within certain con-
straints to be discussed shortly, and provided we are not concerned with the
internal properties of the battery, such as the distribution of the electrical field.
In fact, the electric field within a real-life battery is horrendously difficult to chart
accurately. Together, the collection of constraints that underlie the lumped cir-
cuit abstraction result in a marvelous simplification that allows us to focus on
specifically those properties that are relevant to us.

Notice also that the orientation and shape of the wires are not relevant
to our computation. We could even twist them or knot them in any way.
Assuming for now that the wires are ideal conductors and offer zero resistance,3

we can rewrite the bulb circuit as shown in Figure 1.4b using lumped circuit
equivalents for the battery and the bulb resistance, which are connected by ideal
wires. Accordingly, Figure 1.4b is called the lumped circuit abstraction of the
lightbulb circuit. If the battery supplies a constant voltage V and has zero internal
resistance, and if the resistance of the bulb is R, we can use simple algebra to
compute the current flowing through the bulb as

I = V/R.

Lumped elements in circuits must have a voltage V and a current I defined
for their terminals.4 In general, the ratio of V and I need not be a constant.
The ratio is a constant (called the resistance R) only for lumped elements that

3. If the wires offer nonzero resistance, then, as described in Section 1.6, we can separate each wire
into an ideal wire connected in series with a resistor.

4. In general, the voltage and current can be time varying and can be represented in a more general
form as V(t) and I(t). For devices with more than two terminals, the voltages are defined for any
terminal with respect to any other reference terminal, and the currents are defined flowing into
each of the terminals.
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obey Ohm’s law.5 The circuit comprising a set of lumped elements must also
have a voltage defined between any pair of points, and a current defined into
any terminal. Furthermore, the elements must not interact with each other
except through their terminal currents and voltages. That is, the internal physical
phenomena that make an element function must interact with external electrical
phenomena only at the electrical terminals of that element. As we will see in
Section 1.3, lumped elements and the circuits formed using these elements must
adhere to a set of constraints for these definitions and terminal interactions to
exist. We name this set of constraints the lumped matter discipline.

The lumped circuit abstraction Capped a set of lumped elements that obey the
lumped matter discipline using ideal wires to form an assembly that performs
a specific function results in the lumped circuit abstraction.

Notice that the lumped circuit simplification is analogous to the point-mass
simplification in Newton’s laws. The lumped circuit abstraction represents the
relevant properties of lumped elements using algebraic symbols. For exam-
ple, we use R for the resistance of a resistor. Other values of interest, such
as currents I and voltages V, are related through simple functions. The
ease of using algebraic equations in place of Maxwell’s equations to design
and analyze complicated circuits will become much clearer in the following
chapters.

The process of discretization can also be viewed as a way of modeling
physical systems. The resistor is a model for a lightbulb if we are interested in
finding the current flowing through the lightbulb for a given applied voltage.
It can even tell us the power consumed by the lightbulb. Similarly, as we will
see in Section 1.6, a constant voltage source is a good model for the battery
when its internal resistance is zero. Thus, Figure 1.4b is also called the lumped
circuit model of the lightbulb circuit. Models must be used only in the domain
in which they are applicable. For example, the resistor model for a lightbulb
tells us nothing about its cost or its expected lifetime.

The primitive circuit elements, the means for combining them, and the
means of abstraction form the graphical language of circuits. Circuit theory is a
well established discipline. With maturity has come widespread utility. The lan-
guage of circuits has become universal for problem-solving in many disciplines.
Mechanical, chemical, metallurgical, biological, thermal, and even economic
processes are often represented in circuit theory terms, because the mathematics
for analysis of linear and nonlinear circuits is both powerful and well-developed.
For this reason electronic circuit models are often used as analogs in the study of
many physical processes. Readers whose main focus is on some area of electri-
cal engineering other than electronics should therefore view the material in this

5. Observe that Ohm’s law itself is an abstraction for the electrical behavior of resistive material that
allows us to replace tables of experimental data relating V and I by a simple equation.
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book from the broad perspective of an introduction to the modeling of dynamic
systems.

1.3 T H E L U M P E D M A T T E R D I S C I P L I N E

The scope of these equations is remarkable, including as it does the fundamen-
tal operating principles of all large-scale electromagnetic devices such as motors,
cyclotrons, electronic computers, television, and microwave radar.

h a l l i d a y a n d r e s n i c k o n m a x w e l l ’ s e q u a t i o n s

Lumped circuits comprise lumped elements (or discrete elements) con-

I

V+ -

F IGURE 1.6 A lumped circuit
element.

nected by ideal wires. A lumped element has the property that a unique terminal
voltage V(t) and terminal current I(t) can be defined for it. As depicted in
Figure 1.6, for a two-terminal element, V is the voltage across the terminals
of the element,6 and I is the current through the element.7 Furthermore, for
lumped resistive elements, we can define a single property called the resistance R
that relates the voltage across the terminals to the current through the terminals.

The voltage, the current, and the resistance are defined for an element
only under certain constraints that we collectively call the lumped matter dis-
cipline (LMD). Once we adhere to the lumped matter discipline, we can make
several simplifications in our circuit analysis and work with the lumped circuit
abstraction. Thus the lumped matter discipline provides the foundation for the
lumped circuit abstraction, and is the fundamental mechanism by which we are
able to move from the domain of physics to the domain of electrical engineer-
ing. We will simply state these constraints here, but relegate the development
of the constraints of the lumped matter discipline to Section A.1 in Appendix A.
Section A.2 further shows how the lumped matter discipline results in the sim-
plification of Maxwell’s equations into the algebraic equations of the lumped
circuit abstraction.

The lumped matter discipline imposes three constraints on how we choose
lumped circuit elements:

1. Choose lumped element boundaries such that the rate of change of
magnetic flux linked with any closed loop outside an element must be
zero for all time. In other words, choose element boundaries such that

∂�B

∂t
= 0

through any closed path outside the element.

6. The voltage across the terminals of an element is defined as the work done in moving a unit
charge (one coulomb) from one terminal to the other through the element against the electrical
field. Voltages are measured in volts (V), where one volt is one joule per coulomb.

7. The current is defined as the rate of flow of charge from one terminal to the other through the
element. Current is measured in amperes (A) , where one ampere is one coulomb per second.
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2. Choose lumped element boundaries so that there is no total time varying
charge within the element for all time. In other words, choose element
boundaries such that

∂q

∂t
= 0

where q is the total charge within the element.

3. Operate in the regime in which signal timescales of interest are much
larger than the propagation delay of electromagnetic waves across the
lumped elements.

The intuition behind the first constraint is as follows. The definition of the
voltage (or the potential difference) between a pair of points across an element
is the work required to move a particle with unit charge from one point to the
other along some path against the force due to the electrical field. For the lumped
abstraction to hold, we require that this voltage be unique, and therefore the
voltage value must not depend on the path taken. We can make this true by
selecting element boundaries such that there is no time-varying magnetic flux
outside the element.

If the first constraint allowed us to define a unique voltage across the
terminals of an element, the second constraint results from our desire to define
a unique value for the current entering and exiting the terminals of the element.
A unique value for the current can be defined if we do not have charge buildup
or depletion inside the element over time.

Under the first two constraints, elements do not interact with each other
except through their terminal currents and voltages. Notice that the first two
constraints require that the rate of change of magnetic flux outside the elements
and net charge within the elements is zero for all time.8 It directly follows that
the magnetic flux and the electric fields outside the elements are also zero.
Thus there are no fields related to one element that can exert influence on
the other elements. This permits the behavior of each element to be ana-
lyzed independently.9 The results of this analysis are then summarized by the

8. As discussed in Appendix A, assuming that the rate of change is zero for all time ensures that
voltages and currents can be arbitrary functions of time.

9. The elements in most circuits will satisfy the restriction of non-interaction, but occasionally they
will not. As will be seen later in this text, the magnetic fields from two inductors in close proximity
might extend beyond the material boundaries of the respective inductors inducing significant electric
fields in each other. In this case, the two inductors could not be treated as independent circuit
elements. However, they could perhaps be treated together as a single element, called a transformer,
if their distributed coupling could be modeled appropriately. A dependent source is yet another
example of a circuit element that we will introduce later in this text in which interacting circuit
elements are treated together as a single element.
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relation between the terminal current and voltage of that element, for example,
V = IR. More examples of such relations, or element laws, will be presented in
Section 1.6.2. Further, when the restriction of non-interaction is satisfied, the
focus of circuit operation becomes the terminal currents and voltages, and not
the electromagnetic fields within the elements. Thus, these currents and voltages
become the fundamental signals within the circuit. Such signals are discussed
further in Section 1.8.

Let us dwell for a little longer on the third constraint. The lumped element
approximation requires that we be able to define a voltage V between a pair of
element terminals (for example, the two ends of a bulb filament) and a current
through the terminal pair. Defining a current through the element means that
the current in must equal the current out. Now consider the following thought
experiment. Apply a current pulse at one terminal of the filament at time instant
t and observe both the current into this terminal and the current out of the
other terminal at a time instant t + dt very close to t. If the filament were
long enough, or if dt were small enough, the finite speed of electromagnetic
waves might result in our measuring different values for the current in and the
current out.

We cannot make this problem go away by postulating constant currents
and voltages, since we are very much interested in situations such as those
depicted in Figure 1.7, in which a time-varying voltage source drives a circuit.

Instead, we fix the problem created by the finite propagation speeds of
electromagnetic waves by adding the third constraint, namely, that the timescale
of interest in our problem be much larger than electromagnetic propagation
delays through our elements. Put another way, the size of our lumped elements
must be much smaller than the wavelength associated with the V and I signals.10

Under these speed constraints, electromagnetic waves can be treated as if
they propagated instantly through a lumped element. By neglecting propagation

R1

R2
v2

+
+

-

Signal
generator -

v(t)

v1

+

-
F IGURE 1.7 Resistor circuit
connected to a signal generator.

10. More precisely, the wavelength that we are referring to is that wavelength of the electromag-
netic wave launched by the signals.
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effects, the lumped element approximation becomes analogous to the point-
mass simplification, in which we are able to ignore many physical properties of
elements such as their length, shape, size, and location.

Thus far, our discussion focused on the constraints that allowed us to treat
individual elements as being lumped. We can now turn our attention to circuits.
As defined earlier, circuits are sets of lumped elements connected by ideal wires.
Currents outside the lumped elements are confined to the wires. An ideal wire
does not develop a voltage across its terminals, irrespective of the amount of
current it carries. Furthermore, we choose the wires such that they obey the
lumped matter discipline, so the wires themselves are also lumped elements.

For their voltages and currents to be meaningful, the constraints that apply
to lumped elements apply to entire circuits as well. In other words, for voltages
between any pair of points in the circuit and for currents through wires to be
defined, any segment of the circuit must obey a set of constraints similar to
those imposed on each of the lumped elements.

Accordingly, the lumped matter discipline for circuits can be stated as

1. The rate of change of magnetic flux linked with any portion of the circuit
must be zero for all time.

2. The rate of change of the charge at any node in the circuit must be zero
for all time. A node is any point in the circuit at which two or more
element terminals are connected using wires.

3. The signal timescales must be much larger than the propagation delay of
electromagnetic waves through the circuit.

Notice that the first two constraints follow directly from the correspond-
ing constraints applied to lumped elements. (Recall that wires are themselves
lumped elements.) So, the first two constraints do not imply any new restrictions
beyond those already assumed for lumped elements.11

The third constraint for circuits, however, imposes a stronger restriction
on signal timescales than for elements, because a circuit can have a much larger
physical extent than a single element. The third constraint says that the cir-
cuit must be much smaller in all its dimensions than the wavelength of light at
the highest operating frequency of interest. If this requirement is satisfied, then
wave phenomena are not important to the operation of the circuit. The circuit
operates quasistatically, and information propagates instantaneously across it.
For example, circuits operating in vacuum or air at 1 kHz, 1 MHz, and 1 GHz
would have to be much smaller than 300 km, 300 m, and 300 mm, respectively.

11. As we shall see in Chapter 9, it turns out that voltages and currents in circuits result in electric
and magnetic fields, thus appearing to violate the set of constraints to which we promised to adhere.
In most cases these are negligible. However, when their effects cannot be ignored, we explicitly
model them using elements called capacitors and inductors.
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Most circuits satisfy such a restriction. But, interestingly, an uninterrupted
5000-km power grid operating at 60 Hz, and a 30-cm computer mother-
board operating at 1 GHz, would not. Both systems are approximately one
wavelength in size so wave phenomena are very important to their operation
and they must be analyzed accordingly. Wave phenomena are now becoming
important to microprocessors as well. We will address this issue in more detail
in Section 1.4.

When a circuit meets these three constraints, the circuit can itself be
abstracted as a lumped element with external terminals for which voltages and
currents can be defined. Circuits that adhere to the lumped matter discipline
yield additional simplifications in circuit analysis. Specifically, we will show in
Chapter 2 that the voltages and currents across the collection of lumped cir-
cuits obey simple algebraic relationships stated as two laws: Kirchhoff’s voltage
law (KVL) and Kirchhoff’s current law (KCL).

1.4 L I M I T A T I O N S O F T H E L U M P E D C I R C U I T
A B S T R A C T I O N

We used the lumped circuit abstraction to represent the circuit pictured in
Figure 1.4a by the schematic diagram of Figure 1.4b. We stated that it was
permissible to ignore the physical extent and topology of the wires connecting
the elements and define voltages and currents for the elements provided they
met the lumped matter discipline.

The third postulate of the lumped matter discipline requires us to limit
ourselves to signal speeds that are significantly lower than the speed of elec-
tromagnetic waves. As technology advances, propagation effects are becoming
harder to ignore. In particular, as computer speeds pass the gigahertz range,
increasing signal speeds and fixed system dimensions tend to break our abstrac-
tions, so that engineers working on the forefront of technology must constantly
revisit the disciplines upon which abstractions are based and prepare to resort
to fundamental physics if the constraints are violated.

As an example, let us work out the numbers for a microprocessor. In a
microprocessor, the conductors are typically encased in insulators such as sil-
icon dioxide. These insulators have dielectric constants nearly four times that
of free space, and so electromagnetic waves travel only half as fast through
them. Electromagnetic waves travel at the speed of approximately 1 foot or
30 cm per nanosecond in vacuum, so they travel at roughly 6 inches or 15 cm
per nanosecond in the insulators. Since modern microprocessors (for exam-
ple, the Alpha microprocessor from Digital/Compaq) can approach 2.5 cm in
size, the propagation delay of electromagnetic waves across the chip is on the
order of 1/6 ns. These microprocessors are approaching a clock rate of 2 GHz
in 2001. Taking the reciprocal, this translates to a clock cycle time of 1/2 ns.
Thus, the wave propagation delay across the chip is about 33% of a clock
cycle. Although techniques such as pipelining attempt to reduce the number of
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elements (and therefore distance) a signal traverses in a clock cycle, certain clock
or power lines in microprocessors can travel the full extent of the chip, and will
suffer this large delay. Here, wave phenomena must be modeled explicitly.

In contrast, slower chips built in earlier times satisfied our lumped matter
discipline more easily. For example, the MIPS microprocessor built in 1984 was
implemented on a chip that was 1 cm on a side. It ran at a speed of 20 MHz,
which translates to a cycle time of 50 ns. The wave propagation delay across
the chip was 1/15 ns, which was significantly smaller then the chip cycle time.

As another example, a Pentium II chip built in 1998 clocked at 400 MHz,
but used a chip size that was more or less the same as that of the MIPS
chip namely, about 1 cm on a side. As calculated earlier, the wave propaga-
tion delay across a 1-cm chip is about 1/15 ns. Clearly the 2.5-ns cycle time of
the Pentium II chip is still significantly larger than the wave propagation delay
across the chip.

Now consider a Pentium IV chip built in 2004 that clocked at 3.4 GHz, and
was roughly 1 cm on a side. The 0.29-ns cycle time is only four times the wave
propagation delay across the chip!

If we are interested in signal speeds that are comparable to the speed of
electromagnetic waves, then the lumped matter discipline is violated, and there-
fore we cannot use the lumped circuit abstraction. Instead, we must resort
to distributed circuit models based on elements such as transmission lines
and waveguides.12 In these distributed elements, the voltages and currents
at any instant of time are a function of the location within the elements. The
treatment of distributed elements are beyond the scope of this book.

The lumped circuit abstraction encounters other problems with time-
varying signals even when signal frequencies are small enough that propaga-
tion effects can be neglected. Let us revisit the circuit pictured in Figure 1.7 in
which a signal generator drives a resistor circuit. It turns out that under certain
conditions the frequency of the oscillator and the lengths and layout of the wires
may have a profound effect on the voltages. If the oscillator is generating a sine
wave at some low frequency, such as 256 Hz (Middle C in musical terms), then
the voltage divider relation developed in Chapter 2 (Equation 2.138) could be
used to calculate with some accuracy the voltage across R2. But if the frequency
of the sine wave were 100 MHz (1 × 108 Hertz), then we have a problem. As
we will see later, capacitive and inductive effects in the resistors and the wires
(resulting from electric fields and magnetic fluxes generated by the signal) will

12. In case you are wondering how the Pentium IV and similar chips get away with high clock
speeds, the key lies in designing circuits and laying them out on the chip in a way that most signals
traverse a relatively small fraction of the chip in a clock cycle. To enable succeeding generations
of the chip to be clocked faster, signals must traverse progressively shorter distances. A technique
called pipelining is the key enabling mechanism that accomplishes this. The few circuits in which
signals travel the length of the chip must be designed with extreme care using transmission line
analysis.
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seriously affect the circuit behavior, and these are not currently represented in
our model. In Chapter 9, we will separate these effects into new lumped ele-
ments called capacitors and inductors so our lumped circuit abstraction holds
at high frequencies as well.

All circuit model discussions in this book are predicated on the assumption
that the frequencies involved are low enough that the effects of the fields can be
adequately modeled by lumped elements. In Chapters 1 through 8, we assume
that the frequencies involved are even lower so we can ignore all capacitive and
inductive effects as well.

Are there other additional practical considerations in addition to the con-
straints imposed by the lumped matter discipline? For example, are we justified
in neglecting contact potentials, and lumping all battery effects in V? Can we
neglect all resistance associated with the wires, and lump all the resistive effects
in a series connected resistor? Does the voltage V change when the resistors
are connected and current flows? Some of these issues will be addressed in
Sections 1.6 and 1.7.

1.5 P R A C T I C A L T W O - T E R M I N A L E L E M E N T S

Resistors and batteries are two of our most familiar lumped elements. Such
lumped elements are the primitive building blocks of electronic circuits.
Electronic access to an element is made through its terminals. At times, ter-
minals are paired together in a natural way to form ports. These ports offer an
alternative view of how electronic access is made to an element. An example of
an arbitrary element with two terminals and one port is shown in Figure 1.8.
Other elements may have three or more terminals, and two or more ports.

Most circuit analyses are effectively carried out on circuits containing only
two-terminal elements. This is due in part to the common use of two-terminal
elements, and in part to the fact that most, if not all, elements having more
than two terminals are usually modeled using combinations of two-terminal
elements. Thus, two-terminal elements appear prominently in all electronic

v

i
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+

Terminal

Port

Terminal

Element

F IGURE 1.8 An arbitrary
two-terminal circuit element.
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circuit analyses. In this section, we discuss a couple of familiar examples of
two-terminal elements resistors and batteries.

1.5.1 B A T T E R I E S

Cell phone batteries, laptop batteries, flashlight batteries, watch batteries, car
batteries, calculator batteries, are all common devices in our culture. All are
sources of energy, derived in each case from an internal chemical reaction.

The important specifications for a battery are its nominal voltage, its total
store of energy, and its internal resistance. In this section, we will assume
that the internal resistance of a battery is zero. The voltage measured at the
terminals of a single cell is fundamentally related to the chemical reaction
releasing the energy. In a flashlight battery, for example, the carbon central
rod is approximately 1.5 V positive with respect to the zinc case, as noted
in Figure 1.9a. In a circuit diagram, such a single-cell battery is usually rep-

+

-

1.5 V
V

+

-

(a) (b)

F IGURE 1.9 Symbol for battery.

resented schematically by the symbol shown in Figure 1.9b. Of course, to
obtain a larger voltage, several cells can be connected in series: the positive
terminal of the first cell connected to the negative terminal of the second cell,
and so forth, as suggested pictorially in Figure 1.10. Multiple-cell batteries are
usually represented by the symbol in Figure 1.10b, (with no particular cor-
respondence between the number of lines and the actual number of cells in
series).

+

-
3 V

V
+

-

(a)

(b)

F IGURE 1.10 Cells in series.

The second important parameter of a battery is the total amount of energy
it can store, often measured in joules. However, if you pick up a camcorder or
flashlight battery, you might notice the ratings of ampere-hours or watt-hours.
Let us reconcile these ratings. When a battery is connected across a resistive
load in a circuit, it delivers power. The lightbulb in Figure 1.4a is an example
of a resistive load.

The power delivered by the battery is the product of the voltage and the
current:

p = VI. (1.2)

Power is delivered by the battery when the current I flowing out of the
positive voltage terminal of the battery is positive. Power is measured in watts.
A battery delivers one watt of power when V is one volt and I is one ampere.

Power is the rate of delivery of energy. Thus the amount of energy w
delivered by the battery is the time integral of the power.

If a constant amount of power p is delivered over an interval T, the energy w
supplied is

w = pT. (1.3)

The battery delivers one joule of energy if it supplies one watt of power
over one second. Thus, joules and watt-seconds are equivalent units. Similarly,
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if a battery delivers one watt for an hour, then we say that it has supplied one
watt-hour (3600 joules) of energy.

Assuming that the battery terminal voltage is constant at V, because the
power delivered by the battery is the product of the voltage and the current,
an equivalent indication of the power delivered is the amount of current being
supplied. Similarly, the product of current and the length of time the bat-
tery will sustain that current is an indication of the energy capacity of the
battery. A car battery, for instance, might be rated at 12 V and 50 A-hours.
This means that the battery can provide a 1-A current for 50 hours, or a 100-A
current for 30 minutes. The amount of energy stored in such a battery is

Energy = 12 × 50 = 600 watt-hours = 600 × 3600 = 2.16 × 106 joules.

e x a m p l e 1.1 a l i t h i u m - i o n b a t t e r y A Lithium-Ion (Li-Ion)
battery pack for a camcorder is rated as 7.2 V and 5 W-hours. What are its equivalent
ratings in mA-hours and joules?

Since a joule( J ) is equivalent to a W-second, 5 W-hours is the same as 5 × 3600 =
18000 J.

Since the battery has a voltage of 7.2 V, the battery rating in ampere-hours is 5/7.2 =
0.69. Equivalently, its rating in mA-hours is 690.

e x a m p l e 1.2 e n e r g y c o m p a r i s o n Does a Nickel-Cadmium
(Ni-Cad) battery pack rated at 6 V and 950 mA-hours store more or less energy than
a Li-Ion battery pack rated at 7.2 V and 900 mA-hours?

We can directly compare the two by converting their respective energies into joules. The
Ni-Cad battery pack stores 6 × 950 × 3600/1000 = 20520 J, while the Li-Ion battery
pack stores 7.2 × 900 × 3600/1000 = 23328 J. Thus the Li-Ion battery pack stores
more energy.

When a battery is connected across a resistor, as illustrated in Figure 1.4,
we saw that the battery delivers energy at some rate. The power was the rate
of delivery of energy. Where does this energy go? Energy is dissipated by
the resistor, through heat, and sometimes even light and sound if the resistor
overheats and explodes! We will discuss resistors and power dissipation in
Section 1.5.2.

If one wishes to increase the current capacity of a battery without increas-
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F IGURE 1.11 Cells in parallel.

ing the voltage at the terminals, individual cells can be connected in parallel,
as shown in Figure 1.11. It is important that cells to be connected in paral-
lel be nearly identical in voltage to prevent one cell from destroying another.
For example, a 2-V lead-acid cell connected in parallel with a 1.5 V flashlight
cell will surely destroy the flashlight cell by driving a huge current through it.
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The corresponding constraint for cells connected in series is that the nom-
inal current capacity be nearly the same for all cells. The total energy
stored in a multicell battery is the same for series, parallel, or series-parallel
interconnections.

1.5.2 L I N E A R R E S I S T O R S

Resistors come in many forms (see Figure 1.12), ranging from lengths of

F IGURE 1.12 Discrete resistors
(above), and Deposits integrated-
circuit resistors (below). The image
on the bottom shows a small
region of the MAX807L micro-
processor supervisory circuit from
Maxim Integrated Products, and
depicts an array of silicon-
chromium thin-film resistors, each
with 6 µm width and 217.5 µm
length, and nominal resistance
50 k�. (Photograph Courtesy of
Maxim Integrated Products.)

nichrome wire used in toasters and electric stoves and planar layers of polysili-
con in highly complex computer chips, to small rods of carbon particles encased
in Bakelite commonly found in electronic equipment. The symbol for resistors
in common usage is shown in Figure 1.13.

R

F IGURE 1.13 Symbol for
resistor.

Over some limited range of voltage and current, carbon, wire and
polysilicon resistors obey Ohm’s law:

v = iR (1.4)

that is, the voltage measured across the terminals of a resistor is linearly
proportional to the current flowing through the resistor. The constant of pro-
portionality is called the resistance. As we show shortly, the resistance of a
piece of material is proportional to its length and inversely proportional to its
cross-sectional area.

In our example of Figure 1.4b, suppose that the battery is rated at 1.5 V.
Further assume that the resistance of the bulb is R = 10 �. Assume that the
internal resistance of the battery is zero. Then, a current of i = v/R = 150 mA
will flow through the bulb.

e x a m p l e 1.3 m o r e o n r e s i s t a n c e In the circuit in Figure 1.4b,
suppose that the battery is rated at 1.5 V. Suppose we observe through some means a
current of 500 mA through the resistor. What is the resistance of the resistor?

For a resistor, we know from Equation 1.4 that

R = v

i

Since the voltage v across the resistor is 1.5 V and the current i through the resistor is
500 mA, the resistance of the resistor is 3 �.

The resistance of a piece of material depends on its geometry. As illus-
trated in Figure 1.14, assume the resistor has a conducting channel with
cross-sectional area a, length l, and resistivity ρ. This channel is terminated
at its extremes by two conducting plates that extend to form the two terminals
of the resistor. If this cylindrical piece of material satisfies the lumped matter
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Area a

i

+ -v

l

Resistivity ρ F IGURE 1.14 A cylindrical-wire
shaped resistor.

discipline and obey’s Ohm’s law, we can write13

R = ρ
l

a
(1.5)

Equation 1.5 shows that the resistance of a piece of material is proportional to
its length and inversely proportional to its cross-sectional area.

Similarly, the resistance of a cuboid shaped resistor with length l, width w,
and height h is given by

R = ρ
l

wh
(1.6)

when the terminals are taken at the pair of surfaces with area wh.

e x a m p l e 1.4 r e s i s t a n c e o f a c u b e Determine the resistance
of a cube with sides of length 1 cm and resistivity 10 ohm-cms, when a pair of opposite
surfaces are chosen as the terminals.

Substituting ρ = 10 �-cm, l = 1 cm, w = 1 cm, and h = 1 cm in Equation 1.6, we get
R = 10 �.

e x a m p l e 1.5 r e s i s t a n c e o f a c y l i n d e r By what factor is
the resistance of a wire with cross-sectional radius r greater than the resistance of a wire
with cross-sectional radius 2r?

A wire is cylindrical in shape. Equation 1.5 relates the resistance of a cylinder to its
cross-sectional area. Rewriting Equation 1.5 in terms of the cross-sectional radius r
we have

R = ρ
l

π r 2
.

From this equation it is clear that the resistance of a wire with radius r is four times
greater than that of a wire with cross-sectional radius 2r.

13. See Appendix A.3 for a derivation.
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e x a m p l e 1.6 c a r b o n - c o r e r e s i s t o r s The resistance of small
carbon-core resistors can range from 1 � to 106 �. Assuming that the core of these
resistors is 1 mm in diameter and 5 mm long, what must be the range of resistivity of
the carbon cores?

Given a 1-mm diameter, the cross-sectional area of the core is A ≈ 7.9 × 10−7 m2.
Further, its length is l = 5 × 10−3m. Thus, A/l ≈ 1.6 × 10−4 m.

Finally, using Equation 1.5, with 1 � ≤ R ≤ 106 �, it follows that the approximate
range of its resistivity is 1.6 × 10−4 �m ≤ ρ ≤ 1.6 × 102�m.

e x a m p l e 1.7 p o l y - c r y s t a l l i n e s i l i c o n r e s i s t o r

A thin poly-crystalline silicon resistor is 1 µm thick, 10 µm wide, and 100 µm long,
where 1 µm is 10−6 m. If the resistivity of its poly-crystalline silicon ranges from
10−6 �m to 102 �m, what is the range of its resistance?

The cross-sectional area of the resistor is A = 10−11 m, and its length is l = 10−4 m.
Thus l/A = 107 m−1. Using Equation 1.5, and the given range of resistivity, ρ, the
resistance satisfies 10 � ≤ R ≤ 109 �.

e x a m p l e 1.8 r e s i s t a n c e o f p l a n a r m a t e r i a l s o n

a c h i p Figure 1.15 shows several pieces of material with varying geometries.
Assume all the pieces have the same thickness. In other words, the pieces of material
are planar. Let us determine the resistance of these pieces between the pairs of terminals
shown. For a given thickness, remember that the resistance of a piece of material in the
shape of a cuboid is determined by the ratio of the length to the width of the piece of
material (Equation 1.6). Assuming that Ro is the resistance of a piece of planar material

F IGURE 1.15 Resistors of
various shapes.
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with unit length and width, show that the resistance of a piece of planar material with
length L and width W is (L/W )Ro.

From Equation 1.6, the resistance of a cuboid shaped material with length L,
width W, height H, and resistivity ρ is

R = ρ
L

WH
. (1.7)

We are given that the resistance of a piece of the same material with L = 1 and W = 1
is Ro. In other words,

Ro = ρ
1

H
. (1.8)

Substituting Ro = ρ/H in Equation 1.7, we get

R = L

W
Ro. (1.9)

Now, assume Ro = 2 k� for our material. Recall that Ohms are the unit of resistance
and are written as �. We denote a 1000-� value as kilo-� or k�. Assuming that the
dimensions of the pieces of material shown in Figure 1.15 are in µ-m, or micrometers,
what are their resistances?

First, observe that pieces M1, M2, and M6 must have the same resistance of 2 k� because
they are squares (in Equation 1.9, notice that L/W = 1 for a square).

Second, M3 and M7 must have the same resistance because both have the same ratio
L/W = 3. Therefore, both have a resistance of 3 × 2 = 6 k�. Among them, M4 has
the biggest L/W ratio of 12. Therefore it has the largest resistance of 24 k�. M5 has the
smallest L/W ratio of 1/3, and accordingly has the smallest resistance of 2/3 k�.

Because all square pieces made out of a given material have the same resistance (provided,
of course, the pieces have the same thickness), we often characterize the resistivity of
planar material of a given thickness with

R� = Ro, (1.10)

where Ro is the resistance of a piece of the same material with unit length and width.
Pronounced ‘‘R square,’’ R� is the resistance of a square piece of material.

e x a m p l e 1.9 m o r e o n p l a n a r r e s i s t a n c e s Referring
back to Figure 1.15, suppose an error in the material fabrication process results in each
dimension (L and W) increasing by a fraction e. By what amount will the resistances of
each of the pieces of material change?
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Recall that the resistance R of a planar rectangular piece of material is proportional to
L/W. If each dimension increases by a fraction e, the new length becomes L(1 + e) and
the new width becomes W(1 + e). Notice that the resistance given by

R = L(1 + e)

W(1 + e)
Ro = L

W
Ro

is unchanged.

e x a m p l e 1.10 r a t i o o f r e s i s t a n c e s Referring again to
Figure 1.15, suppose the material fabrication process undergoes a ‘‘shrink’’ to decrease
each dimension (this time around, increasing the thickness H in addition to L and
W) by a fraction α (e.g., α = 0.8). Assume further, that the resistivity ρ changes by
some other fraction to ρ′. Now consider a pair of resistors with resistances R1 and
R2, and original dimensions L1, W1 and L2, W2 respectively, and the same thickness
H. By what fraction does the ratio of the resistance values change after the process
shrink?

From Equation 1.7, the ratio of the original resistance values is given by

R1

R2
= ρL1/(W1H)

ρL2/(W2H)
= L1/W1

L2/W2
.

Let the resistance values after the process shrink be R′
1 and R′

2. Since each dimension
shrinks by the fraction α, each new dimension will be α times the original value. Thus,
for example, the length L1 will change to αL1. Using Equation 1.7, the ratio of the new
resistance values is given by

R′
1

R′
2

= ρ′αL1/(αW1αH)

ρ′αL2/(αW2αH)
= L1/W1

L2/W2

In other words, the ratio of the resistance values is unchanged by the process
shrink.

The ratio property of planar resistance that is that the ratio of the resistances
of rectangular pieces of material with a given thickness and resistivity is independent
of the actual values of the length and the width provided the ratio of the length and the
width is fixed enables us to perform process shrinks (for example, from a 0.25-µm
process to a 0.18-µm process) without needing to change the chip layout. Process
shrinks are performed by scaling the dimensions of the chip and its components by the
same factor, thereby resulting in a smaller chip. The chip is designed such that relevant
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F IGURE 1.16 A silicon wafer.
(Photograph Courtesy of Maxim
Integrated Products.)

F IGURE 1.17 A chip photo of
Intel’s 2-GHz Pentium IV processor
implemented in 0.18µm-technology.
The chip is roughly 1 cm on a side.
(Photograph courtesy of Intel
Corp.)

signal values are derived as a function of resistance ratios,14 thereby ensuring that the
chip manufactured after a process shrink continues to function as before.

VLSI stands for ‘‘Very Large Scale Integration.’’ Silicon-based VLSI is the technology
behind most of today’s computer chips. In this technology, lumped planar elements
such as wires, resistors, and a host of others that we will soon encounter, are fabricated
on the surface of a planar piece of silicon called a wafer (for example, see Figures 1.15
and 1.12). A wafer has roughly the shape and size of a Mexican tortilla or an Indian
chapati (see Figure 1.16). The planar elements are connected together using planar wires
to form circuits. After fabrication, each wafer is diced into several hundred chips or
‘‘dies,’’ typically, each the size of a thumbnail. A Pentium chip, for example, contains
hundreds of millions of planar elements (see Figure 1.17). Chips are attached, or bonded,
to packages (for example, see Figure 12.3.4), which are in turn mounted on a printed-
circuit board along with other discrete components such as resistors and capacitors (for
example, see Figure 1.18) and wired together.

14. We will study many such examples in the ensuing sections, including the voltage divider in
Section 2.3.4 and the inverter in Section 6.8.
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F IGURE 1.18 A printed-circuit
board containing several inter-
connected chip packages and
discrete components such as
resistors (tiny box-like objects) and
capacitors (tall cylindrical objects).
(Photograph Courtesy of Anant
Agarwal, the Raw Group.)

As better processes become available, VLSI fabrication processes undergo periodic
shrinks to reduce the size of chips without needing significant design changes. The
Pentium III, for example, initially appeared in the 0.25-µm process, and later in the
0.18-µm process. The Pentium IV chip shown in Figure 1.17 initially appeared in a
0.18-µm process in the year 2000, and later in 0.13-µm and 0.09-µm processes in
2001 and 2004, respectively.

There are two important limiting cases of the linear resistor: open circuits
and short circuits. An open circuit is an element through which no current
flows, regardless of its terminal voltage. It behaves like a linear resistor in the
limit R → ∞.

A short circuit is at the opposite extreme. It is an element across which no
voltage can appear regardless of the current through it. It behaves like a linear
resistor in the limit R → 0. Observe that the short circuit element is the same
as an ideal wire. Note that neither the open circuit nor the short circuit dissipate
power since the product of their terminal variables (v and i ) is identically zero.

Most often, resistances are thought of as time-invariant parameters. But if
the temperature of a resistor changes, then so too can its resistance. Thus, a
linear resistor can be a time-varying element.

The linear resistor is but one example of a larger class of resistive elements.
In particular, resistors need not be linear; they can be nonlinear as well. In
general, a two-terminal resistor is any two-terminal element that has an alge-
braic relation between its instantaneous terminal current and its instantaneous
terminal voltage. Such a resistor could be linear or nonlinear, time-invariant or
time-varying. For example, elements characterized by the following element
relationships are all general resistors:

Linear resistor: v(t) = i(t)R(t)

Linear, time-invariant resistor: v(t) = i(t)R

Nonlinear resistor: v(t) = Ki(t)3
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However, as introduced in Chapter 9, elements characterized by these
relationships are not general resistors:

v(t) = L
di(t)

dt

v(t) = 1

C

∫ t

−∞
i(t′)dt′

What is important about the general resistor is that its terminal current
and voltage depend only on the instantaneous values of each other. For our
convenience, however, an unqualified reference to a resistor in this book means
a linear, time-invariant resistor.

1.5.3 A S S O C I A T E D V A R I A B L E S C O N V E N T I O N

Equation 1.4 implies a specific relation between reference directions chosen for
voltage and current. This relation is shown explicitly in Figure 1.19: the arrow

v

Ri

+ -

F IGURE 1.19 Definition of
terminal variables v and i for the
resistor.

that defines the positive flow of current (flow of positive charge) is directed in at
the resistor terminal assigned to be positive in voltage. This convention, referred
to as associated variables, is generalized to an arbitrary element in Figure 1.20
and will be followed whenever possible in this text. The variables v and i are
called the terminal variables for the element. Note that the values of each of
these variables may be positive or negative depending on the actual direction
of current flow or the actual polarity of the voltage.

i

v

i

-

+

F IGURE 1.20 Definition of the
terminal variables v and i for a
two-terminal element under the
associated variables convention.

Associated Variables Convention Define current to flow in at the device
terminal assigned to be positive in voltage.

When the voltage v and current i for an element are defined under the
associated variables convention, the power into the element is positive when
both v and i are positive. In other words, energy is pumped into an element
when a positive current i is directed into the voltage terminal marked positive.
Depending on the type of element, the energy is either dissipated or stored.
Conversely, power is supplied by an element when a positive current i is directed
out of the voltage terminal marked positive. When the terminal variables for a
resistor are defined according to associated variables, the power dissipated in
the resistor is a positive quantity, an intuitively satisfying result.

While Figure 1.20 is quite simple, it nonetheless makes several important
points. First, the two terminals of the element in Figure 1.20 form a single port
through which the element is addressed. Second, the current i circulates through
that port. That is, the current that enters one terminal is instantaneously equal
to the current that exits the other terminal. Thus, according to the lumped
matter discipline, net charge cannot accumulate within the element. Third, the
voltage v of the element is defined across the port. Thus, the element is assumed
to respond only to the difference of the electrical potentials at its two terminals,
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and not to the absolute electric potential at either terminal. Fourth, the current is
defined to circulate positively through the port by entering the positive voltage
terminal and exiting the negative voltage terminal. Which terminal is chosen as
the positive voltage terminal is arbitrary, but the relation defined between the
current and voltage is not. Lastly, for brevity, the current that exits the negative
voltage terminal is usually never labeled, but it is always understood to be equal
to the current that enters the positive voltage terminal.

e x a m p l e 1.11 t e r m i n a l v a r i a b l e s v e r s u s e l e m e n t

p r o p e r t i e s Figures 1.21a and b shows two possible legal definitions for ter-
minal variables for a 3 V battery. What is the value of terminal variable v in each
case?

For Figure 1.21a, we can see that terminal variable v = 3 V. For Figure 1.21b, however,
v = −3 V .

v

i

-

+

3 V

(a)

+

-

v

i +

-

3 V

(b)

-

+

F IGURE 1.21 Terminal variable
assignments for a battery.

This example highlights the distinction between a terminal variable and an element
property. The battery voltage of 3 V is an element property, while v is a terminal
variable that we have defined. Element properties are usually written inside the element
symbol, or if that is inconvenient, they are written next to the element (e.g., the battery
voltage). Terminal polarities and terminal variables are written close to the terminals.

e x a m p l e 1.12 f u n w i t h t e r m i n a l v a r i a b l e s Figure
1.22 shows some two-terminal element connected to an arbitrary circuit at the points
x and y. The element terminal variables v and i are defined according to the associ-

v

i

-

+
x

y

2 A

F IGURE 1.22 Terminal variable
assignments for a two-terminal
element.

ated variables convention. Suppose that a current of 2 A flows into the circuit terminal
marked x. What is the value of terminal variable i?

Since the chosen direction of the terminal variable i is opposite to that of the 2 A current,
i = −2 A.

Now suppose that the two terminal element is a resistor (see Figure 1.23) with resistance

v

i

-

+
x

y

2 A

R

F IGURE 1.23 Terminal variable
assignments for a resistor.

R = 10 Ohms. Determine the value of v.

We know that under the associated variables convention the terminal variables
for a resistor are related as

v = iR

Given that R = 10 � and i = −2 A,

v = (−2)10 = −20 V

Next, suppose that the two terminal element is a 3 V battery with the polarity shown
in Figure 1.24a. Determine the values of terminal variables v and i.

As determined earlier, i = −2 A. For the polarity of the battery shown in Figure 1.24a,
v = 3 V.
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Now, suppose the 3 V battery is connected with the polarity shown in Figure 1.24b.
Determine that values of v and i.

As before, i = −2 A. With the reversed battery connection shown in Figure 1.24b, v

i

-

+

3 V

(a)

+

-

x

y

2 A

(b)

v

i

-

+

3 V
+

-

x

y

2 A

F IGURE 1.24 The two-terminal
element is a battery.

v = −3 V.

Under the associated variables convention, the instantaneous power p supplied
into an element is given by

p = vi (1.11)

with units of watts (W).

Note that both v and i, and therefore the instantaneous power p, can be
functions of time. For a resistor, p = vi represents the instantaneous power
dissipated by the resistor.

Correspondingly, the amount of energy (in units of joules) supplied to an
element during an interval of time between t1 and t2 under the associated
variables convention is given by

w =
∫ t2

t1
vi dt. (1.12)

For a resistor, by noting that v = iR from Equation 1.4, the power relation
for a two-terminal element (Equation 1.11) can be equivalently written as

p = i 2R (1.13)

or

p = v 2

R
. (1.14)

e x a m p l e 1.13 p o w e r i n t o a r e s i s t o r Determine the power
for the resistor in Figure 1.23. Confirm mathematically that the power is indeed supplied
into the resistor.

We know that i = −2 A and v = −20 V. Therefore, the power is given by

p = vi = (−20V )(−2A) = 40 W

By our associated variables convention, the product p = vi yields the power supplied
into the element. Thus, we can confirm that 40 W of power is being supplied into the
resistor. From the properties of a resistor, we also know that this power is dissipated in
the form of heat.
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e x a m p l e 1.14 p o w e r s u p p l i e d b y a b a t t e r y Determine
the power for the battery using the two assignments of terminal variables in Figures 1.25a
and 1.25b.

For the assignment of terminal variables in Figure 1.25a, i = −2 A and v = 3 V. Thus,
by associated variables, power into the battery is given by

p = vi = (3V )(−2A) = −6 W

Since the power into the battery is negative, the power supplied by the battery is positive.
Thus, in the circuit of Figure 1.25a, the battery is delivering power.

Next, let us analyze the same circuit with the assignment of terminal variables in
v

i

-

+

3 V

(b)

+

-

x

y

2 A

v

i

-

+

3 V

(a)

+

-

x

y

2 A

F IGURE 1.25 Alternative
assignments of terminal variables.

Figure 1.25b. For this assignment, i = 2 A and v = −3 V. Thus, by associated variables,
power into the battery is given by

p = vi = (−3V )(2A) = −6 W

In other words, the battery is delivering 6 watts of power. Since the circuit is the same, it
is not surprising that our result has not changed when the terminal variable assignments
are reversed.

e x a m p l e 1.15 p o w e r s u p p l i e d v e r s u s p o w e r

a b s o r b e d b y a b a t t e r y In simple circuits, for example, circuits con-
taining a single battery, we do not have to undergo the rigor of associated variables
to determine whether power is being absorbed or supplied by an element. Let us work
out such an example. In our lightbulb circuit of Figure 1.4b, suppose that the battery
is rated at 1.5 V and 1500 J. Assume that the internal resistance of the battery is zero.
Further assume that the resistance of the bulb is R = 10 �. What is the power dissipated
in the resistor?

The power dissipated in the resistor is given by

p = VI = V2

R
= 1.52

10
= 0.225 W

Since the entire circuit comprises a battery and a resistor, we can state without a lot of
analysis that the resistor dissipates power and the battery supplies it. How much power
does the battery provide when it is connected to the 10-� resistor? Suppose the battery
supplies a current I. We can quickly compute the value of this current as:

I = V

R
= 1.5

10
= 0.15 A
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Thus the power delivered by the battery is given by

p = VI = 1.5 × 0.15 = 0.225 W

Not surprisingly, the power delivered by the battery is the same as the power dissipated
in the resistor. Note that since the circuit current I has been defined to be directed out of
the positive battery terminal in Figure 1.4b, and since the current is positive, the battery
is supplying power.

How long will our battery last when it is connected to the 10-� resistor? Since the
battery is supplying 0.225 W of power, and since a watt represents energy dissipation
at the rate of one joule per second, the battery will last 1500/0.225 = 6667 s.

e x a m p l e 1.16 p o w e r r a t i n g o f a r e s i s t o r In a circuit
such as that shown in Figure 1.4b, the battery is rated at 7.2 V and 10000 J. Assume that
the internal resistance of the battery is zero. Further assume that the resistance in the
circuit is R = 1 k�. You are given that the resistor can dissipate a maximum of 0.5 W
of power. ( In other words, the resistor will overheat if the power dissipation is greater
than 0.5 W.) Determine the current through the resistor. Further, determine whether
the power dissipation in the resistor exceeds its maximum rating.

The current through the resistor is given by

I = V

R
= 7.2

1000
= 7.2 mA

The power dissipation in the resistor is given by

p = I 2R = (7.2 × 10−3)2103 = 0.052 W

Clearly, the power dissipation in the resistor is well within its capacity.

1.6 I D E A L T W O - T E R M I N A L E L E M E N T S

As we saw previously, the process of discretization can be viewed as a way
of modeling physical systems. For example, the resistor is a lumped model
for a lightbulb. Modeling physical systems is a major motivation for studying
electronic circuits. In our lightbulb circuit example, we used lumped electrical
elements to model electrical components such as bulbs and batteries. In general,
modeling physical systems involves representing real-world physical processes,
whether they are electrical, chemical, or mechanical, in terms of a set of ideal
electrical elements. This section introduces a set of ideal two-terminal elements
including voltage and current sources, and ideal wires and resistors, which form
our primitives in the vocabulary of circuits.
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The same set of ideal two-terminal elements serve to build either informa-
tion processing or energy processing systems as well. Information and energy
processing includes the communication, storage, or transformation of informa-
tion or energy, and is a second major motivation for studying electronic circuits.
Whether we are interested in modeling systems or in information and energy
processing, it is essential to be able to represent five basic processes in terms of
our lumped circuit abstraction.

1. Sources of energy or information

2. Flow of energy or information in a system

3. Loss of energy or information in a system

4. Control of energy flow or information flow by some external force

5. Storage of energy or information

We will discuss ideal two-terminal elements that represent the first three
of these in this section, deferring control and storage until Chapters 6 and 9,
respectively.

1.6.1 I D E A L V O L T A G E S O U R C E S , W I R E S ,
A N D R E S I S T O R S

Familiar primary sources of energy in our daily lives are sunlight, oil, and coal.
Secondary sources would be power plants, gasoline engines, home-heating
furnaces, or flashlight batteries. In heating systems, energy flows through air
ducts or heating pipes; in electrical systems the flow is through copper wires.15

Similarly, information sources include speech, books, compact discs, videos,
(a)

+

-

V
+

-
V

(b)

+

-
v(t)

(c)

F IGURE 1.26 Circuit symbol for
a voltage source: (a) battery;
(b) voltage source; (c) voltage
source.

and the web (some of it, anyway!). Information flow in speech systems is
through media such as air and water; in electronic systems, such as computers
or phones, the flow relies on conducting wires. Sensors such as microphones,
magnetic tape heads, and optical scanners convert information from various
forms into an electrical representation. None of these elements is ideal, so our
first task is to invent ideal energy or information sources and ideal conductors
for energy or information flow.

Conceptually, it is relatively easy to extrapolate from known properties
of a battery to postulate an ideal voltage source as a device that maintains a
constant voltage at its terminals regardless of the amount of current drawn
from those terminals. To distinguish such an ideal element from a battery16

(see Figure 1.26a), we denote a voltage source by a single circle with polarity

15. Or, more accurately, in the fields between the wires.

16. In general, a physical battery has some internal resistance, which we ignored in our previous
examples. A more precise relationship between the ideal voltage source and the battery is developed
in Section 1.7.
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markings inside it, as in Figure 1.26b. If the voltage source supplies a voltage V,
then we also include the V symbol inside the circle (or just outside the circle if
there is not enough room to write the symbol inside). In the same manner, we
might also represent an information source, such as a microphone or a sensor, as
a voltage source providing a time-varying voltage v(t) at its output (Figure 1.26c).
We can assume that the voltage v(t) depends solely on the microphone signal
and is independent of the amount of current drawn from the terminals. (Note
that V and v(t) in Figure 1.26 are element values and not terminal variables.)

We will see two types of voltage sources: independent and dependent. An
independent voltage source supplies a voltage independent of the rest of the
circuit. Accordingly, independent sources are a means through which inputs
can be made to a circuit. Power supplies, signal generators, and microphones
are examples of independent voltage sources. The circle symbol in Figure 1.26b
represents an independent voltage source. In contrast to an independent voltage
source, a dependent voltage source supplies a voltage as commanded by a signal
from within the circuit of which the source is a part. Dependent sources are
most commonly used to model elements having more than two terminals. They
are represented with a diamond symbol; we shall see examples of these in future
chapters.

In a manner similar to our invention of the ideal voltage source, we pos-
tulate an ideal conductor to be one in which any amount of current can flow
without loss of voltage or power. The symbol for an ideal conductor is shown

(a) (b)

F IGURE 1.27 Circuit symbol for
an ideal conductor: (a) perfect
conductor; (b) wire with nonzero
resistance.

in Figure 1.27a. Notice that the symbol is just a line. The ideal conductor is no
different from the ideal wire we saw earlier. Ideal conductors can be used to
represent a channel for fluid flow in hydrodynamic systems.

Any physical length of wire will have some nonzero resistance. The resis-
tance dissipates energy and represents a loss of energy from the system. If this
resistance is important in a particular application, then we can model the wire
as an ideal conductor in series with a resistor, as suggested in Figure 1.27b. To
be consistent, we now state that the resistor symbol introduced in Figure 1.19
represents an ideal linear resistor, which by definition obeys Ohm’s law

v = iR (1.15)

for all values of voltage and current. Resistors can be used to model processes
such as friction that result in energy loss in a system. Note that because this
element law is symmetric, it is unchanged if the polarities of the current and
voltage definitions are reversed. Sometimes it is convenient to work with recip-
rocal resistance, namely the conductance G having the units of Siemens (S). In
this case,

G = 1

R
(1.16)

and

i = Gv. (1.17)
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Most often, resistances and conductances are thought of as time-invariant
parameters. But if the temperature of a resistor changes, then so too can
its resistance and conductance. Thus, a linear resistor can be a time-varying
element.

1.6.2 E L E M E N T L A W S

From the viewpoint of circuit analysis, the most important characteristic of a
two-terminal element is the relation between the voltage across and the current
through its terminals, or the v i relationship for short. This relation, called
the element law, represents the lumped-parameter summary of the electronic
behavior of the element. for example, as seen in Equation 1.15,

v = iR

is the element law for the resistor. The element law is also referred to as the
constituent relation, or the element relation. In order to standardize the manner

i

v

Slope =
1

R
---

0

F IGURE 1.28 Plot of the v–i
relationship for a resistor.

in which element laws are expressed, the current and voltage for all two-terminal
elements are defined according to the associated variables convention shown in
Figure 1.19. Figure 1.28 shows a plot of the v i relationship for a resistor when
v and i are defined according to the associated variables convention.

The constituent relation for the independent voltage source in Figure 1.26b

i

v
V0

(b)

-

+

i

vV
+

-

(a)

F IGURE 1.29 (a) Independent
voltage source with assigned
terminal variables, (b) v–i relation-
ship for the voltage source.

supplying a voltage V is given by

v = V (1.18)

when its terminal variables are defined as in Figure 1.29a. A plot of the v i
relationship is shown in Figure 1.29b. Observe the clear distinction between
the element parameter V and its terminal variables v and i.

Similarly, the element law for the ideal wire (or a short circuit) is given by

v = 0. (1.19)

Figure 1.30a shows the assignment of terminal variables and Figure 1.30b
plots the v i relationship.

Finally, the element law for an open circuit is given by

i = 0. (1.20)

Figure 1.31a shows the assignment of terminal variables and Figure 1.31b
plots the v − i relationship.

Comparing the v i relationship for the resistor in Figure 1.28 to those for a
short circuit in Figure 1.30 and an open circuit in Figure 1.31, it is evident that
the short circuit and open circuit are limiting cases for a resistor. The resistor
approaches the short circuit case as its resistance approaches zero. The resistor
approaches the open circuit case as its resistance approaches infinity.
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e x a m p l e 1.17 m o r e o n t e r m i n a l v a r i a b l e s v e r s u s

e l e m e n t p r o p e r t i e s Figure 1.32 shows a 5-V voltage source connected
to an arbitrary circuit at the points x and y. Its terminal variables v and i are defined

-

+

i

v

(a)

i

v
0

(b)

F IGURE 1.30 (a) Ideal wire with
terminal variables, (b) v–i relation-
ship for the wire.

according to the associated variables convention as indicated in the figure. Suppose
that a current of 2 A flows into the circuit terminal marked x. What are the values of
v and i?

For the assignment of terminal variables shown in Figure 1.32, i = 2 A and
v = −5 V.

Notice the distinction between terminal variables and element properties in this
example. The source voltage of 5 V is an element property, while v is a terminal variable
that we have defined. Similarly, the polarity markings inside the circle are a property of
the source, while the polarity markings outside the circle representing the source relate
to the terminal variable v. When possible, we attempt to write the element values inside
the element symbol, while the terminal variables are written outside.

e x a m p l e 1.18 c h a r t i n g V I r e l a t i o n s h i p s An experi-
mental way of charting the v i relationship for a two-terminal element is to connect
an oscilloscope and an oscillator (or a signal generator set to produce an oscillatory out-
put) in a curve-plotter configuration as suggested in Figure 1.33. The oscillator produces
a voltage given by

i

v
0

(b)

-

+

i

v

(a)

F IGURE 1.31 (a) An open
circuit element with terminal
variables, (b) v–i relationship
for the open circuit.

vi = Vcos(ωt).

The basic concept is to use the oscillator to drive current into some arbitrary two-terminal
device, and measure the resulting voltage vD and current iD. Notice that the terminal
variables for the two-terminal device, vD and iD, are defined according to the associated
variables convention. As can be seen from the circuit, the horizontal deflection will be
proportional to vD, and the vertical deflection will be proportional to vR, and hence
to iD, assuming resistor R obeys Ohm’s law, and the horizontal and vertical amplifier
inputs to the oscilloscope draw negligible current.

1.6.3 T H E C U R R E N T S O U R C E — A N O T H E R I D E A L
T W O - T E R M I N A L E L E M E N T

In some fields of engineering, there are two obvious sources of power that
appear to have dual properties. Think, for example, of air pumps. For an
ordinary tire pump, the higher the air pressure, the harder the person at the
pump-handle has to work. But with a household vacuum cleaner, also an air
pump of sorts, you can hear the motor actually speed up if the air flow out of
the machine is blocked, and a measurement of motor current would confirm
that the power to the motor goes down under these conditions.
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It seems reasonable, then, to look for an electrical source that has charac-
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x

y

2 A

5 V
+

-

F IGURE 1.32 Terminal variables
versus element properties.

teristics that are the dual of those of the battery, in that the roles of current and
voltage are interchanged. From the point of view of v i characteristics, this is
a simple task. The ideal voltage source appears as a vertical line in v i space,
so this other source, which we call an ideal current source, should appear as a
horizontal line, as in Figure 1.34. Such a source maintains its output current at
some constant value I regardless of what voltage appears across the terminals.

The element law for a current source supplying a current I is given by

i = I. (1.21)

If the source were left with nothing connected across its terminals, then, in
theory at least, the terminal voltage must rise to infinity because the constant
current flowing through an infinite resistance gives infinite voltage. Recall the
analogous problem with the ideal voltage source: If a short circuit is applied,
the terminal current must become infinite.

It is difficult at first to have an intuitive grasp of the current source, princi-
pally because there is no familiar device available at the electronic parts counter
that has these properties. However, one can still find special devices that deliver
constant current to the arc lamps to illuminate the streets of Old Montreal,
and we will show later that MOSFETs and Op Amps make excellent current
sources. But these are not as familiar as the flashlight battery.

e x a m p l e 1.19 c u r r e n t s o u r c e p o w e r Determine the
power for the 3-A current source in Figure 1.35 if a measurement shows that v = 5 V.

For the assignment of terminal variables in Figure 1.35, i = −3 A. Further, we are given
that v = 5V. Power into the current source is given by

p = vi = (5V )(−3A) = −15 W.

Since the power into the current source is negative, we determine that power is being
supplied by the current source.

F IGURE 1.33 Charting on an
oscilloscope the v–i relationship for
a two-terminal element.

-

+ Unknown
2-terminal
device

vD Oscilloscope
with
balanced
inputs

Resistor of
known value
R

vR
-

+

iD

Test
oscillator

V+

V-

H+

H-

+

-
vi = V cos(ωt)



1.6 Ideal Two-Terminal Elements C H A P T E R O N E 35

Before proceeding further, it is important to distinguish between the model

I

i

v

i = constant

i

+

-

I

v

0

F IGURE 1.34 v–i plot for
current source.

of a two-terminal element and the element itself. The models, or element laws,
presented in this section are idealized. They describe a simplified behavior

v

i

-

+
x

y

3 A

F IGURE 1.35 Power for the
current source.

of the real elements (a voltage source for a battery, for instance). From this
point forward, we will focus on circuits comprising only ideal elements, and
make only occasional reference to reality. Nonetheless, it is important to realize
in practice that the result of a circuit analysis is only as good as the models
on which the analysis is based. Part of any discrepancy between theory and
experiment may be a result of the fact that the elements do not really behave
as the elements laws predict.

The v i relation is useful to describe other systems as well, not just primi-
tive two-terminal elements such as sources and resistors. When creating circuit
models for these systems, it is often the case that an electronic circuit can
be abstracted as a black box accessible through a few terminals. As with any
abstraction, the details of behavior at the interfaces (terminals, in our case)
are more important than the details of behavior internal to the black box.
That is, what happens at the terminals is more important than how it hap-
pens inside the black box. Furthermore, it is often the case that the terminals
can be paired into ports in a natural way following the function of the circuit.
For example, a complex amplifier or filter is often described by the relation
between an input signal presented to the amplifier or filter at one pair of ter-
minals or port, and an output signal presented by the amplifier or filter at
a second port. In this case, the terminal pairs or ports take on special sig-
nificance, and the voltage across the port and the current through the port
become the port variables in terms of which the electronic circuit behavior is
described.

In principle, an electronic circuit can have one or more ports, although in
practice it is common to define only a few ports to simplify matters. For exam-
ple, an amplifier may be described in terms of its input port, its output port,
and one or more ports for connection to power supplies. Even simple network

i

v

+

-

F IGURE 1.36 Definition of the
voltage and current for a port.

elements such as sources, resistors, capacitors, and inductors can be thought of
as one-port devices. Voltages are defined across the ports and currents through
the ports as illustrated in Figure 1.36. Observe that the assignment of refer-
ence directions related to v and i follows the associated variables convention
discussed in Section 1.5.2.

The notion of a port is much more general than its use in electronic cir-
cuit analysis would indicate. Many physical systems, such as mechanical, fluid,
or thermal systems can be characterized by their behavior at a few ports. Fur-
thermore, as depicted in Table 1.1 they have through and across parameters
analogous to currents and voltages. Circuit models for these systems would use
voltages and currents to model the corresponding through and across variables
in those systems.
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t h r o u g h a c r o s s

Current Voltage

Force Motion

Flow Pressure

Heat Flux Temperature

Consumption Wealth

TABLE 1.1 Through and across
variables in physical and economic
systems.

1.7 M O D E L I N G P H Y S I C A L E L E M E N T S

Thus far, we have invented four ideal, primitive elements and studied their
v i characteristics. These ideal elements included the independent voltage
source, the independent current source, the linear resistor, and the perfect con-
ductor. Let us now return to building models for some of the physical elements
we have seen thus far in terms of the four ideal elements.

Indeed, Figure 1.27b is one example of a model. We have modeled a
physical device, namely, a length of copper wire, by a pair of ideal two-terminal
elements: a perfect conductor and a linear resistance. Obviously this model
is not exact. For example, if 1000 A of current flowed through a piece of
14-gauge copper wire (standard house wire designed to carry 15 A), the wire
would become hot, glow brightly, and probably melt, thereby converting itself
from a resistor with a very small resistance, for example, 0.001 �, to an infinite
resistor. Our model, consisting of an ideal conductor in series with an ideal
0.001-� resistor, shows no such behavior: With 1000 A flowing, a one-volt
drop would develop across the resistor, and one thousand watts of power
would be dissipated, presumably in heat, as long as the current flowed. No
smoke, no burnout.

In a similar way we can devise a model for a battery out of our ideal
elements. When a flashlight bulb is connected to a new nominally 6-V battery,
the voltage at the terminals of the battery (usually called the terminal voltage)
drops from 6.2 V to perhaps 6.1 V. This drop results from the internal resistance
of the battery. To represent this effect, we model the battery as an ideal voltage
source in series with some small resistor R as shown in Figure 1.37a. The drop in

F IGURE 1.37 One model for a
battery.
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F IGURE 1.38 Battery model
and lightbulb.
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F IGURE 1.39 A microphone
model.

terminal voltage when the bulb is initially connected will be properly represented
in the circuit model of Figure 1.38 if the value of R is appropriately chosen.
However, the model is still not exact. For example, if a lightbulb is connected
to a battery for some time, the battery voltage will slowly drop as the energy
is drained from the battery. The model battery will not ‘‘run down,’’ but will
continue to light the bulb indefinitely.

A similar model might apply for a microphone. When an information
processing system such as an amplifier is connected to the microphone, its
output might drop from a 1-mV peak-to-peak signal to a 0.5-mV peak-to-peak
signal due to the internal resistance of the microphone. As with the battery, we
can model the microphone as a voltage source in series with a resistance Rm as
depicted in Figure 1.39. Although the output voltage of the microphone will
not run down over time, its model is not exact for other reasons. For example,
the voltage drop in the signal might be related to the signal frequency.

It is obvious that these ‘‘defects’’ in the models could be corrected by making
the models more complicated. But the considerable increase in complexity
might not be justified by the improvement in model accuracy. Unfortunately,
it is not always obvious in a given problem how to find a reasonable balance
between simplicity and accuracy. In this text we will always strive for simplicity
on the following basis: Computer solutions for any of the problems we discuss
are always available, and these can be structured to have great accuracy. So
it makes sense in modeling with circuit elements, as opposed to computer
modeling, to strive for insight rather than accuracy, for simplicity rather than
complexity.



38 C H A P T E R O N E t h e c i r c u i t a b s t r a c t i o n

F IGURE 1.40 i–v plot for a
resistor. v

i

Slope = 1
R
---

It is appropriate at this point to check experimentally the validity of the
models developed here by plotting their v i characteristics. The v i character-
istics can be plotted using the setup shown in Figure 1.33. First, use a 100-�
1/10-W resistor as the ‘‘unknown’’ two-terminal device. If the oscillator volt-
age is a few volts, a straight line passing through the origin with slope 1/R
will appear on the screen (see Figure 1.40), showing that Ohm’s law applies.
However, if the voltage is increased so that vD is 5 or 10 V, then the 1/10-W
resistor will heat up, and its value will change. If the oscillator is set to a very
low frequency, say 1 Hz, the resistor heats up and cools down in the source
of each cycle, so the trace is decidedly nonlinear. If the oscillator is in the mid-
audio range, say 500 Hz, thermal inertia prevents the resistor from changing
temperature rapidly, so some average temperature is reached. Thus the line will
remain straight, but its slope will change as a function of the amplitude of the
applied signal.

Resistor self-heating, with the associated change in value, is obviously
undesirable in most circuit applications. For this reason manufacturers pro-
vide power ratings for resistors, to indicate maximum power dissipation
(pmax) without significant value change or burnout. The power dissipated in a
resistor is

p = vi, (1.22)

which is the hyperbola in v i space, as indicated in Figure 1.41. Our ideal-
resistor model ohmic with constant value matches the actual resistor
behavior only in the region between the hyperboli.

The plot on the oscilloscope face will also deviate from a straight line if the
oscillator frequency is made high enough. Under this condition, capacitive and
inductive effects in the circuit will generate an elliptical pattern. These will be
discussed in later chapters.
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F IGURE 1.41 Power constraint for a resistor in the i – v plane.
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F IGURE 1.42 i–v characteristic of a battery at low current
levels.

Now plot the i v characteristic of a battery. At low current levels, the
curve appears as a vertical line in i v space (see Figure 1.42). But if the oscillator
amplitude is increased so that substantial currents are flowing, and we make
an appropriate change in scope vertical sensitivity, the line remains straight,
but now has a definite tip, as suggested by Figure 1.43a, indicating a nonzero
series resistance. If the battery terminal voltage and current are defined as in
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Figure 1.43b, then from the model in Figure 1.43c, an appropriate expression
for the terminal voltage is17

vt = V + iR (1.23)

Note that because of our choice of variables, in the first quadrant current
is flowing into the positive terminal, that is, the battery is being charged, hence
the terminal voltage is actually larger than the nominal voltage. The fact that
the plot is almost a straight line validates our assumption that the battery can
be modeled as a voltage source in series with a linear resistor. Note further that
graphs such as Figure 1.43a can be characterized by only two numbers, a slope
and an intercept. The slope is 1/R where R is the series resistance in the model.
The intercept can be specified either in terms of a voltage or a current. If we
choose a voltage, then because the intercept is by definition at zero current, it
is called the open-circuit voltage. If the intercept is specified in terms of current,
it is called the short-circuit current, because by definition the voltage is zero at
that point. These terms reappear in Chapter 3 from a very different perspective:
Thevenin’s Theorem.

This section described how we model physical elements such as batteries
and wires in terms of ideal two-terminal elements such as independent voltage
sources, resistors, and ideal wires. Our ideal circuit elements such as indepen-
dent voltage sources and resistors also serve as models for physical entities such
as water reservoirs and friction in water tubes, respectively. In the circuit model
for a physical system, water pressure is naturally represented using a voltage,
and water flow using a current. Water pressure and water flow, or the corre-
sponding voltage and current, are fundamental quantities. In such systems, we
will also be concerned with the amount of energy stored in the system, and the
rate at which energy is being dissipated.

1.8 S I G N A L R E P R E S E N T A T I O N

The previous sections discussed how lumped circuit elements could serve as
models for various physical systems or be used to process information. This
section draws the correspondence between variables in physical systems and
those in the electrical circuit model. It also discusses how electrical systems
represent information and energy.

As discussed earlier, one of the motivations for building electronic circuits is
to process information or energy. Processing includes communication, storage,
and computation. Stereo amplifiers, computers, and radios are examples of
commonplace electronic systems for processing information. Power supplies

17. For now, we simply state the equation, and postpone the derivation to Chapter 2 (see
the example related to Figure 2.61) after we have mastered a few basic circuit analysis techniques.
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and our familiar lightbulb circuit are examples of electronic circuits that process
energy.

In both cases, the physical quantity of interest, either the information or
the energy, is represented in the circuit by an electrical signal, namely a current
or a voltage, and circuit networks are used to process these signals. Thus, the
manner in which a circuit fulfills its purpose is effectively the manner in which
it treats the signals that are its terminal currents and voltages.

1.8.1 A N A L O G S I G N A L S

Signals in the physical world are most commonly analog, that is, spanning
a continuum of values. Sound pressure is such a signal. The electromagnetic
signal picked up by a mobile phone antenna is another example of an analog
signal. Not surprisingly, most circuits that interact with the physical world must
be able to process analog signals.

Figure 1.44 shows several examples of analog signals. Figure 1.44b shows
a DC current signal, while the remainder are various forms of voltage signals.

Figure 1.44a shows a sinusoidal signal with frequency 1 MHz and phase
offset (or phase shift) π/4 rad. The same frequency can also be expressed as
106 Hz, or 2π106 rad/s, and the phase offset as 45 degrees. The reciprocal of
the frequency gives the period of oscillation or the cycle time, which is 1 µs
for our sinusoid. Our sinusoid has an average value of zero. This signal can be
described as a sinusoid with an amplitude (or magnitude, or maximum value)
of 10 V, or equivalently as a sinusoid with a peak-to-peak swing of 20 V.

Sinusoids are an important class of signals that we will encounter frequently
in this book. In general, a sinusoidal signal v can be expressed as

v = Asin(ωt + φ)

where A is the amplitude, ω is the frequency in radians per second, t is the time,
and φ is the phase offset in radians.
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F IGURE 1.44 Several examples
of analog signals: (a) a 1-MHz
sinusoidal signal with amplitude
10 V and a phase offset of π/4;
(b) a 5-A DC signal; (c) a 1-MHz
square wave signal with a 5-V
offset; (d) a 1-MHz square wave
signal with zero offset; (e) a signal
carrying information in its
amplitude; (f) a signal carrying
information in its frequency.

Figures 1.44c and d show square wave signals. The square wave in
Figure 1.44c has a peak-to-peak value of 10 V and an average value (or DC offset)
of 5 V, while the square wave signal in Figure 1.44d has the same peak-to-peak
value, but zero offset.

Information can be represented in one of many forms, for example, the
amplitude, phase, or frequency. Figure 1.44e shows a signal (for example, from
a microphone) that carries information in its amplitude, and Figure 1.44f shows
a signal that is carrying information in its frequency.

To complete this section, we briefly touch on the concept of root mean
square value to describe signals. Recall that our signal in Figure 1.44a was
described as a sinusoid with an amplitude of 10 V. The same signal can be
described as a sinusoid with rms (root mean square) value of 10/

√
2. For a
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sinusoidal signal, or for that matter, any periodic signal v with period T, the
rms is computed as follows:

vrms =
√

1

T

∫ t1+T

t1
v 2(t)dt (1.24)

where the integration is performed over one cycle.
The significance of the rms value of a periodic signal can be seen by com-

puting the average power p̄ delivered to a resistance of value R by a periodic
voltage signal v(t) with period T. For periodic signals, the average power can
be obtained by integrating the power over one cycle and dividing by the cycle
time:

p̄ = 1

T

∫ t1+T

t1

v 2(t)

R
dt. (1.25)

For a linear, time-invariant resistor, we can pull R out of the integral to
write

p̄ = 1

R

1

T

∫ t1+T

t1
v 2(t)dt (1.26)

By defining the rms value of a periodic signal as in Equation 1.24 we can rewrite
Equation 1.26 as

p̄ = 1

R
v 2

rms (1.27)

By the artful definition of Equation 1.24, we have managed to obtain an
expression for power resembling that due to a DC signal. In other words, the
rms value of a periodic signal is the value of a DC signal that would have resulted
in the same average power dissipation.18 In like manner, the rms value of a DC
signal is simply the constant value of the signal itself.

Thus, a sinusoidal voltage with rms value vrms applied across a resistor of
value R will result in an average power dissipation of v 2

rms/R.
For example, 120-V 60-Hz wall outlets in the United States are rated by

their rms values. Thus, they supply a sinusoidal voltage with a peak amplitude
of 120 × √

2 = 170 V.

Native Signal Representation

Sometimes, circuit signals provide a native representation of physical quanti-
ties, as was the case with our lightbulb example in Figure 1.4. The circuit in
Figure 1.4b was a model of the physical circuit in Figure 1.4a, which comprised

18. This new voltage unit, called the rms, was originally defined by the pioneers of the electric
power industry to avoid (or possibly perpetuate) confusion between DC power and AC power.
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a battery, wires, and a lightbulb. The purpose of the original circuit was to
convert chemical energy stored in the battery into light. To do so, the battery
converted the chemical energy to electrical energy, the wires then guided the
electrical energy to the lightbulb, and the lightbulb converted at least some of
this electrical energy to light. Thus, the circuit in Figure 1.4 performed a very
primitive form of energy processing.

The circuit in Figure 1.4 was proposed to model the original circuit, and
to help determine such quantities as the current flowing through the lightbulb
and the power dissipated in it. In this case, the signal representations in the
lumped-parameter circuit were chosen naturally. The quantities of interest in
the physical circuit, namely its voltages and currents, were represented by the
same voltages and currents in the circuit model. This is an example of native
signal representation.

Non-Native Signal Representation

A more interesting occurrence is that of non-native signal representation. In
this case, electrical signals are used to represent non-electrical quantities, which
is common in electronic signal processing. For example, consider an electronic
sound amplifier. Such a system might begin with a front-end transducer, such as
a microphone, that converts sound into an electrical signal that represents the
sound. This electrical signal is then amplified, and possibly filtered, to produce
a signal representing the desired output sound. Finally, a back-end transducer,
such as a speaker, converts the processed electrical signal back into sound.
Because electrical signals can be transduced and processed with ease, electronic
circuits provide an amazingly powerful means for information processing, and
have all but replaced native processing. For example, electronic amplifiers have
now replaced megaphones.

The choice of signal type, for example current or voltage, often depends on
the availability of convenient transducers (elements that convert from one form
of energy to another for example, sound to electricity), power considera-
tions, and the availability of appropriate circuit elements. Voltage is a popular
representation and is used throughout this book. We will also see several situ-
ations later in which a voltage signal is converted to a current signal and vice
versa as it is being processed in an electronic system.

1.8.2 D I G I T A L S I G N A L S — V A L U E D I S C R E T I Z A T I O N

In contrast to the continuous representation of analog signals, we can quan-
tize signals into discrete or lumped signal values. Value discretization forms
the basis of the digital abstraction, which yields a number of advantages
such as better noise immunity compared to an analog signal representation.
Although most physical signals are analog in nature, it is worth noting that
there are a few physical signals that are naturally quantized, and so would have
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a naturally quantized signal representation. Wealth is an example of such a
signal since monetary currencies are not generally considered to be infinitely
divisible.19

To illustrate value discretization, consider the discretization of voltage as
shown in Figure 1.45. Here, we discretize voltage into a finite number of infor-
mation levels, for example, the two levels named ‘‘0’’ and ‘‘1.’’ Under this
quantization, if a voltage is observed to be below 2.5 V we interpret its value as
representing the information level ‘‘0.’’ If its value is above 2.5 V, we interpret
it as representing the information level ‘‘1.’’ Correspondingly, to produce the
information level ‘‘0,’’ we use any voltage less than 2.5 V. For example, we
might use 1.25 V. Correspondingly, to produce the information level ‘‘1,’’ we
might use the voltage 3.75 V.

2.5

0

2.5

0

“0”

“1”v
(V)

t

Continuous

t

Discrete

v
(V)

F IGURE 1.45 Voltage value
discretization into two levels.

As discussed in Chapter 5, discrete signals offer better noise immunity
than analog signals, but they do so at the expense of precision. If the noise that
corrupts a discrete signal does not move its physical value past a discretization
threshold, then the noise will be ignored. For example, suppose the information
level ‘‘0’’ in Figure 1.45 is represented by a 1.25-V signal, and the information
level ‘‘1’’ in Figure 1.45 is represented by a 3.75-V signal. Provided the volt-
age does not rise above 2.5 V for ‘‘0,’’ or does not fall below 2.5 V for a
‘‘1,’’ it will be interpreted correctly. Thus, this discrete signal representation is
immune to ±1.25-V noise. Notice, however, the loss in precision our coarse
two-level representation is unable to distinguish between small changes in the
voltage.20

In general, we can discretize values into any number of levels, for exam-
ple, four. Thus the representation discussed thus far is a special case of value
discretization called the binary representation where we discretize the voltage
(or current for that matter) into two information levels: ‘‘0’’ and ‘‘1.’’ Because
systems using more than two levels are difficult to build, most digital systems in
use today use the binary representation. Accordingly, the digital representation
has become synonymous with the binary representation.

19. Notice that before the advent of currencies, the barter system prevailed, and wealth was indeed
analog in nature, since a loaf of bread, or a plot of land for that matter, theoretically is infinitely
divisible!

20. For applications that care only about whether a signal is above or below some threshold, the
loss in precision is of no consequence, and a two-level representation is sufficient. However, for
other applications that care about small changes in a signal, the basic two-level representation of
a signal must be extended. We show in Chapter 5 that practical digital systems can offer both
arbitrary degrees of precision and noise immunity through a process of discretization and coding.
Briefly, to recover some precision while retaining noise immunity, digital systems quantize signals
into a large number of levels for example, 256 and code these levels into a few binary
digits 8, in our example, where each binary digit can be represented as a two-level voltage on
a single wire. This method converts an analog signal on a single wire into a binary encoded signal
on several wires, where each wire carries a voltage that can vary between two levels.
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Native and Non-Native Signal Representation

As with analog signals, discrete signals can provided both native and non-native
signal representations. The discrete binary values of 0 and 1 are a native repre-
sentation for logic because they correspond naturally to the logical TRUE and
FALSE values. Non-native signal representations can be derived from discrete
signals by using sequences of digits having the value 0 or 1 to encode numbers
whose values correspond to signal values of interest. Chapter 5 covers this topic
in greater detail.

When designing a non-native information processing system, there are
many choices for signal representation. For example, the use of voltage versus
current, or analog versus discrete signals are two such choices. Each represen-
tation has its advantages and disadvantages, and facilitates a certain kind of
processing. For example, digital representations offer noise immunity at the
expense of precision. How these choices are made is usually application spe-
cific, and often depends on the availability of convenient transducers, power
and noise considerations, and the availability of appropriate elements. The use
of voltage to represent signals is probably most common, and is used routinely
here. However, we will also encounter situations in which the signal repre-
sentation switches from a voltage to a current and back again as the signal is
processed.
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1.9 S U M M A R Y
� The discretization of matter into lumped elements such as batteries and

resistors that obey the lumped matter discipline and connecting them using
ideal wires is the essence of the lumped circuit abstraction.

� The lumped matter discipline for lumped elements includes the following
constraints:

1. The boundaries of the discrete elements must be chosen so that

∂�B

∂t
= 0

through any closed path outside the element for all time.

2. The elements must not include any net time-varying charge for all time.
In other words,

∂q

∂t
= 0

where q is the total charge within the element.

3. We must operate in the regime in which timescales of interest are much
larger than the propagation delay of electromagnetic waves through the
elements.

� The lumped matter discipline for lumped circuits includes the following
constraints:

1. The rate of change of magnetic flux linked with any portion of the
circuit must be zero for all time.

2. The rate of change of the charge at any node in the circuit must be zero
for all time.

3. The signal timescales must be much larger than the propagation delay
of electromagnetic waves through the circuit.

� The associated variables convention defines current to flow in at the device
terminal assigned to be positive in voltage.

� The instantaneous power consumed by a device is given by p(t) = v(t)i(t),
where v(t) and i(t) are defined using the associated variables discipline.
Similarly, the instantaneous power delivered by a device is given by
p(t) = −v(t)i(t). The unit of power is the watt.
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� The amount of energy w(t) consumed by a device over an interval of time
t1 → t2, is given by

w(t) =
∫ t2

t1
v(t)i(t)dt

where v(t) and i(t) are defined using the associated variables discipline. The
unit of energy is the joule.

� Ohm’s law states that resistors that obey Ohm’s law satisfy the equation v =
iR, where R is constant. The resistance of a piece of homogeneous material
is proportional to its length and inversely proportional to its cross-sectional
area.

� The resistance of a planar piece of material with length L and width W is
given by L

W
× R�, where R� is the resistance of a square piece of material.

� The four ideal circuit elements are the ideal conductor, the ideal linear
resistor, the voltage source, and the current source. The element law for
the ideal conductor is

v = 0,

for the resistor with resistance R is

v = iR,

for the voltage source supplying a voltage V is

v = V,

and for the current source supplying a current I is

i = I.

� The representation of parameters in physical systems by their equivalent
electrical circuit parameters has been discussed.

� The representation of information in terms of analog and digital electrical
signals has been discussed.

In the process of introducing the elements and their element laws, we
defined the symbols and units for various physical quantities. These definitions
are summarized in Table 1.2. The units can be further modified with engineering
multipliers. Several common multipliers and their corresponding prefix symbols
and values are given in Table 1.3.
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q u a n t i t y s y m b o l u n i t s s y m b o l

Time t Second s

Frequency f Hertz Hz

Current i Ampere A

Voltage v Volt V

Power p Watt W

Energy w Joule J

Resistance R Ohm �

Conductance G Siemen S

TABLE 1.2 Electrical
engineering quantities, their units,
and symbols for both.

m u l t i p l i e r p r e f i x v a l u e

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

TABLE 1.3 Common
engineering multipliers.

E X E R C I S E S e x e r c i s e 1 .1 Quartz heaters are rated according to the average power drawn
from a 120-V AC 60-Hz voltage source. Estimate the resistance (when operating) a
1200-W quartz heater.

NOTE: The voltage waveform for a 120-V AC 60-Hz waveform is

v(t) = √
2 120 cos(2π60t).

The factor of
√

2 in the peak amplitude cancels when the average power is com-
puted. One result is that the peak amplitude of the voltage from a 120-volt wall outlet
is about 170 volts.
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e x e r c i s e 1 .2

a) The battery on your car has a rating stated in ampere-hours that permits you to
estimate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 A-hour 12-V
battery?

b) Assuming 100% efficient energy conversion, how much water stored behind a 30 m
high hydroelectric dam would be required to charge the battery?

e x e r c i s e 1 .3 In the circuit in Figure 1.46, R is a linear resistor and v = VDC

a constant (DC) voltage. What is the power dissipated in the resistor, in terms of R
and VDC?

R

+

v

−

F IGURE 1.46
e x e r c i s e 1 .4 In the circuit of the previous exercise (see Figure 1.46), v =
VAC cosωt, a sinusoidal (AC) voltage with peak amplitude VAC and frequency ω, in
radians/sec.

a) What is the average power dissipated in R?

b) What is the relationship between VDC and VAC in Figure 1.46 when the average
power in R is the same for both waveforms?

P R O B L E M Sp r o b l e m 1.1 Determine the resistance of a cube with sides of length l cms and
resistivity 10 �-cm, when a pair of opposite surfaces are chosen as the terminals.

p r o b l e m 1.2 Sketch the v i characteristic of a battery rated at 10 V with an
internal resistance of 10 Ohms.

p r o b l e m 1.3 A battery rated at 7.2 V and 10000 J is connected across a light-
bulb. Assume that the internal resistance of the battery is zero. Further assume that the
resistance of the lightbulb is 100 �.

1. Draw the circuit containing the battery and the lightbulb and label the terminal
variables for the battery and the lightbulb according to the associated variables
discipline.

2. What is the power into the lightbulb?

3. Determine the power into the battery.

4. Show that the sum of the power into the battery and the power into the bulb
is zero.

5. How long will the battery last in the circuit?
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p r o b l e m 1.4 A sinusoidal voltage source

v = 10 V sin(ωt)

is connected across a 1 k� resistor.

1. Make a sketch of p(t), the instantaneous power supplied by the source.

2. Determine the average power supplied by the source.

3. Now, suppose that a square wave generator is used as the source. If the square wave
signal has a peak-to-peak of 20 V and a zero average value, determine the average
power supplied by the source.

4. Next, if the square wave signal has a peak-to-peak of 20 V and a 10 V average value,
determine the average power supplied by the source.



c h a p t e r 2

2.1 T E R M I N O L O G Y

2.2 K I R C H H O F F ’ S L A W S

2.3 C I R C U I T A N A L Y S I S : B A S I C M E T H O D

2.4 I N T U I T I V E M E T H O D O F C I R C U I T A N A L Y S I S : S E R I E S A N D P A R A L L E L S I M P L I F I C A T I O N

2.5 M O R E C I R C U I T E X A M P L E S

2.6 D E P E N D E N T S O U R C E S A N D T H E C O N T R O L C O N C E P T

2.7 A F O R M U L A T I O N S U I T A B L E F O R A C O M P U T E R S O L U T I O N *

2.8 S U M M A R Y

E X E R C I S E S

P R O B L E M S





re s i s t i v e network s 2
A simple electrical network made from a voltage source and four resistors is
shown in Figure 2.1. This might be an abstract representation of some real
electrical network, or a model of some other physical system, for example, a
heat flow problem in a house. We wish to develop systematic general methods
for analyzing circuits such as this, so that circuits of arbitrary complexity can
be solved with dispatch. Solving or analyzing a circuit generally involves finding
the voltage across, and current through, each of the circuit elements. Systematic
general methods will also enable us to automate the solution techniques so that
computers can be used to analyze circuits. Later on in this chapter and in the
next, we will show how our problem formulation facilitates direct computer
analysis.

To make the problem specific, suppose that we wish to find the current
i4 in Figure 2.1, given the values of the voltage source and the resistors. In
general, we can resort to Maxwell’s Equations to solve the circuit. But this
approach is really impractical. Instead, when circuits obey the lumped matter
discipline, Maxwell’s Equations can be dramatically simplified into two algebraic
relationships stated as Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law
(KCL). This chapter introduces these algebraic relationships and then uses them
to develop a systematic approach to solving circuits, thereby finding the current
i4 in our specific example.

This chapter first reviews some terminology that will be useful in our discus-
sions. We will then introduce Kirchhoff’s laws and work out some examples
to develop our facility with these laws. We will then introduce a systematic
method for solving circuits based on Kirchhoff’s laws using a very simple,

i4
V
+

−

a b

c

d

v4

+

−

F IGURE 2.1 Simple resistive
network.

53
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illustrative circuit. We will then apply the same systematic method to solve
more complicated examples, including the one shown in Figure 2.1.

2.1 T E R M I N O L O G Y

Lumped circuit elements are the fundamental building blocks of electronic cir-
cuits. Virtually all of our analyses will be conducted on circuits containing
two-terminal elements; multi-terminal elements will be modeled using combi-
nations of two-terminal elements. We have already seen several two-terminal
elements such as resistors, voltage sources, and current sources. Electronic
access to an element is made through its terminals.

An electronic circuit is constructed by connecting together a collection of
separate elements at their terminals, as shown in Figure 2.2. The junction points
at which the terminals of two or more elements are connected are referred to as
the nodes of a circuit. Similarly, the connections between the nodes are referred
to as the edges or branches of a circuit. Note that each element in Figure 2.2
forms a single branch. Thus an element and a branch are the same for circuits
comprising only two-terminal elements. Finally, circuit loops are defined to be
closed paths through a circuit along its branches.

Several nodes, branches, and loops are identified in Figure 2.2. In the circuit
in Figure 2.2, there are 10 branches (and thus, 10 elements) and 6 nodes.

As another example, a is a node in the circuit depicted in Figure 2.1 at
which three branches meet. Similarly, b is a node at which two branches meet.
ab and bc are examples of branches in the circuit. The circuit has five branches
and four nodes.

Since we assume that the interconnections between the elements in a circuit
are perfect (i.e., the wires are ideal), then it is not necessary for a set of elements
to be joined together at a single point in space for their interconnection to be
considered a single node. An example of this is shown in Figure 2.3. While
the four elements in the figure are connected together, their connection does
not occur at a single point in space. Rather, it is a distributed connection.

F IGURE 2.2 An arbitrary circuit.

Nodes

Loop

Branch

Elements
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Elements

Distributed node
Ideal wires

A

B
C

D

A

B

C

D

F IGURE 2.3 Distributed
interconnections of four circuit
elements that nonetheless occur
at a single node.

Branch 
current

+

-

Branch
voltage

v
i

F IGURE 2.4 Voltage and current
definitions illustrated on a branch in
a circuit.

Nonetheless, because the interconnections are perfect, the connection can be
considered to be a single node, as indicated in the figure.

The primary signals within a circuit are its currents and voltages, which we
denote by the symbols i and v, respectively. We define a branch current as the
current along a branch of the circuit (see Figure 2.4), and a branch voltage as the
potential difference measured across a branch. Since elements and branches are
the same for circuits formed of two-terminal elements, the branch voltages and
currents are the same as the corresponding terminal variables for the elements
forming the branches. Recall, as defined in Chapter 1, the terminal variables for
an element are the voltage across and the current through the element.

As an example, i4 is a branch current that flows through branch bc in the
circuit in Figure 2.1. Similarly, v4 is the branch voltage for the branch bc.

2.2 K I R C H H O F F ’ S L A W S

Kirchhoff’s current law and Kirchhoff’s voltage law describe how lumped-
parameter circuit elements couple at their terminals when they are assembled
into a circuit. KCL and KVL are themselves lumped-parameter simplifications
of Maxwell’s Equations. This section defines KCL and KVL and justifies that
they are reasonable using intuitive arguments.1 These laws are employed in
circuit analysis throughout this book.

1. The interested reader can refer to Section A.2 in Appendix A for a derivation of Kirchhoff’s laws
from Maxwell’s Equations under the lumped matter discipline.



56 C H A P T E R T W O r e s i s t i v e n e t w o r k s

2.2.1 K C L

Let us start with Kirchhoff’s current law (KCL).

KCL The current flowing out of any node in a circuit must equal the current
flowing in. That is, the algebraic sum of all branch currents flowing into any
node must be zero.

Put another way, KCL states that the net current that flows into a node
through some of its branches must flow out from that node through its
remaining branches.

Referring to Figure 2.5, if the currents through the three branches into node
a are ia, ib, and ic, then KCL states that

ia + ib + ic = 0.

Similarly, the currents into node b must sum to zero. Accordingly, we
must have

−ib − i4 = 0.

KCL has a simple intuitive justification. Referring to the closed box-like
surface depicted in Figure 2.5, it is easy to see that the currents ia, ib, and ic
must sum to zero, for otherwise, there would be a continuous charge buildup
at node a. Thus, KCL is simply a statement of the conservation of charge.

Let us now illustrate the different interpretations of KCL with the help
of Figure 2.6. Which interpretation you use depends upon convenience and
the specific circuit you are trying to analyze. Figure 2.6 shows a node joining
N branches. Each of the branches contains some two-terminal element, the
specifics of which are not relevant to our discussion. Note that all branch cur-
rents are defined to be positive into the node. Since KCL states that no net

V
+

- i4

ibia

ic

b

c

d

a

Sb

Sa

Sc

F IGURE 2.5 Currents into a node in the network.

i1 iN

i2 iN-1
. . .

F IGURE 2.6 A node at which N branches join.
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i1 i2
. . .. . .

i1 i2
F IGURE 2.7 Two series-
connected circuit elements.

current can flow into a node, it follows for the node in Figure 2.6 that

N∑
n=1

in = 0. (2.1)

Next, by negating Equation 2.1, KCL becomes

N∑
n=1

(−in) = 0. (2.2)

Since −in is a current defined to be positive out from the node in Figure 2.6,
this second form of KCL states that no net current can flow out from a node.
Finally, Equation 2.1 can be rearranged to take the form

M∑
n=1

in =
N∑

n=M+1

(−in), (2.3)

which demonstrates that the current flowing into a node through one set of
branches must flow out from the node through the remaining branches.

An important simplification of KCL focuses on the two series-connected
circuit elements shown in Figure 2.7. Taking KCL to state that no net current
can flow into a node, the application of KCL at the node between the two
elements yields

i1 − i2 = 0 ⇒ i1 = i2. (2.4)

This result is important because it shows that the branch currents passing
through two series-connected elements must be the same. That is, there is
nowhere for the current i1 to go as it enters the node connecting the two ele-
ments except to exit that node as i2. In fact, with multiple applications of KCL,
this observation is extendible to a longer string of series-connected elements.
Such an extension would show that a common branch current passes through
a string of series-connected elements.

e x a m p l e 2.1 a m o r e g e n e r a l u s e o f k c l To illustrate
the more general use of KCL consider the circuit in Figure 2.8, which has six branches

i1

i2
i3

i4 i5

i6

Node 1 

Node

Node 2 Node 4
3

F IGURE 2.8 A circuit illustrating
a more general use of KCL.
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connecting four nodes. Again, taking KCL to state that no net current can flow into a
node, the application of KCL to the four nodes in the circuit yields

Node 1: 0 = −i1 − i2 − i3 (2.5)

Node 2: 0 = i1 + i4 − i6 (2.6)

Node 3: 0 = i2 − i4 − i5 (2.7)

Node 4: 0 = i3 + i5 + i6. (2.8)

Note that because each branch current flows into exactly one node and out from exactly
one node, each branch current appears exactly once in Equations 2.5 through 2.8 posi-
tively, and exactly once negatively. This would also be true if Equations 2.5 through 2.8
were all written to state that no net current can flow out from a node. Such patterns can
often be used to spot errors.

It is also because each branch current flows into exactly one node and out from exactly
one node that summing Equations 2.5 through 2.8 yields 0 = 0. This in turn shows
that the four KCL equations are dependent. In fact, a circuit with N nodes will have
only N − 1 independent statements of KCL. Therefore, when fully analyzing a circuit it
is both necessary and sufficient to apply KCL to all but one node.

If some of the branch currents in a circuit are known, then it is possible that KCL alone

i2

i4 i5

i6

i1 = 1 A i3 = 3 A

F IGURE 2.9 The circuit in
Figure 2.8 with two branch currents
numerically defined.

can be used to find other branch currents in the circuit. For example, consider the circuit
in Figure 2.8 with i1 = 1 A and i3 = 3 A, as shown in Figure 2.9. Using Equation 2.5,
namely KCL for Node 1, it can be seen that i2 = −4 A. This is all that can be learned
from KCL alone given the information in Figure 2.9.

But, if we further know that i5 = −2 A, for example, we can learn from KCL applied
to the other nodes that i4 = −2 A and i6 = −1 A.

e x a m p l e 2.2 u s i n g k c l t o d e t e r m i n e a n u n k n o w n

b r a n c h c u r r e n t Figure 2.10 shows five branches meeting at a node in
some circuit. As shown in the figure, four of the branch currents are given. Determine i.

By KCL, the sum of all the currents entering a node must equal the sum of all the currents
exiting the node. In other words,

2 A 

3 A 

6 A 

12 A 

i

F IGURE 2.10 Five branches
meeting at a node.

2 A + 3 A + 6 A = 12 A + i

Thus, i = −1A.
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x

Arbitrary
Circuit

i1 = 3Acos(ωt)

i2 = 6Acos(ωt)

i3

F IGURE 2.11 Node x in a circuit
pulled out for display.

e x a m p l e 2.3 k c l a p p l i e d t o a n a r b i t r a r y n o d e

i n a c i r c u i t Figure 2.11 shows an arbitrary circuit from which we have
grabbed a node x and pulled it out for display. The node is a junction point for three
wires with currents i1, i2, and i3. For the given values of i1 and i2, determine the value
of i3.

By KCL, the sum of all currents entering a node must be 0. Thus,

i1 + i2 − i3 = 0

Note that i3 is negated in this equation because it is defined to be positive for a current
exiting the node. Thus i3 is the sum of i1 and i2 and is given by

i3 = i1 + i2 = 3 cos(ωt) + 6 cos(ωt) = 9 cos(ωt)

e x a m p l e 2.4 e v e n m o r e k c l Figure 2.12 shows a node connect-
ing three branches. Two of the branches have current sources that supply the currents
shown. Determine the value of i.

By KCL, the sum of all the currents entering a node must equal 0. Thus

2 A 

1 A

i

F IGURE 2.12 Node connecting
three branches.

2 A + 1 A + i = 0

and i = −3 A.

Finally, it is important to recognize that current sources can be used to
construct circuits in which KCL is violated. Several examples of circuits con-
structed from current sources in which KCL is violated at every node are shown
in Figure 2.13. We will not be concerned with such circuits here for two reasons.
First, if KCL does not hold at a node, then electric charge must accumulate at
that node. This is inconsistent with the constraint of the lumped matter disci-
pline that dq/dt be zero. Second, if a circuit were actually built to violate KCL,
something would ultimately give. For example, the current sources might cease
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to function as ideal sources as they oppose one another. In any case, the behav-
ior of the real circuit would not be well modeled by the type of circuit shown
in Figure 2.13, and so there is no reason to study the latter.

2.2.2 K V L

Let us now turn our attention to Kirchhoff’s voltage law (KVL). KVL is applied
to circuit loops, that is, to interconnections of branches that form closed paths
through a circuit. In a manner analogous to KCL, Kirchhoff’s voltage law can
be stated as:

1 A 2 A

1 A 2 A 3 A

1 A 3 A

2 A

F IGURE 2.13 Circuits that
violate KCL.

KVL The algebraic sum of the branch voltages around any closed path in a
network must be zero.

Alternatively, it states that the voltage between two nodes is independent
of the path along which it is accumulated.

In Figure 2.14, the loop starting at node a, proceeding through nodes b
and c, and returning to a, is a closed path. In other words, the closed loop
defined by the three circuit branches a → b, b → c, and c → a in Figure 2.14
is a closed path.

According to KVL, the sum of the branch voltages around this loop is zero.
That is,

vab + vbc + vca = 0

In other words,

v1 + v4 + v3 = 0

where we have taken the positive sign for each voltage when going from the
positive terminal to the negative terminal. It is important that we are consistent
in how we assign polarities to voltages as we go around the loop.

A helpful mnemonic for writing KVL equations is to assign the polarity to a
given voltage in accordance with the first sign encountered when traversing that
voltage around the loop.

Like KCL, KVL has an intuitive justification as well. Recall that the def-
inition of the voltage between a pair of nodes in a circuit is the potential

F IGURE 2.14 Voltages in a
closed loop in the network. i4

a b

c

+ v1  -

+
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- +
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vM–1 vM

v1 vN

+

+

+

+

F IGURE 2.15 A loop containing
N branches.

difference between the two nodes. The potential difference between two nodes
is the sum of the potential differences for the set of branches along any path
between the two nodes. For a loop, the start and end nodes are one and the
same, and there cannot be a potential difference between a node and itself.
Thus, since potential differences equate to voltages, the sum of branch volt-
ages along a loop must equal zero. By the same reasoning, since the voltage
between any pair of nodes must be unique, it must be independent of the
path along which branch voltages are added. Notice from the definition of a
voltage that KVL is simply an expression of the principle of conservation of
energy.

The different interpretations of KVL are illustrated with the help of
Figure 2.15, which shows a loop containing N branches. Consider first the
loop in Figure 2.15 in which all branch voltages decrease in the clockwise direc-
tion. Since KVL states that the sum of the branch voltages around a loop is
zero, it follows for the loop in Figure 2.15 that

N∑
n=1

vn = 0. (2.9)

Note that in summing voltages along a loop we have adopted the con-
vention proposed earlier: A positive branch voltage is added to the sum if the
path enters the positive end of a branch. Otherwise a negative branch voltage is
added to the sum. Therefore, to arrive at Equation 2.9, we have traversed the
loop in the clockwise direction. Next, by negating Equation 2.9, KVL becomes

N∑
n=1

(−vn) = 0. (2.10)

Since −vn is a voltage defined to be positive in the opposite direction, this
second form of KVL shows that KVL holds whether it is applied along the
clockwise or counterclockwise path around the loop.
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F IGURE 2.16 A loop containing
N branches with some of the
voltage definitions reversed.

vM–1 vM

v1 vN

+ +

++

Node M 

Node 1 

e x a m p l e 2.5 p a t h i n d e p e n d e n c e o f k v l Consider the
loop in Figure 2.16 in which some of the voltage definitions are reversed for convenience.
Applying KVL to this loop yields

M−1∑
n=1

vn +
N∑

n=M

(−vn) = 0 ⇒
M−1∑
n=1

vn =
N∑

n=M

vn. (2.11)

The second equality in Equation 2.11 demonstrates that the voltage between two
nodes is independent of the path along which it accumulated. In this case, the second
equality shows that the voltage between Nodes 1 and M is the same whether accumu-
lated along the path up the left side of the loop or the path up the right side of the
loop.

An important simplification of KVL focuses on the two parallel-connected
circuit elements shown in Figure 2.17. Starting from the upper node and apply-
ing KVL in the counterclockwise direction around the loop between the two

+

v1

+

v2

F IGURE 2.17 Two parallel-
connected circuit elements.

circuit elements yields

v1 − v2 = 0 ⇒ v1 = v2. (2.12)

This result is important because it shows that the voltages across two parallel-
connected elements must be the same. In fact, with multiple applications of
KVL, this observation is extendible to a longer string of parallel-connected
elements. Such an extension would show that a common voltage appears across
all parallel-connected elements in the string.

e x a m p l e 2.6 a m o r e g e n e r a l u s e o f k v l To illustrate
the more general use of KVL consider the circuit in Figure 2.18, which has six branches
connecting four nodes. Four paths along the loops through the circuit are also defined in
the figure; note that the external loop, Loop 4, is distinct from the other three. Applying
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Loop 1 Loop 2
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F IGURE 2.18 A circuit having
four nodes and six branches.

KVL to the four loops yields

Loop 1: 0 = −v1 + v2 + v4 (2.13)

Loop 2: 0 = −v2 + v3 − v5 (2.14)

Loop 3: 0 = −v4 + v5 − v6 (2.15)

Loop 4: 0 = v1 + v6 − v3 (2.16)

Note that the paths along the loops have been defined so that each branch voltage is
traversed positively around exactly one loop and negatively around exactly one loop.
It is for this reason that each branch voltage appears exactly once in Equations 2.13
through 2.16 positively, and exactly once negatively. As with the application of KCL,
such patterns can often be used to spot errors.

It is also because each branch voltage is traversed exactly once positively and once
negatively that summing Equations 2.13 through 2.16 yields 0 = 0. This in turn shows
that the four KVL equations are dependent. In general, a circuit with N nodes and B
branches will have B − N + 1 loops around which independent applications of KVL can
be made. Therefore, while analyzing a circuit it is necessary to apply KVL only to these
loops, which will in total, traverse each branch at least once in the process.

If some of the branch voltages in a circuit are known, then it is possible that KVL
alone can be used to find other branch voltages in the circuit. For example, consider

v
2

v6

+ +

–

+
–

+ –

+
–

+
–

v 4 v
5

–
v1 1 V= v3 3 V=

F IGURE 2.19 The circuit in
Figure 2.18 with two branch
voltages numerically defined.

the circuit in Figure 2.18 with v1 = 1 V and v3 = 3 V, as shown in Figure 2.19. Using
Equation 2.16, namely KVL for Loop 4, it can be seen that v6 = 2 V. This is all that
can be learned from KVL alone given the information in Figure 2.19. But, if we further
know that v2 = 2 V, for example, we can learn from KVL applied to the other loops
that v4 = −1 V and v5 = 1 V.
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Finally, it is important to recognize that voltage sources can be used to con-
struct circuits in which KVL is violated. Several examples of circuits constructed
from voltage sources in which KVL is violated around every loop are shown
in Figure 2.20. As with circuits that violate KCL, we will not be concerned
with circuits that violate KVL, for two reasons. First, if KVL does not hold
around a loop, then magnetic flux linkage will accumulate through that loop.
This is inconsistent with the constraint of the lumped matter discipline that
d�B/dt = 0 outside the elements. Second, if a circuit were actually built to vio-
late KVL, something would ultimately give. For example, the voltage sources
might cease to function as ideal sources as they oppose one another. Alterna-
tively, the loop inductance might begin to accumulate flux linkage, leading to
high currents that would damage the voltage sources or their interconnections.
In any case, the behavior of the real circuit would not be well modeled by the

1 V 2 V+– +–

1 V 2 V 3 V+– +– +–

1 V 3 V

2 V

+
–+–

+–

F IGURE 2.20 Circuits that
violate KVL.

type of circuit shown in Figure 2.20, and so there is no reason to study the
latter.

e x a m p l e 2.7 v o l t a g e s o u r c e s i n s e r i e s Two 1.5-V volt-
age sources are connected in series as shown in Figure 2.21. What is the voltage v at
their terminals?

To determine v, employ, for example, a counterclockwise application of KVL around

+

-

v

+

-

1.5 V
+

-

1.5 V

F IGURE 2.21 The series
connection of two 1.5-V batteries.

the circuit, treating the port formed by the two terminals as an element having voltage v.
In this case, 1.5 V + 1.5 V − v = 0, which has for its solution v = 3 V.

e x a m p l e 2.8 k v l The voltages across two of the elements in the circuit in
Figure 2.22 are measured as shown. What are the voltages, v1 and v2, across the other
two elements?

Since element #1 is connected in parallel with element #4, the voltages across them
must be the same. Thus, v1 = 5 V. Similarly, the voltage across the series connection of
elements #2 and #3 must also be 5 V, so v2 = 3 V. This latter result can also be obtained
through the counterclockwise application of KVL around the loop including elements
#2, #3, and #4, for example. This yields, v2 + 2 V − 5 V = 0. Again, v2 = 3 V.

e x a m p l e 2.9 v e r i f y i n g k v l f o r a c i r c u i t Verify that
the branch voltages shown in Figure 2.23 satisfy KVL.

Summing the voltages in the loop e, d, a, b, e, we get

−3 − 1 + 3 + 1 = 0.

Similarly, summing the voltages in the loop e, f, c, b, e, we get

+1 − (−2) − 4 + 1 = 0.
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-
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#4

2 V

F IGURE 2.22 A circuit with two measured and two
unmeasured voltages.
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F IGURE 2.23 A circuit with element voltages as shown.

Finally, summing the voltages in the loop g, e, f, g, we get

−2 + 1 + 1 = 0.

KVL is satisfied since the sum of the voltages around each of the three circuit loops
is zero.

e x a m p l e 2.10 s u m m i n g v o l t a g e s a l o n g d i f f e r e n t

p a t h s Next, given the branch voltages shown in Figure 2.23, determine the volt-
age vga between the nodes g and a by summing the branch voltages along the path g, e,
d, a. Then, show that vga is the same if path g, f, c, b, a is chosen.

Summing the voltage increases along the path g, e, d, a, we get

vga = −2 V − 3 V − 1 V = −6 V.

Similarly, summing the voltage increases along the path g, f, c, b, a we get

vga = −1 V − (−2 V) − 4 V − 3 V = −6 V.

Clearly, both paths yield −6 V for vga.
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Thus far, Chapters 1 and 2 have shown that the operation of a lumped
system is described by two types of equations: equations that describe the
behavior of its individual elements, or element laws (Chapter 1), and equations
that describe how its elements interact when they are connected to form the
system, or KCL and KVL (Chapter 2). For an electronic circuit, the element
laws relate the branch currents to the branch voltages of the elements. The
interactions between its elements are described by KCL and KVL, which are
also expressed in terms of branch currents and voltages. Thus, branch currents
and voltages become the fundamental signals within a lumped electronic circuit.

2.3 C I R C U I T A N A L Y S I S : B A S I C M E T H O D

We are now ready to introduce a systematic method of solving circuits. It is
framed in the context of a simple class of circuits, namely circuits containing
only sources and linear resistors. Many of the important analysis issues can
be understood through the study of these circuits. Solving a circuit involves
determining all the branch currents and branch voltages in the circuit. In practice,
some currents or voltages may be more important than others, but we will not
make that distinction yet.

Before we return to the specific problem of analyzing the electrical network
shown in Figure 2.1, let us first develop the systematic method using a few
simpler circuits and build up our insight into the technique. We saw previously
that under the lumped matter discipline, Maxwell’s Equations reduce to the
basic element laws and the algebraic KVL and KCL. Accordingly, a systematic
solution of the network involves the assembly and subsequent joint solution
of two sets of equations. The first set of equations comprise the constituent
relations for the individual elements in the network. The second set of equations
results from the application of Kirchhoff’s current and voltage laws.

This basic method of circuit analysis, also called the KVL and KCL method or
the fundamental method, is outlined by the following steps:

1. Define each branch current and voltage in the circuit in a consistent
manner. The polarities of these definitions can be arbitrary from
one branch to the next. However, for any given branch, follow the
associated variables convention (see Section 1.5.3 in Chapter 1). In other
words, the branch current should be defined as positive into the positive
voltage terminal of the branch. By following the associated variables,
element laws can be applied consistently, and the solutions will follow
a much clearer pattern.

2. Assemble the element laws for the elements. These element laws will
specify either the branch current or branch voltage in the case of an
independent source, or specify the relation between the branch current
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and voltage in the case of a resistor. Examples of these element laws
were presented in Section 1.6.

3. Apply Kirchhoff’s current and voltage laws as discussed in Section 2.2.

4. Jointly solve the equations assembled in Steps 2 and 3 for the branch
variables defined in Step 1.

The remainder of this chapter is devoted to circuit analysis examples that
rigorously follow these steps.

Once the two sets of equations are assembled, which is a relatively easy
task, the analysis of a circuit essentially becomes a problem of mathematics, as
indicated by Step 4. That is, the equations assembled earlier must be combined
and used to solve for the branch currents and voltages of interest. However,
because there is more than one way to approach this problem, our study of
circuit analysis does not end with the direct approach outlined here. Consider-
able time can be saved, and considerable insight can be gained, by approaching
circuit analyses in different ways. These gains are important subjects of this
and future chapters.

2.3.1 S I N G L E - R E S I S T O R C I R C U I T S

To illustrate our basic approach to circuit analysis, consider the simple circuit
RI

F IGURE 2.24 A circuit with only
one independent current source
and one resistor.

shown in Figure 2.24. The circuit has one independent source and one resistor,
and so has two branches, each with a current and a voltage. The goal of our

-

+

R

i1 i2

v1

+

-

v2I

F IGURE 2.25 Assignment of
branch variables.

circuit analysis is to find these branch variables.
Step 1 in the analysis is to label the branch variables. We do so in Figure 2.25.

Since there are two branches, there are two sets of variables. Notice that the
branch variables for the current source branch and for the resistor branch each
follow the associated variables convention.

Now, we proceed with Steps 2 through 4: assemble the element laws,
apply KCL and KVL, and then simultaneously solve the two sets of equations
to complete the analysis.

The circuit has two elements. Following Step 2 we write the two element
laws for these elements as

i1 = −I, (2.17)

v2 = Ri2, (2.18)

respectively. Here, v1, i1, v2, and i2 are the branch variables. Note the dis-
tinction between the branch variable i1 and the source amplitude I. Here, the
independent source amplitude I is assumed to be known.

Next, following Step 3, we apply KCL and KVL to the circuit. Since the
circuit has two nodes, it is appropriate to write KCL for one node, as discussed
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in Section 2.2.1. The application of KCL at either node yields

i1 + i2 = 0. (2.19)

The circuit also has two branches that form one loop. So, following the discus-
sion in Section 2.2.2 it is appropriate to write KVL for one loop. Starting at the
upper node and traversing the loop in a clockwise manner, the application of
KVL yields

v2 − v1 = 0. (2.20)

Notice we have used our mnemonic discussed in Section 2.2.2 for writing KVL
equations. For example, in Equation 2.20, we have assigned a + polarity to v2
since we first encounter the + sign when traversing the branch with variable
v2. Similarly, we have assigned a − polarity to v1 since we first encounter
the − sign when traversing the v1 branch.

Finally, following Step 4, we combine Equations 2.17 through 2.20 and
solve jointly to determine all four branch variables in Figure 2.25. This yields

−i1 = i2 = I, (2.21)

v1 = v2 = RI, (2.22)

and completes the analysis of the circuit in Figure 2.25.

e x a m p l e 2.11 s i n g l e - r e s i s t o r c i r c u i t w i t h o n e

i n d e p e n d e n t v o l t a g e s o u r c e Now consider another simple
circuit shown in Figure 2.26. This circuit can be analyzed in an identical manner. It
too has two elements, namely a voltage source and a resistor. Figure 2.26 already shows
the definitions of branch variables, and so accomplishes Step 1.
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R

i1 i2

v1

+

-

v2V
+

-

F IGURE 2.26 A circuit with only
one independent voltage source
and one resistor.

Next, following Step 2 we write the element laws for these elements as

v1 = V (2.23)

v2 = Ri2, (2.24)

respectively. Here, the independent source amplitude V is assumed to be known.

Next, following Step 3, we apply KCL and KVL to the circuit. Since the circuit has two
nodes, it is again appropriate to write KCL for one node. The application of KCL at
either node yields

i1 + i2 = 0. (2.25)

The circuit also has two branches that form one loop, so it is again appropriate to write
KVL for one loop. The application of KVL around the one loop in either direction yields

v1 = v2. (2.26)
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Finally, following Step 4, we combine Equations 2.23 through 2.26 to determine all four
branch variables in Figure 2.26. This yields

−i1 = i2 = V

R
, (2.27)

v1 = v2 = V, (2.28)

and completes the analysis of the circuit in Figure 2.26.

For the circuit in Figure 2.25, there are four equations to solve for four
unknown branch variables. In general, a circuit having B branches will have 2B
unknown branch variables: B branch currents and B branch voltages. To find
these variables, 2B independent equations are required, B of which will come
from element laws, and B of which will come from the application of KVL and
KCL. Moreover, if the circuit has N nodes, then N−1 equations will come from
the application of KCL and B−N+1 equations will come from the application
of KVL.

While the two examples of circuit analysis presented here are admittedly
very simple, they nonetheless illustrate the basic steps of circuit analysis: label
the branch variables, assemble the element laws, apply KCL and KVL, and
solve the resulting equations for the branch variables of interest. While we will
not always follow these steps explicitly and in exactly the same order in future
chapters, it is important to know that we will nonetheless process exactly the
same information.

It is also important to realize that the physical results of the analysis of the
circuit in Figure 2.25, and of any other circuit for that matter, cannot depend
on the polarities of the definitions of the branch variables. We will work an
example to illustrate this point.

e x a m p l e 2.12 p o l a r i t i e s o f b r a n c h v a r i a b l e s

Consider the analysis of the circuit in Figure 2.27, which is physically the same as the
circuit in Figure 2.25. The only difference in the two figures is the reversal of the polari-
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F IGURE 2.27 A circuit similar to
the one shown in Figure 2.24.

ties of i2 and v2. The circuit in Figure 2.27 circuit has the same two elements, and their
element laws are still

i1 = −I (2.29)

v2 = Ri2. (2.30)

Note that the polarity reversal of i2 and v2 has not changed the element law for the
resistor from Equation 2.18 because the element law for a linear resistor is symmetric
when the terminal variables are defined according to the associated variables convention.
The circuit also has the same two nodes and the same loop. The application of KCL at
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either node now yields
i1 − i2 = 0, (2.31)

and the application of KVL around the loop now yields

v1 + v2 = 0. (2.32)

Note that Equations 2.31 and 2.32 differ from Equations 2.19 and 2.20 because of the
polarity reversal of i2 and v2. Finally, combining Equations 2.29 through 2.32 yields

−i1 = −i2 = I (2.33)

v1 = −v2 = RI, (2.34)

which completes the analysis of the circuit in Figure 2.27.

Now compare Equations 2.33 and 2.34 to Equations 2.21 and 2.22. The important
observation here is that they are the same except for the polarity reversal of the solutions
for i2 and v2. This must be the case because the circuits in Figures 2.25 and 2.27 are
physically the same, and so their branch variables must also be physically the same. Since
we have chosen to define two of these branch variables with different polarities in the
two figures, the signs of their values must differ accordingly so that they describe the
same physical branch current and voltage.

2.3.2 Q U I C K I N T U I T I V E A N A L Y S I S O F
S I N G L E - R E S I S T O R C I R C U I T S

Before moving on to more complex circuits, it is worthwhile to analyze the
circuit in Figure 2.25 in a more intuitive and efficient manner. Here, the element
law for the current source directly states that i1 = −I. Next, the application
of KCL to either node reveals that i2 = −i1 = I. In other words, the current
from the source flows entirely through the resistor. Next, from the element law
for the resistor, it follows that v2 = Ri2 = RI. Finally the application of KVL
to the one loop yields v1 = v2 = RI to complete the analysis.

e x a m p l e 2.13 q u i c k i n t u i t i v e a n a l y s i s o f a

s i n g l e - r e s i s t o r c i r c u i t This example considers the circuit in
Figure 2.26. Here, the element law for the voltage source directly states that v1 = V.
Next, the application of KVL around the one loop reveals that v2 = v1 = V. In other
words, the voltage from the source is applied directly across the resistor. Next, from the
element law for the resistor, it follows that i2 = v2/R = V/R. Finally, the application of
KCL to either node yields i1 = −i2 = −V/R to complete the analysis. Notice that we
had made use of a similar intuitive analysis in solving our battery and lightbulb example
in Chapter 1.

The important message here is that it is not necessary to first assemble
all the circuit equations, and then solve them all at once. Rather, using a little
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intuition, it is likely to be much faster to approach the analysis in a different
manner. We will have more to say about this in Section 2.4 and in Chapter 3.

2.3.3 E N E R G Y C O N S E R V A T I O N

Once the branch variables of a circuit have been determined, it is possible to
examine the flow of energy through the circuit. This is often a very important
part of circuit analysis. Among other things, such an examination should show
that energy is conserved in the circuit. This is the case for the circuits in Fig-
ures 2.25 and 2.26. Using Equations 2.21 and 2.22 we see that the power into
the current source in Figure 2.25 is

i1v1 = −RI2 (2.35)

and that the power into the resistor is

i2v2 = RI2. (2.36)

The negative sign in Equation 2.35 indicates that the current source actually
supplies power.

Similarly, using Equations 2.27 and 2.28 we see that the power into the
voltage source in Figure 2.26 is

i1v1 = −V2

R
(2.37)

and that the power into the resistor is

i2v2 = V2

R
. (2.38)

In both cases, the power generated by the source is equal to the power dissipated
in the resistor. Thus, energy is conserved in both circuits.

Conservation of energy is itself an extremely powerful method for obtain-
ing many types of results in circuits. It is particularly useful in dealing with
complicated circuits that contain energy storage elements such as inductors
and capacitors that we will introduce in later chapters. Energy methods can
often allow us to obtain powerful results without a lot of mathematical grunge.
We will use two energy-based approaches in this book.
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1. One energy approach equates the energy supplied by a set of elements
in a circuit to the energy absorbed by the remaining set of elements in a
circuit. Usually, this method involves equating the power generated by
the devices in a circuit to the power dissipated in the circuit.

2. Another energy approach equates the total amount of energy in a system
at two different points in time (assuming that there are no dissipative
elements in the circuit).

We will illustrate the use of the first method using a few examples in this
section, and Section 9.5 in Chapter 9 will highlight examples using the second
method.

e x a m p l e 2.14 e n e r g y c o n s e r v a t i o n Determine the value
of v in the circuit in Figure 2.28 using the method of energy conservation.

1 kΩ 2 mA

i

+

-

v

F IGURE 2.28 Energy
conservation example.

We will show that the mathematical grunge of the basic method can be eliminated using
the energy method and some intuition. In Figure 2.28, the current source maintains a
current i = 0.002 A through the circuit. To determine v, we equate the power supplied
by the source to the power dissipated by the resistor. Since the current source and the
resistor share terminals, the voltage v appears across the current source as well. Thus,
the power into the source is given by

v × (−0.002) = −0.002v.

In other words, the power supplied by the source is 0.002v.

Next, the power into the resistor is given by

v2

1k�
= 0.001v2.

Finally, equating the power supplied by the source to the power dissipated by the
resistor, we have

0.002v = 0.001v2.

In other words, v = 0.5 V.

e x a m p l e 2.15 u s i n g a n e n e r g y - b a s e d a p p r o a c h t o

v e r i f y a r e s u l t A student applies the basic method to the circuit in
Figure 2.29 and obtains i = 3 mA. Determine whether this answer is correct by using

1 k3 V

i = 3 mA?

+

-

v
+

-
Ω

F IGURE 2.29 Another energy
conservation example.

the method of energy conservation.

By energy conservation, the power supplied by the source must be equal to the power
dissipated by the resistor. Using the value of the current obtained by the student, the
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energy dissipated by the resistor is given by

i2 × 1K = 9 mW.

The energy into the voltage source is given by

3 V × 3 mA = 9 mW.

In other words, the energy supplied by the source is given by −9 mW. Clearly the
energy supplied by the source is not equal to the energy dissipated by the resistor, and
so i = 3 mA is incorrect. Notice that if we reverse the polarity of i, energy will be
conserved. Thus, i = −3 mA is the correct answer.

2.3.4 V O L T A G E A N D C U R R E N T D I V I D E R S

We will now tackle several circuits called dividers that are slightly more complex
than the simplest single-loop, two-node, two-element circuits of the previous
section. These circuits will comprise a single loop and three or more elements,
or two nodes and three or more elements. Dividers produce fractions of input
currents or voltages and will be encountered often in subsequent chapters. For
the moment, however, they are good examples on which to practice circuit
analysis, and we can use them to gain important insight into circuit behavior.

Voltage Dividers

A voltage divider is an isolated loop that contains two or more resistors and a

R1

R2
v2

R1

R2
v2

+ -

+

-

(a)

+

-

(b)V
+
-

F IGURE 2.30 Voltage-divider
circuit.

voltage source in series. A physical voltage divider circuit is illustrated pictorially
in Figure 2.30a. We have connected two resistors in series, and connected the
pair by some wires to a battery. Such a circuit is useful if we wish to obtain some
arbitrary fraction, say 10%, of the battery voltage at the terminals marked v2.
To find the relation between v2 and the battery voltage and resistor values, we
draw the circuit in schematic form, as shown in Figure 2.30b. We then follow
the basic four-step method outlined in Section 2.3 to solve the circuit.

1. The circuit has three elements, or branches, and hence it will have six
branch variables. Figure 2.31 shows one possible assignment of branch
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v1
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-

v2

i2

V
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i1

-

+

v0

i0

F IGURE 2.31 Assignment of
branch variables to the voltage
divider.

variables.
To find these branch variables, we again assemble the element

laws and the appropriate applications of KCL and KVL, and then
simultaneously solve the resulting equations.

2. The three element laws are

v0 = −V (2.39)
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v1 = R1i1 (2.40)

v2 = R2i2. (2.41)

3. Next, we apply KCL and KVL. The application of KCL to the two upper
nodes yields

i0 = i1 (2.42)

i1 = i2 (2.43)

and the application of KVL to the one loop yields

v0 + v1 + v2 = 0. (2.44)

4. Finally, Equations 2.39 through 2.44 can be solved for the six unknown
branch variables. This yields

i0 = i1 = i2 = 1

R1 + R2
V (2.45)

and

v0 = −V (2.46)

v1 = R1

R1 + R2
V (2.47)

v2 = R2

R1 + R2
V. (2.48)

This completes the analysis of the two-resistor voltage divider.
From the results of this analysis it should be apparent why the circuit in

Figure 2.31 is called a voltage divider. Notice that v2 is some fraction (specifically,
R2/(R1 +R2)) of the source voltage V, as desired. The fraction is the ratio of the
resistance about which the voltage is measured and the sum of the resistances.
By adjusting the relative values of R1 and R2 we can make this fraction adjust
anywhere from 0 to 1. If, for example, we wish v2 to be one-tenth of V,
as suggested at the start of this example, then R1 should be nine times as
big as R2.

Notice also that v1 + v2 = V, and that the two resistors divide the voltage
V in proportion to their resistances since v1/v2 = R1/R2. For example, if R1 is
twice R2 then v1 is twice v2.
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The voltage-divider relationship in terms of conductance can be found
from Equation 2.48 by substituting the conductances in place of the resistances:

v2 = 1/G2

1/G1 + 1/G2
V (2.49)

= G1

G1 + G2
V. (2.50)

Hence the voltage-divider relations expressed in terms of conductances involve
the conductance opposite the desired voltage, divided by the sum of the two
conductances.

The simple circuit topology of Figure 2.30 is so common that the voltage-
divider relation given by Equation 2.48 will become a primitive in our circuit
vocabulary. It is helpful to build up a set of such primitives, which are really
solved simple cases, to speed up circuit analysis, and to facilitate intuition.

A simple mnemonic: For the voltage v2, take the resistance associated with v2
divided by the sum of the two resistances, multiplied by the voltage applied to
the pair.

e x a m p l e 2.16 v o l t a g e d i v i d e r A voltage divider circuit such as
that in Figure 2.30 has V = 10 V and R2 = 1 k�. Choose R1 such that v2 is 10% of V.

By the voltage divider relation of Equation 2.48, we have

v2 = R2

R1 + R2
V.

For v2 to be 10% of V we must have

v2

V
= 0.1 = R2

R1 + R2
.

For R2 = 1 k�, we must choose R1 such that

0.1 = 1 k�

R1 + 1 k�

or R1 = 9 k�.

e x a m p l e 2.17 t e m p e r a t u r e v a r i a t i o n Consider the cir-
cuit in Figure 2.31 in which V = 5 V, R1 = 103 �, and R2 = 103 (1 + T/(500 ◦C)) �,
where T is the temperature of the second resistor. Over what range does v2 vary if T
varies over the range −100 ◦C ≤ T ≤ 100 ◦C?
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Given the temperature range, R2 varies over the range:

0.8 × 103 � ≤ R2 ≤ 1.2 × 103 �.

Therefore, following Equation 2.48, 2.2 V ≤ v2 ≤ 2.7 V, with the higher voltage
occurring at the higher temperature.

Having determined its branch variables we can now examine the flow
of energy through the two-resistor voltage divider. Using Equations 2.45
through 2.48 we see that the power into the source is

i0v0 = − V2

R1 + R2
(2.51)

and that the power into each resistor is

i1v1 = R1V2

(R1 + R2)2
(2.52)

i2v2 = R2V2

(R1 + R2)2
. (2.53)

Since the power into the voltage source is the opposite of the total power into
the two resistors, energy is conserved in the two-resistor voltage divider. That
is, the power generated by the voltage source is exactly dissipated in the two
resistors.

Resistors in Series

In electronic circuits one often finds resistors connected in series, as shown in
Figures 2.31 and 2.32. For example, in our lightbulb example of Chapter 1,

R2R1

F IGURE 2.32 Resistors in
series.

suppose the wire had a nonzero resistance, then the current through the wire
would be related to the value of several resistances including those of
the wires and the bulb in series. Our lumped circuit abstraction and the
resulting Kirchhoff’s laws allow us to calculate the equivalent resistance of such
combinations using simple algebra.

Specifically, the analysis of the voltage divider shows that two resistors in
series act as a single resistor having a resistance RS equal to the sum of the two
individual resistances R1 and R2. In other words, series resistances add.

RS = R1 + R2 (2.54)

To see this, observe that the voltage source in Figure 2.31 applies the volt-
age V to two series resistors R1 and R2, and that from Equation 2.43 these
resistors respond with the common current i1 = i2 through their branches.
Further, observe from Equation 2.45 that this common current, i = i1 = i2,
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is linearly proportional to the voltage from the source. Specifically, from
Equation 2.45, the common current is given by

i = 1

R1 + R2
V. (2.55)

By comparing Equation 2.55 to Equation 1.4, we conclude that for two
resistors in series, the equivalent resistance of the pair when viewed from their
outer terminals is the sum of the individual resistance values. Specifically, if
RS is the resistance of the series resistor pair, then, from Equation 2.55, we
find that

RS = V

i
= R1 + R2. (2.56)

This is consistent with the physical derivation of resistance in Equation 1.6
since placing resistors in series essentially increases their combined length.

By substituting their conductances, we can also obtain the equivalent
conductance of a pair of conductances in series as

1

GS
= 1

G1
+ 1

G2
. (2.57)

Simplifying,

GS = G1G2

G1 + G2
. (2.58)

As shown in the ensuing example, we can generalize our result for
two series resistors to N resistors in series as:

RS = R1 + R2 + R3 + · · · RN. (2.59)

Remember this result as another common circuit primitive.

e x a m p l e 2.18 a n N - r e s i s t o r v o l t a g e d i v i d e r Now
consider a more general voltage divider having N resistors, as shown in Figure 2.33.
It can be analyzed in the same manner as the two-resistor voltage divider. The only
difference is that there are now more unknowns to find, and hence more equations to

R1

RN

+

-

v1

+

-

vN

iN

V
+

-

i1

-

+

v0

i0

. .
 .

F IGURE 2.33 A voltage divider
with N resistors.

work with. To begin, suppose we assign the branch variables as shown in Figure 2.33.

The element laws are

v0 = −V (2.60)

vn = Rnin, 1 ≤ n ≤ N. (2.61)
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Next, the application of KCL to the N − 1 upper nodes yields

in = in−1, 1 ≤ n ≤ N (2.62)

and the application of KVL to the one loop yields

v0 + v1 + · · · vN = 0. (2.63)

Finally, Equations 2.60 through 2.63 can be solved to yield

in = 1

R1 + R2 + · · · RN
V, 0 ≤ n ≤ N (2.64)

v0 = −V (2.65)

vn = Rn

R1 + R2 + · · · RN
V, 1 ≤ n ≤ N. (2.66)

This completes the analysis.

As was the case for the two-resistor voltage divider, the preceding analysis shows that
series resistors divide voltage in proportion to their resistances. This follows from the
Rn in the numerator of the right-hand side of Equation 2.66.

Additionally, the analysis again shows that series resistances add. To see this, let RS be
the equivalent resistance of the N series resistors. Then, from Equation 2.64 we see that

RS = V

in
= R1 + R2 + · · · RN. (2.67)

This result is summarized in Figure 2.34.

Finally, the two voltage-divider examples illustrate an important point, namely that series
elements all carry the same branch current because the terminals from these elements
are connected end-to-end without connection to additional branches through which the
current can divert. This results in the KCL seen in Equations 2.42, 2.43, and 2.62, which
state the equivalence of the branch currents.

F IGURE 2.34 The equivalence
of series resistors.

R1

R2 RS = R1 + R2 + ... + RN

RN

. .
 .
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e x a m p l e 2.19 v o l t a g e - d i v i d e r c i r c u i t Determine v1 and
v2 for the voltage-divider circuit in Figure 2.35 with R1 = 10 �, R2 = 20 �, and
v(t) = 3 V using (a) the basic method and (b) the results from voltage dividers.

(a) Let us first analyze the circuit using the basic method.

1. Assign variables as in Figure 2.36.

2. Write the constituent relations

v0 = 3 V (2.68)

v1 = 10i1 (2.69)

v2 = 20i2. (2.70)

3. Write KCL

i1 − i2 = 0. (2.71)

4. Write KVL

−v0 + v1 + v2 = 0. (2.72)

Now eliminate i1 and i2 from Equations 2.69, 2.70, and 2.71, to obtain

v1 = v2

2
. (2.73)

Substituting this result and v0 = 3 V into Equation 2.72, we obtain

−3 V + v2

2
+ v2 = 0. (2.74)

R1

R2
v2

+
+

-

Signal
generator

-
v(t)

v1

+

-

F IGURE 2.35 Voltage-divider circuit.

10 Ωi1

v2

+

-

v1

+

+ i2

20 Ω-

-

3 V v0

+

-

F IGURE 2.36 Voltage divider with variables assigned.
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Hence,

v2 = 2

3
3 V = 2 V (2.75)

and from Equation 2.73, v1 = 1 V.

(b) Using the voltage-divider relation, we can write by inspection the value v2 as a
function of the source voltage as follows:

v2 = 20

10 + 20
3 V = 2 V.

Similarly,

v1 = 10

10 + 20
3 V = 1 V.

Current Dividers

A current divider is a circuit with two nodes joining two or more parallel resistors

-

+

i0 i2

v0

+

-

v1I R1

i1
R2

+

-

v2

F IGURE 2.37 A current divider
with two resistors.

and a current source. Two current dividers are shown in Figures 2.37 and 2.38,
the first with two resistors and the second with N resistors. In these circuits,

-

+

i0

v0

+

-

v1I R1

i1
RN

+

-

vN

iN
. . .

. . .

F IGURE 2.38 A current divider
with N resistors.

the resistors share, or divide, the current from the source in proportion to their
conductances. It turns out that the equations for voltage dividers comprising
voltages and resistances, and those for current dividers comprising currents
and conductances, are very similar. Therefore, to highlight the duality between
these two types of circuits, we will attempt to mirror the steps from our voltage
divider discussion.

Consider the two-resistor current divider shown in Figure 2.37. It has
three elements, or branches, and hence six unknown branch variables. To find
these branch variables we again assemble the element laws and the appropriate
applications of KCL and KVL, and then simultaneously solve the resulting
equations. First, the three element laws are

i0 = −I (2.76)

v1 = R1i1 (2.77)

v2 = R2i2. (2.78)

Next, the application of KCL to either node yields

i0 + i1 + i2 = 0 (2.79)

and the application of KVL to the two internal loops yields

v0 = v1 (2.80)

v1 = v2. (2.81)
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Finally, Equations 2.76 through 2.81 can be solved for the six unknown branch
variables. This yields

i0 = −I (2.82)

i1 = R2

R1 + R2
I (2.83)

i2 = R1

R1 + R2
I (2.84)

and

v0 = v1 = v2 = R1R2

R1 + R2
I. (2.85)

This completes the analysis of the two-resistor current divider.
The nature of the current division in Equations 2.83 and 2.84 is more

obvious if they are expressed in terms of the conductances G1 and G2 where
G1 ≡ 1/R1 and G2 ≡ 1/R2. With these definitions, i1 and i2 in Equations 2.83
and 2.84 become

i1 = G1

G1 + G2
I (2.86)

i2 = G2

G1 + G2
I. (2.87)

It is now apparent that i1 + i2 = I, and that the two resistors divide the current
I in proportion to their conductances since i1/i2 = G1/G2. For example, if G1
is twice G2 then i1 is twice i2.

To summarize our current divider discussion:

The current i2 is equal to the input current I multiplied by a factor, this time
made up of the opposite resistor, R1, divided by the sum of the two resistors
(see Equation 2.84).

This relation will also become a useful primitive in our analysis vocabulary.
As we did with voltage dividers, we can now examine the flow of energy

through the two-resistor current divider. Using Equations 2.82 through 2.85
we see that the power into the source is

i0v0 = − R1R2I2

R1 + R2
(2.88)

and that the power into each resistor is

i1v1 = R1R2
2I2

(R1 + R2)2
(2.89)
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i2v2 = R2
1R2I2

(R1 + R2)2
. (2.90)

Since the power into the current source is the opposite of the total power into
the two resistors, energy is conserved in the two-resistor current divider. That
is, the power generated by the current source is exactly dissipated in the two
resistors.

Resistors in Parallel

Resistors in parallel occur as commonly as resistors in series. Two resistors inR1

R2

F IGURE 2.39 Resistors in
parallel.

parallel are shown in Figures 2.37 and 2.39.
Our preceding analysis shows that the two resistors in parallel act as a

single resistor RP having a conductance GP (where GP = 1/RP) equal to the
sum of the two individual conductances. In other words, parallel conductances
add:

GP = G1 + G2 (2.91)

To see this, observe that the current source in Figure 2.37 applies the
current I to two parallel resistors, and that from Equation 2.85 these resistors
respond at their terminals with the common voltage v = v1 = v2 that is linearly
proportional to the current from the source. Thus, the resistors behave together
as a single resistor when viewed from their common terminals.

Let GP be the conductance of the parallel resistor pair. Then, from Equa-
tion 2.85, with the substitution of G1 ≡ 1/R1 and G2 ≡ 1/R2, and v = v1 = v2,
we can write

v = R1R2

R1 + R2
I. (2.92)

Or, in terms of conductances,

v = 1

G1 + G2
I. (2.93)

In other words,

GP = I

v
= G1 + G2. (2.94)

Hence, the equivalent conductance of the two parallel resistors is the sum of
their individual conductances. This is consistent with the physical derivation of
resistance in Equation 1.6 since placing resistors in parallel essentially increases
their combined cross-sectional area.

In practice, it is more common to work with resistances than it is to work
with conductances, although conductances are sometimes more convenient.
For this reason, it is worthwhile to find the equivalent resistance of two parallel
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resistors in terms of the individual resistances. Let the equivalent resistance be
RP. Then, from Equation 2.94 it follows that

1

RP
= GP = G1 + G2 = 1

R1
+ 1

R2
(2.95)

from which it follows that the equivalent resistance of two resistances in
parallel is given by

RP = R1R2

R1 + R2
(2.96)

which is the product of the two resistor values divided by their sum. This
relation can also be observed in 2.92, which has a form analogous to Ohm’s
law (Equation 1.4).

Parallel resistors occur frequently enough to merit a shorthand notation:
the two resistor values separated by two parallel vertical lines

R1‖R2 = R1R2

R1 + R2
. (2.97)

As we show shortly, we can generalize this result to N resistors connected
in parallel. If the equivalent resistance for N resistors connected in parallel is
given by RP, then the reciprocal of RP is given in terms of R1, R2, R3, . . . RN as

1

RP
= 1

R1
+ 1

R2
+ 1

R3
+ · · · 1

Rn
. (2.98)

The equivalent resistance of N resistors in parallel is yet another example of a
useful primitive that is worth remembering.

The shorthand notation for N resistances in parallel is

RP = R1‖R2‖R3‖ · · · RN. (2.99)

As an example, when N resistors, each with resistance R, are connected in
parallel, the effective resistance is simply

RP = R

N
. (2.100)

W W W e x a m p l e 2.20 a n N - r e s i s t o r c u r r e n t d i v i d e r
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e x a m p l e 2.21 p l a n a r r e s i s t o r Figure 2.41 depicts a planar
resistor fabricated on a VLSI chip. Suppose R� = 10 �, find the effective resistance
between terminals A and B.

4

4 42 A
B

F IGURE 2.41 A VLSI resistor.

Recalling that the resistance of any square piece of the given material is R�, we can
view the planar resistor as being composed of three series connected squares, each with
resistance R� as depicted in Figure 2.42.

4

4
42 A

B

F IGURE 2.42 A VLSI resistor
depicted as series connected
squares.

Thus the effective resistance between A and B is simply 3R�. In practice, however, the
resistance of such a piece of material is likely to be larger than 3R� due to fringing effects.
Section 1.4 discusses several such effects that limit the accuracy of our lumped circuit
model.

e x a m p l e 2.22 e q u i v a l e n t r e s i s t a n c e Compute the equiv-
alent resistance of the resistor combination shown in Figure 2.43.

1 kΩ 

4 kΩ 4 kΩ 

F IGURE 2.43 A series-parallel
resistor combination.

Using the series-parallel simplification sequence shown in Figure 2.44, we find the
equivalent resistance to be 3 k�.

1kΩ

4 kΩ 4 kΩ

1kΩ

2 kΩ 3 kΩ

F IGURE 2.44 Equivalent
resistance of a series-parallel
resistor combination.

e x a m p l e 2.23 e q u i v a l e n t r e s i s t a n c e c o m b i n a t i o n s

What equivalent resistors can be made by combining up to three 1000-� resistors in
series and/or in parallel?

Figure 2.45 shows the possible resistor combinations that use up to three resistors.
To determine their equivalent resistance, use the parallel combination result from
W W W Equation 2.109 and the series combination result from Equation 2.67. This yields
equivalent resistances of: (A) 1000 �, (B) 500 �, (C) 2000 �, (D) 333 �, (E) 667 �,
(F) 1500 �, and (G) 3000 �.

2.3.5 A M O R E C O M P L E X C I R C U I T

We are now ready to tackle more complex circuits, such as the electrical network
shown in Figure 2.1. More specifically, let us suppose that the current i4 is of
particular interest to us. This circuit contains two loops and four nodes, and is
amenable to our four-step solution procedure.

As our first step, we choose to assign the branch variables as shown in
Figure 2.46. Recall that the assignment of voltage and current variables is still
arbitrary (other than the constraint of associated variables), and that the solution
is invariant under this choice.

As our second step, we write the element laws for each of the elements.
The constituent relations for the resistors in this circuit are of the form v = iR,
and the relation for the voltage source is v5 = V. In terms of the variables
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defined in Figure 2.46, the constituent relations are

(a) (b) (c)

(d) (e)

(f) (g)

F IGURE 2.45 Various com-
binations of resistors involving
up to three resistors.

v1 = i1R1 (2.110)

v2 = i2R2 (2.111)

v3 = i3R3 (2.112)

v4 = i4R4 (2.113)

v5 = V. (2.114)

Our third step involves writing the KVL and KCL equations for the circuit.
For KVL, one possible choice of closed paths is shown in Figure 2.47. If we
assign the polarity to a voltage in accordance with the first sign encountered,
we see that for Loop 1, v5 and v2 are negative, v1 is positive. The corresponding
KVL equations are

−v5 + v1 − v2 = 0 (2.115)

+v2 + v3 + v4 = 0. (2.116)

A different choice of paths is shown in Figure 2.48. The KVL equations
for this choice are derivable from the set we already have; hence (1) they are
equally valid, and (2) they contain no new information. It follows that adding

i11 2 3R1

R2

i2
i5

i3

v4

+

-

-

+

v3+ - +

i4

645

R4

R3

+

-
V v2

v1 -

v5

+

-

F IGURE 2.46 Assignment of
branch variables.

v4

+

-

-

+

v3+ - +

v2

v1
-

Loop 1 Loop 2

+
-V

v5

+

-

F IGURE 2.47 One choice of
closed paths.
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F IGURE 2.48 Alternative choice
of paths.

Loop a 

Loop b 

+

-
Vv5

+

-

v4

+

-

-

+

v3+ - +

v2

v1
-

a third loop (loop b, Figure 2.48) to Figure 2.47 will not yield a KVL equation
independent of Equations 2.115 and 2.116.2

We now write the KCL equations. From Figure 2.46, at Node 1, KCL
yields

−i5 − i1 = 0 (2.117)

and at Node 2

+i1 + i2 − i3 = 0 (2.118)

and at Node 3

i3 − i4 = 0. (2.119)

As in the case of loops, it is possible to write KCL at Node 4, but the
equation is not independent of those we already have.

One might be tempted to write node equations for the junctions labeled
5 and 6, but this doesn’t make much sense. The branch between 4 and 6 is
a perfect conductor, hence it is really just part of the copper lead attached to
resistor R4. For this reason we did not bother defining a separate current variable
for this branch. A similar argument applies to branch 4-5.

Another way to emphasize that 5 and 6 are not true nodes is to redraw
the circuit as shown in Figure 2.49. Clearly the circuit topology is unchanged in
the sense that the interconnections among resistors and source are the same as
before, but the false nodes have disappeared. We conclude that a node should
be defined as a junction where two or more circuit elements, other than perfect
conductors, join together. Whenever a number of circuit elements connect to
one perfect conductor, (for example, 5, 4, 6 in Figure 2.46) only one node is
created.

2. A detailed treatment of the topological issues underlying these rules is contained in Guillemin
(Introductory Circuit Theory, Will, 1953) or Bose and Stevens (Introductory Network Theory,
Harper and Row, 1965).
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R2V
+

-

1 2

4

3R1 R3

R4

F IGURE 2.49 Circuit in
Figure 2.46 redrawn.

We now have ten independent equations (Equations 2.110 through 2.119)
and ten unknowns: five voltages and five currents. Thus the equations can
be solved for any variable by simple algebra. To find i4, for example, we can
first substitute the constituent relations, Equations 2.110 through 2.114 into
Equations 2.115 and 2.116:

−V + i1R1 − i2R2 = 0 (2.120)

i2R2 + i3R3 + i4R4 = 0. (2.121)

Now eliminating i2 and i3 using Equations 2.118 and 2.119

−V + i1R1 + (i1 − i4) R2 = 0 (2.122)

(−i1 + i4)R2 + i4R3 + i4R4 = 0. (2.123)

Rewriting to collect variables and place in the known voltages on the right-
hand side of each equation, we obtain

i1 (R1 + R2) − i4R2 = V (2.124)

−i1R2 + i4 (R2 + R3 + R4) = 0, (2.125)

which can be expressed in matrix form as
[
(R1 + R2) −R2

−R2 (R2 + R3 + R4)

] [
i1
i4

]
=

[
V

0

]
. (2.126)

The matrix equation is in the form

Ax = b

where x is a column vector of the unknowns (i1 and i4) and b is the column
vector of drive voltages and currents (in this case, just V). This vector of
unknowns can be solved by using standard linear algebraic techniques.
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For example, i4 can be found by applying Cramer’s Rule3

i4 = VR2

(R1 + R2)(R2 + R3 + R4) − R2
2

(2.127)

= VR2

R1R2 + R1R3 + R1R4 + R2R3 + R2R4
. (2.128)

With some more effort, we can find the rest of the branch variables as given
below

−i5 = i1 = R2 + R3 + R4

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.129)

i2 = − R3 + R4

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.130)

i3 = i4 = R2

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.131)

v5 = V (2.132)

v1 = R1(R2 + R3 + R4)

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.133)

v2 = − R2(R3 + R4)

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.134)

v3 = R2R3

R1(R2 + R3 + R4) + R2(R3 + R4)
V (2.135)

v4 = R2R4

R1(R2 + R3 + R4) + R2(R3 + R4)
V. (2.136)

This completes our analysis.
Note that in Figure 2.46, resistors R1 and R2 alone do not form a simple

voltage divider because of the presence of R3 and R4. It is true, however, that
R3 and R4 form a voltage divider. Further, R1 and the net resistance of R2, R3,
and R4 form a second voltage divider.

The analysis of the circuit in Figure 2.46 following the general approach
developed in this chapter is both straightforward and tedious, with emphasis on

3. Cramer’s Rule is a popular method for solving equations of the type Ax = b, where x and b are
column vectors, and A is a matrix. See Appendix D for more details.
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tedious. Fortunately, as we shall see in Chapter 3, there are much less tedious
approaches to this analysis. However, in advance of that we can still simplify the
analysis by employing results taken solely from earlier sections of this chapter.
Specifically, Section 2.4 shows that we can employ the equivalence of parallel
and series resistors, and the behavior of current and voltage dividers, to develop
an intuitive and simple approach to solving many types of circuits.

2.4 I N T U I T I V E M E T H O D O F C I R C U I T
A N A L Y S I S : S E R I E S A N D
P A R A L L E L S I M P L I F I C A T I O N

To develop our intuition, let us first illustrate the method with the simple
voltage divider in Figure 2.50a. Suppose we were interested in determining the
voltage across resistor R2. The figure shows a few important variables marked
on it. An intuitive way of analyzing the circuit is to replace the two resistors by
the series equivalent, as in Figure 2.50b, then find i1 using Ohm’s law. From
Equation 2.56, the equivalent series resistance is given by

RS = R1 + R2

and from Equation 1.4

i1 = V/RS.

Because i1 must be the same in the two circuits (in Figures 2.50a and 2.50b),
we can now find v2 from Figure 2.50a

v2 = i1R2 (2.137)

=
(

R2

R1 + R2

)
V. (2.138)

We have now determined the value of v2 in a few simple steps using results
from series resistances and Ohm’s law. In the future, we will actually write down
the result for the voltage divider in a single step by directly applying the voltage
divider relation in Equation 2.138.

(a)

R1

R2
v2

i1

+

-

V
+
-

(b)Rs

i1

V
+
-

F IGURE 2.50 An intuitive way of
analyzing the voltage divider circuit.
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It is worth dwelling on a couple of the ‘‘key moves’’ of our intuitive method.
The basic approach is to first collapse, then expand. Notice that our first move
was to collapse a set of resistances into a single equivalent resistance. Then, we
found the current into the equivalent resistance. Finally, we took an expanded
view of the two resistances to determine the specific voltage of interest.

Let us now use our intuition to develop an alternative method of ana-
lyzing the circuit in Figure 2.46 (repeated in Figure 2.51a for convenience). It
will be obvious that the intuitive method is far less tedious than the rigorous

-

+
i0

v0

+

-

v1

R1 i2

R2

+

-
v2V

+
-

v4 R4

+ -i1
v3+ -i3

R3 i4

(a)

-

+
i0

v0

+

-

v1

R1 i2

R2
v2V

+
-

+ -i1 i3

(b)

R3 R4+

-

+
i0

v0

v1

R1

V
+
-

+ -i1

(c)

R2 R3 R4)+(
R2 + R3 + R4

-

-

+
i0

v0V
+
-

(d)

R1 R2 + R3 + R4
-+

+

-
v2

i1

R2 R3 R4)+(

F IGURE 2.51 Collapsing the
circuit.

application of the basic method in Section 2.3.
Our alternative analysis of the circuit in Figure 2.51a follows the two basic

moves suggested earlier first collapse, then expand. Accordingly, our anal-
ysis begins by collapsing the circuit using the equivalence of parallel and series
resistors. This process is illustrated in Figure 2.51. Note that all branch variables
that can be preserved during this collapse are shown in Figure 2.51. First, the
series resistors R3 and R4 are combined to yield the circuit in Figure 2.51b.
Next, R2 is combined in parallel with the series equivalent of R3 and R4 to
yield the circuit in Figure 2.51c. Finally, the two remaining series resistors are
combined in series to yield the circuit in Figure 2.51d.

We now analyze our collapsed circuit in Figure 2.51d. Trivially, we know
that

v0 = V

and

i0 = −i1.

Now, following the results of Section 2.3.1, or equivalently by applying
Ohm’s law directly, we know that

i1 = V(
R1 + R2(R3+R4)

R2+R3+R4

) .

Thus, at this point, i0, v0, and i1 are known.
Our intuitive analysis concludes by expanding the circuit in Figure 2.51d

progressively. As we expand, we determine the values of as many of the variables
as we can in terms of previously computed variables. Following this process,
first, the circuit in Figure 2.51c can be viewed as a voltage divider of v0. In other
words, i1 can be multiplied by each of its two resistances to determine v1 and
v2. Thus,

v1 = V
R1(

R1 + R2(R3+R4)
R2+R3+R4

)
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and

v2 = V

R2(R3+R4)
R2+R3+R4(

R1 + R2(R3+R4)
R2+R3+R4

) .

Next, since v2 is now known, R2 and the series equivalent of R3 and R4 in
Figure 2.51b can each be divided into v2 to determine i2 and i3. In other words,

i2 = v2

R2

i3 = v2

R3 + R4
.

Alternatively, i2 and i3 can be determined by viewing R2 and the series equivalent
of R3 and R4 as a current divider of i1.

Finally, since i3 is now known, R3 and R4 in Figure 2.51a can be viewed
as a voltage divider of v2, or they can be multiplied by i3 = i4, to determine v3
and v4. Doing so yields

v3 = i3R3

and

v4 = i3R4.

This completes the intuitive analysis of the circuit in Figure 2.51a. The important
observation here is that the alternative approach to circuit analysis outlined in
Figure 2.51 is considerably simpler than the direct approach.

e x a m p l e 2.24 c i r c u i t a n a l y s i s s i m p l i f i c a t i o n As
another example of circuit analysis simplification, consider the network of twelve resis-
tors shown in Figure 2.52. Each resistor in the network has resistance R, and together

A

B

(a) (b)

(f)(e)

(d)

(h) (g)

(c)

F IGURE 2.52 A cubic resistive
network.

the network outlines the shape of a cube. Additionally, the network has two terminals
marked A and B, which extend from opposite corners of the cube to form a port. We
wish to determine the equivalent resistance of the network as viewed through this port.

To determine the network resistance, we turn the network into a complete circuit by
connecting a hypothetical current source to its terminals as shown in Figure 2.53. Note
that the circuit in Figure 2.53 is now much the same as the circuit in Figure 2.25; the two
circuits differ only in the complexity of the resistive network across the current source.
Next, we compute the voltage across the port that appears in response to the application
of the current source. The ratio of this voltage to the source current is then the equivalent
resistance of the network as viewed through the port. Note that this procedure does
work as desired for the circuit in Figure 2.25 since the division of Equation 2.22 by I
yields v2/I = R.
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F IGURE 2.53 Introducing a
current into the A–B terminal pair
of the cubic network.

i1

i3

i2

i6

i5

i4

I

A

B

(a) (b)

(f)(e)

(d)

(h) (g)

(c)

i7

i12

i11i9 i10

i8

Turning now to the analysis of the circuit in Figure 2.53, we see that it involves the
determination of 26 branch variables, which seems like a painful task. Fortunately, this
analysis can be greatly simplified by taking advantage of the symmetry of the circuit, and
that is the primary observation to be made here. As a consequence of the symmetry of
the circuit, the three branch currents i1, i2, and i3 are identical, as are the three branch
currents i4, i5, and i6. Further, KCL applied to the two nodes at the port terminals
shows that the sum of each group of three branch currents is I, so all six branch currents
equal I/3.

Next, again due to the symmetry of the circuit, the six branch currents i7 through i12

are all identical. Further, KCL applied to any interior node shows that these six branch
currents all equal I/6. Now, all branch currents in the circuit are known.

So, through their element laws, the branch voltages across all twelve resistors are known,
leaving the branch voltage across the current source as the only remaining unknown.
Finally through the application of KVL around any loop that passes through the current
source we see that its branch voltage is 5RI/6. Dividing this voltage by I yields 5R/6 as
the equivalent resistance of the cubic network of resistors.

While this solution yields an interesting result, the more important observation is the
importance of simplifying a circuit, in this case through symmetry, before attempting its
analysis.

e x a m p l e 2.25 r e s i s t a n c e o f a c u b i c n e t w o r k An
alternative method for determining the equivalent resistance of the cubic network in
Figure 2.52 that uses series-parallel simplifications is now shown. Also suppose that
each of the resistors in the network in Figure 2.52 has a resistance of 1 k�. Our goal
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A

B

(b) (d) (e)

(a)

(c) (h) (f)

(g)

F IGURE 2.54 Simplified
network.

is to find the equivalent resistance of this resistive network when looking into the A B
terminal pair.

First, observe the symmetry property of this resistive network. From any of the eight
vertices, the network looks identical, and therefore, the resistance between any pair of
vertices connected by the solid diagonal (for example, (a)-(g), (b)-(h), (e)-(c), etc.) is the
same. Furthermore, looking into A, the set of paths from A to B starting along the
edge (a)-(d) are matched by a set of paths starting along the edge (a)-(b), or by a set of
paths starting along the edge (a)-(e). Therefore, when we apply a current I as shown in
Figure 2.53, it must split evenly into i1, i2, and i3. Likewise, it draws current off the
network evenly, that is, i4, i5, and i6 are the same. Since the same current and resistance
causes the same voltage drop across the resistors, we conclude that nodes (b), (d), and
(e) have the same voltage, and nodes (h), (c), and (f) also have the same voltage with
respect to any reference node.

Notice that if we connect nodes with identical voltages by an ideal wire it does not
draw any current and does not change the behavior of the circuit. Therefore, for the
purpose of computing the resistance, we can connect all nodes with identical voltages,
and simplify the network to the one shown in Figure 2.54.

We can now apply our series and parallel rules to determine the equivalent resistance as

1 k�‖1 k�‖1 k� + 1 k�‖1 k�‖1 k�‖1 k�‖1 k�‖1 k� + 1 k�‖1 k�‖1 k�

which equals

1
1

1 k�
+ 1

1 k�
+ 1

1 k�

+ 1
1

1 k�
+ 1

1 k�
+ 1

1 k�
+ 1

1 k�
+ 1

1 k�
+ 1

1 k�

+ 1
1

1 k�
+ 1

1 k�
+ 1

1 k�

= 5

6
k�.

e x a m p l e 2.26 r e s i s t o r r a t i o s Consider the more involved
voltage-divider circuit in Figure 2.55a. The voltage source represents a battery that
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F IGURE 2.55 Resistor circuit:
(a) more complex voltage - divider
circuit; (b) shorthand notation. R1 R2 R3

RL
VO

VS = 5 V 

Gnd

(b)

R1 R2 R3

RL

VO

+
- VS = 5 V 

(a)

+

-

is supplying power to the rest of the circuit. Further, assume that the voltage VO is of
interest to us. Notice also that the two voltages VS and VO share a common negative
reference node. A power supply voltage source and a common voltage reference will be
encountered so commonly in our circuit language that it is worth creating an idiomatic
representation for them.

Figure 2.55b introduces our shorthand notation. First, batteries that serve as power
supplies are often not shown explicitly and use the upwards pointing arrow notation
instead. VS represents the power supply voltage. Often, we are also interested in mea-
suring voltages with respect to a common reference node, termed the ground node. This
node is represented with an upside-down ‘‘T’’ symbol as shown in the figure. The polar-
ity symbols corresponding to voltages that are referenced from this node are not shown
explicitly. Rather, the negative symbol is associated with the ground node and the plus
symbol is associated with the node adjacent to which the voltage variable appears.4

Now, referring to Figure 2.55b, suppose R1 = R2 = R3 = 10 k�, how do we choose
RL such that VO < 1 V?

The equivalent resistance of the three resistors in parallel is given by Equation 2.98.
Thus,

Req = 10k‖10k‖10k = 10

3
k�.

Using the voltage divider relationship, we require that

VO = 5
Req

(RL + Req)
< 1,

which implies that RL has to be at least four times as large as Req. In other words

RL >
40

3
k�.

4. Chapter 3 will discuss the concepts of ground nodes as well as node voltages in more detail.
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2.5 M O R E C I R C U I T E X A M P L E S

Let us now return to applying the basic method to several other circuits. Con-
sider, for example, the circuit in Figure 2.56, which we will see again in
Chapter 3. What is new about this circuit is that it contains two sources. It
is not amenable to the intuitive method discussed in Section 2.4. Nonetheless,
it can be analyzed by the basic approach presented in Section 2.3.

-

+
i0

v0

+

-

v1

R1 i2

R2 v2V
+
-

+ -i1 i3

+

-
v3I

F IGURE 2.56 A circuit with two
independent sources.

The element laws for this circuit are

v0 = V (2.139)

v1 = R1i1 (2.140)

v2 = R2i2 (2.141)

i3 = −I. (2.142)

Next, the application of KCL to the two upper nodes yields

i0 = −i1 (2.143)

i1 = i2 + i3 (2.144)

and the application of KVL to the two internal loops yields

v0 = v1 + v2 (2.145)

v2 = v3. (2.146)

Finally, Equations 2.139 through 2.146 can be solved to yield

−i0 = i1 = − R2

R1 + R2
I + 1

R1 + R2
V (2.147)

i2 = R1

R1 + R2
I + 1

R1 + R2
V (2.148)

i3 = −I (2.149)

v0 = V (2.150)

v1 = − R1R2

R1 + R2
I + R1

R1 + R2
V (2.151)

v2 = v3 = R1R2

R1 + R2
I + R2

R1 + R2
V (2.152)

to complete the analysis.
What is most interesting about the results of this analysis is that each

branch variable in Equations 2.147 through 2.152 is a linear combination of
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a term proportional to I and a term proportional to V. This suggests that we
could analyze the circuit first with V = 0 and second with I = 0, and then
combine the two analyses to obtain Equations 2.147 through 2.152. This is in
fact possible, and it leads to yet further analysis simplifications as we shall see
in Chapter 3.

Let us now practice the basic method on several other examples.

e x a m p l e 2.27 c i r c u i t w i t h t w o i n d e p e n d e n t

s o u r c e s Analyze the circuit in Figure 2.57 using the basic method. Further, show

-

+
i0

v0

+

-

v1

i2

v22 V
+
-

+ -i1

-

+
v3

3 A
i3

2 Ω

3 Ω

F IGURE 2.57 Another circuit
with two independent sources.

that energy is conserved in the circuit.

The branch variable assignments are shown in the figure. The element laws for this
circuit are

v0 = 2 V

v1 = 3i1

v2 = 2i2

i3 = 3 A.

Applying KCL to the two upper nodes gives us

i0 + i1 + i2 = 0

i1 = −i3.

Applying KVL to the two internal loops yields

v0 = v2

v2 = −v3 + v1.

Solving the preceding eight equations, we get v0 = 2 V, v1 = −9 V, v2 = 2 V,
v3 = −11 V, i0 = 2 A, i1 = −3 A, i2 = 1 A, and i3 = 3 A.

To show that energy is conserved, we need to compare the power dissipated by the
resistors and the power generated by the sources. The power into the resistors is given by

(−9 V) × (−3 A) + (2 V) × (1 A) = 29 W.

The power into the sources is given by

(2 V) × (2 A) + (−11) × (3 A) = −29 W.

It is easy to see that the power dissipated by the resistors equals the power gener-
ated by the sources. Thus, energy is conserved.



2.5 More Circuit Examples C H A P T E R T W O 97

W W W e x a m p l e 2.28 b a s i c c i r c u i t a n a l y s i s m e t h o d

e x a m p l e 2.29 d e t e r m i n i n g t h e I V c h a r a c t e r -

i s t i c s o f a c i r c u i t Determine the i v relationship for the two-terminal
device shown in Figure 2.61a. Make a sketch of the i v relationship for R = 4 � and
V = 5 V. As shown in the figure, assume that the internals of the device can be modeled
as a voltage source in series with a resistor.

We will find the i v relationship of the device by applying some form of excitation to the
device terminals and obtaining the relationship between the values of i and v. One of the
simplest inputs we can apply is a current source providing a current itest, as illustrated
in Figure 2.61b. The figure also shows the assignment of branch variables.

We will proceed by solving for the branch variables, v1, i1, v2, i2, v3, and i3, and then
obtain the i v relationship by expressing v and i in terms of the expressions for the
branch variables. Using the basic method, we first write the element laws

v1 = V

v2 = i2R

i3 = −itest.

Next, we apply KCL to the two upper nodes

i1 = −i2

i2 = i3

and KVL to the loop

v1 − v3 − v2 = 0.

These six equations can be solved to yield

i1 = −i2 = −i3 = itest

+

-V

R

i

+

-

v

(b)

itest

+

-

+ -

+

-

v1

i1

v2

i3

v3

i2

+

-V

R

i

+

-

v

(a)

Two-terminal device

F IGURE 2.61 Determining the
i – v characteristics: (a) a two-
terminal device; (b) assignment of
branch variables to the circuit con-
structed to determine the i – v
characteristics of the device.
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F IGURE 2.62 A plot of the i – v
characteristics for the device. v = 5 V

Slope
1
R
---

1
4
---= =

v (V)

i (
A

)

0

Ω

and

v1 = V, v2 = −itestR, and v3 = V + itestR.

We can now write the expression for v as

v = v3 = V + itestR

and substituting i = itest, we obtain the relationship between i and v as

v = V + iR.

In other words, the i v relationship is given by

i = v − V

R
.

Substituting V = 5 volts and R = 4 �, we get

i = v − 5

4
.

This relationship is plotted in Figure 2.62.

2.6 D E P E N D E N T S O U R C E S A N D
T H E C O N T R O L C O N C E P T

Section 1.6 introduced the voltage source and the current source as ideal mod-
els for energy sources. We call these independent sources because their values
are independent of circuit operation. But many sources have values that are
dependent on, that is, controlled by some other parameters in the system. For
example, the accelerator pedal in an automobile controls the power delivered
by the engine; the handle on a sink faucet controls the flow of water; and
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room lights can be controlled by either a switch, a binary or two-state device,
or a dimmer, a continuous control device. Chapter 6 will introduce another
multi-terminal device called the MOSFET in which a control voltage between
one pair of terminals of the device determines the MOSFET’s behavior between
another pair of terminals. Thus, when the multi-terminal dependent source is
connected in a circuit, the behavior of the device can be controlled by a voltage
or current in some other part of the circuit.

In the examples cited here, only a very small amount of power is needed to
control large amounts of power at the output. In the car, for example, a trivial
expenditure of energy controls hundreds of horsepower. To idealize, we assume
that zero power is required to exercise control; we call this a dependent source
or controlled source. The electrical forms of dependent sources are obvious
extensions of the sources we have already seen: a dependent voltage source that
can be controlled by some voltage or current, and a dependent current source
which likewise has a value determined by some voltage or current. Dependent
sources are most commonly used to model elements having more than two
terminals.

Figure 2.63 shows an idealized voltage-controlled current source (VCCS).
The device in the figure has four terminals. A pair of terminals serve as the con-
trol port and another pair of terminals are the output port. In many situations,
the control port is also called the input port. Figure 2.63 shows a labeling of the
branch variables at the output port vOUT and iOUT, and the branch variables
at the input port vIN and iIN. The value of the voltage vIN across its control
input port determines the value of the current iOUT through its output port. In
principle, such a dependent source can provide power, but for simplicity the
power terminals inherent to the source are not shown.

The diamond shape of the symbol indicates that the device is a dependent
source, and the arrow inside indicates that it is a current source. The direction
of the arrow indicates the direction of the sourced current and the label next
to the symbol indicates the value of the sourced current. In the example in the
figure, the sourced current is some function of the voltage vIN

iOUT = f (vIN).

iIN = 0

v
IN

+

-

+

-

 f(vIN)

 f(vIN) = gmvIN

vOUT

e.g.

Control
port

Output
port

iOUT

F IGURE 2.63 Voltage-
controlled current source.
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When the device is connected in a circuit, vIN might be another branch
voltage in the circuit.

We often deal with linear dependent sources. A linear voltage-controlled
current source is characterized by the equation:

iOUT = gvIN (2.173)

where g is a constant coefficient. When the dependent source is a voltage-
controlled current source, the coefficient g is called the transconductance with
units of conductance. Notice that Equation 2.173 is the element law for our
dependent source expressed as usual in terms of the branch variables. We also
need to summarize the behavior of the input port to completely characterize
the dependent source. Since our idealized VCCS does not require any power
to be supplied at its input, the element law for the input port is simply

iIN = 0 (2.174)

which is simply the element law for an infinite resistance. For the ideal dependent
sources considered in this book, we will assume that the control ports are ideal,
that is, they draw zero power.

Figure 2.64 shows a circuit containing our dependent source. For clarity,
the dependent source device is shown within the dashed box. In the figure, an
independent voltage source (sourcing a voltage V) is connected to the control
port and a resistor is connected to the output port. For the connection shown,
because

vIN = V

the output current iOUT will be g times the input voltage V. We will complete
the full analysis of the circuit shortly, and show that the presence of a dependent
source does not alter the manner in which our approach to circuit analysis is
applied.

Figure 2.65 shows another circuit containing our dependent source. In this
circuit, the control port is connected across a resistor with resistance RI. Accord-
ingly, the voltage across RI becomes the guiding voltage for the dependent
source.

F IGURE 2.64 A circuit con-
taining a voltage-controlled
current source.

vIN gvIN vOUT

iIN
+

-

+

-

iOUT

V
+
- RL
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vIN gvIN vOUT

iIN
+

-

+

-

iOUT

RL
RII

vI

+

-

iI
F IGURE 2.65 Another circuit
containing a voltage-controlled
current source.

Figure 2.66 illustrates the four types of linear dependent sources.
Figure 2.66a depicts our now familiar voltage-controlled current source.
Figure 2.66b depicts another type of dependent current source whose guiding
variable is a branch current. This dependent source is called a current-controlled
current source (CCCS).

The element law for the CCCS in Figure 2.66b is

iOUT = αiIN. (2.175)

The unitless coefficient α is referred to as a current transfer ratio. Further-
more, for a CCVS vIN = 0.

Figures 2.66c and 2.66d depict the symbols for dependent voltage sources.
A dependent voltage source supplies a branch voltage that is a function of some

vIN gvIN vOUT

iIN
+

-

+

-

(a)

vIN αiIN vOUT

iIN
+

-

+

-

(b)

vIN µvIN vOUT

iIN
+

-

+

-

(c)

iOUT

iOUT

iOUT

vIN riIN vOUT

iIN
+

-

+

-

(d)

iOUT

+
-

+
-

F IGURE 2.66 Four types of
dependent sources: (a) VCCS
(voltage-controlled current source);
(b) CCCS (current-controlled
current source); (c) VCVS
(voltage-controlled voltage source);
(d) CCVS (current-controlled
voltage source).

other signal within the circuit. Figure 2.66c shows a voltage-controlled voltage
source (VCVS) and Figure 2.66d shows a current-controlled voltage source
(CCVS). The guiding variable for a VCVS is a branch voltage, and that for a
CCVS is a branch current. The diamond shape of their symbols again indicates
that they are dependent sources, and the ± inside indicates that they are voltage
sources. The polarity the ± indicates the polarity of the sourced voltage and
the label next to the symbol indicates the value of the sourced voltage.

In the case of the VCVS in Figures 2.66c, the sourced voltage is equal to
µvIN, where vIN is a voltage across another branch of the circuit and µ is a
unitless coefficient. Thus, the element law for the VCVS in Figure 2.66 is

vOUT = µvIN. (2.176)

The coefficient µ is referred to as a voltage transfer ratio. Furthermore, for a
VCVS iIN = 0.

In the case of the CCVS in Figures 2.66d, the sourced voltage is equal to
riIN, where iIN is the current through another branch of the circuit and r is a
coefficient having the units of resistance. Thus, the element law for the CCVS
in the figure is

vOUT = riIN. (2.177)

The coefficient r is referred to as a transresistance.
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Finally, for both the dependent current source and the dependent voltage
source it is once again important to distinguish between the symbols that define
them (e.g., g) and the branch variables that are defined (e.g., vIN, iIN, vOUT, and
iOUT) in order to express their element laws. In particular, the branch variable
definitions may be reversed for convenience, which will lead to a negation of
the corresponding element laws.

2.6.1 C I R C U I T S W I T H D E P E N D E N T S O U R C E S

Let us now return to the analysis of our circuit in Figure 2.64, which contains
a dependent voltage source. Nonetheless, the circuit can be analyzed by the
basic approach presented in this chapter.

Figure 2.67 shows an assignment of the branch variables. The branch
variables include v0, i0, vIN, iIN, vOUT, iOUT, vR, and iR.

The element laws for this circuit are

v0 = V (2.178)

iIN = 0 (2.179)

vR = RLiR (2.180)

iOUT = gvIN. (2.181)

Next, the application of KCL to the two upper nodes yields

i0 = −iIN (2.182)

iOUT = −iR (2.183)

and the application of KVL to the two loops yields

v0 = vIN (2.184)

vR = vOUT. (2.185)

F IGURE 2.67 Assignment of
branch variables.

vIN gvIN
vOUT
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Finally, Equations 2.178 through 2.185 can be solved for the branch
variables to yield

i0 = iIN = 0 (2.186)

v0 = vIN = V (2.187)

iOUT = −iR = −gV (2.188)

vR = vOUT = −gVRL (2.189)

to complete the analysis.
The presence of the dependent source in the circuit in Figure 2.67 does not

alter the manner in which our approach to circuit analysis is applied. While this
is an important observation, there is arguably a more important observation
concerning the analysis of the dependent-source circuit, namely that it can
proceed in stages. That is, it is possible to first analyze the operation of the
‘‘input side’’ of the circuit, that is, the independent voltage source and the
input of the dependent source, and then separately analyze the operation of
the ‘‘output side,’’ that is, the dependent current source and the resistor RL.
We will term this approach the sequential approach to circuit analysis.

To see this, observe that the equations representing the input side of the
circuit, namely, Equations 2.178, 2.179, 2.182, and 2.184 can be solved trivially
by themselves to yield the values of v0, i0, vIN, and iIN (see Equations 2.186
and 2.187).

Then, with vIN treated as a known signal, the equations representing the
output side of the circuit, namely Equations 2.180, 2.181, 2.183, and 2.185,
can be solved by themselves to yield the values of vOUT, iOUT, vR, and iR (see
Equations 2.188 and 2.189) a result that is identical to that obtained for the
circuit in Figure 2.25.

At this point you are probably wondering why it is that we were able to
adopt such a sequential approach to analyzing the circuit in Figure 2.67. The
same sequential approach does not work for the circuit in Figure 2.46. The
intuition behind this useful property is that our idealized dependent source has
decoupled the circuit into two parts an input part and an output part. Because
our dependent source model has an open circuit at its terminals marked by the
branch voltage vIN, the behavior of the input part is completely independent
of the output part of the circuit. In other words, in determining the behavior
of the input part, it is as if the output did not even exist. The output part,
however, does depend on one of the input variables, namely, vIN. However,
once the value of the control input vIN is determined through an analysis of
the input part, it fixes the value of the dependent source. Thus, the dependent
source can be treated as an independent source for the purpose of analyzing the
output part.



104 C H A P T E R T W O r e s i s t i v e n e t w o r k s

F IGURE 2.68 The input port of
an idealized dependent source is
not shown explicitly.

vI gvI vOUT

+

-

+

-

iOUT

RL
RII

iI

Such a sequential approach to circuit analysis is commonly applied to cir-
cuits involving dependent sources, when the circuit does not introduce any
external coupling between the control port and the output port of the dependent
sources. We will use this approach to advantage in future chapters.

The analysis of circuits with idealized dependent sources admits one other
simplification. In an idealized dependent source, the input port (or control port)
is an open circuit if the guiding variable is a voltage. Similarly, the input is a
short circuit if the guiding variable is a current. Thus, the presence of the input
port does not really affect the behavior of the input part of the circuit. The
idealized input port is simply present to sample the value of a branch current or
voltage without changing the value of the existing branch variable. Therefore,
we do not really need to show the input port of the dependent source explicitly,
thereby reducing the number of branch variables that we have to deal with.

For example, the input port of the dependent source marked with the
branch variables vIN and iIN in Figure 2.65 is an open circuit. Accordingly,
iIN = 0 and vIN = vI, the voltage across the resistor RI. Therefore, we can
equivalently use the circuit in Figure 2.68, where the input port of the dependent
source is not shown explicitly, and the current sourced by the dependent source
is specified directly in terms of vI, the voltage across the resistor RI. We have
thus eliminated the branch variables vIN and iIN from our analysis.

As depicted in Figure 2.69, the same simplification can be made for a
dependent source in which the guiding branch variable is a current. Figure 2.69a
shows a circuit containing a current controlled current source with the control
port marked and all branch variables labeled explicitly. Figure 2.69b shows the

F IGURE 2.69 Simplifying a
circuit with a dependent source
by not showing the control port
explicitly: (a) with control port
marked and branch variables
labeled explicitly; (b) with
simplification.
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-
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+
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same circuit after making the simplification, where the sourced current is now
specified in terms of i1. Notice that there is a lot less clutter in the latter figure.

e x a m p l e 2.30 curr en t - con tro l l ed curr en t sourc e

Consider next the circuit shown in Figure 2.69b. This circuit contains a dependent
current source. Notice that we have applied a simplification suggested earlier by not
showing the control port of the dependent source explicitly. The current sourced by the
dependent source is guided by the current i1.

Let us now analyze this circuit. The branch variables are assigned as shown in
Figure 2.69b.

The element laws for this circuit are

v0 = V (2.190)

v1 = R1i1 (2.191)

v2 = R2i2 (2.192)

i3 = −αi1. (2.193)

Next, the application of KCL to the two upper nodes yields

i0 + i1 = 0 (2.194)

i2 + i3 = 0 (2.195)

and the application of KVL to the two loops yields

v0 = v1 (2.196)

v2 = v3. (2.197)

Finally, Equations 2.190 through 2.197 can be solved to yield

−i0 = i1 = V

R1
(2.198)

−i3 = i2 = αV

R1
(2.199)

v0 = v1 = V (2.200)

v2 = v3 = αR2V

R1
(2.201)

to complete the analysis.
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e x a m p l e 2.31 i n tu i t i v e s equ en t i a l a p p roach for

t h e c c c s Alternatively, we can solve the circuit in Figure 2.69b in a few lines if
we use the intuitive sequential approach. Assume that we are interested in finding out
the branch variables related to R2.

Using the sequential approach, first, let us tackle the input part of the circuit. Since the
voltage V appears across R1, the current through R1 is

i1 = V

R1
.

Now let us tackle the output part of the circuit. The current through the current source
is in the same direction as i2, and so

i2 = αi1 = α
V

R1
.

Applying Ohm’s law, we get

v2 = α
VR2

R1
.

Not surprisingly, this result is the same as that in Equation 2.201.

e x a m p l e 2.32 b r anch var i a b l e s Analyze the circuit in Figure
2.70 and determine the values of all the branch variables. Further, show that energy
is conserved in the circuit.

We will analyze the circuit intuitively, applying element laws, KVL and KCL, using the
sequential approach. Looking at the input side, since the voltage source appears across
an open circuit, it is easy to see that both v0 and vIN are two volts. Similarly, both i0
and iIN are zero. Thus, we have determined all the branch variables at the input side.

Next, let us analyze the output part of the circuit. Since we know the value of vIN, the
current through the current source is determined as

0.001vIN = 0.002 A.

F IGURE 2.70 A circuit
containing a voltage-controlled
current source.

vIN

0.001vIN

vOUT

iIN
+

-

+

-

iOUT

2 V
+
-

v0

+

-

i0

vR

+

-

iR

3 kΩ
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Since the current source current is in the same direction as iOUT, and in the opposite
direction as iR, we obtain from KCL

iOUT = 0.002 A

and

iR = −0.002 A.

Finally, applying the element law for a resistor, we obtain

vR = 3 × 103iR = −6 V

and from KVL, we obtain

vOUT = vR = −6 V.

This completes our analysis, since all output side branch variables are also known.

To verify that energy is conserved in the circuit, we must show that the power dissipated
by the elements is equal to the power supplied. Since the input side current is zero, there
is no power dissipated or supplied at the input side. At the output side, the power
dissipated in the 3-k� resistor is given by

3 k� × i2R = 0.012 W.

The power into the dependent current source is given by

vOUT × iOUT = −6 × 0.002 = −0.012 W.

In other words, the power supplied by the current source is 0.012 W. Since the power
supplied is equal to the power dissipated, energy is conserved.

More examples containing dependent sources are given in Section 7.2.

W W W e x a m p l e 2.33 vo l t ag e - con tro l l ed r e s i s t or

W W W 2.7 A F O R M U L A T I O N S U I T A B L E F O R A
C O M P U T E R S O L U T I O N *
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2.8 S U M M A R Y
� KCL is a law stating that the algebraic sum of the currents flowing into any

node in a network must be zero.

� KVL is a law stating that the algebraic sum of the voltages around any
closed path in a network must be zero.
A helpful mnemonic for writing KVL equations is to assign the polarity to a
given voltage in accordance with the first sign encountered when traversing
that voltage around the loop.

� The following is the basic method (or fundamental method or KVL/KCL
method) of solving networks:

1. Define voltages and currents for each element.
2. Write KVL.
3. Write KCL.
4. Write constituent relations.
5. Solve.

� The series-parallel simplification method is an intuitive method of solving
many types of circuits. This approach first collapses a set of resistances into
a single equivalent resistance. Then, it successively expands the collapsed
circuit and determines the values of all possible branch variables at each
step.

� The equivalent resistance for two resistors in series is RS = R1 + R2.

� The equivalent resistance of resistors in parallel is RP = R1‖R2 =
R1R2/(R1 + R2).

� Voltage divider relation means that when two resistors with values R1 and
R2 are connected in series across a voltage source with voltage V, the
voltage across R2 is given by

(
R2/(R1 + R2)

)
V.

� Current divider relation means that when two resistors with values R1 and
R2 are connected in parallel across a current source with current I, the
current through R2 is given by

(
R1/(R1 + R2)

)
I.

� This chapter discussed four types of dependent sources: voltage-controlled
current sources (VCCS), current-controlled current sources (CCCS),
voltage-controlled voltage sources (VCVS), and current-controlled voltage
sources (CCVS).

� The sequential method of circuit analysis is an intuitive approach that can
often be applied to circuits containing dependent sources when the control
port of the dependent source is ideal. This approach first analyzes the circuit
on the input side of the dependent source, and then separately analyzes the
operation of the output side of the dependent source.
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� Conservation of energy is a powerful method for obtaining many types of
results in circuits. Energy methods are intuitive and can often allow us to
obtain powerful results without a lot of mathematical grunge. One energy
approach equates the energy supplied by a set of elements in a circuit to
the energy absorbed by the remaining set of elements in a circuit. Another
energy approach equates the total amount of energy in a system at two
different points in time (assuming that there are no dissipative elements in
the circuit).

E X E R C I S E Se x e r c i s e 2.1 Find the equivalent resistance from the indicated terminal pair of
the networks in Figure 2.72.

1 Ω

4 Ω 3 Ω

2 Ω 2 Ω

2 Ω

1 Ω

2 Ω 2R 2R2R R

RRRR

(a) (b) (c)

F IGURE 2.72

e x e r c i s e 2.2 Determine the voltages vA and vB (in terms of vS) for the network
shown in Figure 2.73. vS

vB

6 vA

vA

3 vA

2 vA

+
+

+

+

+

+

−

−

−

−

−

−

F IGURE 2.73

e x e r c i s e 2.3 Find the equivalent resistance between the indicated terminals (all
resistances in ohms) in Figure 2.74.

5

Ω

Ω

Ω Ω Ω

ΩΩ

Ω

Ω

Ω Ω Ω Ω

Ω

Ω

10 10 2 3 6

4

2

2

1

4

2

3
2

1

(a) (b)

(c) (d) Difficult

F IGURE 2.74

e x e r c i s e 2.4 Determine the indicated branch voltage or branch current in each
network in Figure 2.75.

e x e r c i s e 2.5 Find the equivalent resistance at the indicated terminal pair for
each of the networks shown in Figure 2.76.
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F IGURE 2.75

2 Ω

(a) (b) (c)

(e)

v

+

−

2 MΩ

1 µA

2 Ω 20 kΩV

+

−

i

6 V
+

−

(d)

+
−

10 kΩ

30 V

i

20 kΩ30 V

i

20 kΩ
+
−

(f)

2 MΩ1 µA 2 MΩ

i

3 A

10 kΩ

F IGURE 2.76

(a) (b)

(d) (e)

R1

R1

R2

R2

R2 R3

R2

R1

R1

R1

R2

R3

R3

R3 R4
R4

R3
(c)

e x e r c i s e 2.6 In the circuit in Figure 2.77, v, i, and R1 are known. Find R2.

v = 5 V

i = 40 µA

R1 = 150 k�

R1 R2

i

+

v

−

F IGURE 2.77

e x e r c i s e 2.7 In the circuit in Figure 2.78, vo = 6 V, R1 = 100 �, R2 = 25 �,
and R3 = 50 �. Which of the resistors if any, are dissipating less than 1/4 watt?

vo
+
−

R1

R2 R3

F IGURE 2.78

e x e r c i s e 2.8 Sketch the i v characteristics for the networks in Figure 2.79.
Label intercepts and slopes.

e x e r c i s e 2.9

a) Assign branch voltages and branch current variables to each element in the network
in Figure 2.80. Use associated reference directions.
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10 Ω

(a)

v

+

−

i

5 V

(b)

v
+

−

i

+
− 2 V

(c)

v
+

−

i 5 Ω

+
−

6 Ω

(d)

v
+

−

i 4 Ω

2 A

(e)

v
+

−

i 5 Ω

4 Ω

F IGURE 2.79

A

+

−

B

E

C D

iA

vA F IGURE 2.80

b) How many linearly independent KVL equations can be written for this network?

c) How many linearly independent KCL equations can be written for this network?

d) Formulate a set of KVL and KCL equations for the network.

e) Assign nonzero numbers to each branch current such that your KCL equations are
satisfied.

f) Assign nonzero numbers to each branch voltage such that your KVL equations are
satisfied.

g) As a check on your result, you can draw on the fact that power is conserved
in a network that obeys KVL and KCL. Therefore calculate the quantity

∑
vnin.

It should be zero.

e x e r c i s e 2.10 A portion of a larger network is shown in Figure 2.81. Show
that the algebraic sum of the currents into this portion of the network must be zero.

P R O B L E M Sp r o b l e m 2.1 A pictorial diagram for a flashlight is shown in Figure 2.82. The
two batteries are identical, and each has an open-circuit voltage of 1.5 V. The lamp
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F IGURE 2.81

iA

iB iC

has a resistance of 5 � when lit. With the switch closed, 2.5 V is measured across the
lamp. What is the internal resistance of each battery?

B
at

te
ry

B
at

te
ry

+

-

+

-

Lamp

Switch

F IGURE 2.82

p r o b l e m 2.2 Determine the current i0 in the circuit in Figure 2.83 by working
with resistors in series and parallel.

2 Ω0.4 A
i0

1 Ω

2 Ω 2 Ω

F IGURE 2.83

p r o b l e m 2.3 Find the resistance between nodes A and B in Figure 2.84. All
resistors equal 1 �.

A

B

F IGURE 2.84

p r o b l e m 2.4 For the circuit in Figure 2.85, find values of R1 to satisfy each of
the following conditions:

12 V 

3 Ω

 R1

+

-

+

-
v

i

F IGURE 2.85

a) v = 3 V

b) v = 0 V

c) i = 3 A

d) The power dissipated in R1 is 12 W.

p r o b l e m 2.5 Find the equivalent resistance RT at the indicated terminals for
each of the networks in Figure 2.86.
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p r o b l e m 2.6 In each network in Figure 2.87, find the numerical values
of the indicated variables (units are amperes, volts, and ohms).

R1

R2

R3

(a)

R1 R2 R3

(b)

R1

R2 R3

(d)

R1

R2

R3

R4

(e)

R1

R2

R3

(c)

F IGURE 2.86

+

-

+

-

+

-

+

-

+-+ -

+

-

1 A 1 V - 4 A 2 V 

v2
v1

4 V  

i1

i1

v1 Ω

V3 = 5 V   

I3 = 5 A    

F IGURE 2.87

p r o b l e m 2.7 For the circuit in Figure 2.88, determine the current i3 explicitly
in terms of all circuit parameters.

i3v R2

R3R1
+
-

F IGURE 2.88

p r o b l e m 2.8 Determine explicitly the voltage v3 in the circuit in Figure 2.89.

+

-

R3I

R4

R2

R1 v3

F IGURE 2.89

p r o b l e m 2.9 Calculate the power dissipated in the resistor R in Figure 2.90.

p r o b l e m 2.10 Design a resistor attenuator to make vo = vi/1000, using the
circuit configuration given in Figure 2.91, and resistor values available in your lab. This
problem is underconstrained so it has many answers.
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F IGURE 2.90

4 Ω

3 V

2 Ω = R 

1 Ω 2 Ω
+
-

F IGURE 2.91

+

-

R3

vi
R4R2

R1

vo+
-

p r o b l e m 2.11 Consider the network in Figure 2.92 in which a non-ideal battery
drives a load resistor RL. The battery is modeled as a voltage source VS in series with a
resistor RS. The following are some proofs about power transfer:

a) Prove that for RS variable and RL fixed, the power dissipated in RL is maximum
when RS = 0.

vS

RS

RL

+
-

Source
network

Load

F IGURE 2.92

b) Prove that for RS fixed and RL variable, the power dissipated in RL is maximum
when RS = RL (‘‘matched resistances’’).

c) Prove that for RS fixed and RL variable, the condition that maximizes the power
delivered to the load RL requires that an equal amount of power be dissipated in the
source resistance RS.

F IGURE 2.93

v
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-
3 Ω

i

v
+

-
4 Ω
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2 A v
+
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4 Ω
i

8 V+
-

v
+

-
3 A

i

v
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-
3 Ω

i
4 Ω

v
+

-
4 Ω

i

3 Ω
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p r o b l e m 2.12 Sketch the v i characteristics for the networks in Figure 2.93.
Label intercepts and slopes.

p r o b l e m 2.13

a) Find i1, i2, and i3 in the network in Figure 2.94. (Note that i3 does not obey the
R2

R1i1

vA

R3 i3

i2
+
-

+
- vB

v1+ - v3+ -

v2

+

-

F IGURE 2.94

standard convention for current direction.)

b) Show that energy is conserved in this network.

p r o b l e m 2.14 Assume that you have an arbitrary network of passive two-
terminal resistive elements in which the i v characteristic of each element does not
touch either the v-axis or the i-axis, except that each i v characteristic passes through
the origin. Prove that all branch currents and branch voltages in the network are zero.

R2v I

R1 R3

R4
+
-

F IGURE 2.95

p r o b l e m 2.15 Solve for the voltage across resistor R4 in the circuit in
Figure 2.95 by assigning voltage and current variables for each resistor.

p r o b l e m 2.16 Find the potential difference between each of the lettered nodes

A

C

D

B

2 A

150 Ω 100 Ω

150 Ω 100 Ω

25 Ω 50 Ω20 Ω 20 Ω
E

D

F IGURE 2.96

(A, B, C, and D) in Figure 2.96 and ground. All resistances are in ohms.

p r o b l e m 2.17 Find the voltage between node C and the ground node in
Figure 2.97. All resistances are in ohms.

100 V +
-

+
-

A

2 AC B

D

200 V
Grounded node

i1

i2

i3

85 Ω

35 Ω

40 Ω

15 Ω25 Ω

5 Ω

20 Ω

F IGURE 2.97
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network theorems 3
3.1 I N T R O D U C T I O N

The basic network analysis method introduced in Chapter 2 is fundamental
but unfortunately often insufficient. The problem is that frequently we deal
with complicated circuits in which we are interested in relating only one output
variable to one input variable. For example, in analyzing a high-fidelity audio
amplifier, we might wish to find only the relationship between the voltage at
the output terminals and the voltage at the input terminals. The intermediate
voltage and current variables might be of no direct interest to us, yet by the
analysis method of Chapter 2, we are forced to define all such variables, and then
systematically eliminate them. Even worse, a circuit with N branches, each with
its own voltage and current, will in general have 2N unknown branch variables.
Thus, 2N equations must be solved simultaneously in order to complete the
analysis. Even for a simple circuit, 2N can be an unwieldy number.

Fortunately, there exist better approaches to the organization of circuit
analysis, and these approaches are the subject of this chapter. In this chap-
ter, we develop a number of network theorems, all based on the fundamental
methods of Chapter 2, which greatly simplify circuit analysis, and provide
substantial insight about how circuits behave. These theorems also provide
us with additional circuit vocabulary and a little more abstraction.

The first of these powerful techniques, called the node method, is funda-
mental and can be applied to any circuit, linear or nonlinear. The node method
works with a set of variables called the node voltages. So, before we present
the node method, let us discuss the concept of node voltages, and build up our
facility to work with them.

3.2 T H E N O D E V O L T A G E

In Chapters 1 and 2 we worked with branch voltages. A branch voltage is the
potential difference across the element in a branch. In like manner, we can define
a node voltage.

A node voltage is the potential difference between the given node and some
other node that has been chosen as a reference node. The reference node is
called the ground.

Current flows from the node with the higher potential to the node with
the lower potential.

119
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Although the choice of reference node is in fact arbitrary, it is most con-
venient to choose the node that has the maximum number of circuit elements
connected to it. The potential at this node is defined to be zero V, or ground-zero
potential. In electrical and electronic circuits, this node will usually correspond
to the ‘‘common ground’’ of the system, and is usually connected to the system
chassis. Assigning zero potential to the ground node is permissible because ele-
ments respond only to their branch voltages and not to their absolute terminal
voltages. Thus, an arbitrary constant potential may be uniformly added to all
terminal voltages across the circuit thereby permitting any node to be selected
as ground. A node will have a negative voltage if its potential is lower than that
of the ground node.

Figure 3.1a shows a circuit that we saw earlier in Chapter 2, and illustrates

ea

2 V
+
- 1 Ω

1 A
1 Ωa b

c

ea2 V
+
- 1 Ω

1 A
1 Ωa

b

c

eb

(a)

(b)

eb

F IGURE 3.1 Ground node and
node voltages.

some new notation. Node c has been chosen as ground. The upside down ‘‘T ’’
symbol is the notation for the ground node. Nodes a and b are two other nodes
of this circuit. Their node voltages ea and eb are marked. Figure 3.1b illustrates
that the node voltages are measured with respect to the ground node.

Now, let us practice working with node voltages. Figure 3.2 shows our
circuit from Figure 3.1 with a known set of branch voltages and currents. Let us
determine the node voltages ea and eb. The node voltage ea is the potential dif-
ference between node a and node c. To find the potential difference, let us start
at node c and work our way to node a accumulating potential differences along
the path c → a. Thus, starting at node c, we count an increase in potential of 2 V
as we traverse the voltage source and reach node a. Thus ea = 2 V.

Similarly, eb is the potential difference between nodes b and c. Therefore,
starting at node c and heading towards node b across the 1-� resistor, we
notice a potential increase of 1.5 V. So eb = 1.5 V.

Notice that from KVL, a given node’s voltage should be the same irrespec-
tive of the path along which voltages are accumulated. Thus, let us confirm
that the value of eb that is obtained by taking the path c → a → b is
the same as that obtained by taking the direct path c → b. Starting at c,
we first accumulate the voltage of 2 V as we cross the voltage source and reach
node a. Then, proceeding towards node b, we notice a 0.5-V drop across the
1-� resistor, resulting in a 1.5-V value for eb, as seen earlier.

As we will see shortly, the node method will determine all the node voltages
in a circuit. Once node voltages are known, we can readily determine all the

F IGURE 3.2 Determining the
node voltages from the branch
variables.

-

+ +

-

ea

2  V
+

-

+ -

+

-

1 Ω 1 A

a b

c

1.5 V
1.5 V–

2 V

eb

0.5 V

0.5 A–0.5 A 1.5 A
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-

+
i0

v0

+

-

v1

i2

v22 V
+
-

+ -i1 i3

+

-
v31 Ω 1 A

1 Ω
2 V

a b

c

1.5 V

F IGURE 3.3 Determining the
branch variable values from node
voltages.

branch variables. As an example, Figure 3.3 shows our circuit from Figure 3.1
with a known set of node voltages. Let us determine the values of the branch
variables.

Let us first determine the value of v1. The branch voltage v1 is the potential
difference between the nodes a and b. In other words,

v1 = ea − eb = 2 V − 1.5 V = 0.5 V.

We need to be careful with voltage polarities as we obtain branch voltages by
taking the difference of a pair of node voltages. As depicted in Figure 3.4, the

va vb

vab+ -

F IGURE 3.4 Branch and node
voltages for the element are
related as vab = va − vb .

relationship between the branch voltage vab and node voltages va and vb is
given by

vab = va − vb. (3.1)

Intuitively, if va > vb, then vab is positive when its positive polarity coincides
with the node with voltage va.

Similarly, noting that the potential of the ground node is taken as 0 V,

v0 = ea − ec = 2 V − 0 V = 2 V

and

v2 = v3 = eb − ec = 1.5 V − 0 V = 1.5 V.

The branch currents are easily determined from the branch voltages and
element laws as:

i1 = v1

1 �
= 0.5 A

i2 = v2

1 �
= 1.5 A

i0 = −i1 = −0.5 A
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and

i3 = −1 A.

e x a m p l e 3.1 n o d e v o l t a g e s Determine the node voltages corre-
sponding to nodes c and b for the circuit in Figure 3.5. Assume that g is taken as the
ground node.

Let vc and vb denote the voltages at nodes c and b, respectively. To find vc, let us follow
the path g → f → c. Accordingly, there is a 1-V increase in potential from g to f, and a
further −2-V ‘‘increase’’ from f to c resulting in an accumulated potential of −1 V at c.
Thus vc = −1 V.

Similarly, because the potential at node b is 4 V higher than that at node c, we get

vb = 4 V + vc = 4 V − 1 V = 3 V.

e x a m p l e 3.2 b r a n c h v o l t a g e s Determine all the branch volt-
ages for the circuit in Figure 3.6 when the node voltages are measured with respect
to node e.

We find each of the branch voltages by taking the difference of the appropriate node
voltages. Let us denote the voltage of node i as vi:

v1 = va − vb = −1 V

v2 = vb − ve = 2 V

v3 = vb − vc = −1 V

F IGURE 3.5 Circuit for
determining node voltages.

a b c

d

+ - + -

1 V
+

-

+

-

+

-+ -
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+ -
+

-

+

-
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3 V
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a

b

c

e

v1+ -

v4

+

-
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+

-
v3

+

-

v7

+
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v6+ -

v5
+

-

d

1 V

1 V

2 V

3 V

F IGURE 3.6 Circuit for
determining branch voltages.

v4 = va − ve = 1 V

v5 = vd − ve = 1 V

v6 = vd − vc = −2 V

v 7 = ve − vc = −3 V.

Once all the branch voltages are known, the branch currents can readily be found from
the branch voltages and the individual element laws. For example, if the element with
the branch voltage v1 is a resistor with resistance 1 k�, then its branch current i1 defined
according to associated variables is given by

i1 = v1

1 k�
= −1 mA.

Thus far, in this section, we have shown that once the node voltages
for a circuit are known, we can readily determine all the branch voltages by
applying KVL, and then the branch currents from the branch voltages and
element laws. Since we can determine branch currents from node voltages and
element laws, we can also write KCL for each of the nodes in a network in
terms of node voltages and the element parameters. Although our doing so
appears unmotivated at this point, we will make use of this fact in node analysis
in Section 3.3.

For example, consider the subcircuit shown in Figure 3.7. Let us write

. . .. . 
.

. . 
. . . .

i4

i2

i1

+

-
e10

i3
R2

R1

R3

R4

e1

e0

e4

e3e2

0

3

41

2

F IGURE 3.7 Circuit for writing
KCL.

KCL for Node 0 directly in terms of the node voltages e0, e1, e2, e3, and e4,
(defined with respect to some ground).

Let us start by determining the current through the resistance R1 into
Node 0. The branch voltage across the resistance R1 is given by applying
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KVL as

e10 = e1 − e0

where the negative polarity of e10 is defined to be at Node 0. Thus, the current
i1 through the resistance R1 into Node 0 is given by using the element law
for a resistor as

i1 = e10

R1
.

In terms of the node voltages,

i1 = e1 − e0

R1
.

We can determine the currents into Node 0 through the other resistors
in a similar manner:

i2 = e2 − e0

R2

i3 = e3 − e0

R3

i4 = e4 − e0

R4
.

We can now write KCL for Node 0 in terms of node voltages and element
values as

e1 − e0

R1
+ e2 − e0

R2
+ e3 − e0

R3
+ e4 − e0

R4
= 0. (3.2)

e x a m p l e 3.3 k c l Show that the node with voltage e = 7 V in Figure 3.8
satisfies KCL.

2 A 
10 A

e = 7 V  

1 Ω 7 Ω

F IGURE 3.8 Satisfying KCL.

For KCL to be satisfied at the node with node voltage e, the currents leaving the node
must be zero. In other words

2 A + (7 − 0) V

1 �
+ (7 − 0) V

7 �
− 10 A

must be 0. It is easy to see that this expression equals 0, and so KCL is satisfied.
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. . .

. . .  

31 2
. . .

5 A 

2 kΩ 1 kΩ 

4 kΩ 1 kΩ 

I

4 kΩ 7 V 3 V 8 V F IGURE 3.9 Portion of a circuit
containing three nodes.

e x a m p l e 3.4 m o r e k c l Figure 3.9 shows a portion of a circuit con-
taining three nodes: 1, 2, and 3. The node voltages with respect to some ground are
shown.

1. Write KCL for Node 2 in Figure 3.9 in terms of the node voltages and element
values.

2. Determine the current I through the current source.

KCL for Node 2 in terms of node voltages and element values is given by:

3 V − 7 V

4 k�
+ 3 V − 7 V

1 k�
+ 3 V − 8 V

1 k�
+ I = 0.

Simplifying, we obtain I = 10 mA.

In summary, a voltage is always defined as the potential difference between
a pair of points the two branch terminals for a branch voltage, and two nodes
for a node voltage. Accordingly, voltage measurement instruments have two
leads one to connect to the node in question and one to the reference node
or ground. Thus, when we refer to a node voltage, we are also making implicit
reference to a common ground node.

Interestingly, the significance of potential differences between pairs of
nodes is easily illustrated with the example of a person hanging from a high
voltage line. Although we do not recommend that you try this, a person hang-
ing from a high voltage line is safe as long as no part of their body touches the
ground. However, a deadly current would flow if the person were to touch the
ground or another wire at a different potential.

Node voltages will be used in the next section as the variables in the node
method. The node method will solve for the node voltages, which as we saw
in this section, are sufficient to determine all the branch voltages and currents.

3.3 T H E N O D E M E T H O D

Perhaps the most powerful approach of circuit analysis is referred to as node
analysis. Node analysis is based on the combination of element laws, KCL, and
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KVL, just as was the basic approach presented in Chapter 2. Thus, it introduces
no new physics, and it processes exactly the same information. However, node
analysis organizes the analysis of a circuit in a manner that yields a relatively
manageable problem, and this is what makes it particularly powerful.1

Let us illustrate the method with an example. Suppose we wish to find
the voltage across and the current through resistor R1 in the circuit shown
in Figure 3.10. Notice that the circuit in the figure is identical to the one we
analyzed in Figure 2.56 using the basic method, and therefore node analysis of
it must yield the results in Equations 2.151 and 2.147 for the branch voltage
and current corresponding to R1. For node analysis, instead of defining voltage
and current variables for each element in the network, we will choose node
voltages as our variables.

R1

R2V
+

-
I

V e

Node 1 Node 2

Node 3

F IGURE 3.10 A resistive circuit.

As discussed in the previous section, since node voltages are defined with
respect to a common reference, we first need to choose our reference ground
node. While any node may be selected as the ground node, some nodes are
more useful as ground nodes than others. Such useful nodes include those
with the maximum number of circuit elements connected to it. Another useful
ground node is one that connects to the maximum number of voltage sources.
Sometimes the operation of a circuit may be more intuitively understood with
a particular selection of the ground node. Alternatively, voltage measurements
are often more easily or safely made with respect to a certain node and so that
node might naturally be selected as the ground node.

One choice of ground node and a corresponding set of node voltages is
defined in the figure. Node 3 is a good choice because it has three branches
and it connects directly to the voltage source. Since the independent voltage
source has a known voltage V, we can directly label the voltage of Node 1 as V
using the element law for an independent voltage source. Thus, we have one
unknown node voltage e. Because node voltages identically satisfy KVL, it is not
necessary to write KVL. To demonstrate this point, let us write KVL around
the loops. Doing so, we find

−V + (V − e) + e = 0 (3.3)

−e + e = 0. (3.4)

Both of these equations are identically zero for all values of the node voltage
variables: As promised, this choice of voltage variables automatically satisfies
KVL. So to solve the circuit it is not necessary to write KVL. Instead, we

1. While node analysis is generally quite simple, it is complicated by the presence of floating
independent voltage sources and by the presence of dependent sources. Note that a floating inde-
pendent voltage source is a source that has neither terminal connected to ground, neither directly
nor through one or more other independent voltage sources. Consequently, we first introduce
node analysis without these complications, and then treat these complications in succession.
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will directly proceed with writing KCL equations. Furthermore, to save time
the KCL equations can be written directly in terms of the node voltages and
the resistors’ values. Since we have only one unknown, e, we need only one
equation. Hence, at Node 2,

e − V

R1
+ e

R2
− I = 0. (3.5)

Notice that the preceding step is actually two substeps bundled into one:
(1) writing KCL in terms of currents and (2) substituting immediately node
voltages and element parameters for the currents by using KVL and element
laws. By doing these two substeps together, we have eliminated the need to
define branch currents.

Note that in one step we have one unknown and one equation, whereas by
the KVL and KCL method of Chapter 2 we would have written eight equations
in eight unknowns. Further, note that both the device law for every resistor and
all independent statements of KVL for the circuit have been used in writing
Equation 3.5.

The voltage e can now be determined easily as

e
(

1

R1
+ 1

R2

)
= I + V

R1
. (3.6)

It is wise to check dimensions at this point: Each term in this exam-
ple should have the dimensions of current. Our equation can be somewhat
simplified by rewriting in terms of conductance rather than resistance:

e(G1 + G2) = I + VG1 (3.7)

where G1 = 1/R1 and G2 = 1/R2. Simplifying further,

e = 1

G1 + G2
I + G1

G1 + G2
V. (3.8)

In terms of resistances,

e = R1R2

R1 + R2
I + R2

R1 + R2
V. (3.9)

Once we have determined the values of the node voltages, we can easily
obtain the branch currents and voltages from the node voltages by using KVL
and the constituent relations. For example, suppose we are interested only
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F IGURE 3.11 A resistive circuit.
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v0

+
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v1

R1 i2

R2 v2V
+

-
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i1 i
3

+

-
v3I

V e

Node 1 Node 2

Node 3

in v1, the voltage across R1, and i1, the current through R1, as illustrated in
Figure 3.11. Then

v1 = V − e = − 1

G1 + G2
I + G2

G1 + G2
V (3.10)

and

i1 = (V − e)G1 = − G1

G1 + G2
I + G1G2

G1 + G2
V. (3.11)

In terms of resistances, v1 and i1 are given by

v1 = − R1R2

R1 + R2
I + R1

R1 + R2
V

and

i1 = − R2

R1 + R2
I + 1

R1 + R2
V.

For completeness, let us go ahead and determine the other branch voltages
and currents as well:

v0 = V (3.12)

v2 = v3 = e = 1

G1 + G2
I + G1

G1 + G2
V (3.13)

i0 = −i1 = G1

G1 + G2
I −

(
G1 − G2

1

G1 + G2

)
V (3.14)

i2 = eG2 = G2

G1 + G2
I + G1G2

G1 + G2
V (3.15)
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i3 = −I. (3.16)

This completes the node analysis.
A comparison of the equations for the branch voltages and currents (Equa-

tions 3.10 through 3.16) with the corresponding Equations 2.147 through 2.152
in Chapter 2 shows that the node analysis has resulted in the same expressions
for the branch variables as did the direct analysis presented. However, the node
analysis obtained these results in a much simpler manner. The direct analysis
of Chapter 2 involved the solution of eight simultaneous equations, namely
Equations 2.139 through 2.146, while the node analysis involved the solution
of only one equation, namely Equation 3.5, and the explicit back substitution
of its solution.

In summary, the specific steps of the node method can be written as:

1. Select a reference node, called ground, from which all other voltages will
be measured. Define its potential to be 0 V.

2. Label the potentials of the remaining nodes with respect to the ground
node. Any node connected to the ground node through either an
independent or a dependent voltage source should be labeled with the
voltage of that source. The voltages of the remaining nodes are the
primary unknowns and should be labeled accordingly. In this chapter we
will denote the unknown node voltages by the symbol e. Since there are
generally far fewer nodes than branches in a circuit, there will be far fewer
primary unknowns to determine in a node analysis.

3. Write KCL for each of the nodes that has an unknown node voltage (in
other words, the ground node and nodes with voltage sources connected
to ground are excluded), using KVL and element laws to obtain the
currents directly in terms of the node voltage differences and element
parameters. Thus, one equation is written for each unknown node
voltage.

4. Solve the equations resulting from Step 3 for the unknown node
voltages. This is the most difficult step in the analysis.

5. Back-solve for the branch voltages and currents. More specifically, use
node voltages and KVL to determine branch voltages as desired. Then,
use the branch voltages, the element laws, and KCL to determine the
branch currents, again as desired.

At this point, it is instructive to make some general comments about the
equations produced by the node method. Although the actual collection of con-
ductance terms in Equation 3.8 is not particularly educational in this somewhat
contrived example, the general form of the equation is useful. The right-hand
side has two terms, one for each source, and these source terms enter the
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equation as sums, and not products. Equations will always be of this form if the
circuit is made up of linear elements. In fact, we use this property to define a
linear network: A network is linear if the response to an input ax1 + bx2 is the
same as a times the response to x1 alone plus b times the response to x2 alone.
That is, if f (x) is the response to some excitation x, then the system is linear if
and only if

f (ax1 + bx2) = af (x1) + bf (x2). (3.17)

3.3.1 N O D E M E T H O D : A S E C O N D E X A M P L E

As a second, and slightly more complex, example of node analysis, consider
the circuit shown in Figure 3.12, which is the same as that shown in Figure 2.46
except for the addition of an independent current source. Specifically, suppose
we wish to find the voltage across and the current through resistor R3.

The first two steps in its node analysis, namely the selection of a ground
node and the labeling of its node voltages, are already complete. As shown in
Figure 3.12, Node 4 is selected as the ground node, Node 3 is labeled with the
known voltage V of the independent source, and Nodes 1 and 2 are labeled
with the unknown node voltages e1 and e2, respectively. Node 4 is a good
choice for the ground node because it joins the largest number of branches and
connects directly to the voltage source.

Next, following Step 3, we write KCL for Nodes 1 and 2 in terms of the
unknown node voltages. This yields

(V − e1)

R1
+ (e2 − e1)

R3
− e1

R2
= 0 (3.18)

for Node 1, and

(e1 − e2)

R3
− e2

R4
+ I = 0 (3.19)

for Node 2.
Note that in one step we have generated two equations and two unknowns,

whereas by the KVL and KCL method of Chapter 2 we would have written
twelve equations in twelve unknowns. The voltages e1 and e2 can now be

F IGURE 3.12 A resistive circuit.
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determined by standard algebraic methods. First, rewrite the equations with
the source terms on the left-hand side of the equations, and the dependent
variables on the right:

V

R1
= e1

(
1

R1
+ 1

R2
+ 1

R3

)
− e2

R3
(3.20)

I = − e1

R3
+ e2

(
1

R3
+ 1

R4

)
. (3.21)

Rewriting in terms of conductance to simplify our calculations:

G1V = e1(G1 + G2 + G3) − e2G3 (3.22)

I = −e1G3 + e2(G3 + G4). (3.23)

Application of Cramer’s rule (see Appendix D), yields

e1 = VG1(G3 + G4) + IG3

(G1 + G2 + G3)(G3 + G4) − G2
3

(3.24)

= V(G1G3 + G1G4) + IG3

G1G3 + G1G4 + G2G3 + G2G4 + G3G4
. (3.25)

Similarly, we can obtain e2 as

e2 = G1G3V + (G1 + G2 + G3)I

(G1 + G2 + G3)(G3 + G4) − G2
3

. (3.26)

All node voltages are now known, and from these node voltages all branch
variables in the circuit can be explicitly determined by using KVL and the con-
stituent relations. For example, suppose the voltage across R3 is v3, and the
current through R3 is i3, as illustrated in Figure 3.13. Then

v3 = e1 − e2

R1

R2

-

+

e1
+

+

R3

-V

-

R4 I

1

e2

2

v3 -+

i3
F IGURE 3.13 The resistive
circuit.
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and

i3 = e1 − e2

R3
.

Since the circuit in Figure 3.12, with I = 0, is the same as the circuit in
Figure 2.46, the analysis of the two circuits (with I = 0) using the basic and
the node methods should yield the same results. Accordingly, the reader might
want to compare the values for v3 and i3 obtained here, with those obtained in
Equations 2.135 and 2.131.

This example illustrates an important circuit property: The structure of a
node equation is closely related to the topology of the circuit. We will briefly
introduce this relationship here, and spend some more time on this topic in
Section 3.3.4. First, let us write our two node equations 3.22 and 3.23 in
matrix form:

[
G1 + G2 + G3 −G3

−G3 G3 + G4

] [
e1

e2

]
=

[
G1 0

0 1

] [
V
I

]
. (3.27)

The matrix equation is in the form

Ḡ ē = S̄ s̄ (3.28)

where ē is a column vector of unknown voltages and s̄ is the column vector of
known source amplitudes. Ḡ is called the conductance matrix and S̄ is called
the source matrix for reasons that will be apparent shortly. In Equation 3.22,
written at the e1 node, we note from Figure 3.12 that the coefficient of the e1
term (the first term in the first row of the Ḡ matrix) is the sum of the conduc-
tances connected to the e1 node. Similarly in Equation 3.23, the coefficient of
the e2 term (the second term in the second row of the Ḡ matrix) is the sum
of the conductances connected to the e2 node. (These terms are often called
the ‘‘self ’’ conductances.) The off-diagonal coefficients represent conductances
connected between the corresponding nodes, the ‘‘mutual’’ conductances. In
Equation 3.22, for example, the coefficient of the e2 term (the second term in
the first row of the Ḡ matrix) is the mutual conductance between the e1 node
(because this is the e1 equation) and e2. For linear resistive circuits, the off-
diagonal terms are negative, assuming that the equations have been structured
to make the main-diagonal terms positive.

It is self-evident that with circuits made up of linear resistors, the mutual
conductance e1 to e2 must be the same as the mutual conductance from e2 to
e1. Hence the two off-diagonal coefficients in the node equations are identical.
More generally, we expect node equation coefficients to exhibit mirror symme-
try about the main diagonal for linear resistive circuits, as is evident from the Ḡ
matrix. These helpful topological constraints are destroyed if we do not apply
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KCL at the nodes defined by the node voltages. Such a procedure is mathemat-
ically correct (the new equations are derivable by algebraic manipulation of the
original equations, Equations 3.22 and 3.23) but the symmetries are gone.

Interestingly, the SPICE software package uses the node method to solve
circuits. The program takes as input a file containing a description of the circuit
topology and by systematically following the node method produces a matrix
equation such as that in Equation 3.27. It then solves for the vector of unknowns
ē using standard linear algebraic techniques.

e x a m p l e 3.5 n o d e m e t h o d Determine the current i through the
5-� resistor in the circuit in Figure 3.14.

Let us use the node method to solve the circuit. As Step 1 of node analysis, we will
choose Node 1 as our ground node as depicted in Figure 3.14.

Step 2 labels the potentials of the remaining with respect to the ground node. Figure 3.14
shows such a labeling. Since Node 2 is connected to the ground node through an
independent voltage source, it is labeled with the voltage of the source, namely 1 V.
Node 3 is labeled with a node voltage e1 and Node 4 is labeled with a node voltage e2.

Next, following Step 3, we write KCL for Nodes 3 and 4. KCL for Node 3 is

e1 − 1

3
+ e1

4
+ e1 − e2

2
+ 2 = 0

and that for Node 4 is

−2 + e2 − e1

2
+ e2

5
− 1 = 0.

Following Step 4 we solve these equations to determine the unknown node voltages.
This yields

e1 = 0.65 V

and

e2 = 4.75 V.

+
-

1 A

1 V e13 Ω

4 Ω 5 Ω

e2

2 Ω

3

1

2 4

1 V

2 A

i

F IGURE 3.14 Determining the
unknown current i.
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We can now determine i as

i = 4.75

5
= 0.95 A.

e x a m p l e 3.6 n o d e m e t h o d s o l u t i o n o f t h e

v o l t a g e - d i v i d e r c i r c u i t Lest you think the node method is appli-
cable only to complex circuits with many nodes, let us apply the node method to the
simple voltage-divider circuit in Figure 3.15 to obtain the voltage vO.

The ground node is selected as shown in Figure 3.15. The circuit in Figure 3.15 has
one unknown node voltage, vO, also as marked in the figure. So, Steps 1 and 2 are
complete.

Following Step 3, we write KCL for the node with the unknown node voltage:

1 kΩ 

2 kΩ 

9 V 
+

-
vO

9 V

F IGURE 3.15 The voltage-
divider circuit.

vO − 9

1 k�
+ vO

2 k�
= 0.

Multiplying throughout by 2k we obtain

2vO − 18 + vO = 0

which yields

vO = 6 V.

e x a m p l e 3.7 f i n d n o d e v o l t a g e u s i n g t h e n o d e

m e t h o d Determine the node voltage vO in the circuit shown in Figure 3.16 using
the node method.

The circuit in Figure 3.16 has only one unknown node voltage, vO, as marked in the
figure. Figure 3.16 also shows a ground node, and so Steps 1 and 2 are complete.+

-

vO

1 kΩ

5 V 
+
-

6 V 

1 kΩ

F IGURE 3.16 A summing
circuit.

Following Step 3, we write KCL for the node with the unknown node voltage:

vO − 5

1 k�
+ vO − 6

1 k�
= 0.

Multiplying throughout by 1 k� we obtain

vO − 5 + vO − 6 = 0
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which simplifies to

vO = 5 V + 6 V

2

or

vO = 5.5 V.

The circuit in Figure 3.16 is called an adder circuit since vO is proportional to the sum
of the input voltages.

e x a m p l e 3.8 m o r e o n t h e n o d e m e t h o d Determine the
node voltage v in the circuit in Figure 3.17 using the node method.

The ground node and unknown node variables are marked as shown in Figure 3.17.
Next, following Step 3, we write KCL for the node with the unknown voltage.

Then, we write KCL for the node with the unknown node voltage:.

2 V 
+

-

v

3 A 2 Ω

3 Ω

2 V 

F IGURE 3.17 A circuit with two
independent sources.

v − 2

3
= 3 V.

Thus,

v = 11 V.

Compare the node analysis shown here with the basic method applied to the same
circuit on page 190.

W W W e x a m p l e 3.9 e v e n m o r e o n t h e n o d e m e t h o d

3.3.2 F L O A T I N G I N D E P E N D E N T V O L T A G E S O U R C E S

Node analysis as described here does not work for circuits that contain floating
independent voltage sources such as the one shown in Figure 3.20. A floating
independent voltage source is a voltage source that has neither terminal con-
nected to ground, neither directly nor through one or more other independent
voltage sources. The reason node analysis does not work is that the element
law for an independent voltage source does not relate its branch current to its
branch voltage. Therefore, it is not possible to complete Step 3 of node analysis
if the circuit contains a floating independent voltage source. In this case, it is
necessary to modify the node analysis slightly.

To apply node analysis to a circuit containing a floating voltage source we
must realize that the node voltages at the terminals of the source are directly
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F IGURE 3.20 A floating
independent voltage source and
its treatment as a super node.
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related by the element law for that source. For example, the application of KVL
to the circuit in Figure 3.20 shows that

e2 = V + e1. (3.32)

Because of this, the number of unknown node voltages in the circuit can be
immediately reduced by one since e1 and e2 can be determined directly from
each other using Equation 3.32. Consequently, the number of independent
statements of KCL needed to determine the unknown node voltages can sim-
ilarly be reduced by one. Thus, Nodes 1 and 2 in Figure 3.20 must together
contribute one statement of KCL to the first part of Step 3 of the node analysis
(namely, writing KCL for each of the nodes that has an unknown node voltage).
Further, this single statement of KCL should not involve i5 since i5 cannot be
determined from the element law of the voltage source in the second part of
Step 3 (namely, using KVL and element laws to obtain the currents directly in
terms of the node voltage differences and element parameters).

To derive the desired statement of KCL for Nodes 1 and 2, we draw a
surface around both nodes, enclosing what is referred to as a super node in
the process. Then, we write KCL for the super node. In the case of Figure 3.20,
KCL applied to the super node yields

i1 + i2 + i3 + i4 = 0 (3.33)

for the first part of Step 3. Note that this statement of KCL is nothing more
than the sum of

i1 + i2 + i5 = 0 (3.34)

i3 + i4 − i5 = 0, (3.35)
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which are the individual statements of KCL for Nodes 1 and 2. Following this,
in the second part of Step 3, the currents are eliminated by substituting node
voltages and element parameters in their place. In our example, i1 and i2 are
determined using e1 and the parameters of the elements through which i1 and
i2 flow. Similarly i3 and i4 are determined using e1 + V and the parameters of
the elements through which i3 and i4 flow, with e1 serving as the one unknown
node voltage.

Alternatively, i1 and i2 can be determined using e2 −V, and i3 and i4 can be
determined using e2, with e2 serving as the one unknown node voltage. Finally,
it should be recognized that a floating string of independent voltage sources is
handled in exactly the same manner as a floating isolated independent voltage
source.

Let us illustrate node analysis applied to a circuit with a floating independent
voltage source, and hence a super node, using the circuit shown in Figure 3.21.
The circuit is the same as that shown in Figure 3.10 except that Node 2 is
now selected as the ground node, and the node voltages for Nodes 1 and 3
are defined differently. The super node containing the floating voltage source
is also marked in the figure.

The primary unknown in the circuit, e, is now the voltage at Node 3. Note
also that the voltage at Node 1, the other node in the super node, is labeled
in terms of e. By defining the ground node and labeling the node voltages, we
have completed Steps 1 and 2 in the node analysis.

Next we perform Step 3 for the super node. This yields

e + V

R1
+ e

R2
+ I = 0. (3.36)

In Equation 3.36, (e + V )/R1 is the current (written in terms of node voltages
and element parameters) out of the super node through the branch containing

R1

R2V
+

-
I

e+V

e

Node 1
Node 2

Node 3

Super node

F IGURE 3.21 A circuit with
a floating independent voltage
source.



138 C H A P T E R T H R E E n e t w o r k t h e o r e m s

R1. Similarly, e/R2 is the current out of the super node through R2, and I is the
current through the third branch from the super node.

Following Step 4, the solution of Equation 3.36 is

e = − R1R2

R1 + R2
I − R2

R1 + R2
V. (3.37)

Finally, to complete the node analysis, the solution for e could be used in Step 5
of node analysis to determine the branch voltages and then the branch currents
in the circuit. While we will not do this here, it is worthwhile to see that it will
yield the same results as in Equations 3.10 through 3.16, providing that the
branch currents and voltages are defined in the same manner. To see that this
will be the case, observe that e in Equation 3.37 is the same as in Equation 3.9
except for a minus sign, owing to the change in the sign of e as defined in
Figures 3.10 and 3.21.

e x a m p l e 3.10 f l o a t i n g i n d e p e n d e n t v o l t a g e

s o u r c e As another example of node analysis applied to a circuit with a floating
independent voltage source, consider the circuit shown in Figure 3.22. In this circuit, the
voltage source having value V3 is the only floating independent voltage source. Because
the source having value V1 is connected to ground at Node 5 it is not a floating source,
hence Node 1 is labeled with the node voltage V1. Similarly, the source having value V2

is not a floating source because it is connected to ground through the known voltage
V1, hence Node 2 is labeled with the known node voltage V1 + V2. Thus, only the
voltages at Nodes 3 and 4 in the super node are unknown. In Figure 3.22, Node 3 is
labeled with the unknown node voltage e, and so Node 4 is labeled with the node voltage
e + V3.

F IGURE 3.22 Another circuit
with a floating independent voltage
source.

G1

G3

V2
+
-

e

Node 2

Node 3

Node 4

+
-

V3

V1
+
-

Node 1
G2

V1 V2+ e V3+

Super node

Node 5
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To continue the node analysis of the circuit in Figure 3.22, we perform Step 3 for the
super node. This yields

G1 [(e + V3) − (V1 + V2)] + G2(e − V1) + G3e = 0. (3.38)

Here, conductances have been used for convenience. Following Step 4, the solution of
Equation 3.38 is

e = (G1 + G2)V1 + G1V2 − G1V3

G1 + G2 + G3
. (3.39)

Finally, to complete the node analysis, the solution for e could be used in Step 5 to
determine the branch voltages and then the branch currents in the circuit. We will not
do this here.

3.3.3 D E P E N D E N T S O U R C E S A N D T H E N O D E
M E T H O D

A dependent source will also complicate the node analysis previously described
when its element law does not easily relate its branch current to its branch
voltage. In this case, it will again not be possible to complete Step 3, and so it is
again necessary to modify the node analysis slightly. Since there are four types
of dependent sources, and the branch currents and voltages that control them
can appear through or across many different types of elements, it is impractical
to treat each case separately in its most efficient manner. As a compromise,

i

. . .

. . .

. . .

f(i)

F IGURE 3.23 A circuit
containing a dependent current
source.

we present here a single method that treats all cases of dependent sources, and
illustrate how this method can be made more efficient in a few illustrative cases.
We will illustrate the method using the circuit in Figure 3.23, which contains a
dependent current source, whose current is some function of a branch variable
i as shown in the figure.

Our method of applying node analysis to a circuit containing dependent
sources begins by assuming that we know the value of each dependent source.
This assumption allows us to treat each dependent source as an independent
source, and carry out a node analysis of the circuit as described in the previ-
ous subsections. For example, in the case of a dependent current source (see
Figure 3.23), we replace the dependent source with an independent current
source with some assumed current, say I (see Figure 3.24), and carry out our
usual five-step node analysis. As part of this analysis we solve for the branch
variables that control the dependent sources in terms of the assumed source
values.

i
I

. . .

. . .

. . .

F IGURE 3.24 Replacing the
dependent current source with an
independent current source with
an assumed current I.

Of immediate interest are the expressions for the branch variables that
control dependent sources. In our example, this branch variable is i. Next, we
substitute these expressions for the controlling variables into the element laws
for the dependent sources, and self-consistently solve for the actual values of the
dependent sources. Continuing with our dependent current source example of
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Figure 3.23, suppose that the expression for i is some function of the assumed
current I and is of the form

i = g (I ). (3.40)

We substitute this expression for the branch variable into the element law
for the dependent current source as

I = f (i ) = f ( g(I )) (3.41)

and solve for I. The solution for I will not contain the variable i. Note that if the
expression for i shown in Equation 3.40 does not contain I, then no additional
work needs to be done to solve for I, since f ( g(I )) is itself a solution for I.

Finally, we back-substitute the actual values of the dependent sources
in other words, the solution for I into the original node analysis, thereby
completing the analysis in total.

As a concrete example, suppose the dependence source function

f (i ) = 10i.

Further, suppose we obtain the following expression for i as a function of the
assumed current I:

i = g (I ) = I

2
+ 2 A.

Then, according to Equation 3.41,

I = f ( g(I )) = 10
[

I

2
+ 2 A

]
.

Solving, we get

I = −5 A.

As expected, the solution for I does not contain the variable i.
This modification to the original node analysis is not always the most

efficient method of analysis, but it always works. However, when the element
laws for the dependent sources can be easily expressed in terms of the node
voltages, it is possible to take a more intuitive approach and apply the simple
node analysis described in Section 3.3 without modification. In our example of
Figure 3.23, suppose that the circuit on the left has the node voltages shown
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in Figure 3.25. In this case, it is easy to see that the element law for the current
source can be easily written in terms of the node voltages as

f (i ) = f
(

ea − eb

R

)

and our simple node analysis can be applied without modification. We will do
examples using both the modified and unmodified versions of the node method.

i
. . .

. . .

ea

eb
R

f(i)

F IGURE 3.25 Node voltages.
To illustrate our modified method of node analysis for a circuit containing

a dependent source, consider the analysis of the circuit shown in Figure 3.26.
This circuit has one dependent source, namely a CCCS. To analyze this circuit
using the node method, we first replace its CCCS with an independent current
source carrying a known current, say I, and analyze the resulting circuit. The
resulting circuit, however, is exactly that shown in Figure 3.10, which we have
already analyzed using the node method in Section 3.3. Note that the value I in
Figure 3.10 replaces the value αi1 in Figure 3.26. Thus, we are partially done
with the analysis of the circuit in Figure 3.26.

-

+
i0

v0

+

-

v1

R1 i2

R2 v2V
+
-

+ -
i1 i3

+

-
v3

V e

αi1

F IGURE 3.26 A circuit with a
dependent source.

The results of our analysis of the circuit in Figure 3.10 appear in Equa-
tions 3.10 through 3.16. Let us copy them here for convenience after replacing
conductances with resistances.

v0 = V (3.42)

i0 = R2

R1 + R2
I − 1

R1 + R2
V (3.43)

v1 = − R1R2

R1 + R2
I + R1

R1 + R2
V (3.44)

i1 = − R2

R1 + R2
I + 1

R1 + R2
V (3.45)

v2 = v3 = R1R2

R1 + R2
I + R2

R1 + R2
V (3.46)

i2 = R1

R1 + R2
I + 1

R1 + R2
V (3.47)

i3 = −I. (3.48)

Of particular interest from that analysis is the value of i1 because i1 controls
the CCCS in Figure 3.26. Using the result for i1 from Equation 3.45 we next
write

I = αi1 = α

[
− R2

R1 + R2
I + 1

R1 + R2
V

]
. (3.49)
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The first equality in Equation 3.49 expresses the equality of the CCCS in
Figure 3.26 and its surrogate independent current source in Figure 3.10. The
second equality follows from the substitution for i1 using Equation 3.45 from
the node analysis of the circuit in Figure 3.10. Since i1 is determined in terms
of I during that analysis, Equation 3.49 becomes an implicit equation that must
be solved for I. This solution yields

I = α

R1 + (1 + α)R2
V. (3.50)

The actual value of the CCCS is now known.
Finally, we back-substitute Equation 3.50, namely the actual value of I, into

Equations 3.42 through 3.48 to obtain

v0 = V (3.51)

i0 = − 1

R1 + (1 + α)R2
V (3.52)

v1 = R1

R1 + (1 + α)R2
V (3.53)

i1 = 1

R1 + (1 + α)R2
V (3.54)

v2 = v3 = (1 + α)R2

R1 + (1 + α)R2
V (3.55)

i2 = 1 + α

R1 + (1 + α)R2
V (3.56)

i3 = −α

R1 + (1 + α)R2
V. (3.57)

This completes the analysis of the circuit in Figure 3.26.
While the preceding analysis is not terribly difficult, it can nonetheless be

carried out more efficiently in many cases. As mentioned previously, commonly,
it is possible to apply the simple node analysis described in Section 3.3 without
modification because the element law for the CCCS can be easily expressed in
terms of the node voltage e. To see this, we begin by performing Step 3 of
node analysis to write

e − V

R1
+ e

R2
− α

V − e

R1
= 0 (3.58)

for the node at which e is defined. Note that in the third term in Equation 3.58,
(V − e)/R1 has been substituted for i1.
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Next, following Step 4, we solve Equation 3.58 for e to obtain

e = (1 + α)R2

R1 + (1 + α)R2
V. (3.59)

This result is the same as expressed in Equation 3.55. The remainder of
the node analysis, namely Step 5, then proceeds to yield Equations 3.51
through 3.57 directly. It is important to note, however, that the node anal-
ysis of circuits containing dependent sources cannot always be easily simplified
in this manner.

e x a m p l e 3.11 d e p e n d e n t c u r r e n t s o u r c e Now, let us
analyze a slightly different circuit containing a dependent source as shown in Figure 3.27.
The node voltages vO and vI are marked. The dependent current source supplies a
current

iO = f (x)

where we will consider two cases:

1. In the first case, x is the voltage vI, and the current

iO = −GmvI.

2. In the second case, x is the current iI, and

iO = −βiI.

Let us suppose that we are specifically interested in determining vO as a function of vI

in both cases.

Let us consider the first case in which

iO = −GmvI.

vI vO

RLRI

iI
iO = f(x)

vI
+

-

RP

F IGURE 3.27 Another
dependent current source circuit.
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Notice that iO is directly expressed in terms of a node voltage, and so we can apply our
simple node analysis technique without any modification, remembering, however, to
substitute the element law for the dependent source current when writing KCL for the
nodes with unknown voltages.

Since the ground and node voltages have been defined as shown in Figure 3.27, Steps 1
and 2 of node analysis are complete.

For Step 3, we write KCL at the node with the unknown voltage vO by summing the
currents into the node as follows:

vI − vO

RP
+ (−GmvI) = vO

RL
. (3.60)

Notice that we have used the element law for the dependent current source, namely,

iO = −GmvI

to substitute for the current into the node from the dependent current source.

By simplifying Equation 3.60, we obtain:

vO = (1 − GmRP)RL

RP + RL
vI. (3.61)

We have thus expressed vO as a function of vI when iO = −GmvI.

Let us now consider the second case in which

iO = −βiI.

Although not directly expressed in terms of a node voltage, it easy to see that iO can be
expressed in terms of a node voltage by substituting iI = vI/RI as follows:

iO = −β
vI

RI
.

Thus, as in the first case, we can apply our simple node analysis technique without any
modification. Going to Step 3 of node analysis, we write KCL at the node with the
unknown voltage vO by summing the currents into the node as follows:

vI − vO

RP
+ (−β

vI

RI
) = vO

RL
. (3.62)

Notice that we have used the element law for the dependent current source, namely,

iO = −β
vI

RI

to substitute for the current into the node from the dependent current source.
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By simplifying Equation 3.62, we obtain:

vO =
(

1 − β RP
RI

)
RL

RP + RL
vI. (3.63)

We have thus expressed vO as a function of vI when iO = −βiI.

W W W e x a m p l e 3.12 a m o r e c o m p l e x d e p e n d e n t -

c u r r e n t s o u r c e p r o b l e m

W W W 3.3.4 T H E C O N D U C T A N C E A N D
S O U R C E M A T R I C E S *

W W W 3.4 L O O P M E T H O D *

W W W e x a m p l e 3.13 l o o p m e t h o d

3.5 S U P E R P O S I T I O N

Suppose we make the circuit in Figure 3.12 one step more complicated by
adding a third source, as shown in Figure 3.33. Straightforward node analysis
following the procedure outlined by the node method yields

(V1 − e1)G1 + (V2 − e1)G2 + (e2 − e1)G3 = 0 (3.97)

(e1 − e2)G3 − e2G4 + I = 0. (3.98)

Collecting the source terms on the left side:

V1G1 + V2G2 = e1(G1 + G2 + G3) − e2G3 (3.99)

I = −e1G3 + e2(G3 + G4). (3.100)

R1

R2
+

R3

-
V1 R4

I

e2

V2

+

-

e1

F IGURE 3.33 A network with
three sources.
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Let us again find e1:

e1 = (V1G1 + V2G2)(G3 + G4) + IG3

(G1 + G2 + G3)(G3 + G4) − G2
3

(3.101)

= V1G1(G3 + G4) + V2G2(G3 + G4) + IG3

G1G3 + G1G4 + G2G3 + G2G4 + G3G4
. (3.102)

Again note the structure of this expression:

� All denominator terms are of the same sign. Thus the denominator
cannot be made zero for any nonzero values of conductances. (If the
denominator could be made zero, we could get infinite e1 for finite
sources values, a violation of conservation of energy.)

� Each term on the right consists of one source term multiplied by a
resistive (or conductive) factor. There are no products of source terms.

We now wish to translate these mathematical constraints to circuit
constraints, to find simpler methods for analyzing multi-source networks.
Specifically, we wish to find the terms in Equation 3.102, by inspection, from
Figure 3.33. The mathematics says that, because of linearity, the first term
remains unchanged if the other two sources are set to zero. We must now inter-
pret this statement in circuit terms. Mathematically, we wish to set variable V2
to zero, so in circuit terms we must set voltage source V2 to zero. By definition,
source V2 must now be zero regardless of what current flows through it, that
is, it must be a short circuit. So in general, setting a voltage source to zero is
equivalent in circuit terms to replacing that source by a short circuit. Similarly,
setting I to zero means that no current can flow through that branch of the
circuit regardless of the terminal voltage. Hence setting a current source to zero
is equivalent in circuit terms to replacing that source by an open circuit. These
are two additional important circuit primitives. Applying these two concepts
to Figure 3.33, we can find the first term in Equation 3.102, that is, the part
of e1 arising from source V1, by forming a subcircuit from Figure 3.33 with V2
and I set to zero as shown in Figure 3.34a. Thus, in Figure 3.34a, e1A is the
voltage component of e1 due to source V1 acting alone. Now e1A can be found
by inspection using the voltage-divider primitive:

e1A = V1
R2‖(R3 + R4)

R1 + R2‖(R3 + R4)
(3.103)

where the two vertical lines are shorthand notation for ‘‘in parallel with.’’ The
numerator, for example, is R2 in parallel with the sum of R3 and R4. The
calculation is somewhat simplified if we use conductance instead of resistance.
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Using the conductance form of the voltage-divider relation (Equation 2.50),
we find

e1A = V1
G1

G1 + G2 + G3G4/(G3 + G4)
(3.104)

where the two conductances in series, G3 and G4 are calculated using
Equation 2.58. Both of these expressions are the same as the first term in Equa-
tion 3.102, after some manipulation. Note that the form of Equation 3.104 is
much simpler and more insightful than the forms in Equations 3.101 and 3.102,
because the derivation in terms of the voltage-divider primitive reveals the basic
structure of the circuit. But the main point of this development is to show that
the effect of source V1 on the node voltage e1 can be found very easily by
forming a subcircuit in which V2 and I are set to zero.

By the same argument, the effect of V2 and I on e1 can be calculated
using the subcircuits shown in Figure 3.34b and 3.34c, respectively. For V2,
sources V1 and I are set to zero, as shown in Figure 3.34b. Clearly circuits 3.34a
and 3.34b are identical in topology, so the effect of V2 on e1 can be written from
Equation 3.103 by interchanging R1 and R2, or G1 and G2 in Equation 3.104.
This will give us e1B, the component of e1 due to voltage source V2.

To find the effect of I, it is necessary to set both V1 and V2 to zero, that
is, replace each by a short circuit, as shown in Figure 3.34c. Now e1C can be

R1

R2
+

R3

-
V1

R4 I = 0

e2A

V2 = 0

e1A

R1 R2

R3

V1 = 0
R4V2

+

-

e1B

(a)

I = 0

(b)

R2R1

R3

V1 = 0
R4I

i3

V2 = 0

e1C

(c)

F IGURE 3.34 Subcircuits.
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found by noting that the total conductance of the path to the left of the source
is, from Equations 2.94 and 2.58,

G = (G1 + G2)G3

G1 + G2 + G3
. (3.105)

Hence, from the current divider relation, the current through R3 is

iR3 = GI

G + G4
. (3.106)

Now e1C can be found from the relation

e1C = iR3

G1 + G2
(3.107)

= GI

(G + G4)(G1 + G2)
(3.108)

which, on substitution of Equation 3.105 and simplification, reduces to

e1C = IG3

(G1 + G2)G3 + G4(G1 + G2) + G3G4
. (3.109)

This is equivalent to the third term in Equation 3.102.
This example illustrates both the use of superposition to solve a network

with several sources, and also shows how primitives (elementary procedures)
can be used to solve circuits by inspection. Generalizing, we note that any messy
linear network the one in Figure 3.35, for example must somehow yield
to straightforward network analysis and lead to a set of equations of the form

V1G1a + V2G1b + · · · + I1 + · · · = e1G11 + e2G12 + · · · (3.110)

V1G2a + · · · · · · · · · · · · = e1G21 + e2G22 + · · ·
V1G3a + · · · · · · · · · · · · = e1G31 + · · ·

These have been written in the standard form, with source terms on the
left in each equation. All of the unknown variables appear on the right side, each
multiplied by conductances: the sum of the appropriate ‘‘self ’’ conductances
for terms along the main diagonal, and the sum of the appropriate ‘‘mutual’’
conductances elsewhere.

Further, the solution of such a set of linear simultaneous equations will
always result in an expression of the general form of Equation 3.102, in which
the voltage or current we are trying to evaluate will be equal to a sum of terms
each involving only one source.
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+

+ -V3

I1

I2
V 2-

+ -V1

F IGURE 3.35 A resistive
network.

The superposition theorem thus states that in a linear network with a num-
ber of independent sources, the response can be found by summing the responses
to each independent source acting alone, with all other independent sources set to
zero. These individual responses can be found very readily by forming subcircuits
in which all independent sources except one are set to zero.

Accordingly, the superposition method for linear networks can be stated
as follows:

The Superposition Method
1. For each independent source, form a subcircuit with all other

independent sources set to zero. Setting a voltage source to zero implies
replacing the voltage source with a short circuit, and setting a current
source to zero implies replacing the current source with an open circuit.

2. From each subcircuit corresponding to a given independent source, find
the response to that independent source acting alone. This step results
in a set of individual responses.

3. Obtain the total response by summing together each of the individual
responses.

e x a m p l e 3.14 s u p e r p o s i t i o n a n a l y s i s o f a v e r a g -

i n g c i r c u i t Show that the node voltage v0 in the circuit shown in Figure 3.36

+
-

v0

1 kΩ

5 V
+
-

6 V

1 kΩ

F IGURE 3.36 Circuit for
performing superposition analysis.

is the average of the two input voltages using the method of superposition.

By the method of superposition, the voltage v0 can be determined by summing the

+
-

v05

1 kΩ

5 V

1 kΩ

F IGURE 3.37 Circuit with 5-V
source acting alone.

responses of each of the sources acting alone. We will first obtain v05, the response
of the 5-V source acting alone. The subcircuit corresponding to the 5-V source acting
alone is shown in Figure 3.37. Notice we have shorted the 6 V source.

By the voltage divider action, we can write

v05 = 1 k�

1 k� + 1 k�
5 V = 5

2
V.
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Next, we obtain v06, the response of the 6-V source acting alone. The subcircuit corre-
sponding to the 6-V source acting alone is shown in Figure 3.38. In this case, we have

v06

1 kΩ

+

-
6 V 

1 kΩ

F IGURE 3.38 Circuit with 6-V
source acting alone.

shorted the 5-V source.

Again, by the voltage divider action, we can write

v06 = 1 k�

1 k� + 1 k�
6 V = 6

2
V.

We now sum the two partial responses to obtain

v0 = v05 + v06 = 5 + 6

2
= 5.5 V.

It is easy to see that v0 is the average of the two input voltages.

e x a m p l e 3.15 a p p l y i n g t h e m e t h o d o f s u p e r -

p o s i t i o n Figure 3.39 shows a circuit containing an independent voltage source
and an independent current source. Determine the current I.

We will use the method of superposition to solve this circuit in two different ways. First,
we will obtain the node voltage e using superposition, and then, using the value of e,
obtain the current I. Our second approach will directly determine I using the method of
superposition.

First Method

Let us first determine the value of e using superposition. By the method of superposi-
tion, the voltage e can be determined by summing the responses of each of the sources
acting alone. We will first obtain ev, the response of the voltage source acting alone.
The subcircuit corresponding to the voltage source acting alone is shown in Figure 3.40.
Notice we have turned the current source off by open-circuiting it.

By the voltage divider action, we can write

ev = 1
2

2 + 2
= 1

2
V.

F IGURE 3.39 Circuit with two
independent sources. 1 V

+
-

1 A

e

2 Ω

2 Ω 2 Ω

I



3.5 Superposition C H A P T E R T H R E E 151

1 V
+
-

ev

2 Ω

2 Ω 2 Ω

1 V
+
-

ev

2 Ω

2 Ω

F IGURE 3.40 Subcircuit
corresponding to the voltage
source acting alone.

1 A

ei

2 Ω

2 Ω 2 Ω

1 A

ei

1 Ω

2 Ω

F IGURE 3.41 Subcircuit
corresponding to the current
source acting alone.

Next, we obtain ei, the response of the current source acting alone. The subcircuit
corresponding to the current source acting alone is shown in Figure 3.41. In this case,
we have shorted the voltage source.

We first simplify the subcircuit by replacing the pair of 2-� resistors in parallel with an
equivalent 1-� resistor as depicted in Figure 3.41. Then, since the 1-A current flows
through each of the resistors, the voltage across the 1-� resistor is equal to ei. In other
words,

ei = 1 A × 1 � = 1 V.

We now sum the two partial responses to obtain the total response e. That is,

e = ev + ei = 1

2
V + 1 V = 1.5 V.

We can now determine I as

I = e

2 �
= 0.75 A.

Second Method

Next, we will directly determine I using superposition. Superposition says that I can be
determined by summing the currents generated by each of the sources acting alone. We
will first obtain Iv, the current due to the voltage source acting alone. The subcircuit
corresponding to the voltage source acting alone is shown in Figure 3.42.

1 V
+

-
2 Ω

2 Ω

Iv

F IGURE 3.42 Subcircuit
corresponding to the voltage
source acting alone.
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The current in the subcircuit is given by the voltage divided by the sum of the resistors.
In other words,

Iv = 1 V

2 � + 2 �
= 0.25 A.

Next, we obtain Ii, the response of the current source acting alone. The subcircuit
corresponding to the current source acting alone is shown in Figure 3.43.

1 A 

2 Ω

2 Ω 2 Ω

Ii

F IGURE 3.43 Subcircuit
corresponding to the current
source acting alone.

By the current divider relation, it is easy to see that Ii = 0.5 A, since the 1-A current
supplied by the current source divides equally into the two branches of the subcircuit in
Figure 3.43.

We now sum the two partial responses to obtain the total response I. That is,

I = Iv + Ii = 0.25 A + 0.5 A = 0.75 A.

e x a m p l e 3.16 r e s i s t i v e a d d e r c i r c u i t An elementary
resistive adding circuit is shown in Figure 3.44a. This circuit might be used to add
together a number of microphone signals before sending them to one amplifier. (Notice
that this circuit is a generalization of the circuit in Figure 3.36.) We shall discover better
ways of building such a circuit in later chapters, but the present form serves as a good
illustration of the principle of superposition.

From the preceding discussion, the effect on the output voltage Vo of the source V1

acting alone can be found by forming a subcircuit in which all other independent sources
are set to zero, which in this case means replacing V2, V3, and V4 by short circuits, as
shown in Figure 3.44b. Now Voa, the response to V1 alone, can be found by inspection

RR

Vo

(a)

RR
+

-

R Voa

(b)

+

-

R R

R

+

-
V4

+

-
V3

+

-
V2

+

-
V1

+

-
V1

F IGURE 3.44 Resistive adding
circuit.
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using the voltage-divider relation

Voa = R/3

R + R/3
V1. (3.111)

The complete response is the sum of four such terms, which in this special case all have
the same coefficient

Vo = 1

4
(V1 + V2 + V3 + V4). (3.112)

Note that there is no restriction on the nature of the sources (other than frequency
limits, etc., as discussed in Chapter 1). The sources could be DC, sine waves or square
waves, speech, or a mixture of these. Equation 3.112 states that the output will be the
sum of these individual signals, each multiplied by a constant, a ‘‘scaling factor.’’ If the
inputs were four sine waves, each at a different frequency, then the output voltage would
be the sum of these four sinusoids, appropriately scaled. No other frequencies would be
present in the output signal. Thus a further consequence of linearity is that, whatever
frequencies are present at the input or inputs of a linear system, these and only these
frequencies will appear at the output.

W W W e x a m p l e 3.17 s u p e r p o s i t i o n a p p l i e d t o a

b e e h i v e n e t w o r k

3.5.1 S U P E R P O S I T I O N R U L E S F O R D E P E N D E N T
S O U R C E S

When the dependencies are linear, dependent sources are amenable to the set of
analyses discussed earlier in Chapters 2 and 3. Care must be taken, however, in
applying the superposition principle. Recall that the principle of superposition
allows linear multisource networks to be solved for one source at a time by
setting all other independent sources to zero. Setting a voltage source to zero
means replacing it with a short circuit; a current source set to zero is an open
circuit. The complete response is the sum of the responses to each individual
source.

What do we do about dependent sources? A practical way is to leave all the
dependent sources in the circuit. The network can then be solved for one
independent source at a time by setting all other independent sources to zero,
and summing the individual responses.

Alternatively, the dependent sources could be treated as independent
sources, and in a final step of the analysis, their dependencies must be back-
substituted in terms of other network parameters. However, this method tends
to be impractical.
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e x a m p l e 3.18 a s i n g l e d e p e n d e n t s o u r c e a n d

s u p e r p o s i t i o n Consider the circuit in Figure 3.49. It contains two indepen-
dent sources and one dependent source. Using the superposition method, let us derive
the output voltage vO.

We will solve the circuit by leaving the dependent current source in the circuit
and summing the responses of each of the independent sources acting alone.

1-V Source Acting Alone

Figure 3.50 shows the circuit corresponding to the 1-V source acting alone, where vO1

is the corresponding response. Notice that the dependent current source has been left
in the circuit, and the 2-V source has been shorted out.

By the voltage divider relation, we know that

v1 = 0.5 V.

Thus,

vO1 = 1

100
v1 × 1 k� = 5 V.

2-V Source Acting Alone

Figure 3.51 shows the circuit corresponding to the 2-V source acting alone, where vO2

is the corresponding response. By the voltage-divider relation, we know that

v2 = 1 V.

Thus,

vO2 = 1

100
v2 × 1 k� = 10 V.

v

1 kΩ
1 kΩ

1
100Ω
------------- v

+
-

1 V

vO

1 kΩ 

+
-

2 V

F IGURE 3.49 Circuit containing two independent
sources and one dependent source.

v1

1 kΩ 

1 kΩ

1
100Ω

v1

+
-

1 V

vO1

1 kΩ 

F IGURE 3.50 Subcircuit corresponding to
the 1-V source acting alone.
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v2

1 kΩ
1 kΩ

1
100Ω

v2

vO2

1 kΩ

+
-

2 V

F IGURE 3.51 Subcircuit
corresponding to the 2-V source
acting alone.

Summing the two responses, we get the total response as

vO = vO1 + vO2 = 15 V.

e x a m p l e 3.19 m u l t i p l e d e p e n d e n t s o u r c e s a n d

s u p e r p o s i t i o n As a more complicated example, consider the circuit in
Figure 3.52. Using the superposition method, let us derive the output voltage vo as
a function of vi.

This circuit has two dependent current sources and two independent voltage sources
(v1 and v2). We will solve this problem by leaving both the dependent current sources in
the circuit and summing the responses of each of the independent sources acting alone.
We also define two intermediate variables, the node voltages va and vb.

v1 Acting Alone

We will first obtain the response with v1 acting alone. Figure 3.53 shows the circuit
corresponding to v1 acting alone. vo1 is the corresponding response. Notice that the

i1 = gmv1

RI

i2 = gmv2

+
-

v1= vi
+
- RI

RL

v2 = -vi

RL

vo

R

+ -

a b

c

vbva

F IGURE 3.52 Circuit with multiple dependent
sources.

i1 = gmv1

RI

i2 = 0

v1= vi
+
-

RI

RL

v2 = 0

RL

vo1

R

+ -

a b

c

vb1va1

F IGURE 3.53 Subcircuit corresponding to v1 acting
alone.
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dependent current sources have been left in the circuit, and v2 has been shorted out.
Since v2 = 0, we find that i2 = 0 (in other words, the dependent current source behaves
like an open circuit).

We will first determine va1 and vb1, the node voltages at the nodes a and b due to v1

acting alone. We will then determine vo1 as their difference.

Since i2 = 0, there is no voltage drop across the resistor RL connected to node b.
So, node b will be at ground potential. In other words,

vb1 = 0.

We can obtain va1 by using KVL as

va1 = 0 − i1RL = −gmv1RL = −gmviRL.

Therefore

vo1 = va1 − vb1 = −gmviRL.

v2 Acting Alone

Figure 3.54 shows the circuit corresponding to v2 acting alone. vo2 is the correspond-
ing response. In this circuit, since v1 = 0, we find that i1 = 0.

Since i1 = 0, there is no voltage drop across the resistor RL connected to node a, and
so, this time around, node a will be at ground potential. In other words,

va2 = 0.

F IGURE 3.54 Subcircuit
corresponding to v2 acting alone.

i1 = 0

RI

i2 = gmv2

+
-v1 = 0

+
- RI

RL

v2 = -vi

RL

vo2

R

+ -

a b

c

vb2va2
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We can obtain vb2 by using KVL as

vb2 = 0 − i2RL = −gmv2RL = −gm(−vi)RL = gmviRL.

Therefore

vo2 = va2 − vb2 = −gmviRL.

We can now obtain the total response by summing the responses to each of the
independent sources acting alone. In other words,

vo = vo1 + vo2 = −2gmviRL.

3.6 T H É V E N I N ’ S T H E O R E M A N D
N O R T O N ’ S T H E O R E M

3.6.1 T H E T H É V E N I N E Q U I V A L E N T N E T W O R K

A simple extension of the concept of superposition yields two additional net-
work theorems of great power, which allow us to suppress a lot of detail in
circuit analysis and focus attention only on that part of a network we are really
interested in. Consider, for example, a battery, or a high-fidelity power ampli-
fier, or a wall outlet for 110-V AC power, or a power supply for a computer.
What is the simplest way to describe the electrical properties of each of these
systems at its output terminals? Is one parameter needed, or ten, or fifty? Clearly
the voltage measured with a high-quality meter that draws negligible current
is one important parameter (the open-circuit voltage mentioned in Section 1.7).
Likewise we would want to know the frequency: zero frequency for the battery,
60 hertz (or 50 or even 25 in some countries) for the power line, etc. But we
have already observed another effect that is important. When current is drawn
from any of these systems, the voltage at the terminals drops. Depending on
the quality of the wiring in a dormitory, the lights may dim noticeably when a
toaster is plugged into the same circuit. Or the voltage of the flashlight battery
will drop when a bulb is connected and current flows, as noted in Section 1.7.
How can this effect be characterized? For the battery, is it necessary to make
measurements at 100 current levels, and plot a curve of the characteristic?

If the system is linear, then the answer to this question is very simple. We
will show that any collection of voltage sources, current sources, and resistors
can be represented at any one pair of terminals by one voltage source and one
resistor, or by one current source and one resistor. The graphical construction
of Figure 1.43 already hinted at this fact, but we present here a more formal
proof. We start with a general linear network containing sources and resistors,
shown as an amorphous box in Figure 3.55a. We presume that the only two
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I V

+

+
-

i

+

i

itestI

VitestV = 0
I = 0

itest = 0
+
-

(a)
(b)

(c)
(d) I

-
v vt

-

+
va

i

+
vb

i

- -

+
-

V

F IGURE 3.55 Derivation of the
Thévenin network. terminals we are interested in are shown emerging on the right. We wish to

find the relationship between v and i at these terminals.
To find v in terms of i, we need to apply some form of excitation, and

measure the response. The derivation is simplest if we use either a voltage
source or a current source, rather than a complicated excitation network. In
Figure 3.55b, we have chosen to apply a test current source to the terminals. To
calculate the response vt by superposition, first set all the internal independent
sources to zero, as in Figure 3.55c, and calculate the voltage va. As discussed
in Section 3.5.1, dependent sources are left as is. Then set itest to zero, as in
Figure 3.55d, and calculate vb. The desired value of vt is the sum va + vb. From
Figure 3.55c,

va = itestRt (3.113)

where Rt is the net resistance measured between the two terminals when all
internal independent sources are set to zero. Resistance Rt is called the Thévenin
Equivalent Resistance. From Figure 3.55d, vb is obviously just the voltage
appearing at the terminals of the original network when no current is flowing;
we call this the open-circuit voltage. That is,

vb = voc. (3.114)

Now by superposition,

vt = va + vb = voc + itestRt. (3.115)
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Rt

+

-voc

i

v

+

-

F IGURE 3.56 Thévenin
equivalent.

This simple relation between voltage and current at a pair of terminals
applies regardless of the complexity of the network, provided only that the
network is linear. Thus, returning to the questions posed earlier, if we specify
the open-circuit voltage and the Thévenin equivalent resistance of the battery, or
the computer power supply, or the wall outlet, then to the extent that such
systems can be considered to be linear, we have completely characterized the
system as it appears at its terminals.

Equation 3.115 should be familiar from Section 1.7. It is the same as Equa-
tion 1.23, the volt-ampere relation for a voltage source in series with a resistor.
In graphical terms it is the equation of a straight line in the v i plane with
slope 1/Rt and voltage axis intercept voc. So the preceding calculation can be
interpreted in terms of a circuit called the Thévenin equivalent circuit shown in
Figure 3.56. If voc and Rt are calculated using the subcircuits in Figure 3.55c
and 3.55d, then this circuit and the one in Figure 3.55a are equivalent, in the
sense that any measurement at the indicated terminals are equivalent. In other
words, any measurement at the indicated terminals of the two circuits will yield
identical results.

Two independent measurements on a circuit are required to determine the
parameters for the Thévenin model. One appropriate pair of measurements is
as follows. The source parameter voc is the voltage measured or calculated at
the desired terminal pair when no current is flowing at these terminals:

voc = vt
∣∣itest=0 . (3.116)

Rt is the resistance measured or calculated at the desired terminal pair when
all internal independent sources are set to zero:

Rt = vt

itest

∣∣∣∣
internal source=0

. (3.117)

Summarizing, the Thévenin method allows us to abstract the behavior of
a linear network at a given pair of terminals as a voltage source in series with
a resistor. The voltage source in series with a resistor is called the Thévenin
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equivalent circuit of the network. The Thévenin equivalent circuit can be used to
model the effect of the given network on other circuits external to the network.

A Method for Determining the Thévenin Equivalent Circuit The Thévenin
equivalent circuit for any linear network at a given pair of terminals consists
of a voltage source vTH in series with a resistor RTH. The voltage vTH and
resistance RTH can be obtained as follows:
1. vTH can be found by calculating or measuring the open-circuit voltage at

the designated terminal pair on the original network.

2. RTH can be found by calculating or measuring the resistance of the
open-circuit network seen from the designated terminal pair with all
independent sources internal to the network set to zero. That is,
with independent voltage sources replaced with short circuits, and
independent current sources replaced with open circuits. (Dependent
sources must be left intact, however.)

e x a m p l e 3.20 t h é v e n i n m e t h o d Let us now illustrate the

3 V 
+

-

1 Ω

2 Ω

a

a′

+

-

v

(a)

vTH
+

-

RTH

a

a′

+

-

v

(b)

i

i

F IGURE 3.57 Example circuit to
illustrate the Thévenin method:
(a) a network; (b) its Thévenin
equivalent network.

method using a simple example. Figure 3.57a shows a network and Figure 3.57b shows
its Thévenin equivalent network viewed from the network’s aa′ port. Determine the
values of vTH and RTH.

1 Ω

2 Ω

a

a′

RTH

F IGURE 3.58 Network with the
voltage source replaced with a
short.

By the first step of the Thévenin method, the voltage vTH is given by the open-circuit
voltage of the network at the aa′ port. The open-circuit voltage is the voltage at the
aa′ network port when there is no external circuit element connected across the port.
(Note that the 2-� resistor is internal to the network and should not be disconnected.)
Figure 3.57a shows this situation. The open-circuit voltage that would be measured at
the aa′ port is given by the voltage-divider relation as

vTH = 3 V
2 �

1 � + 2 �
= 2 V.

By the second step of the Thévenin method, the resistance RTH is found by measuring
the resistance of the open-circuit network seen from the aa′ port with the independent
voltage source set to zero; that is, with the voltage source replaced with a short circuit.
The network with the voltage source replaced with a short is shown in Figure 3.58.

The resistance viewed from the aa′ port is given by

RTH = 1‖2 = 2

3
�.

The resulting Thévenin equivalent circuit is drawn in Figure 3.59.

e x a m p l e 3.21 m o r e o n t h e t h é v e n i n m e t h o d Let us
now work out a couple of related examples to illustrate the power of the Thévenin
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2 V
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2
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---
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a′

+
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v

Ω

F IGURE 3.59 The
resulting Thévenin
equivalent circuit.

2 Ω

2 Ω

a

a′

2 A 

I1

1 V+
-

F IGURE 3.60 Circuit to illustrate the
power of the Thévenin method.

method. First, suppose we are asked to determine the current I1 through the voltage
source in the circuit in Figure 3.60.

2 Ω

2 Ω

a

2 A 

(a)

vTH
+

-

RTH

a

(b)

a′

a′

F IGURE 3.61 Thévenin
equivalent network.

Let us use the Thévenin method to obtain the desired current. To apply the Thévenin
method, we will replace the network to the left of the voltage source (that is, to the left of
the aa′ terminal pair, and depicted in Figure 3.61a) with its Thévenin equivalent network
(depicted in Figure 3.61b). Once this replacement is made, as illustrated in Figure 3.62,
then, the current I1 can be written by inspection as

I1 = vTH − 1 V

RTH
. (3.118)

vTH and RTH are the Thévenin equivalent parameters. The first step of the Thévenin
method is to measure vTH. As shown in Figure 3.63, vTH is the open-circuit voltage
measured at the aa′ port.

a I1

1 V +
-

+
-

vTH

RTH

a′

F IGURE 3.62 Circuit with network
to the left of the aa′ terminal pair
replaced with its Thévenin equivalent.

2 Ω

2 Ω

a

2 A

+

-

vTH

a′

F IGURE 3.63 Open-circuit
voltage.
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Since the 2-A current flows through both the 2-� resistors in Figure 3.63, vTH can be
written by inspection as

vTH = 2 A × 2 � = 4 V.

By the second step of the Thévenin method, the resistance RTH is found by measuring
the resistance of the open-circuit network seen from the aa′ port with the independent
current source set to zero; that is, with the current source replaced with an open circuit
as illustrated in Figure 3.64. It is easy to see that

RTH = 2 �.

Having determined the Thévenin equivalent parameters vTH and RTH, we can
now obtain I1 from Equation 3.118 as

I1 = 4 V − 1 V

2 �
= 3

2
A.

Notice that in this example the Thévenin method has allowed us to tackle a given
problem (the circuit in Figure 3.60) by splitting it into three trivial subproblems, namely,
the circuits in Figures 3.63, 3.64, and 3.62.

To further illustrate the power of the Thévenin method, suppose that the 1-V source in
Figure 3.60 is replaced by a 10-� resistor as illustrated in Figure 3.65, and we are asked
to find the current I2 through the 10-� resistor.

We first notice that the network to the left of the terminal pair aa′ in Figure 3.65
is unchanged from that in Figure 3.60. Thus, from the viewpoint of determining a
parameter relating to the network on the right side of the aa′ terminal pair, we can
replace that network on the left with its Thévenin equivalent determined previously as
illustrated in Figure 3.66.

2 Ω

2 Ω

a

RTH

a′

F IGURE 3.64 Measuring RTH .

2 Ω

2 Ω

a

2 A 10 Ω

I2

a′

F IGURE 3.65 Circuit to further illustrate
the power of the Thévenin method.

a

10 Ω 

I2

VTH

RTH

+
-

a′

F IGURE 3.66 Circuit with network to the
left of the aa′ terminal pair replaced with its
Thévenin equivalent.
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The current I2 can be quickly determined from the network in Figure 3.66 as

I2 = vTH

RTH + 10 �
.

We know that vTH = 4 V and RTH = 2 �, and so I2 = 1/3 A.

e x a m p l e 3.22 b r i d g e c i r c u i t Determine the current I in the
branch ab in the circuit in Figure 3.67.

There are many approaches that we can take to obtain the current I. For example, we
could apply the node method and determine the node voltages at nodes a and b and
thereby determine the current I. However, since we are interested only in the current I,
a full blown node analysis is not necessary; rather we will find the Thévenin equivalent
network for the subcircuit to the left of the aa′ terminal pair (Network A) and for
the subcircuit to the right of the bb′ terminal pair (Network B), and then using these
subcircuits solve for the current I.

Let us first find the Thévenin equivalent for Network A. This network is shown in
Figure 3.68a. Let vTHA and RTHA be the Thévenin parameters for this network.

We can find vTHA by measuring the open-circuit voltage at the aa′ port in the network
in Figure 3.68b. We find by inspection that

vTHA = 1 V

Notice that the 1-A current flows through each of the 1-� resistors in the loop containing
the current source, and so v1 is 1 V. Since there is no current in the resistor connected
to the a′ terminal, the voltage v2 across that resistor is 0. Thus vTHA = v1 + v2 = 1 V.

We find RTHA by measuring the resistance looking into the aa′ port in the network in
Figure 3.68c. The current source has been turned into an open circuit for the purpose

1 A

a

1 Ω

1 Ω

1 Ω

1 Ω

1 A

1 Ω 1 Ω
1 Ω

1 ΩI
b

Network A Network B 

a′ b′

F IGURE 3.67 Determining the
current in the branch ab.
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F IGURE 3.68 Finding the
Thévenin equivalent for Network A.
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+
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+
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F IGURE 3.69 Finding the
Thévenin equivalent for Network B.
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b′
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of measuring RTHA. By inspection, we find that

RTHA = 2 �.

Let us now find the Thévenin equivalent for Network B shown in Figure 3.69a. Let
vTHB and RTHB be the Thévenin parameters for this network.

vTHB is the open-circuit voltage at the bb′ port in the network in Figure 3.69b. Using
reasoning similar to that for vTHA we find

vTHB = −1 V.
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a
-1 V

1 Ω 2 Ω

I
b

Network A Network B  

+
-

1 V

2 Ω

+
- a′ b′

F IGURE 3.70 Networks A and
B replaced by their Thévenin
equivalents.

RTHB is the resistance looking into the bb′ port in the network in Figure 3.69c. By
inspection,

RTHB = 2 �.

Replacing Network A and Network B with their Thévenin equivalents, we obtain the
equivalent circuit in Figure 3.70.

The current I is easily determined as

I = 1 V − (−1 V )

2 � + 1 � + 2 �
= 2

5
A.

Notice in this example we were able to solve a relatively complicated problem by com-
posing the results of five subproblems (namely, the circuits in Figures 3.68b, 3.68c,
3.69b, 3.69c, and 3.70), each of which was solvable by inspection.

e x a m p l e 3.23 t h é v e n i n a n a l y s i s o f a c i r c u i t

w i t h a d e p e n d e n t s o u r c e Find the Thévenin equivalent circuit for
the network to the left of the aa′ terminal pair in Figure 3.71. Notice that this circuit
contains a dependent source.

The network whose Thévenin equivalent is desired is shown in Figure 3.72. Let vTH

and RTH be the Thévenin parameters for this network.

vI

1 kΩ 2 kΩ 
8

100Ω
vI

a

10 kΩ +
-

2 cos(ωt)

a′

F IGURE 3.71 Thévenin analysis
of a circuit with a dependent
source.
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F IGURE 3.72 Network to be
replaced by its Thévenin equivalent.
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1 kΩ 2 kΩ
8

100Ω
-------------vI

a

+
-

2 cos(ωt)

vTH

vTH 

+

-a′

Determining vTH

We first find vTH by computing the open-circuit voltage at the aa′ port of the circuit in
Figure 3.72. We will find this voltage by applying the node method. Since the current
of the dependent source is expressible directly in terms of a node voltage, we can apply
the node method without modification.

Figure 3.72 shows the ground node, and the two other nodes labeled with the
node voltages vI and vTH. Notice that vI is already known to be

vI = 2 cos(ωt).

This completes Steps 1 and 2 of the node method.

Following Step 3 of the node method, we write KCL for Node a.

vTH

2 k�
+ 8

100 S
vI = 0.

Next, applying Step 4, we simplify the preceding equation to get

vTH = −160vI = −320 cos(ωt).

Since we were interested only in the node voltage vTH, we do not have to complete
Step 5 of node analysis.

Determining RTH

We now find RTH by computing the resistance looking into the aa′ port in the network
in Figure 3.73. The independent voltage source has been turned into a short circuit for

F IGURE 3.73 Determining RTH .

vI = 0

1 kΩ 2 kΩ 

8
100Ω
-------------vI = 0

a

RTH

a′
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the purpose of computing RTH. The dependent source, however, is left in the circuit.
Since vI = 0, the current through the dependent current source is 0, and therefore, the
dependent source behaves like an open circuit. Thus,

RTH = 2 k�.

The resulting Thévenin circuit is shown in Figure 3.74.

+

-

2 kΩ

a

–320 cos(ωt)

a′

F IGURE 3.74 Resulting
Thévenin circuit.

3.6.2 T H E N O R T O N E Q U I V A L E N T N E T W O R K

An analogous derivation to that in Section 3.6.1 gives rise to the Norton equiv-
alent network. Recall that our goal is to find the v i relation for the network in
Figure 3.75a so that we can replace the network with a simple equivalent circuit
that yields the same v i relation as the original network. To find the v i relation-
ship, this time we apply a test voltage vtest to the circuit, as in Figure 3.75b, and
find the resultant current it. Using superposition, the two subcircuits needed
to find it are shown in Figure 3.75c and 3.75d. In 3.75c, vtest is set to zero
and we measure ia. In 3.75d, all independent sources are set to zero and we
measure ib. Then,

it = ia + ib.

From Figure 3.75c,

ia = −isc (3.119)

ib

I V +
-

+ vtest

it

-V = 0
I = 0

vtest

(b)

(d)

+
-

I V +
- vtest = 0

(c)
ia

isc

I V +
-

(a) +

-

v

i

F IGURE 3.75 Derivation of
Norton network.
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where isc is the current that flows in the short circuit across the network ter-
minals in response to the internal sources, and thus is the short circuit current.
From Figure 3.75d,

ib = vtest

Rt
(3.120)

where Rt is the net resistance measured between the terminals when all internal
independent sources are set to zero. Because this calculation and the one in
Figure 3.55c are identical (except for a change in excitation) the parameter Rt
is obviously the same in both calculations.

To complete the derivation, we find by superposition

it = ia + ib = −isc + vtest

Rt
. (3.121)

As in the Thévenin derivation, this equation can be interpreted in terms
of a circuit. It states that the terminal current is the sum of two components:
a current source isc and a resistor current vtest/Rt. Hence the Norton equiv-
alent network, Figure 3.76, has a current source in parallel with a resistor.

Rtisc

F IGURE 3.76 The Norton
equivalent network.

Examination of either the two equations, Equations 3.121 and 3.115, or the
two figures, Figures 3.56 and 3.76 show that there is a simple relation between
voc and isc. Working from the figures, we can calculate the open-circuit voltage
of each circuit to find

voc = iscRt. (3.122)

Thus it is a simple matter to change from one of these equivalent
networks to the other.

To determine the Norton parameters for some circuit, again two indepen-
dent measurements are required. The source parameter isc could be found by
applying a short to the circuit terminals and measuring the resultant current.
The resistance parameter is measured as before in Equation 3.117. Note that
the source parameters isc, voc are related by Equation 3.122, so measuring or
calculating any two of voc, isc and Rt is sufficient to characterize both the Norton
and the Thévenin model. In particular, it is often convenient to find Rt from
two simple terminal measurements on the circuit

Rt = voc

isc
. (3.123)

In summary, the Norton method allows us to abstract the behavior of a
linear network at a given pair of terminals as a current source in parallel with
a resistor. The current source in parallel with the resistor is called the Norton
equivalent circuit of the network. Like the Thévenin equivalent, the Norton
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equivalent circuit can also be used to model the effect of the given network
on other circuits external to the network.

A Method for Determining the Norton Equivalent Circuit The Norton equiv-
alent circuit for any linear network at a given pair of terminals consists of a
current source iN in parallel with a resistor RN. The current iN and resistance
RN can be obtained as follows:
1. iN can be found by applying a short at the designated terminal pair on

the original network and calculating or measuring the current through
the short circuit.

2. RN can be found in the same manner as RTH, that is, by calculating or
measuring the resistance of the open-circuit network seen from the
designated terminal pair with all independent sources internal to the
network set to zero; that is, with voltage sources replaced with short
circuits, and current sources replaced with open circuits.

e x a m p l e 3.24 n o r t o n e q u i v a l e n t Figure 3.77a shows a net-

3 V
+
-

1 Ω

2 Ω

a
+

-

v

(a)

iN RN

a
+

-

v

(b)

i

i

a′

a′

F IGURE 3.77 Norton equivalent
network: (a) a network; (b) its
Norton equivalent network.

work and Figure 3.77b shows its Norton equivalent network viewed from the
network’s aa′ port. Determine the values of iN and RN.

By the first step of the Norton method, the current iN is given by applying a short at
the aa′ terminal pair and calculating the current through the short circuit. Figure 3.78
shows the network with a short at the aa′ terminal pair.

The current through the short at the aa′ terminal pair in Figure 3.78 is given by
3 V 

+
-

1 Ω

2 Ω

a

iN

a′

F IGURE 3.78 Determining iN .
iN = 3 V

1 �
= 3 A.

By the second step of the Norton method, the resistance RN is found by measuring
1 Ω

2 Ω

a

RN

a′

F IGURE 3.79 Determining RN .

the resistance of the open-circuit network seen from the aa′ port with the independent
voltage source set to zero. The network with the voltage source replaced with a short
is shown in Figure 3.79.

The resistance viewed from the aa′ port is given by

RN = 1 �‖2 � = 2

3
�.

The resulting Norton equivalent circuit is drawn in Figure 3.80.

3 A
2
3
-- Ω

a

a′

F IGURE 3.80 Resulting Norton
equivalent circuit.

e x a m p l e 3.25 m o r e o n t h e n o r t o n m e t h o d Deter-
mine the current I1 through the voltage source in the circuit in Figure 3.81 using the
Norton method.

To apply the Norton method, we will replace the network to the left of the aa′ terminal
pair with its Norton equivalent network comprising a current source with current iN in
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2 Ω

2 Ω

a

2 A 

I1

1 V +
-

a′

F IGURE 3.81 Circuit for applying the Norton method.

parallel with a resistance of value RN. The first step of the Norton method is to measure
iN, which is the short-circuit current measured at a short circuit applied at the aa′ port
as shown in Figure 3.82. Since all of the 2-A current flows through the short,

2 A

2 Ω

2 Ω

a

iN 

a′

F IGURE 3.82 Determining iN .

2 Ω

2 Ω

a

RN 

a′

F IGURE 3.83 Determining RN .

iN = 2 A.

By the second step of the Norton method, the resistance RN is found by measuring the
resistance of the open-circuit network seen from the aa′ port with the current source
replaced with an open circuit as illustrated in Figure 3.83. It is easy to see that

RN = 2 �.

The resulting Norton equivalent circuit is depicted in Figure 3.84.

Having determined the Norton equivalent circuit, we can now obtain I1 by connecting
this equivalent circuit to the source on the right-hand side of the aa′ terminal pair as
shown in Figure 3.85.

2 A
2 Ω

a

a′

F IGURE 3.84 Resulting Norton
equivalent circuit.

Since the voltage across the 2-� resistor is 1 V, the current through the 2-� resistor is
0.5 A. By applying KCL at Node a, we get

2 A 2 Ω

a

+
-

1 V

I1

a′

F IGURE 3.85 Connecting back
the Norton equivalent circuit to
determine I1.

−2 A + 0.5 A + I1 = 0.

Or, I1 = 1.5 A.

e x a m p l e 3.26 n o r t o n e q u i v a l e n t n e t w o r k Let us
revisit the example in Figure 3.71 and this time around determine the Norton equivalent
circuit for the network to the left of the aa′ terminal pair. Let IN and RN be the Norton
parameters for this network.

Determining IN

We first find IN by computing the short-circuit current through the short placed at the
aa′ terminal pair as depicted in Figure 3.86. IN can be determined by inspection as

IN = − 8

100
vI = − 4

25
cos(ωt).
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1 kΩ 2 kΩ 
8

100Ω
------------vI

vI
a

+
-

2 cos(ωt)
IN 

a′

F IGURE 3.86 Determining iN .

vI = 0

1 k 2 kΩ 8
100Ω-------------

a

RTHΩ
vI = 0

a′

F IGURE 3.87 Determining RN .

Determining RN

We now find RN by computing the resistance looking into the aa′ port in the network
in Figure 3.87. As computed in the Thévenin version of this example, 2 kΩ

a
4

25
cos(ωt)

a′

−

F IGURE 3.88 Resulting Norton
equivalent circuit.

RN = 2 k�.

The resulting Norton circuit is shown in Figure 3.88.

3.6.3 M O R E E X A M P L E S

Norton and Thévenin equivalents are particularly useful because often the two
parameters are easy to find, as a consequence of the strong circuit constraints
imposed as shown in Figures 3.55 and 3.75. This is best illustrated by an
example. Suppose we are given the network in Figure 3.89a, and are asked to
find the voltage across R3 for a number of different values of R3. We could just
solve the whole network for each value of R3, but a simpler approach is to find
the Thévenin equivalent of the network driving R3, that is, the network to the
left of the points x x. For clarity in this first example, we abstract this portion
of the network in Figure 3.89b.

As we have noted, there are several ways to make the calculations, so it
pays to examine the possibilities and choose the easiest route. The open-circuit
voltage appears directly in the abstracted circuit, Figure 3.89b. The short-circuit
current can be found from Figure 3.89c, and Rt from 3.89d. By inspection from
Figure 3.89d,

Rt = R1‖R2. (3.124)
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R1

R2
+
-V(a) R3

(c)

Rt

R3

 I
v

x

x

+

-

R1

R2V voc

+

-

R1

R2V isc

+

-

(d)

R1

R2V =0 I = 0 Rt

(b)

voc I V
R1
------+



Rt=(e)

 I

 I+
-

+
-

+
-

F IGURE 3.89 Example in which
we are to find voltage across R3 for
several different values of R3. In Figure 3.89c, the short-circuit constraint makes the calculation of isc for

this particular topology easy. Because of the short circuit, R2 can have no voltage
across it, hence has no current flowing through it. Now by superposition,

isc = I + V/R1. (3.125)

The calculation of voc from Figure 3.89b is straightforward, but a step more
complicated than the preceding ones, so normally it would not be attempted.
But for completeness, superposition of the two sources gives

voc = v
R2

R1 + R2
+ I(R1R2)

R1 + R2
. (3.126)

It is clearly easier to find voc from Equations 3.122, 3.124, and 3.125:

voc = (I + V/R1)Rt. (3.127)

Hence the complete circuit with the left half replaced by its Thévenin equiv-
alent is as shown in Figure 3.89e. Now the voltage across R3 for the various
values of R3 can be found by inspection. It should be noted that the Norton
equivalent would have been just as effective in this problem. Also note that the
circuit constraints imposed by the definitions of Rt, isc, and voc often make the
calculations of these parameters very easy, even in complicated networks.



3.6 Thévenin’s Theorem and Norton’s Theorem C H A P T E R T H R E E 173

e x a m p l e 3.27 b r i d g e c i r c u i t Another example is shown in
Figure 3.90a. This is a bridge circuit, often used in the laboratory to measure values
of unknown resistors by comparing against known standard resistors. We want to find
the voltage across R5, and then find the condition on the other resistor values that will
make this voltage zero. Direct application of nodal analysis is quite messy, so we will
seek an alternative method.

To solve, find the Thévenin equivalent of the circuit facing R5, that is, the circuit shown
in Figure 3.90b. The circuit now consists of two independent voltage dividers connected
across a common voltage source V. The layout of the dividers is not quite as straight-
forward as in Figure 2.36 but, topologically, they are the same. Hence we can calculate
the two voltage-dividers’ voltages va and vb by inspection; then subtract to find voc.

voc = va − vb = V
(

R3

R1 + R3
− R4

R2 + R4

)
. (3.128)

R1 R2

+
-V(a)

R3

Rt

R1 R2
+
-V voc

+ -(b)

(e)

R5

R4

Rt

R3 R4

vbva

R1 R2
(c)

R3 R4

R5voc -
+

(d)

R1 R2

R3 R4

F IGURE 3.90 Example: A bridge circuit.
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Now find the Thévenin equivalent resistance with V set to zero, that is, for the circuit
shown in Figure 3.90c. This is identical to the circuit in 3.90d,

Rt = (R1‖R3) + (R2‖R4). (3.129)

The complete circuit can now be drawn as in Figure 3.90e. It is clear that the voltage
across R5 will be zero if voc is zero, that is, if

R3

R1 + R3
= R4

R2 + R4
(3.130)

or equivalently

R3

R1
= R4

R2
. (3.131)

Thus if R5 is replaced by a voltmeter, the circuit can be used to find an unknown
resistor, say R3, in terms of three known resistors. Make one of the resistors, say R1,
a decade box with known resistance values and adjust until the voltmeter reads zero.
The value of R3 is then given by Equation 3.131.

Two closing comments: First, note that the identity of all voltages and currents inside
the network that is replaced by the Thévenin or Norton circuit in general lose their
identity; only the terminal voltage and current are preserved. Thus, for example, the
current through R3 in Figure 3.90a does not appear as any identifiable current flowing
in the Thévenin circuit in Figure 3.90e. Second, if one wishes to measure the Thévenin
or Norton parameters of a system in the laboratory, two independent measurements
are required in order to specify the two parameters in the model. In addition, certain
practical issues must be faced. For example, it is unwise, in fact dangerous, to apply a
short circuit to a large battery such as an automobile storage battery in an attempt to
measure the short-circuit current as suggested in Figure 3.75b. A better procedure is to
first measure the open-circuit voltage, then measure the terminal voltage when some
known resistor is connected to the battery. These two measurements can then be used
to find Rt.

e x a m p l e 3.28 n o r t o n a n d t h é v e n i n e q u i v a l e n t s

As another simple example, let us find the Norton and Thévenin equivalent networks
and their v i characteristics for the two circuits shown in Figure 3.91.

V
+

-

R1

R2 v

+

-

i

  I R1 R2 v

+

-

(a) Network I 

(b) Network II

F IGURE 3.91 Two simple
networks: (a) Network I;
(b) Network II.

Let us start with Network A. First, let us find the Thévenin equivalent circuit. Shorting
the voltage source results in the circuit shown in Figure 3.92. Therefore, RTH = RN =
R1‖R2 = R1R2/(R1 + R2), where RTH and RN are the Thévenin and Norton equivalent
resistors, respectively. From the voltage-divider relationship, open circuit voltage voc

is VR2/(R1 + R2). This yields the Thévenin equivalent circuit on the left-hand side of
Figure 3.93.

R1 R2

F IGURE 3.92 Equivalent
resistance of the network.
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+

-

i

v

+

-

v

+

-

R2 V⋅
R1 R2+( )

-----------------------

R1 R2⋅
R1 R2+( )

-----------------------

R1 R2⋅
R1 R2+( )

-----------------------V
R1
------

i

F IGURE 3.93 Equivalent networks.

V
+

-

R1

R2

i

isc = V/R1

F IGURE 3.94 Short circuit current.

slope = (R1+R2) /R1R2 

-V/R1

VR2/(R1+R2)

i

v

F IGURE 3.95 The i–v characteristics of the network.

Now, let us find the Norton equivalent circuit for Network A. Referring to Figure 3.94,
the short-circuit current isc is V/R1. Therefore, the Norton equivalent network is as
shown on the right-hand side of Figure 3.93.

The v i curve of the circuit must pass through points (voc, 0) and (0, −isc), as
shown in Figure 3.95.

Let us now analyze Network B. Turning off the current source results in the circuit
shown in Figure 3.92, which yields R1R2/(R1 + R2) as the equivalent resistance for both
the Thévenin and Norton equivalent networks. The open-circuit voltage is IR1‖R2.
Thus, voc = R1R2I/(R1 + R2). As illustrated in Figure 3.96, all of the current will flow
through the branch with zero resistance, that is isc = I.

The equivalent networks are shown in Figure 3.97, and the v i characteristics are
shown in Figure 3.98.

I R1 R2 isc = I

i = 0 i = 0 

F IGURE 3.96 Short-circuit current.

+

-

i

v

+

-

v

+

-

R1 R2 I⋅ ⋅
R1 R2+( )

-----------------------

R1 R2⋅
R1 R2+( )

-----------------------

R1 R2⋅
R1 R2+( )

-----------------------I

i

F IGURE 3.97 Equivalent networks.
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slope = (R1+R2)/R1R2 

-I
IR1R2/(R1+R2)

i

v

F IGURE 3.98 The v–i characteristics of the network.

V
+

-

R1

R2

R3

R5

R4

x y

F IGURE 3.99 Resistive circuit.

e x a m p l e 3.29 a d i f f e r e n t a p p r o a c h u s i n g t h e

t h é v e n i n m e t h o d The network shown in Figure 3.99 was solved earlier
using the Thévenin method (see Figure 3.90). In this example, we will solve the same
circuit using the Thévenin method, but with a slightly different approach.

Making the observation that the voltages at points x and y are the same, we can
transform the circuit into the equivalent circuit shown in Figure 3.100. We can then
transform the circuits in Figures 3.100a and 3.100b into their Thévenin equivalent net-
works. Figure 3.100a will have a source voltage of VR2/(R1 + R2) and an equivalent
resistance of R1‖R2. Figure 3.100b will have a source voltage of VR5/(R4 + R5) and
an equivalent resistance of R4‖R5.

The new circuit is shown in Figure 3.101. Notice that the new circuit is much easier
to analyze. We leave the rest of the analysis as an exercise for you.

V
+

-

R1

R2

R3

R5

R4

V
+

-

(a) (b)

F IGURE 3.100 Equivalent circuit with two voltage sources.

VR2/(R1+R2)
+

-
V
+

-

R3
R1||R2 R4||R5

VR5/(R4+R5)V

F IGURE 3.101 Equivalent Thévenin circuit.
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3.7 S U M M A R Y
� In the node method one node is designated as a reference or ground node,

and all other node voltages are measured with respect to that node. Only
the KCL equations and the constituent relations need be written.

� In the loop method currents are defined to flow in loops. Loop currents are
defined until all branches are traversed by at least one current. Only KVL
equations need be written.

� Superposition means that if the circuit is linear, multisource networks can
be solved for one source at a time by setting all other independent sources to
zero. Setting a voltage source to zero means replacing it with a short circuit;
a current source set to zero is an open circuit. The complete response is
the sum of the responses to each individual source.

For circuits with dependent sources, a practical solution is to leave all the
dependent sources in the circuit. The network can then be solved for one
independent source at a time by setting all other independent sources to
zero, and summing the individual responses.

� The Thévenin equivalent circuit for any linear network at a given pair of ter-
minals consists of a voltage source in series with a resistor. The element
value for the Thévenin equivalent voltage source can be found by calculat-
ing or measuring at the designated terminal pair on the original network the
open-circuit voltage. The equivalent resistance can be calculated or mea-
sured as the resistance of the network seen from the designated terminal
pair with all independent sources internal to the network set to zero.

� The Norton equivalent circuit contains a current source in parallel with a
resistor. The element value for the Norton equivalent current source can
be found by calculating or measuring at the designated terminal pair on the
original network the short circuit current. As with the Thévenin equivalent
resistance, the Norton equivalent resistance can be calculated or measured
as the resistance of the network seen from the designated terminal pair with
all independent sources internal to the network set to zero. Note that the
value of the equivalent resistance is the same for the Thévenin and Norton
equivalent circuits, that is, RTH = RN.

� Since the Thévenin equivalent voltage vTH, the Norton equivalent current
iN, and the equivalent resistance RTH = RN are related as

vTH = iNRTH,

the element values for these equivalents can be found by calculating or
measuring any two of the open-circuit voltage, the short-circuit current, or
the resistance.
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� Circuit analysis is often simplified by applying superposition or finding
Thévenin or Norton equivalents, because complicated circuits are reduced
to simpler circuits, for which the solution may already be known.

E X E R C I S E S e x e r c i s e 3 .1 Write node equations for the network in Figure 3.102. Solve for
the node voltages, and use these voltages to find the branch current i. To minimize
errors and facilitate answer-checking, it is helpful to obtain literal expressions before
substituting numerical values for the parameters:

V = 2 V R3 = 3 � R1 = 2 � R4 = 2 � R2 = 4 � R5 = 1 �

V
+

-

R1

R2

R5
R3

R4i

F IGURE 3.102

e x e r c i s e 3 .2 Find the Norton equivalent at the indicated terminals for each
network in Figure 3.103.

Vo

+
-

v

i

+

-

R2

Is

R1

5 v
+
-

2 Ω v

i

-

+3 Ω

F IGURE 3.103
e x e r c i s e 3 .3 Find the Thévenin equivalent for each network in Figure 3.104.

v

i

+

-

R2 Is
v

i
+

-

R2Is

R1R1

R3

F IGURE 3.104

e x e r c i s e 3 .4 Find v0 in Figures 3.105a and 3.105b by superposition.

(a)

(b)

v0
+
-

3 Ω

2 Ω

2 Ω

3 Ω

+
-

31 A

62 V

v0

+

-6 A

+
-

10 V

4 kΩ
1 kΩ

2 kΩ

3 kΩ

F IGURE 3.105
e x e r c i s e 3 .5 Use superposition to find the voltage v in the network in
Figure 3.106.
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1 V
+
-

1 Ω

2 Ω
1 Ω 1 A

1 Ω

1 Ω

v
+

-

1 Ω

2 Ω 1 A F IGURE 3.106

e x e r c i s e 3 .6 Determine (and label carefully) the Thévenin equivalent for the
network in Figure 3.107:

R1 = 2 k� R2 = 1 k� i0 = 3 mA cos(ωt)

R2v

+

-

i

i0

R1

F IGURE 3.107
e x e r c i s e 3 .7 Determine and label carefully the Norton equivalent for the
network in Figure 3.108.

4 mA

5 kΩ

2 kΩ

1 kΩ

a

b

F IGURE 3.108

e x e r c i s e 3 .8 Find the Thévenin equivalent for the circuit at the terminals AA′
in Figure 3.109.

10 V

1 kΩ

2 kΩ

A

A′

2 kΩ

+
-

F IGURE 3.109

e x e r c i s e 3 .9 The resistive network shown in Figure 3.110 is excited by two

v1(t) v2(t)

2 Ω

i(t)

2 Ω

+
-

+
-1 Ω

F IGURE 3.110

voltage sources v1(t) and v2(t).

a) Express the current i(t) through the 1-� resistor as a function of v1(t) and v2(t).

b) Determine the total energy dissipated in the 1-� resistor due to both v1(t) and v2(t)
from time T1 to time T2.

c) Derive the constraint between v1(t) and v2(t) such that the value for (b) can be
computed by adding the energies dissipated when each source acts alone (that is, by
superposition).

e x e r c i s e 3 .10 Find the Norton equivalent at the terminals marked x x in the
circuit in Figure 3.111.

Io = 3 A

2 Ω

Vo = 5 V+
-1 Ω

x
4 Ω

2 Ω

x

F IGURE 3.111

e x e r c i s e 3 .11 Find the Thévenin equivalent for the circuit in Figure 3.112 at
the terminals AA′.
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12 V

6 Ω

1 A3 Ω

A

+
-

A′

F IGURE 3.112

e x e r c i s e 3 .12 In the network in Figure 3.113, find an expression for v2.

R1
v3

I3

- +
R2

v2+ -

F IGURE 3.113

e x e r c i s e 3 .13 The networks in Figure 3.114 are equivalent (that is, have the
same v i relation) at terminals A A′. Find vT and RT.

R1
v3

I3

- +

v

+

-

A

A′

R2

i

RT

vT
v

+

-

A

A′

i

+
-

F IGURE 3.114
e x e r c i s e 3 .14 For each of the circuits in Figure 3.115 give the number of
independent node variables needed for a solution of the problem by the node method.

R2

I2

R4

R1

R3 R5

I1

v

R1

+ -

R4

R5

R4R3
R2

Iv

F IGURE 3.115

e x e r c i s e 3 .15 For the circuit shown in Figure 3.116, write a complete set of
node equations for the voltages va, vb, and vc. Use conductance instead of resistance.
Simplify the equations by collecting terms and arranging them in the ‘‘standard’’ form
for n linear equations in n unknowns. (Do not solve the equations.)

v

I

R6R5

R3 R4

R2R1

va vb
vc

+
-

F IGURE 3.116

e x e r c i s e 3 .16 For the circuit shown in Figure 3.117, use superposition to find
v in terms of the R’s and source amplitudes.
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e x e r c i s e 3 .17 Find the Thévenin equivalent of the circuit in Figure 3.118 at
the terminals indicated.

v

R1R3

R2

v2

+
-

+-

I

v1

+

-

F IGURE 3.117

v
R1

R3

R2
v

+

-
I

+
-

i

F IGURE 3.118

e x e r c i s e 3 .18 In the circuit shown in Figure 3.119 there are five nodes, only
three of which are independent. Take node E as a reference node, and treat nodes A, B,
and D as the independent nodes.

a) Write an expression for vC, the voltage on node C, in terms of vA, vB, vD,
and v1.

b) Write a complete set of node equations that can be solved to find the unknown

R2

R6R5

V1
+ -

R3

R1

A CB
D

E

R4

F IGURE 3.119

voltages in the circuit. (Do not solve the set of equations but do group them neatly.)

e x e r c i s e 3 .19 Consider the circuit in Figure 3.120.

25 V

300 Ω

+ -

-

+

v100 Ω

50 Ω i

0.5 A

A′

A′

F IGURE 3.120

a) Find a Norton equivalent circuit for this circuit at terminals A A′.

b) Find the Thévenin equivalent circuit corresponding to your answer in (a).

e x e r c i s e 3 .20 Measurements made on terminals B B′ of a linear circuit in
Figure 3.121a, which is known to be made up only of independent voltage sources
and current sources, and resistors, yield the current-voltage characteristics shown in

v

R

B

B′

V +
-

+
-

i
I

(a)

10
20

30

-10

-20

-30

-4

-3 -2 -1

1 2 3 4 5

40

v (V)

(b)

i (mA)

F IGURE 3.121Figure 3.121b.
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a) Find the Thévenin equivalent of this circuit.

b) Over what portions, if any, of the v i characteristics does this circuit absorb
power?

e x e r c i s e 3 .21

a) Write in standard form the minimum number of node equations needed to analyze
the circuit in Figure 3.122.

F IGURE 3.122 R4R1

i4

I
+
-

R5R2

R3

v

b) Determine explicitly the current i4.

e x e r c i s e 3 .22

a) Find the Thévenin equivalent of the circuit in Figure 3.123.

F IGURE 3.123 R4R1

R2

R3

v

R8

R6

A
R7

R5

+-

A′

I

b) Find the Norton equivalent of the circuit in Figure 3.124.

F IGURE 3.124
I

R1

v R4

1
R2

R3

+
-

1

e x e r c i s e 3 .23

a) Find the Norton equivalent of the circuit in Figure 3.125.
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I

R1 v

1
R4

+
-

1

R2 R3 R5

R6

R7

F IGURE 3.125

b) Find the Thévenin equivalent of the circuit in Figure 3.126.

I

A

A′

R1 R2 R3

R4

v
+
- F IGURE 3.126

e x e r c i s e 3 .24 Find the Thévenin equivalent circuit as seen from the terminals
a b in Figure 3.127.

10 mA 10 kΩ 2 V +
-

10 kΩ

a

b
F IGURE 3.127

e x e r c i s e 3 .25 Find the node potential E in Figure 3.128.

5 V 8 kΩ

1 V

+ -

+
-

8 kΩ

0.4 kΩ

E

2.5 mA F IGURE 3.128

e x e r c i s e 3 .26 For the circuit in Figure 3.129, write the node equations. Do
not solve, but write in matrix form: source terms on the left, unknown variables on the
right.
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F IGURE 3.129

V

+ -
R1 R2

R2
R3

e x e r c i s e 3 .27 Find v1 by superposition for the circuit in Figure 3.130.

F IGURE 3.130
V

R1

R2

v1

R3

+
-I

P R O B L E M S p r o b l e m 3.1 A fuse is a wire with a positive temperature coefficient of resis-
tance (in other words, its resistance increases with temperature). When a current is
passed through the fuse, power is dissipated in the fuse, which raises its temperature.

F IGURE 3.131
I0 Fuse

Use the following data to determine the current I0 at which the fuse (in Figure 3.131)
will blow (that is, its temperature goes up without limit).

Fuse Resistance:
R = 1 + a T �

a = 0.001 �/◦C
T = Temperature rise above ambient

Temperature rise:
T = βP
β = (

1/.225
)◦C/W

P = power dissipated in fuse
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p r o b l e m 3.2

a) Prove, if possible, each of the following statements. If a proof is not possible, illustrate
the failure with a counter-example and restate the theorem with a suitable restriction
so it can be proved.

i) In a network containing only linear resistors, every branch voltage and branch
current must be zero.

ii) The equivalent of a one-port network containing only linear resistors is a linear
resistor.

b) To demonstrate that you understand superposition, construct an example that shows
explicitly that a network containing a nonlinear resistor will not obey superposition.
You may select any nonlinear element (provided you show that it is not linear) and
any simple network containing that element.

p r o b l e m 3.3 Find V0 in Figure 3.132. Solve by (1) node method,
(2) superposition. All resistances are in ohms.

2

V0 
+
- 4

+

-

2

8 V 6 A 6

Ω

Ω Ω

Ω

F IGURE 3.132

p r o b l e m 3.4 Consider Figure 3.132. Find the Norton equivalent of the
network as seen at the terminals on the right.

p r o b l e m 3.5

a) Find Req, the equivalent resistance ‘‘looking into’’ the terminals on the right of the
circuit in Figure 3.133.

R 2 R

R R R

2 R2 R Req = ?

F IGURE 3.133

b) Find the Thévenin equivalent, looking into the terminals on the right of the circuit
in Figure 3.134.
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F IGURE 3.134

1 Ω

Vo1 A

+

-

1 Ω

1 Ω

1 Ω

2 Ω 2 Ω2 Ω

p r o b l e m 3.6 Find vi for I = 3 A, V = 2 V in Figure 3.135. Strategy: To avoid
numerical errors, derive expressions in literal form first, then check dimensions.

F IGURE 3.135

I

+

-

2 Ω

vi

V 

-

3 Ω

2 Ω2 Ω

2 Ω
+

p r o b l e m 3.7 For the circuits in Figures 3.136a and 3.136b:

a) Find vo for R1 = R.

b) Find vo for R1 �= R.

c) Find the Thévenin equivalent for the network to the right of points AB, assuming

V

RR

A

RR1

vo
+
-

B

+ -

(a)

V

RR

RR1

vo

+
-

A

B

R
+ -

(b)

F IGURE 3.136

R1 = R.

p r o b l e m 3.8

a) Determine the equation relating i to v in Figure 3.137.

F IGURE 3.137

i

2 Ω 2 Av

4 Ω1 Ω
+

-

3 Ω

b) Plot the v i characteristics of the network.

c) Draw the Thévenin equivalent circuit.

d) Draw the Norton equivalent circuit.
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p r o b l e m 3.9 In Figure 3.138, find vo via (a) superposition, (b) the node
method.

i

4 Ω8 A vo 

1 Ω 2 Ω
+

-

6 ΩAo V
+
-

F IGURE 3.138

p r o b l e m 3.10 Use the following three different methods to find i in
Figure 3.139:

1) Node method

3 V

6 Ω 2 A

3 Ω

6 Ω 3 Ω

+-
i

F IGURE 3.139

2) Superposition

3) Alternate Thévenin/Norton transformations

p r o b l e m 3.11 A student is given an unknown resistive network as illus-
trated in Figure 3.140. She wishes to determine whether the network is linear, and
if it is, what its Thévenin equivalent is.

Resistive 
network

Unknown 
network

F IGURE 3.140

The only equipment available to the student is a voltmeter (assumed ideal), 100-k� and
1-M� test resistors that can be placed across the terminals during a measurement (see
Figure 3.141).

V R
+

-
V

Resistive
network

Unknown
network

Test resistor

Voltmeter

F IGURE 3.141
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The following data were recorded:

Test Resistor Voltmeter Reading

Absent 1.5 V
100 k� 0.25 V
1 M� 1.0 V

What should the student conclude about the network from these results? Support your
conclusion with plots of the network v i characteristics.

p r o b l e m 3.12

a) Devise an electrical circuit of voltage sources and resistors that will ‘‘calculate’’ the
balance point (center of mass) of the massless bar shown in Figure 3.142, for three
arbitrary masses hung at three arbitrary places along the bar. We want the circuit to
generate a voltage that is proportional to the position of the balance point. Write
the equation for your network, and show that it performs the required calculation.
(Work with conductances and superposition for a simple solution.)

F IGURE 3.142

Mass A Mass B Mass C

b) Extend your result in part (a) to two dimensions; that is, devise a new network (which
will have more voltage sources and more resistors than above) that can find the center
of mass of a triangle with arbitrary weights handing from its three corners. The
network will now have to give you two voltages, one representing the x-coordinate
and the other the y-coordinate of the center of mass. This system is a barycentric
coordinate calculator, and can be used as the input for video games, or to simulate
trichromatic color vision in the human eye.

p r o b l e m 3.13

a) Find the Thévenin equivalent for the network in Figure 3.143 at the terminals CB.
The current source is a controlled source. The current flowing through the current

F IGURE 3.143

C

I1

I1 +

-
10 kΩ 

+
-

Vs 100 kΩ

B

b
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source is βI1, where β is some constant. (We will discuss controlled sources in more
detail in the later chapters.)

b) Now suppose you connect a load resistor across the output of your equivalent circuit
as shown in Figure 3.144. Find the value of RL which will provide the maximum
power transfer to the load.

C

+
-

VT RL

B

RT

F IGURE 3.144p r o b l e m 3.14 You have been hired by the MITDAC Corporation to write a
product description for a new 4-bit digital-to-analog-converter resistance ladder. Because
of mask tolerances in VLSI chips, each resistor shown in Figure 3.145 is guaranteed to
be only within 3% of its nominal value. That is, if R0 is the nominal design resis-
tance, then each resistance labeled R can have a resistance anywhere in the range
(1 ± .03)R0 and each resistance labeled 2R can have a resistance anywhere in the
range (2 ± .06)R0.

R

2R
2R

+
-

2R

+
-

2R

+
-

2R

+
-

2R

R R

v1 v2 v4 v8

vA

+

-

F IGURE 3.145

You are to write an honest description of the accuracy of this product. Remember that
if you overstate the accuracy, your company will have many returns from dissatisfied
customers, whereas if you understate the accuracy, your company won’t have any
customers.

Note: Part of this problem is to describe what the problem is. How should accuracy be
specified? Is there an error level that is clearly unacceptable? Does your product avoid
that error level? Is there an obvious ‘‘worst case’’ that can be easily analyzed? Have fun.
And remember, common sense is an important ingredient of sound engineering.

p r o b l e m 3.15 You have a 6-volt battery (assumed ideal) and a 1.5-volt flashlight
bulb, which is known to draw 0.5 A when the bulb voltage is 1.5 V (in Figure 3.146).
Design a network of resistors to go between the battery and the bulb to give vs = 1.5 V
when the bulb is connected, yet ensures that vs does not rise above 2 V when the bulb
is disconnected.

vs

+

-

+

-
?6 V

F IGURE 3.146
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analy s i s o f nonl inear

c i rcu i t s 4
Thus far we have discussed a variety of circuits containing linear devices such
as resistors and voltage sources. We have also discussed methods of analyz-
ing linear circuits built out of these elements. In this chapter, we extend our
repertoire of network elements and corresponding analysis techniques by intro-
ducing a nonlinear two-terminal device called a nonlinear resistor. Recall, from
Section 1.5.2, a nonlinear resistor is an element that has a nonlinear, alge-
braic relation between its instantaneous terminal current and its instantaneous
terminal voltage. A diode is an example of a device that behaves like a non-
linear resistor. In this chapter, we will introduce methods of analyzing general
circuits containing nonlinear elements, trying whenever possible to use analysis
methods already introduced in the preceding chapters. Chapter 7 will develop
further the basic ideas on nonlinear analysis and Chapter 8 will expand on
the concept of incremental analysis introduced in this chapter. Chapter 16 will
elaborate on diodes.

iD

vD -+

F IGURE 4.1 The symbol for a
diode.

4.1 I N T R O D U C T I O N T O N O N L I N E A R
E L E M E N T S

Before we begin our analysis of nonlinear resistors, we will describe as examples
several nonlinear resistive devices, by their v i characteristics, just as we did for
the resistor, the battery, etc. The first of the nonlinear devices that we discuss is
the diode. Figure 4.1 shows the symbol for a diode. The diode is a two-terminal,
nonlinear resistor whose current is exponentially related to the voltage across
its terminals.

An analytical expression for the nonlinear relation between the voltage vD and
the current iD for the diode is the following:

iD = Is(e vD/VTH − 1). (4.1)

For silicon diodes the constant Is is typically 10−12 A and the constant VTH is
typically 0.025 V. This function is plotted in Figure 4.2.

vD

iD

F IGURE 4.2 v–i characteristics
of a silicon diode.

vH

iH

F IGURE 4.3 Another nonlinear
v–i characteristics.

An analytical expression for the relationship between voltage vH and cur-
rent iH for another hypothetical nonlinear device is shown in Equation 4.2. In
the equation, IK is a constant. The relationship is plotted in Figure 4.3.

iH = IKv 3
H. (4.2)

193
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The v i relationship for yet another two-terminal nonlinear device is
shown in Equation 4.3. Figure 8.11 in Chapter 8 introduces such a nonlinear
device. For this device the current is related to the square of the terminal voltage.
In this equation, K and VT are constants. The variables iDS and vDS are the
terminal variables for the device. The relationship is plotted in Figure 4.4.

iDS =




K(vDS − VT)2

2
for vDS ≥ VT

0 for vDS < VT

. (4.3)
vDS

iDS

0 VT

F IGURE 4.4 The v–i character-
istics for a square law device.

e x a m p l e 4.1 s q u a r e l a w d e v i c e For the nonlinear resistor
device following the square law in Figure 4.4, determine the value of iDS for vDS = 2 V.
We are given that VT = 1 V and K = 4 mA/V2.

For the parameters that we have been given (vDS = 2 V and VT = 1 V), it is easy to
see that

vDS ≥ VT.

From Equation 4.3, the expression for iDS when vDS ≥ VT is

iDS = K(vDS − VT)2

2
.

Substituting the known numerical values,

iDS = 4 × 10−3(2 − 1)2

2
= 2 mA.

How does iDS change if vDS is doubled?

If vDS is doubled to 4 V,

iDS = K(vDS − VT)2

2
= 4 × 10−3(4 − 1)2

2
= 18 mA

In other words, iDS increases to 18 mA when vDS is doubled.

What is the value of iDS if vDS is changed to 0.5 V?

For vDS = 0.5 V and VT = 1 V,

vDS < VT.

From Equation 4.3, we get

iDS = 0.

When operating within some circuit, the current through our square law device
is measured to be 4 mA. What must be the voltage across the device?
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We are given that iDS = 4 mA. Since there is a current through the device, the equation
that applies is

iDS = K(vDS − VT)2

2
.

Substituting known values,

8 × 10−3 = 4 × 10−3(vDS − 1)2

2
.

Solving for vDS, we get

vDS = 3 V.

e x a m p l e 4.2 d i o d e e x a m p l e For the diode shown in Figure 4.1,
determine the value of iD for vD = 0.5 V, 0.6 V, and 0.7 V. We are given that VTH =
0.025 V and Is = 1 pA.

From the device law for a diode given in Equation 4.1, the expression for iD is

iD = Is(evD/VTH − 1).

Substituting the known numerical values for vD = 0.5 V, we get

iD = 1 × 10−12(e0.5/0.025 − 1) = 0.49 mA.

Similarly, for vD = 0.6 V, iD = 26 mA, and for vD = 0.7 V, iD = 1450 mA. Notice the
dramatic increase in current as vD increases beyond 0.6 V.

What is the value of iD if vD is −0.2 V?

iD = Is(evD/VTH − 1) = 1 × 10−12(e−0.2/0.025 − 1) = −0.9997 × 10−12A.

The negative sign for iD simply reflects the fact that when vD is negative, so is the
current.

When operating within some circuit, the current through the diode is measured to be
8 mA. What must be the voltage across the diode?

We are given that iD = 8 mA. Using the diode equation, we get

8 × 10−3 = Is(e vD/VTH − 1) = 1 × 10−12(e vD/0.025 − 1).

Simplifying, we get

e vD/0.025 = 8 × 109 + 1.
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Taking logs on both sides, and solving for vD, we get

vD = 0.025 ln(8 × 109 + 1) = 0.57 V.

e x a m p l e 4.3 a n o t h e r s q u a r e l a w d e v i c e p r o b l e m

The nonlinear device shown in Figure 4.5 is characterized by this device equation:

iD

vD

+

-

F IGURE 4.5 A nonlinear device.

iD = 0.1v 2
D for vD ≥ 0, (4.4)

iD is given to be 0 for vD < 0.

Given that V = 2 V, determine iD for the circuit in Figure 4.6.
iD

vD

+

-

V
+

-

F IGURE 4.6 A circuit containing
the nonlinear device.

Using the device equation for vD ≥ 0,

iD = 0.1v 2
D = 0.1 × 22 = 0.4 A (4.5)

The nonlinear device is connected to some arbitrary circuit as shown in Figure 4.7.
Following the associated variables discipline, the branch variables vB and iB for the
device are defined as shown in the same figure. Suppose that a measurement reveals
that iB = −1 mA. What must be the value of vB?

Notice that the polarity of the branch variables has been reversed in Figure 4.7 from

vB

-

+

Arbitrary
circuit

iB

F IGURE 4.7 The nonlinear
device connected to an arbitrary
circuit.

those in Figure 4.5. With this definition of the branch variables, the device equation
becomes

−iB = 0.1v 2
B for vB ≤ 0. (4.6)

Furthermore, iB is 0 for vB > 0.

Given that iB = −1 mA, Equation 4.6 yields

−(−1 × 10−3) = 0.1v 2
B where vB ≤ 0.

In other words, vB = −0.1 V.

i1

vD

+

-

V
+

-
D1

i

i2
D2

F IGURE 4.8 Nonlinear devices
connected in parallel.

Given that V = 2 V, determine i for the circuit in Figure 4.8.

Since the voltage across each of the nonlinear devices connected in parallel is vD = 2 V,
the current through each nonlinear device is the same as that calculated in Equation 4.5.
In other words,

i1 = i2 = 0.4 A.

Therefore, i = i1 + i2 = 0.8 A.
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Given the analytical expression for the characteristic of a nonlinear device,
such as that for the diode in Equation 4.1, how can we calculate the voltages
and currents in a simple circuit such as Figure 4.9? In the following sections we
will discuss four methods for solving such nonlinear circuits:

1. Analytical solutions

2. Graphical analysis

3. Piecewise linear analysis

4. Incremental or small signal analysis

4.2 A N A L Y T I C A L S O L U T I O N S

We first try to solve the simple nonlinear resistor circuit in Figure 4.9 by ana-
lytical methods. Assume that the hypothetical nonlinear resistor in the figure is
characterized by the following v i relationship:

iD =
{

Kv 2
D for vD > 0

0 for vD ≤ 0.
(4.7)

The constant K is positive.

-

+
R

-
+

vD

iD

E

-

+
vD

iD
Nonlinear resistor

iD KvD
2= for vD > 0

iD 0= otherwise

F IGURE 4.9 A simple circuit
with a nonlinear resistor.

This circuit is amenable to a straightforward application of the node
method. Recall that the node method and its foundational Kirchhoff’s voltage
and current laws are derived from Maxwell’s Equations with no assumptions
about linearity. (Note, however, that the superposition method, the Thévenin
method, and the Norton method do require a linearity assumption.)

To apply the node method, we first choose a ground node and label the
node voltages as illustrated in Figure 4.10. vD is our only unknown node voltage.

Next, following the node method, we write KCL for the node that has an
unknown node voltage. As prescribed by the node method, we will use KVL
and the device relation (iD = Kv 2

D) to obtain the currents directly in terms of the
node voltage differences and element parameters. For the node with voltage vD,

vD − E

R
+ iD = 0 (4.8)

-

+

R

-

+

vD

iD

E

E vD

F IGURE 4.10 The nonlinear
circuit with the ground node
chosen and node voltages labeled.
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Note that this is not quite our node equation, because of the presence of the iD
term. To get the node equation we need to substitute for iD in terms of node
voltages. Recall that the nonlinear device v i relation is

iD = Kv 2
D. (4.9)

Note that this device equation applies for positive vD. We are given that iD = 0
when vD ≤ 0.

Substituting the nonlinear device v i relationship for iD in Equation 4.8,
we get the required node equation in terms of the node voltages:

vD − E

R
+ Kv 2

D = 0. (4.10)

For our device, note that Equation 4.9 holds only for vD > 0. For vD ≤ 0,
iD is 0.

Simplifying Equation 4.10, we obtain the following quadratic equation.

RKv 2
D + vD − E = 0.

Solving for vD and choosing the positive solution

vD = −1 + √
1 + 4RKE

2RK
. (4.11)

The corresponding expression for iD can be obtained by substituting the
previous expression for vD into Equation 4.9 as follows:

iD = K

[
−1 + √

1 + 4RKE

2RK

]2

. (4.12)

It is worth discussing why we ignored the negative solution. As shown in
Figure 4.11, two mathematical solutions are possible when we solve Equa-
tions 4.10 and 4.9. However, the dotted curve in Figure 4.11 is part of

F IGURE 4.11 Solutions to
equations Equations 4.10 and 4.9.
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Equation 4.9 but not the physical device. Because, recall, Equation 4.9 applies
only for positive vD. When E is negative, iD will be equal to 0 and vD will be
equal to E.

e x a m p l e 4.4 o n e n o n l i n e a r d e v i c e , s e v e r a l

s o u r c e s , a n d r e s i s t o r s Shown in Figure 4.12 is a circuit of no obvi-
ous value, which we use to illustrate how to solve nonlinear circuits with more than one
source present, using the nonlinear analysis method just discussed. Let us assume that
we wish to calculate the nonlinear device current iD.

Assume that the nonlinear device is characterized by the following v i relationship:

iD =
{

Kv 2
D for vD > 0

0 for vD ≤ 0.
(4.13)

The terminal variables for the nonlinear device are defined as shown in Figure 4.9, and
the constant K is positive.

Linear analysis techniques such as superposition cannot be applied to the whole circuit
because of the nonlinear element. But because there is only one nonlinear device, it is
permissible to find the Thévenin (or Norton) equivalent circuit faced by the nonlinear
device (see Figures 4.13a and b), because this part of the circuit is linear. Then we
can compute easily the terminal voltage and current for the nonlinear device using the
circuit in Figure 4.13b from Equations 4.11 and 4.12.

First, to find the open-circuit voltage, we draw the linear circuit as seen from the nonlin-
ear device terminals in Figure 4.13c. Superposition or any other linear analysis method
can now be used to calculate the open-circuit voltage:

VTH = V
R2

R1 + R2
− I0R3. (4.14)

The Thévenin equivalent resistance, RTH, the resistance seen at the terminals in
Figure 4.13d, with the sources set to zero is

RTH = (R1||R2) + R3. (4.15)

R2V R3

R1

I0

iD

i3

+

-
F IGURE 4.12 Circuit with
several sources and resistors.
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F IGURE 4.13 Analysis using Thévenin’s Theorem.
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When we reconnect the nonlinear device to this Thévenin circuit, as in Figure 4.13e,
we are back to a familiar example: one nonlinear device, one source, and one resistor.
The desired device current iD can be found by a nonlinear analysis method, such as that
used to solve the circuit in Figure 4.9.

One further comment: If in the problem statement we had been asked to find one of the
resistor currents, say i3, rather than iD, then the Thévenin circuit, Figure 4.13e, would
not give this current directly, because the identity of currents internal to the Thévenin
network are in general lost, as noted in Chapter 3. Nonetheless, the Thévenin approach
is probably the best, as it is a simple matter to work back through the linear part of
the network to relate i3 to iD. In this case, once we have computed iD, we can easily
determine i3 from Figure 4.13a using KCL,

i3 = iD + I0. (4.16)

W W W e x a m p l e 4.5 n o d e m e t h o d

e x a m p l e 4.6 a n o t h e r s i m p l e n o n l i n e a r c i r c u i t

Let us try to solve the nonlinear circuit containing a diode in Figure 4.16 by analytical
methods. Following the node method, we first choose the ground node and label the
node voltages as illustrated in Figure 4.17.

Next, we write KCL for the node with the unknown node voltage, and substitute for
the diode current using the diode equation

vD − E

R
+ iD = 0 (4.18)

iD = Is(e vD/VTH − 1). (4.19)

-

+

R

-

+

-+

vD

iD

E

vR

F IGURE 4.16 A simple non-linear
circuit containing a diode.

-

+

R

-

+

vD

iD

E

vDE

F IGURE 4.17 The circuit with the
ground node and the node voltages
marked.
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If iD is eliminated by substituting Equation 4.19 into Equation 4.18, the following
transcendental equation results:

vD − E

R
+ Is(e vD/VTH − 1) = 0.

This equation must be solved by trial and error. Easy via computer, but not very
insightful.

e x a m p l e 4.7 s e r i e s - c o n n e c t e d d i o d e s Referring to the
series-connected diodes in Figure 4.18, determine v1, v2, v3, and v4, given that I = 2 A.
The parameters in the diode relation are given to be Is = 10−12 A, VTH = 0.025 V.

We will first use the node method to solve this problem. Figure 4.18 shows the ground
node and the node voltages. There are four unknown node voltages. Next, we write
KCL for each of the nodes. As prescribed by the node method, we will use KVL and the
diode relation (Equation 4.1) to obtain the currents directly in terms of the node voltage
differences and element parameters. For the node with voltage v1,

10−12(e v1/0.025 − 1) = 10−12(e (v2−v1)/0.025 − 1). (4.20)

The term on the left-hand side is the current through the lowermost device expressed
in terms of node voltages. Similarly, the term on the right-hand side is the current
through the device that is second from the bottom.

v3

v2

v1

v4

I

F IGURE 4.18 Series connected
diodes.

Similarly, we can write the node equations for the nodes with voltages v2, v3, and v4 as
follows:

10−12(e (v2−v1)/0.025 − 1) = 10−12(e (v3−v2)/0.025 − 1) (4.21)

10−12(e (v3−v2)/0.025 − 1) = 10−12(e (v4−v3)/0.025 − 1) (4.22)

10−12(e (v4−v3)/0.025 − 1) = I. (4.23)

Simplifying, and taking the log on both sides of Equations 4.20 through 4.23, we get

v1 = v2 − v1 (4.24)

v2 − v1 = v3 − v2 (4.25)

v3 − v2 = v4 − v3 (4.26)

v4 − v3 = 0.025 ln(1012I + 1). (4.27)
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Given that I = 2 A, we can solve for v1, v2, v3, and v4, to get

v1 = 0.025 ln(1012I + 1) = 0.025 ln(1012 × 2 + 1) = 0.71 V

v2 = 2v1 = 1.42 V

v3 = 3v1 = 2.13 V

v4 = 4v1 = 2.84 V.

Notice that we could have also solved the circuit intuitively by observing that the same
2-A current flows through each of the four identical diodes. Thus, the same voltage
must drop across each of the diodes. In other words,

I = 10−12(e v1/0.025 − 1)

or,

v1 = 0.025 ln(1012I + 1).

For I = 2 A,

v1 = 0.025 ln(1012 × 2A + 1) = 0.71 V.

Once the value of v1 is known, we can easily compute the rest of the node voltages from

v1 = v2 − v1 = v3 − v2 = v4 − v3.

W W W e x a m p l e 4.8 m a k i n g s i m p l i f y i n g a s s u m p t i o n s

W W W e x a m p l e 4.9 v o l t a g e - c o n t r o l l e d n o n l i n e a r

r e s i s t o r

4.3 G R A P H I C A L A N A L Y S I S

Unfortunately, the preceding examples are a rather special case. There are
many nonlinear circuits that cannot be solved analytically. The simple circuit
in Figure 4.16 is one such example. Usually we must resort to trial-and-error
solutions on a computer. Such solutions provide answers, but usually give
little insight about circuit performance and design. Graphical solutions, on the
other hand, provide insight at the expense of accuracy. So let us re-examine
the circuit in Figure 4.16 with a graphical solution in mind. For concreteness,
we will assume that E = 3 V and R = 500 �, and that we are required to
determine vD, iD, and vR.
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We have already found the two simultaneous equations, Equations 4.18
and 4.19, that describe the circuit. For convenience, let us rewrite these
equations here after moving a few terms around:

iD = −vD − E

R
(4.31)

iD = Is(e vD/VTH − 1). (4.32)

To solve these expressions graphically, we plot both on the same coor-
dinates and find the point of intersection. Because we are assuming that we
have a graph of the nonlinear function, in this case Figure 4.2, the simplest
course of action is to plot the linear expression, Equation 4.31, on this graph,
as shown in Figure 4.20. The linear constraint of Equation 4.31 is usually called
a ‘‘load line’’ for historical reasons arising from amplifier design (as we will see
in Chapter 7).

Equation 4.31 plots as a straight line of slope −1/R intersecting the vD
axis, (iD = 0) at vD = E. (The negative sign may be a bit distressing, but
does not represent a negative resistance, just the fact that iD and vD are not
associated variables for the resistors.) For the particular values in this circuit, the
graph indicates that iD must be about 5 mA, and vD, about 0.6 V. Once we
know that iD is 5 mA, it immediately follows that

vR = iDR = 5 × 10−3 × 500 = 2.5 V.

It is easy to see from the construction that if E were made three times
as large, the voltage across the diode would increase by only a small amount,
perhaps to about 0.65 V. This illustrates the kind of insight available from
graphical analysis.

The graphical method described here is really more general than it might
at first appear. For circuits containing many resistors and sources, but only one
nonlinear element, the rest of the circuit, exclusive of the one nonlinear element,
is by definition linear. Hence, as described previously in Example 4.4, regardless
of circuit complexity we can reduce the circuit to the form in Figure 4.16 by

F IGURE 4.20 Graphical solution
for diode circuit. The graph
assumes that E = 3 V and
R = 500 �.

10 mA

iD

1 V E
vD

Slope = -1/R5 mA

0.6 V 
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the application of Thévenin’s Theorem to the linear circuit facing the nonlinear
element.

For circuits with two nonlinear elements, the method is less useful, as it
involves sketching one nonlinear characteristic on another. Nonetheless, crude
sketches can still provide much insight.

e x a m p l e 4.10 h a l f - w a v e r e c t i f i e r Let us carry the diode-
resistor example of Figure 4.16 and Figure 4.20 a step further, and allow the driving
voltage to be a sinusoid rather than DC. That is, let vI = Eo cos(ωt). Also, for reasons
that will become evident, let us calculate the voltage across the resistor rather than the
diode voltage. The graphical solution is no different than before, except that now we
must solve for the voltage assuming a succession of values of vI, and visualize how the
resultant time waveform should appear.

The circuit now looks like Figure 4.21a. The diode characteristic with a number of
different plots of Equation 4.31 (or load lines), corresponding to a representative set of
values of vI, is shown in Figure 4.21b. In Figures 4.21c and 4.21d we show the input
sinusoid vI(t), and the corresponding succession of values of vO(t) derived from the
graphical analysis in Figure 4.21b. Note from Figure 4.21a (or Equation 4.31) that

vO = vI − vD (4.33)

iD

vD

vI

vD vO

(b)

RvI = Eo cos(ωt)
-

+

vO

iD

-+
vD

(a)

+
-

vI

t

(c)

vI

vO

vI , vO

t

(d)

F IGURE 4.21 Half-wave rectifier.
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and thus in the graph vO is the horizontal distance from the load line intersection on
the vD axis to vI.

A number of interesting conclusions can be drawn from this simple example. First, we
really do not have to repeat the load line construction fifty times to visualize the output
wave. It is clear from the graph that whenever the input voltage is negative, the diode
current is so small that vO is almost zero. Also, for large positive values of vI, the diode
voltage stays relatively constant at about 0.6 volts (due to the nature of the exponential),
so the voltage across the resistor will be approximately vI − 0.6 V. This kind of insight
is the principal value of the graphical method.

Second, in contrast to all previous examples, the output waveform in this circuit is
a gross distortion of the input waveform. Note in particular that the input voltage
waveform has no average value, (no DC value), whereas the output has a significant DC
component, roughly 0.3 Eo. The DC motors in most toys, for example, will run nicely
if connected across the resistor in the circuit of Figure 4.21a, whereas they will not run
if driven directly by the sinusoid vI(t). This circuit is called a half-wave rectifier, because it
reproduces only half of the input wave. Rectifiers are present in power supplies of most
electronic equipment to generate DC from the 60-Hz ‘‘sinusoidal’’ wave from 110-V
AC power line.

4.4 P I E C E W I S E L I N E A R A N A L Y S I S

In the third of the four major methods of analysis for networks containing
nonlinear elements, we represent the nonlinear v i characteristics of each
nonlinear element by a succession of straight-line segments, then make cal-
culations within each straight-line segment using the linear analysis tools
already developed. This is called piecewise linear analysis. We will first illus-
trate piecewise linear analysis by using as an example a very simple piecewise
linear model for the diode called the ideal diode model.

First, let us develop a simple piecewise linear model for the diode, and then
use the piecewise linear method to analyze the circuit in Figure 4.16.

As can be seen from Figure 4.22a, the essential property of a diode is that for
an applied positive voltage vD in excess of 0.6 volts, large amounts of current

F IGURE 4.22 v–i characteristics
of a silicon diode plotted using
different scales. vD

10 pA

iD

vD

10 mA
iD

5 V(a) (b)0.5 V
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flow, whereas for negative voltages very small currents flow. Figure 4.22b iD

vD

(a)

iD
+

-

vD

(b)

Short

Open
circuit

circuit

F IGURE 4.23 A piecewise
linear approximation for the diode:
the ideal diode model.

draws the v i curve using a larger scale and highlights this dichotomy. The
crudest approximation that preserves this dichotomy is the characteristic shown
in Figure 4.23a: two linear segments intersecting at the origin, one of zero slope,
indicating the behavior of an open circuit, the other infinite, indicating a short
circuit. The abstraction is of sufficient use that we give it a special symbol, as
shown in Figure 4.23b. This is yet another primitive in our vocabulary, called
an ideal diode.

The behavior of this piecewise linear model can be summarized in two
statements, one for each of the segments:

Diode ON (short circuit): vD = 0 for all positive iD. (4.34)

Diode OFF (open circuit): iD = 0 for all negative vD. (4.35)

We now use the diode model comprising two straight-line segments to
illustrate the piecewise linear analysis method applied to the circuit in Figure 4.16
(also shown in Figure 4.24a). In particular, we will determine the voltage vR
across the resistor and the current iD through the resistor for two values of the
input voltage, E = 3 V and E = −5 V, and given that R = 500 �.

The piecewise linear analysis technique proceeds by focusing on one
straight-line segment at a time, and using our previously developed linear anal-
ysis tools to make calculations within each segment. Notice that we are able
to apply our linear analysis tools because the nonlinear device characteristics
are approximated as linear within each segment. To facilitate our calculations,
let us first draw the circuit that results for each of the straight-line segments
comprising the ideal diode model.
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F IGURE 4.24 Piecewise linear
analysis of a simple diode circuit.
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Short circuit segment: Figure 4.24b shows the resulting circuit when the diode
is operating as a short circuit. When iD and vD are in this straight-line segment
of the characteristic, trivial calculations show that

iD = E

R
(4.36)

and

vR = iDR = E

R
R = E. (4.37)

Open circuit segment: Figure 4.24c shows the corresponding circuit when
the diode is operating as an open circuit. When iD and vD are in this part
of the characteristic, it is clear that

iD = 0 (4.38)

and

vR = 0. (4.39)

Combining the results: All that remains now is to determine which of the two
segments of operations apply when E = 3 V and when E = −5 V. A little bit of
intuition tells us that when E = 3 V, the short circuit segment applies. Notice
that both the resistor and the diode (a nonlinear resistor) do not produce power,
and so the direction of the current must be such that the voltage source delivers
power. In other words, when E is positive, so must iD. From Equation 4.34,
when iD is positive, the diode is ON. In this segment, from Equations 4.36
and 4.37

iD = E

R
= 3

500
= 6 mA (4.40)

and

vR = 3 V.

Compared with the numbers obtained earlier in Section 4.3 using graphical
analysis for E = 3 V, we see that piecewise linear analysis using an approximate
model for the diode has yielded reasonably accurate results (6 mA versus 5 mA
for iD, and 3 V versus 2.5 V for vR).

Intuition also tells us that when E = −5 V, the open circuit segment
applies. For the negative input voltage, vD is negative. From Equation 4.35,
when vD is negative, the diode is OFF. In this segment, from Equations 4.38
and 4.39, both iD and vR are 0.

Notice that the piecewise linear analysis method enabled us to break down
a nonlinear analysis problem into multiple linear problems, each of which was
very simple. However, an interesting aspect of the method is figuring out the
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segment of operation associated with each of the nonlinear devices. This was
not too hard with a single nonlinear device such as an ideal diode, but can be
challenging when there are a number of nonlinear devices. It turns out that
the approach that we discussed in this example generalizes to the method of
assumed states, which will be discussed in more detail in Chapter 16.

e x a m p l e 4.11 p i e c e w i s e l i n e a r a n a l y s i s o f a

h y p o t h e t i c a l n o n l i n e a r d e v i c e Figure 4.25a shows a circuit
containing some hypothetical nonlinear device whose v i characteristics are approxi-
mated using the piecewise-linear graph shown in Figure 4.25b. The nonlinear device
with its terminal voltage and current defined as shown in Figure 4.26a might have an
actual v i curve as illustrated in Figure 4.26b. Figure 4.26c shows the correspondence
between the device’s actual v i curve and the piecewise linear model.

The behavior of the piecewise linear model for our nonlinear device can be summarized
in two statements, one for each of the straight-line segments:

Resistance R1 for all positive iD (4.41)

Resistance R2 for all negative iD (4.42)
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(iD < 0)

slope = 1/R1

slope = 1/R2

iD

(b)

F IGURE 4.25 A circuit
containing a nonlinear device
whose characteristics are modeled
using a piecewise linear approxi-
mation. In (b), R1 = 100 � and
R2 = 10 k�.
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F IGURE 4.26 A hypothetical
nonlinear device whose character-
istics are modeled using a piece-
wise linear approximation.
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Let us apply the piecewise linear analysis method to the circuit in Figure 4.25(a). Specifi-
cally, let us determine the voltage vD across the nonlinear device for various values of
the current I sourced by the independent current source. Specifically, we will deter-
mine vD for I = 1 mA, I = −1 mA, and when I is a sinusoidal current of the form
0.002 A cos

(
ωt

)
.

Following the piecewise linear analysis technique, let us focus on one straight-line
segment at a time. Accordingly, we draw the circuit that results for each of the segments.

R1 segment: Figure 4.25c shows the resulting circuit when the nonlinear device is
operating in its R1 segment. This segment applies when iD is positive.
Since iD = I, the R1 segment applies when I is positive. A simple
application of Ohm’s Law for the R1 resistor yields

vD = I R1. (4.43)

R2 segment: Figure 4.25d shows the circuit when the nonlinear device is operating
in its R2 segment. This segment applies when iD is negative; in other
words, when I is negative. In this segment, we obtain

vD = I R2. (4.44)

Summarizing,

When I ≥ 0 : vD = I R1 (4.45)

When I < 0 : vD = I R2. (4.46)

Thus, for I = 1 mA, Equation 4.45 applies. Therefore

vD = IR1 = 0.001 × 100 = 0.1 V.

Similarly, for I = −1 mA, Equation 4.46 applies. Therefore

vD = IR2 = −0.001 × 10000 = −10 V.

Let us now determine vD for the cosine current input depicted in Figure 4.27a. When
I ≥ 0,

vD = I R1 = I × 100

as shown in Figure 4.27b. Similarly, when I < 0,

vD = I R2 = I × 10000

as shown in Figure 4.27c. Piecing together the two results for I ≥ 0 and I < 0, we
obtain the complete waveform for the output vD as shown in Figure 4.27d.
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F IGURE 4.27 Cosine input.

e x a m p l e 4.12 s u p e r p o s i t i o n a p p l i e d i n l i n e a r

s e g m e n t s Although the previous examples illustrated the piecewise linear analy-
sis method, they did not do full justice to the power of the technique, since the equivalent
circuits within each of the linear segments were very simple (for example, the circuits in
Figures 4.24b and 4.24c, or the circuits in Figures 4.25c and 4.25d, and did not require
any of our powerful analysis techniques such as superposition that rely on linearity. We
will now work a slightly more complicated example to illustrate the full power of the
piecewise linear analysis method.

Consider the circuit in Figure 4.28 containing the hypothetical nonlinear device from
Example 4.11 (shown in Figure 4.26a) and two independent sources. Suppose we are
asked to determine the value of vB. The presence of the nonlinear device does not
allow the application of superposition, since superposition relies on the assumption of
linearity.

Let us use the piecewise linear analysis method to solve this problem. The piecewise linear
model for the device characteristics is shown in Figure 4.26c. Recall, the nonlinear device



212 C H A P T E R F O U R a n a l y s i s o f n o n l i n e a r c i r c u i t s

F IGURE 4.28 A circuit contain-
ing a nonlinear device and multiple
sources.
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F IGURE 4.29 Equivalent circuit
in the linear segment with
slope 1/R1.
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+
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R1 = 100 Ω

behaves like a resistor of value R1 when iD ≥ 0, and like a resistor of value R2 when
iD < 0.

For the polarities of the current source and the voltage source shown in Figure 4.28, the
current iD through the nonlinear device will be positive.1 Accordingly, the R1 segment
of device operation applies and the equivalent circuit is as shown in Figure 4.29. In
Figure 4.29, we have replaced the nonlinear device with a resistor of value R1.

The circuit in Figure 4.29 is linear, so any of our linear techniques can be used. We will
use superposition to solve this circuit. According to the first step of the superposition
method, for each independent source, we must form a subcircuit with all other indepen-
dent sources set to zero. Setting a voltage source to zero implies replacing the voltage
source with a short circuit, and setting a current source to zero implies replacing the
current source with an open circuit. Figure 4.30a shows the subcircuit with the voltage
source set to zero, and Figure 4.30b shows the subcircuit with the current source set
to zero.

Now, according to the second step of the superposition method, we must find the
response of each independent source acting alone from the corresponding subcircuit.
Let us denote the response of the current source acting alone as vBI, and the response
of the voltage source acting alone as vBV.

1. In general, we can determine the polarity of iD by applying a Thévenin reduction on the circuit
facing the nonlinear device. iD will be positive if the Thévenin voltage driving the device is also
positive.
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5 kΩ

1mA

2 kΩ

1 kΩ 3 kΩ

vBI

+

-
R1 = 100 Ω

(a)

5 kΩ 
2 k

+
-1 V

1 kΩ 3 kΩ

vBV

+

-
R1 = 100 Ω

(b)

x

Ω

F IGURE 4.30 Circuits with each
of the sources acting alone.

vBI: We will analyze the circuit in Figure 4.30a using the intuitive approach of
series-parallel reductions discussed in Section 2.4 to obtain vBI. In this approach,
we will first collapse all the resistances into an equivalent resistance Req seen by
the current source and multiply that resistance by 1 mA. The equivalent
resistance seen by the current source is given by

Req = (((3 k� + 100 �)‖2 k�) + 1 k�)‖5 k�.

Simplifying, we get

Req = 1.535 k�.

Multiplying Req by the current source current we get

vBI = 1.535 k × 1 mA = 1.535 V.

vBV: We now analyze the circuit in Figure 4.30b to obtain vBV. We will again use the
intuitive approach suggested in Section 2.4 involving first collapsing, then
expanding the circuit. Suppose we knew the voltage vx at node x, then we can
easily obtain vBV by the voltage divider relation. We can obtain vx by first
collapsing the circuit in Figure 4.30b into the equivalent circuit in Figure 4.31

2 kΩ

+

-

Rx

x

vx

1 V 

F IGURE 4.31 Collapsed circuit.

and applying the voltage divider relation. Rx in the circuit in Figure 4.31 is
found by collapsing the 1-k�, 5-k�, 3-k�, and the 100-� resistances into an
equivalent resistance as follows:

Rx = (1 k� + 5 k�)‖(3 k� + 100 �) = 2.05 k�.

By the voltage divider relation

vx = 1 V
Rx

2 k� + Rx
= 1 V

2.05 k�

2 k� + 2.05 k�
= 0.51 V.

We now obtain vBV by expanding the circuit in Figure 4.31 to the original
circuit in Figure 4.30b and using the voltage divider relation as follows:

vBV = vx
5 k�

1 k� + 5 k�
= 0.51 V

5 k�

1 k� + 5 k�
= 0.425 V.
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As the final step of the superposition method, we obtain the total response by summing
together each of the individual responses:

vB = vBI + vBV = 1.535 V + 0.425 V = 1.96 V.

Thus, we have our desired answer. Notice that we were able to apply the powerful
superposition method by focusing on a straight line segment of the nonlinear device.

W W W e x a m p l e 4.13 h a l f - w a v e r e c t i f i e r r e - e x a m -

i n e d

W W W 4.4.1 I M P R O V E D P I E C E W I S E L I N E A R M O D E L S
F O R N O N L I N E A R E L E M E N T S *

W W W e x a m p l e 4.14 a n o t h e r e x a m p l e u s i n g p i e c e -

w i s e l i n e a r m o d e l i n g

W W W e x a m p l e 4.15 t h e d i o d e r e s i s t a n c e

W W W e x a m p l e 4.16 a m o r e c o m p l i c a t e d p i e c e w i s e

l i n e a r m o d e l

4.5 I N C R E M E N T A L A N A L Y S I S

There are many applications in electronic circuits where nonlinear devices are
operated only over a very restricted range of voltage or current, as in many sen-
sor applications and most audio amplifiers, for example. In such cases, it makes
sense to find a piecewise linear device model in a way that ensures maximum
accuracy of fit over that narrow operating range. This process of linearizing
device models over a very narrow operating range is called incremental analysis
or small-signal analysis. The benefit of incremental analysis is that the incre-
mental variables satisfy KVL and KCL, as well as linear v i relations over the
narrow operating range.

We note, however, that this almost linear mode of operation of nonlinear
devices over a narrow operating range is more common with MOSFET circuits
(discussed in Chapter 8) than with nonlinear resistors. However, because of the
simplicity of nonlinear resistor circuits, we introduce the concept of incremental
analysis here, recognizing that the principal application will come later.
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iD ID

vD

∆vI = 0.001 V sin(ωt)

VI = 0.7 V
+

iD

+
-

- VD = VI

+
vD
-

F IGURE 4.37 Incremental
analysis.

We will discuss incremental analysis using the diode as an example.
Suppose we wish to determine the value of the diode current iD in the cir-
cuit in Figure 4.37. Here we have a diode and a pair of voltage sources as in
many previous examples, but in this case one source, VI, is fixed at a value of,
say, 0.7 V, and the other, �vI, is a 1-mV sinusoid. Inputs of this form a DC
value plus a small time-varying component occur frequently in practice, and
so it is important to find a simple way to solve for the circuit response for this
type of input. We could, of course, take the obvious analytical approach and
write

iD = Is
(

e(0.7 V+0.001 V sin(ωt))/VTH − 1
)

(4.53)

but it leaves us with a complicated expression from which the form of the
output is not readily apparent.

We will abandon the straightforward approach, and instead, cast off in a
slightly different direction. Clearly, with the given values of the drive, this is
a case where the diode is being operated only over a very restricted region of
its nonlinear v i characteristics: the diode will always have a large positive DC
offset voltage across it (given by VI), and the diode current will vary only by a
small amount around ID (as depicted in the graphical sketch in Figure 4.37) due
to the small signal �vI superimposed on the DC input voltage. Thus a sensible
approach is to model the diode characteristic accurately in the vicinity of ID (as
depicted by the small straight line segment tangent to the curve at the VI, ID
point, as shown in Figure 4.37) and disregard the rest of the curve. The Taylor
Series expansion is the appropriate tool to employ for this task:

y = f (x) = f (Xo) + df

dx

∣∣∣∣
Xo

(x − Xo) + 1

2!
d2f

dx2

∣∣∣∣∣
Xo

(x − Xo)2 + · · · (4.54)

This is an expansion of the y versus x relation about the point f (Xo), Xo.
For our device iD versus vD relation,

iD = f (vD)

we need to develop the corresponding expansion about f (VD), VD, where
ID = f (VD).
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For our example, the source voltages VI and �vI are applied directly across
the diode, so the corresponding diode voltages are given by VD = VI and
�vD = �vI.

Thus, in terms of diode parameters, the corresponding Taylor Series
expansion of iD = f (vD) about f (VD), VD is:

iD = f (vD) = f (VD) + df

dvD

∣∣∣∣
VD

(vD − VD) + 1

2!
d 2f

dv 2
D

∣∣∣∣∣
VD

(vD − VD)2 + · · ·

(4.55)

For our diode example, mathematically we wish to expand the diode
equation

iD = Is
(

e(VD+�vD)/VTH − 1
)

(4.56)

about the operating point VD, ID. In circuit terms we are calculating the response
iD when a voltage vD = VD + �vD, is applied to a diode, as in Figure 4.37.
The current iD will be of the form

iD = ID + �iD. (4.57)

The Taylor series expansion of Equation 4.56 is

iD = Is
(

e VD/VTH − 1
)

+ 1

VTH

(
Ise VD/VTH

)
�vD

+ 1

2

(
1

VTH

)2 (
Ise VD/VTH

)
(�vD)2 + · · · (4.58)

Simplifying,

iD = Is
(

eVD/VTH −1
)
+

(
IseVD/VTH

)[
1

VTH
�vD+ 1

2

(
1

VTH

)2

(�vD)2+···
]

.

(4.59)

Now if we are assured that the excursions away from the DC operating
point VD, ID are small, so that �vD is very small compared to VTH (as in this
case, since VTH is typically 0.025 V and we are given that �vD = 0.001 V) we
can ignore the second and higher order terms in the expansion:

iD = Is
(

e VD/VTH − 1
)

+
(

Ise VD/VTH
) [

1

VTH
�vD

]
. (4.60)
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We know that the output current is composed of a DC component ID and
a small perturbation �iD. Thus, we can write

ID + �iD = Is
(

eVD/VTH − 1
)

+
(

IseVD/VTH
) [

1

VTH
�vD

]
. (4.61)

Equating corresponding DC terms and corresponding incremental terms:

ID = Is
(

eVD/VTH − 1
)

(4.62)

�iD =
(

IseVD/VTH
) 1

VTH
�vD. (4.63)

Note that ID is simply the DC bias current related to the DC input voltage
VD. Accordingly, the DC terms relating ID to VD can be equated as in Equa-
tion 4.62 because the operating point values ID, VD satisfy Equation 4.1, which
is the diode equation. When the DC terms are eliminated from both sides of
Equation 4.61, the incremental relation shown in Equation 4.63 results.

Thus the response current to an applied voltage VD + �vD contains two
terms: a large DC current ID and a small current proportional to �vD, if we
keep �vD small enough.

A graphical interpretation of this result is often helpful. As shown in
Figure 4.37, Equation 4.61 is the straight line passing through the DC operating
point VD, ID and tangent to the curve at that point. The higher order terms in
Equation 4.58 that we neglected would add quadratic, cubic, etc., terms to the
model, thereby improving the fit over a wider region.

For the particular case of incremental analysis with the diode equation, we
commonly make the following approximation to Equation 4.63:

�iD = Is
(

eVD/VTH − 1
) 1

VTH
�vD (4.64)

where the −1 term is artificially included because it is small in comparison to
eVD/VTH . With the inclusion of the −1 term, we can simplify further and write
an approximate expression for the incremental diode current:

�iD = ID
1

VTH
�vD. (4.65)

Figure 4.38 provides further insight into the result in Equations 4.62 and
4.63 (or its simplified form in Equation 4.65). Equation 4.62 establishes the
VD, ID operating point or the bias point of the diode. ID/VTH is the slope of
the v i curve at the point VD, ID. The product of the slope of the v i curve at
VD, ID (given by ID/VTH) and the small perturbation in applied diode voltage
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F IGURE 4.38 Graphical
interpretation of operating point
and incremental signals.

ID

vD

iD

VD

vD

iD

∆

∆

Slope of the
i-v curve at
the operating
point VD, ID
given by

ID
vTH

(given by �vD) yields an approximation �iD = ID/VTH�vD to the resulting
perturbation in the diode current.

It is a simple matter to estimate the quality of fit. Taking the ratio of the
third term to the second term on Equation 4.58, we obtain

third term

second term
= 1

2

1

VTH
�vD. (4.66)

At room temperature, VTH is roughly 25 mV. Thus, if we want the third
term to be no more than 10% of the second, �vD must be restricted to be less
than 5 mV.

We do not have to go through the mechanics of a Taylor series expan-
sion each time that we wish to find the relationship between the incremental
parameters �iD and �vD. Rather, we can find the relationship between the
incremental parameters directly from the iD = f (vD) relationship using

�iD = df

dvD

∣∣∣∣
VD

�vD (4.67)

The relationship in Equation 4.67 is itself derived from the Taylor series
expansion as follows. Recalling Equation 4.55,

iD = f (vD) = f (VD) + df

dvD

∣∣∣∣
VD

(vD − VD) + 1

2!
d2f

dv2
D

∣∣∣∣∣
VD

(vD − VD)2 + · · ·

(4.68)
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and replacing iD by its DC value plus an increment (iD = ID + �iD), the
difference (vD − VD) by �vD, and

ID = f (VD) (4.69)

we rewrite Equation 4.68 as

ID + �iD = ID + df

dvD

∣∣∣∣
VD

�vD + 1

2!
d2f

dv2
D

∣∣∣∣∣
VD

�v2
D + · · · (4.70)

Now, deleting ID on both sides of the equation, and assuming �vD is small
enough that we can ignore second order terms in �vD we get

�iD = df

dvD

∣∣∣∣
VD

�vD. (4.71)

In words, the incremental change in the current is equal to df/dvD evaluated
at vD = VD, multiplied by the incremental change in the voltage.

You can verify that applying Equation 4.71 to the diode equation

iD = f (vD) = Is(evD/VTH − 1)

yields the same expression for �iD as that in Equation 4.63.
The same result can be developed graphically from Figure 4.38. The incre-

mental current �iD is simply the product of �vD and the slope of the iD versus
vD curve at the point ID, VD. The slope of the iD versus vD curve at the point
ID, VD is given by:

Slope of the iD versus vD curve = df (vD)

dvD

∣∣∣∣
VD

.

To wrap up our example of Figure 4.37, let us obtain the numerical value
of iD for the given form of vD. We are given that the input is of the form

vI = VI + �vI = 0.7 V + 0.001 V sin(ωt).

Since the input is applied directly across the diode, the corresponding relation
in terms of diode voltages is

vD = VD + �vD = 0.7 V + 0.001 V sin(ωt).

When �vD is small enough, iD can be written in the form

iD = ID + �iD.
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From Equation 4.69,

ID = f (VD) = Is
(

e0.7/VTH − 1
)

and, from Equation 4.71,

�iD = df

dvD

∣∣∣∣
VD

�vD = Ise0.7/VTH
1

VTH
0.001 sin ωt.

Substituting Is = 1 pA and VTH = 0.025 V (at room temperature), the diode
parameters, we find that ID = 1.45 A and �iD = 0.058 A sin(ωt).

The values of ID and �iD immediately confirm that iD is the sum of a DC
term and a small time-varying sinusoidal term. Observe further the ease with
which we obtained the form of iD, and contrast with the uninsightful expression
in Equation 4.53 that resulted from the brute-force analytical approach.

Although this process yielded fairly quickly the form of iD, a bit of insight
will simplify the process even further by enabling the use of linear circuit tech-
niques to solve the problem as promised in the introduction of this section.
We proceed by drawing attention to Equation 4.61. Equation 4.61 is certainly
nonlinear. But an important interpretation central to all incremental arguments
allows us to solve the problem by linear circuit methods. Note from Equa-
tion 4.62 that the first term in Equation 4.61, the DC current ID, is independent
of �vD. It depends only on the circuit parameters and the DC voltage VD
which is the same as the DC source voltage VI. Thus ID can be found with
�vD, set to zero. On this basis, the second term in Equation 4.61 is linear in
�vD, because we have shown that there is no hidden �vD dependence in ID.
Hence the second term, the change in the current i is linearly proportional to the
change in v, can be found from a linear circuit.

But what is the form of this linear circuit that can facilitate the computation
of �iD? Observe that the constant of proportionality relating �iD and �vD is

�iD
�vD

= gd = 1

VTH
ID (4.72)

or more generally, from Equation 4.71,

�iD
�vD

= gd = df

dvD

∣∣∣∣
VD

, (4.73)
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which can be interpreted as a linear conductance (the slope of the v i
characteristic at VD, ID), or a linear resistance of value

rd = VTH

ID
(4.74)

for a diode.

In general, the incremental behavior of a nonlinear device is that of a linear
resistor, whose value rd is given by

rd = 1
df

dvD

∣∣∣
vD=VD

. (4.75)

For a diode, because VTH is about 25 mV at room temperature, for ID =
1 mA, the incremental resistance rd = 25 �. Similarly, for ID = 1.45 A, rd =
0.017 �. Note: The incremental resistance in general is not the same as the resis-
tor Rd used in the piecewise linear model of W W W Figure 4.33c. There we were
trying for a fit over a large range of current, and hence would compromise on a
different resistance value. The difference between Rd and rd can be clearly under-
stood by comparing the two graphical interpretations, W W W Figures 4.33d
and 4.37.

In circuit terms, Equation 4.73 can be interpreted as depicted in Figure 4.39.
�iD can now be found trivially from the linear circuit in Figure 4.39, where
rd = 1/gd. For ID = 1.45 A, rd is 0.017 � at room temperature, and

�iD = �vD

rd
= 0.059 A sin(ωt).

In summary, we began our analysis with the goal of determining the current
(iD) through the diode when an input voltage in the form of a DC value (VD)
plus a small time-varying component (�vD) is applied across it. Equation 4.61
shows that the resulting diode current is made up of two terms, a DC term,
ID, which depends only on the DC voltage applied VD, and a small-signal or
incremental term �iD, which depends on the small-signal voltage and also on
the DC voltage VD. But for fixed VD, the incremental current �iD is linearly
related to �vD. The constant of proportionality is a conductance gd given by
Equation 4.73. Because the incremental circuit model of Figure 4.39 correctly
represents the relationship between �iD and �vD, this linear circuit can be used
to solve for �iD. In many situations, only the incremental change in the output

+

-

+
-∆vI = 0.001 V sin(ωt)

∆iD

∆vD
rd

1
df

dvD
---------

VD

-----------------= F IGURE 4.39 Linear circuit for
determining the value of �iD .
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is of interest, and our analysis will end here. If the total value of the output (iD)
is desired, then it can be obtained by summing �iD and the DC component ID.

Thus, based on the preceding discussion, a systematic procedure for find-
ing incremental voltages and currents for a circuit with a nonlinear device
characterized by the v i relation iD = f (vD) is as follows:

1. Find the DC operating variables, ID and VD, using the subcircuit derived
from the original circuit by setting all small-signal sources to zero. Any of
the methods of analyzing nonlinear circuits discussed in the preceding
sections analytical, graphical, or piecewise linear is appropriate.

2. Find the incremental output voltage and incremental nonlinear device
current (the change away from the DC variables calculated in Step 1)
by forming an incremental subcircuit in which the nonlinear device is
replaced by a resistor of value rd (computed as shown in Equation 4.75),
and all DC sources are set to zero. (That is, voltage sources are replaced
by short circuits, and current sources by open circuits.) The incremental
subcircuit is linear, so incremental voltages and currents can be calculated
by any of the linear analysis techniques developed in Chapter 3, including
superposition, Thévenin, etc.

One final note on notation before we work a few examples to illustrate the
small signal approach. For convenience, we will introduce the following nota-
tion to distinguish between total variables, their DC operating or bias values,
and their incremental excursions about the operating points. As illustrated in
Figure 4.40, we will denote total variables with small letters and capital sub-
scripts, DC operating point variables using all capitals, and incremental values
using all small letters. Thus, vD denotes the total voltage across the device, VD
the DC operating point, and vd = �vD the incremental component. Since the
total variable is the sum of the two components, we have

vD = VD + vd.

F IGURE 4.40 Notation for
operating point, small signal, and
total variables.

ID

vD

iD

VD vd

id

vD

iD
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+

-

iD
vD

iD f(vD) Is e

vD
VTH
---------

– 1= = id
vd
rd
-----=

+

-

vd

id

rd
1

d( f(vD))
vD vD = VD

VTH
ID

----------= =

Large signal Small signal

F IGURE 4.41 Large signal and
small signal diode models.

Similarly, for the current

iD = ID + id.

Figure 4.41 summarizes the large and small signal models for the diode in
terms of our new notation.

e x a m p l e 4.17 i n c r e m e n t a l m o d e l f o r s q u a r e l a w

d e v i c e Derive an incremental model for the square law device shown in
Figure 4.42a. Assume that the device is characterized by the following v i relationship:

+

vD

+

-

rd vd

(b)

id

(a)

iD = Kv2
D

-

for vD > 0

F IGURE 4.42 A square law
device and its incremental model.
(a) a square law device, (b)
incremental model.

iD = Kv 2
D for vD > 0

= 0 for vD ≤ 0

where K = 1 mA/V2, and that the operating point values for VD and ID are 1 V and
1 mA respectively.

We know from Equation 4.75 that the incremental model for a nonlinear device is a linear
resistor of value rd as depicted in Figure 4.42. The value of the resistance is given by

rd = 1
df

dvD

∣∣∣
vD=VD

.

Substituting, f (vD) = Kv2
D, we obtain

rd = 1

2KvD|vD=VD=1 V
= 500 �.

e x a m p l e 4.18 i n c r e m e n t a l m o d e l f o r a r e s i s t o r

We will show that the incremental model for a linear resistor of value R is also a resistor
of value R. Intuitively, since the v i relation for a linear resistor is a straight line, the
slope (given by 1/R) is the same for all values of the resistor voltage and current. Further,
since the incremental resistance r is the reciprocal of the slope, it follows that r = R.
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-
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iDvi
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rd vo

(c) Incremental subcircuit

id
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VO1 V DC
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0 V 

(b) DC subcircuit for operating
point analysis

ID

VI

F IGURE 4.43 Incremental
analysis of nonlinear resistor. Parts
(b) and (c) show the DC and the
incremental subcircuits,
respectively.

We can also show the same result mathematically as follows. The v i relation for the
resistor is given by

i = v

R
.

We obtain the incremental resistance r for resistor voltage and current (V, I ) using
Equation 4.75:

r = 1
d(v/R)

dv

∣∣∣
v=V

= R.

e x a m p l e 4.19 i n c r e m e n t a l a n a l y s i s o f s q u a r e

l a w d e v i c e Suppose we are interested in finding the current iD through the
square law device in Figure 4.43. The device is driven by a DC voltage in series
with a small AC voltage. The square law device is characterized by the following v i
relationship:

iD = Kv 2
O for vO > 0. (4.76)

The current iD is 0 for vO ≤ 0. Assume K = 1 mA/V2.

Since the input to the nonlinear device is the sum of a DC component and a rela-
tively small AC component, incremental analysis is the appropriate tool for our task.
Incremental analysis comprises the following steps:

1. Find the DC operating variables ID and VO by setting all small-signal sources to
zero.

2. Find the incremental device current id by forming an incremental subcircuit in
which the nonlinear device is replaced by a linear resistor of value rd (from
Equation 4.75), and all DC sources are set to zero.

Following the first step of incremental analysis, we draw the DC subcircuit Figure 4.43b
and mark the operating-point variables ID, VO. The AC source is set to zero. By
inspection from Figure 4.43b

VO = VI = 1 V.
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and

ID = KV2
O = 1 mA.

Next, following the second step of incremental analysis we draw the incremental sub-
circuit in Figure 4.43b. Here, we set the DC source to zero, and replace the nonlinear
device with a linear resistor of value rd, where

rd = 1
d(Kv2

O)
dvO

∣∣∣
vO=VO

= 1

2KVO
.

Substituting VO = 1 V, we obtain

rd = 500 �.

Now that we know the value of rd, we can obtain the small-signal component id from
the small signal circuit. Accordingly,

id = vi

rd
.

Substituting numerical values, we find that id is a 2-µA AC current. Thus, the total
current iD is the sum of a 1-mA DC current and a 2-µA AC current. This completes
our analysis.

e x a m p l e 4.20 v o l t a g e r e g u l a t o r b a s e d o n a

n o n l i n e a r r e s i s t o r To illustrate the use of incremental analysis, we
examine the nonlinear device circuit shown in Figure 4.44a, a crude form of voltage
regulator based on the hypothetical nonlinear resistor discussed earlier. Assume R = 1k
and that the nonlinear device is characterized by the following v i relationship:

iD = Kv 2
O for vO > 0. (4.77)

The current iD is 0 for vO ≤ 0. Assume K = 1 mA/V2.

We assume that the supposedly DC source (vI) supplying the circuit in reality has 5 volts
of DC (VI) with 50 mV of AC (vi, also called a ripple) superimposed. The regulator
is designed to reduce this unwanted AC component relative to the DC. Our task is
to determine the magnitude of the ripple in the output, and the extent to which our
regulator has been able to reduce the ripple amplitude relative to the DC voltage.

To understand how the circuit operates, we will perform an incremental analysis on
the circuit by following these two steps:

1. Find the DC operating variables ID and VO by setting all small-signal sources to
zero. This will require a nonlinear analysis using one of the nonlinear approaches
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vO
Total

50 mV  AC

5 V  DC

+
-

+
-

R

source

(a)

iD

vI

vi

VI

+

-

50 mV  AC
+
-

0 V

R

rd vo

(c)  Incremental AC subcircuit

id
vi

+

-

VO5 V  DC
+
-

0 V

R

(b) DC subcircuit for operating
point analysis

ID

VI

F IGURE 4.44 Nonlinear resistor
voltage regulator. Parts (b) and (c)
show the DC and the incremental
subcircuits, respectively. The sub-
circuits are derived according to
the discussion preceding this
example. For more discussion of
DC and incremental subcircuits,
see Section 8.2.1 in Chapter 8.

previously discussed, for example, analytical (using the node method), graphical or
piecewise linear.

2. Find the incremental output voltage vo and incremental nonlinear device current id
by forming an incremental subcircuit in which the nonlinear device is replaced by a
linear resistor of value rd (from Equation 4.75), and all DC sources are set to zero.
The incremental circuit will be linear, so any of our linear techniques will apply, for
example, superposition, Thévenin.

Following the first step of incremental analysis, we draw the DC subcircuit Figure 4.44b
and mark the operating-point variables ID, VO. Notice that we have set the small-signal
source to zero.

We will now use the analytical analysis method to determine ID and VO. By inspection
from Figure 4.44b,

−VI + IDR + VO = 0 (4.78)

ID = KV2
O. (4.79)

Eliminating ID, we get

RKV2
O + VO − VI = 0.

Solving for VO, we get:

VO = −1 + √
1 + 4VIRK

2RK
. (4.80)

Substituting K = 1 mA/V2, R = 1 k�, and VI = 5 V, we obtain the operating
point values:

VO = 1.8 V

ID = 3.24 mA.

VO is the DC component of the output. This completes the first step of incremental
analysis.
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Next, following the second step of incremental analysis we draw the incremental sub-
circuit in Figure 4.44c. This time around, we set the DC source to zero, and replace the
nonlinear resistor with a linear resistor of value rd.

We can now find the incremental values id, vo from Figure 4.44c if we know the value of
rd. Accordingly, we first determine the value of rd. We know from Equation 4.71 that

id = d(Kv 2
O)

dvO

∣∣∣∣∣
vO=VO

vo

so

rd = 1
d(Kv 2

O)
dvO

∣∣∣
vO=VO

.

Simplifying,

rd = 1

2KVO
.

Substituting the numerical values, rd = 1/(2 × 1 × 10−3 × 1.8) = 278 �.

Now that we know the value of rd, we can obtain the small-signal component of the
output vo from the small signal AC circuit in Figure 4.44c. Notice that the circuit in
Figure 4.44c is a voltage divider. Thus, the small signal AC output

vo = vi
rd

R + rd
(4.81)

= 50 × 10−3 278

1000 + 278
= 10.9 mV.

and

id = vo

rd
= 0.0109

278
= 0.039 mA.

This completes our analysis.2

Although both the DC and the AC components of the output voltage are smaller than
the corresponding input components, the important parameter is the fractional ripple,
the ratio of the ripple to the DC. At the input,

fractional ripple = 50 × 10−3

5
= 10−2 (4.82)

2. As an interesting aside, we can alternatively obtain vo mathematically by starting from the
equation relating vO to vI:

vO = −1 + √
1 + 4vIRK

2RK
.
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and at the output,

fractional ripple = 10.9 × 10−3

1.8
� 0.6 × 10−2, (4.83)

so the ripple has been reduced relative to the DC by a factor of about 1.7. This level
of reduction is not particularly exciting. As can be seen from Equation 4.81, we can
improve the level of reduction by reducing the value of rd. One way to do so is to
replace the nonlinear resistor of this example with one whose v i curve has a steeper
slope as seen in the next example.

It is important to understand that the mathematical basis for incremental analysis and
for the formation of the two subcircuits, as in Figure 4.44, is not superposition, but a
particular interpretation of a Taylor series expansion. Even though we keep only the
first two terms of the series, as in Equation 4.61, the relationship is still nonlinear, and
hence superposition cannot apply.

W W W e x a m p l e 4.21 d i o d e r e g u l a t o r

W W W e x a m p l e 4.22 s m a l l s i g n a l a n a l y s i s u s i n g a

p i e c e w i s e l i n e a r d i o d e m o d e l

Observing that the incremental change in vO is given by the product of the incremental change in
vI and the slope of the vO versus vI curve evaluated at VI, we can write

vo =
d

(
−1+√

1+4vIRK
2RK

)

dvI

∣∣∣∣∣∣∣∣
vI=VI

vi.

Simplifying,

vo = 1√
1 + 4VIRK

vi

= 10.9 mV

which is the same as the value obtained by analyzing the small-signal circuit.
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4.6 S U M M A R Y
� This chapter introduced nonlinear circuits and their analyses. Nonlinear

circuits include one or more nonlinear devices, which display a nonlinear
v i relationship. Nonlinear circuits obey KVL and KCL and can be solved
using the basic KVL/KCL method or the node method. Note that the
KVL/KCL method or the node method do not make any assumptions
about linearity.

� We discussed four methods for solving nonlinear circuits including the
analytical method, the graphical method, the piecewise linear method, and
the small signal method (also known as the incremental method).

The analytical method uses KVL/KCL or the node method to write
the circuit equations and solves them directly. The graphical method uses
a graph of the v i relation of the nonlinear device and the graph capturing
the circuit constraint to solve for the operating point. The piecewise lin-
ear method represents the v i characteristics of a nonlinear element by a
succession of straight-line segments, then makes calculations within each
straight-line segment using linear analysis tools.

The small signal method applies to circuits in which nonlinear devices
are operated only over a very small range of voltage or current values.
For small perturbations of voltages or currents about a nominal operating
point, nonlinear device behavior can be approximated using a piecewise
linear model that provides a good fit in the narrow operating range. Thus,
incremental variables not only satisfy KVL and KCL, but also linear v i
relations over the narrow operating range.

� We introduced the following notation to distinguish between total vari-
ables, DC operating values, and small signal variables:

� We denote total variables with small letters and capital subscripts,
e.g., vD,

� DC operating point variables using all capitals, e.g., VD,
� and incremental values using all small letters, e.g., vd.

� A systematic procedure for finding incremental voltages and currents for
a circuit with a nonlinear device characterized by the v i relation:

iD = f (vD)

is the following:

1. Find the DC operating variables ID and VD using the subcircuit derived
from the original circuit by setting all small-signal sources to zero. Any of
the methods discussed in the preceding sections analytical, graphical,
or piecewise linear is appropriate.
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2. Find the incremental output voltage and incremental nonlinear device
current by forming an incremental subcircuit in which the nonlinear
device is replaced by a resistor of value rd, where

rd = 1
df (vD)
dvD

∣∣∣
vD=VD

,

other linear resistances are retained as is, and all DC sources are set to
zero. The incremental subcircuit is linear, so incremental voltages and
currents can be calculated by any of the linear analysis techniques.

E X E R C I S E S e x e r c i s e 4.1 Consider a two-terminal nonlinear device (see Figure 4.47) whose
v i characteristic is given by:

iA = f (vA) (4.92)
iA

vA

+

-

F IGURE 4.47

Show that the incremental change in the current (�iA = ia) for an incremental change
in the voltage (�vA = va) at the DC operating point Va, IA is given by:

ia = df (vA)

dvA

∣∣∣∣
vA=VA

va.

(Hint: Substitute iA = IA + ia and vA = VA + va in Equation 4.92, expand using Taylor
series, ignore second order and higher terms in va, and equate corresponding DC and
small signal terms.)

e x e r c i s e 4.2 Suppose the two-terminal nonlinear device from the previous
exercise (see Figure 4.47) has the following v i characteristic:

iA = f (vA) = cXv 2
A + cYvA + cZ for vA ≥ 0, and f (vA) = 0 otherwise.

a) Find the operating point current IA for an operating point voltage VA, where VA > 0.

b) Find the incremental change in the current ia for an incremental change in the voltage
va at the operating point VA, IA.

c) By what fraction does ia change for a y percent change in va?

d) Suppose the nonlinear device is biased at V′
A instead of VA, where V′

A is y percent
greater than VA. Find the incremental change in the current (i′a) for an incremental
change in the voltage (va) at this new bias point. By what fraction is i′a different from
the ia calculated in part (b).
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e) Find the incremental change in the current iacx for an incremental change in the
parameter cX (given by �cX = cx) from its nominal value of CX, assuming the
operating point v i values are VA, IA.

Hint: Observe that if iA depends on the parameters xA and yB, in other words,

iA = f (xA, yB),

then the incremental change in iA for an incremental change in yB is given by

iayb = δf (xA, yB)

δyB

∣∣∣∣
yB=YB

yb.

e x e r c i s e 4.3 The nonlinear device (NLD) in the circuit in Figure 4.48 has the
v i characteristics shown. Find the operating point iD and vD for R = 910 �.

R

10 V
+
- 5

1010

5 1010 vD (V)

iD (mA)(mA)

0

5

10

5 10 vD (V)

iD (mA)

NLD vD

iD

0

F IGURE 4.48

e x e r c i s e 4.4

a) Plot the iA vs. vA characteristics for the nonlinear network shown in Figure 4.49.
Assume the diode is ideal.

vA

NLD

1 kΩ 1 V

1 kΩ
+

-

iA

F IGURE 4.49

b) The nonlinear network from part (a) is connected as shown in Figure 4.50. Draw the
load line on your v i characteristics from part (a), and find iT.
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F IGURE 4.50 3.5 V vT

+

-

1 kΩ iT

NLD
+
-

e x e r c i s e 4.5 Consider two identical semiconductor diodes, each of which has
an v i relation:

iD = IS
(

evD/VTH − 1
)

. (4.93)

a) Find the relation of i to v for the pair connected in parallel as shown in
Figure 4.51a.

(a)

(b)

F IGURE 4.51 b) Find the relation of i to v for the pair connected in series as shown in Figure 4.51b.

e x e r c i s e 4.6 For the circuit in Figure 4.52, find the input characteristic, i versus
v, and the transfer characteristic i2 versus v. I is fixed and positive. Express your results
in graphs, labeling all slopes, intercepts, and coordinates of any break points.

F IGURE 4.52 v R1 I

+

−

i

i2
R2

e x e r c i s e 4.7 For the circuit in Figure 4.53 and the values shown below, sketch
the waveform of i(t). On your sketch, show when the ideal diode is on and when
it is off.

vi = 10 sin(t) V0 = 5 V R = 1 �.

F IGURE 4.53
vi

R

Vo+

-

i
+

-
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P R O B L E M Sp r o b l e m 4.1 Consider the circuit containing a nonlinear element N as shown
in Figure 4.54. The v i relation for N is given by:

iA = c2v 2
A + c1vA + c0 for vA ≥ 0, and iA = 0 otherwise.

-

+

R

-

+
vA

iA

vI N F IGURE 4.54

a) Solve for iA and vA using the analytical method.

b) Find the operating point values of the nonlinear element’s voltage and current for
vI = VI, where VI is positive.

c) Find the incremental change in iA (given by ia) for an incremental change in vI (given
by vi).

d) Determine the incremental change in the voltage across the resistor R for
an incremental change in the input vI (given by vi).

e) Find the incremental change in iA for a 2% increase in the value of R.

f) Find the incremental change in iA for an incremental change in vA at the bias point
VA, IA.

g) Suppose we replace the source vI with a DC voltage VI in series with a small
time-varying voltage vi = vo cos(ωt). Determine the time varying component of iA.

h) Suppose we now replace vI = VI + vi, where VI = 10 V and vi = 1 V.

i) Find the bias point DC current IA corresponding to VI = 10 V.
ii) Find the value of ia corresponding to vi = 1 V using small signal analysis.
iii) Find the value of iA using small signal analysis. (Use iA = IA + ia.)
iv) Find the value of iA using the analytical method for vI = VI + vi = 11 V.

N2N1

i1 i2
+

iS

-

v

v (V)
1

-1

-1

1

i1(A)

v (V)
1

-1

1

i2(A)

2

F IGURE 4.55

v) Now, find the exact value of the ia using ia = iA − IA.
vi) What is the error in the value of ia computed using the small signal method?

p r o b l e m 4.2 The circuit shown in Figure 4.55 contains two nonlinear devices
and a current source. The characteristics of the two devices are given. Determine the
voltage, v, for (a) iS = 1 A, (b) iS = 10 A, (c) iS = 1 cos (t).

p r o b l e m 4.3 A plot (hypothetical) of the v i characteristics, (terminal voltage
as a function of the current drawn out, and not its associated variables) for a battery is
shown in Figure 4.56(a).
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a) If a 2-� resistor is connected across the battery terminals, find the terminal voltage
of the battery and the current through the resistor.

b) A lightbulb is a nonlinear resistance because of self-heating effects. A hypothetical
v i plot is shown in Figure 4.56(b). Find the bulb current and bulb voltage if the
lamp is connected to the battery.

1 2 3 40

2

1

3

I (A)

1 2 3 40
(V)

(V)
V

(A)
I

(a)

(b)

5

5 V

2

1

F IGURE 4.56

c) Devise a piecewise-linear model for the battery which is reasonably accurate over
the current range 0 2 A.

d) Use this piecewise-linear battery model to find the battery voltage and bulb current
if the bulb and 2-� resistor are connected in series to the battery.

p r o b l e m 4.4

a) Assuming the diode can be modeled as an ideal diode, and R1 = R2, plot the
waveform vo(t) for the circuit in Figure 4.57, assuming a triangle wave input. Write
an expression for vo(t) in terms of vi, R1, and R2.

vi R2 vo

vi

t

+
-

+

-

R1

F IGURE 4.57

b) If the triangle wave has a peak amplitude of only 2 volts, and R1 = R2, a more
accurate diode model must be used. Plot and write an expression for vo assuming
that the diode is modeled using an ideal diode in series with a 0.6-volt source. Draw
the transfer curve vo versus vi.

p r o b l e m 4.5 Figure 4.58 is an illustration of a crude Zener-diode regulator
circuit.

∆v

vovZ (V)

+

-

R1 = 1 kΩ 

+
-

+
-

50 mV AC

10 V DCV

-4

-8

8

4
-4 -2

2

iZ
(mA)

vZ

+

-

iZ

F IGURE 4.58

a) Using incremental analysis, estimate from the graph an analytical expression for vo

in terms of V and �v.

b) Calculate the amount of DC and the amount of AC in the output voltage using the
Zener-diode characteristic to find model values. (Numbers, please.)
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c) What is the Thévenin output resistance of the power supply, that is, the Thévenin
resistance seen looking in at the vo terminals?

p r o b l e m 4.6 The terminal voltage-current characteristic of a single solar cell is
shown in Figure 4.59a. Note that this is a sketch of the terminal voltage as a function of
current drawn out (i.e., not the associated variable convention). An array is made by con-
necting a total of 100 such cells as follows: Ten solar cells are connected in series. Ten sets
of these are made. These ten series strips are then connected in parallel (see Figure 4.59b).

te
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in
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 v
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ge
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e 
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ll

0.25 V

0.5 V

0.6 V linear region

non-linear region
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0.1 A 0.2 A 0.25 A 0.3 A

V

I

current drawn out

1 2 9 10

1
2
3
4

9
10

V

+

-

(a) (b)

F IGURE 4.59

If a 3-� resistor is connected across this new two-terminal element (the 100-cell array),
determine the terminal voltage across and the current through the resistor.

p r o b l e m 4.7 The junction field-effect transistor ( JFET) with the specific con-
nection shown in Figure 4.60a (gate and source shorted together) behaves as a two-
terminal device. The vD iD characteristics of the resulting two-terminal device shown
in Figure 4.60b saturates at current IDSS for vD greater than a voltage VP, called the
pinch-off voltage. In the two-terminal configuration shown, the JFET characteristic is

iD = IDSS

[
2(vD/VP) − (vD/VP)2

]
for vD ≤ VP

and

iD = IDSS for vD > VP.

As illustrated in Figure 4.60c, this two-terminal device can be used to make a
well-behaved DC current source, even starting with a ripple-containing power supply
(depicted as vS), as would be obtained from ordinary rectifier circuits. Suppose the voltage
source vS has an average value VS and a 60-Hz ‘‘ripple component,’’ vr = a cos(ωt) as
shown in Figure 4.60d.

(a)

iD

vD

+

-

vS
+
- R

i

(c)

IDSS

vP

iD

vD

(b)

2vP
0

VS

vS

t

(d)

0 2π
ω------

4π
ω------

a

F IGURE 4.60

a) First assume that there is no ripple (a = 0). Find the current i through the resistor
R as a function of VS for a value of R = 1 k�. At what value of VS does the



236 C H A P T E R F O U R a n a l y s i s o f n o n l i n e a r c i r c u i t s

current stabilize at IDSS? How would this value change if R were doubled in value?
Explain.

b) Now assume a = 0.1 V and R = 1 k�. Make reasonable approximations to find
the current waveform when VS = 5 V, VS = 10 V, and VS = 15 V. Determine in
each case the average value of the current i and the magnitude and frequency of the
largest sinusoidal component of the current.

p r o b l e m 4.8 The current-voltage characteristic of a photovoltaic energy con-
verter (solar cell) shown in Figure 4.61 can be approximated by

R v Sunlight

+

-

i

F IGURE 4.61

i = I1(e v/VTH − 1) − I2

where the first term characterizes the diode in the dark and I2 is a term that
depends on light intensity.

Assume I1 = 10−9 and assume light exposure such that I2 = 10−3 A.

a) Plot the v i characteristic of the solar cell. Be sure to note the values of open-circuit
voltage and short-circuit current. (Note, however, that the characteristic is clearly
nonlinear. Therefore, Thévenin or Norton equivalents do not apply.)

b) If it is desired to maximize the power that the solar cell can deliver to a resistive
load, determine the optimum value of the resistor. How much power can this cell
deliver?

p r o b l e m 4.9

a) A nonlinear device has v i characteristics shown in Figure 4.62. Assuming that S
is an ideal voltage source, which connection, (a), (b), or (c) consumes most power?
What if S is an ideal current source?

F IGURE 4.62

A
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-
vA

iA
iA

vA = K  i
A
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vA = 0 for iA < 0

vA

A

A
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I
+

-

A
S

I

A

(i) n A’s in series  (ii) n A’s in parallel  

iA 0≥

B
S

I

B

(iii) n B’s in parallel, each

V

+

-

V

+

-

B  is n A’s in series

B

where K = 1.0 V/A2
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b) Another crazy device, C, with v i characteristics as shown in Figure 4.63, is intro-
duced. If device A and device C are connected in series across an ideal voltage source
of 6 volts, what is the current flow in the circuit? (You can solve it either analytically
or graphically.)

C

+

-

vC

iC

iC (A)

vC (V)

4

2

155 10

F IGURE 4.63

p r o b l e m 4.10 In the circuit in Figure 4.64, assume v1 = 0.5 V and
v2 = A2 cos(ωt), where A2 = 0.001 V. Assume further that VTH = 25 mV.

+

-

vv1

v2
+
-

+
-

I1 = 10-9A

i

i I1 e

v
V TH
---------

1–
            

            
=

F IGURE 4.64

a) Find the current i if only the v1 source is connected (i.e., with the v2 source shorted
out).

b) Find the current i if only the v2 source is connected.

c) Find the current i if both sources are connected as shown. Is superposition obeyed?
Explain.

d) Based on your answer in (c) discuss the dependence of the amplitude of the sinusoidal
component of the current on the amplitude A2. How big can A2 be before significant
generation of harmonics will occur? (HINT: Taylor’s theorem is relevant to this
problem.)

p r o b l e m 4.11 This problem concerns the circuit illustrated in Figure 4.65:

R1 = 1.0 k� R2 = 1.0 k� R3 = 0.5 k� R4 = 1 k�

vI D1

R1

R2 R4

R3

+

-

iD

vD
+
-

F IGURE 4.65

For D1 : iD = IS(e vD/VTH − 1) with IS = 1 × 10−9 A and VTH = 25 mV.

a) Find the Thévenin equivalent circuit for the circuit connected to the diode.
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b) Assume that for bias point determination the diode can be modeled by an ideal
diode and a 0.6-volt battery. What are vD and iD when v1 = 4 V?

c) Find a linear equivalent model for this diode valid for small signal incremental
operation about the bias point determined from part b.

d) Use your model of part c to find vd(t) if vI = 4 V + 0.004 V cos(ωt) V.

p r o b l e m 4.12 Consider the circuit in Figure 4.66. The voltage source and the
current source are the sum of a DC-level and an AC-perturbation:

v = V + �v

i = I + �i

such that V = 30 V (DC), I = 10 A (DC), �v = 100 mV (AC), �i = 50 mA (AC).

i v0
Z0R1

R2

+

-

i0
- +

v

F IGURE 4.66

The resistors have the following values: R1 = R2 = 1/2 �. The nonlinear element Z0

has the characteristic:

i0 = v0 + v 2
0 .

Find, by incremental analysis, the DC and AC components of the output
voltage v0. (Remark: You can assume in your analysis that the nonlinear element is
behaving as a passive element, i.e., is consuming power.)

p r o b l e m 4.13 The circuit shown in Figure 4.67 contains a nonlinear element
with the following properties:

iN = 10−4v 2
N when v N > 0

iN = 0 when v N < 0

where iN is in A and vN is in V.

The output voltage, vOUT, may be written approximately as the sum of the two terms:

vOUT � VOUT + vout, (4.94)
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vi

+ -iN
vN

vOUT
VB

+

-
+

-

+
-

R

F IGURE 4.67

where VOUT is a DC voltage produced by VB and vout is the incremental voltage
produced by the incremental voltage source vi.

Assuming that vi = 10−3 sin(ωt) V and VB is such that the nonlinear element operates
with VN = 10 volts, determine the incremental output voltage vout.

p r o b l e m 4.14 Consider the diode network shown in Figure 4.68.

For purposes of this problem, the iD − vD characteristics of all of the diodes can be
accurately represented as

iD = ISe(vD/25 mV ) where IS = 1 mA/e25.

Do not use a piecewise-linear model.

∆i

+

-1 mA

1 mA -

+ V2 + ∆v2

V1 + ∆v1

F IGURE 4.68

a) First, assume that �i = 0. (Thus �vi = �v2 = 0.) What are the operating-point
values of voltages V1 and V2?

b) Now assume that �i is nonzero, but small enough so that incremental analysis can
be used to determine �v1 and �v2. What is the ratio �v1/�v2 ?
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the d ig i t a l ab s tract ion 5
Value discretization forms the basis of the digital abstraction. The idea is to lump
signal values that fall within some interval into a single value. We saw an example
of value discretization earlier in Figure 1.45 (repeated here for convenience
as Figure 5.1) where a voltage signal was discretized into two levels. In this
example, an observed voltage value between 0 volts and 2.5 volts is treated as
a ‘‘0,’’ and a value between 2.5 volts and 5 volts as a ‘‘1.’’ Correspondingly, to
transmit the logical value ‘‘0’’ over a wire, we place the nominal voltage level
of 1.25 on the wire. Similarly, to transmit the logical ‘‘1,’’ we place the nominal
voltage level of 3.75 volts on the wire.1 The discrete signal shown in Figure 5.1
comprises the sequence of values ‘‘0,’’ ‘‘1,’’ ‘‘0,’’ ‘‘1,’’ ‘‘0.’’

Although the digital approach seems wasteful of signal dynamic range, it
has a significant advantage over analog transmission in the presence of noise.
Notice, this representation is immune to symmetric noise with a peak to peak
value less than 2.5 V. To illustrate, consider the situation depicted in Figure 5.2
in which a sender desires to transmit a value A to a receiver. The figure illustrates
both an analog case and a digital case. In the analog case, let us suppose that
the value A is 2.4 V. The sender transmits A by representing it as a voltage
level of 2.4 V on a wire. Noise during transmission (represented as a 0.2-V

2.5

0

2.5

0

“0”

“1”v
(V)

t

Continuous

t

Discrete

v
(V)

F IGURE 5.1 Value discretization
into two levels.

noise voltage source in the figure) changes this voltage to 2.6 V at the receiver,
resulting in the receiver interpreting the value incorrectly as 2.6.

In the digital case, suppose that the value A is a logical ‘‘0.’’ The sender
transmits this value of A by representing it as a voltage level of 1.25 V on
the wire, which is received as a voltage level of 1.45 by the receiver because
of the series noise source. In this situation, since the received voltage falls
below the 2.5-V threshold, the receiver interprets it correctly as a logical ‘‘0.’’
Thus, the sender and receiver were able to communicate without error in the
digital case.

To illustrate further, consider the waveforms in Figure 5.3. Figure 5.3a
shows a discretized signal waveform produced by a sender corresponding to

1. It turns out that the mapping of voltage ranges to logical values has a significant impact on the
robustness of digital circuits, and a methodical way of selecting the mapping will be presented in
Section 5.1. But for now, let us proceed with this rather arbitrarily chosen mapping, and continue
to build our intuition.
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F IGURE 5.2 Signal transmission
in the presence of noise. The noise
is represented as a series voltage
source.
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a ‘‘0,’’ ‘‘1,’’ ‘‘0,’’ ‘‘1,’’ ‘‘0’’ sequence. Figure 5.3b shows the same signal with the
superposition of some amount of noise, possibly during transmission through
a noisy environment. The receiver will be able to receive the sequence correctly
provided the noise levels in Figure 5.3b are small enough that the voltages
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F IGURE 5.3 Noise immunity for
discretized signals: (a) a digital
signal produced by a sender; (b)
the signal received by a receiver
following transmission through a
noisy environment.

for a logical 0 signal do not exceed 2.5 V, and the voltages for a logical 1 signal
do not fall below 2.5 V. Specifically, notice that the binary mapping we have
chosen is immune to symmetric noise with a peak-to-peak value less than 2.5 V.

Of course, the discrete representation does not come for free. Considering
our example in Figure 5.1, in the analog case, a single wire could carry any
value, for example, 1.1, 2.9, or 0.9999999 V. However, in the digital case,
a wire is restricted to one of only two values: ‘‘0’’ and ‘‘1,’’ thereby losing
precision significantly.

Two levels of signal precision are sufficient for many applications. As
one example, logic computations involve signals that commonly take on one
of two values: TRUE or FALSE. Indeed, most of this chapter (specifically,
Sections 5.2, 5.3, and 5.5) deals exclusively with signals that can take on one
of two values. Each of these two-level signals is communicated over a single
wire. However, there are other applications that require more levels of preci-
sion. For example, a speech signal processing application might involve speech
signals with 256 or more levels of precision. One approach to achieving more
precision is to use coding to create multi-digit numbers. When each digit takes
on one of two values, the digit is called a binary digit, or bit. Much as the
familiar decimal system uses multiple digits to represent numbers other than
0 through 9, the binary system uses multiple bits to represent numbers other
than 0 or 1. Multi-bit signals are commonly transmitted by allocating multiple
wires one for each bit, or occasionally, by time multiplexing multiple bits
on a single wire. This approach of representing numbers in the binary system
is discussed further in Section 5.6. For now, we return to our discussion of the
two-level representation.

The two-level representation is commonly known as the binary representa-
tion. Virtually all digital circuits use the binary representation because two-level
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t r u e f a l s e

0 V 5 V

5 V 0 V

2 V 0 V

0 V 1 V

ON OFF

0 V < v < 2.5 V 2.5 V < v < 5 V

0 V < v < 1 V 4 V < v < 5 V

0 µA 2 µA

TABLE 5.1 Binary signal
representation. v represents the
value of some parameter.

circuits are much easier to build than multilevel circuits. The two levels in the
binary representation are variously called (a) TRUE or FALSE, (b) ON or OFF,
(c) 1 or 0, (d) HIGH or LOW.

Digital signals are commonly implemented using voltage levels, for exam-
ple, 0 V to represent FALSE, and 5 V to represent TRUE. We observe, however,
that our choice of representing logical values with specific physical values (for
example, representing a logical TRUE with 5 V and a logical FALSE with 0 V)
is rather arbitrary. We can equivalently choose to represent a logical TRUE with
0 V and a logical FALSE with 5 V. Unless specifically mentioned otherwise, this
book adopts the convention that TRUE and high correspond to the logical 1,
and conversely, FALSE and low correspond to the logical 0. Table 5.1 depicts
these and several other physical realizations of the binary signals, TRUE and
FALSE.

5.1 V O L T A G E L E V E L S A N D T H E
S T A T I C D I S C I P L I N E

The previous section illustrated several ways to represent binary values. The
representations differed not only in the signal type (for example, current versus
voltage), but also in the signal values (for example, 5 V versus 4 V to represent a
logical 1). Because we require that digital devices built by various manufacturers
talk to each other, the devices must adhere to a common representation. The
representation must allow for large enough design margins so that devices can
be built out of a wide range of technologies. Furthermore, the representation
should be such that the devices operate correctly even in the presence of some
amount of noise.

The static discipline is a specification for digital devices. The static disci-
pline requires devices to adhere to a common representation, and to guarantee
that they interpret correctly inputs that are valid logical signals according to the
common representation, and to produce outputs that are valid logical signals
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F IGURE 5.4 Senders and
receivers use an agreed-upon
mapping between voltage levels
and logical signals so that they can
communicate with each other.
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provided they receive valid logical inputs. By adhering to a common repre-
sentation, digital devices based on different technologies or built by different
manufacturers can communicate with each other.

We will begin with a simple representation, and then successively improve
it until we have a representation that can serve as the basis for a static discipline.
One of the representations we saw earlier divided a voltage range into two
intervals and associated a logic value with each, namely,

Logic 0 : 0.0 V ≤ V < 2.5 V. (5.1)

Logic 1 : 2.5 V ≤ V ≤ 5.0 V. (5.2)

This simple representation is illustrated in Figure 5.4. According to this repre-
sentation, if a receiver saw 2 V on a wire it would interpret it as a 0. Similarly,
a receiver would interpret 4 V on a wire as a 1. Assume, for now, that values
outside this range are invalid.

What voltage level should a sender place on a wire? According to our
representation, any value between 0 V and 2.5 V would suffice for a logical 0,
and any value between 2.5 V and 5 V would work for a logical 1.

Devices that obey this representation would be able to communicate with
each other successfully. In other words, as depicted in Figure 5.4, a sending
device connected to a receiving device is allowed to output any value between
0 V and 2.5 V (for example, 0.5 V) for a logical 0, and any value between 2.5 V
and 5 V (for example, 4 V) for a logical 1. Correspondingly, the receiving device
must interpret all values between 0 V and 2.5 V as a logical 0, and all values
between 2.5 V and 5 V as a logical 1. Thus, our simple representation allows
a fair bit of flexibility because valid logical 1 signals and logical 0 signals can
occupy a range of values.
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F IGURE 5.5 A representation
with forbidden regions showing the
mapping of voltage levels and
logical values.

There is one problem, however. What does the receiver do if it sees a
voltage level of 2.5 V on the wire? Does it interpret this signal value as a logical
0 or as a logical 1? To eliminate such confusion, we further prescribe a forbidden
region that separates the two valid regions. We further allow the behavior of
the receiving device to be undefined if it sees a voltage in the forbidden region.
Thus, the correspondence between voltage levels and logic signals from the
viewpoint of a receiver might look like:

Logic 0 : 0 V ≤ V ≤ 2 V. (5.3)

Logic 1 : 3 V ≤ V ≤ 5 V. (5.4)

This representation using a forbidden region is illustrated in Figure 5.5. In this
representation, a receiver interprets signals above 3 V as a logical 1 and voltages
below 2 V as a logical 0. Signal voltages between 2 V and 3 V are invalid.

As marked in Figure 5.5, the largest voltage that a receiver will interpret
as a valid logical 0 is termed the low voltage threshold, VL, and the smallest
voltage that a receiver will interpret as a valid logical 1 is termed the high
voltage threshold, VH.

In our representation with the forbidden region, a sender can output any
voltage value between VH and 5 V for a logical 1, and any value between 0 V
and VL for a logical 0. A sender must never output a value in the forbidden
region. Correspondingly, as illustrated in Figure 5.5, a receiver must interpret
any voltage value between VH and 5 V as a logical 1, and any value between
0 V and VL as a logical 0. The behavior of the receiver can be undefined if it sees
a voltage value between VL and VH because these values are in the forbidden
region.
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F IGURE 5.6 For many practical
devices, a sender can output any
voltage value above VH for a
logical 1, and any voltage value
below VL for a logical 0.
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It often turns out that practical circuits are able to correctly interpret values
outside the extremum points (below 0 volts for a logical 0 and above 5 V
for a logical 1), within certain limits, of course. When devices can make this
interpretation, our representation with the forbidden region allows senders to
output any voltage value above VH for a logical 1. Similarly, senders can output
any value below VL for a logical 0. We will assume throughout this book that
devices can make this interpretation safely. Figure 5.6 illustrates a simple and
practical representation that uses this assumption.

There is one other problem with our representations illustrated in
Figures 5.6 and 5.5: They do not offer any immunity to noise. To illustrate,
consider our representation in Figure 5.5 with a high and low voltage thresh-
old bounding a forbidden region. In that representation, recall that senders can
output voltages above VH and below 5 V for logical 1’s and voltages below VL
and above 0 V for logical 0’s. Receivers must correspondingly interpret output
voltages above VH as logical 1’s and voltages below VL as logical 0’s.

A sender wishing to place a logical 0 on a wire can therefore output the
voltage VL, which falls within the valid range for a logical 0. Receivers observing
the value VL transmitted on the wire will correctly interpret it as a logical 0.
However, the presence of even the smallest amount of (positive) noise will force
the voltage signal on the wire into the forbidden region, thereby causing the
signal to become invalid. Thus, we say that the representation of Figure 5.5
offers no margin for noise.

Clearly we would like a representation that offers the maximum amount of
noise immunity during transmission between the sender and the receiver. One
way of achieving this is to place tighter restrictions on the values that senders
can send. As an example, suppose that a receiver can interpret voltages that fall
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F IGURE 5.7 Noise margins and
signal transmission.

below 2 V as a logical 0. Further, suppose that senders are restricted to sending
voltages lower than 0.5 V for a logical 0. Then, it takes at least 1.5 V of (positive)
noise to force the sender’s voltage signal on the wire into the forbidden region.
We say that such a choice of voltage levels offers a noise immunity of 1.5 V for
a logical 0.2

As an illustration of the notion of noise margins, consider the two sit-
uations in Figure 5.7.3 In the first instance, the sender sends a 0 by placing
vOUT = 0.5 V (corresponding to the highest legal output voltage for a logic 0)
on the wire. The receiver is able to interpret the value as a 0 because the
received value is within the low input voltage threshold of 2 V.

In the second situation, however, the receiver is unable to interpret the
signal correctly because the noise level of 1.6 V is higher than the noise margin
of 1.5 V.

As another example concerning logical 1’s, suppose that a receiver can
interpret voltages that are above 3 V as a logical 1. Further, suppose that
senders are restricted to sending voltages higher than 4.5 V for a logical 1.
Then, it takes at least 1.5 V of noise to force the sender’s voltage signal on the
wire into the forbidden region. We say that such a choice of voltage levels offers
a noise immunity of 1.5 volts for a logical 1.

2. As mentioned earlier, because most practical receiver circuits are able to correctly interpret values
outside the extremum points (below 0 volts for a logical 0 and above 5 volts for a logical 1), we
concern ourselves with providing for a noise margin only between the output value range and the
forbidden region, and ignore the effect of noise that tends to push a value outside the extremum
bounds.

3. Notice that the signal voltages in the figure are taken with respect to a ground node that is
common to both the sender and the receiver. This ground node that is common to senders and
receivers is often not shown explicitly, but it is always present! Many a novice designer has forgotten
to connect together a common ground between subsystems and has found that the system does
not work. Remember, currents flow in loops and the ground connection provides a return path for
the current.
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F IGURE 5.8 A mapping
between voltage levels and logical
signals that provides noise
margins. For a logical high, senders
must output values in the VOH to
5-V range. For a logical low,
senders must output values in the
0 V to VOL range. Receivers must
correspondingly interpret values
greater than VIH as a logical high,
and output values lower than VIL as
a logical low.
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The tighter bounds on the voltage values for a sender compared to those
for a receiver result in an asymmetry in input and output voltage thresholds.
This asymmetry is reflected in Figure 5.8, which shows the correspondence
between valid voltage levels and logic signals that is in common use in digital
circuits.

To send a logical 0, the sender must produce an output voltage value that
is less than VOL. Correspondingly, the receiver must interpret input voltages
below VIL as a logical 0.

To allow for a reasonable noise margin, VIL must be greater than VOL.

Similarly, to send a logical 1, the sender must produce an output voltage value
that is greater than VOH. Further, the receiver must interpret voltages above
VIH as a logical 1.

To allow for a reasonable noise margin, VOH must greater than VIH.4 We
can define both a noise margin for transmitting logical 1’s and for transmitting
logical 0’s.

Noise Margin: The absolute value of the difference between the prescribed
output voltage for a given logical value and the corresponding forbidden region
voltage threshold for the receiver is called the noise margin for that logical
value.

4. The simple representation in Figure 5.5 can be viewed as one in which VOH = VIH = VH and
VOL = VIL = VL. Notice that the simple representation of Figure 5.5 offers zero noise margins.
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As the name suggests, the noise margin allows the receiver to interpret a
value correctly even if some amount of noise is imposed on a sender’s signal.
Figure 5.9a illustrates a scenario in which a sender outputs a 01010 sequence
by producing the appropriate output voltage levels (between VOH and 5 V for
a logical 1, and between 0 V and VOL for a logical 0). Provided that the noise
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F IGURE 5.9 Senders must
output voltages between VOH
and 5 V to send a logical 1, and
between 0 V and VOL for a
logical 0. Correspondingly,
receivers can interpret values
greater than VIH as a logical high,
and values lower than VIL as a
logical low. The hashed regions are
the valid ranges for senders and
receivers.

does not exceed the noise margins (voltages for a logical 0 do not exceed VIL
and voltages for a logical 1 do not fall below VIH), a receiver is able to correctly
interpret the signal as illustrated in Figure 5.9b.

As illustrated in Figure 5.8, the noise margin for a logical 0 is given by

NM0 = VIL − VOL (5.5)

and the noise margin for a logical 1 is given by

NM1 = VOH − VIH. (5.6)

The region between VIL and VIH is the forbidden region.
Devices that adhere to this discipline will be able to communicate with

each other and be immune to noise levels that fall within the noise margins.
When NM1 and NM0 are equal, we say that the noise margins are symmetric.

Relating the threshold voltage parameters to the numbers used in our
example, VOH corresponds to 4.5 V, VOL corresponds to 0.5 V, VIH corre-
sponds to 3 V, and VIL corresponds to 2 V. This mapping is illustrated in
Figure 5.10. For our example, the noise margin for a logical 0, NM0, is 1.5 V
(2 V − 0.5 V), which is the difference between VIL, the maximum input voltage
recognized by a receiver as a logic 0, and VOL, the highest legal output voltage
for a logic 0. Similarly, the noise margin for a 1, NM1, is also 1.5 V (4.5 V −
3 V), which is the difference between VOH, the minimum legal output voltage
for a logic 1, and VIH, the minimum input voltage recognized by a receiver as
a logic 1.
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F IGURE 5.10 An example of a
mapping between voltage levels
and logical values.
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Static discipline The static discipline is a specification for digital devices. The
static discipline requires devices to interpret correctly voltages that fall within
the input thresholds (VIL and VIH). As long as valid inputs are provided to the
devices, the discipline also requires the devices to produce valid output voltages
that satisfy the output thresholds (VOL and VOH).

When designing logic devices, we are often interested in maximizing the
noise margins to achieve maximum noise immunity. Referring to Figure 5.8,
the 0 noise margin, NM0 = VIL − VOL, can be maximized by maximizing
VIL and minimizing VOL. Similarly, the 1 noise margin, NM1 = VOH − VIH,
can be maximized by maximizing VOH and minimizing VIH. As we will see in
Chapter 6, the maximum noise margins for devices are limited by the device
characteristics or by considerations of symmetry between the low and high
noise margins.

e x a m p l e 5.1 o b s e r v i n g a s t a t i c d i s c i p l i n e The device
company Yehaa Microelectronics, Inc. has developed a new process technology that is
able to produce large quantities of a certain type of digital device known as an adder at
a very low cost. For a logical 0, their adders produce a voltage level of 0.5 V at their
outputs. Similarly, when outputting a logical 1, their adders produce the voltage level of
4.5 V. Furthermore, the Yehaa adders are able to interpret all signals between 0 V and
2 V at their inputs as a logical 0, and all signals between 3 V and 5 V as a logical 1.

Yehaa’s sales team discovers that networking equipment company Disco Systems Inc.
buys huge quantities of adder devices from a competitor Yikes Devices, Inc. Upon further
research, the Yehaa sales team finds that the hardware systems in one of Disco’s product
lines operate under a static discipline with the following voltage thresholds:

VIL = 2 V, VIH = 3.5 V, VOL = 1.5 V and VOH = 4 V.

In other words, the mapping between voltage ranges and logical values in Disco’s static
discipline is as summarized in Figure 5.11.

F IGURE 5.11 The mapping
between voltage levels and logic
values in the static discipline used
by Disco Systems.
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Yehaa’s sales team wishes to sell their adders to Disco at a lower cost than those from
Yikes, but first, Yehaa must determine whether their adders can safely replace the adders
from Yikes. The sales team asks their development engineers to determine whether
Yehaa’s adders satisfy the static discipline under which Disco’s system operates.

The development team first looks at the output level for a logical 1 required by Disco’s
static discipline. The static discipline used by Disco requires devices to produce voltages
between 4 V (VOH) and 5 V for a logical 1. As illustrated in Figure 5.12, Yehaa’s devices
produce a voltage level of 4.5 V for a logical 1, which falls within the required range,
and so they satisfy the VOH requirement.

Next, they look at the output voltage level for a logical 0. As depicted in Figure 5.12,
Yehaa’s devices produce a voltage level of 0.5 V for a logical 0, which falls within the
0 V to 1.5 V (VOL) range required for logical 0’s by Disco’s static discipline. Thus,
Yehaa’s devices satisfy the VOL requirement.

The engineers now turn their attention to the input voltage levels required by Disco’s
static discipline. Yehaa’s devices are able to interpret voltages as high as 2 V as a logical 0,
so they can interpret any voltage between 0 V and 2 V (VIL) as a logical 0, just as required
by Disco’s static discipline. Thus, the Yehaa devices satisfy the VIL requirement.

Similarly, Yehaa’s devices are able to interpret voltages between 3.5 V (VIH) and 5 V as
a logical 1, which again satisfies the VIH requirement of Disco’s static discipline. The fact
that the Yehaa devices interpret certain voltages in Disco’s forbidden region (specifically,
those between 3 V and 3.5 V) as a logical 1 is irrelevant since devices are allowed arbitrary
behavior for values in the forbidden region.

Thus, the development engineers are able to tell their sales team that Yehaa’s adders
satisfy Disco’s static discipline and so they can be used as replacements for Disco’s
existing adders.
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e x a m p l e 5.2 v i o l a t i n g a s t a t i c d i s c i p l i n e Yikes dis-
covers that Disco is considering switching to Yehaa adders because Yehaa’s devices are
cheaper than Yikes devices. The Yikes sales team goes over their own product list and
notices that they do carry a new adder that they can sell to Disco at an even lower cost
than the Yehaa adders. Overjoyed, the sales team asks their own development engineers
to check whether these new adders satisfy Disco’s static discipline.

The new adders of Yikes have the following properties: For a logical 0, the new adders
produce a voltage level of 1.7 V at their outputs. Similarly, when outputting a logical 1,
their adders produce the voltage level of 4.5 V. The new Yikes adders interpret all
signals between 0 V and 1.5 V at their inputs as a logical 0, and all signals between 4 V
and 5 V as a logical 1. Their behavior for input signals in the 1.5 V to 4 V range is
undefined.

Furthermore, recall that Disco’s systems operate under a static discipline with the
following voltage thresholds: VIL = 2 V, VIH = 3.5 V, VOL = 1.5 V, and VOH = 4 V.

The Yikes development team first looks at the output voltage levels required by Disco’s
static discipline. They observe that the 4.5-V output produced by their new adders falls
within Disco’s legitimate range for a logical 1 (between VOH = 4 V and 5 V), thus
satisfying the VOH requirement.

Next, they turn their attention to the output voltage level required for a logical 0. To
their disappointment, they discover that the 1.7-V output produced by their new adders
for a logical 0 output is greater than the maximum value of VOL = 1.5 V allowed by
Disco. Thus their new adders violate the VOL requirement. At this point, the Yikes
development team reluctantly concludes that their new adders cannot be sold to Disco.

As an exercise in futility, the development engineers further investigate the input voltage
levels. Disco’s static discipline requires that devices interpret any voltage between 0 V
and 2 V (VIL) as a logical 0. The new adders from Yikes fail this test because they are
unable to interpret signals above 1.5 V as a logical 0.

Next, the engineers investigate the input high voltage level, but quickly discover that the
situation is even worse. Disco’s systems require that all devices interpret voltages in the
range 3.5 V (VIH) to 5 V as a logical 1. Unfortunately, their new adders can guarantee
to interpret voltages only in the range 4 V to 5 V as a logical 1. Their behavior for input
voltages in the range 3.5 V to 4 V is undefined. Since Disco’s devices can legitimately
produce voltages in this range for a logical 1, the new Yikes adders cannot co-exist with
the existing Disco devices.

e x a m p l e 5.3 n o i s e m a r g i n s Recall that the hardware systems in
one of Disco’s product lines operate under a static discipline with the following voltage
thresholds: VIL = 2 V, VIH = 3.5 V, VOL = 1.5 V, and VOH = 4 V. Compute the
noise margins.
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From Equation 5.5, the noise margin for a logical 0 is given by

NM0 = VIL − VOL = 2 V − 1.5 V = 0.5 V.

Similarly, from Equation 5.6, the noise margin for a logical 1 is given by

NM1 = VOH − VIH = 4 V − 3.5 V = 0.5 V.

e x a m p l e 5.4 a s t a t i c d i s c i p l i n e w i t h i m p r o v e d

n o i s e m a r g i n s Disco Systems Inc. has been having intermittent faults in its
systems. Their system architects figure out that because the static discipline they have
adopted does not provide a sufficient noise margin, their systems are susceptible to
noise. To improve the noise immunity of their systems, they decide to upgrade their
systems to a new static discipline in which the output high voltage threshold is increased
by 0.5 V, and the output low voltage threshold is decreased by 0.5 V. Both the input
voltage thresholds remain unchanged. In other words, the improved static discipline has
the following voltage thresholds:

VIL = 2 V, VIH = 3.5 V, VOL = 1 V, and VOH = 4.5 V.

This choice affords their system a symmetric noise margin of 1 V. In other words, the
noise margins for a logical 0 and a logical 1 are equal and are given by

NM0 = 2 V − 1 V = 1 V

and

NM1 = 4.5 V − 3.5 V = 1 V

On hearing the upgrade announcement from Disco, the sales team of Yehaa claims that
the adders they have sold Disco can be used under the upgraded static discipline. Let us
determine whether this claim is true.

Recall, that Yehaa’s adders behave as follows: For a logical 0, Yehaa’s adders produce
a voltage level of 0.5 V at their outputs. Similarly, when outputting a logical 1, their
adders produce the voltage level of 4.5 V. Yehaa adders are able to interpret all signals
between 0 V and 2 V at their inputs as a logical 0, and all signals between 3 V and 5 V
as a logical 1.

To operate under Disco’s upgraded static discipline, we know that the adders must
operate correctly with the tighter bounds on the output thresholds:

� When outputting a logical 1, the voltage their outputs produce must be at least
VOH = 4.5 V. Since the Yehaa adders produce a 4.5 V output for a logical 1, they
barely satisfy this condition.
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� When outputting a logical 0, the voltage their outputs produce must be no greater
than VOL = 1 V. Since the Yehaa adders produce a 0.5-V output for a logical 0,
they satisfy this condition easily.

Thus, we have shown that the claim made by the Yehaa sales team is true.

e x a m p l e 5.5 c o m p a r i n g n o i s e m a r g i n s Which of the two
static disciplines shown below offers better noise margins?

Static discipline A has the voltage thresholds given by:

VIL = 1.5 V, VIH = 3.5 V, VOL = 1 V, and VOH = 4 V.

Static discipline B has the voltage thresholds given by:

VIL = 1.5 V, VIH = 3.5 V, VOL = 0.5 V, and VOH = 4.5 V.

For static discipline A:

NM0 = 1.5 V − 1 V = 0.5 V

and

NM1 = 4 V − 3.5 V = 0.5 V.

For static discipline B:

NM0 = 1.5 V − 0.5 V = 1 V

and

NM1 = 4.5 V − 3.5 V = 1 V.

Thus, the voltage thresholds of static discipline B offer a better noise margin.

5.2 B O O L E A N L O G I C

The binary representation has a natural correspondence to logic, and therefore
digital circuits are commonly used to implement logic procedures. For example,
consider the logical ‘‘if’’ statement:

If X is TRUE AND Y is TRUE then Z is TRUE else Z is FALSE.

We can represent this statement using a boolean equation as:

Z = X AND Y.

In the previous equation, Z is true only when both X and Y are TRUE
and FALSE otherwise. For brevity we often represent the AND function using
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the ‘‘·’’ symbol as:

Z = X · Y.

Just as we represent the algebraic expression x × y as xy, we often drop

o p e r a t o r s y m b o l

AND ·
OR +

NOT ∼

TABLE 5.2 Some logic
operations and their symbols.

the AND symbol and write:

Z = X · Y = XY.

The boolean equation for the statement:

x y z

0 0 0
0 1 0
1 0 0
1 1 1

TABLE 5.3 Truth table for
Z = X · Y.

If (A is TRUE) OR (B is NOT TRUE) then (C is TRUE) else (C is FALSE)

is

C = A + B.

x y z

0 0 0
0 1 1
1 0 1
1 1 1

TABLE 5.4 Truth table for
Z = X + Y.

The preceding equation contains two other useful functions. The OR func-
tion is represented using ‘‘+’’ and the NOT function using the bar symbol as in
‘‘X ’’ or the ∼ symbol as in ∼ X. For example, we represent the condition ‘‘B
is FALSE’’ as B or ∼ B. We call B the complement of B. The logic operators
that we have seen thus far are summarized in Table 5.2. For convenience, we
will use 1, TRUE, and high interchangeably. Similarly, we will use 0, FALSE,
and low interchangeably.

e x a m p l e 5.6 m o t i o n d e t e c t o r l o g i c Let us write the
boolean expression for a motion detector that operates as follows: The circuit must

x z

0 1
1 0

TABLE 5.5 Truth table for Z =X.

produce a signal L to turn on a set of lights when the signal M from a motion sensor is
high, provided it is not daytime. Assume that a light sensor produces a signal D that is
high during daytime.5

a b c

0 0 1
0 1 0
1 0 1
1 1 1

TABLE 5.6 Truth table for
C = A + B.

Notice that L is nominally low. It must become high when M is high and D is low.
Therefore, we can write

L = MD.

Truth table We often find it convenient to use a truth table representa-
tion of boolean functions. A truth table enumerates all possible input value
combinations and the corresponding output values.

For example, the truth table representation for Z = X · Y is shown in
Table 5.3, that for Z = X + Y is shown in Table 5.4, that for Z = X is shown
in Table 5.5, and that for C = A + B is shown in Table 5.6. As discussed

5. Assume, of course, that the light sensor does not respond to the lights that are turned on by the
motion detector.
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a b c d o u t p u t

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

TABLE 5.7 Truth Table for
AB + C + D.

in Section 5.4, we can also go from a truth table representation to a logic
expression.

e x a m p l e 5.7 t r u t h t a b l e The truth table for the following logic
expression is shown in Table 5.7.

Output = AB + C + D.

5.3 C O M B I N A T I O N A L G A T E S

Yet another representation of boolean functions makes use of the combinational
gate abstraction. We will see how gates are built out of primitive lumped circuit
elements in Chapter 6. For now, let us focus on the gate-level abstraction. The
digital gate notation for the boolean equation Z = X AND Y is shown in
Figure 5.13.

Z
X

Y

F IGURE 5.13 The AND gate.

The output of combinational gates is purely a function of their inputs.
Therefore, combinational functions can always be enumerated using truth
tables. Combinational gates follow the static discipline. Provided they are given
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inputs that fall within valid input levels, they will produce outputs that satisfy
valid output thresholds.

Combinational gate abstraction A combinational gate is an abstract represen-
tation of a circuit that satisfies two properties:
1. Its outputs are a function of its inputs alone.

2. It satisfies the static discipline.

Figure 5.14 shows several useful gate symbols. We have already seen the
gate-level representation of the AND function. The OR gate performs the
OR function of its inputs. The NOT gate takes the complement of its input.
For convenience, we often denote the NOT function in logic circuits using
the ‘‘◦’’ symbol. The buffer gate or identity gate simply copies the input value
to its output, that is, A = A. Its use will become apparent in Section 6.9.2.
The NAND function is equivalent to the AND operation followed by the NOT
operation. For example, A = B NAND C is equivalent to A = B AND C. It is
also equivalent to the statement: A is FALSE only if both B and C are TRUE.
Similarly, the NOR operation is equivalent to the OR operation followed by
the NOT operation.

OR

AND

NOT

NAND

NOR

BUFFER

F IGURE 5.14 Gate symbols.

A truth table illustrating several of these functions is shown in Table 5.8.
Each output column in the truth table corresponds to the given boolean
function.

Gates can have multiple inputs. For example, we can have a four-input AND
gate that implements the function E = A · B · C · D as shown in Figure 5.15.

As shown in Figure 5.16, we can combine digital gates using wires
to implement digital circuits, thereby creating more complicated boolean
functions.

Figure 5.17 shows a graphical view of the inputs and output for the digital
circuit in Figure 5.16. Notice that the output continues to be valid even when
the input signal is noisy.

As we might expect, gates are themselves implemented using lumped cir-
cuit elements, such as resistors and current sources. In other words, a gate
representing the function F is simply an abstraction for a circuit that performs
the function F. The circuit for an AND gate produces 5 V at its output when

i n p u t s a n d o r n a n d n o r

B C B · C B + C B · C B + C

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 1 0 0

TABLE 5.8 Truth table for
several two-input functions.
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both its inputs are at 5 V, and produces 0 V otherwise. We will defer the actual
implementation of digital gates to later chapters, and for now, use the con-
venient gate abstraction to build more complicated digital systems to process
information.

Four-Input  AND

F IGURE 5.15 A four-input AND
gate.

A

B
C

F IGURE 5.16 The gate-level
digital circuit for C = A + B.

e x a m p l e 5.8 g a t e - l e v e l i m p l e m e n t a t i o n Let us imple-
ment the logic expression Output = AB + C + D using gates. Notice that we have a
choice in implementing this expression. We can use one two-input AND gate, a three-
input OR gate, and an inverter as shown in Figure 5.18. We can also replace the OR
gate-inverter pair with a NOR gate. Alternatively, by rewriting the expression as

Output = ((AB) + (C + D))

we can implement the same circuit using an AND gate, an OR gate, and a NOR gate.
We can also check each of the circuits against the truth table, and convince ourselves
that they do work as desired.

e x a m p l e 5.9 m o r e g a t e - l e v e l i m p l e m e n t a t i o n s

Now, let us design a circuit for the expression: (A + B)CD. We can rewrite the
expression as

(A + B)CD = ((A + B)(CD)).

The corresponding gate-level implementation is shown in Figure 5.19.

F IGURE 5.17 A noisy signal
input to a digital circuit.

0
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A

C
B

D

A

C
B

D

A

C

B

D

F IGURE 5.18 Implementations
of AB + C + D.

A

C

B

D

F IGURE 5.19 Implementation

of (A + B)CD.

e x a m p l e 5.10 y e t a n o t h e r g a t e - l e v e l i m p l e m e n -

t a t i o n A circuit for the expression A+BB+C is shown in Figure 5.20. It requires

A

C

B

F IGURE 5.20 Implementation
of A + BB + C.

three gates.

5.4 S T A N D A R D S U M - O F - P R O D U C T S
R E P R E S E N T A T I O N

The previous two sections showed that logic expressions can be represented as
truth tables or gate-level circuits. In this section, we will show the equivalence
of the representations by discussing how we can derive automatically a logic
expression from a truth table. Before we do so, it is useful to introduce a standard
or canonic form of writing logic expressions called the sum-of-products form.

Sum-of-products As the name implies, logic expressions in the sum-of-
products form are represented using two levels of operations as a set of product
(AND) terms, each comprising one or more variables in their true forms (for
example, A) or complement forms (e.g., A), combined using the OR function.

For example, the logic expression AD + ABC + ABC is in a sum-of-
products representation containing the sum of three product terms. The first
term contains two variables, while the latter two terms contain three variables
each. The expression AB+C+D+B is also in a sum-of-products representation.

The expression AB + C, however, is not in a sum of products representa-
tion, and neither is the expression (A + B)(B + C). (Section 5.5 will discuss how
we can convert such expressions to a sum-of-products representation.)

We can write a sum-of-products expression from a truth table representation
by first writing a product term for each row in the truth table with a 1 in its
output column, and then summing these product terms. Each product term
comprises an AND function of all the input variables. A variable will appear in
its true or complement form in a product term corresponding to a given row
in the truth table depending on whether it appears as a 1 or a 0 in that row.

Thus, for example, a logic expression for the truth table in Figure 5.4 is

Z = XY + XY + XY. (5.7)

By construction, this expression is in a sum-of-products form. It has three
product terms corresponding to the three 1’s in the output column of the truth
table. Since X and Y appear as a 0 and a 1, respectively, in the first row with a 1
output, they contribute the product term X Y to the overall expression for Z.
Similarly, the remaining two product terms come from the third and fourth
rows of the truth table, respectively.
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Notice, however, the expression for Z in Equation 5.7 is quite a bit differ-
ent from the expression for Z (namely, X + Y ) shown in Table 5.4. The two
expressions are in fact equivalent. This should be self-evident since both expres-
sions represent the same truth table, but this fact will become obvious after
Section 5.5 (and specifically, Example 5.13) shows how such logic expressions
can be simplified.

e x a m p l e 5.11 l o g i c e x p r e s s i o n f r o m a t r u t h

t a b l e Write a logic expression corresponding to the truth table in Table 5.7.

There are three 1’s in the output column of the truth table in Table 5.7, and so we
expect to see three product terms. The product term corresponding to the 1 in the first
row is A B C D. Similarly, the next two products terms are A B C D, and A B C D.
These three terms are combined with the OR function to yield the logic expression
corresponding to the truth table as

Output = A B C D + A B C D + A B C D. (5.8)

Example 5.14 will show that this sum-of-products expression is equivalent to the logic
expression shown in the caption of Table 5.7.

5.5 S I M P L I F Y I N G L O G I C E X P R E S S I O N S

We are often interested in simplifying logic expressions to minimize their
implementation cost. For example, although the expression A + BB + C
appears to require three gates,6 simplification of the logic expression will result
in a single gate. Notice that the expression BB always results in the answer 0
(a variable and its complement can never be TRUE at the same time). Further-
more, observe that A+0 is always A. From these observations, we can simplify
the expression as

A + BB + C = A + 0 + C = A + C.

The reader can also verify that the expressions A + BB + C and A + C
are equivalent by developing the corresponding truth tables as illustrated in
Table 5.9.

The following primitive rules come in handy for simplifying logic expressions:

A · A = 0 (5.9)

A · A = A (5.10)

6. Assuming that A, B, B, and C are available as inputs.
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A · 0 = 0 (5.11)

A · 1 = A (5.12)

A + A = 1 (5.13)

A + A = A (5.14)

A + 0 = A (5.15)

A + 1 = 1 (5.16)

A + AB = A + B (5.17)

A(B + C) = AB + AC (5.18)

AB = BA (5.19)

A + B = B + A (5.20)

(AB)C = A(BC) (5.21)

(A + B) + C = A + (B + C) (5.22)

You can verify these rules by comparing their truth tables. For example,
the truth table comparing A + AB and A + B is shown in Table 5.10.

The following are another set of useful equalities called De Morgan’s laws:

A · B = A + B (5.23)

A + B = A · B. (5.24)

A B C A + B B + C A + C

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

TABLE 5.9 Truth table for
comparing the two expressions
A + BB + C and A + C.
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A B AB A + AB A + B

0 0 0 0 0

0 1 1 1 1

1 0 0 1 1

1 1 0 1 1

TABLE 5.10 Truth table for
comparing the two expressions
A + AB and A + B. Notice that for
convenience we have added an
extra column for the intermediate
expression AB.

De Morgan’s laws can also be verified by developing truth tables as illus-
trated in Table 5.11. Notice that the columns for A · B and A + B are identical.
Similarly, observe that the columns for A + B and A · B are identical, thereby
verifying De Morgan’s laws.

A B A B A · B A + B A · B A + B A · B A + B

0 0 1 1 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0 0 1

1 1 0 0 1 1 0 0 0 0

TABLE 5.11 Truth table for
verifying De Morgan’s laws.

De Morgan’s laws can be expressed in terms of the gate notation as
depicted in Figure 5.21. Consequently, the symbols on the right-hand side
of the figure are often used in place of the corresponding NAND gate or the
NOR gate.

These rules can be used to simplify logic expressions to reduce the number
of gates required to implement them. For example, a direct implementation of
the logic expression ABB + BC + C appears to take five 2-input gates as seen
from Figure 5.22. The implementation used in Figure 5.22 assumes that both
TRUE and complement forms of each variable are available as inputs. In other
words, for each variable X, we assume that both X and X are available as inputs.
Otherwise, we would need two additional inverters.

To reduce the number of gates required for its implementation, we can
simplify the expression ABB + BC + C as follows: We first collect terms as

F IGURE 5.21 Gate
equivalences implied by De
Morgan’s laws.

A CB
A CB

C
A

CB

=

=
A
B



5.5 Simplifying Logic Expressions C H A P T E R F I V E 265

C

C

B

A

B

B
F IGURE 5.22 Direct implemen-
tation of ABB + BC + C.

shown below by applying the rule suggested by Equation 5.21:

ABB + BC + C = A(BB) + BC + C.

Then, we apply the simplification suggested by Equation 5.9 and obtain

A(BB) + BC + C = A0 + BC + C.

Applying Equation 5.11 we get

A0 + BC + C = 0 + BC + C.

Grouping terms as suggested by Equation 5.22 we get

0 + BC + C = (0 + BC) + C.

Applying Equations 5.20 and 5.15 we get

(0 + BC) + C = BC + C.

Finally, applying Equation 5.17 after recognizing that both the AND and the

C

B

F IGURE 5.23 Implementation
of B + C, which results from
simplifying ABB + BC + C.

OR operators are commutative (from Equations 5.19 and 5.20) we obtain the
final simplified form

BC + C = B + C.

The implementation of B + C takes just one gate and is shown in Figure 5.23.
You might wish to work through some input values and verify that the circuits
in Figures 5.22 and 5.23 are equivalent.

The preceding rules can also be used to simplify logic expressions into a
standard or canonic form. A standard form of representation makes it easy
to compare the costs of competing implementations. One canonic form that
we have seen previously in Section 5.4 is the sum-of-products form. Recall that
logic expressions in this form are represented using two levels of operations as a
set of product (AND) terms combined using the OR function. For example, the
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expression AB + C + D is in a sum-of-products representation. The expression
AB + C + D, however, is not. We can convert the latter expression into the
sum-of-products form A C D + B C D using the equivalence rules as follows:

AB + C + D = (AB) + (C + D) (5.25)

= (AB) (C + D) (5.26)

= (A + B)(C D) (5.27)

= (A)(C D) + (B)(C D) (5.28)

= A C D + B C D. (5.29)

We can also use the equalities to simplify expressions into their respective
minimal forms. A commonly used form is called the minimum sum-of-products
form. For example, A + A + AC + D is a valid sum-of-products representation.
Since A + A = A, and A + AC = A + C, its minimum sum-of-products form
is simply A + C + D.

It turns out that the expression in our previous example A C D + B C D
is also the minimum sum-of-products representation.

e x a m p l e 5.12 m i n i m u m s u m - o f - p r o d u c t s f o r m Find
the minimum sum-of-products representation for the boolean function A + AC + B.

We first write the sum-of-products representation:

A + AC + B = A + (A + C ) + B

= A + (A + C ) + B

= A + A + C + B

= A + C + B.

Here, A + A + C + B is in a sum-of-products form. The minimum sum-of-products
form, however, is A + C + B.

e x a m p l e 5.13 s i m p l i f y i n g a l o g i c e x p r e s s i o n Find
the minimum sum-of-products representation for the boolean expression in Equa-
tion 5.7, namely

Z = X Y + X Y + X Y.
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The following sequence of simplifications show that this expression for Z is equivalent
to X + Y:

Z = XY + XY + XY

= XY + X(Y + Y)

= XY + X · 1

= XY + X

= Y + X.

W W W e x a m p l e 5.14 s i m p l i f y i n g a n o t h e r l o g i c

e x p r e s s i o n

e x a m p l e 5.15 i m p l e m e n t a t i o n u s i n g n o r s It turns out
that certain types of gates take up less room or are easier to build in certain technologies
than other types of gates. We can make use of the equivalence rules to convert a circuit
from one form to another. Let us derive an implementation of the AND function based
on two-input NOR gates. In other words, we wish to transform the expression Z =
A · B into one that uses only NOR operators. The following steps show how we can
transform the AND expression into one that uses three NOR operations:

A · B = (A + A) · (B + B) (5.32)

= (A + A) · (B + B) (5.33)

= (A + A) + (B + B). (5.34)

W W W e x a m p l e 5.16 y e t a n o t h e r i m p l e m e n t a t i o n

u s i n g n o r s

5.6 N U M B E R R E P R E S E N T A T I O N

As discussed earlier, the binary representation restricts a signal to either a
high or low value. These two values can be used to represent two numbers:
for example, 0 and 1. How do we represent other numbers? We briefly
overview one alternative.7 Just as a single decimal digit can represent one of ten

7. Number representation is a lengthy topic in itself, and the interested reader is referred to
Computation Structures, by Ward and Halstead.
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values (0, 1, 2, …, 9), a single binary digit (termed a bit) represents one of two
values (0, 1).

Bigger numbers are constructed by concatenating multiple digits. The
multiple-digit decimal number ijk formed by concatenating the decimal digits
i, j, and k, has the value

i × 102 + j × 101 + k × 100.

Similarly, the multiple-digit binary number lmn formed by concatenating the
binary digits l, m, and n, has the value

l × 22 + m × 21 + n × 20.

In general, the value of the binary number AnAn−1 . . . A2A1A0 is given by

i=n∑
i=0

Ai2i. (5.38)

Thus the binary number 10 corresponds to the decimal number 2, the
binary number 11 corresponds to the decimal number 3, and the binary number
101 corresponds to the decimal number 5. To distinguish the binary number
10 from the decimal number 10, we denote the binary number as 0b10 when
there is a possibility of confusion.

e x a m p l e 5.17 b i n a r y n u m b e r r e p r e s e n t a t i o n What
is the value of the binary number 1110?

The value of the binary number 1110 is given by Equation 5.38 as

1 × 23 + 1 × 22 + 1 × 21 + 0 × 20

which is 14 (decimal).

How do we represent negative numbers? One simple alternative is to inter-
pret the leading bit as a sign bit: a 0 denotes a positive number and a 1 denotes
a negative number. Therefore, the number 110 represents −2, and the number
010 represents 2. When the interpretation of the leading bit (sign bit or value
bit) is not clear from the context, to avoid confusion, it is important to indicate
the numbering system being assumed when specifying a binary number.

V7 = 5 V

V6 = 0 V

V5 = 0 V

V4 = 5 V

V3 = 0 V

V2 = 0 V

V1 = 0 V

V0 = 5 V

W7

W6

W5

W4

W3

W2

W1

W0

F IGURE 5.26 Number
representation. e x a m p l e 5.18 n e g a t i v e b i n a r y n u m b e r r e p r e s e n -

t a t i o n Consider a bundle of 8 wires named W0 through W7 as shown in
Figure 5.26. Let the value of the voltage on the wire Wi be termed Vi. Let us use
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a voltage level of 0 V to denote a logical 0 and a voltage level of 5 V to denote a logical
1. Also, let us use the leading bit (value on W7) to represent the sign of the number.
What is the decimal representation of the number encoded in the wires?

Let the logic value on wire Wi be Ai. Then, A7 is the sign bit, and A6A5A4A3A2A1A0

is the binary number. The decimal value of the number is given by the
formula:

(−1)A7

i=6∑
i=0

Ai2i.

We are given, V7 = 5 V, V6 = 0 V, V5 = 0 V, V4 = 5 V, V3 = 0 V, V2 = 0 V,
V1 = 0 V, and V0 = 5 V. Therefore, A7 = 1, A6 = 0, A5 = 0, A4 = 1, A3 = 0,
A2 = 0, A1 = 0, and A0 = 1. In other words, the sign bit is 1, and the binary
number is A6A5A4A3A2A1A0 = 0010001. Thus, the corresponding decimal number
is −17.

Operations on binary numbers can be performed in a manner analogous to
operations on decimal numbers. To illustrate the correspondence, Figure 5.27a

Decimal addition

  2 6
  8 7

1  1  3

1 Carry digit

Sum digit

(a)

Binary addition

  1 1
  1 1

1  1  0

1 Carry bit

Sum bit

(b)

F IGURE 5.27 Addition of a pair
of two-digit numbers.

shows the addition of a pair of decimal numbers 26 and 87, and Figure 5.27b
depicts the addition of a pair of positive binary numbers 11 and 11. In both
the decimal and binary case, observe that the addition of the digits in a column
generates a sum digit and a carry digit into the next higher digit column.8

Observe further that adding a pair of two-digit numbers can sometimes result
in a three-digit sum.

e x a m p l e 5.19 a d d i n g a p a i r o f t w o - b i t p o s i t i v e

i n t e g e r s Suppose we wish to add a pair of two-bit positive numbers A : A1A0

and B : B1B0. We will implement a two-bit adder using two techniques. The first method
will write the truth table for the entire operation and implement it directly. The second
method will first implement a one-bit adder using the truth table method, and then
use the one-bit adder circuit to compose a two-bit adder. Let us denote the answer as
S : S2S1S0.

First method We first write the truth table for the two-bit adder as shown in
Table 5.12. From the truth table, we obtain the sum-of-products representation for

8. Although a binary digit is called a bit, we use the term digit here since we are referring to both
the decimal digit and the binary digit.
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A1 A0 B1 B0 S2 S1 S0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

TABLE 5.12 Truth table for the
two-bit adder.

each of S0, S1, and S2 as follows:

S0 = Ā1Ā0B̄1B0 + Ā1Ā0B1B0

+ Ā1A0B̄1B̄0 + Ā1A0B1B̄0

+ A1Ā0B̄1B0 + A1Ā0B1B0

+ A1A0B̄1B̄0 + A1A0B1B̄0 (5.39)

= Ā0B0 + A0B̄0 (5.40)

S1 = Ā1Ā0B1B̄0 + Ā1Ā0B1B0

+ Ā1A0B̄1B0 + Ā1A0B1B̄0

+ A1Ā0B̄1B̄0 + A1Ā0B̄1B0

+ A1A0B̄1B̄0 + A1A0B1B0 (5.41)
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= A1A0B1B0 + A1B̄1B̄0

+ A1Ā0B̄1 + Ā1B1B̄0

+ Ā1A0B̄1B0 + Ā1Ā0B1 (5.42)

S2 = Ā1A0B1B0 + A1Ā0B1B̄0

+ A1Ā0B1B0 + A1A0B̄1B0

+ A1A0B1B̄0 + A1A0B1B0 (5.43)

= A1B1 + A1A0B0 + A0B1B0 (5.44)

Figure 5.28 displays a gate-level implementation.

Second method This implementation develops a two-bit adder circuit by composing
two one-bit adders, and illustrates an important engineering technique called divide-and-
conquer. The one-bit adders are called full adders. As illustrated in Figure 5.29, a full
adder takes three inputs two one-bit numbers to be added (Ai and Bi), and one carry
bit Ci from a lower digit. The full adder produces two outputs: a sum bit Si and a carry
bit Ci+1 to a higher digit.

A0

A1

B0

B1

S0

S1

S2

F IGURE 5.28 Direct implementation of two-bit adder.

Ai Bi

Ci

Si

Ci+1
One-bit

full adder

F IGURE 5.29 Straightforward
two-bit adder implementation.
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Ai Bi Ci Ci+1 Si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 5.13 Truth table for the
one-bit full adder.

F IGURE 5.30 One-bit full adder
implementation.

Ai

Bi

Ci

Ci+1

Si

The truth table for the one-bit full adder is depicted in Table 5.13.

From the table, we derive the logic expression for the sum bit Si and the carry bit Ci+1

as follows:

Si = ĀiB̄iCi + ĀiBiC̄i

+ AiB̄iC̄i + AiBiCi (5.45)

Ci+1 = ĀiBiCi + AiB̄iCi

+ AiBiC̄i + AiBiCi. (5.46)

Figure 5.30 shows a gate-level full adder circuit based on the logic expressions for Si

and Ci+1.

We can create a two bit adder out of a pair of one-bit full adders by feeding the carry-out
bit (Ci+1) of one adder to the carry-in bit (Ci) of another adder. The carry-in bit of the
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B0A0B1A1

S0S1

C2
One-bit

full adder
One-bit

full adder

C1
C0 = 0

F IGURE 5.31 A two-bit
ripple-carry adder using two
one-bit full adders.

BiAiBi+1Ai+1

SiSi+1

Ci+2 Two-bit adder Ci F IGURE 5.32 A two-bit adder
block.

B4A4B5A5

S4S5

C8
Two-bit adder

C0 = 0

B6A6B7A7

S6S7

Two-bit adder

B0A0B1A1

S0S1

Two-bit adder

B2A2B3A3

S2S3

Two-bit adder
C6 C4

C2
F IGURE 5.33 An eight-bit adder
circuit.

low-digit adder is set to 0. The two bit-adder is shown in Figure 5.31. Because the carry
bit ripples through the adders, this type of adder circuit is called a ripple-carry adder.
Similarly, we can use n one-bit full adders to construct an n-bit adder.9

e x a m p l e 5.20 b u i l d i n g a n e i g h t - b i t a d d e r Let us
now build an adder that can add two eight-bit integers using the two-bit adder circuits
from Figure 5.31 as the building blocks. First, for convenience, let us abstract the cir-
cuit from Figure 5.31 into an adder block for a pair of two-bit integers as shown in
Figure 5.32.

Much as we ganged together the one-bit adder blocks, we can cascade together the
two-bit adder blocks to form the eight-bit adder as shown in Figure 5.33.

9. As an exercise, you are encouraged to construct a one-bit full adder using two half adders. A half
adder takes two bits Ai and Bi as inputs and produces as its output a sum bit Si and a carry-out
bit Ci+1.
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5.7 S U M M A R Y
� This chapter introduced the digital abstraction, which is based on the notion

of lumping signal values into two levels high and low. Digital circuits
are designed to be more immune to noise than their analog counterparts.
The degree of noise immunity of a digital circuit is governed by the voltage
thresholds of the static discipline to which the circuit adheres.

� The static discipline requires digital devices to adhere to a common rep-
resentation for their input and output voltages, and to guarantee that
they interpret correctly inputs that are valid logical signals according to
the common representation, and to produce outputs that are valid logical
signals provided they receive valid logical inputs. By adhering to a common
representation, digital devices based on different technologies or built by
different manufacturers can communicate with each other. The common
representation is specified in terms of four voltage thresholds:

VOH The lowest output voltage value that a digital device can produce
when it outputs a logical 1.

VOL The highest output voltage value that a digital device can produce
when it outputs a logical 0.

VIH The lowest input voltage value that a digital device must recognize
as a logical 1.

VIL The highest input voltage value that a digital device must
recognize as a logical 0.

� The voltage thresholds associated with a static discipline determine the
noise margins. The 0 noise margin is given by

NM0 = VIL − VOL

and the 1 noise margin is given by

NM1 = VOH − VIH.

� We also discussed several representations of digital logic including truth
tables, which are a tabular representation; boolean expressions, which
are akin to algebraic expressions; and combinational gates, which are a
graphical circuit representation.

E X E R C I S E S e x e r c i s e 5 .1 Write a boolean expression for the following statement: ‘‘Z is
TRUE if either X or Y is FALSE, otherwise Z is FALSE.’’ Write a truth table for this
expression.
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e x e r c i s e 5 .2 Write a boolean expression for the following statement: ‘‘Z is
FALSE if either X or Y is FALSE, otherwise Z is TRUE.’’ Write a truth table for this
expression.

e x e r c i s e 5 .3 Write a boolean expression for the following statement: ‘‘Z is
TRUE if no more than two of W, X, and Y are TRUE, otherwise Z is FALSE.’’

e x e r c i s e 5 .4 Consider the statement: ‘‘Z is TRUE if at least two of W, X, and
Y are TRUE, otherwise Z is FALSE.’’

a) Write a boolean expression for this statement.

b) Write a truth table for the function Z.

c) Implement Z using only AND, OR, and NOT gates. The inputs W, X, and
Y are available. Each gate may have an arbitrary number of inputs. (Hint:
A sum-of-products representation of the boolean expression will facilitate this
implementation.)

d) Implement Z using only AND, OR, and NOT gates. Each gate may have no more
than two inputs. As before, the inputs W, X, and Y are available.

e) Implement Z using only NAND and NOR gates. (Hint: a NAND gate or a NOR
gate with its inputs tied together behaves like an inverter.)

f) Implement Z using only NAND gates. (Hint: Use De Morgan’s laws.)

g) Implement Z using only NOR gates. (Hint: Use De Morgan’s laws.)

h) Repeat part (d) and attempt to minimize the number of gates used.

i) Repeat part (d) and attempt to minimize the number of gates used, assuming that
the inputs are available both in their true and complement forms. In other words,
assume that in addition to W, X, and Y, the inputs W, X, and Y, are also available.

e x e r c i s e 5 .5 Represent the decimal number 4 as an unsigned, three-bit binary
number and as an unsigned, four-bit binary number. Unsigned numbers do not include
a sign bit. For example, 11110 is the unsigned, binary representation of the decimal
number 30.

e x e r c i s e 5 .6 Consider the functions F(A, B, C) and G(A, B, C) specified in the
truth table given in Table 5.14.

a) Write a logic expression corresponding to the functions F(A, B, C) and G(A, B, C).

b) Implement F(A, B, C) with logic gates.
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A B C F(A, B, C) G(A, B, C)

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 1

1 1 0 0 1

1 1 1 1 1

TABLE 5.14 Truth table for
Exercise 5.6

c) Implement F(A, B, C) using only two-input gates.

d) Implement F(A, B, C) using only two-input NAND gates. (Hint: Use De Morgan’s
laws.)

e) Repeat parts (b) through (d) for the function G(A, B, C).

e x e r c i s e 5 .7 Consider the following four logic expressions:

(A + B)(A · B + C) + C · D

(A · C + B · D)(D + B + A

A + B · D + A · C · D

((A + C) + B + D) + A · C · D

a) Give an implementation using gates for each of the four logic expressions.

b) Write the truth table for each of the four expressions.

c) Suppose you know that A = 0. Simplify the four expressions under this constraint.

d) Simplify the four expressions assuming that A and B are related as A = B.

e x e r c i s e 5 .8 A logic gate obeys a static discipline with the following voltage
levels: VIH = 3.5 V, VOH = 4.3 V, VIL = 1.5 V, and VOL = 0.9 V. (a) What
range of voltages will be treated as invalid under this discipline? (b) What are its noise
margins?



5.7 Summary C H A P T E R F I V E 277

e x e r c i s e 5 .9 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: VIL = 1.5 V, VOL = 0.5 V,
VIH = 3.5 V, and VOH = 4.4 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

c) What is the highest voltage that can be output by an inverter for a logical 0
output?

d) What is the lowest voltage that can be output by an inverter for a logical 1
output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise? If so, determine
the noise margins.

e x e r c i s e 5 .10 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: VIL = VOL = 0.5 V and VIH =
VOH = 4.4 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the two voltage
thresholds.

b) Graph an input-output voltage transfer function of an inverter satisfying the two
voltage thresholds.

c) What is the highest voltage that can be output by an inverter for a logical 0
output?

d) What is the lowest voltage that can be output by an inverter for a logical 1
output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise?
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P R O B L E M S p r o b l e m 5.1 Derive a truth table and a boolean expression that describes the
operation of each digital circuit shown in Figure 5.34.

A

C

B

D

(a)

Z

A

C

B

D

(b)

Z

A

C

B

(c)

Z

A

C

B

(d)

Z

A

C

B

(e)

Z

A

C

B

(f)

Z

F IGURE 5.34

p r o b l e m 5.2 Draw an output voltage waveform for the circuit in Figure 5.34c
in response to the input voltage waveforms shown in Figure 5.35. Assume that the gates
in the circuit obey the static discipline with VOH = 4 V, VIH = 3 V, VOL = 1 V, and
VIL = 2 V.

0

5 V

1 V

4 V

3 V

2 V

A

B
C

t

F IGURE 5.35

p r o b l e m 5.3 The truth table for a ‘‘ones count’’ circuit is given in Table 5.15.
This circuit has four inputs: A, B, C, and D, and three outputs OUT0, OUT1, and OUT2.
Together, the signals OUT0, OUT1, and OUT2 represent a three-bit positive integer
OUT2OUT1OUT0. The output integer OUT2OUT1OUT0 reflects the number of ones
in the input. Using only NAND, NOR, and NOT gates, design an implementation for
the circuit. Each gate may have an arbitrary number of inputs.

p r o b l e m 5.4 A four-input multiplexer module is shown in Figure 5.36. The
multiplexer has two select signals S1 and S0. The value on the select signals determines
which of the inputs A, B, C, and D appears at the output. As illustrated in the figure,
A is selected if S1S0 is 00, B if S1S0 is 01, C if S1S0 is 10, and D if S1S0 is 11. Write a
boolean expression for Z in terms of S1S0, A, B, C, and D. Implement the multiplexer
using only NAND gates.

p r o b l e m 5.5 A four-input demultiplexer module is shown in Figure 5.37. The
demultiplexer has two select signals, S1 and S0. The select signals determine on which
of the outputs (OUT0, OUT1, OUT2, or OUT3) the input IN appears. As illustrated in
the figure, IN appears at output OUT0 if S1S0 is 00, at OUT1 if S1S0 is 01, at OUT2 if
S1S0 is 10, and at OUT3 if S1S0 is 11. An output is 0 if it is not selected. Write a boolean
expression for each of the outputs in terms of S1S0 and IN. Implement the demultiplexer
using only NAND gates.

p r o b l e m 5.6 Implement the ‘‘greater-than’’ circuit depicted in Figure 5.38
using NAND gates. A and B represent one-bit positive integers. The output Z is 1
if A is greater than B, otherwise Z is 0.
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A B C D OUT2 OUT1 OUT0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 0

0 1 1 1 0 1 1

1 0 0 0 0 0 1

1 0 0 1 0 1 0

1 0 1 0 0 1 0

1 0 1 1 0 1 1

1 1 0 0 0 1 0

1 1 0 1 0 1 1

1 1 1 0 0 1 1

1 1 1 1 1 0 0

TABLE 5.15 Truth table for a
“ones count” circuit.

p r o b l e m 5.7 Implement the four-input ‘‘odd’’ or ‘‘odd parity’’ circuit depicted
in Figure 5.39 using NOR gates. In this circuit, the output Z is high if an odd number of

00

01

10

11

A

B

C

D

2

Z

S1S0

F IGURE 5.36 A four-input
multiplexer module. The “2” beside
the wire corresponding to the
select signals is a short-hand
notation indicating there are two
wires present.

00

01

10

11

OUT0

OUT1

OUT2

OUT3

2

S1S0

IN

F IGURE 5.37

the inputs are high, otherwise the output Z is low. How would you use the four-input
‘‘odd’’ circuit module shown in Figure 5.39 to implement a three-input ‘‘odd’’ circuit?
If this cannot be done, discuss why not.

p r o b l e m 5.8 Figure 5.40 depicts a four-input majority circuit module. The
output Z of this circuit module is high if a majority of the inputs are high. Write a
boolean expression for Z in terms of A0, A1, A2, and A3. How would you use the
four-input majority circuit module shown in Figure 5.40 to implement a three-input
majority circuit and a two-input majority circuit? If either of these cannot be done,
discuss why not.

p r o b l e m 5.9 Figure 5.41 illustrates a two-bit grey code converter. Its outputs
OUT0, and OUT1, are equal to the inputs when the IN0, IN1 are 00 or 01. However,
when the inputs IN0, IN1 are 10 and 11, the outputs OUT0 and OUT1 are 11 and 10,
respectively. Implement the grey code converter using two-input NAND gates.

p r o b l e m 5.10 Figure 5.42 illustrates input-output voltage transfer functions
for several one-input one-output devices. For the voltage thresholds VOL, VIL, VOH,
and VIH as shown, which of the devices can serve as valid inverters?
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p r o b l e m 5.11 Suppose we wish to build a two-bit adder circuit (see

>
A

B Z

F IGURE 5.38

ODD

A0

Z

A1

A2

A3

F IGURE 5.39

A0

Z

A1

A2

A3

Majority

F IGURE 5.40

IN 0

IN 1

OUT 0

OUT 1

F IGURE 5.41

Adder

A1 A0 B1 B0

C1

S1 S0

F IGURE 5.43

Figure 5.43) that takes as input a pair of two-bit positive integers A1A0 and B1B0 and
produces a two-bit sum output S1S0 and a carry-out bit C1. Write a truth table and a
boolean expression for the carry-out bit in terms of the inputs.

Now, suppose we wish to build a two-bit adder circuit (see Figure 5.44) that takes as
input a pair of two-bit positive integers A1A0 and B1B0, and a carry-in bit C0, and
produces a two-bit sum output S1S0 and a carry-out bit C1. Write a truth table and a
boolean expression for the carry-out bit in terms of the inputs.

p r o b l e m 5.12 Suppose we have two logic families named NTL and YTL. The
NTL family of logic gates operates under the static discipline with the following voltage
thresholds: VIL = 1.5 V, VOL = 1.0 V, VIH = 3.5 V, and VOH = 4 V. The YTL
family, on the other hand, is characterized by the voltage thresholds: VIL = 0.8 V,
VOL = 0.3 V, VIH = 3.0 V, and VOH = 4.5 V. Will a YTL inverter driving the input of

E

B
C

A
FD

0 VIL VIH

5 V

VOL

VOH

5 V

VIN

VOUT

F IGURE 5.42

Adder C0C1

A0A1 B1 B0

S1 S0

F IGURE 5.44
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an NTL inverter operate correctly? Explain. Will an NTL inverter driving the input of
an YTL inverter operate correctly? Explain.

p r o b l e m 5.13 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: VOL = 0.5 V, VIL = 1.6 V,
VOH = 4.4 V, and VIH = 3.2 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?

d) What is the lowest voltage that can be output by an inverter for a logical 1 output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) When transmitting information over a noisy wire, buffers can be used to minimize
transmission errors by restoring signal values. Consider the transmission of data

A

C

B

(a)

Z

Stuck at 1

A

C

B

(b)

Z

Stuck at 1

A

C

B

(c)

Z

Stuck at 1

Stuck at 1

A

C

B

(d)

ZStuck at 0

Stuck at 0

F IGURE 5.45

over a noisy wire that picks up a maximum of 80 mV symmetric peak-to-peak noise
per centimeter. How many buffers are needed to transmit a signal over a distance
of 2 meters in this noisy environment?

h) How large are the 0 and 1 noise margins for a buffer in this logic family? Now
consider three buffers connected in series and behaving as a single buffer. What are
the noise margins for this new buffer?

p r o b l e m 5.14 Many manufacturing flaws in digital circuits can be modeled as
stuck-at faults. The output of a gate is said to suffer from a stuck-at-1 fault if the output
is a 1 irrespective of its input values. Similarly, a stuck-at-0 fault at an output causes the
output to produce a 0 at all times.

a) Consider the circuits shown in Figure 5.45 with one or more faults. Write an expres-
sion for each of the outputs in terms of the input variables for the given faults. (Hint:
As an example, the output of the faulty circuit in Figure 5.45a will be independent
of the input variable C).

A
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B

(a)

Z

Stuck at X
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N3
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Z
B
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F IGURE 5.46
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b) Suppose we are given the faulty circuit in Figure 5.46a where the output of NAND
gate N2 is known to have a stuck-at fault. However, we do not know whether it is a
stuck-at-1 fault or a stuck-at-0 fault. Further, as illustrated in Figure 5.46b, suppose
that we have access only to the inputs A, B, and C, and the output Z. In other
words, we are unable to directly observe the output X of the faulty NAND gate
N2. How would you go about determining whether N2 suffers from a stuck-at-1
fault or a stuck-at-0 fault?
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the mos f e t sw i tch 6
This chapter introduces the switch circuit element and demonstrates how
digital logic gates can be constructed using switches and other primitive circuit
elements we have seen previously. This chapter also discusses a common imple-
mentation of the switch in VLSI technology using a device called a MOSFET
(Metal Oxide Semiconductor Field-Effect Transistor).

6.1 T H E S W I T C H

Recall the electrical system and its lumped circuit model shown in Figure 1.4.
As is commonly done in household electrical circuits, let us add a switch in the
current path to turn the bulb on and off, as shown in Figure 6.1a. Figure 6.1b
shows the corresponding lumped circuit model.

The switch is normally off and behaves like an open circuit. When pressure
is applied to the switch, it closes and behaves like a wire and conducts current.
Accordingly, the switch can be modeled as the three-terminal device shown in
Figure 6.2. The three terminals include a control terminal, an input terminal,
and an output terminal. The input and output terminals of a switch commonly
exhibit symmetric properties. When the control terminal has a TRUE or a
logical 1 signal on it, the input is connected to the output through a short
circuit, and the switch is said to be in its ON state. Otherwise, there is an open
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V

I

Lightbulb

Switch

(a)

+

-

V

I

R

S

(b)

F IGURE 6.1 (a) The lightbulb
circuit with a switch; (b) the lumped
circuit representation.
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circuit between the input and the output, and the switch is said to be in its OFF
state.1

The v i curve for a switch is shown in Figure 6.3. Thus far, we drew the v i
curves for two-terminal devices by plotting the relationship between the voltage
and current for the two terminals. Likewise, for our three-terminal switch, we
can draw the v i characteristics at the input-output terminal pair. The effect of
the control terminal can be taken into account by drawing a different v i curve
for each value at the control terminal. Thus, as illustrated in Figure 6.3, when
the control input is a logical 0, the v i curve for the input-output terminal pair

In

Out

In

Out

Control = “0”

Control = “1”

ON state

OFF state

Control

In

Out

+

-

v

i

+

-

v

+

-

v

i

i

F IGURE 6.2 Three-terminal
switch model.

indicates that the current through the switch is 0, irrespective of the voltage
applied. Conversely, the switch behaves like a short circuit between its input
and output terminals when the control input is a logical 1. When behaving like
a short circuit, the voltage across the input and output terminals is zero, and the
current is unconstrained by the switch (rather, it is determined by constraints
that are external to the switch).

The v i characteristics of a switch can also be expressed in algebraic form as:

for Control = ‘‘0, ’’ i = 0

and

for Control = ‘‘1, ’’ v = 0. (6.1)

v

i
Control = “1”

Control = “0”

F IGURE 6.3 v–i characteristics of a switch. v is the voltage across the input and the output
terminals of the switch and i is the current through the same pair of terminals.

1. To build intuition, our switch example uses mechanical force to apply a logical 1 at its control
input. However, there are other types of switches that work with electrical signals at their control
terminals, and offer the same properties at their input and output terminals. We shall see an example
of such a switch in Section 6.3.



6.1 The Switch C H A P T E R S I X 287

+

-

V

I

R

S

(a) Switch in the OFF state
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(b) Switch in the ON state

i

+ -v

i

+ -v

Control = “0” Control = “1”

F IGURE 6.4 (a) Linear sub-
circuit formed when the switch is in
the OFF state; (b) linear subcircuit
formed when the switch is in the
ON state.

Although the switch is a nonlinear device, circuits containing a switch
and other linear devices can be analyzed by considering two linear subcir-
cuits: one when the switch is in its ON state and one for the switch in its
OFF state. Thus, standard linear techniques can be applied to each subcir-
cuit. Figure 6.4 illustrates the two subcircuits for our lightbulb circuit example.
Analyzing Figure 6.4a, it is easy to see that the current I is zero when the switch
is OFF. Similarly, analyzing Figure 6.4b, the current is given by I = V/R when
the switch is in the ON state.

e x a m p l e 6.1 c i r c u i t c o n t a i n i n g a s w i t c h Determine
the current through resistor R1 in the circuit shown in Figure 6.5a.

R2R1

Switch

(a)

R2

i1a

R1

(b)

R2

i1b

R1

(c)

Control = “1”

Control = “0”

i
1

i

i

i

F IGURE 6.5 (a) Circuit
containing a current source, two
resistors, and a switch; (b) linear
subcircuit formed when the switch
is in the ON state; (c) linear sub-
circuit formed when the switch is
in the OFF state.

The circuit in Figure 6.5a is nonlinear because it contains a switch. Since the only
nonlinear element in the circuit is the switch, we can analyze this circuit by considering
the two linear subcircuits formed for each of the two states of the switch.

Figure 6.5b shows the linear subcircuit formed when the switch is in the ON state. We
can obtain the desired current i1a for the ON-state circuit by using the current divider
relation from Equation 2.84. The current divider relation states that when two resistors
are connected in parallel, the current through one of the resistors is equal to the total
current through the two resistors multiplied by a factor, which is made up of the opposite
resistance divided by the sum of the two resistances. Accordingly, (when the switch is
in the ON state):

i1a = i
R2

R1 + R2
.

Figure 6.5c shows the linear subcircuit formed when the switch is in the OFF state. In
this case, the entire current from the current source flows through the resistor R1. Thus,
(when the switch is in the OFF state):

i1b = i.
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F IGURE 6.6 (a) The lightbulb
circuit with switch in an AND
configuration; (b) the lightbulb
circuit with switches in an OR
configuration.
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6.2 L O G I C F U N C T I O N S U S I N G S W I T C H E S

Next, consider the lightbulb circuit with a pair of switches connected in series
as depicted in Figure 6.6a. The lightbulb can be turned on only by closing
both the switches A and B. Similarly, Figure 6.6b shows a circuit with a pair
of switches connected in an OR configuration. In the latter configuration, the
bulb can be turned on by closing either switch A or switch B.

These circuits provide us with the insight into implementing logic func-
tions using switches: Series connected switches implement the AND function
and parallel connected switches implement the OR function. Switches can be
combined in AND-OR configurations to implement more complicated func-
tions. As shown previously, the switches implement a form of digital logic
called steering logic. In this form, switches steer values (for example, a high
voltage) along various paths. As we continue our discussion, we shall also see
how switches can be used to build our familiar combinational logic gates.

One of the unappealing features of the mechanical switches in Figure 6.1
was that they responded only to mechanical pressure at their control terminal.
The need for mechanical pressure would make it unacceptably hard to build
logic circuits because the voltage at the output of a given switch would have to
somehow be converted to a mechanical pressure to influence another switch.
Preferably, a three-terminal switch device that responded to voltages would
enable the construction of switching circuits using voltages alone. The MOSFET
is one such device that can be implemented cheaply in VLSI technology.

6.3 T H E M O S F E T D E V I C E A N D I T S S M O D E L

The MOSFET belongs to a class of devices called transistors. The MOSFET is a
three-terminal device with a control terminal, an input terminal, and an output
terminal (see Figure 6.7). We will discuss its physical structure in Section 6.7.
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F IGURE 6.7 Discrete MOSFETs.
The rightmost device with three
leads contains a single MOSFET,
while the middle package contains
multiple MOSFETs. (Photograph
Courtesy of Maxim Integrated
Products.)

Its circuit symbol is shown in Figure 6.8. As shown in Figure 6.8, the control
terminal of the MOSFET is called its gate G, the input terminal its drain D, and
the output terminal its source S. For our purposes, we can treat the source and
drain in a symmetric fashion. The name assignment is related to the direction of
current flow. The terminals are labeled such that current flows from the drain

Control

Input

Output
terminal

D

S

G
terminal

terminal

F IGURE 6.8 The MOSFET
circuit symbol.

to the source.2 Equivalently, the channel terminal with the higher voltage is
labeled as the drain.

As depicted in Figure 6.9, let the voltage across the gate and source of
the MOSFET be vGS, and the voltage across the drain and the source be vDS.
The current through G terminal is called iG and that through the D terminal is
termed iDS.

A simple circuit model for a specific type of MOSFET device called the
n-channel MOSFET is depicted in Figure 6.10.3 This model based on the

D

S

G

vGS

vDS+

+

-

iDS

iG

F IGURE 6.9 Definitions of vGS ,
vDS , and iDS .

simple switch is called the MOSFET’s Switch Model, or S Model for short.4

The device is in the ON state when vGS crosses a threshold voltage VT,
otherwise it is off. A typical value for VT for n-channel MOSFETs is 0.7 volts,
but it can be varied by the manufacturing process.5 In the ON state, the S model
approximates the connection between the drain and the source as a short circuit.
In practice, there is some nonzero resistance between the drain and the source,

2. You are is probably wondering why the nomenclature of the drain and the source seems reversed
from the more logical choice relating the source to the input and the drain to the output. It turns
out that the names stem from the internal conduction properties of the MOSFET. Electrons are
the majority carriers in the n-channel MOSFET shown. S is the source of electrons and D is the
drain of electrons.

3. We will see a complementary MOS transistor called the p-channel transistor later.

4. We will examine increasingly sophisticated models for the MOSFET device in the following
chapters. These models will reflect aspects of the MOSFET’s behavior that are not adequately
captured by our simple switch model.

5. To simplify the math in our quantatitive examples on MOSFETs, this book commonly uses
1-volt thresholds.
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but we ignore this resistance in the S model. Section 6.6 will discuss the switch-
resistor model (or the SR model), which attempts to account for this resistance.
In the OFF state, an open circuit exists between the drain and the source. As

D

S

G

D

S

G

OFF

vGS < VT

vGS ≥ VT

ON
iG = 0

iG = 0

D

S

G

iG

iDS

iDS

iDS

F IGURE 6.10 The S model of
the MOSFET.

illustrated in Figure 6.10, an open circuit exists between the gate and the source,
and between the gate and the drain at all times. Thus, iG = 0 always.

Much as we did for the switch, we can plot the v i characteristics between
the D and S terminals of the MOSFET for various gate-to-source voltages using
the S model. Figure 6.11 shows this graph. Notice that the curves are shown
only for the top-right quadrant. Because we define the drain to be the terminal
with the higher voltage, by definition, vDS can never be negative.6 Therefore, the
left quadrants are irrelevant. Similarly, the bottom-right quadrant is not shown
because iDS is positive when vDS is positive. Unlike the MOSFET, devices for
which this is not true (for example, batteries) are capable of providing power.
Like the switch with a zero on its control input, the connection between the

vGS < VT

vDS

iDS
vGS > VT

vDS = 0

iDS = 0

_

D and S terminals looks like an open circuit (iDS = 0) when vGS < VT. In
contrast, the connection between D and S looks like a short circuit (vDS = 0)
when vGS ≥ VT.

We can summarize the S model for the MOSFET in algebraic form by stating
its v i characteristics as follows:

for vGS < VT, iDS = 0

and

for vGS ≥ VT, vDS = 0 (6.2)

Our discussion thus far treated a MOSFET as a three-terminal device.
Notice, however, that the MOSFET is controlled by the voltage across a pair of
terminals, namely, G and S. Similarly, we were interested in the voltage across,
and current through, the D and S terminal pair. As discussed in Section 1.5,
this natural pairing of terminals suggests an alternate MOSFET representation
using ports. As shown in Figure 6.12, we can treat the G and S terminal pair as
the input port or the control port and the D and S terminal pair as the output
port of the MOSFET.

6. When fabricated on a VLSI chip, the physical MOSFET itself is symmetric with respect to
the drain and source. (Note, however, discrete MOSFET devices suitable for use on a bread-
board are not symmetric.) So its drain and source labels can be interchanged without changing the
device. Accordingly, if the drain and source nomenclature was unrelated to the potential difference
between the two terminals, the MOSFET characteristic would look like as in the adjacent figure.
As depicted, there is an open circuit between D and S when vGS < VT, and a short circuit when
vGS ≥ VT. When the open circuit exists, vDS can take on any value (positive or negative) as deter-
mined by external circuit constraints. Similarly, when the short circuit exists, iDS is unconstrained.
Interestingly, notice here that the model we choose for an element depends on the way we use the
element as much as on the physical construction of the element!
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Notice further that we if choose our digital representation such that the

vGS < VT 

vDS

iDS
vGS ≥ VT

vDS = 0

iDS = 0

0

F IGURE 6.11 MOSFET
characteristics with the S model.
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vGS
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F IGURE 6.12 Port represen-
tation of a MOSFET.

logical 1 is represented with a value greater than 1 volt, then the MOSFET
operates as a switch that turns on when its gate-to-source port has a logical 1
signal on it. Figure 6.13 shows the lightbulb circuit using MOSFETs to imple-
ment the AND switching function. In this circuit, the bulb turns on only when
both A and B are 1.

6.4 M O S F E T S W I T C H I M P L E M E N T A T I O N
O F L O G I C G A T E S

Let us now build logic gates using MOSFETs. Consider the circuit shown in
Figure 6.14, which comprises a MOSFET and a load resistor powered by a
supply voltage VS. The input to the circuit is connected to the gate of the
MOSFET, the source is tied to ground, and drain is tied to VS in series with a
load resister RL. The same circuit is redrawn on the right-hand side using the
shorthand notation for the power and ground terminals.

+

-

V

I

R

A B

F IGURE 6.13 The lightbulb
circuit using MOSFETs.
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RL
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F IGURE 6.14 (a) The MOSFET
inverter; (b) the same inverter
circuit using the shorthand notation
for power and ground.
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F IGURE 6.15 The inverter
abstraction and its internal circuit.
IN and OUT are the logical values
represented by vIN and vOUT.

VS

RL

IN OUT

Figure 6.15 shows the relationship between the terminals of the MOSFET-
based inverter circuit and the abstract inverter gate.

The left-hand side of Figure 6.16 shows the corresponding abstract

VS

IN

OUTIN

OUT

F IGURE 6.16 The inverter
shown with explicit and implicit
power connections.

inverter with the power connections, and the right-hand side shows the inverter
abstraction as we know it with implicit power connections. Notice that the
inverter abstraction hides the internal circuit details and provides a simple usage
model to the user of the inverter logic gate. The internal details are irrelevant
to the gate-level logic designer.7

Let us analyze the behavior of the circuit by replacing the MOSFET with
its equivalent S model. Figure 6.17 displays the equivalent model for the circuit
shown in Figure 6.14. Let us assume that a logical high is represented using 5 V
and a logical low using 0 V.

As shown in Figure 6.17, when the input vIN is high, the MOSFET is in
the ON state (assuming that the high voltage level is above the threshold VT),
thereby pulling the output voltage to a low value.8 In contrast, when the input
is low, the MOSFET is off, and the output is raised to a high value by RL. Here
we see the purpose of the load resistor9 RL it provides a logical 1 output
when the MOSFET is off. Furthermore, RL is usually chosen to be large so
that the current is limited when the MOSFET is on.10 Because the resistance

7. What if sophisticated logic designers want to optimize their design for certain parameters such
as speed or area that are not captured by the gate-level abstraction? Later chapters will discuss
how the gate-level abstraction is augmented with additional parameters such as gate delay and
size derived from the internal circuit so that the logic designer can optimize their gate-level
circuit without being forced to delve into the internal details of the gate.

8. Because the MOSFET in Figure 6.14 serves to pull the output voltage to a low value when it is
its ON state, the MOSFET is sometimes referred to as the pulldown MOSFET.

9. Because it pulls the output to a high value, the load resistor is sometimes referred to as the pullup
resistor.

10. We will see additional design constraints on RL as we progress to more accurate MOSFET
models.
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between the gate-to-source and the drain-to-source ports of the MOSFET is
infinity in the S model, the current iIN is 0.

VS

vOUT = Low

RL

VS

vOUT = High

RL

vIN = High   

vIN = Low 

iIN

iIN

F IGURE 6.17 The S circuit
model of the n-channel MOSFET
inverter.

We can write the input-output relationships in a truth table as shown
in Table 6.1. As is apparent from the table, the logical values IN and OUT
represented by vIN and vOUT exhibit the behavior of an inverter.

i n o u t

0 1

1 0

TABLE 6.1 Truth table for the
MOSFET circuit.

Figure 6.18 shows a sample input waveform and the corresponding output
waveform for our circuit. We can also plot the vIN versus vOUT voltage transfer
curve for the inverter circuit as shown in Figure 6.19. The input-output transfer
curve for the inverter also called the inverter characteristic allows us to
determine whether the inverter satisfies a given static discipline. We will discuss
the inverter characteristic and how it relates to the static discipline in Section 6.5.

We can also construct other gates in like manner. Figure 6.20 shows a
NAND gate circuit and Figure 6.21 shows its equivalent S circuit model. It is

0
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F IGURE 6.18 Sample input-output waveforms for the inverter.

vIN (V)

vOUT (V)
Ideal inverter characteristic5 V

VT

0 V
0 V  5 V

F IGURE 6.19 The transfer
characteristic of the inverter.
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easy to see that the output is a 0 only when both inputs are high. The output
is high otherwise.11

VS

A

C

RL

B

M1

M2

F IGURE 6.20 The circuit for a
NAND gate.

Using intuition from the two-input NAND circuit, we can build multiple-
input NAND and NOR circuits. Figure 6.22a shows an n-input NOR gate
and 6.22b shows an n-input NAND gate. In the multiple-input NOR gate, the
output is pulled to ground when any of the inputs is high. Correspondingly, in
the NAND gate, the output remains high if even one input is low.
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F IGURE 6.21 The S circuit model for a NAND gate.

F IGURE 6.22 Multiple-input
NOR and NAND gates.
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e x a m p l e 6.2 c o m b i n a t i o n a l l o g i c u s i n g m o s f e t s

Recall the two combinational logic expressions whose gate-level implementa-
tions we had seen earlier:

AB + C + D

(A + B)CD

11. Notice that if both switches are off, the voltage at the node connecting M1 and M2 appears to
be undefined. Therefore vGS for M1 also appears to be undefined. In practice, however, MOSFET
switches are not perfect open circuits, rather they have a very high resistance between their drain
and source in the off state. Thus, the voltage between M1 and M2 will be given by a voltage divider
relationship. In any case, vGS for M1 will not impact the output voltage of the gate.
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VS

OUT
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C D

RL

B

F IGURE 6.23 Transistor-level
implementation of AB + C + D.

In our earlier example, we had implemented these expressions using several abstract
logic gate elements. Now that we understand how gates are constructed using MOSFETs
and resistors, we can actually construct a single compound combinational logic gate
using MOSFETs and resistors that implements each of these functions.12

Let us consider the first expression: AB + C + D. Using the intuition that switches in
series implement the AND property and switches in parallel implement the OR property,
we can implement the first expression as shown in Figure 6.23. By checking the circuit
against its truth table, we can convince ourselves that the circuit does work as desired.

Figure 6.24 shows the circuit for the second expression: (A + B)CD.

A B

C

D

VS

RL

Out

F IGURE 6.24 Transistor-level

implementation of (A + B)CD.

e x a m p l e 6.3 m o r e c o m b i n a t i o n a l l o g i c u s i n g

m o s f e t s Let us now construct the logic expression (A + B)CD using MOSFETs.
Since (A + B)CD is simply the complement of (A + B)CD, we can obtain (A + B)CD
by inverting the output from Figure 6.24, as illustrated in Figure 6.25.

It is important to point out two key properties of the MOSFET that make
it an ideal component for building gates:

1. First, notice that we could compose multiple gate components into more
complicated circuits without worrying about the internal circuit of

12. Direct transistor implementation potentially can yield savings in the number of transistors and
resistors used. However, should you consider discarding the gate-level abstraction in favor of
building logic functions directly out of transistors, remember that transistor-level implementation
of complex logic functions can be a much more arduous task than a gate-level implementation.
The difficulty will become apparent as we move to the more realistic switch-resistor MOSFET
model discussed in Section 6.6. As a general guideline, the designer should use the highest level of
abstraction with which to accomplish a design.
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F IGURE 6.25 Transistor-level
implementation of (A + B)CD. A B

C

D

VS

RL

VS

RL

Out

the gates. The reason we are able to do so is that the output of the
MOSFET has no effect on its inputs. In other words, although the input
voltage at G impacts the behavior of the MOSFET at its D and S
terminals, the voltages or currents at its D and S terminals have no impact
on G.

2. Second, the infinite resistance seen at the gate (G terminal) of a MOSFET
makes it have no effect on the output of another gate driving its input.
This feature of the MOSFET allows us to build systems containing many
gates without worrying about how each gate affects the logical properties
of other gates to which it is connected. This property of a gate is called
composability. Imagine if the MOSFET input had zero resistance. In that
case, we would not be able to connect the output of one inverter to the
input of another and expect the first inverter to satisfy the static discipline.

We shall see later in Section 6.9.1 that the ability to build amplification into
devices containing MOSFETs further facilitates composability.

6.5 S T A T I C A N A L Y S I S U S I N G T H E S M O D E L

The input-output transfer curve for the inverter shown in Figure 6.19, or
the inverter characteristic, contains all the information necessary to determine
whether the inverter satisfies a given static discipline.

Recall that the static discipline for a logic gate guarantees that the outputs
of the gate will meet the output constraints specified by the discipline, provided
its inputs meet the input constraints. Recall, further, that a static discipline
with its associated voltage thresholds is necessary to establish a standardized
representation so that the logic devices from several vendors can operate with
each other correctly. Similarly, a user who wants to build a system can select
the best devices from several vendors provided they meet the voltage thresholds
established by the static discipline adopted by the user.
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F IGURE 6.26 Input and output
voltage thresholds for a logic gate.

Output voltage levels are generally stricter than input voltage levels (higher
than the corresponding input high and lower than the corresponding input low)
to provide for noise margins. Figure 6.26 illustrates the asymmetry between
inputs and outputs. At the input of the gate, any voltage level lower than VIL
is recognized as a valid low, and any voltage higher than VIH is a valid high. At
its output, the gate guarantees to produce a voltage level higher than VOH for
a valid high, and a voltage level lower than VOL for a valid low.

Voltage levels between VIL and VIH are invalid at the input, and levels
between VOL and VOH are invalid at the output. Because the output levels
are stricter than the input thresholds, the static discipline provides for noise
margins.

Based on the inverter characteristic (repeated here in Figure 6.27 for conve-
nience), we can determine whether the inverter satisfies a given static discipline.
As an example, let us determine whether the inverter satisfies a static discipline
with the following voltage thresholds:

VOH = 4.5 V, VOL = 0.5 V, VIH = 4 V, and VIL = 0.9 V.

vIN (V)

vOUT (V)

Ideal inverter characteristic5 V

VT

0 V
0 V 5 V

F IGURE 6.27 The transfer
characteristic of the inverter.
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F IGURE 6.28 A mapping
between logic values and voltage
levels corresponding to a static
discipline appropriate for the
inverter.

5 V   vIN

vOUT

VOH = 4.5 V

V
IH

 =
 4

V

V
T
 =

 1
 V

VOL = 0.5 V

V
IL

 =
 0

.9
 V

0 V 

5 V

Figure 6.28 shows the voltage thresholds for the given static discipline
superimposed on the inverter transfer function. Let us check each of the output
and input thresholds.

VOH: The inverter produces an output high of 5 V. Clearly, this output
voltage level for a logical 1 is greater than the 4.5-V output-high
threshold required by the static discipline.13

VOL: The inverter produces an output low of 0 V. This output voltage is
lower than the output-low threshold of 0.5 V required by the static
discipline.14

VIH: For our static discipline, VIH = 4 V. To obey the static discipline the
inverter must interpret any voltage above 4 V as a logical 1. This is
certainly true for our inverter. Our inverter turns on when the input
voltage is greater than VT = 1 V and pulls the output to a valid low
voltage. Thus it interprets any voltage above 1 V as a logical 1.15

13. It turns out that our inverter can satisfy a static discipline with a VOH as high as 5− V. The
notation 5− V implies a voltage that is slightly below 5 V.

14. Notice that our inverter can satisfy a static discipline with a VOL as low as 0+ V. The notation
0+ V implies a voltage that is slightly above 0 V.

15. In fact, our inverter can satisfy a static discipline with a VIH as low as 1+ V, because the inverter
produces a valid low output voltage for inputs greater than VT = 1 V.
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VIL: For our static discipline, VIL = 0.9 V. This means that to obey the
static discipline the inverter must interpret any voltage below 0.9 V as
a logical 0. This is true for our inverter. The inverter is off when its
input voltage is below VT = 1 V, and its output is at 5 V. Since the
inverter produces a valid (output) high output voltage for input
voltages below 0.9 V, it satisfies the static discipline.16

e x a m p l e 6.4 s t a t i c d i s c i p l i n e For fun, let us check to see
whether our inverter satisfies a static discipline used by Disco Systems Inc. Assume
that some of Disco’s systems adhere to a static discipline with the following voltage
thresholds:

VOH = 4 V, VOL = 1 V, VIH = 3.5 V, and VIL = 1.5 V.

To operate under this static discipline, we know that our inverters must operate as
follows:

� When outputting a logical 1, the voltage their outputs produce must be at least
VOH = 4 V. Since our inverters produce a 5-V output for a logical 1, they satisfy
this condition.

� When outputting a logical 0, the voltage their outputs produce must be no greater
than VOL = 1 V. Since our inverters produce a 0-V output for a logical 0, they
satisfy this condition easily.

� At their inputs, the inverters must recognize voltages greater than VIH = 3.5 V as
a logical 1. Since our inverters recognize voltages above 1 V as a logical 1, they
satisfy this condition as well.

� Finally, at their inputs, the inverters must recognize voltages less than VIL = 1.5 V
as a logical 0 if they are to satisfy Disco’s static discipline. Unfortunately, our
inverters can recognize voltages only below 1 V as a 0, and thus do not satisfy this
condition.

Thus, our inverters cannot be used in Disco’s systems.

We can also conduct a static analysis of other digital MOSFET circuits,
such as those Section 6.4. When the S model for the MOSFET is used, the
input and output voltage thresholds for the NAND and other digital circuits
come out to be identical to those for the inverter. Thus, the results of static

16. In fact, our inverter can satisfy a static discipline with a VIL as high as 1− V, because the inverter
produces a valid high output voltage for inputs less than VT = 1 V.
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analysis for these circuits are identical to those for the inverter. For example,
like the inverter, the NAND circuit satisfies a static discipline with the following
voltage thresholds: VOH = 4.5 V, VOL = 0.5 V, VIH = 4 V, and VIL = 0.9 V.
Similarly, the NAND is not able to satisfy the static discipline with these voltage
thresholds: VOH = 4 V, VOL = 1 V, VIH = 3.5 V, and VIL = 1.5 V.

6.6 T H E S R M O D E L O F T H E M O S F E T

The S model for the MOSFET discussed thus far is actually a gross simplifica-
tion of the actual properties of the MOSFET. In particular, a practical MOSFET

D

S

G

D

S

G

RON

OFF State

ON State

vGS < VT 

vGS ≥ VT

iG = 0

iDS

iDS

iG = 0

F IGURE 6.29 The switch-
resistor model of the n-channel
MOSFET.

displays a non-zero resistance between its D and S terminals when it is on.17

Accordingly, a slightly more accurate model for the MOSFET uses a resistance
RON in place of the short between D and S when the MOSFET is on. Figure 6.29
shows the Switch-Resistor model (or SR model) of the n-channel MOSFET.

When the MOSFET is off, there is no connection between the drain and
the source. If the voltage vGS between the gate and source terminals is above
VT, the MOSFET turns on and displays a resistance RON between its D and
S terminals. As before, there is an open circuit between the gate and source
terminals and the gate and drain terminals of the MOSFET, so iG = 0.

The SR model is a better approximation of MOSFET behavior than the
S model. In fact, it is easy to see that the SR model reduces to the S model if
RON is zero. However, the SR model still is a gross simplification of MOSFET
behavior. In particular, although the MOSFET displays resistive behavior when
vDS � vGS − VT, the resistance RON is not fixed. Rather, it is a function of
vGS. Furthermore, when vDS is comparable to, or greater than, vGS − VT, the
drain-to-source behavior is not resistive at all, rather it is that of a current source.
However, the fixed resistance model is much simpler and suffices for analyzing
some aspects of digital circuits because the gate voltage is bimodal low or
high. When the voltage is low, the MOSFET turns off, and when the voltage
is high, the drain-source connection offers a resistance RON related to the gate
voltage. Since there is only one value for the gate voltage when the input is high
(for example VS), and accordingly, one value for the resistance RON, we can
use this value for RON in our model. In summary, the SR model is valid only
when vDS � vGS − VT, and when there is only one value for the gate voltage
when the input is high (for example vGS = VS). Chapter 7 will discuss more
comprehensive models for the MOSFET that are valid across a wider range of
values for vGS and vDS.

The characteristics of the MOSFET according to the SR model are graphi-
cally displayed in Figure 6.31. These curves can be plotted by measuring the

iDSD

S

G
vGS
+

-

+

-
vDS

F IGURE 6.30 Setup for
observing MOSFET characteristics.

various voltages and currents from the setup in Figure 6.30.

17. And in fact, all practical switches display a nonzero resistance between their input and output
terminals in the ON state.
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F IGURE 6.31 Characteristics of
the MOSFET according to the SR
model. The top-left, bottom-left,
and the bottom-right quadrants are
not shown for the reasons given in
Section 6.3. As discussed in more
detail in Chapter 7, the region in
which the MOSFET displays
resistive behavior is within the
triode region of MOSFET operation.

The SR model for the MOSFET can also be expressed in algebraic form as:

iDS =



vDS

RON
for vGS ≥ VT

0 for vGS < VT

. (6.3)

The presence of the resistance RON makes our analysis more realistic but
complicates the design of logic gates somewhat. We shall discuss this further
in Section 6.8.

6.7 P H Y S I C A L S T R U C T U R E O F T H E M O S F E T

The on-resistance of the MOSFET depends on several factors related to the
physical properties of the MOSFET, such as its geometry. Typical values for
the resistance range from a few milliohms for discrete MOSFET components
to several k� for MOSFETs in VLSI technology. Let us take a quick look at
the physical structure of MOSFETs to obtain some insight into the relationship
between their on resistance and their geometry.

MOSFETs are constructed through several fabrication steps on the surface
of a planar piece of single-crystal silicon called a wafer. Figure 6.32 shows the
top view of several rectangular MOSFETs fabricated on a planar silicon surface.
A wafer can be tens of centimeters in diameter, and typical MOSFETs might
occupy an area that is less than a square micrometer. One micrometer is 10−6

meters. A micrometer (µm) is also referred to as a micron (µ). The fabrica-
tion steps result in the construction of several planar layers sandwiched on the
wafer surface. The layers might constitute insulating layers made up of sili-
con dioxide (SiO2) created by oxidizing parts of the wafer surface, conducting
layers comprising deposits of metals such as aluminum or copper, or poly-
crystalline silicon (poly), and semiconducting layers comprising silicon doped
with materials with a high concentration of free electrons or holes. (A hole is
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F IGURE 6.32 Top view of
several n-channel MOSFETs
fabricated on a chip. The square
MOSFETs in the center of the
photograph have a width and
length of 100 µm. (Photograph
Courtesy of Maxim Integrated
Products.)

a positively charged element, and comprises an atom with a missing electron.)
Doping is accomplished by diffusion or by ion implantation. The conducting
layers are separated by the insulating layers. Connections between layers sepa-
rated by insulating material are created by etching contact holes in the insulating
material and ‘‘pouring’’ metal through the contact holes.

Silicon doped with a material rich in electrons is called an n-type semicon-
ductor. Similarly, silicon doped with a material rich in holes is called a p-type
semiconductor. As the word ‘‘semiconductor’’ implies, silicon doped with either
n-type or p-type material is a fairly good conductor of electricity. We use the
notation n+ or p+ to refer to silicon that is heavily doped with n-type or p-type
material, respectively. n+ or p+ type semiconductors are even better conduc-
tors. We commonly refer to n-type or p-type doped silicon areas as diffusion
regions.

Figures 6.33 and 6.34 show sketches of two views of the physical structure
of an n-channel MOSFET. An n-channel MOSFET is constructed on the surface
of p-type silicon called the substrate. Two n+ doped regions separated by a
small distance (for example, 0.07 µ in digital devices, and quite a bit larger in

F IGURE 6.33 A simplified
cross-sectional view of an
n-channel MOSFET.
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Gate
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D
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F IGURE 6.34 A three-
dimensional view of an
n-channel MOSFET.

analog applications) constitute the source and the drain. The region separating
the source and the drain is called the channel region. The channel region is
overlayed with a thin insulating layer (for example, 0.01 µm thick) made out
of silicon dioxide (commonly called gate oxide). The gate oxide layer is in
turn sandwiched between a layer of conducting polysilicon on top and the
p-type substrate. The polysilicon layer top of the gate oxide forms the gate of
the MOSFET.

Although the precise mechanics of how a MOSFET works is beyond the
scope of this discussion, the following provides some intuition on its operation.
First, recall that n+-type silicon conducts through the motion of its free elec-
trons. Let us consider the case where the gate and the source of the MOSFET
are connected to ground, as illustrated in Figure 6.35. In this situation, vGS = 0.
Because the n+ doped source and drain are separated by a p-type layer, they
will not conduct any current when a voltage is applied across them (vDS > 0).

However, when a positive voltage is applied at the gate of the device
(vGS > 0), negative charges are attracted to the surface from the nearby negative-
charge-rich source region (as shown in Figure 6.36) and positive charges are
repelled from the surface. Of course, no current flows between the gate and
the substrate because of the insulating gate oxide layer. As the gate voltage

n+ n+

p substrate

Gate oxide
Gate

S D

G

- - -
- --

- - - -

-

-

- -
-

-
- - -- - -- -
- -- --

Ground

Ground Ground

F IGURE 6.35 MOSFET
operation when the gate is
connected to ground.
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F IGURE 6.36 MOSFET
operation when a positive gate
voltage is applied.
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F IGURE 6.37 Connecting to a
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increases, more negative charges are attracted to the surface until they form
an n-type conducting channel that connects the source and the drain. The
conducting channel forms when the gate voltage crosses a threshold voltage
VT (in other words, vGS > VT). A current begins to flow between the drain and
the source when a positive voltage is applied across the drain and the source
(vDS > 0). The MOSFET in our example is called an n-channel device because
of the n-type channel that is formed.

It is easy to see that the MOSFET operates like a switch connected to the
source and the drain that turns on when the gate voltage exceeds a threshold.
Figure 6.37 shows how metal connections are made to the MOSFET terminals
G, S, and D so the MOSFET can be coupled to other devices. As shown in
the figure, the layers of metal are separated by layers of oxide (thickness is
not to scale), so the metal does not inadvertently come in contact with other
parts of the device.18 Contact holes are etched between pairs of layers between

18. A metal-semiconductor connection behaves like a circuit element called a diode if the
semiconductor is lightly doped, and like a short circuit if the semiconductor layer is heavily doped.
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which connections are desired (much like a staple) and metal is allowed to flow
through.

The conducting n-channel that is formed in the MOSFET discussed here
is not an ideal conductor and has some resistance RON. Also notice that the
resistance of the gate is related to the geometry of the channel. Let the channel
length be L and the channel width be W. Then, the resistance is proportional
to L/W. If Rn is resistance per square of the n-channel MOSFET in its on state,
then the resistance of the channel is given by

RON = Rn
L

W
. (6.4)

In any VLSI technology, there is a minimum fabricatable value for the MOSFET
channel length. Clearly, smaller dimensions mean that a VLSI chip of a given
size can hold more logic. As we shall see later, smaller dimensions also result in
higher speeds of operation. VLSI technologies are characterized by this mini-
mum channel length. For example, a 0.2-µm process yields gate lengths in the
vicinity of L = 0.2 µm. Historically, technologists have been able to decrease
gate lengths by about a factor of two every four years over the past two decades.
See Table 6.2 for the scaling factors observed by the authors in projects in which
they were involved, and Figure 6.38 for a cross-sectional view of Intel’s 0.13 µm

y e a r d e s i g n m i n l

1981 Analog echo canceler 8 µm

1984 Telecom bus controller 4 µm

1987 RISC microprocessor 2 µm

1994 Multiprocessor communications
controller

0.5 µm

2002 Raw microprocessor 0.18 µm

TABLE 6.2 Historical gate-
length scaling observations.

F IGURE 6.38 A cross-sectional
TEM (transmission electron
microscope) picture of Intel’s
0.13-µm generation logic transistor.
(Photograph Courtesy of Intel
Corporation.)
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generation logic transistor. This torrid pace of technological development shows
no signs of slowing down at the time of this writing.

6.8 S T A T I C A N A L Y S I S U S I N G T H E S R M O D E L

The presence of the on resistance RON complicates the design of logic gates
slightly, but adds more realism to the model. Let us analyze our familiar inverter
circuit shown in Figure 6.14 using the SR model of the MOSFET. In particular,
let us derive its input-output transfer characteristic. Figure 6.39 shows the circuit

VS

vO

RL

VS

vO

RL

vIN = High 

vIN = Low

RON

F IGURE 6.39 Circuit model of
the n-channel MOSFET inverter
using the SR MOSFET model.

model of the inverter using the SR model of the MOSFET.
As shown in Figure 6.39, when the input is low, the MOSFET is off, and

the output is raised to a high value.
However, when the input vIN is high (and above the threshold VT), the

MOSFET is on and displays a resistance RON between its D and S terminals,
thereby pulling the output voltage lower. However, the output voltage is not
0 V as predicted by the simpler S model of the MOSFET. Instead, the value of
the output voltage is given by the voltage-divider relationship:

vOUT = VS
RON

RON + RL
. (6.5)

The resulting inverter transfer characteristics, assuming VS = 5 V, VT =
1 V, RON = 1 k�, and RL = 14 k�, are shown in Figure 6.40. Notice that the
lowest output voltage of the inverter is no longer 0 V, rather it is

VS
RON

RON + RL
= 0.33 V.

F IGURE 6.40 Inverter transfer
characteristics using the SR model.
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Before embarking on a detailed static analysis of our inverter, let us con-
duct a simple electrical switching analysis to build intuition. In particular, we
will analyze the relationship between VT, VS, RL, and RON, and the switching
behavior of the inverter. As a minimum, when a sending inverter drives a receiv-
ing inverter, the sender must be able to switch the MOSFET in the receiving
inverter into its ON state when the sender produces a high voltage. Similarly,
the sender must be able to switch the MOSFET in the receiving inverter into
its OFF state when the sender produces a low voltage.

Our inverter produces a high output of VS, so it is easy to see that the high
output can turn the MOSFET in a receiving inverter into its ON state (provided,
of course, that VS > VT). Because the inverter produces a nonzero low output,
more care needs to be taken in the choice of resistance values and the MOSFET
parameters. Specifically, for our inverter design, the voltage output for a logical
0 must be low enough that the MOSFET in the receiver stays OFF. Because
the MOSFET turns ON for an input voltage greater than VT, the following
condition must be met for the low output of one inverter to be able to drive
the MOSFET in another inverter into its OFF state:

VS
RON

RON + RL
< VT. (6.6)

Equation 6.6 specifies a key relation between the inverter device parameters
for it to be usable as a switching device. Note that we do not distinguish between
the MOSFET or resistance value parameters for the sender and the receiver,
since the device must be able to serve as both a sender and a receiver.

e x a m p l e 6.5 s w i t c h i n g a n a l y s i s o f a n i n v e r t e r

Assume the following values for the inverter circuit parameters: VS = 5 V, VT = 1 V,
and RL = 10 k�. Assume, further, that Rn = 5 k� for the MOSFET. Determine a W/L
sizing for the MOSFET so that the inverter gate output for a logical 0 is able to switch
OFF the MOSFET of another inverter.

Equation 6.6 shows the condition that our inverter must satisfy for its logical 0 output
to be able to turn off a MOSFET. From Equation 6.4, we know that the ON state
resistance of the MOSFET is given by

RON = Rn
L

W
.

Substituting this relation into Equation 6.6, we get the following constraint on the W/L
ratio of the inverter MOSFET:

VS
Rn

L
W

Rn
L
W

+ RL
< VT.
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Simplifying, we obtain the following constraint on W/L:

W

L
>

Rn(VS − VT)

VTRL
.

Substituting, Rn = 5 k�, VS = 5 V, VT = 1 V, and RL = 10 k�, we obtain

W

L
> 2.

For the parameter values that we have been given, this result indicates that our inverter
MOSFET must be sized such that its W/L ratio is greater than 2.

Commonly, it is not enough for the inverter to meet the preceding switch-
ing criteria. In real systems, however, it must also provide for adequate noise
margins by satisfying a static discipline. The inverter characteristic shown in
Figure 6.40 provides us with adequate information to determine whether the
inverter satisfies a given static discipline. As an example, let us determine
whether the inverter satisfies a static discipline with the following voltage
thresholds:

VOH = 4.5 V, VOL = 0.5 V, VIH = 4 V, and VIL = 0.9 V.

Figure 6.41 shows the voltage thresholds for the given static discipline
superimposed on the inverter transfer function. Let us check each of the output
and input thresholds.

VOH: The inverter produces an output high of 5 V. Clearly, this output
voltage level for a logical 1 is greater than the 4.5-V output-high
threshold required by the static discipline.19

VOL: The inverter produces an output low of 0.33 V. This output voltage is
lower than the output-low threshold of 0.5 V required by the static
discipline.20

VIH: For our static discipline, VIH = 4 V. To obey the static discipline the
inverter must interpret any voltage above 4 V as a logical 1. This is
certainly true for our inverter.21

VIL: For our static discipline, VIL = 0.9 V. This means that to obey the
static discipline the inverter must interpret any voltage below 0.9 V as
a logical 0. This is also true for our inverter.22

19. In fact, our inverter can satisfy a static discipline with a VOH as high as 5− V.

20. Notice that our inverter can satisfy a static discipline with a VOL as low as 0.33+ V.

21. In fact, our inverter can satisfy a static discipline with a VIH as low as V+
T V.

22. In fact, our inverter can satisfy a static discipline with a VIL as high as V −
T V.
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F IGURE 6.41 A mapping
between logic values and voltage
levels corresponding to a static
discipline appropriate for the
inverter analyzed using the SR
model.

Thus our inverter satisfies the static discipline with the voltage thresholds:
VOH = 4.5 V, VOL = 0.5 V, VIH = 4 V, and VIL = 0.9 V, even when the SR
model is used when RL = 14 k� and RON = 1 k�.

e x a m p l e 6.6 d e s i g n i n g a n i n v e r t e r t o m e e t t h e

c o n s t r a i n t s o f a g i v e n s t a t i c d i s c i p l i n e Suppose we
are given a static discipline with the following voltage thresholds: VOH = 4.5 V,
VOL = 0.2 V, VIH = 4 V, and VIL = 0.9 V. Let us determine whether our inverter
satisfies the constraints of this static discipline, and if it does not, let us redesign the
inverter so that it does.

Let us begin by comparing the transfer characteristics of our inverter against the voltage
thresholds of the given static discipline. As shown in Figure 6.40, recall that our inverter
produces a high output of 5 V, and a low output of 0.33 V. It can interpret voltages
below VT = 1 V as a logical 0 and voltages above VT = 1 V as a logical 1.

1. When outputting a logical 1, the voltage produced by our inverter must be greater
than VOH = 4.5 V. Since our inverters produce a 5-V output for a logical 1, they
satisfy this condition.

2. When outputting a logical 0, the voltage must be no greater than VOL = 0.2 V.
Since our inverters produce a 0.33-V output for a logical 0, they violate this
condition.

3. At their inputs, they must recognize voltages greater than VIH = 4 V as a logical
1. Since our inverters recognize voltages above 1 V as a logical 1, they satisfy this
condition as well.
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4. Finally, at their inputs, the inverters must recognize voltages less than VIL = 0.9 V
as a logical 0 if they are to satisfy the static discipline. Our inverters satisfy this
condition as well.

Since the output low voltage produced by our inverters is 0.33 V, which is higher than
the required VOL = 0.2 V, our inverters do not meet the constraints of the given static
discipline.

How might we redesign our inverter to meet the given static discipline? Notice that
according to Equation 6.5 the output voltage of the inverter for a high input is given by

vOUT = VS
RON

RON + RL
.

The output vOUT is 0.33 V for VS = 5 V, RON = 1 k� and RL = 14 k�.

We need our inverter to produce an output lower than 0.2 V for a high input. In other
words,

0.2V > VS
RON

RON + RL
. (6.7)

We have three choices to reduce the output voltage: reduce VS, reduce RON, or increase
RL. Reducing VS will also reduce the output high voltage, so that is not such a good
strategy. Instead, we will look to working with the resistances.

First, let us try to increase RL. Rearranging Equation 6.7, we get:

RL > VS
RON

0.2
− RON.

For VS = 5 V and RON = 1 k�, we have

RL > 24 k�.

In other words, we can choose RL > 24 k�, which will result in a output voltage for a
logical 0 that is lower than 0.2 V. However, it turns out that large values of resistance
are hard to achieve in VLSI technology. Section 6.11 shows how another MOSFET can
be used in place of the pullup resistor.

Alternatively, we can try to reduce RON by increasing the W/L ratio of the MOSFET.
Let us determine the minimum W/L ratio.

From Equation 6.7, we can find the constraint on RON that allows the output low
voltage to be less than 0.2 V as

RON <
0.2RL

VS − 0.2
.
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For VS = 5 V and RL = 14 k�, we have

RON < 0.58 k.

Since RON = Rn
L
W

, (see Equation 6.4), and assuming Rn = 5 k� for our MOSFET,
we get

5 k�
L

W
< 0.58 k�.

In other words, choosing a MOSFET with W/L > 8.62 will result in an output voltage
for a logical 0 that is lower than 0.2 V.

6.8.1 S T A T I C A N A L Y S I S O F T H E N A N D
G A T E U S I N G T H E S R M O D E L

We can also analyze other gates in like manner. Figure 6.42 shows the equivalent
circuit for the NAND gate shown in Figure 6.20 based on the SR MOSFET
model.

In this case, the output voltage when both inputs are high is given by

vOUT = VS
2RON

2RON + RL
.

Let us determine whether our NAND gate with VS = 5 V, RL = 14 k�,
and MOSFET properties RON = 1 k� and VT = 1 V, satisfies a static discipline
with the following voltage thresholds:

VS

OUT

RL

A = High 
RON

RONB = High 

F IGURE 6.42 SR circuit model
for NAND gate.

VOH = 4.5 V, VOL = 0.5 V, VIH = 4 V, and VIL = 0.9 V.

Recall that our inverter with characteristics shown in Figure 6.40 satis-
fied this static discipline. Now let’s check out our NAND gate. Figure 6.43
shows the voltage thresholds for the given static discipline superimposed on the
inverter transfer function. As before, let us check each of the output and input
thresholds.

Like the inverter, the NAND gate produces an output high of 5 V, and
therefore satisfies the output-high voltage threshold of 4.5 V. Similarly, the
NAND gate satisfies both the VIH = 4 V and the VIL = 0.9 V thresholds since
it interprets voltages above 4 V at its input as a logical 1 and voltages below
0.9 V at its inputs as a logical 0.

Let us now look at VOL. When outputting a logical 0, the NAND gate
produces a voltage

vOUT = VS
2RON

2RON + RL
.
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F IGURE 6.43 The voltage levels
corresponding to a static discipline
superimposed on the NAND gate’s
transfer characteristics.
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For VS = 5 V, RL = 14 k�, and RON = 1 k�, we get vOUT = 0.625 V, which
is nearly twice that produced by the inverter for a logical 0 output. This is not
surprising since there are two MOSFETs in series in the pulldown network.
Since this output voltage is greater than VOL = 0.5 V, we conclude that our
NAND does not satisfy the static discipline.

How might we redesign our NAND gate such that it satisfies the static
discipline? One approach is to increase RL such that

0.5 V > VS
2RON

2RON + RL
.

In other words,

RL > VS
2RON

0.5
− 2RON.

For VS = 5 V and RON = 1 k�, we have

RL > 18 k�.

This means that we can choose RL > 18 k� for the NAND gate, which will
result in a output voltage for a logical 0 that is lower than 0.5 V, thereby
satisfying the static discipline.
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e x a m p l e 6.7 s w i t c h i n g a n a l y s i s o f a n a n d g a t e

Consider the NAND gate in Figure 6.42. Assume the following values for the circuit
parameters: VS = 5 V, VT = 1 V, and RL = 10 k�. Assume, further, that Rn = 5 k�

for each of the MOSFETs. Determine a W/L sizing for the MOSFETs so that the
NAND gate output is able to switch ON or OFF the MOSFET of another gate such as
an inverter.

Since the NAND gate produces a high output of 5 V, its output applied to the gate of
another MOSFET (with a VT = 1 V) can clearly drive the MOSFET into its ON state.

We now have to determine whether its low output can turn a MOSFET OFF. Recall
that the NAND gate produces the following output voltage for a logical 0:

vOUT = VS
2RON

2RON + RL
.

For a MOSFET driven by the output to remain OFF, we must have

vOUT = VS
2RON

2RON + RL
< VT.

From Equation 6.4, we know that the ON state resistance of the MOSFETs is given by

RON = Rn
L

W
.

Thus, we can write the following constraint on the W/L ratio of the two NAND gate
MOSFETs:

VS
2Rn

L
W

2Rn
L
W

+ RL
< VT.

Simplifying, we obtain the following constraint on W/L:

W

L
>

2Rn(VS − VT)

VTRL
.

Substituting, Rn = 5 k�, VS = 5 V, VT = 1 V, and RL = 10 k�, we obtain

W

L
> 4.

In other words, the two MOSFETs must be sized such that each of their W/L ratios is
greater than 4. Notice that as the number of MOSFETs connected in series increases,
so must their sizes to ensure they produce a low enough output voltage that is able to
switch OFF a MOSFET connected to the output.
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F IGURE 6.44 Noise margins
and signal transmission.

Send 0 Receive 0 
Noise 0.6 V
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6.9 S I G N A L R E S T O R A T I O N , G A I N ,
A N D N O N L I N E A R I T Y

We saw in an earlier chapter (Figure 5.7) that the provision of noise margins
enables error-free communication in the presence of noise. We will revisit the
example in Figure 5.7 to demonstrate that logic devices must incorporate both
gain and nonlinearity to provide nonzero noise margins.23

6.9.1 S I G N A L R E S T O R A T I O N A N D G A I N

Figure 6.44 shows a situation similar to that in Figure 5.7, but for concreteness,
replaces the first logic gate with an inverter I and the second with a buffer B.
Like the inverter, the buffer has a single input and a single output. It performs
the identity function, that is it simply copies the input value to its output. This
time around, we will focus on the conditions at the buffer. Assume that both
our logic gates adhere to a static discipline with the following voltage levels:

VIL = 2 V

VIH = 3 V

VOL = 1 V

VOH = 4 V.

In our example, the inverter sends a 0 by placing vOUT = 1 V (correspond-
ing to VOL) on the wire. Figure 6.44 shows 0.6 V of noise being added to
the signal by the transmission channel. However, the buffer is able to correctly
interpret the received value as a 0 because the received value of 1.6 V is within
the low input voltage threshold of VIL = 2 V. The buffer, in turn, performs the
identity logical operation on the signal and produces a logical 0 at its output.
According to the static discipline, the voltage level at the buffer’s output is 1 V
corresponding to VOL.

Figure 6.45 shows the same situation replacing the actual voltage levels
with the respective parameters for transmitting a logical 0 and a logical 1.

23. We will see the concept of gain showing up again in the context of analog design in Chapter 7.
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Send 0 Receive 0
Noise 0.6 V
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B

F IGURE 6.45 Low and high
thresholds for the input and output.
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F IGURE 6.46 Signal restoration
and amplification.

In Figure 6.44, notice that to obey the static discipline, the buffer must
convert the 1.6-V signal at its input to a 1-V value at its output. In fact, the
buffer must restore any voltage up to 2 V at its input to voltage of 1 V or lower
at its output. Similarly, corresponding to a logical high, it must restore any
voltage above 3 V at its input to 4 V or higher at its output. This restoration
property is key to our being able to compose multiple logic devices together.
Because each level of logic restores or cleans up signals, we can decouple the
noise introduced between each pair of levels. This noise decoupling benefit of
restoring logic enables us to build complicated multistage logic systems.

As Figure 6.46 depicts, logic devices must restore input signals that lie in
the range 0 V < vI < VIL for logical 0’s and VIH < vI < 5 V for logical 1’s to
output signals that are restricted to the range 0 V < vO < VOL for logical 0’s
and VOH < vO < 5 V for logical 1’s, respectively.

Observe further that the restrictions in Figure 6.46 imply that a non-
inverting device such as a buffer or an AND gate must convert an input low to
high transition of the form VIL → VIH to an output low to high transition of
the form VOL (or lower) → VOH (or higher). This scenario is depicted by the
arrows in Figure 6.46. The same situation is described using input and output
waveforms in Figure 6.47. It is clear from the figures that a static discipline
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F IGURE 6.47 Input waveform
and restored output waveform.
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that provides for nonzero noise margins requires logic devices that provide a
minimum gain.

Algebraically, nonzero noise margins require that

VIL > VOL. (6.8)

and

VOH > VIH. (6.9)

The magnitude of the change in the voltage for an input transition from
VIL → VIH is given by

�vI = VIH − VIL.

The corresponding magnitude of the (minimum) change at the output is
given by

�vO = VOH − VOL.

Therefore, the gain of a device that can convert a VIL → VIH transition at
its input to a VOL → VOH transition at its output is given by

Gain = �vO

�vI
= VOH − VOL

VIH − VIL
.

From the noise-margin inequalities in Equations 6.8 and 6.9, we have

VOH − VOL > VIH − VIL.
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Therefore, the magnitude of the gain for an input transition VIL → VIH must
be greater than 1. In other words,

Gain = VOH − VOL

VIH − VIL
> 1. (6.10)

Similarly, inverting devices such as inverters or NAND gates must convert
input low to high transitions of the form VIL → VIH to output high to low
transitions of the form VOH → VOL. Like the non-inverting case, the conditions
on the magnitude of the gain for transitions from VIL → VIH remain unchanged.

Returning to our buffer example, the gain for the VIL → VIH transition is
given by

Gain = VOH − VOL

VIH − VIL

= 4V − 1V

3V − 2V

= 3.

Since the buffer and the inverter follow the same voltage thresholds, the
magnitude of the gain for the VIL → VIH transition at the input of the inverter
is also 3. Clearly, the greater the noise margins, the greater the required gain
for the VIL → VIH transition.

6.9.2 S I G N A L R E S T O R A T I O N A N D N O N L I N E A R I T Y

You might have realized that although logic devices must demonstrate a gain
greater than unity when they transition from VIL to VIH, they must also atten-
uate the signal at other times. For example, Figure 6.48 shows the signal
from Figure 6.47 with some noise superimposed on it. It should be clear from
Figure 6.48 that to obey the static discipline the buffer has reduced the 0-V to
2-V noise excursions at the input to 0-V to 1-V noise excursions at its output.

We can also verify this fact using the basic noise-margin inequalities in
Equations 6.8 and 6.9. Equations 6.8 implies that any voltage between 0 and
VIL at the input must be attenuated to a voltage between 0 and VOL at the output
(see Figure 6.49). Since VIL > VOL according to Equation 6.8, it follows that
voltage transfer ratio must be less than unity. In other words,

VOL − 0

VIL − 0
= VOL

VIL
< 1.

The same reasoning applies to valid high voltages. Because VIH < VOH,

5 − VOH

5 − VIH
< 1.
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F IGURE 6.48 Input waveform
and restored output waveform in
the presence of noise.

0 V
1 V
2 V
3 V
4 V
5 V

0 V
1 V
2 V
3 V
4 V
5 V

0 V
1 V
2 V
3 V
4 V
5 V

0 V
1 V
2 V
3 V
4 V
5 V

Input

Output

VILIL

VOHOH

VOLOL

VIHIH

VILIL

VOHOH

VOLOL

VIHIH

VIL

VOH

VOL

VIH

VIL

VOH

VOL

VIH
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The amplification requirement for low to high transitions of the form
VIL → VIH, and the attenuation requirement in other regions, mandates the
use of nonlinear devices in logic gates.24

6.9.3 B U F F E R T R A N S F E R C H A R A C T E R I S T I C S A N D
T H E S T A T I C D I S C I P L I N E

The presence of gain and nonlinearity in the buffer become abundantly clear if
we look at its transfer characteristic. Figure 6.50 graphically plots the transfer
characteristic of a logic device that can serve as a valid buffer. The shaded
region depicts the valid region for the buffer transfer curve. The x-axis shows
input voltages and the y-axis output voltages. We can make several interesting
observations from this graph. Notice that valid input voltages result in valid
output voltages. For example, input voltages less than VIL produce output
voltages less than VOL, and input voltages greater than VIH produce output
voltages greater than VOH. Also notice that the amplification occurs when the

24. As an exercise in futility, you might want to attempt building a simple logic gate, such as a
buffer, with nonzero noise margins, using resistors alone.
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Slope > 1 Slope <  1

Slope < 1
F IGURE 6.50 The buffer
characteristic.

curve is in the forbidden region. In other words, the slope of the transfer curve
in the forbidden region is greater than one.

As discussed earlier, recall that it is not sufficient for a valid logic
device to have gain in the forbidden region. The transfer characteristic for input
values between 0 V and VIL must have an overall gain of less than unity. Accord-
ingly, notice that the transfer curve shown in Figure 6.50 attenuates voltages
that lie in the valid input low or valid input high intervals.

Observe further that the transfer curve for the buffer passes through the
forbidden region. Doesn’t this violate our initial premise that voltages in the
forbidden region were disallowed? Recall that the static discipline requires
the logic gate to guarantee valid outputs only for valid inputs. That the outputs
are in the forbidden region when the inputs are invalid is of no consequence.

6.9.4 I N V E R T E R T R A N S F E R C H A R A C T E R I S T I C S A N D
T H E S T A T I C D I S C I P L I N E

Let us now briefly examine a transfer curve for the hypothetical, but valid,
inverter shown in Figure 6.51. Referring to Figure 6.51, provided the input volt-
age is lower than VIL, an inverter satisfies the static discipline if it guarantees to
provide an output voltage level greater than VOH. Similarly, for an input voltage
higher than VIH, the inverter guarantees to provide an output that is below VOL.

As discussed for the non-inverting buffer, the magnitude of the slope of
the transfer curve in the forbidden region is greater than unity. Similarly, the
magnitude of the slope of each of the curve segments in the valid regions is less
than unity.

For maximum noise immunity, the separation between VOL and VOH
should be as high as possible at output, and that between VIL and VIH to be
as low as possible. This is equivalent to maximizing the area of the grey boxes
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F IGURE 6.51 The inverter
characteristic.
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Typical characteristic
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shown in Figure 6.51. An ideal inverter characteristic will look like the thick line
shown in the figure.

6.10 P O W E R C O N S U M P T I O N I N L O G I C G A T E S

We can use the SR model to calculate the maximum power consumed by logic
gates. We consider a simple case here, and postpone more discussion to Chap-
ter 11. Referring to Figure 6.52, the power consumed by a logic gate is given by

VS

vOUT

RL

vIN = High Rpd

I

F IGURE 6.52 Power
consumption in logic gates.

Power = VSI = V2
S

RL + Rpd
. (6.11)

The power consumed depends on the load resistance and the resis-
tance of the pulldown network Rpd. For the inverter, the power consumed
is zero when the input is low. The maximum power is consumed when the
input is high and Rpd = RON.VS

B

OUT
A

C

VSR6

R7

F IGURE 6.53 A logic circuit
comprising MOSFET switches and
resistors.

e x a m p l e 6.8 p o w e r i n l o g i c g a t e s Write a boolean equa-
tion for OUT in terms of the inputs for the circuit in Figure 6.53.

OUT = A(B + C̄).

Determine the power consumed by the circuit when A = 1, B = 1, and C = 1. Assume
that the on-state resistance of the MOSFETs is RON.

When all the inputs are high, the relevant equivalent circuit is shown in Figure 6.54. The
power is given by

P = V2
S

(
1

2RON + R6
+ 1

RON + R7

)
.
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W W W 6.11 A C T I V E P U L L U P S VS
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VSR6
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F IGURE 6.54 Equivalent circuit
when all inputs are high.

W W W e x a m p l e 6.9 s i z i n g p u l l u p d e v i c e s

W W W e x a m p l e 6.10 c o m b i n a t i o n a l l o g i c u s i n g

m o s f e t s w i t c h e s
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6.12 S U M M A R Y
� This chapter introduced our first three-terminal device, namely a switch. A

common way of using three-terminal devices is to pair their terminals into
a pair of ports called the control port and the output port.

� We also introduced the MOSFET device, which is a three-terminal circuit
element. Although, as we will see in Chapter 7, the MOSFET has a very
rich behavior, it can be grossly characterized as a switch. We developed the
S and the SR models for the MOSFET, which capture its basic switch-like
behavior.

� This chapter also showed how digital gates could be built using MOSFETs
and resistors. We discussed how the digital circuits had to be designed so
they met the VIH, VOH, VIL, and VOL voltage thresholds specified by a
given static discipline. We also estimated the power dissipation of logic
gates using their circuit models.

E X E R C I S E S e x e r c i s e 6.1 Give a resistor-MOSFET implementation of the following logic
functions. Use the S model of the MOSFET for this exercise (in other words, you may
assume that the on-state resistance of the MOSFETs is 0).

(A + B) · (C + D)

A · B · C · D

(Y · W)(X · W)(X · Y · W)

e x e r c i s e 6.2 Write a boolean expression that describes the function of each
of the circuits in Figure 6.59.

e x e r c i s e 6.3 Figure 6.60 shows an inverter circuit using a MOSFET and a
resistor. The MOSFET has a threshold voltage VT = 2 V. Assume that VS = 5 V and
RL = 10 k�. For this exercise, model the MOSFET using its switch model. In other
words, assume that the on-state resistance of the MOSFET is 0.

a) Draw the input versus output voltage transfer curve for the inverter.

b) Does the inverter satisfy the static discipline for the voltage thresholds VOL = 1
V, VIL = 1.5 V, VOH = 4 V and VIH = 3 V? Explain. (Hint: To satisfy the
static discipline, the inverter must interpret correctly input values that are valid logic
signals. Furthermore, given valid logic inputs, the inverter must also output valid
logic signals. Valid logic 0 input signals are represented by voltages less than VIL,
valid logic 1 input signals are represented by voltages greater than VIH, valid logic 0
output signals are represented by voltages less than VOL, and valid logic 1 output
signals are represented by voltages greater than VOH.)



6.12 Summary C H A P T E R S I X 323

c) Does the inverter satisfy the static discipline if the VIL specification was changed to
VIL = 2.5 V? Explain.

VS

A

OUT

(a)

R2R1

(d)

A

B
C

VS

OUT

EN

R8

VS

A

OUT

B

(b)

R3
R4

R5

VS

VS

B

OUT
A

(c)

C

R6

R7

F IGURE 6.59

d) What is the maximum value of VIL for which the inverter will satisfy the static
discipline?

e) What is the minimum value of VIH for which the inverter will satisfy the static
discipline?

e x e r c i s e 6.4 Consider, again, the inverter circuit shown in Figure 6.60. The
MOSFET has a threshold voltage VT = 2 V. Assume that VS = 5 V and RL = 10k.
For this exercise, model the MOSFET using its switch-resistor model. Assume that the
on-state resistance of the MOSFET is RON = 8 k�.

VS

IN

OUT

RL

F IGURE 6.60

a) Does the inverter satisfy the static discipline, which has voltage thresholds given by
VOL = VIL = 1 V and VOH = VIH = 4 V? Explain.

b) Does the inverter satisfy the static discipline for the voltage thresholds VOL = VIL =
2.5 V and VOH = VIH = 3 V? Explain.

c) Draw the input versus output voltage transfer curve for the inverter.

d) Is there any value of VIL for which the inverter will satisfy the static discipline?
Explain.

e) Now assume that RON = 1k and repeat parts (a), (b), and (c).

e x e r c i s e 6.5 Compute the worst-case power consumed by the inverter shown
in Figure 6.60. The MOSFET has a threshold voltage VT = 2 V. Assume that VS = 5 V
and RL = 10 k�. Model the MOSFET using its switch-resistor model, and assume that
the on-state resistance of the MOSFET is RON = 1 k�.

e x e r c i s e 6.6 Consider again the circuits in Figure 6.59. Using the switch-
resistor model of the MOSFET, choose minimum values for the various resistors in
Figure 6.59 so each circuit satisfies the static discipline with voltage thresholds given by
VIL = VOL = VS/10 and VIH = VOH = 4VS/5. Assume the on-state resistance of the
MOSFET is RON and that its turn-on threshold voltage VT = VS/9.

e x e r c i s e 6.7 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: VOL = 0.5 V, VIL = 1.6 V, VOH =
4.4 V, and VIH = 3.2 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b) What is the highest voltage that can be output by an inverter for a logical 0
output?



324 C H A P T E R S I X t h e m o s f e t s w i t c h

c) What is the lowest voltage that can be output by an inverter for a logical 1
output?

d) What is the highest voltage that must be interpreted by a receiver as a
logical 0?

e) What is the lowest voltage that must be interpreted by a receiver as a
logical 1?

f ) What is the 0 noise margin provided by this logic family?

g) What is the 1 noise margin provided by this logic family?

h) What is the minimum voltage gain the buffer must provide in the forbidden
region?

P R O B L E M S p r o b l e m 6.1

a) Write a truth table and a boolean equation relating the output Z to A, A, B, and C,
when these are input to the circuit shown in Figure 6.61.

Z

A

A

B

B

C

VS

R

F IGURE 6.61

b) Suppose the circuit in Figure 6.61 suffers a manufacturing error that results in a short
between the pair of wires depicted in Figure 6.62. Write a truth table and a boolean
equation relating the output Z to A, A, B, and C, for the resulting circuit.

Z

A

B

B

C

VS

R

A

F IGURE 6.62

p r o b l e m 6.2 A specific type of MOSFET has VT = −1 V. The MOSFET is
in the ON state (a short exists between its drain and source) when vGS ≥ VT. The
MOSFET is in the OFF state (an open circuit exists between its drain and source) when
vGS < VT.

(a) Graph the iDS versus vGS characteristics of this MOSFET.

(b) Graph the iDS versus vDS characteristics this of the MOSFET for vGS ≥ VT and
vGS < VT.
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p r o b l e m 6.3 Consider a family of logic gates that operate under the static dis-
cipline with the following voltage thresholds: VOL = 1 V, VIL = 1.3 V, VOH = 4 V,
and VIH = 3 V. Consider the N-input NAND gate design shown in Figure 6.63. In the
design R = 100k and RON for the MOSFETs is given to be 1k. VT for the MOSFETs
is 1.5 V. What is the maximum value of N for which the NAND gate will satisfy the
static discipline? What is the maximum power dissipated by the NAND gate for this
value of N?

Z

A1 A2 A3 ...

R

An

VS

F IGURE 6.63

p r o b l e m 6.4 Consider the N-input NOR gate shown in Figure 6.64. Assume
that the on-state resistance of each of the MOSFETs is RON. For what set of inputs does
this gate consume the maximum amount of power? Compute this worst-case power.

Z

A1 A2 A3

R

A4 ... An

VS

F IGURE 6.64

p r o b l e m 6.5 Consider the circuit shown in Figure 6.65. We wish to design the
circuit so it operates under a static discipline with voltage thresholds VOL, VIL, VOH, and

Z

A11

R

A12

A13

A1n

A21

A22

A23

A2n

Am1

Am2

Am3

Amn

VS

F IGURE 6.65
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VIH. Assume that the on-state resistance of each of the MOSFETs is RON and that the
MOSFET threshold voltage is VT. Assume that the given values satisfy the constraints
VS ≥ VOH and VIL < VT. For what values of n and m does this gate operate under the
static discipline? What is the worst case power consumed by this circuit?

Z

A

B

VS

L1

W1

-----

-----

-----

L2
W2

L3
W3

VA

F IGURE 6.66

p r o b l e m 6.6 Consider a family of logic gates that operate under the static dis-
cipline with the following voltage thresholds: VOL = 0.5 V, VIL = 1 V, VOH = 4.5 V,
and VIH = 4.0 V.

a) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the four voltage thresholds using an n-channel MOSFET and a resistor.
The MOSFET has Rn = 1 k� and VT = 1.8 V. Recall, RON = Rn(L/W). Assume
VS = 5 V and R� for a resistor is 500 �. Further assume that the area of the inverter
is given by the sum of the areas of the MOSFET and the resistor. Assume that the
area of a device is L × W. The inverter should take as little area as possible with
minimum size for L or W being 0.5 µm. Graph the input-output transfer function
of the inverter. What is the total area of the inverter? What is its maximum static
power dissipation?

p r o b l e m 6.7 Consider a family of logic gates that operates under the static dis-
cipline with the following voltage thresholds: VOL = 0.5 V, VIL = 0.9 V, VOH = 4.5
V, and VIH = 4 V. Using the switch-resistor MOSFET model, design a 2-input NAND
gate satisfying the static discipline for the four voltage thresholds using three n-channel
MOSFETs as illustrated in Figure 6.66 (the MOSFET with its gate connected to a volt-
age VA and drain connected to the power supply VS serves as the pullup). VA is chosen
such that VA > VS + VT. The MOSFETs have Rn = 1 k� and VT = 1.8 V. Recall,
RON = Rn(L/W). Assume VS = 5 V. Further assume that the area of the NAND gate is
given by the sum of the areas of the three MOSFETs. Assume that the area of a deviceNAND

circuit

NAND
circuit

        Circuit X

A
B

C
D

E

NAND circuit

RL

F IGURE 6.67

is L × W. The NAND gate should take as little area as possible with minimum size for
L or W being 0.5 µm. What is the total area of the NAND gate?

p r o b l e m 6.8 Remember that a NAND gate can be implemented as a circuit
with two n-channel MOSFETs and a pullup resistor RL. Let us call it the NAND cir-
cuit shown in Figure 6.67. These NAND circuits are used by Penny-Wise Computer
Corporation in their computer boards. In one ill-fated shipment of computer boards,
the outputs of a pair of NAND circuits get shorted accidentally resulting in the effective
Circuit X shown in Figure 6.67.

a) What logic function does Circuit X implement? Construct its truth table.

b) If we connect n identical NAND circuits together in parallel forming Circuit Y as
shown in Figure 6.68, what is the general form of the logic function it implements?
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c) If for each MOSFET, Ron = 500 �, RL = 100 k�, and VT = 1.8 V, how many
NAND circuits can we connect in parallel and still satisfy the static discipline for the
voltage thresholds given by: VIL = VOL = 0.5 V and VIH = VOH = 4.5 V?

NAND
circuit

NAND
circuit

NAND 
circuit

 Circuit Y

I1
I2

I3
I4

I2n-1
I2n

Out

F IGURE 6.68

d) We now connect identical NAND circuits together and have the resulting Circuit Y
satisfy the static discipline for the voltage thresholds in part (c) with RL = 500 �.
Give specifications on the dimensions of the MOSFETs such that total MOSFET
area is minimized. As before, assume that the area of a device is L × W. Assume that
Rn = 1 k� and no resistor dimension or MOSFET gate dimension should be smaller
than 0.5 µm. For what inputs does Circuit Y dissipate maximum static power, and
what is that power?

e) Now, choose a static discipline with voltage thresholds given by: VOL = 0.5 V,
VIL = 1.6 V, VOH = 4.4 V, and VIH = 3.2 V. As before, each MOSFET has
Ron = 500 �, RL = 100 k�, and VT = 1.8 V. How many NAND circuits can
we connect in parallel and still satisfy this static discipline?

f ) Repeat part (d) assuming the voltage thresholds given in part (e).

p r o b l e m 6.9 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: VOL = 0.5 V, VIL = 1.6 V, VOH =
4.4 V, and VIH = 3.2 V.

a) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the four voltage thresholds using an n-channel MOSFET with
Rn = 1 k� and VT = 1.8 V. Recall, Ron = Rn(L/W). Assume VS = 5 V and R�

for a resistor is 500 �. Further assume that the area of the inverter is given by
the sum of the areas of the MOSFET and the resistor. Assume that the area of a
device is L × W. The inverter should take as little area as possible with minimum
size for L or W being 0.5 µm. Graph the input-output transfer function of the
inverter. What is the total area of the inverter? What is its static power dissipation?
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the mos f e t ampl i f i e r 7
7.1 S I G N A L A M P L I F I C A T I O N

This chapter introduces the notion of amplification. Amplification, or gain, is
key to both analog and digital processing of signals. Section 6.9.2 discussed
how gain is employed in digital systems to achieve immunity to noise. This
chapter will focus on the analog domain.

Amplifiers abound in the devices we use in our day to day life, such as
stereos, loud speakers, and cell phones. Amplifiers can be represented as shown
in Figure 7.1 as three-ported devices with a control input port, an output port,
and a power port. Each port comprises two terminals. An input signal rep-
resented as a time-varying voltage or current is applied across or through the
input terminals. An amplified version of the signal (either a voltage or a current)
appears at the output. Depending on its internal structure, an amplifier can
amplify the input current, the input voltage, or both. When the V × I product
of the output exceeds that of the input, a power gain results. The power supply
provides the necessary power for the resulting power amplification. The power
supply also provides for the internal power consumption within the amplifier
as well. A device must provide power gain to be called an amplifier.1

OutIn Amp

Power supply

- Power supply

F IGURE 7.1 Signal
amplification.

In practical amplifier designs, the input and the output signals commonly
share a reference ground connection (see Figure 7.2). Correspondingly, one

1. We will see later a device called a transformer, which can provide a voltage gain but no power
gain.

331
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of the terminals of each of the ports is commonly tied to a reference ground.
Furthermore, the power port is commonly not shown explicitly.

OutIn Amp

Power supply

or

OutIn Amp

F IGURE 7.2 Reference ground
and implicit power connections.

Besides their use in communication to overcome the dissipative effects of
the communication medium (for example, in loud speakers or in wireless net-
working systems), amplifiers are useful for signal transmission in the presence of
noise. Figures 7.3 and 7.4 show two signal transmission scenarios. In Figure 7.3,
the signal transmitted in its native form is overwhelmed by noise at the receiver.
In Figure 7.4, however, the amplified signal is seen to be much more tolerant to
noise. (Contrast this with the application of amplification for noise immunity
in digital systems as discussed in Section 6.9.2.)

A less obvious but equally important application of amplifiers is buffering.
As the name implies, a buffer isolates one part of a system from another. Buffers
allow us to compose complicated systems from smaller components by isolat-
ing the behavior of the individual components from each other. Many sensors,
for example, produce a voltage signal, but cannot supply a large amount of
current. (For instance, they might have a high Thévenin resistance.) However,
later processing stages might require that the device supply a given amount of
current. If this high current is drawn, a large voltage drop across the internal
resistance of the sensor seriously attenuates the output voltage. In such situa-
tions, we might employ a buffer device that replicates the sensor’s voltage signal
at its output but can also provide a large amount of current. In such buffering
applications, we shall often see amplifiers with less than unity voltage gain, but
greater than unit current and power gain.

7.2 R E V I E W O F D E P E N D E N T S O U R C E S

Before we get into the design and analysis of amplifiers, let us take a moment
to review dependent sources. Because amplifiers are naturally modeled using

F IGURE 7.3 Signal transmission
in the presence of noise.

Transmission channel

ReceiverSender
Noise

Useful 
signal

Signal overwhelmed
          by noise

F IGURE 7.4 Amplification
provides noise tolerance.

ReceiverSender
Noise

Signal

Amp

Amplified signal
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iIN = 0

vIN

+

-

+

-

f(vIN)
vOUT

e.g.  f(vIN) = gmvIN  

Control
port

Output
port

iOUT

F IGURE 7.5 Voltage-controlled
current source.

dependent sources, analysis of circuits with dependent sources will come in
handy in their design.

Dependent sources serve to model control of energy or information flow.
Recall that control of energy or information flow was one of five basic processes
identified in Section 1.6 in Chapter 1. Figure 7.5 shows the familiar voltage
controlled current source that we saw in Chapter 2. As we shall illustrate shortly,
small amounts of energy at the control port of such dependent sources can
control or steer huge amounts of energy at the output port.

e x a m p l e 7.1 v o l t a g e - c o n t r o l l e d c u r r e n t s o u r c e

c i r c u i t Consider the circuit shown in Figure 7.6. Let vI be the voltage sourced
by an independent voltage source. The current iO = f (x) produced by the dependent
current source is a function of other values in the circuit. Let us first analyze the circuit
when the output of the current source depends on a voltage:

iO = f (vI) = −gmvI.

vO versus vI Let us attempt to determine vO as a function of vI. Figure 7.6 shows
our selection of a ground node and the labeling of nodes with their node voltage vari-
ables. vO is the only unknown node voltage. Writing the corresponding node equation,
we get

vO

RL
= iO = f (vI).

vI vO

RLRI

iI
iO = f(x) 

vI

+

-
F IGURE 7.6 A circuit using a
Voltage-controlled current source.
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Since f (vI) = −gmvI, we get our node equation

vO

RL
= −gmvI. (7.1)

Equation 7.1 shows the desired relationship between vO and vI and completes
our solution. The voltage gain is given by

vO

vI
= −gmRL.

Notice that we obtain a voltage gain greater than unity if gmRL > 1. Thus, the circuit in
Figure 7.6 behaves as an amplifier for properly chosen values of RL. In other words, the
circuit produces an amplified version of vI at its output vO. Section 7.4 will introduce
a physical device that behaves as a voltage-controlled current source and develops an
amplifier based on that device.

iO versus iI Next, let us determine iO versus iI. Substituting vI = iIRI and vO = iORL

in Equation 7.1, we can write

iORL = −gmRLiIRI,

which simplifies to

iO = −gmRIiI. (7.2)

Thus, the current gain is given by

iO
iI

= −gmRI.

Notice that the dependent source provides a current gain greater than unity if gmRI > 1.

PO versus PI Let us now determine the input power PI versus the output power PO.
By multiplying the left-hand sides and the right-hand sides of Equations 7.1 and 7.2, we
can write

vOiO = g 2
mRLRIvIiI. (7.3)

In other words,

PO = g 2
mRLRIPI.

The power gain is given by

PO

PI
= g 2

mRLRI.
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Thus, the dependent source provides a power gain greater than unity when
g 2

mRLRI > 1.

e x a m p l e 7.2 c u r r e n t - c o n t r o l l e d c u r r e n t s o u r c e

Let us rework the circuit of Figure 7.6 and obtain its vO versus vI relation assuming that
the output of the current source depends on a current:

iO = f (iI) = −βiI

where β is a constant. As before, let us attempt to determine vO as a function of vI.
Writing the node equation,

vO

RL
= iO = f (iI)

or,

vO

RL
= f (iI).

Substituting f (iI) = −βiI, we get our desired node equation

vO

RL
= −βiI.

Since iI = vI/RI, we get

vO = −β
RL

RI
vI. (7.4)

Equation 7.4 gives the relationship between vO and vI and completes our solution.

7.3 A C T U A L M O S F E T C H A R A C T E R I S T I C S

Chapter 6 introduced the MOSFET and developed simple digital logic circuits
using the device. That chapter also used the simplistic S model and the SR
model of the MOSFET to analyze digital logic circuits. The SR model uses a
fixed RON between the D and S terminals of the MOSFET when vGS ≥ VT.
This model is a reasonable representation of MOSFET behavior only when the
drain voltage is smaller than the gate voltage minus one threshold drop. In other
words, when

vDS < vGS − VT. (7.5)

Accordingly, the SR model is useful to design and analyze digital circuit
gates because a common mode of operation for the MOSFET within digital
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gates is one in which the gate voltage is high and the drain voltage is relatively
low. For example, we might have VOH = 4 V applied as a logical-high input
to the gate of a MOSFET in an inverter (assume VT for the MOSFET is given
to be 1 V), which might produce as the output a corresponding logical-low
drain voltage VOL = 1 V. With these values, vDS = 1 V, vGS = 4 V. Since
VT = 1 V, the constraint in Equation 7.5 is satisfied.

However, there are other situations demanding higher drain voltages in
which we wish to use the MOSFET in an ON state. The SR model of the
MOSFET is inappropriate in this region. This section will first show why the SR
model is inadequate when vDS ≥ vGS−VT. We will then take a look at the actual
MOSFET characteristics and then explore the possibility of creating a simple
piecewise-linear model for the MOSFET in the region where vDS ≥ vGS − VT.

We will use the setup shown in Figure 7.7 to observe the actual MOSFET
characteristics. Let us start by applying a fixed, high gate-to-source voltage
such that

vGS

iDS
D

S

G+

-

vDS
+

-

F IGURE 7.7 Setup for
observing MOSFET characteristics.

vGS ≥ VT

and observing the value of iDS as the drain-to-source voltage vDS is increased.
As illustrated in Figure 7.8, we observe that iDS increases more or less linearly
as vDS is increased from 0 V. The approximately linear relationship between
iDS and vDS exists for small values of vDS, and

vDS

iDS
= RON.

The linear relationship between iDS and vDS reflects resistive behavior for small
vDS, and is nicely captured by our SR model of the MOSFET.

Now, keeping the value of vGS at the same fixed value, we increase vDS
further, and plot our observations in Figure 7.9. Notice that as vDS approaches
the value of vGS − VT, the curve bends and begins to flatten out. In other
words, the current iDS saturates as vDS begins to exceed vGS − VT. In fact,

F IGURE 7.8 The MOSFET
characteristics match the SR
model for a fixed value of vGS ,
when vGS ≥ VT and vDS is small
(specifically, when
vDS < vGS − VT).
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vDS

iDS

 For  vGS ≥ VT

vDS ≥ vGS – VT

0

vDS < vGS – VT

vDS = vGS – VT 

Saturation region

F IGURE 7.9 The current iDS begins to saturate as
vDS approaches the value of vGS − VT .
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F IGURE 7.10 The saturation region of MOSFET
operation.

as illustrated in Figure 7.10, for a given value of vGS, the iDS curve becomes
virtually flat for large values of vDS. Accordingly, the region where vDS ≥
vGS − VT is called the saturation region of MOSFET operation. In contrast,
the region where vDS < vGS − VT is called the triode region. Not surprisingly,
the SR model applies with a fair degree of accuracy only in the triode region
of MOSFET operation. In the saturation region, because iDS does not change
as vDS increases, the MOSFET behaves like a current source. (Recall, from
Figure 1.34, the v i curve for a current source is a horizontal line.)

The iDS curve in Figure 7.10 was measured keeping vGS constant at some
value greater than VT. It turns out that the iDS curves saturate at a different
value for different values of vGS. Thus, as illustrated in Figure 7.11, we get a
different iDS versus vDS curve for each setting of vGS (for example, vGS1, vGS2,
and so on), resulting in a family of iDS versus vDS curves. This family of curves
represents the actual MOSFET characteristics. Notice that the slope of each of
the curves in the triode region also varies somewhat with vGS.

The actual MOSFET characteristics with the triode, saturation, and cutoff
regions marked are shown in Figure 7.12. The dashed line represents the locus
of the points for which

vDS = vGS − VT.

The MOSFET is in cutoff for

vGS < VT.

The MOSFET operates in its triode region for points to the left of the dashed
line, where

vDS < vGS − VT and vGS ≥ VT.
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iDS

vDS

vGS1

vGS ≥ VT

vGS < VT

vGS2
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v GS3

v GS2
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F IGURE 7.11 Actual characteristics of the MOSFET. Each
setting of vGS results in a separate iDS versus vDS curve.
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F IGURE 7.12 Actual characteristics of the MOSFET
showing the triode, saturation, and cutoff regions.

The MOSFET operates in its saturation region for points to the right of
the dashed line, where the following two conditions are met

vDS ≥ vGS − VT and vGS ≥ VT.

Saturation Region Operation of the MOSFET A MOSFET operates in the
saturation region when the following two conditions are met:

vGS ≥ VT (7.6)

and

vDS ≥ vGS − VT. (7.7)

Given the more or less straight-line behavior of the iDS versus vDS curves
to the left and to the right of the dashed line in Figure 7.12, it is natural
to seek a piecewise-linear model for the MOSFET. Recall from Section 4.4,
piecewise-linear modeling represents nonlinear v i characteristics by a succes-
sion of straight-line segments, and makes calculations within each straight-line
segment using linear analysis tools. Figure 7.13 shows our choice of straight-line
segments that model the actual MOSFET characteristics.

To the right of the vDS = vGS − VT boundary (represented by the dashed
line in Figure 7.13) we have the saturation region, in which we use a set of
horizontal straight-line segments (one for each value of vGS) to represent the
actual MOSFET characteristics. The straight-line segments representing the
model are shown as thick grey lines. The circuit interpretation of each of
the horizontal straight-line segments is a current source. Furthermore, because
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F IGURE 7.13 SR and SCS
models.

the value of the current depends on the value of vGS, the behavior is that of a
voltage-controlled current source. This behavior, captured by the switch current
source (SCS) model of the MOSFET, applies only in the saturation region of the
MOSFET. We will have a lot more to say about this saturation region model
of the MOSFET in Section 7.4.

To the left of the vDS = vGS − VT boundary, we have the triode region,
in which one possible modeling choice uses a single straight-line segment to
approximate the iDS versus vDS curve for a given value of vGS. Such a straight-
line segment approximating the iDS versus vDS curve for a given vGS is shown as
the thick grey line to the left of the vDS = vGS − VT boundary. You will notice
that this choice of a single straight-line segment with a given slope 1/RON for
a fixed value of vGS is our familiar SR model from Section 6.6. Intuitively, the
single straight-line segment model suggests that the MOSFET behaves like a
resistor with a fixed value RON for a given value of vGS, provided that vGS ≥ VT
and vDS < vGS − VT.

When the MOSFET curves are drawn using a compressed scale on the
x-axis as in Figure 7.14, we see even the S model is not unreasonable in the
triode region since it captures the gross characteristics of the MOSFET.

Of course, it is also possible to model the complete operation of the
MOSFET (for any value of vGS) using a more sophisticated nonlinear model.
This results in the Switch Unified (SU) model, which is discussed further in
Section 7.8. Although the SU model captures the complete characteristics of
the MOSFET, for simplicity, we will focus on the SR and the SCS models.
Accordingly, unless specifically mentioned otherwise, we will use the SR model
for the triode region of the MOSFET when analyzing digital systems (since we
work with a fixed high value of vGS, where vGS ≥ VT and vDS < vGS − VT),
and the SCS model in the saturation region (vGS ≥ VT and vDS ≥ vGS − VT)
for analog systems.
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F IGURE 7.14 S and SCS
models.
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As one final observation on the various models, notice in Figure 7.13 the
discontinuity in the iDS versus vDS curve according to the SR model in the
triode region, and the SCS model in the saturation region. In other words, if a
MOSFET operates in a circuit such that vDS = vGS − VT, the two models will
give very different results. We can live with this discontinuity provided we do not
attempt to reconcile the results from the two models in the same analysis.2 You
must choose between the two models depending on the particular situation.
Specifically, use the SR model when operating with a fixed vGS in the triode
region, and use the SCS model when operating in the saturation region. The
SR model is appropriate for use in our digital circuits because of the inverting
property of the type of digital circuits discussed here (for example, our familiar
inverter). Since the drain voltage in our digital circuits is low when the gate
voltage is high, the triode region of MOSFET operation applies, and therefore,
the SR model is appropriate. Conversely, in the design of amplifiers, we will
establish the saturation discipline, which will constrain amplifier designs to
operate MOSFETs exclusively in their saturation region, thereby allowing the
use of the SCS model.

7.4 T H E S W I T C H - C U R R E N T S O U R C E ( S C S )
M O S F E T M O D E L

We saw in the previous section that when the gate voltage of the MOSFET
is greater than the threshold voltage, and the drain voltage is greater than the
gate voltage minus one threshold drop (vDS ≥ vGS − VT), a voltage-controlled
current source model is appropriate for the MOSFET. The switch-current source

2. As discussed in Section 7.8, the SU model eliminates the discontinuity.
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iDS = f(vGS)
K(vGS – VT)2

2
-------------- --------------------=

vGS < VT vGS ≥ VT

Valid when  vDS ≥ vGS – VT

iG = 0 iG = 0

F IGURE 7.15 The switch-
current source model of the
MOSFET.

model (or SCS model) of the MOSFET captures this behavior and is depicted
in Figure 7.15.

As depicted in Figure 7.15b, when vGS < VT, the MOSFET is OFF and an
open circuit exists between the drain and the source. For the SCS model, the
current iG into the gate terminal is zero.

When vGS ≥ VT, and vDS ≥ (vGS − VT), the amount of current provided
by the source is given by

iDS = K(vGS − VT)2

2
(7.8)

where K is a constant having units of A/V2. The value of K is related to the
physical properties of the MOSFET.3

As in the OFF state, the current iG into the gate terminal is zero, reflecting
an open circuit both between the gate and the source, and the gate and the
drain.

As mentioned earlier, the region of operation in which vDS ≥ (vGS − VT)
is called the saturation region. The region in which vDS < (vGS − VT) is
called the triode region. The characteristics of the MOSFET in the saturation
region according to the SCS model are summarized graphically in Figure 7.16.
Compare these characteristics with those for the SR model in the triode region
displayed earlier in Figure 6.31.

The constraint curve separating the triode and saturation regions in
Figure 7.16 given by

vDS = vGS − VT (7.10)

3. The parameter K is related to the physical structure of the MOSFET as follows:

K = Kn
W

L
. (7.9)

In Equation 7.9, W is the MOSFET gate width and L is the gate length. Kn is a constant related to
other MOSFET properties such as the thickness of its gate oxide.
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F IGURE 7.16 Characteristics of
the MOS device in the saturation
region.
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can also be rewritten in terms of iDS and vDS by substituting vDS = (vGS − VT)
in Equation 7.8 as follows:

iDS = K

2
v 2

DS. (7.11)

The following is a summary of the SCS model of the MOSFET in algebraic
form. The model applies only in the saturation region of MOSFET operation,
that is, when vDS ≥ vGS − VT.

iDS =



K(vGS − VT)2

2
for vGS ≥ VT and vDS ≥ vGS − VT

0 for vGS < VT.
(7.12)

e x a m p l e 7.3 a m o s f e t c i r c u i t Determine the current iDS for
the circuit in Figure 7.17. For the MOSFET, assume that K = 1 mA / V2 and VT = 1 V.

It is easy to see that the MOSFET in Figure 7.17 is operating in its saturation region,
since the drain-to-source voltage (5 V) is greater than vGS − VT (2 V − 1 V = 1 V ).
Therefore, we can directly calculate the desired current using the MOSFET equation for
saturation region operation

iDS = K(vGS − VT)2

2
.

Substituting vGS = 2 V, K = 1 mA / V2 and VT = 1 V, we obtain iDS = 0.5 mA.

F IGURE 7.17 A simple
MOSFET circuit.
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e x a m p l e 7.4 s a t u r a t i o n r e g i o n o p e r a t i o n Keeping
the gate-to-source voltage for the MOSFET in the circuit shown in Figure 7.17 at 2 V,
what is the minimum value of the drain-to-source voltage vDS for which the MOSFET
will operate in saturation?

The MOSFET operates in saturation under the following constraints

vGS ≥ VT

and

vDS ≥ vGS − VT.

Since vGS is given to be 2 V and VT is 1 V, the first constraint is satisfied. Substituting
for vGS and VT in the second constraint, we obtain the following constraint on vDS for
saturation region operation

vDS ≥ 1 V.

Thus the minimum value for vDS is 1 V.

e x a m p l e 7.5 s a t u r a t i o n r e g i o n o p e r a t i o n Next,
keeping the drain-to-source voltage for the MOSFET in the circuit shown in Figure 7.17
at 5 V, what is the range of values for vGS for which the MOSFET will operate in
saturation?

The lowest value for vGS is 1 V, since below that the MOSFET enters cutoff.

The highest value for vGS is determined by the constraint

vDS ≥ vGS − VT.

For vDS = 5 V and VT = 1 V, the highest value for vGS is 6 V. If vGS is increased
beyond 6 V, the MOSFET enters the triode region.

e x a m p l e 7.6 a c i r c u i t c o n t a i n i n g t w o m o s f e t s

Determine the voltage vO for the MOSFET circuit shown in Figure 7.18. You are given

2 V
+

-

vO5 V
+

-

10 V
+

-
DG

S

DG

S

M1

M2

iD

F IGURE 7.18 A circuit con-
taining two MOSFETs. We are told
that both MOSFETs operate in the
saturation region.

that both MOSFETs operate in the saturation region. The MOSFETs are identical and
are characterized by these parameter values: K = 4 mA / V2 and VT = 1 V.

Since we are told that both MOSFETs operate in the saturation region, and since iDS

for both MOSFETs is the same, their respective gate-to-source voltages must also be
equal. Recall that the drain-to-source current according to the SCS model is independent
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of vDS, provided the MOSFET is in saturation. Thus, equating the gate-to-source
voltages for MOSFETs M1 and M2 we have

5 − vO = 2.

In other words, vO = 3 V. It is easy to verify that vO = 3 V implies that both MOSFETs
are indeed in saturation.

Observe further that the drain-to-source voltages across the two MOSFETs operating
as voltage-controlled voltage sources are not equal, even though the currents through
the two devices are identical.

7.5 T H E M O S F E T A M P L I F I E R

A MOSFET amplifier circuit is shown in Figure 7.19. Remarkably, this circuit
is identical to the inverter circuit we saw earlier! Unlike the inverter circuit,
however, the input and output voltages of the MOSFET amplifier must be
carefully chosen so that the MOSFET operates in its saturation region. In the
saturation region of operation, the SCS model can be used to analyze the
MOSFET amplifier. Constraining the inputs so that the MOSFET is always
in saturation results in the desired amplifier behavior, and furthermore, it sig-vIN

+

-

RL

VS

vO

F IGURE 7.19 The MOSFET
amplifier. The up-arrow labeled VS
represents a connection through a
power supply voltage source to
ground.

nificantly simplifies our analysis. This constraint on how we use a MOSFET
amplifier is yet another example of a discipline to which we adhere in circuit
design and analysis. This discipline is called the saturation discipline and is
discussed further in Section 7.5.2.

Let us examine the amplifier circuit in Figure 7.19. We will do so by replac-
ing the MOSFET in Figure 7.19 with its SCS circuit model from Figure 7.15 as
illustrated in Figure 7.20. As our first step, let us determine the conditions on
the circuit such that the MOSFET is in saturation. When the MOSFET is con-

+
-

vIN

vO

VS

K(vIN – VT)2

2

RL

 iD = --------------------------------

F IGURE 7.20 SCS circuit model
of the MOSFET amplifier. iD is the
MOSFET drain-to-source current.

nected in a circuit as shown, the following relationships between the MOSFET
voltages and the circuit voltages apply:

vGS = vIN

vDS = vO

and

iDS = iD.

Accordingly, the MOSFET is in saturation when the following constraints
are met:

vIN ≥ VT
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and

vO ≥ vIN − VT.

In saturation, recall that the drain-to-source current of the MOSFET is given
by Equation 7.12 in terms of the MOSFET parameters as

iDS = K(vGS − VT)2

2
.

In terms of the amplifier circuit parameters, this equation becomes

iD = K(vIN − VT)2

2
. (7.13)

Next, we will attempt to answer the following question: What is the rela-
tionship between the amplifier output vO and its input vIN? This relationship
will describe the gain of the amplifier. Notice here an advantage of the satura-
tion discipline our constraint that the circuit inputs will be chosen so that
the MOSFET is always in saturation allows us to focus on the saturation region
of operation of the MOSFET and ignore its triode and cutoff region operation.

We will begin by formulating the output voltage vO as a function of the
input voltage vIN. Any of the methods described in Chapters 2 and 3 can be
used to analyze this circuit. We will use the node method here. The ground
node is marked in the circuit in Figure 7.20, and so are the node voltages vO,
vIN, and VS. Since the current into the MOSFET gate is zero, the node with
voltage vO is the only interesting node in the circuit. Writing the node equation,
we get

iD = VS − vO

RL
.

Multiplying throughout by RL and rearranging terms, we get

vO = VS − iDRL.

In other words, vO is equal to the power supply voltage minus the voltage drop
across RL. When vIN ≥ VT and vO ≥ vIN − VT, we know that the MOSFET
is in saturation and the SCS model for the MOSFET applies. Substituting for
iD from Equation 7.13, we get the transfer function of the amplifier given by

vO = VS − K
(vIN − VT)2

2
RL. (7.14)
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F IGURE 7.21 vO versus vIN
curve for the amplifier.

VT vIN

vO
VS

MOSFET is in
saturation within
this region (vO > vIN – VT   and   vIN ≥ VT) 

Triode region

Cutoff
region (vIN < VT)

(vO < vIN – VT   and   vIN ≥ VT)

The transfer function relates the value of the output voltage to that of the
input voltage. Accordingly, the gain of the amplifier is given by

vO

vIN
= VS − K (vIN−VT)2

2
RL

vIN
. (7.15)

Figure 7.21 plots vO versus vIN for the MOSFET amplifier. This decidedly
nonlinear relationship is called the transfer function of the amplifier. When
vIN < VT, the MOSFET is off and the output voltage is VS. In other words,
iD = 0 when vIN < VT. As vIN increases beyond the threshold voltage VT,
so does the current sustained by the MOSFET. Therefore vO rapidly decreases
as vIN increases. The MOSFET operates in the saturation region until the out-
put voltage vO falls one threshold below the gate voltage, at which point the
MOSFET enters the triode region (shown as a dashed line in Figure 7.21), and
the saturation model and Equation 7.14 are no longer valid.

As shown in Figure 7.22, notice that the magnitude of the slope of certain
regions of the curve is greater than one, thereby amplifying input signals that
fall within this region. Shortly, we will take a more careful look at how we can
connect an input signal to the amplifier so that it is amplified by leveraging the

F IGURE 7.22 In certain parts,
the magnitude of the slope of the
vO versus vIN curve is greater
than one.

VT vIN

vO

VS

Magnitude of
the slope is
greater than one
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amplifier transfer function. But before we do so, let us examine the transfer
function using numerical quantities to build up our insight.

We will examine the relationship between vIN and vOUT for the amplifier
shown in Figure 7.20 for the following parameters:

VS = 10 V

K = 1 mA / V2

RL = 10 k�

VT = 1 V.

Substituting in Equation 7.14, we get

vO = VS − K
(vIN − VT)2

2
RL (7.16)

= 10 − (10−3)

(
(vIN − 1)2

2

)
10 × 103 (7.17)

= 10 − 5(vIN − 1)2. (7.18)

For example, substituting vIN = 2 V in Equation 7.18, we obtain vO = 5 V.
We can tabulate the input-output voltage relationship for a larger number of
quantities as shown in Table 7.1.

vIN vOUT

1 10

1.4 9.2

1.5 8.8

1.8 6.8

1.9 6

2 5

2.1 4.0

2.2 2.8

2.3 1.6

2.32 1.3

2.35 0.9

2.4 ∼ 0

TABLE 7.1 vIN versus vOUT for
the MOSFET amplifier. All values
are in volts. Observe that the
MOSFET amplifier goes into the
triode region for vIN > 2.3 V and
the SCS model for the MOSFET
does not apply.
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We can make a number of observations from Table 7.1. First, the amplifier
clearly demonstrates voltage gain (change in the output voltage divided by the
change in the input voltage) because the input ranging from 1 V to 2.4 V causes
the output to change from 10 V to 0 V.

Second, the gain is nonlinear. From Table 7.1, when the input changes
from 2 V to 2.1 V, the output changes from 5 V to 4 V, exhibiting a local
voltage gain of 10. However, when the input changes from 1.4 V to 1.5 V, the
output changes by merely 0.4 V, exhibiting a local voltage gain of 4. This fact is
evident from the different slopes at various points in the transfer curve shown
in Figure 7.22.

Third, the saturation discipline is met only for vIN values between 1 V and
approximately 2.3 V. When the input vIN is less than 1 V, the MOSFET is
in cutoff. Similarly, when vIN is greater than approximately 2.3 V, the output
falls more than one threshold drop below the input. For instance, notice that
when vIN is 2.32 V, the output is 1.3 V, which is more than one threshold drop
below the input voltage.

e x a m p l e 7.7 a m o s f e t a m p l i f i e r Consider the MOSFET
amplifier shown in Figure 7.23. Assume that the MOSFET operates in the saturation
region. For the parameters shown in the figure, determine the output voltage vO given
that the input voltage vIN = 2.5 V. From the value of vO verify that the MOSFET is
indeed in saturation.

vIN
+
-

5 V 

vO

K = 0.5 mA/V2 
VT = 0.8 V 

1 kΩ

F IGURE 7.23 A MOSFET
amplifier example.

From Equation 7.14 we know that the relationship between the input and output
voltages for a MOSFET amplifier under the saturation discipline is given by

vO = VS − K
(vIN − VT)2

2
RL.

Substituting for K, VS, VT, RL, and vIN, we obtain directly the value of vO:

vO = 5 − 0.5 × 10−3 (2.5 − 0.8)2

2
1 × 103

= 4.28 V.

For the MOSFET to be in saturation, two conditions must be met:

vGS ≥ VT

and

vDS ≥ vGS − VT.
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Since vGS = vIN = 2.5 V, and VT = 0.8 V, the first condition is met. Similarly, since
vDS = vO = 4.28 V, and vGS − VT = 1.7 V, the second condition is also met. Thus
the MOSFET is indeed in saturation.

e x a m p l e 7.8 a m o s f e t s o u r c e - f o l l o w e r c i r c u i t

Another useful MOSFET circuit is the source follower shown in Figure 7.24. For rea-

+
- vOUT

VS

vIN
+

-

iD
Equivalent
SCS model

+
- vOUT

VS

vIN
+

-

G
D

S

(saturation)

K = 2 mA/V2 
VT = 1 V 

1 kΩ

1 kΩ

F IGURE 7.24 Source follower
circuit.

sons that will be clear in our discussion of the source follower in Chapter 8, the source
follower is also called a buffer circuit. Assuming that the MOSFET operates in the sat-
uration region, determine the output voltage vOUT and the current iD given that the
input voltage vIN = 2 V, for the parameters indicated in the Figure 7.24.

We determine vOUT by writing the node equation for the output node:

iD = vOUT

1 × 103
. (7.19)

Substituting for iD using the SCS model for the MOSFET we get

2 × 10−3 (2 V − 1 V − vOUT)2

2
= vOUT

1 × 103
.

Simplifying we get

v 2
OUT − 3vOUT + 1 = 0.

The two roots of the equation are 2.6 and 0.4. We pick the smaller of the two roots,
since, for saturation operation, the solution must satisfy

vIN − vOUT ≥ VT.

In other words,

2.5 V − vOUT ≥ 1 V.

Thus, vOUT = 0.4 V. Substituting into Equation 7.19

iD = 0.4 mA.

7.5.1 B I A S I N G T H E M O S F E T A M P L I F I E R

Figure 7.21 showed that the MOSFET is in saturation only within a certain
region of the amplifier transfer curve. The MOSFET circuit works as a reason-
able amplifier only within this region, which, as shown in Table 7.1, ranges
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F IGURE 7.25 Boosting the
input signal of interest with a
suitable DC offset so that the
MOSFET operates in its saturation
region for the entire range of input
signal excursions. vIN

vO

VY

vA

VS

VX

vB

t

t

F IGURE 7.26 Circuit for
boosting the input signal of interest
(vA) with a suitable DC offset (VX)
so that the MOSFET operates in its
saturation region for the entire
range of input signal excursions.

VX
+
-

RL

VS

vO = VY + vB

vA
+
-

vIN

from an input of 1 volt to about 2.32 volts. In order to ensure that the amplifier
operates within this region of the curve, we must transform the input voltage
appropriately. As illustrated in Figure 7.25, one way of doing so is to boost the
signal that we want to amplify (for example, vA) with a DC offset (say, VX) so
that the amplifier operates in its saturation region even for negative excursions
of the input signal. Figure 7.26 shows the corresponding circuit that adds an
offset to the input signal by connecting a DC voltage source (VX) in series with
the input signal source (vA). In other words, we have

vIN = VX + vA

where vA is the desired input signal.
Notice in Figure 7.25 that the corresponding output voltage vO also con-

tains a DC offset VY added to the time varying output signal vB. vB is an
amplified version of the input signal vA.
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vIN

vO

VS

0

t

t

F IGURE 7.27 A sinusoidal input
signal with zero offset results in a
highly distorted output signal.

Contrast the amplifier behavior for the input signal source with a suitable
DC offset voltage shown in Figure 7.25 with that for the input signal source
applied directly Figure 7.27. When the input signal is applied to the amplifier
without a DC offset, the MOSFET operates in its cutoff region for most of
the input signal, and the output is highly distorted, bearing little resemblance
to the input. The form of distortion suffered by the signal in the example in
Figure 7.27 is called clipping.

The use of the amplifier with an input DC offset (and a resulting output
offset) is important enough to merit some new terminology. The DC offset (for
example, VX) applied to the input of the amplifier is also called a DC bias. The
use of the DC offset voltage at the input establishes an operating point for the
amplifier. The operating point is sometimes referred to as the bias point. As an
example, the operating point values of the input and output voltages for the
amplifier in Figure 7.26 are VX and VY, respectively. We can select different
operating points for the amplifier by applying different values of the input DC
offset voltage. Section 7.7 discusses various methods of choosing an operating
point.

We make one final observation about our amplifier. Although vB is an
amplified version of the input signal vA when the input signal is boosted with
a DC offset, vB is not linearly related to vA. Notice from Equation 7.14
that our amplifier is nonlinear even when the MOSFET operates in the
saturation region. Fortunately, the MOSFET amplifier behaves as an approxi-
mately linear amplifier for small signals; in other words, when the desired input
signal vA is very small. However, we will postpone a more detailed analysis of
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F IGURE 7.28 The MOSFET
amplifier abstraction.
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D

S

G

Amp

RL

+
vIN-

+
vO-

iO
iIN

+

vIN

-
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-

iIN

iO

the amplifier’s small signal behavior to Chapter 8. Accordingly, for now, and
in the rest of this chapter, we will not assume that the input is a small signal.
Rather, we will assume that the input vIN that is fed into the amplifier comprises
both the signal component of interest to this user (which may be a large valued
signal), and a DC offset (or DC bias). For simplicity, all calculations will be
performed on this boosted signal.

7.5.2 T H E A M P L I F I E R A B S T R A C T I O N A N D
T H E S A T U R A T I O N D I S C I P L I N E

We would like the user of a MOSFET amplifier to be able to treat it as
the abstract entity depicted in Figure 7.28, ignoring the internal details of the
circuit. This abstract amplifier has vIN and iIN at its input port and vO and iO
at its output port, and provides power gain. Details such as the power supply
and the like are hidden from the user. The amplifier shown in Figure 7.28 uses
ground as an implicit second terminal for both the input port and the output
port. This form of amplifier is also called the single-ended amplifier.

Much like the gate abstraction went hand in hand with the static
discipline which dictated the valid range for applied inputs and expected
outputs the amplifier abstraction is associated with the saturation discipline,
which prescribes constraints on the valid set of applied input signals and
expected output signals. The saturation discipline simply says that the ampli-
fier be operated in the saturation region of the MOSFET. As we shall see shortly,
we choose this definition of the saturation discipline, because the amplifier pro-
vides a good amount of power gain in the saturation region, thereby operating
well as an amplifier.

Specification of the saturation discipline serves two purposes: First, it pre-
scribes constraints on how the device can be used; and second, it establishes a
set of design criteria for the device. The amplifier abstraction and its associated
usage discipline can be likened to procedural abstractions in software systems.
Software procedures are an abstraction for the internal function they imple-
ment. Procedures are also associated with a usage discipline often articulated
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as comments at the head of the procedure. Section 7.6 will be concerned with
identifying valid usage ranges under the saturation discipline.

7.6 L A R G E - S I G N A L A N A L Y S I S O F
T H E M O S F E T A M P L I F I E R

Two forms of analysis come in handy for amplifiers: a large signal analysis and a
small signal analysis. Large signal analysis deals with how the amplifier behaves
for large changes in the input voltage, in other words, changes that are of
the same magnitude as the operating parameters of the amplifier. Large signal
analysis also determines the range of inputs for which the amplifier operates
under the saturation discipline for the reasons discussed in Section 7.5.1. This
section deals with large signal analysis. The next chapter deals with small signal
analysis.

Large signal analysis attempts to answer the following specific questions related
to the design of the amplifier:

1. What is the relationship between the amplifier output vO and its input vIN
in the saturation region? Equation 7.14, developed using the analytical
method, summarized the answer to this question. For variety, this section
will use the graphical method to determine the same relationship.

2. What is the range of valid input values for the amplifier under the
saturation discipline? What is the corresponding range of output values?

Figure 7.29 shows the MOSFET amplifier, and Figure 7.30 replaces

vIN +

-

RL

VS

vO

F IGURE 7.29 MOSFET
amplifier circuit. For the parameters
shown here, vIN is the same as vGS
and vO is the same as vDS .
Similarly, iDS is the same as iD .

the MOSFET with its equivalent circuit model. In this section, we will
use the graphical method of analyzing nonlinear circuits (introduced earlier
in Section 4.3) to determine the answers to our questions.

+
-

vIN

vO

VS

iD
K(vIN – VT)2

2
---------------------------------=

RL

F IGURE 7.30 MOSFET
amplifier — large signal model.

Specifically, Section 7.6.1 will discuss the answer to the first question, and
Section 7.6.2 will address the second question.

7.6.1 vIN V E R S U S vOUT I N T H E S A T U R A T I O N R E G I O N

Writing the node equation for the output node gives us the following
relationship between iDS and vDS:

vDS = VS − iDSRL. (7.20)

Recall that for our circuit vIN is the same as vGS, vO is the same as vDS, and
iDS is the same as iD, where vIN, vO, and iD are the amplifier circuit variables,
and vGS, vDS, and iDS are the MOSFET variables.

Previously, using the analytical approach to solving our nonlinear amplifier
problem, we substituted for iDS from Equation 7.12 into Equation 7.20 and
obtained the input versus output voltage relationship shown in Equation 7.14.
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This time around, we will use the graphical method to obtain the
same relationship. We begin by rewriting Equation 7.20 as

iDS = VS

RL
− vDS

RL
. (7.21)

As Equation 7.21 demonstrates, the load resistor RL forces an affine rela-
tionship between iDS and vDS. Figure 7.31 plots this affine relationship. The line
representing the affine relationship between the output current and the voltage
forced by the load resistor is called the load line. The slope of the line is inversely
proportional to the load resistance.

Also, recall that the MOSFET SCS model forces the relationship captured
by Equation 7.8, namely,

iDS = K(vGS − VT)2

2

and graphed in Figure 7.16 between the input voltage vGS and the MOSFET
current iDS. The output current and voltage must thus satisfy both the load-line
constraint and the MOSFET vDS versus iDS relationships. We can graphically
solve for the behavior of the output voltage by overlaying the load-line rela-
tionship on the iDS versus vDS characteristics of the MOSFET in the saturation
region as depicted in Figure 7.32.

iDS

vDS VS

VS

RL
------

1–
RL
------

F IGURE 7.31 The load line for the MOSFET amplifier.

vGS1

iDS

vDS VS

VS

RL
------

i D
S

K 2----
v D

S
2

=

vGS2

vGS3

vGS4

vGS6

vGS5

F IGURE 7.32 Load line super-imposed on the characteristic
curves of the MOSFET.
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vGS1

vGS2

vGS3

vGS4

vGS5iDS

vDS
VS

V S

RL
------

vDSi

iDSi vGSi

vGS6

i D
S

K 2----
v D

S
2

=

F IGURE 7.33 Determining the
transfer curve of the amplifier
graphically.

Figure 7.33 illustrates how the amplifier transfer curve (that is, its vIN versus
vO curve) can be determined. For some specific value of the input voltage, say
vIN = vGSi, we can determine the output voltage vO = vDSi by finding the
intersection between the load line for RL and the output current iDSi for the
given input voltage vGSi. We can then plot these values to obtain the transfer
function shown in Figure 7.21.

Figures 7.34 and 7.35 further show how an input sinusoid with a peak-
to-peak voltage of 0.2 V with an offset of 1.5 V is amplified to an output
peak-to-peak voltage of 1 V centered around 3.75 V for the following set

iDS

vDS
VS

V S

RL
------

1.5 V
1.6 V

1.4 V

4.2 V3.75 V3.2 V

vGS

F IGURE 7.34 Determining
signal amplification graphically.
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F IGURE 7.35 Signal
amplification.

4.2 V 

3.2 V 

3.75 V 

1.5 V 
1.6 V 

1.4 V 
t

v

vO

vIN

0

of parameters:

RL = 10 k� (7.22)

K = 1 mA / V2 (7.23)

VS = 5 V (7.24)

VT = 1 V. (7.25)

We note that the output will not be a perfect sinusoid like the input because
the amplifier is non-linear.

This concludes our discussion of the first part of large signal analysis for
a MOSFET based amplifier, namely, determining the relationship between the
input and output voltage. Before we move on to the second part of large
signal analysis, it is worth spending a few moments comparing the graphical
method and the analytical method. To be sure, either method can be used in
most situations. The analytical method is useful when simple expressions cap-
ture the behavior of the devices, as was the case for our MOSFET amplifier.
The graphical method discussed in this section, however, is often more accu-
rate when device characteristics measured from a physical device are available.
The discrete devices you will come across in the laboratory, for example, will
often come with data sheets containing their v i characteristics.

7.6.2 V A L I D I N P U T A N D O U T P U T V O L T A G E R A N G E S

Let us now answer the second question of large signal analysis, namely, what
are valid input and output voltage ranges for the amplifier under the saturation
discipline? These ranges will provide the outer voltage limits to input signals
such as those in Figure 7.35. The limits will also provide insights into the
nominal voltage about which the input signal should be centered, or, in other
words, how to choose the operating point of the amplifier.
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Valid voltage range The range of input voltages (and the resulting range of
output voltages) for which the MOSFET (or MOSFETs) in the circuit operate
in the saturation region.

The amplifier will amplify input signals when it is operating in this range
without clipping the signal or introducing significant amounts of distortion.
(Signal clipping occurs when the amplifier output cannot go beyond a certain
voltage or current level.)

Let us begin by making some general observations about the current and
voltage limits to build up our intuition. Observe that iDS can range only from
0 → VS/RL. The output voltage is VS when iDS is zero. iDS is zero for input
voltages less than VT. Similarly, the output voltage is 0 when the current is
VS/RL, and the input voltage is at some high value greater than VT. The limits
of saturation region operation lie somewhere within the iDS current limits of 0
and VS/RL.

The valid range of input voltages has a lower limit and an upper
limit. The lower limit on input voltages is easy to determine.

Lowest Valid Input Voltage

Notice from Figure 7.36 that the input voltage must be greater than VT for the
MOSFET to exit its cut off region. When the input voltage is VT, the MOSFET
exits its cutoff region and the output voltage of the amplifier is VS. When the
input voltage is equal to VT, any positive value of vDS will cause the MOSFET
to operate in its saturation region. Because we design the amplifier with VS > 0,
and since vDS = VS, the MOSFET will be in its saturation region. Since VT is
the lowest voltage for which the MOSFET is in saturation, we get

lowest valid input voltage = VT. (7.26)

The corresponding value of the output voltage is VS. The point labeled (x)
corresponding to the point (VT, VS) on the amplifier vIN versus vO transfer curve
in Figure 7.36 denotes the low end of the valid input voltage range.

VT vIN

vO

VS

45o

vO = vIN – VT

MOSFET is in
saturation within
this region (vO > vIN – VT   and  vIN ≥ VT)  

vO < vIN – VT  and  vIN ≥ VT

(x)

(y)

Triode region

F IGURE 7.36 The lowest valid
input voltage under the saturation
discipline is marked by the point
(x ), and the highest valid input
voltage under the saturation dis-
cipline is marked by the point ( y ).
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Highest Valid Input Voltage

Next, we will determine the highest value of the input voltage for which the
MOSFET satisfies the saturation discipline. Notice that the MOSFET goes into
the triode region when the output voltage vO falls one threshold drop below
the input voltage vIN. In other words, when

vO = vIN − VT.

Thus, the valid high input voltage is that value of vIN beyond which the
MOSFET enters the triode region.

To build intuition, we first determine graphically the input voltage for
which the output crosses into the triode region as follows. Referring to
Figure 7.36, the straight line drawn at 45◦ to the vIN axis and intersecting
it at VT reflects the set of points in the vIN versus vO plane for which

vO = vIN − VT

assuming, of course, that vIN and vO use the same scale. Thus, the point (y) at
which this 45o line intersects the vIN versus vO transfer curve marks the upper
limit of the valid input range.

We can also determine analytically the value of this upper limit by solving
for the intersection of the straight line in Figure 7.36 represented by

vO = vIN − VT (7.27)

and the transfer curve determined by Equation 7.14, which we rewrite here for
convenience:

vO = VS − K
(vIN − VT)2

2
RL. (7.28)

The intersection of these two curves is marked by the point (y) in Figure 7.36.
Substituting the expression for vO from Equation 7.27 into Equation 7.28
we get

vIN − VT = VS − K
(vIN − VT)2

2
RL. (7.29)

Rearranging terms, we have

RL
K

2
(vIN − VT)2 + (vIN − VT) − VS = 0. (7.30)

The value of vIN that solves Equation 7.30 is the highest value of vIN for which
the MOSFET operates in saturation.
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Solving for vIN − VT, we get

vIN − VT = −1 + √
1 + 2VSRLK

RLK
. (7.31)

In other words,

vIN = −1 + √
1 + 2VSRLK

RLK
+ VT. (7.32)

This value of vIN is the highest input voltage that satisfies the saturation
discipline and corresponds to the point marked (y) in Figure 7.36.

Summarizing, the maximum valid input voltage range is

VT → −1 + √
1 + 2VSRLK

RLK
+ VT

and the maximum valid output voltage range is

VS → −1 + √
1 + 2VSRLK

RLK
.

As illustrated in Figure 7.37, the MOSFET enters its cutoff region for input
voltages lower than VT, and goes into the triode region for input voltages
greater than

(
(−1 + √

1 + 2VSRLK ) / RLK
) + VT. The corresponding drain

current range is

0 → K

2
(vIN − VT)2

where we substitute
(
(−1 + √

1 + 2VSRLK ) / RLK
) + VT.

This completes the second step of large signal analysis.

vO

VS

Cutoff
region

Saturation
region

Triode
region

VT vIN

45o

F IGURE 7.37 Cutoff, saturation,
and triode regions of operation of
the MOSFET amplifier.
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e x a m p l e 7.9 v a l i d i n p u t a n d o u t p u t r a n g e s f o r

a m p l i f i e r Let us now determine the valid input voltage range and the
corresponding output voltage range for the amplifier given the following circuit
parameters:

RL = 10 k� (7.33)

K = 1 mA / V2 (7.34)

VS = 5 V (7.35)

VT = 1 V. (7.36)

From Equation 7.26, we know that VT = 1 V is at the low end of the valid input
range. The corresponding value of vO is VS = 5 V and the current iD is 0.

Next, to obtain the highest value of the input voltage for saturation region operation of
the MOSFET amplifier we substitute the values of these parameters in Equation 7.32.

Highest valid input voltage = VT + −1 + √
1 + 2VSRLK

RLK

= 1 + −1 +
√

1 + 2 × 5 × 10 × 103 × 10−3

10 × 103 × 10−3

≈ 1.9 V.

In other words, 1.9 V is the highest value of the input voltage that ensures satura-
tion region operation of the amplifier. We can also solve for the corresponding values
of vO and iD from Equations 7.27 and 7.8 as follows:

vO = vIN − VT = 1.9 − 1 = 0.9 V

iD = K

2
(vIN − VT)2 = 0.41 mA.

In summary, the maximum valid range for the input voltage is

1 V → 1.9 V

and the maximum valid range for the output voltage is

5 V → 0.9 V.

The corresponding drain current range is

0 mA → 0.41 mA
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iDS

0.5 mA

5 V

vGS = 1.9 V

vGS = 1 V

(0.9 V, 0.41 mA)

(5 V,  0 mA) 

0 vDS

F IGURE 7.38 Valid input and
output voltage ranges.

These values are plotted on a graph of the amplifier load line and the MOSFET device
characteristics in Figure 7.38.

e x a m p l e 7.10 v a l i d r a n g e s f o r t h e s o u r c e

f o l l o w e r c i r c u i t Let us derive the valid operating ranges for the source
follower circuit shown earlier in Figure 7.24, and repeated here in Figure 7.39 for
convenience. Assume that VS = 10 V.

Recall that the valid input voltage range is defined as the range of input voltages for
which the MOSFET operates under the saturation discipline. Two conditions must be
met for the MOSFET to remain in saturation:

vGS ≥ VT (7.37)

and

+
- vOUT

VS

vIN
+

-

iD
Equivalent
SCS model

+
- vOUT

VS

vIN
+

-

G D

S

(saturation)

K = 2 mA/V2 
VT = 1 V

1 kΩ

1 kΩ

F IGURE 7.39 Source-follower
circuit.

vDS ≥ vGS − VT. (7.38)

The first condition requires that vIN − vOUT ≥ VT, or,

vIN ≥ vOUT + VT.

Since the minimum value of vOUT is 0 V, the minimum value of vIN for saturation
region MOSFET operation is given by

vIN = VT = 1 V.

The second condition requires that

vDS ≥ vGS − VT,
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which implies that

VS − vOUT ≥ vIN − vOUT − VT.

Rearranging terms and simplifying, we obtain

vIN ≤ VS + VT.

In other words, the maximum value of vIN is given by

vIN = 10 V + 1 V = 11 V.

Summarizing, the valid input range is given by

1 V → vIN → 11 V.

The corresponding output voltage range is easily determined. At the low end of the
valid range, we know that vOUT = 0 for vIN = 1 V. At the high end of the valid range,
vOUT is determined by writing the node equation for the output node and substituting
vIN = 11 V:

iD = vOUT

1 × 103
.

Substituting for iD using the SCS model for the MOSFET we get

2 × 10−3 (11 V − 1 V − vOUT)2

2
= vOUT

1 × 103
.

Simplifying, we get

v2
OUT − 21vOUT + 100 = 0.

The two roots of the equation are 13.7 and 7.3. We pick the smaller of the two roots,
since, for saturation operation, vOUT must be at least one VT below the input voltage.
Thus,

vOUT = 7.3 V.

The valid output voltage range is given by

0 V → vOUT → 7.3 V.
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The corresponding valid current range is given by dividing the output voltage extremes
by the resistance 1 k�:

0/103 → iD → 7.3/103

or

0 mA → iD → 7.3 mA.

7.6.3 A L T E R N A T I V E M E T H O D F O R V A L I D I N P U T A N D
O U T P U T V O L T A G E R A N G E S

Section 7.6.2 showed that we could determine the valid range of amplifier
operation under the saturation discipline using the transfer curve of the amplifier.
Alternatively, we can solve for the same limits graphically from the load-line
and the MOSFET device characteristics as illustrated in Figure 7.40.

Notice that under the saturation discipline the lowest valid value of the
output voltage vO is identified by the point of intersection of the constraint
curve separating the triode and saturation regions given by

iDS = K

2
v 2

DS (7.39)

and the load line given by

iDS = VS

RL
− vDS

RL
. (7.40)

vGS1

vGS2

vGS3

vGS4

vGS5

iDS

vDSVS

VS

RL
------ vGS6

i D
S

K 2----
v D

S
2

=

(y)

(x)

Saturation region
Triode
region

0
vGS = VT

F IGURE 7.40 Determining valid
input and output voltage ranges
from a graph of the amplifier load
line and the MOSFET device
characteristics.
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The intersection point is marked (y) in Figure 7.40. Recall that the current iDS
and the output voltage vO (which, in our amplifier circuit, is the same as vDS)
is constrained to the load line by KVL. Substituting for iDS from Equation 7.39
into 7.40, rearranging terms, and multiplying out by RL, we get

RL
K

2
v 2

DS + vDS − VS = 0. (7.41)

Observe that Equation 7.41 is the same as Equation 7.30 with vDS in place of
vIN − VT. The two equations are consistent because

vDS = vIN − VT (7.42)

at the point where the load line intersects the boundary of the saturation region.
The positive solution to Equation 7.41 gives us the value of vDS at the

point of intersection:

vDS = −1 + √
1 + 2VSRLK

RLK
. (7.43)

This value of vDS is the desired lowest value of vO for saturation region
operation of the MOSFET amplifier. The corresponding value of the high-
est valid input voltage can be obtained from Equation 7.42, and is given
by vIN = vO + VT. In other words, at the point (y) in Figure 7.40,
vIN is given by

(
(−1 + √

1 + 2VSRLK ) / RLK
) + VT, and vO is given by(−1 + √

1 + 2VSRLK
)

/ RLK.
Next, we will determine the lowest value of the valid input voltage denoted

by the point marked (x) in Figure 7.40. This point is the intersection of the load
line and the iDS versus vDS line for which vGS = VT. At this point, vO = vDS =
VS and vIN = vGS = VT.

This completes our discussion of large signal analysis for the
MOSFET amplifier. Large signal analysis determines the input-output trans-
fer curve of the amplifier and the limits on the input voltage for which the
amplifier operated under the saturation discipline. Specifically, the large signal
analysis of an amplifier entails the following steps:

1. Derive the relationship between vIN and vO under the saturation
discipline. Note that in general this might be a linear or fully nonlinear
analysis.

2. Find the valid input voltage range and the valid output voltage range for
saturation operation. The limits of the valid ranges occur when the
MOSFET enters into a cutoff region or a triode region. In complicated
circuits, this step may require numerical analysis.
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Among other things, the limits determined in large signal analysis come in
handy in determining a reasonable operating point for the amplifier. This will
be the next topic of discussion.

7.7 O P E R A T I N G P O I N T S E L E C T I O N

We are often interested in amplifying time-varying signals. Because the amplifier
turns off for input voltages less than VT, it is important to add an appropriate
DC offset voltage to the time-varying input signal so that the amplifier remains
in the saturation region for the entire range of input voltage variation. This
input DC offset voltage defines the operating point of the amplifier. The DC
offset must be chosen carefully, for if it is too large, the amplifier will be pushed
into the triode region, and if it is too low, the amplifier will slide into the cutoff
region. How do we choose this operating point?

Time-varying signals such as those in Figure 7.35 are characterized by their
peak-to-peak voltage and their DC offset. For example, the sinusoidal signal
vIN in Figure 7.35 has a peak-to-peak value of 0.2 V and a DC offset of 1.5 V.
Since the MOS amplifier is nonlinear, we define the output offset as the value
of vO when the DC input offset voltage is the only signal applied at the input.
Although the time-varying portion of the signal is of interest to us, as discussed
in Section 7.5.1, the DC offset is provided simply to keep the amplifier operating
in its saturation region.

The input offset voltage is also called the input bias voltage or the input
operating voltage. The corresponding output voltage and the output current
define the output operating point of the amplifier. Together, the input bias
voltage, and the corresponding output voltage and the output current, define
the operating point of the amplifier. We denote the operating point values of
vIN, vO, and iD as VIN, VO, and ID, respectively. As illustrated in Figure 7.41,

vGS1

vGS2

vGS3

vGS4

vGS5

iDS

vDSVS

V S

RL
------ vGS6

(y)

(x)
0

Valid range for
operating point

VO

VINID

F IGURE 7.41 Valid range for
operating point under the
saturation discipline.



366 C H A P T E R S E V E N t h e m o s f e t a m p l i f i e r

the operating point can be legally situated anywhere along the load line in the
valid range between the points (x) and (y).

There are several factors that can govern our choice of the operating point.
For example, the operating point dictates the maximum dynamic range of the
input signal for both positive and negative excursions for which the MOSFET
operates in saturation. As can be seen from Equation 7.15, the operating point
value of the input voltage also governs the signal gain of the amplifier. This
section will focus on selecting an operating point based on maximizing the
useful input signal range. We will have more to say about the relationship
between the gain of the amplifier and its operating point in Section 8.2.3 in
Chapter 8.

Let us assume that the input signal has symmetric peak-to-peak swings
about the DC offset. In other words, we will assume an equal magnitude for
both the positive and negative excursions of the time-varying signal from the
DC offset, as is the case for the input signal vIN in Figure 7.35 (but not for the
output signal vO). To obtain maximum useful input signal range, we might
choose the input bias voltage VIN to be at the center of the valid range of input
voltages for the amplifier, as illustrated in Figure 7.42.

Accordingly, for the amplifier parameters that we have been using thus far,

RL = 10 k� (7.44)

K = 1 mA / V2 (7.45)

VS = 5 V (7.46)

VT = 1 V (7.47)

because our amplifier operates under the saturation discipline for input voltages
in the range 1 V → 1.9 V, we might choose an input operating point voltage
at the center of this range, namely VIN = 1.45 V. This choice is illustrated in

F IGURE 7.42 Selection of the
input operating point.

VT vIN

vO

VS

vO = vIN – VT

vO < vIN – VT

vO > vIN – VT

VIN

VO

(x)

(y)

Valid
output
range

Valid input
     range

0
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vGS = 1.9 V

vGS = 1 V

0.41 mA

0.9 V 

vGS = 1.45 V0.1 mA

4 V 

Operating point: (4 V,  0.1 mA)
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F IGURE 7.43 Operating point
and valid input and output voltage
ranges.
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vO
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vO vIN VT–=

1.45 V

4 V

(x)

(y)

0.45 V

0.9 V

 1.9 V

(1.45 V,  4 V)

0

0 .45 V

F IGURE 7.44 Input operating
point.

Figure 7.43, which is an iDS versus vDS graph, and in Figure 7.44, which shows
the corresponding vIN versus vOUT graph. As we expect, the output will vary
between 0.9 V and 5 V as the input varies between 1 V and 1.9 V.

Let us take a closer look at the behavior of the amplifier for the given input
bias voltage by determining the corresponding output operating point. For a
given input operating point voltage VIN, we can determine the operating point
output voltage VO from Equation 7.14, and the operating point output current
ID from the MOSFET SCS model given in Equation 7.8. Substituting for the
circuit parameters in Equation 7.14 we get

VO = VS − K
(VIN − VT)2

2
RL

= 5 − 10−3 (1.45 − 1)2

2
104

= 4 V.
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From Equation 7.8 we get ID as

ID = K(VIN − VT)2

2

= 10−3(1.45 − 1)2

2

= 0.1 mA.

Thus the operating point for the amplifier is defined by

VIN = 1.45 V

VO = 4 V

ID = 0.1 mA.

This operating point maximizes the peak-to-peak input voltage swing for which
the amplifier operates under the saturation discipline.

The operating point for our amplifier, along with the valid input and output
voltage ranges, is shown in Figure 7.43. For this choice of the operating point,
the maximum input voltage swing for positive excursions is 1.45 V → 1.9 V,
and the maximum input voltage swing for negative excursions is 1.45 V → 1 V.
The corresponding output voltage swings are 4 V → 0.9 V and 4 V → 5 V.

Although we chose the input operating point to be at the center of the
valid input range, notice the asymmetry of the output voltage range about
the output operating voltage. The asymmetry arises from the nonlinearity of
the gain of the MOSFET amplifier. The next chapter will discuss an approach
by which we can treat MOSFET amplifiers as linear amplifiers. Depending on
our desired input and output voltage swings, and also amplifier gain, we can
also choose other operating points for the amplifier. Other criteria for choosing
the operating point might include concerns of stability and power dissipation,
but these are beyond the scope of our discussion.

e x a m p l e 7.11 o p e r a t i n g p o i n t f o r t h e m o s f e t

s o u r c e f o l l o w e r c i r c u i t Modify the source follower circuit from
Figure 7.24 to include an input bias voltage that maximizes input voltage swing. Assume
that VS = 10 V.

Figure 7.45 shows the biased circuit, where VB is the bias voltage and vA is the input
signal. The total signal, vIN, is the sum of the offset voltage and the actual input. Recall
that the input offset voltage (VB) is applied to boost the input signal (vA) in a way that
the MOSFET remains in saturation for the maximum positive and negative excursions
of the input signal.
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F IGURE 7.45 Source-follower
circuit with input bias.

From Example 7.10, we know that the valid range for the total input vIN is given by

1 V → vIN → 11 V.

We can obtain the maximum input swing under saturation operation by biasing the
input at the midpoint of the input valid range. In other words, we choose

VB = 6 V.

This choice of input offset voltage allows a peak-to-peak swing of 10 V for the input
signal vA.

e x a m p l e 7.12 l a r g e s i g n a l a n a l y s i s o f a n o t h e r

m o s f e t a m p l i f i e r The circuit shown in Figure 7.46 is a MOSFET ampli-
fier. We wish to determine the large-signal input-output behavior of this amplifier. We
also wish to determine the range of vIN over which the MOSFET operation remains in
the saturation region. In this example, we will assume that the MOSFET is characterized
by VT = 1 V and K = 1 mA/V2.

Resistors R1 and R2 form a voltage divider from VS that establishes the constant bias
voltage VB at the gate of the MOSFET. That bias voltage is VB = 1.6 V.

+

-

vOUT

vIN
+
-

+
- +

-
VB

vGS

+

-

R1 = 84 kΩ

R2 = 16 kΩ

-

+

vDS

R3 = 20 kΩ

VS = 10 V

F IGURE 7.46 Another MOSFET
amplifier with the input connected
to the source, and biasing provided
by a voltage divider formed by
resistors R1 and R2.
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Next, applying KVL yields vGS = VB − vIN. From this it follows that

vOUT = VS − R3K

2
(VB − vIN − VT)2,

which evaluates to

vOUT = 10 − 10 × (0.6 − vIN)2.

Thus, for example, for vIN = 0 V, the output vOUT = 6.4 V.

We now determine the range of vIN over which the MOSFET operation remains in the
saturation region. To do so, the MOSFET voltages must satisfy vDS ≥ vGS − VT ≥ 0.
For the amplifier shown in Figure 7.46, this is equivalent to

vOUT − vIN ≥ VB − vIN − VT ≥ 0.

By violating the first inequality, the MOSFET operation enters its triode region, and
by violating the second inequality, the MOSFET operation enters its cutoff region.
Numerically, this evaluates to

−0.3695 V ≤ vIN ≤ 0.6 V,

which corresponds to

0.6 V ≤ vOUT ≤ 10 V.

Thus, note that the MOSFET operation can remain saturated for both positive and
negative values of vIN.

e x a m p l e 7.13 b i p o l a r j u n c t i o n t r a n s i s t o r ( b j t )

Figure 7.47a depicts another three-terminal device, called the bipolar junction transistor
(BJT), that is in common use in VLSI circuits. A BJT has three terminals called the base
(B), the collector (C), and the emitter (E). Figure 7.47b marks the device with its relevant
voltage and current parameters.vCE

+

-

B

C

E

B

C

E

iC

iB

iEvBE

+

-

(a)

(b)

F IGURE 7.47 A bipolar junction
transistor.

In this example, we will compare the actual characteristics of the BJT with those predicted
by a simple piecewise linear model. The actual characteristics of a BJT (iC versus vCE for
various values of iB) are shown in Figure 7.48. The horizontal nature of the iC versus vCE

curves indicates that the device operates like a dependent current source when the base
current iB > 0 and the collector-to-emitter voltage (vCE) is greater than approximately
0.2 V. The current supplied by the current source is typically about 100 times the base
current. Although these curves are qualitatively similar to those of a MOSFET, there
are also some differences. First, notice that we have chosen the BJT’s base current iB
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F IGURE 7.48 Actual character-
istic curves for a bipolar junction
transistor.

as our control parameter (the control parameter was the gate-to-source voltage for the
MOSFET, and the gate current was zero). Second, the collector current is linearly related
to the base current (when the MOSFET operated as a current source, its drain current
was quadratically related to the gate-to-source voltage).

The BJT characteristics show three regions of operation:

1. When iB > 0 and vCE > 0.2 V, the BJT is said to be in the active region of
operation. In this region, the horizontal collector current curves display a current-
source-like behavior. As we shall see momentarily, the active region will be the
predominant region of interest for analog circuit designs.

2. When iB = 0, the BJT is said to be in the cutoff region.

3. Finally, when iB > 0 and vCE ≤ 0.2 V, (that is, the region to the left of the vertical
dashed line in Figure 7.48), the collector current drops sharply, and the BJT is said
to be in the saturation region.4

Figure 7.49b shows a model for the BJT containing a current-controlled current source
and a pair of diodes (a base-emitter diode and a base-collector diode). The current
supplied by the dependent source is β times iB′ . The parameter β is a constant with

4. The saturation region in BJTs is completely unrelated to the saturation region in MOSFETs, and
in fact, normal operation of BJTs attempts to avoid this region. This duplication of terms one
representing the favored region of operation in MOSFETs, and the other representing an avoided
region of operation in BJTs can be the source of confusion, but, unfortunately, has become the
norm in circuit parlance.
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a typical value of around 100. (We show shortly that the base current iB = iB′ in the
region of BJT operation that is of interest to us.)

Although we can analyze circuits directly with the model in Figure 7.49b, our analysisvCE
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B
biB′

E
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0.4 V
+ -
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F IGURE 7.49 (a) A bipolar
junction transistor; (b) a model for
the BJT; (c) a piecewise-linear
model for the BJT.

can be significantly simplified by using simple piecewise-linear models for the diodes.
Figure 7.49c depicts such a piecewise-linear model for the BJT, in which we have replaced
the diodes with simple piecewise-linear diode models comprising an ideal diode in series
with a voltage source (from Figure 4.33a). In the model in Figure 7.49c, the dependent
current source models the horizontal active region curves of the BJT.

The states of the two diodes (both ON, both OFF, and one OFF and one ON) result in
distinct piecewise linear regions of BJT operation. Both diodes (in Figure 7.49c) in their
OFF state model cutoff: when the base current iB is zero, both the diodes are OFF, and
so is the current source. Figure 7.50a depicts the corresponding BJT model in the cutoff
region. Observe that in the cutoff region

iB = iB′

because the base-to-collector diode is off.

When iB > 0 and

vCE > vBE − 0.4 V (7.48)

the emitter diode is ON and the collector diode is OFF, and the active region results.
In this region of operation, as illustrated in the active region BJT model in Figure 7.50b,
the ideal diode between the base and emitter turns ON and appears as a short circuit.
The 0.6-V source models the corresponding 0.6-V diode drop. Observe further that

iB = iB′

in the active region because the base-to-collector diode is off. In the active region, BJTs
display a more-or-less constant voltage drop of about 0.6 V between their base and
emitter terminals when the base current iB > 0 (a fact not evident from the characteristic
curves in Figure 7.48).

The condition vCE > vBE − 0.4 V ensures that the base-collector diode stays OFF. The
condition states that the collector voltage must not fall below the base voltage by more
than 0.4 V, because if it did, the base-collector diode would turn ON.5 In the active

5. Although the constraint for active-region operation

vCE > vBE − 0.4 V.

is equivalent to the simpler constraints

vBC < 0.4 V or vCE > 0.2 V.
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region, the dependent current source amplifies the current supplied by the base by a
factor β , so that the collector current becomes

C

B

E
(c) Saturation region
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0.6 V+
-

0.4 V
+ -
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vCE > vBE − 0.4 (or, vCE > 0.2)

vCE = vBE − 0.4 (or, vCE = 0.2)

F IGURE 7.50 Bipolar junction
transistor models in various regions
of operation.

iC = βiB

(recall, iB = iB′ in the active region), and the emitter current is

iE = iB(β + 1).

In the active region, the piecewise-linear model for the BJT can be summarized
in words as

iC =
{

βiB for iB > 0 and vCE > vBE − 0.4 V

0 otherwise.
(7.49)

The base-to-collector diode in Figure 7.49c helps model the onset of saturation. Speci-
fically, saturation results when the both the base-to-collector and the base-to-emitter
diodes are ON. When iB > 0, and the condition implied by Equation 7.48 is violated,
that is, if

vCE = vBE − 0.4 V

or equivalently, if

vBC = 0.4 V or vCE = 0.2 V

then the base-to-collector diode also turns ON, and the BJT saturation region results.
The saturation region model for the BJT is shown in Figure 7.50c. In the BJT’s saturation
region, the BJT model stops looking like a current source, and instead displays a pair of
very low resistance paths from the base into the collector and emitter (due to the pair of
forward-biased diodes). Because of their low resistance, the path currents are determined
by external circuit constraints. By summing voltages along the path E, B, C, we see that
the collector-to-emitter voltage is pinned at 0.2 V, irrespective of the current iC.

Our model is not yet complete. There is one additional state in which the emitter
diode is OFF and the collector diode is ON, as can happen when the base-to-collector

as can be seen by applying the voltage difference form of KVL to the model in Figure 7.49c, we use
the former because, by a quirk of chance, it is reminiscent of our MOSFET drain-to-gate voltage
constraint (namely,

vDS > vGS − VT

for saturation operation of the MOSFET.)
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F IGURE 7.51 Characteristic
curves for a bipolar junction
transistor as predicted by the
piecewise linear model.
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voltage is 0.4 V, and the base-to-emitter voltage is less than 0.6 V. This region of
operation is called the reverse injection region. In this region, the behavior of the BJT is
that of a forward biased diode between the base and the collector, and an open circuit
at the emitter.

For simplicity, our introductory treatment will choose not to study both the reverse
injection and the saturation regions. Accordingly, our BJT circuits will all be designed to
avoid completely these regions of behavior.

In the rest of this example, we will discuss the piecewise-linear model for the BJT pre-
sented in Figure 7.49c and compare its predictions with the measured characteristics
(iC versus vCE for various values of iB) shown in Figure 7.48. We will plot the
characteristics predicted by the piecewise-linear model assuming β = 100.

To plot the characteristics, we identify BJT behavior in the two piecewise-linear regions
of operation that are of interest to us, and shown in Figure 7.50: cutoff and active.
We first observe that iC is zero when the BJT is in cutoff, that is, when iB = 0 (see
Figure 7.50a). The curve labeled ‘‘Cutoff region’’ in Figure 7.51 depicts this situation.

Next, when iB > 0 and vCE > vBE −0.4 V (or, equivalently, vCE > 0.2 V), the collector
current is a constant at β times the base current (Figure 7.50b). In the iC versus vCE plot
in Figure 7.51, these constant current curves appear as horizontal lines. Because β is a
constant, the iC versus iB relationship is linear, and so the lines are equally spaced for
equal increments in iB.

Finally, when iB > 0 and vCE = vBE − 0.4 V (or, equivalently, when vCE = 0.2 V), the
saturation region model applies (Figure 7.50c). vCE is correctly shown as being pinned at
0.2 V. The vertical line at vCE = 0.2 V corresponding to iC indicates a short-circuit-like
behavior in which the collector current is limited only by external circuit constraints.

The similarity of the curves in Figures 7.48 and 7.51 show that our simple piecewise-linear
model is quite a good match for the behavior of the BJT.
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As a final thought, although our piecewise linear model for the BJT seems a bit com-
plicated at first glance, analog circuits are commonly designed such that BJT always

vCE
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-

C

B
biB

E

B

C

E

iC
iB

iEvBE

+

-

(a)

(b)

vCE

+

-

iC

iB

iE

vBE

+

-

0.6 V+
-

F IGURE 7.52 A simpler BJT
model suitable for the cutoff and
active regions.

operates in its active region, and the base-to-collector diode is always OFF.6 We can
achieve the desired effect by ensuring that the base-to-collector voltage never exceeds
0.4 V during normal operation (that is, vBC < 0.4 V, or equivalently, vCE > vBE−0.4 V).
This assumption will be made in all the BJT circuits in this book, so the collector diode
can be safely ignored. The resulting, simplified BJT model is depicted in Figure 7.52.

e x a m p l e 7.14 b j t c i r c u i t p a r a m e t e r s Figure 7.53 shows
measured values of iB and vBE for a BJT within a circuit. Find the corresponding values
of vBE, iC, and iE using the BJT model containing two ideal diodes and a voltage source
(Figure 7.49c).

Since iB > 0 and vCE > 0.2 V, it immediately follows that the BJT operates in its active
region. In other words, the emitter diode in Figure 7.49c must be ON, and the collector
diode must be OFF (see the active region BJT model in Figure 7.50b). Since the emitter
diode is ON, it appears as a short circuit, and so

vBE = 0.6 V.

Based on the active region model in Figure 7.50b, since iB = 0.01 mA,

iC = βiB = 1 mA.

Summing the currents into the base and collector terminals, we get

iE = iB + iC = 1.01 mA.

B

C

E

Circuit

0.01 mA

+

-

5 V b = 100

iE

iC

+

-
vBE

F IGURE 7.53 A bipolar junction
transistor in a circuit.

6. This design choice is not unlike the one we made with MOSFETs, where circuit parameters
were chosen so that the MOSFET always operated in saturation.
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e x a m p l e 7.15 a b j t a m p l i f i e r Figure 7.54 shows an amplifier cir-
cuit based on a BJT. This BJT amplifier configuration is called a common emitter amplifier
since the emitter terminal of the BJT is common across the input and output ports.

vIN

RL

VS

vO

B C

E+
-

RI +

-

F IGURE 7.54 A BJT amplifier.

Using the piecewise-linear model for the BJT, determine the relationship between vO

and vIN, assuming that the BJT device is operating in its active region. Using this relation,
determine the values of vO for vIN = 1 V, 1.1 V, and 1.2 V, given that RI = 100 k�,
RL = 10 k�, β = 100, and VS = 10 V.

Figure 7.55 shows the equivalent circuit for the amplifier in which the BJT has been
replaced with its piecewise-linear model. Notice we can safely ignore the collector diode
and use the simple BJT model in Figure 7.52 since we are told that the BJT is operating in
its active region. Figure 7.56 further shows the active region subcircuit for the amplifier.

The relationship between vO and vIN can be determined in a few short steps from the
active region subcircuit. The current through RI is simply the voltage difference across
the resistor divided by the resistance:

iB = vIN − 0.6

RI
. (7.50)

Once iB is known, we can immediately determine the output voltage by writing the
node equation for the node with voltage vO as follows:

VS − vO

RL
= βiB.

Substituting for iB from Equation 7.50 and simplifying, we obtain the following relation
between vO and vIN:

vO = VS − (vIN − 0.6)

RI
βRL. (7.51)
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F IGURE 7.55 Equivalent circuit for the BJT amplifier.
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F IGURE 7.56 Active region subcircuit for the BJT amplifier.
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Next, substituting RI = 100 k�, RL = 10 k�, β = 100, and VS = 10 V, we obtain

vO = 16 − 10vIN.

For vIN = 1 V, 1.1 V and 1.2 V, vO is 6 V, 5 V and 4 V, respectively.

As a further exercise, we will go ahead and confirm that the BJT is indeed in its active
region for the highest input voltage applied. (Remember that the higher the base voltage
the more likely it is that the collector diode in Figure 7.49c is turned ON. Thus, we need
check only for the highest input voltage.)

The highest input voltage considered in this example is 1.2 V. For 1.2 V, the collec-
tor voltage vO = 4 V. Since, in our circuit, vO = vCE = 4 V, the base-to-collector
voltage is

vBC = vBE − vCE = 0.6 − 4 = −3.4 V.

Since the voltage vBC across the collector diode in Figure 7.49c is −3.4 V, which is less
than 0.4 V, the collector diode is going to be OFF. (Equivalently, since vCE > 0.2 V, we
can directly say that that the collector diode is OFF.) We have thus confirmed that the
BJT is in its active region.

e x a m p l e 7.16 l a r g e s i g n a l a n a l y s i s o f t h e b j t

a m p l i f i e r Perform a large signal analysis of the BJT amplifier shown in
Figure 7.54. Assume that RI = 100 k�, RL = 10 k�, β = 100, and VS = 10 V.

For BJT circuits with input vIN and output vO, large signal analysis attempts to answer
the following questions:

1. What is the relationship between vO and vIN in the active region?

2. What is the range of valid input values for active region operation of the BJT?
What is the corresponding range of output values?

From Equation 7.51 in Example 7.15, we know that the relation between vO and vIN

for the BJT amplifier is

vO = VS − (vIN − 0.6)

RI
βRL,

thereby completing the first step of large signal analysis.

Next, let us determine the range of input values for which the BJT operates in its active
region. To do so, we will first draw a graph of vO versus vIN to obtain insight into the
behavior of the amplifier for various values of the input voltage. When vIN = 0, we see
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F IGURE 7.57 Cutoff region subcircuit for the BJT amplifier.

0.6 V vIN

vO
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vCE = vBE – 0.4 V

0.2 V
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BJT is in saturation

vCE > vBE – 0.4 V

BJT is in its cutoff region

F IGURE 7.58 vO versus vIN for the BJT amplifier.

that iB = 0, and so the BJT is in cutoff. The cutoff region subcircuit for the BJT amplifier
is shown in Figure 7.57. In cutoff, both the diode and current sources are replaced by
open circuits. It is easy to see from the circuit in Figure 7.57 that

vO = VS.

Inspection of the amplifier equivalent circuit in Figure 7.55 indicates that the input cur-
rent iB will be zero (and the ideal diode will remain OFF ) as long as vIN < 0.6. Thus
the output vO will remain at VS for vIN < 0.6. This fact is graphed in Figure 7.58 as the
horizontal straight line at voltage VS for vIN < 0.6.

When vIN exceeds 0.6 V by a small amount,7 the ideal diode turns ON, and current
begins to flow through the resistor RI. In this situation, the active region equivalent
circuit in Figure 7.56 results. In the active region, vO is given by

vO = VS − (vIN − 0.6)

RI
βRL. (7.52)

This relationship appears as a straight line with slope −βRL/RI in the vO versus vIN

graph and is plotted as such in Figure 7.58. Thus,

vIN = 0.6 V

7. If vIN exceeds 0.6 V by a large amount, the BJT might enter saturation. We will determine this
saturation region boundary momentarily.
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and

iB = 0

are the input parameters at the lower boundary of the active region.

The vO versus vIN relationship in the active region shows that vO decreases linearly
as vIN increases. The linear relationship applies as long as the BJT remains in its active
region of operation. The upper boundary (with respect to the input voltage) of the
active region is reached when vIN becomes large, and vO becomes small enough that
the condition

vCE > vBE − 0.4 V

is no longer met. Since vCE = vO and vBE is pinned at 0.6 V (from the active region
amplifier subcircuit in Figure 7.56), vO reaches the boundary point of the active region
when

vO = 0.6 − 0.4 = 0.2 V.

The corresponding value of iC is given by

iC = VS − 0.2 V

RL
= 980 µA.

The input voltage corresponding to this output voltage can be found by solving for vIN

from Equation 7.52 as follows

0.2 = 10 − vIN − 0.6 V

100k
100 × 10 k�.

Solving, we get

vIN = 1.58 V.

This upper boundary of the active region (with respect to vIN) is marked in Figure 7.58.
The corresponding value of iB can be found from

iB = vIN − 0.6

RI
= 9.8 µA.

Once the BJT exits the active region and enters the BJT saturation region (for vIN ≥
1.58 V), the saturation model for the BJT in Figure 7.50c applies and the equivalent



380 C H A P T E R S E V E N t h e m o s f e t a m p l i f i e r

F IGURE 7.59 Saturation region
subcircuit for the BJT amplifier.
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subcircuit in Figure 7.59 best models the saturation region operation of the amplifier.
By a straightforward application of KVL, we find that vO is given by

vO = 0.6 − 0.4 = 0.2 V.

In other words, vO is pinned at 0.2 V by the BJT in its saturation region when the input
voltage vIN exceeds 1.58 V. This fact is plotted as a horizontal line at vO = 0.2 V in
Figure 7.58.

To summarize, the limits on the inputs for active region operation are given by

0.6 V < vIN < 1.58 V

and

0 < iB < 9.8 µA.

The corresponding limits on the outputs are given by

10 V > vO > 0.2 V

and using iC = βiB,

980 µA > iC > 0 A.

e x a m p l e 7.17 s e l e c t i n g a n o p e r a t i n g p o i n t f o r

t h e b j t a m p l i f i e r Choose an operating point for the amplifier analyzed
in Example 7.16 to maximize the input voltage swing. What is the corresponding output

RL

VS

vO

B C

E

RI +

-

+
-vA

+
-VB{vIN

F IGURE 7.60 BJT amplifier
showing the input bias voltage
explicitly.

operating point and the output voltage swing? Is the output swing symmetric about the
output operating point?

The BJT amplifier circuit in Figure 7.54 is redrawn in Figure 7.60 to show explicitly that
the input voltage vIN is the sum of a bias voltage VB and the signal vA. Our first task
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is to find the input operating point (VB, IB). We do so by reviewing the results from
Example 7.16.

From Example 7.16, we know that the valid range for the total input voltage vIN to
ensure active region operation is given by

0.6 V < vIN < 1.58 V.

The corresponding range for the input current is

0 < iB < 9.8 µA.

We can obtain the maximum input swing for active region operation by biasing the
input at the midpoint of the input valid range. In other words, we choose

VB = 1.09 V

and

IB = 4.9 µA.

The corresponding value for the output operating point voltage VO can be obtained
from Equation 7.52 as

VO = VS − (VB − 0.6 V )

RI
βRL = 5.1 V.

Similarly, the value of the output operating point current IC is given by

IC = βIB = 490 µA.

We know from Example 7.16, that the output voltage swing for active region operation
is given by

10 V > vO > 0.2 V

Our output operating point of 5.1 V falls in the center of this range, and so the output
swing is symmetric about the 5.1 V operating point. The symmetry results directly from
the linearity of the BJT in its active region. Contrast this result with that for the MOSFET
(Section 7.7), in which the output swing was asymmetric due to the MOSFET’s nonlinear
behavior in its saturation region.

W W W e x a m p l e 7.18 b e t t e r b j t m o d e l s
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e x a m p l e 7.19 l a r g e s i g n a l a n a l y s i s o f a d i f f e r -

e n t i a l a m p l i f i e r This example studies the differential amplifier shown in
Figure 7.62. Differential amplifiers are widely used in analog signal processing, and are
the heart of operational amplifiers. The applications of differential amplifiers are best
discussed in the context of small signal analysis, and so we defer a detailed discussion of
the applications until Chapter 8. Furthermore, a complete operational amplifier circuit
will be studied in detail in Example 7.21, and operational amplifier applications will be
discussed in Chapter 15. So for the present purposes, we will simply treat the amplifier
in Figure 7.62 as yet another example of a MOSFET amplifier.

The amplifier in Figure 7.62 has two input voltages, vIN1 and vIN2; and one output
voltage, vOUT. The goal of this exercise is therefore to determine vOUT as a function of
vIN1 and vIN2. The VS and IS sources serve only to bias the amplifier, and are assumed
to be constant.

To begin the analysis, we assume that both MOSFETs are identical, and that
both MOSFETs operate in their saturation regions. Therefore,

iD1 = K

2
(vGS1 − VT)2 (7.53)

iD2 = K

2
(vGS2 − VT)2. (7.54)

Further, from KCL applied to the node at which the two MOSFETs and the
current source join,

iD1 + iD2 = IS, (7.55)

and from KVL applied to the loop around the two MOSFETs through ground,

vIN1 − vGS1 + vGS2 − vIN2 = 0. (7.56)

F IGURE 7.62 A differential
amplifier.
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Finally, at the output of the amplifier,

vOUT = VS − RiD2, (7.57)

where it has been assumed that iOUT = 0. Equations 7.53 through 7.57 may now be
solved to determine vOUT as a function of vIN1 and vIN2. We will do so in two steps.
First, Equations 7.53 through 7.56 will be solved to determine iD2 as a function of vIN1

and vIN2. Then, Equation 7.57 will be used to determine vOUT from iD2.

To determine iD2, first substitute Equation 7.53 into Equation 7.55 to eliminate iD1,
then substitute Equation 7.56 into the result to eliminate vGS1, and finally substitute
Equation 7.54 into the result to eliminate vGS2. This yields

IS = iD2 + K

2


vIN1 − vIN2 +

√
2iD2

K




2

. (7.58)

Equation 7.58 is a quadratic equation in
√

2iD2/K and can be rewritten as

2




√
2iD2

K




2

+ 2(vIN1 − vIN2)

√
2iD2

K
+ (vIN1 − vIN2)

2 − 2IS
K

. (7.59)

From Equations 7.58 and 7.59 it is apparent that iD2 depends only on the difference
voltage vIN1 − vIN2 when both MOSFETs operate in their saturation regions. That is
why the amplifier is referred to as a differential amplifier.

The solution to Equation 7.59 is

iD2 = K

8




√
4IS
K

− (vIN1 − vIN2)2 − vIN1 + vIN2




2

. (7.60)

Note that the positive sign in the solution to Equation 7.59 is chosen in Equation
7.60 because

√
2iD2/K must be positive. Finally, Equation 7.60 can be substituted into

Equation 7.57 to yield

vOUT = VS − RK

8




√
4IS
K

− (vIN1 − vIN2)2 − vIN1 + vIN2




2

. (7.61)

From symmetry, iD1 may also determined to be

iD1 = K

8




√
4IS
K

− (vIN2 − vIN1)2 − vIN2 + vIN1




2

. (7.62)
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From Equations 7.60 and 7.62 it is apparent that the amplifier functions such that the
difference voltage vIN1 − vIN2 steers the total current IS towards either iD1 or iD2,
depending on its sign.

Equations 7.60 through 7.62 are valid only as long as both MOSFETs remain in their
saturation region of operation. One requirement for saturation operation is that |vIN1 −
vIN2| must not be so large that either MOSFET is cut off. Thus,

√
2iD2/K, and similarly√

2iD1/K, must be positive. From Equations 7.53 and 7.54, this is equivalent to vGS1 >

VT and vGS2 > VT. From Equations 7.60 and 7.62, cutoff is therefore avoided as
long as

2IS
K

> (vIN1 − vIN2)2. (7.63)

Additionally, neither MOSFET may be driven into its triode region. This may be avoided
by using a sufficiently large value of VS, or alternatively by further limiting the allowable
range of vIN1 and vIN2.

e x a m p l e 7.20 m o r e o n t h e d i f f e r e n t i a l a m p l i f i e r

Next, we discuss a numerical example related to the differential amplifier of
Example 7.19. For this amplifier, let VS = 10 V, IS = 0.5 mA, K = 1 mA/V2,
VT = 1 V, and R = 10 k�.

Given these parameters, from Equation 7.61,

vOUT = 10 V − 1.25 V−1
(√

2 V2 − (vIN1 − vIN2)2 − vIN1 + vIN2

)2
. (7.64)

Note that when vIN1 = vIN2, iD1 = iD2 = IS/2 = 0.25 mA, and so vOUT = 7.5 V.

Further, from Equation 7.63,

|vIN1 − vIN2| < 1 V (7.65)

to avoid cutoff. Correspondingly, vOUT will range from 10 V when MOSFET M2 is cut
off by the application of vIN1 − vIN2 = 1 V, to 5 V when MOSFET M1 is cut off by the
application of vIN2 − vIN1 = 1 V.

e x a m p l e 7.21 l a r g e s i g n a l a n a l y s i s o f a n o p e r a -

t i o n a l a m p l i f i e r c i r c u i t As will be clear in Chapter 15, the dif-
ferential amplifier shown in Figure 7.62 does not quite fit our notion of an operational
amplifier because vOUT is not zero for vIN1 = vIN2. This can be remedied with the addi-
tion of a common-source stage built with a p-channel MOSFET, as shown in Figure 7.63.
The common-source stage shifts the level of the output so that vOUT can be zero for
vIN1 = vIN2. It also provides additional voltage gain. Thus the circuit in Figure 7.63
serves as a simple operational amplifier.
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The behavior of a p-channel MOSFET essentially mirrors that of the n-channel MOSFET.
Correspondingly, vGS, vDS, and iD are all negative in the saturation region. Further, the
threshold voltage VT is typically negative. Only the parameter K is positive. Thus, for
a p-channel MOSFET,

iD = −K

2
(vGS − VT)2 (7.66)

vDS ≤ vGS − VT ≤ 0 (7.67)

in the saturation region. Often, it is convenient to work with positive numbers.
In this case, Equations 7.66 and 7.67 can be rewritten as

−(−iD) = K

2
(vSG + VT)2 (7.68)

vSD ≥ vSG + VT ≥ 0. (7.69)

In Equations 7.68 and 7.69, vSG, vSD, −iD, and K are all positive. Only VT is negative.
We will use the latter formulation here.

To determine vOUT in the operational amplifier as a function of vIN1 and vIN2, we again
assume that the two n-channel MOSFETs are identical, and that all three MOSFETs
operate in the saturation region. To distinguish the n-channel MOSFETs from the
p-channel MOSFET, denote the n-channel MOSFET parameters by Kn and VTn, and
the p-channel MOSFET parameters by Kp and VTp. Again, all parameters are positive
except for VTp.

The differential stage of the operation amplifier has already been analyzed in Example
7.19. In particular, from Equation 7.60 in Example 7.19 it was determined that

vSG3 = R1iD2 = R1Kn

8

(√
4IS
Kn

− (vIN1 − vIN2)2 − vIN1 + vIN2

)2

. (7.70)
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The common-source stage built with the p-channel MOSFET behaves according to

vOUT = −VS + R2(−iD3) = −VS + R2Kp

2
(vSG3 + VTp)2. (7.71)

Combining Equations 7.70 and 7.71,

vOUT = R2Kp

2


R1Kn

8

(√
4IS
Kn

−(vIN1−vIN2)2−vIN1+vIN2

)2

+VTp




2

−VS. (7.72)

Finally, in order to meet the requirement that vOUT = 0 when vIN1 = vIN2, it must be
the case that

VS = R2Kp

2

(
R1IS

2
+ VTp

)2
. (7.73)

In general, it is also necessary to derive the conditions under which all MOSFETs remain
in their saturation region of operation. For brevity, we will not do that here.

e x a m p l e 7.22 n u m e r i c a l a n a l y s i s o f o p a m p

c i r c u i t Let us now conduct a numerical analysis of the operational amplifier of
Example 7.21. Following Example 7.20, let VS = 10 V, IS = 0.5 mA, Kn = 1 mA/V2,
VTn = 1 V, and R1 = 10 k�. Further, let Kp = 1 mA/V2 and VTp = −1.5 V.

Then, from Equation 7.73, R2 must be 20 k� in order for vOUT to be biased at 0 V
when vIN1 = vIN2. Given this design, Equation 7.72 yields

vOUT = 10 V−1

(
1.25 V−1

(√
2 V2 − (vIN1 − vIN2)2 − vIN1 + vIN2

)2

− 1.5 V

)2

− 10 V (7.74)

as the unloaded input-output relation of the operational amplifier, assuming that all
MOSFETs remain in their saturation region of operation. This is a complicated nonlinear
equation, but as shown in the following chapter, it simplifies significantly and becomes
linear for small signals.

7.8 S W I T C H U N I F I E D ( S U ) M O S F E T M O D E L

This section presents a more elaborate model of the MOSFET and can be
skipped without loss of continuity.

The actual characteristics of the MOSFET shown in Figure 7.12 indicate
that the MOSFET has very interesting behavior in the triode region. For a fixed
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vGS, we approximated the behavior as a linear resistor using the SR model.
Clearly, the SR model does not capture MOSFET behavior if we vary vGS.
Worse yet, even for a given value of vGS, the SR model becomes inaccurate as
the value of vDS approaches vGS − VT. For more accuracy, we can develop a
more elaborate model for the triode region operation of the MOSFET. Aban-
doning the piecewise-linear method, this more elaborate model characterizes
the behavior of the MOSFET in the triode region as a nonlinear resistor, whose
characteristics depend on vGS. When combined with the SCS model for the
saturation region, the nonlinear resistor model in the triode region results in
a continuous set of MOSFET curves. The resulting combined model for the
triode and saturation regions is called the switch unified model or the SU model
of the MOSFET.

The SU model can be summarized as follows:

iDS =




K
[

(vGS − VT)vDS − v2
DS
2

]
for vGS ≥ VT and vDS < vGS − VT

K(vGS−VT)2

2
for vGS ≥ VT and vDS ≥ vGS − VT

0 for vGS < VT.
(7.75)

The characteristics of the MOSFET according to the SU model are plotted
in Figure 7.64. As promised, notice that the curves in the triode and the satu-
ration regions are continuous and provide a good match with actual MOSFET
characteristics shown in Figure 7.11.
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vDS

vGS1

vGS2

vGS3

vGS4

vGS5

vGS6

vGS2

vGS3

vGS4

v G
S5

v G
S6

vGS1

T
ri

od
e 

 r
eg

io
n Saturation region

v D
S
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S
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–
=
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vGS < VT

vGS VT≥

Cutoff  region

F IGURE 7.64 Characteristics of
the MOSFET device according to
the SU model.
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e x a m p l e 7.23 a n a l y s i s u s i n g t h e s u m o d e l Determine
the voltage vO for the MOSFET circuit shown in Figure 7.65. You are given that
MOSFET M1 operates in its saturation region, and that MOSFET M2 operates in the
triode region. The MOSFET parameters are indicated in Figure 7.65.

2 V
+
-

vO5 V +
-

10 V +
- DG

S

DG
S

M1

M2

iD
K = 2 mA/V2

VT = 1 V

K = 64 mA/V2 
VT = 1 V

F IGURE 7.65 A circuit
containing two MOSFETs. We are
told that M1 operates in the
saturation region and that M2
operates in the triode region.

For the MOSFET circuit shown in Figure 7.65, iDS for both MOSFETs is the same.
Accordingly, we will write expressions for iDS for both MOSFETs, and equate them to
obtain the voltage vO. We are told that MOSFET M1 operates in its saturation region,
and so the saturation region equation applies. Thus for MOSFET M1

iD = K
(vGS − VT)2

2
.

Substituting vGS = 5 − vO, VT = 1 V, and K = 2 mA/V2, we get

iD = 10−3(4 − vO)2. (7.76)

Next, since we are given that M2 operates in the triode region, we can write

iD = K

[
(vGS − VT)vDS − v 2

DS

2

]
.

Substituting vGS = 2 V − 1 V, VT = 1 V, vDS = vO, and K = 64 mA/V2, and
simplifying, we get

iD = 64 × 10−3

[
vO − v 2

O

2

]
. (7.77)

Equating the right-hand sides of Equations 7.76 and 7.77, and simplifying, we get the
following equation for vO:

33v 2
O − 72vO + 16 = 0,

which yields

vO = 0.25 V.

When vO is 0.25 V it is easy to see that M1 is indeed in saturation and M2 is in the
triode region.
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7.9 S U M M A R Y
� The last two chapters have discussed a set of progressively more elabo-

rate models for the MOSFET. This section summarizes the models and
discusses when it is appropriate to use each of the models.

� The simplest model for the MOSFET is the S model. This switch model
models the on-off behavior of the MOSFET. Accordingly, the S model is
appropriate when the designer cares only about the logical behavior of a
circuit containing MOSFETs; in other words, where the voltage values of
interest are only highs and lows. Thus, the S model is commonly used
to arrive at the topology of a digital circuit to perform some given logical
function. The S model is also useful in certain analog situations where the
specific properties of the MOSFET beyond its on-off behavior have no
effect on circuit behavior. Certain power circuits that use the MOSFET as a
switch fall under this category.

� The SR model of the MOSFET characterizes the behavior of the MOSFET
as a resistor when the MOSFET is in its ON state, and vGS is fixed. The SR
model is appropriate for most types of simple analyses involving digital cir-
cuits, such as static discipline computations of voltage levels, simple power
calculations, and, as will be discussed in later chapters, delay calculations.
Although technically the SR model is valid only in the MOSFET’s triode
region (that is, when vDS < (vGS − VT)), for simplicity, we ignore this
limitation and apply it in digital circuit applications irrespective of the value
of the drain voltage, since the model is such a gross simplification of the
MOSFET’s behavior in the first place.

� The SCS model characterizes the behavior of the MOSFET in its saturation
region. By designing analog circuits to adhere to the saturation discipline,
the SCS model is appropriate for most of our analog applications such as
amplifiers and analog filters.

� The SU model provides accurate models of the MOSFET in both the triode
and the saturation regions, but is more complicated. In its saturation region,
it behaves as the SCS model. So, for analog circuits that are designed to
adhere to the saturation discipline its use is no different than the use of
the SCS model. Thus the SU model is useful when the designer wishes
to conduct very accurate analyses of digital or analog circuits in which
the MOSFETs are allowed to operate in both their triode and saturation
regions. To analyze a circuit containing MOSFETs, the designer first makes
an educated guess as to the region triode, saturated, or cutoff in
which each of the MOSFETs operates. Then, the designer writes node
equations for the circuit, selecting appropriate device equations for each of
the MOSFETs. After solving the set of equations for the node voltages and
edge currents, the designer must confirm that their initial guess as to the
state of the MOSFET is consistent with the final node voltages. We leave a
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detailed treatment of the SU model for more advanced courses on circuits.
In the rest of this book, we will focus on the S, the SR, and the SCS models.

� This chapter also introduced the MOSFET amplifier. The amplifier is an
example of a nonlinear circuit. We chose to operate the amplifier under the
saturation discipline so that it provided a voltage gain for an input signal
and so that the MOSFET operated solely in its saturation region, where
the SCS model applied. We also discussed the application of a DC offset
voltage at the input of the amplifier to boost the signal of interest sufficiently
so that the amplifier operated in saturation for the entire dynamic range
of input signal variation. The application of a DC offset established a DC
operating point for the amplifier.

� We introduced large signal analysis for the amplifier. Large signal analysis
summarizes how the amplifier behaves for large swings in the input signal
and involves answering the following questions:

1. What is the relationship between the amplifier output vO and its input
vIN in the saturation region?

2. What is the range of valid input values for the amplifier under the
saturation discipline? What is the corresponding range of valid output
values?

� The next chapter will discuss a small signal analysis of the amplifier. Small
signal analysis is appropriate when the input signal perturbations about the
operating point are very small.

E X E R C I S E S e x e r c i s e 7.1 Determine the voltage vO across the voltage-dependent current
source shown in the circuit in Figure 7.66 when

R v

vO

+

-

VS -
+

+

-

i = f(v)

F IGURE 7.66

i = f (v) = K

v 2
.

e x e r c i s e 7.2 Consider the circuit containing the dependent current source
shown in Figure 7.67.

RI
vB

vI -
+

+

-

iB

Rv

vO

+

-

iD

F IGURE 7.67
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a) Determine vO in terms of vI if iD = K1vB. What are the units of K1?

b) Determine vO in terms of vI if iD = K2iB. What are the units of K2?

c) Determine vO in terms of vI if iD = K3v 2
B . What are the units of K3?

d) Determine vO in terms of vI if iD = K4i 2
B . What are the units of K4?

e x e r c i s e 7.3 The resistance R in the circuit shown in Figure 7.68 depends on
the voltage across resistor RB. Determine vB if

RB vB

VS -
+

+

-

RA

R = f (vB)

F IGURE 7.68R = K

vB
.

e x e r c i s e 7.4 A MOSFET is characterized by the following equation:

iDS = K

2
(vGS − VT)2

in its saturation region. A MOSFET operates in the saturation region for

vDS ≥ vGS − VT and vGS ≥ VT.

Express the vDS ≥ vGS − VT constraint in terms of iDS and vDS.

e x e r c i s e 7.5 The MOSFET in Figure 7.69 is characterized by the equation:

iDS = K

2
(vGS − VT)2

in its saturation region according to the SCS model. The MOSFET operates in the
saturation region for

D

vR

5 V +
-

5 sin(ωt)+
-S

G

+

-
1 Ω

vD

+

-

F IGURE 7.69vDS ≥ vGS − VT and vGS ≥ VT.

The MOSFET operates in its triode region for

vDS < vGS − VT and vGS ≥ VT.

Suppose the MOSFET is characterized by the SR model in its triode region. In other
words,

iDS = vDS

RON
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in the triode region. Assume that RON is a constant with respect to iDS and vDS, but its
value is some function of vGS. Further suppose that iDS = 0 when vGS < VT:

a) For vGS = 5 V, what value of RON makes the MOSFET iDS versus vDS characteristic
continuous between its triode and saturation regions of operation?

b) Plot vR versus vD for the circuit shown in Figure 7.69. This circuit is useful in
plotting the MOSFET characteristics. Assume that K = 1 mA/V2 and VT = 1 V.
Use the value of RON calculated in (a). Use a volt scale for VD and a millivolt scale
for vR.

e x e r c i s e 7.6 Consider the MOSFET amplifier shown in Figure 7.70. Assume
that the amplifier is operated under the saturation discipline. In its saturation region, the
MOSFET is characterized by the equation:

iDS = K

2
(vGS − VT) 2

where iDS is the drain-to-source current when a voltage vGS is applied across its gate-
to-source terminals.

vO

RL

VS

+

-
vI

D

S

iDS
G

F IGURE 7.70

a) Draw the equivalent circuit for the amplifier based on the SCS model of the MOSFET.

b) Write an expression relating vO to iDS.

c) Write an expression relating iDS to vI.

d) Write an expression relating vO to vI.

e) Suppose that an input voltage VI results in an output voltage VO. By what factor
must VI be increased (or decreased) so that the output voltage is doubled?

f) Suppose, again, that an input voltage VI results in an output voltage VO. Suppose,
further, that we desire an output voltage that is 2VO. Assuming that both the
input voltage and the MOSFET do not change, what are all the possible ways of
accomplishing the desired doubling of the output voltage?

g) The power consumed by the MOSFET amplifier in Figure 7.70 is given by VSiDS,
assuming that no current is draw out of the vO terminal. Which of the alternatives
for doubling VO from parts (e) and (f) will result in the lowest power consumption?

e x e r c i s e 7.7 Consider, again, the MOSFET amplifier shown in Figure 7.70.
Assume that the amplifier is operated under the saturation discipline. The MOSFET
in doctored so its threshold voltage is 0. In other words, the saturation region of the
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MOSFET is now characterized by the equation:

iDS = K

2
v 2

GS

where iDS is the drain-to-source current when a voltage vGS is applied across its gate-
to-source terminals. The following questions relate to the large-signal analysis of the
amplifier:

a) Derive the relationship between the output voltage vO and the input voltage vI.

b) Derive the range of valid input voltages. Under the saturation discipline, valid
input voltages are those that result in saturation region operation of the ampli-
fier. Determine the corresponding range of output voltages (vO) and output currents
(iDS).

c) Suppose we wish to amplify an AC input signal vi. Assume that vi has a zero DC
offset. Draw a circuit showing how a separate DC input voltage VI can be used to
bias the amplifier in a region where saturation region operation is achieved for both
positive and negative excursions of vi. Assuming the vi has symmetric positive and
negative swings, how would you choose the input operating point for the amplifier
that allows a maximum peak-to-peak voltage range for vi? What is the corresponding
output operating point (vO and iDS)?

e x e r c i s e 7.8 The three terminal device shown in Figure 7.71a is called a bipolar
junction transistor (BJT). Figure 7.71b shows a piecewise-linear model for the device, in
which the parameter β is a constant. When

iB > 0

and

vCE > vBE − 0.4 V,

the emitter diode behaves like a short circuit, the collector diode like an open circuit,
and the collector current is given by:

vCE

+

-

B

C

E

iC
iB

iEvBE

+

-

(a)

(b)

C

B
biB

E

vCE

+

-

iC

iB

iE

vBE

+

-

0.6 V+
-

0.4 V
+ -

F IGURE 7.71 (a) A bipolar
junction transistor. B stands for
base, E for emitter, and C for
collector; (b) a piecewise-linear
model for the BJT.

iC = βiB.

Under the given constraints, the BJT is said to operate in its active region. For the rest
of this exercise, assume that β = 100:

a) Determine the collector current iC for a base current iB = 1 µA and vCE = 2 V
using the model in Figure 7.71b.
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b) Sketch a graph of iC versus vCE for iB = 1 µA. Using the model in Figure 7.71b.
In drawing this graph, assume that the current source turns off for

vCE ≤ vBE − 0.4 V.

e x e r c i s e 7.9 Consider the bipolar junction transistor (BJT) amplifier shown in
Figure 7.72. Assume that the BJT is characterized by the large signal model from Exercise
7.8, and that the BJT operates in its active region. Assume further that VS = 5 V,
RL = 10 k�, RI = 500 k�, and β = 100.

a) Draw the equivalent circuit for the BJT amplifier based on the large signal BJT model
from Exercise 7.8.

b) Write an expression relating vO to iC.
vI

RL

VS

vO

B

C

E+
-

RI

iB

iC

b

iE

F IGURE 7.72 c) Write an expression relating iC to vI.

d) Write an expression relating iE to iB.

e) Write an expression relating vO to vI.

f) What is the value of vO for an input voltage vI = 0.7 V? What are the correspond-
ing values of iB, iC, and iE?

e x e r c i s e 7.10 In this exercise you will perform a large signal analysis of
the BJT amplifier shown in Figure 7.72. Assume that the BJT is characterized by the
large signal model from Exercise 7.8. Assume further that VS = 5 V, RL = 10 k�,
RI = 500 k�, and β = 100.

a) Write an expression relating vO to vI.

b) What is the lowest value of the input voltage vI for which the BJT operates in its
active region? What are the corresponding values of iB, iC, and vO?

c) What is the highest value of the input voltage vI for which the BJT operates in its
active region? What are the corresponding values of iB, iC, and vO?

d) Sketch a graph of vO versus vI for the four parameter values given.

P R O B L E M S p r o b l e m 7.1 Consider the MOSFET voltage divider circuit shown in
Figure 7.73. Assume that both MOSFETs operate in the saturation region. Determine
the output voltage VO as a function of the supply voltage VS, the gate voltages VA

and VB, and the MOSFET geometries L1, W1, and L2, W2. Assume that the MOSFET
threshold voltage is VT, and remember, K = KnW/L.
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p r o b l e m 7.2 An inverting MOSFET amplifier is shown in Figure 7.74,

VO

VS

+
-

+
-

VA

VB

L1

W1

L2

W2

F IGURE 7.73

together with an iDS vDS characteristic for the MOSFET. This characteristic is simpler
than the SCS model presented in this chapter. The characteristic is simply the standard
MOSFET characteristic with the triode region compressed onto the y-axis.

Alternatively, this characteristic can be viewed as describing ideal switch behavior that is
extended to exhibit a saturating drain-source current. In other words, for vGS < VT, the
MOSFET behaves like an open switch with iDS = 0. For vGS ≥ VT, the MOSFET
behaves like a closed switch with vDS = 0 provided that iDS < K/2(vGS − VT)2.
However, once iDS reaches K/2(vGS − VT)2, which is the maximum current the
MOSFET can carry for a given vGS, MOSFET operation enters a saturation region
in which the MOSFET behaves as a current source of value K/2(vGS − VT)2. Saturated
operation is as described by the saturation model given in Figure 7.74.

a) Determine vOUT as a function of vIN for 0 ≤ vIN.

b) What is the lowest value of vIN for which vOUT = 0?

c) Assume that VS = 15 V, R = 15 k�, VT = 1 V, and K = 2 mA/V2. Graph vOUT

versus vIN for 0 V ≤ vIN ≤ 3 V.

d) On the input-output graph, identify the regions over which the MOSFET behaves
as an open circuit, behaves as a short circuit, and exhibits saturated behavior.

+
-

vIN

R

VS

D

S

G
vOUT

+

-

G

D

S

+

-
vGS

iDS
K
2
---- vGS VT–( ) 2=

n-channel MOSFET model

vDS

 iDS

Saturation region

n-channel MOSFET
for the saturation regioncharacteristic

vGS < VT

Closed switch
behavior on the
iDS axis

Open switch behavior
on the vDS axis

vDS

+

-

vGS V T≥

F IGURE 7.74

p r o b l e m 7.3 A two-stage amplifier is shown in Figure 7.75. It is constructed
by cascading two one-stage amplifiers of the type seen in Problem 7.2. In analyzing
this amplifier, use the MOSFET model described in Problem 7.2 and illustrated in
Figure 7.74.
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F IGURE 7.75

+
-

vIN

R

VS

R

VS

vOUT

-

+

vMID

+

-

a) The fact that a second amplifier stage is connected to the first amplifier stage does
not change the operation of the first stage. That is, the relation between vMID and
vIN here is the same as the relation between vOUT and vIN in Problem 7.2. Why?
What terminal characteristic of the second MOSFET must change in order for this
not to be true?

b) Derive the relation between vMID and vIN for 0 ≤ vIN, and the relation between
vOUT and vMID for 0 ≤ vMID ≤ VS. (Hint: see Problem 7.2.)

c) Derive the relation between vOUT and vIN for 0 ≤ vIN.

d) Determine the range of input voltages for which both MOSFETs operate under the
saturation discipline. What are the corresponding ranges for vMID and vOUT?

e) Using the numerical parameters given in Problem 7.2, graph vOUT versus vIN for
vIN for 0 V ≤ vIN ≤ 3 V. Compare this graph to the input-output graph found in
Problem 7.2, and explain the differences.

p r o b l e m 7.4 Consider again the two-stage amplifier shown in Figure 7.75.
Suppose that the MOSFETs are characterized by the following equation in their
saturation region:

iDS = K

2
v 2

GS.

In other words, the threshold voltage VT = 0. Furthermore, the MOSFETs operate in
their saturation region when

vDS ≥ vGS and vGS ≥ 0.

Show that there is only one input voltage for which both stages simultaneously operate
under the saturation discipline. What is that input voltage?

p r o b l e m 7.5 Consider the ‘‘source-follower’’ or ‘‘buffer’’ circuit shown in
Figure 7.76. Use the SCS MOSFET model (with parameters VT and K) to perform
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a large-signal analysis of this circuit according to the following steps:

a) Assuming that the MOSFET operates in its saturation region, show that vOUT is
related to vIN according to

vOUT =
[√

(2/RK) + 4(vIN − VT) − √
2/RK

2

]2

.

b) Determine the range of vIN over which the assumption of saturated MOSFET
operation holds. What is the corresponding range for vOUT?

+
- R vOUT

VS

vIN
+

-

iD

Equivalent
SCS model

+
- R vOUT

VS

vIN
+

-

G
D

S (saturation)

F IGURE 7.76

p r o b l e m 7.6 This problem studies the use of a mythical MOSFET-like device
called a ZFET to construct an amplifier as shown in Figure 7.77. The ZFET operates
in its saturation region when vGS ≥ 0 and vDS > 0. In this region, the drain-source
terminal relation is iDS = Kv 3

GS, where K is a constant having units of A/V3. When
vDS = 0, the ZFET exhibits a short circuit between its drain and source terminals, and is
said to operate outside its saturation region. Similarly, the ZFET exhibits an open circuit
for vGS < 0 as it again operates outside its saturation region. Finally, the gate terminal
always exhibits an open circuit. These characteristics are summarized in Figure 7.77,
beneath the symbol for the ZFET.

iDS

vDS

+

-

+

-

D

G

S
vGS

vOUT

RL

G
S

vIN

D

VS

vGS 0≥

iDS KvGS
3=

vDS 0>
For

ZFET Symbol

ZFET Amplifier

F IGURE 7.77a) Assuming saturated operation of the ZFET, determine vOUT as a function of vIN.

b) Over what range of vIN will the ZFET operate in its saturation region?

c) Assume that VS = 10 V, RL = 1 k�, and K = 0.001 A/V3. Sketch and clearly label
vOUT as a function of vIN for −1 V ≤ vIN ≤ 3 V.

d) Given the parameters of part (c), can the amplifier be used as an inverter that provides
a valid output high voltage threshold of VH = 7 V? Why or why not? Assume that
VL = 2 V.

e) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of VH = 7 V? Why or why not? This
time around, assume that VL = 1 V.
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p r o b l e m 7.7 Consider the difference amplifier circuit shown in Figure 7.78.
Notice that the difference amplifier is powered by +VS and −VS power supplies.
Assume that all MOSFETs operate under the saturation discipline, and, unless indicated
otherwise, are characterized by the parameters K and VT.

F IGURE 7.78

(b)

RL

vS

VS
- +

vO

RL

VB
KB Kn

W
L
-----=

VS+ -

VT

(c)

RL

vS

VS
- +

vOB

RL

I

++

+
++

--

- -vOA

vIA vIB

-vO

VS+ -

RL

vO

RL

vS

VS
- +
I

VS+ -

(a)

a) Determine vO and vS for the connection shown in Figure 7.78a. In this figure, the
gates of the MOSFETs are connected to ground.

b) Consider the difference amplifier version shown in Figure 7.78b. In this figure, a
MOSFET implementation of a current source replaces the abstract current source
from Figure 7.78a. Determine values for VB and W/L such that the circuit in (b) is
equivalent to that in (a).

c) The difference amplifier in Figure 7.78c is driven by two input voltages vIA and vIB as
shown. Assume that the input voltages satisfy the following constraint vIA = −vIB

at all times. Determine vOA, vOB, and vO as a function of vIA.

p r o b l e m 7.8 Consider the amplifier circuit shown in Figure 7.79. The ampli-
fier is powered by a +VS and a −VS power supply.

a) Determine vO and iD as a function of vI under the saturation discipline. Assume that
the MOSFET parameters K and VT are given.

b) Determine the range of valid input voltages for saturation region operation.
Determine the corresponding valid range for vO and iD.

c) Determine the output voltage when the input is grounded; in other words, for
vI = 0.

+- VS

vO

RL

vI

+    VS     -

+
-

iD

F IGURE 7.79 d) Determine the value of vI for which vI = vO in terms of VS, RL, and the MOSFET
parameters.
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p r o b l e m 7.9 Consider the current mirror circuit in Figure 7.80.

IL
RC

VS

I

W1
L1
-------

+-W2
L2
-------

VL

(a)

IL
RC

VS

I

W1
L1
-------

+
-W2

L2
-------

VL

(b)

RL

F IGURE 7.80

a) Referring to Figure 7.80a, determine IL as a function of I assuming both MOSFETs
operate under the saturation discipline. Both MOSFETs have the same values for
Kn and VT. Does IL change if VL changes? What are the conditions under which
IL = I ?

b) Now consider Figure 7.80b. The current I can be increased either by increasing VS or
decreasing RC. Assuming that either VS or RC may be changed, and that W1/L1 =
W2/L2 = W/L, determine the range of values of I for which both MOSFETs operate
under the saturation discipline. Assume both MOSFETs have the same values for
Kn and VT.

p r o b l e m 7.10 Consider the circuit shown in Figure 7.81. Assume that the
MOSFET operates under the saturation discipline.

ID

RS

VS

S
vO

G RD

+ -

D

VS -+

F IGURE 7.81

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine vO and iD in terms of RD, RS, VS, and the MOSFET parameters K
and VT.

p r o b l e m 7.11 Consider the ‘‘common-gate amplifier’’ circuit shown in
Figure 7.82. Assume that the MOSFET operates under the saturation discipline.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.
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ID

VS

S
vO

G RD

+ -

D

VS -+

+
-vI

F IGURE 7.82

b) Determine vO and iD in terms of vI, RD, VS, and the MOSFET parameters K
and VT.

c) Determine the range of values of vI for which the MOSFET operates under the
saturation discipline. What is the corresponding range of vO?

p r o b l e m 7.12 Consider the MOSFET circuit shown in Figure 7.83. Determine

RL

vO

R1

VS

R2

vA

F IGURE 7.83

the value of vO in terms of the other circuit parameters. Assume the MOSFET is in
saturation and is characterized by the parameters K and VT.

p r o b l e m 7.13 Consider the MOSFET circuit shown in Figure 7.84. Determine
RL

vO

VS

vA

RG

RF

F IGURE 7.84

the value of vO in terms of the other circuit parameters. Assume the MOSFET is in
saturation and is characterized by the parameters K and VT.

p r o b l e m 7.14 Figure 7.85 shows a MOSFET amplifier driving a load resistor

RL

vO

VS

+
-

REvI

F IGURE 7.85

RE. The MOSFET operates in saturation and is characterized by parameters K and VT.
Determine vOUT versus vIN for the circuit shown.

p r o b l e m 7.15 Determine vOUT versus vIN for the circuit shown in Figure 7.86.
Assume that the MOSFET operates in saturation and is characterized by the parameters
K and VT. What is the value of vOUT when vIN = 0?

p r o b l e m 7.16 Determine vO versus vI for the circuit shown in Figure 7.87.
Assume that the MOSFET operates in saturation and is characterized by the parameters
K and VT. What is the value of vO when vI = 0?

p r o b l e m 7.17 Determine vO versus vI for the circuit shown in Figure 7.88.
Assume that the MOSFET operates in saturation and is characterized by the parameters
K and VT.

p r o b l e m 7.18 Consider the BJT circuit called the ‘‘common-collector
amplifier’’ shown in Figure 7.89. This BJT amplifier configuration is also called the source
follower circuit. For this problem, use the piecewise-linear BJT model from Exercise 7.8.
Assume that the BJT operates in its active region.

a) Draw the active-region equivalent circuit of the BJT source follower by replacing the
BJT by its piecewise-linear model.



7.9 Summary C H A P T E R S E V E N 401
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F IGURE 7.86
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F IGURE 7.87
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F IGURE 7.88

RE

VS

vO

B

C

ERI

iB

iC

b

vI
+
-

F IGURE 7.89

b) Assuming active region operation, determine vO in terms of vI, RI, RE, and the BJT
parameter β .

c) What is the value of vO when βRE >> RI?

d) Compute the value of vO given that vI = 3 V, RI = 10 k�, RE = 100 k�, β = 100,
and VS = 10 V.

e) Determine the range of values of vI for which the BJT operates in its active region
for the parameter values given in (d). What is the corresponding range of vO?

p r o b l e m 7.19 Consider the compound three-terminal device formed by con-
necting two BJTs in the configuration shown in Figure 7.90. The three terminals are

B′

C′

E′

b

b

F IGURE 7.90
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labeled C′, B′, and E′. The two BJTs are identical, each with β = 100. Assume that
each of the BJTs operates in the active region.

a) Draw the active-region equivalent circuit of the compound BJT by replacing each of
the BJTs by the piecewise-linear model shown in Exercise 7.8. Clearly label the C′,
B′, and E′ terminals.

b) In the configuration shown, the compound device behaves like a BJT. Determine the
value of the current gain β ′ for this compound BJT.

c) When the base current iB′ > 0, determine the voltage between the B′ and E′
terminals.
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the smal l - s i gnal model 8
8.1 O V E R V I E W O F T H E N O N L I N E A R

M O S F E T A M P L I F I E R

An unfortunate feature of the MOSFET amplifier discussed in Chapter 7 was
its nonlinear input-output relationship. Shown in Figure 8.1, the MOSFET

vI
+

-

RL

VS

vO

+
-

vI

vO

VS

iD
K vI VT–(  )2

2
-----------------------------=

RL

F IGURE 8.1 The MOSFET
amplifier and its SCS circuit model.

amplifier has the following input-output relationship:

vO = VS − iDRL. (8.1)

Substituting for the current iD in terms of the MOSFET input voltage under
the saturation discipline, we get the following nonlinear relationship between
vI and vO:

vO = VS − K
(vI − VT)2

2
RL. (8.2)

The nonlinear relationship between the input and the output voltage is
plotted in Figure 8.2. The nonlinear relationship makes it difficult for us to
analyze and to build circuits using the amplifier.

8.2 T H E S M A L L - S I G N A L M O D E L

Many circuit applications, such as audio amplifiers, demand a linear amplifier
of the form depicted in Figure 8.3. The amplifier shown in the figure has a
constant gain A that is independent of the input voltage. Does that mean we
cannot use the MOSFET amplifier in these linear applications? It turns out
that total variables representing signals such as those input to an audio ampli-
fier commonly consist of two components: a DC offset (or an average value),
plus a time-varying component with a zero average. We will show that if the
time-varying component is small, then the incremental amplification provided
by the MOSFET amplifier to the time-varying component about the operating
point defined by the input DC offset will be approximately linear. As we saw in
Section 4.5, this observation actually generalizes to arbitrary nonlinear circuits:
The response of a circuit to small perturbations about an operating point will
be linear. Thus, if the signals of interest to us can be represented as small per-
turbations about an operating point, then the response of arbitrary nonlinear

405
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VT vI

vO

∆vO

∆vI

VS
Operating Point: (VI, VO)

F IGURE 8.2 vO versus vI curve for the amplifier.

Amp

In Out
A

vO = AvI

+
vI
-

+
vO
-

iI iO

F IGURE 8.3 A linear amplifier abstraction with a constant gain A.

circuits to the small perturbations will be linear. As seen in Section 4.5, restrict-
ing signals to small perturbations about an operating point so the response of
circuits to the perturbations is linear is a constrained way of using circuits that
we call the small-signal discipline.

When the total variable comprises a DC operating value plus a small pertur-
bation around the operating point, our models for the response of circuits to the
perturbations will be linear and hence very simple. However, our incremental
or small-signal models will apply only over a small range around the operating
point. In contrast, our models of the previous chapter captured the behavior
of the amplifier over a wide range of operation, but the models were complex.
Separate models over different regions had to be spliced together to obtain the
overall characteristics. Furthermore, the models were nonlinear. Such a tradeoff
between complexity of the model and the range over which it is valid is not
uncommon in modeling systems. In engineering practice, both extremes of
models are useful: complex accurate models and simple approximate models.
This chapter discusses small-signal models, which are simple models whose
range of applicability is limited. Despite their limitations, the simple models
are surprisingly useful engineering tools even when applied outside their strict
range of validity.

Section 4.5 introduced the following notation to distinguish between total
variables, their average DC values, and their incremental excursions about the
average values. We will denote total variables with small letters and capital
subscripts, average DC values using all capitals, and incremental values using
all small letters. Thus, vI denotes the total input voltage, VI the DC offset, and
vi the incremental component. Since the total variable is the sum of the two
components, we have

vI = VI + vi.
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VT vI

vO
VS

F IGURE 8.4 A small segment of
the vO versus vI curve.

VI
+
-

RL

VS

vO = f(VI + vi)

vi
+
-

VS

iD
K([VI + vi] − VT)2

2
----------------------------------------------=

RL

VO = f(VI + vi)

VI
+
-

vi
+
-

F IGURE 8.5 Superimposing a
small (possibly time-varying) signal
on the DC bias voltage at the input
of the MOSFET amplifier, and the
corresponding SCS circuit model
for the combined input signal.

Let us revisit the transfer curve of the amplifier shown in Figure 8.2. Con-
sider a very small region of the transfer curve in the vicinity of the operating
point (VI, VO). The slope of the curve segment is depicted in the figure. As
illustrated in Figure 8.4, if we focus our attention on the small curve segment
shown, it looks more or less linear. We will use this intuition to develop an
abstraction for amplifiers that appears linear for very small variations in the
input voltage.

The basic idea is that the amplifier transfer function appears linear for small
perturbations in the input voltage about a given bias point. We can arrive at the
same result analytically. Suppose that the amplifier is biased at some bias point:
(VI, VO). Now suppose that we superimpose a small signal �vI = vi on VI as
depicted in Figure 8.5. An example of a DC signal with a small superimposed
time-varying signal is shown in Figure 8.6.

We know from the SCS model of the MOSFET (see Equation 7.8) that the
current through the MOSFET is related to its gate voltage as:

iDS = K(vGS − VT)2

2
. (8.3)
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F IGURE 8.6 A small time-
varying signal combined with
a DC offset voltage.

vI = VI + vi

vI

VI

vi

t

F IGURE 8.7 Output current for
the MOSFET for the combined
input voltage.

iDS

vGSVT

K(vGS – VT)2

2
--------------------------------

VI

ID

vi
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iD

vI
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ids

For the combined input signal shown in Figure 8.5, the response current
iD through the MOSFET is the sum of two components: a bias current ID and
a change id due to the incremental input signal vi. As depicted in Figure 8.7,
this combined current can be obtained by substituting for vGS as

iD = f (VI + vi) = ID + id = K([VI + vi] − VT)2

2
. (8.4)

Since we know that vi is small compared to VI, we can adopt the following
linearization technique to obtain the combined response: Model the MOSFET
characteristic curve accurately only in the vicinity of the bias point VI and dis-
regard the rest of the curve. The Taylor series expansion is the natural tool for
this task.

The Taylor series expansion for the function y = f (x) in the vicinity of
x = Xo is given by:

y = f (x) = f (Xo) + df

dx

∣∣∣∣
Xo

(x − Xo) + 1

2!
d2f

dx2

∣∣∣∣∣
Xo

(x − Xo)2 + · · ·
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Our goal is to use the Taylor series method to expand the MOSFET SCS
equation for the combined input voltage given in Equation 8.4 about the bias
voltage VI. For our Taylor expansion, VI corresponds to Xo, x corresponds
to VI + vi, or x − Xo corresponds to vi, and y corresponds to iD = ID + id.
Applying the Taylor expansion to Equation 8.4 about VI we get

iD = f (VI + vi) = K[(VI + vi) − VT]2
2

(8.5)

= K(VI − VT)2

2
+ K(VI − VT)vi + K

2
v2

i . (8.6)

If the incremental signal vi is small enough to permit us to ignore the second
order term (and higher terms, when they exist) in the Taylor series expansion,
the following simplification results:

iD ≈ K(VI − VT)2

2
+ K(VI − VT)vi. (8.7)

We know that the output current is composed of a DC component ID and
a small perturbation id. Thus, we can write

ID + id = K(VI − VT)2

2
+ K(VI − VT)vi. (8.8)

Equating DC terms and corresponding incremental terms:

ID = K(VI − VT)2

2
(8.9)

id = K(VI − VT)vi. (8.10)

Note that ID is simply the DC bias current related to the DC input voltage VI.
Accordingly, the DC terms relating ID to VI can be equated as in Equation 8.9
because the operating point values ID, VI satisfy Equation 8.3, which is the
MOSFET equation. When the DC terms are eliminated from both sides of
Equation 8.8, the incremental relation shown in Equation 8.10 results.

Notice that the change in the output current id is linearly related to the
change in the input voltage vi provided that vi is small compared to VI. We
note that Equation 8.9 is exact because the small-signal model goes through the
exact model at the operating point. However, Equation 8.10 is approximate
because of the linearization.

A graphical interpretation of this result provides additional intuition. As
shown in Figure 8.8, Equation 8.8 is a straight line passing through the DC
operating point VI, ID and tangent to the curve at that point. Using the tangent
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F IGURE 8.8 Incremental
change in the output current for
the MOSFET for a small change in
the input voltage.
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to compute the incremental change in the signal about the operating point is
tantamount to replacing the actual curve with the tangent. Clearly, the tangent
approximation is valid only for points that are close to the operating point. The
higher-order term in Equation 8.6 that we neglected would add a quadratic
term to the model, thereby making the fit exact for our model.

Let us return to the relationship between the incremental output current
and the incremental input voltage for the MOSFET:

id = K(VI − VT)vi. (8.11)

The K(VI − VT) term in Equation 8.11 relates the input voltage to the
current through the MOSFET. Notice that for a given DC bias, the K(VI − VT)
term is a constant. Since the form of Equation 8.11 is similar to that for a
conductance, the K(VI −VT) term is called the incremental transconductance gm
of the MOSFET. Accordingly, we can write

id = gmvi (8.12)

where

gm = K(VGS − VT). (8.13)

In our example, VGS = VI.
Returning to our amplifier, we can express the total output voltage vO as

the sum of the output operating voltage VO and the incremental change vo as

vO = VO + vo.
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From Equation 8.1 we know that

vO = VS − iDRL. (8.14)

Replacing vO and iD with their corresponding DC and incremental
components,

VO + vo = VS − (ID + id)RL (8.15)

= VS − IDRL − idRL. (8.16)

Therefore,

VO = VS − IDRL (8.17)

vo = −idRL (8.18)

= −gmviRL. (8.19)

In other words,

Small signal gain = vo

vi
= −gmRL = A. (8.20)

Notice from Equation 8.20 that the small signal gain is a constant −gmRL.
Note, however, that gm, and therefore the gain, depends on the choice of bias
point for the amplifier. Equation 8.19 demonstrates that for small excursions
from a DC operating point, a linear amplifier results! This result forms the basis
of the small-signal model.

We can directly arrive at the small signal response be it voltage or
current using basic calculus for circuit responses that are differentiable, which
basically includes all physically realizable analog circuits. Recall that the deriva-
tive of a function y = f (x) at the point xo is the slope of the function at that
point, or f ′(xo). As depicted in Figure 8.9, given a small change �x from the

x0

f(x0) + f ′(x0)∆x

∆y

x

f(x0 + ∆x)y = f(x)

∆x

y0
F IGURE 8.9 Incremental
response.
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point xo, we can compute the response to the change as the product of the
slope at that point and �x. In other words,

f (xo + �x) = f (xo) + df (x)

dx

∣∣∣∣
xo

�x.

Thus the incremental change in the output is given by

�y = dy

dx

∣∣∣∣
xo

�x. (8.21)

In particular, we can obtain the incremental voltage gain directly from
the voltage transfer function, without first determining the incremental output
current. The input-output voltage relationship for the MOSFET amplifier is
given by

vO = f (vI)

= VS − K
(vI − VT)2

2
RL.

As before, let vi = �vI denote a small change in the input voltage, and let
vo = �vO denote the corresponding change in the output voltage. Then,

vo = df (vI)

dvI

∣∣∣∣
vI=VI

vi

= −K(vI − VT)RL
∣∣
vI=VI

vi

= −K(VI − VT)RLvi

= −gmRLvi.

Not surprisingly, this result is the same as the one we obtained earlier.
To summarize, the small-signal model is a statement of a particular type

of linearized analysis of our circuits, which applies when the desired circuit
responds to signals that can be represented as an incremental perturbation over
a DC operating value. Put another way, it is a statement of a particular type of
constraint on our use of circuits called the small-signal discipline that allows us
to obtain linear behavior from nonlinear circuits over small ranges of operation.

Small signal model The responses of circuits to incremental changes from a
known DC operating point will be linear to a good approximation.



8.2 The Small-Signal Model C H A P T E R E I G H T 413

A systematic procedure for finding incremental signal responses based on
the preceding discussion involves two steps:

1. Find the DC operating point of the circuit using DC values and the
complete characteristics of the devices. Determine the corresponding
large-signal response (possibly nonlinear) to the desired input.

2. Apply the Taylor expansion method to the large-signal response to derive
the small-signal response. Alternatively, as discussed in Section 8.2.1,
replace the large-signal circuit with its equivalent small-signal model
based on the Taylor expansion and obtain the small-signal response.

Small-signal analysis is an extremely useful technique that applies to all
physical systems with differentiable characteristics. In essence, it says that if we
operate within a small-signal discipline, the response of any physical system
to small perturbation will be linear! In turn, the effectively linear system is
amenable to linear analysis techniques, such as superposition.

For example, consider a two-terminal sensor S that behaves like a
temperature-dependent voltage source with the following nonlinear relation-
ship between its terminal voltage vS and its temperature tS:

vS = Bt 3
S

where B is some constant. If the ambient temperature is TS and the correspond-
ing voltage is VS, we can relate the incremental change in the terminal voltage vs
to an incremental change in the temperature ts using Equation 8.21 as follows:

vs = 3B t 2
S

∣∣∣
tS=TS

ts.

In other words,

vs = 3BT2
Sts.

When operating at a given ambient temperature, 3BT2
S is a constant. Therefore,

the voltage response of the sensor to small changes in the temperature around
an ambient will be linear.

8.2.1 S M A L L - S I G N A L C I R C U I T R E P R E S E N T A T I O N

A model that involves only the small-signal variables of a circuit, and hence
describes purely the small-signal behavior of that circuit, would greatly facilitate
small-signal analysis. Fortunately, such a small-signal model is relatively straight
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forward to develop by executing the following procedure:

1. Set each source to its operating-point value, and determine the operating-
point branch voltages and currents for each component in the circuit.
This is most likely the longest step in the procedure.

2. Linearize the behavior of each circuit component about its operating
point. That is, determine the linearized small-signal behavior of each
component, and select a linear component to represent this behavior.
The parameters of the small-signal components will commonly depend
on the operating point voltages or currents.

3. Replace each original component in the circuit with its linearized
equivalent and re-label the circuit with the small-signal branch variables.
The resulting circuit is the desired small-signal model.

The circuit that is generated by this procedure is the desired small-signal
circuit model, and is analogous to equating the small signal terms on both
sides of Equation 8.8 yielding the equalities in Equation 8.10. Further, it is a
linear circuit, and hence the analysis tools developed for linear circuits, such as
superposition and the Thévenin equivalent model, may be applied to its analysis.

At this point, it is worth discussing why the procedure works. To begin,
recognize that the operation of a circuit is described in total by two sets of
equations: the circuit connection laws of KVL and KCL, and the constitutive
laws that describe the behavior of the individual circuit components. With this
recognition, the small-signal analysis of a circuit may also be described by the
following more direct mathematical procedure:

1. Set each source to its operating-point value, and combine the equations
to determine the operating point of the circuit. This is essentially the
same step as in the previous procedure.

2. Return to the original set of equations. For each variable in every
equation, substitute for the total variable the sum of its operating-point
value and its small-signal value. Then, linearize the equations around the
operating point assuming that the small-signal terms are small.

3. Cancel the operating-point variables from the linearized equations to yield
a set of linear equations that relate the small signals to themselves. This
cancellation must always be possible since the linearization is defined to
pass through the operating-point. This cancellation is akin to separately
equating the operating point variables and the incremental variables as we
did in Equation 8.10.1

1. In other words, we start with a set of equalities defining the operating point using operating-point
variables, for example,

VO = AVI.
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4. Complete the small-signal analysis by combining the linearized equations
to determine the desired small-signal variables in terms of the small-signal
inputs at the sources.

Now, let us examine the last procedure more closely. Notice that in Step 2
it is actually necessary to linearize only the constitutive laws that describe the
behavior of the individual circuit components because KVL and KCL are already
linear equations. It is for this reason that the first procedure called for the
linearization of only the constitutive laws. Further, because KVL and KCL con-
stitute a linear set of equations, they are unchanged by the linearization step.
This is important to recognize because KVL and KCL contain the informa-
tion concerning the topology of the original circuit. That is, they state which
branches are connected to which nodes, and which branches connect to form
which loops. Since KVL and KCL are unaffected by the linearization step,
the topological information is preserved during linearization. It is for this rea-
son that the small-signal circuit model has the same topology as the original
circuit. Thus, the linearized set of equations describing the behavior of the
small-signal circuit variables that is generated by the more formal mathemati-
cal procedure comprises the original KVL and KCL equations, and linearized
component constitutive laws. Thus, to develop a small-signal circuit model
it is necessary to determine only equivalent linearized circuit components and
substitute them into the circuit in place of their corresponding original circuit
components.

Small-signal circuit models for various devices are summarized in
Figure 8.10.

� The small-signal equivalent model for an independent DC voltage source
is a short circuit because its output voltage does not change for any
perturbation of the current through it. In particular, the power supply
connection labeled VS in most of our circuits gets shorted to ground in
the incremental circuit.

� The small-signal model for an independent DC current source is an open
circuit.

We then linearize, and obtain a new set of equalities in operating-point variables and
incremental variables, for example,

VO + vo = AVI + Avi.

The equalities that defined the operating point in the first place (namely, VO = AVI in our
example) may always be cancelled out of the linearized equations since they are only additively
connected to the small-signal variables. For our example, we thus obtain

vo = Avi.
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F IGURE 8.10 Small-signal
equivalent models.
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� A resistor behaves identically for a large signal or a small-signal. Therefore
its small-signal and large-signal models are the same.

� For a MOSFET, the derivation resulting in Equation 8.11 shows how to
relate the incremental drain to source current ids to the incremental gate
to source voltage vgs.

� By definition, an input signal vI has an incremental component vi and
a DC component VI.

� In general, if a device variable xB depends on some other variable xA as

xB = f (xA),

then the incremental change in xB due to an small change in xA is given by

xb = df (xA)

dxA

∣∣∣∣
xA=XA

xa (8.22)

where XA is the operating point value of xA.
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e x a m p l e 8.1 a m o s f e t w i t h i t s g a t e a n d d r a i n

t i e d t o g e t h e r Let us derive the incremental model for a MOSFET that has
its gate and drain terminal tied together as shown in Figure 8.11. When the G and D
terminals of the MOSFET are tied together, we get an effective two-terminal device.
Let us denote the two terminals as D and S, respectively. Because the gate-to-source
voltage of the device is the same as the drain-to-source voltage, the current iDS through

vDS
iDS

G

S

D
+

-

F IGURE 8.11 MOSFET with its
G and D terminals connected
together.

the device is related to the voltage vDS across the device as

iDS = K
(vGS − VT)2

2
.

Since the gate and drain are connected, vGS = vDS. Therefore,

iDS = K
(vDS − VT)2

2
.

The large-signal model for the mosfet is shown in Figure 8.12.

We can derive the change in iDS for a small change in vDS as follows. Let the DC value
of vDS be VDS and let the change be denoted vds. Let the corresponding DC value of
iDS be IDS and let its change be denoted ids. Then,

vDS

iDS =      (vDS - VT) 2

S

D
+

-

K
2
----

F IGURE 8.12 Large-signal
model for a MOSFET with its G and
D terminals connected together.

ids = diDS

dvDS

∣∣∣∣
VDS

vds

= K(vDS − VT)
∣∣
VDS

vds

= K(VDS − VT)vds.

In other words,

vds = ids

K(VDS − VT)
.

Notice that because 1/K(VGS − VT) is a constant, vds is directly proportional to ids,
which is a resistor relationship. Remarkably, a MOSFET with its gate and drain terminals
connected behaves like a resistor with resistance 1/K(VGS − VT) to small signals.

The small-signal equivalent circuit for the preceding element is shown in Figure 8.13.

vds
r =

S

D
+

-

1
K(VDS – VT)
-------------------------------

F IGURE 8.13 Small-signal
model for a MOSFET with its G and
D terminals connected together.

Because of its resistive behavior for small signals, and because MOSFETs with a high
resistance are easier to fabricate than resistors, MOSFETs are commonly used as the
load resistor in amplifiers.
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8.2.2 S M A L L - S I G N A L C I R C U I T F O R T H E
M O S F E T A M P L I F I E R

Let us now develop the small-signal equivalent circuit for the MOS amplifier
shown in Figure 8.14. Recall that developing the small-signal model involves
the following steps:

1. Set each source to its operating-point value, and determine the operating-
point branch voltages and currents for each component in the circuit.

2. Determine the linearized small-signal behavior of each component, and
select a linear component to represent this behavior.

3. Replace each original component in the circuit with its linearized
equivalent and re-label the circuit with the small-signal branch variables.
The resulting circuit is the desired small-signal model.

As the first step, let us determine the operating point of the MOSFET
amplifier for its bias voltages using the large-signal SCS circuit model depicted
in Figure 8.15. Assuming that the input bias voltage is VI, we can determine the
output operating current ID and the output operating voltage VO. We explicitly
show the power supply voltage source VS to facilitate deriving the small-signal
model.

F IGURE 8.14 The MOSFET
amplifier.

+
-

vI

vO

VS

iD 2
----------------------------=

RL

K(vI − VT)2

F IGURE 8.15 Computing the
operating point of the MOSFET
amplifier based on the large-signal
SCS model. +

-VI

VO

VS

ID
K(VI – VT)2

2------------------------------=

RL

+
-VS
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The output operating current ID is directly calculated from the MOSFET
characteristic equation as:

ID = K

2
(VI − VT)2.

The output operating voltage is obtained by applying KVL for the loop
comprising the power supply, the MOSFET, and RL as follows:

VO = VS − IDRL (8.23)

= VS − K

2
(VI − VT)2RL. (8.24)

As the second step, we determine the linearized small-signal models for
each component. Referring to Figure 8.10, we see that the small-signal model
for the DC power supply is a short. The small-signal model for the resistor is the
same as its large-signal model. Finally, the linearized small-signal model for the
MOSFET in saturation is a voltage-dependent current source whose small-signal
current is linearly related to the small-signal gate-to-source voltage as:

ids = K(VGS − VT)vgs.

Notice that the biasing of the large-signal circuit determines the parameters of
the small-signal circuit (for example, the small-signal current source parameter
K(VI − VT) depends on the input bias voltage, VI).

As the third step, we replace each original component in the circuit with
its linearized equivalent and re-label the circuit with the small-signal branch
variables vi, vo, and id as depicted in Figure 8.16.

The small-signal circuit model can be analyzed to determine the circuit
response to small signals. For example, we can use Figure 8.16 to determine
the small-signal gain of the MOSFET amplifier. Applying KVL at the output,
we get

vo = −idRL (8.25)

= −K(VI − VT)viRL (8.26)

+
-vi

vo

id K(VI – VT)vi=

RL
F IGURE 8.16 The small-signal
SCS circuit model for the MOSFET
amplifier.
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Thus, the small-signal gain is given by

vo

vi
= −K(VI − VT)RL (8.27)

= −gmRL (8.28)

where

gm = K(VGS − VT) (8.29)

is the transconductance of the MOSFET.
As an example, let us compute the small-signal gain for the following

amplifier parameters:

VS = 10 V

K = 1 mA/V2

RL = 10 k�

VT = 1 V.

Also, suppose the input bias voltage is chosen to be VI = 2 V. As
determined earlier in Equation 8.24,

VO = VS − K

2
(VI − VT)2RL.

Substituting, the given parameters, we get VO = 5 V.
We can now calculate the magnitude of the voltage gain as

vo

vi
= K(VI − VT)RL

= 10−3(VI − 1)104

= 10.

8.2.3 S E L E C T I N G A N O P E R A T I N G P O I N T

Small-signal operation requires that the total input signal appear as a small
perturbation about a DC offset. The input DC offset establishes an operating
point for the amplifier. Section 7.7 discussed the issue of operating points in the
context of large signals, and proposed a method for selecting the operating point
based on maximizing the dynamic input signal range. Specifically, Section 7.7
suggested that the operating point be chosen as the midpoint of the valid input
voltage range of amplifier operation under the saturation discipline. This made
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V
I

|Gain|

V
T
 = 1 V

10

20

F IGURE 8.17 Magnitude of the
small-signal gain of the amplifier
for various values of the input
operating point voltage VI .

sense, since the input signals were large and maximizing the input dynamic
range enabled the amplifier to deal with the largest possible input signals.

When dealing with small signals, other criteria are often more important in
selecting the operating point than just obtaining maximum dynamic range. One
criterion is the small-signal gain of the amplifier. As evident from Equation 8.28,
the small-signal gain of the amplifier is dependent on the input operating point
voltage VI. The magnitude of the small-signal gain is given by

∣∣∣∣vo

vi

∣∣∣∣ = K(VI − VT)RL. (8.30)

Figure 8.17 plots the magnitude of the gain for various values of VI. The graph
indicates that the amplifier gain increases with increasing VI.

As an example, assuming these parameters for our amplifier,

VS = 10 V

K = 1 mA/V2

RL = 10 k�

VT = 1 V

let us determine a value for the input operating-point voltage VI that will result
in a gain of 12.

Substituting the required gain into Equation 8.30, we have

12 = 1 × 10−3(VI − 1)10 × 103.

Solving, we obtain VI = 2.2 V. This means that an input DC offset of 2.2 V
will result in a small-signal gain magnitude of 12.
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Now, assuming that the input signal is a small-signal sinusoid superimposed
on the DC offset of 2.2 V, let us determine the maximum valid peak-to-peak
swing for the sinusoid. We refer back to Section 7.6.2 to answer this question.
From Section 7.6.2, we know that under the saturation discipline, the maximum
valid range for the input voltage is VT → −1 + √

1 + 2VSRLK/RLK + VT.
For the given parameters, the valid range for input voltages is 1 V →

2.32 V. In other words, as discussed in Section 7.6.2, input voltages under 1 V
will result in cutoff region operation of the MOSFET, while those over 2.32 V
will result in triode region operation. Operation in either the cutoff region or
the triode region will result in severe signal distortion.

Since the input offset is 2.2 V, and the maximum valid input voltage is
2.32 V, the maximum positive swing for saturation region operation of the
MOSFET is given by 2.32 V − 2.2 V = 0.12 V. Thus, the maximum peak-
to-peak swing for the input sinusoid is 2 × 0.12 V = 0.24 V. Notice the clear
tradeoff we have made between gain and dynamic range. To increase the gain,
we had to bias the amplifier with a high input bias voltage, which was close
to the high end of the valid input signal range. However, the high input bias
voltage limited the positive signal swing.

Another criterion that is often important is the output operating-point
voltage. This is important when the amplifier must drive another circuit stage
and the output operating-point voltage of the amplifier determines the input
operating-point voltage of the next stage.

For example, consider the two-stage amplifier shown in Figure 8.18. In
this circuit, VIA provides the DC bias for the first stage. Its output, in turn, VOA
provides the DC bias for the second stage. Thus, VOA = VIB.

Assuming the following parameters for our amplifier,

VS = 10 V

K = 1 mA/V2

R = 10 k�

VT = 1 V

F IGURE 8.18 A two-stage
amplifier.

+
-

VIA

R

VS

R

VS

VOB

-

+

VOA

+

-
VIB

+

-
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suppose the first stage is biased at VI A = 2.2 V to achieve a small-signal gain
magnitude of 12. Let us determine whether the output operating-point voltage
of the first stage can provide a valid input bias voltage for the second stage.

When the first stage is biased at VI A = 2.2 V, the first stage operating-point
output voltage VOA is given by Equation 8.24. Substituting the parameters for
our circuit, we have

VOA = VS − K

2
(VI A − VT)2R

= 10 − 1 × 10−3

2
(2.2 − 1)210 × 103

= 2.8 V.

From Section 7.6.2, we know that under the saturation discipline, the max-
imum valid range for the input voltage of the second stage is VT → −1 +√

1 + 2VSRK/RK + VT. Substituting the circuit parameters, the valid input
range for the second stage comes out to be 1 V → 2.32 V. Since VOA exceeds
the upper bound (2.8 V > 2.32 V), we conclude that the first stage cannot pro-
vide a valid input bias voltage for the second stage when the first stage input bias
is set at 2.2 V. We can correct this situation by increasing VI A, or by increasing
R for the first stage.

8.2.4 I N P U T A N D O U T P U T R E S I S T A N C E ,
C U R R E N T A N D P O W E R G A I N

The small-signal equivalent circuit also allows us to determine other important
circuit parameters, such as the small-signal input resistance, output resistance,
current gain, and power gain. Since the amplifier behaves as a linear network
for small signals, it can be characterized by a Thévenin equivalent when viewed
from any given port. The input and output resistance come in handy in this
Thévenin characterization. Let us determine these values for the MOSFET
amplifier using its small-signal circuit in Figure 8.16. Since these parameters are
externally observed quantities, they are defined with respect to the external ports
of the amplifier abstraction. Thus, it is important that we define precisely what
constitutes the input and output ports of the small-signal amplifier. Figure 8.19
shows the relationship between the external ports of the amplifier circuit and the
small-signal model. Notice that we have internalized the input bias voltage into
the small-signal amplifier abstraction so the user of the amplifier does not have to
provide the appropriate input bias voltage. Instead, the user can simply provide
a small input signal and observe the resulting signal output superimposed on
the DC output offset.
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VI
+

-

RL

VS

vi

vO

Small-Signal

Amplifier

ii

iO

+

-

+

-

(a)

id = K(VI  – VT)vi

RL

ii

vi

vo

io

-

+

-

+

(b)

F IGURE 8.19 Amplifier input
and output ports: (a) amplifier
circuit; (b) small-signal model. As
shown in the amplifier circuit, we
have internalized the input bias
voltage into the small-signal
amplifier abstraction.

Input Resistance ri

Incremental input resistance The change in the input current for a small change
in the input voltage.

Accordingly, as depicted in Figure 8.20 we compute it by applying a small test
voltage vtest at the input and measuring the corresponding current itest. All other
independent small-signal voltages or DC voltage sources are shorted. Similarly,
all other independent small-signal or DC current sources are turned into open
circuits.

The input resistance for the MOSFET amplifier is given by

ri = vtest

itest
= vtest

0
= ∞. (8.31)

F IGURE 8.20 Input resistance
measurement. id = K(VI – VT)vtest

RL
+

-

+
-vtest

itest
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RL

vi = 0 id = K(VI – VT)vi
    = 0

+
-

vtest

itest

F IGURE 8.21 Output resistance
measurement.

For the SCS MOSFET model, the gate does not draw any current (itest = 0),
so the input resistance is infinite.

Output Resistance rout

Incremental output resistance The change in the output current for a small
change in the output voltage.

We must assume, of course, that the circuit is biased properly. As depicted in
Figure 8.21, we compute the output resistance by applying a small test voltage
vtest at the output and measuring the corresponding current itest. As before,
all other independent small-signal voltages or DC voltage sources are shorted.
Thus the small-signal input voltage vi is set to 0. Similarly, all other independent
small-signal or DC current sources are turned into open circuits.

The output resistance is given by

rout = vtest

itest
= RL. (8.32)

Because the input small-signal voltage is set to zero, the current through
the MOSFET is 0. In other words, the MOSFET behaves like an open circuit.
Thus the output resistance for small signals is RL.

Current Gain

Analogous to the voltage gain, we can define a current gain for an amplifier
that supplies an external current.

Incremental current gain The change in the output current divided by the
change in the input current, for a given external load resistance.

As depicted in Figure 8.22, we can compute the current gain by applying a
small test voltage at the input and measuring both the input current itest and
the output current io. The ratio io/itest is the current gain. Note that the output
current is not the current that flows through the dependent current source,
rather it is the current that is drawn by an external load resister RO. Because
it is dependent on the value of the load resistor, the current gain is defined
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F IGURE 8.22 Current gain
measurement. As an exercise, we
place a resistance Ri between the
input terminal and ground. For a
MOSFET, Ri = ∞.

RL

id = K(VI – VT)vtest+
-vtest

itest
RO

io

irl

vo

Ri

+

-

for a given load resistance. The introduction of an external load resistance also
reduces the voltage gain of the amplifier because it appears in parallel with the
internal load resistor RL.

The current gain with an external load resistance RO is given by

Current gain = io
itest

. (8.33)

Let us go through the exercise of determining the value of io assuming
there is some finite input resistance Ri as shown in Figure 8.22. Substituting for
io and itest in terms of the respective voltages,

Current gain =
vo
RO
vtest
Ri

(8.34)

= vo

vtest

Ri

RO
. (8.35)

Equation 8.35 says that the current gain is proportional to the product of the
voltage gain and the ratio of the input resistance and the output resistance.

We can determine the voltage gain vo/vtest by substituting for vo in terms
of the current id and the parallel resistance pair RL and RO as

vo

vtest
= −K(VI − VT)vtest(RL‖RO)

vtest
.

In other words,

vo

vtest
= −K(VI − VT)(RL‖RO). (8.36)

Notice that the voltage gain of the amplifier with an external load is lower than
an unloaded amplifier. Substituting the expression for the voltage gain into
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Equation 8.35, we get an expression for the current gain:

Current gain = −K(VI − VT)(RL‖RO)
Ri

RO
. (8.37)

Since Ri = ∞ for the MOSFET, the corresponding current gain is also
infinite.

Power Gain

Incremental power gain The ratio of the power supplied by the amplifier to an
external load to that supplied to the amplifier by the input source.

Referring to Figure 8.22, we can compute the power gain as follows: We apply
a small test voltage at the input and measure the input current itest. We also
measure the corresponding output voltage vo and output current io supplied to
the external load resistor. We compute the power supplied by the input source
as vtestitest. Similarly, we compute the power supplied to the external load as
voio. As we did for the current gain, let us assume that the amplifier has an
input resistance Ri. The power gain is given by

Power gain = voio
vtestitest

= vo

vtest

io
itest

. (8.38)

We know both the voltage gain and the current gain from Equations 8.36
and 8.37, respectively. Substituting in the above equation we get,

Power gain = vo

vtest

io
itest

(8.39)

= [−K(VI − VT)(RL‖RO)]
[
−K(VI − VT)(RL‖RO)

Ri

RO

]
(8.40)

= [K(VI − VT)(RL‖RO)]2 Ri

RO
. (8.41)

Since Ri = ∞ for the MOSFET amplifier, the power gain is also infinite.
In practical circuits, however, there is always some input resistance, so the
power gain is finite.

e x a m p l e 8.2 v o l t a g e - c o n t r o l l e d c u r r e n t s o u r c e

Let us perform a small-signal analysis of the voltage-controlled current source circuit
shown in Figure 8.23. Referring to Figure 8.23, the current iO depends on voltage
source vI according to

iO = 1

L(vI − 1)
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F IGURE 8.23 Dependent
current source circuit.

RL

vI vO

+
-  vI iO

1---------------------=

for vI >1
L(vI − 1)

where vI > 1 and L is some constant. What is the change in vO for an incremental
change in vI, when the operating-point values of vI and vO are VI and VO, respectively?

To find the incremental change in vI, we follow the three-step process outlined in
Section 8.2.1. We begin by writing the large-signal relationship between vO and vI:

vO = iORL (8.42)

= RL
1

L(vI − 1)
. (8.43)

Substituting in the operating-point values, we get:

VO = RL
1

L(VI − 1)
. (8.44)

Next, we linearize the devices. The input voltage source with total voltage vI is
replaced by its small-signal voltage vi. The resistor remains unchanged. The small-signal
equivalent of the dependent current source is derived using:

io = diO
dvI

∣∣∣∣
VI

vi

= − 1

L(VI − 1)2
vi.

In the third step, we substitute in the small-signal models in place of the large-signal
models for each of the devices. The corresponding small-signal circuit is shown in
Figure 8.24.

F IGURE 8.24 Small-signal
circuit model for the dependent
current source.

RL

vi
vo

+
-  vi

io
1--------------------------------vi–=

L(VI – 1)2
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We can now derive the change in the output voltage for a small change in the input
voltage from the small-signal circuit by writing KVL for the output loop:

vo = ioRL = − 1

L(VI − 1)2
viRL.

We can also derive the change in the output voltage for a small change in the input
voltage directly from the vO versus vI relationship given by Equation 8.43.

vo = dvO

dvI

∣∣∣∣
VI

vi = − 1

L(VI − 1)2
viRL.

e x a m p l e 8.3 s m a l l - s i g n a l a n a l y s i s o f a d i f f e r -

e n c e a m p l i f i e r The difference amplifier is a building block for high-quality
amplification and is useful for processing small signals. When a signal is noisy, straight-
forward use of an amplifier would amplify both the signal and the noise. However,
under certain conditions that we will see shortly, a difference amplifier (also called a
differential amplifier) can be used to amplify the signal by a much larger gain relative
to the noise. Difference amplifiers are also used in building operational amplifiers, and
suitable difference amplifier circuits are discussed in Examples 7.19 and 8.10.

Suppose the signal is available in differential form. In other words, suppose the signal
is available as the relative voltage output (vA − vB) on a pair of terminals A and B. For
example, as the output of the tape-head in a tape-recorder, the output of an instrumen-
tation device or a sensor. Such a sensor often resembles one of our primitive elements
for example, a variable resistor. The element might produce a voltage signal across its
terminals related to some externally sensed parameter such as temperature, gas con-
centration, or magnetic field strength. Often, a pair of wires carrying the signal might
travel through a noisy environment resulting in the coupling of more or less the same
amount of noise (vn) on each of the two wires, as depicted in Figure 8.25.2 In other
situations, the two wires might both carry a common DC bias. In such situations, a
difference amplifier can help amplify just the differential signal component and discard
the common noise component.

The difference amplifier abstraction is shown in Figure 8.26. It is a two-port device with
one differential input port and one single-ended output port. The input port has two
input terminals. The + input is called the non-inverting input and the − input is called
the inverting input. It has an output port across which vO appears.

2. In fact, the wires are often twisted together to ensure that when there is noise, the same amount
of noise infects both wires.
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F IGURE 8.25 A differential
signal.

Sensor

vA

vB
vD
+

-

vn vA + vn

vB + vn

F IGURE 8.26 Difference
amplifier black box representation.

Differential

amplifier

Ground

vA

vB

vO

+

-

F IGURE 8.27 Single-ended
difference amplifier structure.

Source-
coupled
amplifier

Subtracter
A - B

A

B

vX

vY vO

vA

vB

Single-ended difference amplifier

We can also build a single-ended difference amplifier from a differential output difference
amplifier as shown Figure 8.27.

The behavior of the difference amplifier is best explained by considering its effect on the
following signals related to the two components, vA and vB:

1. A difference-mode component signal,

vD = vA − vB (8.45)

2. And a common-mode component signal,

vC = vA + vB

2
. (8.46)

The output of the difference amplifier is a function of these two components of the
input,

vO = ADvD + ACvC (8.47)
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where AD is called the difference-mode gain and AC is called the common-mode gain.
The key in using a difference amplifier is to encode the useful signal in the difference-
mode component and the noise in the common-mode component. Then if we make
AD large and AC small, we achieve our goal of noise reduction. Usually we use the
common-mode rejection ratio (CMRR) to describe the ability of the amplifier to reject
the common-mode noise:

CMRR = AD

AC
. (8.48)

MOSFET Implementation of the Difference Amplifier

Let us study a MOSFET version of the difference amplifier. The amplifier employs a pair
of matching transistors called the source-coupled pair. The source-coupled amplifier is
shown in Figure 8.28. vA and vB are the inputs, and vX and vY are the outputs. Assume

RL RL

vX vY

vA vB

VS

I Ri

+
-

vA
+
-

vB

F IGURE 8.28 Source-coupled
difference amplifier. All voltages
are measured with respect to
ground.

vA and vB are the input voltages measured with respect to ground. Also assume that
va and vb are small variations in the inputs, and that vx and vy are the corresponding
small-signal variations in the output. The source-coupled pair is connected in series with
a DC current source with a high internal resistance Ri. (We can implement the current
source using a MOSFET biased to operate in its saturation region, but we do not show it
here. For simplicity, we use an abstract non-ideal current source instead. In other words,
the current source has a finite resistance, Ri.) Let the current provided by the DC current
source be I.

Let us examine the difference amplifier using its small-signal model shown in Figure 8.29.
RL RL

Ri

gm2vgs2
gm1vgs1

F IGURE 8.29 Source-coupled
difference amplifier — small-signal
model.

Notice that an ideal current source acts like an open circuit, but a current source with an
internal Norton equivalent resistance Ri behaves like a resistor to incremental changes
in its terminal variables. The MOSFETs are replaced by their small equivalent current
sources. The voltages vgs1 and vgs2 are the small-signal voltages between the gate and
source of the two input MOSFETs resulting from a small change in the input voltages
vA and vB.

The gain parameters gm1 and gm2 for the MOSFETs depend on the operating-point
values of the currents through them. Assuming that the current through Ri is negligible,
by symmetry, we find that the current I divides equally between the two MOSFETs.
Thus each has an operating-point current equal to I/2. From the SCS model for the
MOSFETs, given VT and K, we can thus find the bias input voltages VGS1 and VGS2 in
terms of I. In turn, the respective gains gm1 and gm2 can be determined in terms of VGS1

and VGS2, which are themselves functions of I.

Recall that

� the difference-mode component:

vD = vA − vB
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� and the common-mode component

vC = vA + vB

2
.

Therefore, we can decompose the inputs into their difference- and common-mode
component as follows:

vA = vC + vD

2

vB = vC − vD

2
.

We will discuss each mode separately, and then summarize the behavior of the entire
amplifier.

Difference-Mode Model

We first examine the circuit with the difference-mode part of the input only. Refer to
Figure 8.30 for the circuit and its small-signal model. Assume that the two MOSFET’s
have identical characteristics, gm1 = gm2 = gm. An application of KCL at the source
node of the two MOSFETs (in other words, the node with the small-signal voltage vs)
yields

gmvgs1 + gmvgs2 = vs/Ri. (8.49)

From Figure 8.30 we can also write

vd

2
− vgs1 = vs

−vd

2
− vgs2 = vs.

F IGURE 8.30 Difference-mode
model. All voltages are measured
with respect to ground.

RL RL
vX vY

VS
RL RL

Ri

gm2vgs2gm1vgs1

+
-

+
-

vs
vgs1 vgs2

+ +
-

(b) Small-signal model(a) Differential mode input only

vD
2------–

vd
2-----

vd
2-----–

vx vy

vD
2-----

vS
-+

-
+
-
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vs

vx

+

-

vy

+

-

gm
2------– vd⋅

gm
2------ vd⋅RL RL

F IGURE 8.31 Difference-mode simplified
model.

vy

+

-

vx

+

-

–gmRLvd gmRLvd

2
-------------------------

RLRL

2
----------------------+

-
+
-

F IGURE 8.32 Difference-mode
Thévenin equivalent circuit.

Substituting vgs1 and vgs2 in terms of vd into Equation 8.49, we obtain

gm

(
vd

2
− vs

)
+ gm

(−vd

2
− vs

)
= vs

Ri
(8.50)

−2gmvs = vs

Ri
. (8.51)

Since gm and Ri are independent of each other, vs = 0. This result greatly simplifies our
circuit to the one in Figure 8.31. Converting it to the Thévenin equivalent model, we
obtain the circuit shown in Figure 8.32.

We see that

vx = − gmRLvd

2

and

vy = gmRLvd

2
.

Thus, the small-signal output voltage across the output terminal pair is given by

vo = vx − vy = −gmRLvd.

This yields a difference-mode small-signal gain

Ad = vo

vd
= −gmRL.

Common-Mode Model

We will now examine the behavior of the circuit for the common-mode input. The
circuit and small-signal model is shown in Figure 8.33. The small-signal change in the
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F IGURE 8.33 Common-mode
model.

(a) Common-mode input only (b) Small-signal model

RL RL

vX vY

vC vC

VS

RL RL

Ri

gm2vgs2gm1vgs1

-
+
-

  vc
+
-
vc

vs
v
gs1

vgs2
+ +- -+

-
+
-

vs

vx

+

-

vy

+

-

1
2 Ri⋅------------ vc⋅RL RL

1
2 Ri⋅------------ vc⋅

Ri

F IGURE 8.34 Common-mode Norton
equivalent circuit.

vy

+

-

vx

+

-

–RLvc

2Ri
----------------

–RLvc
2Ri

-----------------

RLRL

+
-

+
-

F IGURE 8.35 Common-mode Thévenin
equivalent circuit.

common-mode input is denoted vc. Observe that vgs1 = vgs2 = vgs, and vgs = vc − vs.
Application of KCL at vs again yields

gmvgs + gmvgs = vs

Ri
(8.52)

2gmvgs = vc − vgs

Ri
(8.53)

vgs = 1

2gmRi + 1
vc. (8.54)

Assuming Ri is large, so that 2gmRi � 1, we can simplify Equation 8.54 to

vgs ≈ 1

2gmRi
vc.

Therefore, the two dependent current sources will have value

1

2Ri
vc.

The simplified circuit is shown in Figure 8.34. Transforming the circuit into its Thévenin
equivalent circuit gives the circuit shown in Figure 8.35.



8.2 The Small-Signal Model C H A P T E R E I G H T 435

From the Thévenin equivalent circuit, notice that

vx = vy = −RLVC

2Ri
.

Remarkably,

vo = vx − vy = 0

effectively yielding a common-mode small-signal gain of 0.

Overall Behavior

Putting it all together, we combine the small-signal difference-mode circuit from
Figures 8.32 with the small-signal common-mode circuit in 8.35 and obtain the cir-
cuit shown in Figure 8.36. Notice that we are able to do such a superposition because of
the linearity property of our small-signal circuits. The output of the difference amplifier
is the difference between vx and vy, which gives a difference-mode gain of −gmRL and
common-mode gain of 0.

Input and Output Resistances

Computing the input and output resistances for the difference amplifier is fairly easy.
When we apply the small input signals va and vb, there will not be any current flowing
into the MOSFETs, so, we have infinite input resistance.

To compute the small-signal output resistance looking in from one of the terminals of
the output port, we turn off all independent sources by setting va = 0 and vb = 0,
in effect, turning off vc and vd. We introduce a test voltage at the desired output and
short the other output to ground. Therefore, the overall circuit is transformed to the
one shown in Figure 8.37. Thus the output resistance looking into ports vx or vy and
ground will be RL.

+
-

+
-

vy

+

-

vx

+

-

–gmRLvd

2
-----------------------

RLvc

2Ri
-----------

RLRL

gmRLvd

2
---------------------

RLvc

2Ri
-------------––

F IGURE 8.36 Difference
amplifier Thévenin equivalent
circuit.

vtest

+

-

vx

+

-

RLRL
itest

F IGURE 8.37 Difference
amplifier output resistance.



436 C H A P T E R E I G H T t h e s m a l l - s i g n a l m o d e l

e x a m p l e 8.4 s o u r c e f o l l o w e r A useful circuit we have seen
before3 is the source follower shown in Figure 8.38. The source follower in the figure

vI
+

-
RS

vO

VS

RL

F IGURE 8.38 Source-follower
circuit.

is shown driving an external load resistor RL. Assume that the total input voltage vI

includes the appropriate DC bias voltage to meet the saturation discipline. The small-
signal equivalent circuit for the source follower is shown in Figure 8.39. Let us analyze
this circuit by computing its small-signal gain.

The small-signal output vo can be expressed in terms of the circuit parameters as

vo = gmvgs(RL‖RS)

where vgs is the voltage between the gate and the source of the MOSFET. Using KVL,
observe that vgs = vi − vo. Therefore, we can write

vo = gm(vi − vo)(RL‖RS) (8.55)

vo

(
1

RL‖RS
+ gm

)
= gmvi (8.56)

vo = RLRS gm

RL + RS + RLRS gm
vi (8.57)

vo

vi
= RLRS gm

RL + RS + RLRS gm
. (8.58)

Thus the gain is slightly less than 1. An important special case of Equation 8.59 is when
RL is very large. Thus, when RL → ∞,

vo

vi
= RS gm

1 + RS gm
. (8.59)

F IGURE 8.39 Source-follower
small-signal model. gm , the
transconductance of the MOSFET,
is given by K(VGS − VT), where
VGS is the operating-point value of
the gate-to-source voltage for the
MOSFET. (See Example 7.8 or
Problem 7.5 in Chapter 7 to see
how the operating-point param-
eters of the source follower can be
calculated.)

vi
+
- RLRS

vgs
+ -

gmvgs

+

-

vo

3. See Example 7.8 and Problem 7.5 in Chapter 7.
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RLRS

vgs
+ -

ids = gmvgs
+
-

vtest

itesta

is il

F IGURE 8.40 Source-follower
output resistance.

When gm is large, irrespective of the values of RL and RS, Equation 8.58 can be
rewritten as

vo

vi
≈ 1.

To find out why such a circuit is useful, let us compute the input and output resistances
of the source-follower device.

Small-Signal Input and Output Resistances

The input resistance ri is easily calculated. Since no current flows into the MOSFET, the
input resistance is infinity.

Computing the output resistance needs more work. As depicted in Figure 8.40, let us
turn off the independent sources, apply a small test voltage vtest at the output terminal
and measure the corresponding current itest. The output resistance will be given by
rout = vtest/itest.

In order to compute rout, we apply KCL at node a shown in Figure 8.40. The dependent
source current ids depends on vgs, and vgs equals −vtest. Therefore, we have

ids + itest = is + il (8.60)

−gmvtest + itest = vtest

RL‖RS
. (8.61)

Rearranging the terms and simplifying the expression, we obtain

vtest

(
gm + 1

RL‖RS

)
= itest

This leads to

rout = vtest

itest
= RLRS

gmRLRS + RL + RS
.

When gm, RL, and RS are large, RL + RS becomes insignificant compared to gmRLRS.
Therefore, we can simplify,

rout ≈ 1

gm
.
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F IGURE 8.41 Small-signal
model of the MOSFET amplifier in
Figure 7.46.

+ -
vgs

+

-

vout
+
-

vin13.4 kΩ

R1 R2

mA
V

--------- vgs

R3 = 20 kΩ

K(VGS – VT)vgs = 0.6

Since gm can be made very large, the output resistance can be made low. The low output
resistance makes the source follower useful as a buffer device, which can provide a large
amount of current gain.

e x a m p l e 8.5 s m a l l - s i g n a l a n a l y s i s o f a n o t h e r

m o s f e t a m p l i f i e r In this example, we examine the small-signal behavior
of the MOSFET amplifier shown in Figure 7.46 and studied in Example 7.12. This
amplifier works well for both positive and negative values of v IN, and so we will choose
the input bias voltage to be VIN = 0 V for the small-signal analysis. Therefore

v IN ≡ VIN + vin = vin.

To determine the remaining bias voltages in the amplifier, we set vin = 0 V, which
results in v IN = 0 V. From the results of Example 7.12, we can then determine the bias
voltages VOUT = 6.4 V and VGS = 1.6 V.

Next, following the method of Section 8.2, we construct the small-signal circuit model
shown in Figure 8.41. Analyzing the small-signal circuit model, we obtain

vout = R3K(VGS − VT)vin = 12 v in.

Therefore, the small-signal gain is 12 at the bias voltage VIN = 0. The same result can
be obtained by evaluating

dvOUT/dvIN|vIN = 0

using the results of Example 7.12.

e x a m p l e 8.6 s m a l l - s i g n a l m o d e l f o r t h e b j t In
this example, we will develop the small-signal model for the BJT by linearizing the
piecewise linear BJT model studied earlier in Figure 7.49c in Example 7.13. Figure 8.42b
depicts the large-signal model (from Figure 7.49c) for the BJT under the constraint that
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the BJT operates in its active region. When operating in the active region, the base-to-
collector diode shown in Figure 7.49c behaves like an open circuit, and so it can be safely
ignored in our analysis.

Figure 8.42c depicts the small-signal model of the BJT based on the piecewise-linear
vCE

+

-

B

C

E

iC
iB

iEvBE

+

-

(a) BJT symbol

C

B
biB

E

(b) BJT large-signal model
assuming BJT is in active region

vCE

+

-

iC

iB

iE

vBE

+

-

0.6 V+
-

C

B
bib

E

ic

ib

ie

(c) BJT small-signal model

F IGURE 8.42 Small-signal
model for the BJT.

model in Figure 8.42b. In the active region, the ideal diode in Figure 8.42b behaves
like a short circuit. Furthermore, the 0.6-V voltage source appears as a short circuit for
incremental changes. Finally, since the active region relationship between iB and iC is
linear, and given by

iC = βiB,

the relationship between the incremental signals ic and ib is also the same:

ic = βib.

Alternatively, we can derive the incremental change in the collector current for a small
change in the base current mathematically from Equation 8.22 as follows:

ic = diC
diB

∣∣∣∣
iB=IB

ib

= dβiB
diB

∣∣∣∣
iB=IB

ib

= βib.

Next, we will use the small-signal model for the BJT in a few examples.

e x a m p l e 8.7 s m a l l - s i g n a l a n a l y s i s o f t h e b j t

a m p l i f i e r In this example, we will study the small-signal behavior of the com-
mon emitter BJT amplifier shown in Figure 7.54, which is redrawn here in Figure 8.43
to show that the total input vIN is the sum of a DC offset voltage VIN and a small-signal
voltage vin. In keeping with our usual small-signal notation, the total, operating point,
and small-signal voltages at the output are given by vO, VO, and vo respectively. We will
compute the small-signal gain of the amplifier assuming that the amplifier operates in its
active region, and given that RI = 100 k�, RL = 10 k�, and VS = 10 V. Assume that
the current gain parameter β for the BJT is 100, and that the input operating voltage is
chosen to be VIN = 1 V.

We now begin the small-signal analysis of our BJT amplifier. The first step of small-signal
analysis is to determine the operating-point variables in the circuit. Although not strictly
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RL

VS

B C

E

RI

+
-vin

+
-VIN{vIN

vO = VO + vo

F IGURE 8.43 Our BJT amplifier showing
the small-signal and bias input voltages.

vo

bib

RL

vin

RI

+
-

ib

ic

B

C

E

F IGURE 8.44 Small-signal circuit model
for the BJT amplifier.

necessary,4 we will go ahead with the operating-point analysis to verify that the BJT is
indeed operating in its active region for the given parameters. From the transfer function
relation in Equation 7.51, we know that

VO = VS − (VIN − 0.6)

RI
βRL.

Substituting our specific parameter values, we obtain

VO = 6 V.

Since, VCE = VO = 6 V and VBE = VIN = 1 V, it is easy to see that the BJT constraint
for active region operation given by

VCE > VBE − 0.4 V

is satisfied.

As the second step, we must determine linearized small-signal models for each of the
circuit components. This step is trivial for our example, since all the elements are linear
(including the BJT, since we are given that it always operates in its active region). The
small-signal equivalents for the DC sources are short circuits, and those for the linear
resistors are the resistors themselves. Finally, we will use the small-signal model for the
BJT operating in its active region (developed in Example 8.6) illustrated in Figure 8.42c.

Proceeding with the third step of small-signal analysis, Figure 8.44 shows the small-signal
circuit for the amplifier in which the components have been replaced by their respective

4. This step is not strictly necessary in our example because all the elements are linear (including the
BJT, since we are given that it always operates in its active region). For linear elements, the small-
signal model relationships are independent of their operating points. Compare, for example, the
small-signal relations for the BJT and the MOSFET shown in Equations 8.62 and 8.10, respectively.
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linearized equivalents, and in which small-signal branch variables have replaced the total
variables.

The small-signal gain can now be determined by writing the node equation for the output
node

vo

RL
= −βib.

Substituting ib = vin/RI, we get

vo

RL
= −β

vin

RI
.

Simplifying, we obtain the small-signal gain of the BJT amplifier

Small-signal gain = vo

vin
= −β

RL

RI
. (8.62)

Notice here that the gain of the BJT amplifier is independent of the operating point,
provided the BJT operates in the active region. For a given BJT device (that is, a fixed
value for β) the gain can be increased by increasing RL or decreasing RI.

Finally, substituting RI = 100 k�, RL = 10 k�, β = 100, we obtain

Small-signal gain = −10.

This concludes our analysis.

e x a m p l e 8.8 s m a l l - s i g n a l i n p u t a n d o u t p u t

r e s i s t a n c e o f t h e b j t a m p l i f i e r Let us first compute the
small-signal input and output resistances of the common emitter BJT amplifier. The
general approach to doing so is to turn off all independent sources and to apply a
test voltage (or current) at the input or output port as appropriate and to measure the
resulting current (or voltage). The ratio of the voltage to the current gives the resistance.

The input resistance ri is easily calculated. For an applied test voltage vin (see Figure 8.45),

vo

bib

RL

vtest

RI

+
-

ib

ic

B

C

E

F IGURE 8.45 Applying a
small-signal test voltage to the
input port of the BJT amplifier to
compute the small-signal input
resistance.

the resulting current into the input B terminal ib is given by

ib = vtest

RI
.

Thus the input resistance ri is simply RI.

As illustrated in Figure 8.46, we compute the output resistance by turning off all inde-

bib

RL

RI ib

ic

B

C

E

vtest
+
-

io

F IGURE 8.46 Applying a
small-signal test voltage to the
output port of the BJT amplifier to
compute the small-signal output
resistance.

pendent sources, and applying a small test voltage vtest at the output port and measuring
the corresponding current io. The output resistance will be given by rout = vtest/io.
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In order to compute rout, we apply KCL at the node labeled C shown in Figure 8.46.
Summing all the currents going into node C, we get

io − vtest

RL
− βib = 0.

Since ib = 0 (the voltage across RI is zero), we get

rout = vtest

io
= RL.

e x a m p l e 8.9 s m a l l - s i g n a l c u r r e n t g a i n a n d

p o w e r g a i n o f t h e b j t a m p l i f i e r In this example, let us
compute the incremental current and power gain for the common emitter BJT amplifier.
Both the current gain and the power gain are defined as the current or power supplied
to an external load divided by the current or power supplied by an input source. Accord-
ingly, as illustrated in Figure 8.47, let us add an external load resistance ROUT to our
circuit to facilitate current and power gain measurements.

bib

RL

RI ib

ic

B

C

E

vtest +
-

iout
itest ROUT

vo

F IGURE 8.47 Incremental
circuit for the BJT amplifier
including an external load resistor
to facilitate current gain and power
gain calculations.

The incremental current gain is defined as the change in the output current (iout) divided
by the change in the input current (itest), for a given external load resistance. We begin
by writing the node equation for the node labeled C

iout + ic + vo

RL
= 0. (8.63)

We will obtain the desired relation between iout and itest if we can replace ic and vo in
terms of itest. From the BJT relation, we know that

ic = βib = βitest. (8.64)

To determine vo in terms of itest, observe that vo is the voltage drop across the parallel
resistor pair comprising RL and ROUT. In other words,

vo = −ic(RL‖ROUT).

Substituting for ic, we get the desired relation between vo and itest:

vo = −βitest(RL‖ROUT). (8.65)

Substituting for ic and vo from Equations 8.64 and 8.65 into 8.63 we obtain

iout + βitest − βitest
(RL‖ROUT)

RL
= 0.
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Dividing throughout by itest and simplifying, we obtain the current gain as

Current gain = iout

itest
= −β

RL

RL + ROUT
. (8.66)

Intuitively, we can also obtain the same current gain result in two short steps as follows:
First, notice that the current ic is simply itest amplified by a factor β . Second, the fraction
of the amplified current βitest that flows into ROUT is given by the current-divider relation
from Equation 2.84 as the ratio of the opposite resistor RL divided by the sum of the
two resistors (RL + ROUT).

Next, the incremental power gain is defined as the ratio of the power supplied into the
output resistor (voiout) and the power supplied by the input source (vtestitest), for a given
external load resistance. As suggested by Equation 8.38, the power gain is equivalent to
the product of the current gain and the voltage gain for the BJT amplifier.

For the BJT amplifier that includes an output load resistance, the current gain is given
by Equation 8.66. For reasons that will be obvious momentarily, we will rewrite the
current gain in terms of the parallel combination of RL and ROUT as

iout

itest
= −β

(RL‖ROUT)

ROUT
. (8.67)

We can determine the voltage gain by including the effect of the output load resistance
ROUT on the voltage gain equation of the BJT given by Equation 8.62. We do so by
replacing the resistance RL in Equation 8.62 with the equivalent resistance of the parallel
resistor pair RL and ROUT as

vo

vtest
= −β

RL‖ROUT

RI
. (8.68)

Taking the product of the current gain (Equation 8.67) and the voltage gain (Equa-
tion 8.68) and simplifying, we obtain

Power gain = β2 (RL‖ROUT)2

ROUTRI
.

e x a m p l e 8.10 s m a l l s i g n a l o f t h e o p e r a t i o n a l

a m p l i f i e r c i r c u i t This example develops a small-signal model of the
operational amplifier circuit shown in Figure 7.63 and previously discussed in Exam-
ple 7.21. It then uses that model to determine the small-signal gain of the amplifier.
The small-signal model and gain are determined for the bias conditions established by
VIN1 = VIN2 = 0. Under these balanced bias conditions, ID1 = ID2 = I/2.
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F IGURE 8.48 A small-signal
model of the operational amplifier
circuit.

+ +

-

voutR1+
-

+
-

g2vgs2

+
vgs2vgs1

g1vgs1

vgs3

--

+

-
g3vgs3 R2

vin2vin1

Figure 8.48 shows a small-signal model of the operational amplifier shown in Figure 7.63.
The three MOSFET transconductances g1, g2, and g3 in Figure 8.48 are not yet
determined.

Following the results summarized in Figure 8.10, the small-signal transconductances of
the n-channel MOSFETs are given by

g1 = Kn(VGS1 − VT) (8.69)

g2 = Kn(VGS2 − VT). (8.70)

However, remember that we have chosen to bias the operational amplifier such that

ID1 = I

2
= Kn

2
(VGS1 − VT)2 (8.71)

ID2 = I

2
= Kn

2
(VGS2 − VT)2. (8.72)

Equations 8.71 and 8.72 can be substituted into Equations 8.69 and 8.70, respectively,
to yield

g1 = g2 =
√

KnI. (8.73)

A similar small-signal model of the p-channel MOSFET can also be determined following
the approach developed in Section 8.2. Specifically, taking the slope of Equation 8.67 at
its bias point yields

− − id ≈ K(VSG + VT)vsg (8.74)

and so the transconductance from vsg to −id is in general given by

g = K(VSG + VT) = √
2K(−ID) (8.75)
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where the large-signal bias condition for the p-channel MOSFET has been used to derive
the last equality. Applying this to the operational amplifier shown in Figure 8.48 yields

g3 =
√

2Kp(−ID3). (8.76)

The small-signal model can now be used to determine the small-signal gain of the oper-
ational amplifier. Consider first the portion of the small-signal model that corresponds
to the differential amplifier alone. KCL applied to the node between the two n-channel
MOSFETs yields

id1 + id2 = g1vgs1 + g2vgs2 = 0. (8.77)

Thus, an increase in one drain current in the differential amplifier is matched by an equal
decrease in the other drain current since both drain currents must sum to I. Next, the
application of KVL to the loop around the two MOSFETs through ground yields

vin1 − vin2 = vgs1 − vgs2. (8.78)

Finally, combining Equations 8.73, 8.77, and 8.78 with the observation from Figure 8.48
that vsg3 = R1g2vgs2 yields

vsg3 = −R1
√

KnI

2
(vin1 − vin2) (8.79)

as the small-signal gain of the differential amplifier.

Consider next the portion of the small-signal circuit that corresponds to the common-
source stage built with the p-channel MOSFET. For this stage, the small-signal model
shows that

vout = R2

√
2Kp(−ID3)vsg3 (8.80)

where Equation 8.76 has been used to rewrite g3. Note that the gain of this stage is
positive because that gain is from vsg3 to vout.

Finally, Equations 8.79 and 8.80 can be combined to yield

vout = R1R2
√

2KnKpI(−ID3)

2
(vin2 − vin1) (8.81)

as the small-signal gain of the unloaded operational amplifier.

In operational amplifier parlance (see Chapter 15), from Equation 8.81 we see that vIN1

and vIN2 play the roles of v− and v+, respectively.
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e x a m p l e 8.11 m o r e o n t h e s m a l l - s i g n a l m o d e l

o f t h e o p e r a t i o n a l a m p l i f i e r We will now work a numerical
example related to the operational amplifier design described in Example 8 .10, assuming
that −ID3 = 0.5 mA.

Substitution of this value of −ID3 and the parameters from Example 8 .10, into Equation
8.81 yields

vout = 50
√

2(vin2 − vin1). (8.82)

Thus, the small-signal gain of the operational amplifier is approximately 71.
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8.3 S U M M A R Y
� This chapter expanded on our treatment of small-signal models, focusing

on the model for three-terminal devices and amplifiers. As first introduced
in Section 4.5, small-signal analysis applies when devices and circuits that
are possibly nonlinear are operated over a very narrow range. Small-signal
analysis finds a piecewise linear model that ensures maximum accuracy of
fit over that narrow operating range. The principal benefit of small-signal
models is that the small-signal variables display linear v i relations over the
narrow operating range, thereby enabling the use of all of our linear analysis
techniques such as superposition, Thévenin, and Norton.

� This chapter also introduced the small-signal circuit model. The small-
signal circuit facilitates small-signal analysis by creating a circuit that is
representative of the original large-signal circuit and involves only its small-
signal variables. The small-signal circuit can be derived from the original
circuit by executing the following procedure:

1. Set each source to its operating-point value, and determine the
operating-point branch voltages and currents for each component in
the circuit. This step involves a large-signal analysis that is possibly
nonlinear.

2. Determine the linearized small-signal behavior of each component
about its operating point, and select a linear component to represent
this behavior.

3. Replace each original component in the circuit with its linearized equiva-
lent (also called the small-signal equivalent model) and re-label the circuit
with the small-signal branch variables. The resulting circuit is the desired
small-signal model.

� The small-signal equivalent model for an independent DC voltage source is
a short circuit, while that for an independent DC current source is an open
circuit. The small-signal equivalent model for a resistor is the resistor itself.
The small-signal model for a MOSFET is shown in Figure 8.10.

E X E R C I S E Se x e r c i s e 8.1 Consider the amplifier shown in Figure 8.49. The MOSFET oper-
ates in its saturation region and is characterized by the parameters VT and K. The
input voltage vI comprises the sum of a DC bias voltage VI and a sinusoid of the form
vi = A sin(ωt). Assume that A is very small compared to VI. Let the output voltage vO

comprise a DC bias term VO and a small-signal response term vo.

a) Determine the output operating point voltage VO for the input bias of VI.

b) Determine the small-signal gain of the amplifier.
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c) Draw the form of the input and output voltages as a function of time, clearly showing
the DC and time-varying small-signal components.

RL

vO

A sin (ωt)

VS

VI

+

+

-

-

F IGURE 8.49

e x e r c i s e 8.2 Develop the small-signal model for a two-terminal device formed
by a MOSFET with its gate tied to its drain, operating under the saturation discipline,
with parameters VT and K.

e x e r c i s e 8.3 Develop the small-signal model for a two-terminal device formed
between the drain and source terminals of a MOSFET with a 2 volt DC source connected
between its gate and source terminals (VGS = 2 V). Assume the MOSFET operates
under the saturation discipline. Assume further that VT = 1 volt for the MOSFET.

e x e r c i s e 8.4 Consider the MOSFET amplifier shown in Figure 8.50. Assume

vO

RL

VS

+

-
vI

D

S

iDS
G

F IGURE 8.50

that the amplifier is operated under the saturation discipline. In its saturation region, the
MOSFET is characterized by the equation

iDS = K

2
(vGS − VT)2

where iDS is the drain-to-source current when a voltage vGS is applied across its gate-
to-source terminals.

a) Write an expression relating vO to vI. What is its operating-point output voltage VO,
given an input operating-point voltage of vI? What is the corresponding operating-
point current IDS?

b) Assuming an operating-point input voltage of VI, derive the expression relating
the small-signal output voltage vo to the small-signal input vi from the relationship
between vO and vI. What is the small-signal gain of the amplifier at the input operating
point of VI?

c) Draw the small-signal equivalent circuit for the amplifier based on the SCS model of
the MOSFET assuming the operating-point input voltage is VI.

d) Derive an expression for the small-signal gain of the amplifier from the small-signal
equivalent circuit. Verify that the gain computed from the small-signal equivalent
circuit is identical to the gain computed in part (b).

e) By what factor must RL change to double the small-signal gain of the amplifier?
What is the corresponding change in the output bias voltage?

f ) By what factor must VI change to double the small-signal gain of the amplifier? What
is the corresponding change in the output bias voltage?

e x e r c i s e 8.5 Consider again the MOSFET amplifier shown in Figure 8.50.
Assume as before that the MOSFET is operated under the saturation discipline, and that
its parameters are VT and K.

a) What is the range of valid input voltages for the amplifier? What is the corresponding
range of valid output voltages?
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b) Assuming we desire to use voltages of the form A sin(ωt) as AC inputs to the amplifier,
determine the input bias point VI for the amplifier that will allow maximum input
swing under the saturation discipline. What is the corresponding output bias point
voltage VO?

c) What is the largest value of A that will allow saturation region operation for the bias
point determined in (b)?

d) What is the small-signal gain of the amplifier for the bias point determined in (b)?

e) Suppose A is small compared to VI. Write an expression for the small-signal output
voltage vo for the bias point determined in (b).

e x e r c i s e 8.6 Consider once more the MOSFET amplifier shown in
Figure 8.50. Assume as before that the amplifier is operated under the saturation
discipline, and that its parameters are VT and K.

a) Using the small-signal circuit model of the amplifier, and assuming an input bias
voltage VI, determine the small-signal output resistance of the amplifier. That is,
determine the equivalent resistance of the amplifier at the output port of its small-
signal model with vi ≡ 0.

b) Develop a Thévenin equivalent model for the small-signal amplifier as observed at
its output port.

c) What is its input resistance? That is, determine the equivalent resistance of the
amplifier at the input port of its small-signal model.

e x e r c i s e 8.7 Consider the common emitter BJT amplifier shown in
Figure 8.51. The input voltage vI comprises the sum of a DC bias voltage VI = 0.7 V

50 kΩ

vO

0.001 V sin(ωt)

15 V

0.7 V

+

+

-

-

100 kΩ
b = 100

F IGURE 8.51

and a sinusoid of the form vi = A sin(ωt), where A = 0.001 V. For the values shown,
you may assume that A is very small compared to VI. You may further assume that the
BJT always operates in its active region. Figure 8.52 shows a small-signal model for the
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(b) BJT small-signal model

F IGURE 8.52

BJT operating in its active region. Let the output voltage vo comprise a DC bias term
VO and a small-signal response term vo.

a) Determine the output operating-point voltage VO for the input bias of VI = 0.7 V.

b) Draw the small-signal equivalent circuit for the amplifier.

c) Determine the small-signal gain of the amplifier.

d) What is the value of vo, the small-signal component of the output, given the small-
signal input shown in Figure 8.51?

e) Determine the small-signal input and output resistances of the amplifier.
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f ) Determine the small-signal current and power gain of the amplifier, assuming that
the amplifier drives a load RO = 50 k� that is connected between the output node
and ground.

P R O B L E M S p r o b l e m 8.1 This problem studies the small-signal analysis of the MOSFET
amplifier discussed in Problem 7.3 (Figure 7.75).

a) First, consider biasing the amplifier. Determine VIN, the bias component of vIN,
so that vOUT is biased to VOUT where 0 < VOUT < VS. Find VMID, the bias
component of vMID in the process.

b) Next, let v IN = VIN + vin where vin is considered to be a small perturbation of vIN

around VIN. Make the substitution for vIN and linearize the resulting expression
for vOUT. Your answer should take the form vOUT = VOUT + vout, where vout
takes the form vout = Gvin. Note that vout is the small-signal output and G is the
small-signal gain. Derive an expression for G.

c) For what value of VIN is vOUT biased to VOUT = VS/2? For this value of VIN,
evaluate Gm using the numerical parameters given in Problem 7.2. You should find
that this gain is the slope of the input-output graph from Problem 7.3 evaluated at
the bias point.

p r o b l e m 8.2 Consider again the buffer described in Problem 7.5 (Figure 7.76).
Perform a small-signal analysis of this circuit according to the following steps. Assume
that the MOSFET operates in its saturation region and continue to use the SCS MOSFET
model with parameters VT and K.

a) Draw the small-signal circuit model of the buffer.

b) Show that the small-signal transconductance gm of the MOSFET is given by

gm = K(VIN − VOUT − VT)

where VIN and VOUT are the bias, or operating-point, input and output voltages,
respectively.

c) Determine the small-signal gain of the buffer. That is, determine the ratio vout/vin.

d) Determine the small-signal output resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the output port of its small-signal model with
vin ≡ 0.

e) Assume that VT = 1 V, K = 2 mA/V2, R = 1 k�, and VS = 10 V. Under this
assumption, design the input bias voltage to satisfy the following two objectives:
First, MOSFET operation must remain within the saturation region for |vin| ≤
0.25 V. Second, the output resistance of the small-signal model must be minimized.
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f ) Again assume that VT = 1 V, K = 2 mA/V2, R = 1 k�, and VS = 10 V. For
VIN = 3 V, compute the small-signal gain and output resistance.

g) Determine the small-signal input resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the input port of its small-signal model.

p r o b l e m 8.3 This problem studies the small-signal analysis of the ZFET ampli-
fier from Problem 7.6 (Figure 7.77). Assume that the amplifier is biased at an input
voltage VIN such that the ZFET exhibits saturated operation; the corresponding bias
output voltage is VOUT. For this case, derive the small-signal voltage gain vout/vin of the
amplifier.

p r o b l e m 8.4 The circuit shown in Figure 8 .4 delivers a nearly constant current
to its load despite the fact that the power supply is noisy. The noise is modeled by
the small signal vs superimposed on the constant-supply voltage VS. Thus, VS and
vs are the large-signal and small-signal components of the total power supply voltage
vS, respectively. IL and il are the large-signal and small-signal components of the load
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F IGURE 8.53

current iL, respectively. The noise vs in the power supply voltage satisfies vs 
 VS, and
is responsible for the presence of il in iL.

The current source contains a MOSFET which operates in its saturation region such
that iDS = K

2
(vGS − VT)2. The current source also contains a nonlinear resistor whose

terminal characteristics are described graphically next. Assume that VS > VN > VT.

a) Assume vs = 0. Determine VGS, the large-signal component of vGS, in terms of RB,
RN, VN, and VS.
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b) Following the result of part (a), determine IL in terms of RB, RN, VN, VS, K, and VT.

c) Now assume that vs �= 0. Draw a small-signal circuit model for the combined circuit
comprising the power supply, current source and load, with which il can be found
from vs. Clearly label the value of each component in the circuit model.

d) Using the small-signal model from part (c), determine the ratio il/vs.

p r o b l e m 8.5 Figure 8.54 depicts a bipolar junction transistor (BJT). Recall that
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F IGURE 8.54

a BJT has three terminals called the base (B), the collector (C), and the emitter (E).
Figure 8.54 also shows an alternative small-signal model for the BJT operating in its
active region. This model is slightly different from the small-signal BJT model discussed
in this chapter in that it includes a base resistance RB. In the model shown in the figure,
β is a constant.
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a) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.55.
Use the small-signal equivalent circuit to derive the small-signal gain of the amplifier.

b) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.56.
Notice that the resistor divider provides the necessary bias voltage. Use the small-
signal equivalent circuit to derive the small-signal gain of the amplifier.
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F IGURE 8.56

p r o b l e m 8.6 Consider the MOSFET-based amplifier circuit discussed in
Problem 7.8 (Figure 7.79). Assuming an input bias point voltage VI, draw the small-
signal circuit equivalent of the amplifier. Determine the small-signal gain of the amplifier.
Assume throughout that the MOSFET operates in its saturation region.

p r o b l e m 8.7 Consider again the amplifier circuit discussed in Problem 7.8
(Figure 7.79). Suppose that the amplifier is biased such that vI = vO at the bias point.
Draw the small-signal circuit equivalent of the amplifier assuming this bias point. Deter-
mine the small-signal gain of the amplifier at this bias point. Assume that the MOSFET
operates in its saturation region.

p r o b l e m 8.8 Consider the common gate amplifier circuit shown in Figure 7.82,
and analyzed earlier in Problem 7.11. Assume that the MOSFET operates in its saturation
region, and is characterized by the parameters VT and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage VOUT and operating-point current
ID in terms of an input operating-point voltage VIN.

c) Assuming an input bias point voltage VIN, draw the small-signal model of the
amplifier.

d) Determine the small-signal gain vout/vin of the amplifier.
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e) Determine the small-signal output resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the output port of its small-signal model
with vi ≡ 0. Is the small-signal output resistance greater than, less than, or equal to
that of the ‘‘common source’’ amplifier shown in Figure 8.50?

f ) Determine the small-signal input resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the input port of its small-signal model.
Is the small-signal input resistance greater than, less than, or equal to that of the
‘‘common source’’ amplifier shown in Figure 8.50?

p r o b l e m 8.9 Consider the circuit illustrated in Figure 7.86 and analyzed in
Problem 7.15. Assume that the MOSFET operates in its saturation region, and is
characterized by the parameters VT and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage VO and operating-point current ID
in terms of an input operating-point voltage VI.

c) Assuming an input bias point voltage VI, draw the small-signal model.

d) Determine the small-signal gain vo/vi.

e) Determine the small-signal output resistance.

f ) Determine the small-signal input resistance.

p r o b l e m 8.10 Consider the circuit illustrated in Figure 7.87 and analyzed in
Problem 7.16. Assume that the MOSFET operates in its saturation region, and is
characterized by the parameters VT and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage VO and operating-point current ID
in terms of an input operating-point voltage VI.

c) Assuming an input bias point voltage VI, draw the small-signal model.

d) Determine the small-signal gain vo/vi.

e) Determine the small-signal output resistance.

f ) Determine the small-signal input resistance.

p r o b l e m 8.11 This problem studies the small-signal analysis of the amplifier
analyzed in Problem 7.14 (see Figure 7.85). Assume that the MOSFET operates in its
saturation region, and is characterized by the parameters VT and K.

a) Draw the small-signal equivalent circuit of the amplifier driving the load resistor RE,
assuming an input bias voltage VI.

b) Determine the small-signal gain of the amplifier when it is driving the load RE.
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p r o b l e m 8.12 This problem studies the small-signal analysis of the circuit ana-
lyzed in Problem 7.17 (see Figure 7.88). Assume that the MOSFET operates in its
saturation region, and is characterized by the parameters VT and K.

a) Draw the small-signal equivalent circuit assuming an input bias voltage VI. What is
the value of gm for the MOSFET under the given biasing conditions?

b) Determine the small-signal voltage gain vo/vi. What does the vo/vi expression
simplify to when each of gmR1, gmR2, and gmRL is much greater than 1?

p r o b l e m 8.13 This problem studies the small-signal analysis of the source
follower (or common collector) BJT circuit analyzed in Problem 7.18 (see Figure 7.89).
Assume that the BJT operates in its active region throughout this problem.

a) Determine the output operating-point voltage VO and operating-point current IE
in terms of an input operating-point voltage VI.

b) Assuming an input bias point voltage VI, draw the small-signal model of the source-
follower amplifier.

c) Determine the small-signal gain vo/vi of the amplifier.

d) Determine the small-signal output resistance of the source follower amplifier. Is this
resistance greater than, less than, or equal to that of the ‘‘common emitter’’ amplifier
analyzed in Exercise 8.7 and shown in Figure 8.51?

e) Determine the small-signal input resistance of the amplifier. Is the input resistance
greater than, less than, or equal to that of the ‘‘common emitter’’ amplifier shown
in Figure 8.51?

f ) Determine the small-signal current and power gain of the source follower amplifier.
Assume for this part that the amplifier is driving an output load of RO connected
between the output node and ground.

p r o b l e m 8.14 Consider again the compound three-terminal device formed by
connecting two BJTs in the configuration shown in Figure 7.90 (Problem 7.19). This
problem relates to the small-signal analysis of this device. Assume that the two BJTs are
identical, each with β = 100, and that each of the BJTs operates in the active region.

a) Draw the active-region equivalent circuit of the compound BJT by replacing each of
the BJTs by the piecewise linear (large signal) model shown in Exercise 7.8. Clearly
label the C′, B′, and E′ terminals.

b) Develop a small-signal model containing a single dependent current source for the
compound device by linearizing the circuit model in (a) and simplifying suitably.
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energy s torage e l ement s 9
To this point in our study of electronic circuits, time has not been important.
The analyses and designs we have performed so far have been static, and all
circuit responses at a given time have depended only on the circuit inputs at
that time. An important consequence of this is that our circuits have so far
responded to input changes infinitely fast. This of course does not happen in
reality. Circuits do take time to respond to their inputs, and this delay is often
of significant importance.

As an example of circuit delays, and the importance of time in describing the
response of a circuit, consider the two cascaded inverters shown in Figure 9.1.
The ideal response of the first inverter, based on our analysis of electronic circuits
to this point, is shown in Figure 9.2. A square-wave input yields an inverted
square-wave output. However, in reality, the output shown in Figure 9.3 is
more likely to occur, which is a much more complex function of time. This
example is discussed in detail in Section 10.4, where we will show that the
complex time behavior shown in Figure 9.3 directly relates to the speed at
which circuits can operate. In this chapter, we will lay the foundation for that
discussion.

In order to explain the temporal behavior of circuit responses such as that
shown in Figure 9.3, we must introduce two new elements, namely capacitors
and inductors. For example, we shall see that it is a capacitance internal to
the MOSFET that is responsible for the non-ideal inverter response shown in
Figure 9.3. For simplicity, we did not model that characteristic of the MOSFET
in earlier chapters, but we will begin to do so now in Section 9.3.1.

There are other ways in which a capacitance or an inductance can inad-
vertently slow down a circuit. One way is shown in Figure 9.4. This figure
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F IGURE 9.1 Two cascaded
inverters.
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F IGURE 9.2 Ideal response of the first inverter to a
square-wave input.
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F IGURE 9.3 Observed response of the first inverter to a
square-wave input.

F IGURE 9.4 The behavior of
a real interconnect between two
inverters.
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shows two inverters communicating over a long interconnect. As we discussed
in Chapter 1, within our lumped-circuit abstraction, the interconnect is perfect.
Specifically, by the definition of the lumped circuit abstraction (see Section 1.2),
the wires interconnecting the elements have no resistance. Furthermore, by the
lumped matter discipline which underlies the lumped circuit abstraction, the
wires and other circuit elements store no electric charge and link no magnetic
flux outside the elements. Reality, however, is different, and in some cases this
difference is important. As Figure 9.4 shows, any interconnect having a potential
difference with its surroundings actually stores an electric charge q that sources
an electric field E between that charge and its image. Furthermore, in order to
supply the charge, a current i must flow around the interconnect loop. This
current in turn generates a magnetic flux density B that is linked by the loop.
So, real interconnects do store electric charge and do link external magnetic
flux, thereby appearing to violate the lumped matter discipline. They will also
exhibit a nonzero resistance. These factors can all contribute to a reduction in
the speed of the circuit as a whole, and at times it is important to study these
effects.
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Reality now presents us with a dilemma. On the one hand, we wish to work
within the framework of the lumped circuit abstraction so that the circuits we
study all fit within this easily-managed framework. On the other hand, we
should not be forced to ignore circuit effects, in this case parasitic resistance,
capacitance, and inductance, that significantly affect circuit performance. The
resolution of this dilemma is the modeling compromise mentioned in Chapter 1.
Figure 1.27 in Chapter 1 used an ideal wire in series with a lumped resistance to
model a physical wire with some parasitic resistance. Similarly, we will introduce
lumped capacitors and lumped inductors to model the effect of the charge and
the flux. As illustrated in Figure 9.5, a capacitor comprising a pair of parallel
plates collects the positive and negative charge on its plates and effectively
models the distributed charge. Notice that because the capacitor contains equal
positive and negative charges the net charge within the capacitor element is
zero, thereby satisfying the lumped matter discipline. Thus, the capacitor can
be viewed as a lumped element. In like manner, we will introduce a lumped
inductor to model the effect of the flux linked with the wires as illustrated in
Figure 9.6. The lumped matter discipline is satisfied because the flux is entirely
contained inside the lumped inductor, and there is no net flux outside the
element.

By using lumped resistors, capacitors, and inductors to model the effect
of the resistance, charge, and flux associated with the physical wiring of the
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F IGURE 9.5 The capacitor
models the effect of the distributed
charge.
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F IGURE 9.6 The inductor
models the effect of the flux.
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F IGURE 9.7 Capturing the parasitic effects
of resistance, charge, and flux through the use
of resistors, capacitors, and inductors,
respectively. Capacitors and inductors are
formally introduced in Section 9.1.
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F IGURE 9.8 Two different lumped models for
an interconnect that account for interconnect
resistance, capacitance, and inductance.

circuit, as shown in Figure 9.7, the wiring within the augmented circuit model
remains perfect in keeping with the lumped circuit abstraction. In the figure, the
interconnect resistance, capacitance, and inductance are RI, CI, and LI in total,
respectively.

Figure 9.7 represents one of the simplest models used to model real inter-
connects. For more accuracy, since we can use as many additional lumped
elements as we wish, we can arbitrarily approach the distributed modeling
limit, although in general this is not necessary. For example, the two models
shown in Figure 9.8 do a better job of modeling reality. The interconnect model
in Figure 9.8a is a ‘‘�’’ model in which the resistance and inductance is placed
between the split capacitance. The interconnect model in Figure 9.8b is a ‘‘T’’
model in which the capacitance is placed between the split resistance and induc-
tance. As discussed in Section 9.3.1, we will adopt a similar lumped modeling
approach to the capacitances at work within the MOSFET.

From the preceding discussion it might appear that capacitors and inductors
appear only as parasitics in circuits, causing undesirable delays. This is far from
the truth. While they can and do act in that role, they are also often purposefully
introduced into circuits, both as discrete devices on breadboards and printed-
circuit boards, and as integrated-circuit components on a chip (see Figures 9.9
and 9.10 for examples of capacitors and inductors, respectively). For example,
they are the cornerstones of memories, filters, samplers, and energy processing
circuits. We shall see many examples of these in future chapters as well. Thus,
we have many reasons to study capacitors and inductors.
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F IGURE 9.9 Examples of
discrete capacitors (left) and
integrated-circuit capacitors (right).
The image on the right shows a
small region of the Maxim
MAX1062 analog-to-digital
converter chip and depicts an array
of polysilicon-to-polysilicon
capacitors, each measuring
15.9 µm by 15.9 µm. (Photograph
Courtesy of Maxim Integrated
Products.)

F IGURE 9.10 Examples of
discrete inductors. (Photograph
Courtesy of Maxim Integrated
Products.)

9.1 C O N S T I T U T I V E L A W S

In this section, we formally introduce the capacitor and inductor in the abstract,
and develop the constitutive laws that relate their branch variables. Capacitors
and inductors, which are the electric and magnetic duals of each other, dif-
fer from resistors in several significant ways. Most importantly, their branch
variables do not depend algebraically upon each other. Rather, their relations
involve temporal derivatives and integrals. Thus, the analysis of circuits contain-
ing capacitors and inductors involve differential equations in time. To emphasize
this, we will explicitly show the time dependence of all variables in this chapter.

9.1.1 C A P A C I T O R S

To understand the behavior of a capacitor, and to illustrate the manner in
which a lumped model can be developed for it, consider the idealized two-
terminal linear capacitor shown in Figure 9.11. In this capacitor each terminal is
connected to a conducting plate. The two plates are parallel and are separated
by a gap of length l. Their area of overlap is A. Note that these dimensions will
be functions of time if the geometry of the capacitor varies. The gap is filled
with an insulating linear dielectric having permittivity ε.
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F IGURE 9.11 An idealized
parallel-plate capacitor.
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As current enters the positive terminal of the capacitor, it transports the
electric charge q onto the corresponding plate; the unit of charge is the Coulomb
[C]. Simultaneously, an identical current exits the negative terminal and trans-
ports an equal charge off the other plate. Thus, although charge is separated
within the capacitor, no net charge accumulates within it, as is required for
lumped circuit elements by the lumped matter discipline discussed in Chapter 1.

The charge q on the positive plate and its image charge −q on the negative
plate produce an electric field within the dielectric. It follows from Maxwell’s
Equations and the properties of linear dielectrics that the strength E of this
field is

E(t) = q(t)

εA(t)
, (9.1)

and its direction points from the positive plate to the negative plate. The electric
field can then be integrated across the dielectric from the positive plate to the
negative plate to yield

v(t) = l(t)E(t). (9.2)

Combining Equations 9.1 and 9.2 then results in

q(t) = εA(t)

l(t)
v(t). (9.3)

We define

C(t) = εA(t)

l(t)
(9.4)

where C is the capacitance of the capacitor having the units of Coulombs/Volt,
or Farads [F]. Substituting for the capacitance in Equation 9.3, we get

q(t) = C(t)v(t). (9.5)
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In contrast to the resistor, which exhibits an algebraic relation between its
branch current and voltage, the capacitor does not. Rather, it exhibits an alge-
braic relation between its branch voltage and its stored charge. Had the dielectric
not been linear, this relation would have been nonlinear. While some capacitors
exhibit such nonlinear behavior, we will focus only on linear capacitors.

The rate at which charge is transported onto the positive plate of the
capacitor is

dq(t)

dt
= i(t). (9.6)

From Equation 9.6 we see that the Ampere is equivalent to a Coulomb/second.
Equation 9.6 can be combined with Equation 9.5 to yield

i(t) = d(C(t)v(t))

dt
(9.7)

which is the element law for an ideal linear capacitor. Unless stated otherwise,
we will assume in this text that capacitors are both linear and time-invariant.
For linear, time-invariant capacitors, Equations 9.5 and 9.7 reduce to

q(t) = Cv(t) (9.8)

i(t) = C
dv(t)

dt
, (9.9)

respectively, with the latter being the element law for a linear time-invariant
capacitor.1

The symbol for an ideal linear capacitor is shown in Figure 9.12. It is chosen

+

C

-

v

i
dq
dt
------=

q

v

C

F IGURE 9.12 The symbol and
voltage-charge relation for the
ideal linear capacitor. The element
law for the capacitor is i = Cdv/dt.

to represent the parallel-plate capacitor shown in Figure 9.11. Also shown in
Figure 9.12 is a graph of the relation between the branch voltage and stored
charge of the capacitor.

One of the important properties of a capacitor is its memory property. In
fact, it is this property that allows the capacitor to be the primary memory

1. Although we will focus primarily on linear, time-invariant capacitors in this text, we note that
some interesting transducers such as electric microphones and speakers, and other electric sensors
and actuators, are appropriately modeled with time-varying capacitors. Similarly, most capacitors
used in electronic equipment (paper, mica, ceramic, etc.) are linear, but often vary a small amount
with temperature (a part of 104 per degree centigrade). But many are nonlinear. The charge
associated with a reverse-biased semiconductor diode, for example, varies as the 2/3 power of
voltage, because the distance d, the effective width of the space-charge layer, is a function of
voltage

q = K
(
ψ

2/3
o − (ψo − v)2/3

)
(9.10)

when ψo, the contact potential, is a few tenths of a volt. From the above we can determine that
the capacitance of the reverse-biased diode varies as v−1/3.
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element in all integrated circuits. To see this property, we integrate Equation
9.6 to produce

q(t) =
∫ t

−∞
i(t)dt (9.11)

or, with the substitution of Equation 9.8, to produce

v(t) = 1

C

∫ t

−∞
i(t)dt. (9.12)

Equation 9.12 shows that the branch voltage of a capacitor depends on the
entire past history of its branch current, which is the essence of memory. This
is in marked contrast to a resistor (either linear or nonlinear), which exhibits no
such memory property.

At first glance, it might appear that it is necessary to know the entire history
of the current i in detail in order to carry out the integrals in Equations 9.11 and
9.12. This is actually not the case. For example, consider rewriting Equation
9.11 as

q(t2) =
∫ t2

−∞
i(t)dt

=
∫ t2

t1
i(t)dt +

∫ t1

−∞
i(t)dt

=
∫ t2

t1
i(t)dt + q(t1). (9.13)

The latter equality shows that q(t1) perfectly summarizes, or memorizes, the
entire accumulated history of i(t) for t ≤ t1. Thus, if q(t1) is known, it is
necessary and sufficient to know i only over the interval t1 ≤ t ≤ t2 in order
to determine q(t2). For this reason, q is referred to as the state of the capacitor.
For linear time-invariant capacitors, v can also easily serve as a state because
v is proportionally related to q through the constant C. Accordingly, we can
rewrite Equation 9.12 as

v(t2) = 1

C

∫ t2

−∞
i(t)dt

= 1

C

∫ t2

t1
i(t)dt + 1

C

∫ t1

−∞
i(t)dt

= 1

C

∫ t2

t1
i(t)dt + v(t1). (9.14)
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Thus, we see that v(t1) also memorizes the entire accumulated history of i(t)
for t ≤ t1 and can serve as the state of the capacitor.

Associated with the ability to exhibit memory is the property of energy
storage, which is often exploited by circuits that process energy. To determine
the electric energy wE stored in a capacitor, we recognize that the power iv is
the rate at which energy is delivered to the capacitor through its port. Thus,

dw E(t)

dt
= i(t)v(t). (9.15)

Next, substitute for i using Equation 9.6, cancel the time differentials, and omit
the parametric time dependence to obtain

dw E = vdq. (9.16)

Equation 9.16 is a statement of incremental energy storage within the capacitor.
It states that the transport of the incremental charge dq from the negative plate
of the capacitor to the top plate across the electric potential difference v stores
the incremental energy dwE within the capacitor. To obtain the total stored
electric energy, we must integrate Equation 9.16 with v treated as a function
of q. This yields

w E =
∫ q

0
v(x)dx (9.17)

where x is a dummy variable of integration. Finally, substitution of Equation
9.8 and integration yields

Stored energy = w E(t) = q2(t)

2C
= Cv(t)2

2
(9.18)

as the electric energy stored in a capacitor. The units of energy is the Joule [ J ], or
Watt-second. Unlike a resistor, a capacitor stores energy rather than dissipates it.

Capacitors come in an enormous range of values. For example, two pieces
of insulated wire about an inch long, when twisted together, will have a capaci-
tance of about 1 picofarad (10−12 farads). A low-voltage power supply capacitor
an inch in diameter and a few inches long could have a capacitance of 100,000
microfarads (0.1 farad; 1 microfarad, abbreviated as µF, is 10−6 F).

A real capacitor can exhibit richer behavior than that described here. For
example, leakage current can flow through its dielectric. The practical signifi-
cance of dielectric leakage is that eventually the charge stored on a capacitor
can leak off. Thus, eventually a real capacitor will lose its memory. Fortu-
nately, capacitors can be made with very low leakage (in other words, with very
high resistance) in which case they are excellent long-term memory devices.
However, if the dielectric leakage is large enough to be significant, then it can
be modeled with a resistor in parallel with the capacitor.
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Other non-idealities include the distributed series resistance, and even series
inductance, that arises in foil-wound capacitors in particular. These character-
istics limit the power-handling capability of a real capacitor, and the frequency
range over which a real capacitor behaves like an ideal capacitor. They can often
be explicitly modeled with a single series resistor and inductor, respectively.

e x a m p l e 9.1 p a r a l l e l p l a t e c a p a c i t o r Suppose the
parallel-plate capacitor in Figure 9.11 is 1 m square, has a gap separation of 1 µm,
and is filled with a dielectric having permittivity of 2ε◦, where ε◦ ≈ 8.854 × 10−12 F/m
is the permittivity of free space. What is its capacitance? How much charge and energy
does it store if its terminal voltage is 100 V?

The capacitance is determined from Equation 9.4 with ε = 1.8×10−11 F/m, A = 1 m2

and l = 10−6 m. It is 18 µF. The charge is determined from Equation 9.8 with v = 100 V.
It is 1.8 mC. Finally, the stored energy is determined from Equation 9.18. It is 90 mJ.

9.1.2 I N D U C T O R S

As we saw in Section 9.1.1, from the perspective of modeling electrical systems,
the capacitor is a circuit element to model the effect of electric fields. Corre-
spondingly, the inductor models the effect of magnetic fields. To understand
the behavior of an inductor, and to illustrate the manner in which a lumped
model can be developed for it, consider the idealized two-terminal linear induc-
tor shown in Figure 9.13. In this inductor a coil with a terminal on each end
is wound with N turns around a toroidal core made from an insulator having
magnetic permeability µ. The length around the core is l and its cross-sectional
area is A. Note that these dimensions will be functions of time if the geometry
of the inductor varies.

The current in the coil produces a magnetic flux in the inductor. Ideally, this
magnetic flux does not stray significantly from the core, so that the flux outside

F IGURE 9.13 An idealized
toroidal inductor.
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the element is negligible. Thus the inductor can be treated as a lumped circuit
element that satisfies the lumped matter discipline discussed in Chapter 1. From
Maxwell’s Equations and the properties of permeable materials, the density B
of the flux is

B(t) = µNi(t)

l(t)
, (9.19)

and its direction is around the core. The magnetic flux density can be integrated
across the core to yield

�(t) = A(t)B(t) (9.20)

where � is the total flux passing through the core, and hence through one turn
of the coil. Since the flux � is linked N times by the N-turn coil, the total flux
λ linked by the coil is

λ(t) = N �(t) = N A(t)B(t). (9.21)

The units of flux linkage is the Weber [Wb]. Combining Equations 9.19 and
9.21 results in

λ(t) = µN2A(t)

l(t)
i(t). (9.22)

We define L, the inductance of the inductor, as

L(t) = µN2A(t)

l(t)
. (9.23)

L has the units of Webers/Ampere, or Henrys [H]. That is, inductance is the
number of flux linkages per ampere. Substituting for L in Equation 9.22 we
obtain the following relation for the total flux linked by the inductor

λ(t) = L(t)i(t). (9.24)

In contrast to the resistor, which exhibits an algebraic relation between its
branch current and voltage, the inductor does not. Rather, like the capacitor, it
exhibits an algebraic relation between its branch current and its flux linkage. Had
the core not been magnetically linear, this relation would have been nonlinear.
While most inductors exhibit such nonlinear behavior for sufficiently high B,
we will focus only on linear inductors.

Again from Maxwell’s Equations, the rate at which flux linkage builds up
in the inductor is

dλ(t)

dt
= v(t). (9.25)
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From Equation 9.25 we see that the Volt is equivalent to a Weber/second.
Equation 9.25 can be combined with Equation 9.24 to yield

v(t) = d(L(t)i(t))

dt
, (9.26)

which is the element law for an ideal linear inductor. For time-invariant
inductors, Equations 9.24 and 9.26 reduce to

λ(t) = Li(t) (9.27)

v(t) = L
di(t)

dt
, (9.28)

respectively, with the latter being the element law for a linear time-invariant
inductor. This text will focus primarily on linear time-invariant inductors.
Nonetheless, many interesting transducers such as motors, generators, and
other magnetic sensors and actuators, are appropriately modeled with time-
varying inductors.

The symbol for an ideal linear inductor is shown in Figure 9.14. It is chosen
to represent the coil that winds the inductor shown in Figure 9.13. Also shown
in Figure 9.14 is a graph of the relation between the branch current and flux
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d λ
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------=
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F IGURE 9.14 The symbol and
current-flux-linkage relation for an
ideal linear inductor. The element
law for an inductor is v = Ldi/dt.

linkage of the inductor.
One of the important properties of an inductor is its memory property.

To see this property, we integrate Equation 9.25 to produce

λ(t) =
∫ t

−∞
v(t)dt (9.29)

or, with the substitution of Equation 9.27, to produce

i(t) = 1

L

∫ t

−∞
v(t)dt. (9.30)

Equation 9.30 shows that the branch current of an inductor depends on the
entire past history of its branch voltage, which is the essence of memory. As
for the capacitor, this is in marked contrast to an ideal resistor, which exhibits
no such memory property.

At first glance, it might appear that it is necessary to know the entire history
of the voltage v in detail in order to carry out the integrals in Equations 9.29
and 9.30. Again as for the capacitor, this is actually not the case. For example,
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consider rewriting Equation 9.29 as

λ(t2) =
∫ t2

−∞
v(t)dt

=
∫ t2

t1
v(t)dt +

∫ t1

−∞
v(t)dt

=
∫ t2

t1
v(t)dt + λ(t1). (9.31)

The latter equality shows that λ(t1) perfectly summarizes, or memorizes, the
entire accumulated history of v(t) for t ≤ t1. Thus, if λ(t1) is known, it is
necessary and sufficient to know v only over the interval t1 ≤ t ≤ t2 in order to
determine λ(t2). For this reason, λ, the total flux linked by the coil, is referred to
as the state of the inductor. For linear time-invariant inductors, i can also easily
serve as a state because i is proportionally related to λ through the constant L.
Accordingly, we can rewrite Equation 9.30 as

i(t2) = 1

L

∫ t2

−∞
v(t)dt

= 1

L

∫ t2

t1
v(t)dt + 1

L

∫ t1

−∞
v(t)dt

= 1

L

∫ t2

t1
v(t)dt + i(t1). (9.32)

Equation 9.32 shows that i can also serve as the state of an inductor.
As with the capacitor, associated with the ability to exhibit memory is the

property of energy storage, which is often exploited by circuits that process
energy. To determine the magnetic energy wM stored in an inductor, we rec-
ognize that the power iv is the rate at which energy is delivered to the inductor
through its port. Thus,

dw M(t)

dt
= i(t)v(t). (9.33)

Next, substitute for v using Equation 9.25, cancel the time differentials, and
omit the parametric time dependence to obtain

dw M = idλ. (9.34)

Equation 9.34 is a statement of incremental energy storage within the inductor.
To obtain the total stored magnetic energy, we must integrate Equation 9.34
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with i treated as a function of λ. This yields

w M =
∫ λ

0
i(x)dx (9.35)

where x is a dummy variable of integration. Finally, substitution of Equation
9.27 and integration yields

Stored energy = w M(t) = λ2(t)

2L
= Li(t)2

2
(9.36)

as the magnetic energy stored in an inductor. Unlike a resistor, but like a
capacitor, an inductor stores energy rather than dissipates it.

A real inductor exhibits richer behavior than that described here. For exam-
ple, it can exhibit a significant coil resistance. The practical significance of this
resistance is that it eventually dissipates any energy stored in the inductor.
Unfortunately, this resistance is usually significant so that inductors make poor
memory devices. When it is necessary to model this energy loss, the coil
resistance can be modeled as a resistor in series with the ideal inductor.

Other non-idealities include core loss and inter-turn capacitance. These
characteristics limit the power-handling efficiency of a real inductor, and the
frequency range over which a real inductor behaves like an ideal inductor. They
can often be modeled with a parallel resistor and capacitor, respectively.

e x a m p l e 9.2 t o r o i d a l i n d u c t o r Suppose the toroidal induc-
tor in Figure 9.13 has a cross-sectional area of 1 cm2, has a length around its toroid
of 10 cm, has a coil with 100 turns, and is filled with free space having permeability
µ◦ = 4π × 10−7 H/m. What is its inductance? How much flux does its coil link, and
what energy does it store if its terminal current is 0.1 A?

The inductance is determined from Equation 9.23 with µ = 4π × 10−7 H/m, A =
10−4 m2, l = 0.1 m and N = 100. It is 13 µH. The flux linkage is determined from
Equation 9.24 with i = 0.1 A. It is 1.3 µWb. Finally, the stored energy is determined
from Equation 9.36. It is 0.063 µJ.

9.2 S E R I E S A N D P A R A L L E L C O N N E C T I O N S

In Section 2.3.4, we saw that the resistances of resistors in series add, and that
the conductances of resistors in parallel add. Thus, series and parallel resistors
could be represented as a single resistor with an appropriate resistance. These
addition rules later became useful as a means of simplifying circuits and their
analyses. As we shall see in this section, similar rules may be derived for both
capacitors and inductors, and these rules are equally useful.
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9.2.1 C A P A C I T O R S

Consider first the series combination of two capacitors as shown in Figure 9.15;
we will assume here that the two capacitors were uncharged at the time of their
connection. Since the two capacitors share a common current, it follows from
Equation 9.11 that they store a common charge q, as shown in Figure 9.15.
Thus, following Equation 9.8,
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+

v1
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v2
C2

q

q

q

F IGURE 9.15 Two capacitors in
series.

q(t) = C1v1(t) = C2v2(t). (9.37)

Next, using KVL we observe that

v(t) = v1(t) + v2(t). (9.38)

Finally, since the effective capacitance C of the two series capacitors is
q/v, it follows that

1

C
= v(t)

q(t)
= 1

C1
+ 1

C2
,

or,

C = C1C2

C1 + C2
(9.39)

where the second equality results from the substitution of Equation 9.38 and
then Equation 9.37. Thus, we see that the reciprocal capacitances of capacitors
in series add. This is consistent with the physical derivation of capacitance
in Equation 9.4 since placing capacitors in series essentially increases their
combined gap length.

Now consider the parallel combination of two capacitors as shown in
Figure 9.16. Since the two capacitors share a common voltage v, it follows

+

C1

-

q1

q

v

q2

C2

F IGURE 9.16 Two capacitors in
parallel.

from 9.8 that

v(t) = q1(t)

C1
= q2(t)

C2
. (9.40)

Next, using KCL and Equation 9.11 we observe that

q(t) = q1(t) + q2(t). (9.41)

Finally, since the effective capacitance C of the two parallel capacitors is q/v, it
follows that

C = q(t)

v(t)
= C1 + C2 (9.42)

where the second equality results from the substitution of Equation 9.41
and then Equation 9.40. Thus, we see that the capacitances of capacitors
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in parallel add. This is consistent with the physical derivation of capacitance
in Equation 9.4 since placing capacitors in parallel essentially increases their
combined cross-sectional area.

e x a m p l e 9.3 c a p a c i t o r c o m b i n a t i o n s What equivalent
capacitors can be made by combining up to three 1-µF capacitors in series and/or in
parallel?

Figure 9.17 shows the possible capacitor combinations that use up to three capacitors. To

(A) (B)

(C) (D)

(E) (F)

(G)

F IGURE 9.17 Various
combinations of capacitors
involving up to three capacitors.

determine their equivalent capacitances, use the series combination result from Equation
9.39 and/or the parallel combination result from Equation 9.42. This yields the equivalent
capacitances of: (A) 1 µF, (B) 2 µF, (C) 0.5 µF, (D) 3 µF, (E) 1.5 µF, (F) 0.667 µF, and
(G) 0.333 µF.

9.2.2 I N D U C T O R S

Consider the series combination of two inductors as shown in Figure 9.18;
we will assume here that neither inductor carried a current at the time of their
connection. Since the two inductors share a common current i, it follows from
Equation 9.27 that

i(t) = λ1(t)

L1
= λ2(t)

L2
. (9.43)

Next, using KVL and Equation 9.29 we observe that

λ(t) = λ1(t) + λ2(t). (9.44)

Finally, since the effective inductance L of the two series inductors is λ/i, it
follows that

L = λ(t)

i(t)
= L1 + L2 (9.45)

where the second equality results from the substitution of Equation 9.44 and
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F IGURE 9.18 Two inductors in
series.

then Equation 9.43. Thus, we see that the inductances of inductors in series add.
This is consistent with the physical derivation of inductance in Equation 9.23
since placing inductors in series essentially increases the total length of core
around which the parallel turns are wound.

Now consider the parallel combination of two inductors as shown in
Figure 9.19. Since the two inductors share a common voltage, it follows from
Equation 9.29 that they share a common flux linkage λ, as shown in Figure 9.19.
Thus, following Equation 9.27,

λ(t) = L1i1(t) = L2i2(t). (9.46)
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Next, using KCL we observe that

i(t) = i1(t) + i2(t). (9.47)

Finally, since the effective inductance L of the two parallel inductors is λ/i, it
follows that

+
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i

λ
L2

i2

F IGURE 9.19 Two inductors in
parallel.

1

L
= i(t)

λ(t)
= 1

L1
+ 1

L2
,

or,

L = L1L2

L1 + L2
(9.48)

where the second equality results from the substitution of Equation 9.47 and
then Equation 9.46. Thus, we see that the reciprocal inductances of inductors
in parallel add. This is consistent with the physical derivation of inductance
in Equation 9.23 since placing inductors in parallel essentially increases the
cross-sectional area of the core around which the turns are wound.

e x a m p l e 9.4 i n d u c t o r c o m b i n a t i o n s What equivalent
inductors can be made by combining up to three 1-µH inductors in series and/or in
parallel?

Figure 9.20 shows the possible inductor combinations that use up to three induc-

(A) (B) (C) (D)

(E) (F) (G)

F IGURE 9.20 Various combi-
nations of inductors involving up to
three inductors.

tors. To determine their equivalent inductances, use the series combination result
from Equation 9.45 and/or the parallel combination result from Equation 9.48. This
yields the equivalent inductances of: (A) 1 µH, (B) 0.5 µH, (C) 2 µH, (D) 0.333 µH,
(E) 0.667 µH, (F) 1.5 µH, and (G) 3 µH.

9.3 S P E C I A L E X A M P L E S

In this section, we examine several parasitic capacitances and inductances that
are commonly encountered inside integrated circuits, and in external wiring
connections to them and other circuit elements. There is again the danger that
this discussion implies that capacitors and inductors appear most commonly
as parasitics in circuits. This is certainly not the case. Rather, we examine
the parasitics here primarily for interest sake, and because they will provide
interesting and important circuit examples in future chapters.

9.3.1 M O S F E T G A T E C A P A C I T A N C E

Let us now take a closer look at the structure and operation of the MOSFET
in order to better understand its dynamic behavior. Figure 9.21 reviews the
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F IGURE 9.21 MOSFET
structure.
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F IGURE 9.22 MOSFET with a positive
voltage applied at the gate relative to the
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structure of the n-channel MOSFET. The figure identifies its n+-type source
and drain, its p-type substrate, its channel region, its gate conductor, and the
silicon dioxide dielectric that separates its gate and channel.

Figure 9.22 shows the same n-channel MOSFET with its source and sub-
strate grounded, and positive voltages applied to its gate and drain. As the
positive gate voltage is applied, electrons flow from the source into the channel
and accumulate beneath the gate. When the gate voltage exceeds the threshold
voltage of the MOSFET, the electron density beneath the gate becomes suffi-
ciently high to invert the channel from p-type silicon to n-type silicon. Thus, a
continuous n-type channel forms between the source and drain, thereby allow-
ing electrons to flow from the source to the drain, and hence current to flow
from the drain to the source, in the response to the positive drain voltage.

The important observation here from Figure 9.22 is that in the process
of inverting its channel, and turning itself on, the MOSFET actually forms a
parallel-plate capacitor between its gate and channel. This is emphasized in
Figure 9.23, which shows the electric field E in the silicon dioxide emanating
from the positive charge on the gate and terminating on the negative charge in
the channel. Comparing this figure to Figure 9.11 leads to the realization (from
Equation 9.4) that the gate-to-channel capacitance is approximately

εOXLW

d

where εOX ≈ 3.9ε◦ is the permittivity of the silicon dioxide, d is the thickness
of the silicon dioxide, L is the channel length, and W is the channel width. The
product LW is the gate area.

Since the electrons that fill the channel originate from the source, and since
their image charges reside on the gate, the gate-to-channel capacitance that
we identified in Figures 9.22 and 9.23 appears between the gate and source
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of the MOSFET when viewed from the MOSFET terminals. For this reason
the capacitance is usually referred to as the gate-to-source capacitance of the
MOSFET, or CGS. In other words,

CGS = εOXLW

d
. (9.49)

Often, the ratio εOX/d is referred to as COX, the gate-to-channel
capacitance per unit area of the MOSFET gate. In other words,

COX = εOX

d

This realization also leads to the augmented switch-resistor-capacitor (SRC)
model of the MOSFET shown in Figure 9.24. Here, a lumped capacitor is added
to the SR model to account for the charge that must be supplied to the gate
conductor and channel in order to turn on the MOSFET. Thus, we develop
a model that describes the behavior of the MOSFET yet satisfies the lumped
matter discipline.

D

S

G

OFF State

CGS

vGS < VT

D

RON

ON State

vGS ≥ VT

S

G

CGS

F IGURE 9.24 The switch-
resistor-capacitor (SRC) model
of the MOSFET.

Because the SRC model contains a capacitor between the gate and source
terminals of the MOSFET, a current will flow into the gate terminal and out
from the source terminal of that model as the gate-to-source voltage of the
MOSFET varies. This current transports the charge that accumulates within
the MOSFET as seen in Figures 9.22 and 9.23. Following Equation 9.9, the
current is given by

iG = CGS
dvGS

dt
(9.50)

where

CGS = COXLW. (9.51)

From Equation 9.50 we can now begin to see the reason for the inverter behavior
observed in Figure 9.3. It will take time for the gate current to transport charge
onto the gate, and hence it will take time for the gate voltage to rise. Thus, it
will take time for the inverter to pass a signal from its input to its output. We
will have more to say about this in Section 10.4.

Finally, it is important realize that the dynamic behavior of a real MOSFET
is actually much more complex than described here. In reality a MOSFET
actually has many internal capacitances of importance, including capacitances
between its gate and drain, its gate and source, its gate and substrate, its drain
and source, its drain and substrate, and its source and substrate. Further, most
of these capacitances are actually functions of vGS and vDS. For our purposes,
we will work primarily with CGS and assume that it is a constant capacitance.
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F IGURE 9.25 MOSFET gates
with different dimensions; all
dimensions in the figure are in µm.
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e x a m p l e 9.5 g a t e c a p a c i t a n c e s o f m o s f e t s Figure 9.25
shows the top view of several rectangular MOSFET gates fabricated within an
integrated circuit. Let us assume that the silicon-dioxide dielectric is characterized by
COX ≈ 4 f F/µm2, and find the gate capacitances CGS for each MOSFET.

To do so, we use Equation 9.51. To begin, notice that MOSFETs M3, M4, and M5
must have the same capacitance because they have the same area of 12 µm2. Their
capacitance is therefore 48 fF. MOSFET M5 has the biggest area of 36 µm2, and so
it has the biggest capacitance of 144 fF, while MOSFET M2 has the smallest area of
9 µm2, and so it has the smallest capacitance of 36 fF. MOSFETs M1 and M7 have
capacitances 64 fF and 108 fF, respectively.

9.3.2 W I R I N G L O O P I N D U C T A N C E

The most common parasitic inductance is the inductance associated with a
wiring loop. In the lumped circuit abstraction, this inductance is ignored unless
it is explicitly modeled in a circuit using an additional lumped inductor. To
estimate the inductance of a wiring loop, consider the circular loop of wire in
free space shown in Figure 9.26. The loop has a loop radius R and a wire radius

R

2 A

F IGURE 9.26 A wiring loop.

A. Its inductance L is given approximately by2

L = µ◦R
(

ln
(

8R

A

)
− 2

)
. (9.52)

This expression can also be used to successfully approximate the inductance of
many noncircular wiring loops.

2. See Ramo, Whinnery, and Van Duzer, Fields and Waves in Communication Electronics, P. 311,
John Wiley, 1965.
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e x a m p l e 9.6 i n d u c t a n c e o f a w i r i n g l o o p Suppose
a wiring loop in free space has a 5-mm diameter and is made from 200-µm-thick wire.
What is its inductance?

Using Equation 9.52 with R = 2.5×10−3 m, A = 10−4 m, and µ◦ = 4π ×10−7 H/m,
the inductance is found to be 10 nH.

9.3.3 I C W I R I N G C A P A C I T A N C E A N D I N D U C T A N C E

Let us now return to Figure 9.4, and develop a model for the capacitance and
inductance of the conductors inside an integrated circuit (IC) that are implied
by the figure. Many conductors inside integrated circuits can be modeled as
a flat conductor above a conducting substrate, or ground plane, as shown in
Figure 9.27.

The conductor in the figure has a width W, and it is located the distance
G above the ground plane. Such conductors are typically surrounded by an
insulating dielectric having a permittivity of ε > ε◦ and a permeability of µ◦.
Under the assumption that W � G, we can ignore the fringing electric and
magnetic fields at the edges of the conductor. In this case, the capacitance C̃ and
inductance L̃ of the conductor per unit length along its length is approximately

C̃ = εW

G
(9.53)

L̃ = µ◦G

W
. (9.54)

In other cases, however, the width of the conductor is not large compared to
its elevation above the ground plane. An example of this is a narrow printed
circuit board trace. In such cases the conductor might alternatively be modeled
as a cylindrical conductor above a ground plane as shown in Figure 9.28.

W

G

Conductor

Ground
plane

ε

F IGURE 9.27 A flat conductor above a conducting ground plane.

H

Conductor

Ground
plane

ε

R

F IGURE 9.28 A cylindrical conductor above a conducting
ground plane.
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The conductor in Figure 9.28 has a radius R and is centered the distance
H above the ground plane. It has a capacitance C̃ and inductance L̃ per unit
length of approximately

C̃ = 2πε

ln
(

H
R

+
√

H2

R2 − 1
) (9.55)

L̃ = µ◦
2π

ln


H

R
+

√
H2

R2
− 1


 (9.56)

along its length. Together, the conductors shown in Figures 9.27 and 9.28 can
be used to model a wide variety of interconnects.

Finally, notice that for both interconnects,

C̃L̃ = εµ◦.

It follows from Maxwell’s Equations that this will always be the case for
any two-wire interconnect having constant cross section along its length. Thus,
any effort to reduce either C̃ or L̃ will result in an increase of the other.

e x a m p l e 9.7 c a p a c i t a n c e o f i n t e g r a t e d - c i r c u i t

i n t e r c o n n e c t Consider an integrated-circuit interconnect, such as the
one shown in Figure 9.27, with W = 2 µm, G = 0.1 µm, and ε = 3.9ε◦. What
is its capacitance and inductance per unit length?

Using Equations 9.53 and 9.54, C̃ = 690 pF/m = 0.69 fF/µm, and L̃ = 63 nH/m =
63 fH/µm.

e x a m p l e 9.8 p r i n t e d - c i r c u i t - b o a r d t r a c e Consider
modeling a printed-circuit-board trace as a cylindrical conductor above a ground plane,
as shown in Figure 9.28. Let R = 0.5 mm, H = 2 mm, and ε = ε◦. What is its
capacitance and inductance per unit length?

Using Equations 9.55 and 9.56, C̃ = 27 pF/m, and L̃ = 410 nH/m.

9.3.4 T R A N S F O R M E R S

A transformer is a two-port device made by winding a second coil around the
inductor, for example, that shown in Figure 9.13. Let the first (or primary) coil
have N1 turns and the second (or secondary) coil have N2 turns. The symbol for
an ideal transformer having this construction is shown in Figure 9.29. The two
dots indicate the ends of the two coils that are wound in the same direction.
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v2
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i2i1

:

F IGURE 9.29 The symbol for an ideal transformer.
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F IGURE 9.30 A useful model for an ideal transformer.

In an ideal transformer, the coils are wound so tightly against each
other that each of their turns links the same flux �(t). It then follows from
Equations 9.25 and 9.21 that

v1 = N1
d�(t)

dt
(9.57)

v2 = N2
d�(t)

dt
(9.58)

so that

v1(t)

N1
= v2(t)

N2
. (9.59)

In an ideal transformer, the core is also infinitely permeable, that is, µ = ∞. For
a single-coil inductor carrying a finite flux �(t) = λ(t)/N, Equation 9.22 shows
that the total ampere-turns Ni(t) flowing around the core through the coil must
vanish as µ becomes infinite. In an ideal transformer, the total ampere turns
must similarly vanish, and so

N1i1(t) + N2i2(t) = 0 (9.60)

or

N1i1(t) = −N2i2(t). (9.61)

Equations 9.59 and 9.61 are the constitutive equations for an ideal transformer.
By combining Equations 9.59 and 9.61, it can be observed that

v1(t)i1(t) = −v2(t)i2(t). (9.62)

Thus, the power flowing into one port of an ideal transformer must instanta-
neously flow out from the second port. Said differently, an ideal transformer
cannot store energy. This is consistent with having an infinitely permeable core.

A very useful model for an ideal transformer is shown in Figure 9.30.
This model uses two dependent sources to enforce Equations 9.59 and 9.61.
The voltage-dependent voltage source enforces Equation 9.59 and the current-
dependent current source enforces Equation 9.61.
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e x a m p l e 9.9 a t r a n s f o r m e r A transformer can be used to trans-
form the 120-Volt rms utility voltage to a voltage that can power a 5-V DC load.
To do so, what must be the approximate turns ratio of the transformer?

If the primary of the transformer is connected to the utility, then
+

C
-

v(t)I(t)

F IGURE 9.31 A current source
driving a capacitor.

C

i(t)

V(t)
+

-

F IGURE 9.32 A voltage source
driving a capacitor.

L

i  t)(

V(t)
+

-

F IGURE 9.33 A voltage source
driving an inductor.

+
L

-

v(t)I(t)

F IGURE 9.34 A current source
driving an inductor.

v1 = 120
√

2 sin(2π 60 t),

where the frequency of the utility voltage is 60 Hz (or 60 cycles per second), or 2π 60
radians per second. Thus, the primary has a peak voltage of 170 V. At the secondary, it
is desired that v2 have a peak of 5 V, and so the turns ratio should be approximately

N1/N2 = 34.

A real transformer designed for this application would actually have a slightly smaller
turns ratio so that v2 would ideally be somewhat larger than 5 volts. This allows for
voltage drops across coil resistances and leakage inductances found in practical devices.

9.4 S I M P L E C I R C U I T E X A M P L E S

To complete our introduction to capacitors and inductors, let us now examine
their behavior in the simple circuits shown in Figures 9.31 through 9.34. These
circuits are the same as those shown in Figures 2.25 and 2.26, except for the
replacement of the resistor in the latter figures by the capacitor or inductor in the
former figures. Because the two sets of circuits are so similar, we could analyze
the circuits shown in Figures 9.31 through 9.34 using the same approach applied
in Chapter 2 to the circuits shown in Figures 2.25 and 2.26. Alternatively, we
could carry out a node analysis as developed in Section 3.3. However, since the
circuits here are simple, we will follow the more intuitive approach outlined at
the end of Section 2.4, and save the formalities for the analysis of more complex
circuits in future chapters.

Consider first the circuit shown in Figure 9.31. In this circuit, the current I
from the source must circulate through the capacitor. Thus, the current through
both elements is known. Next, following Equation 9.12, the voltage v across
the capacitor, and hence across the current source, is given by

v(t) = 1

C

∫ t

−∞
I(t)dt. (9.63)

All branch variables are now known.
Consider next the circuit shown in Figure 9.32. In this circuit, the voltage V

from the source must also appear across the capacitor. Thus, the voltage across
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both elements is known. Next, following Equation 9.9, the current i circulating
through both the capacitor and the voltage source is given by

i(t) = C
dV(t)

dt
. (9.64)

Again, all branch variables are now known.
Now consider the circuit shown in Figure 9.33. In this circuit, the voltage

V from the source must also appear across the inductor, just as it appeared
across the capacitor in Figure 9.32. Thus, following Equation 9.30, the current
circulating through both the inductor and the voltage source is given by

i(t) = 1

L

∫ t

−∞
V(t)dt. (9.65)

All branch variables are now known.
Finally, consider the circuit shown in Figure 9.34. In this circuit, the

current I from the source must circulate through the inductor, just as it did
through the capacitor shown in Figure 9.31. Thus, following Equation 9.28,
the voltage v appearing across both the inductor and the current source is
given by

v(t) = L
dI(t)

dt
. (9.66)

Once again, all branch variables are now known.
In the following subsections, we will consider specific examples of the

source current I and source voltage V. However, before doing so, it is worth
noting the similarity between the analyses of the four circuits we have just
studied. Because capacitors and inductors are duals of each other, we find
that the circuits are as well. For example, the circuits shown in Figures 9.31
and 9.33 are duals. Capacitance interchanges with inductance, and current
interchanges with voltage, as can be seen by comparing Equations 9.63 and
9.65. Similarly, the circuits shown in Figures 9.32 and 9.34 are duals. Again,
capacitance interchanges with inductance and current interchanges with voltage,
as can be seen by comparing Equations 9.64 and 9.66.

It is also interesting to note that the circuits shown in Figures 9.31 through
9.34 perform either integration or differentiation of the source current or voltage
as it produces the branch voltages or currents, respectively. Thus, if viewed in
this way each circuit is an integrator or differentiator. We will make use of this
capability of capacitors and inductors in future chapters as we build filters and
other signal processing circuits.
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W W W 9.4.1 S I N U S O I D A L I N P U T S *

9.4.2 S T E P I N P U T S

Step functions, and their integrals and derivatives, constitute another important
class of inputs to electronic circuits. So, as an example of a step input to the
circuit shown in Figure 9.31 (redrawn here as Figure 9.36 for convenience),

+
C

-

v t( )I(t)

F IGURE 9.36 A current source
driving a capacitor.

consider the source step function:

I(t) =
{

0 t ≤ 0

I◦ t > 0.
(9.75)

Note that the source is zero for t ≤ 0, but nonzero for t > 0, so that it effectively
turns on at t = 0. A sketch of the current step input is shown in Figure 9.37a.

t

I(t)

0

Io

(a)

t

v(t)

0

Io

C
-----

(b)

F IGURE 9.37 The current and
voltage in the circuit shown in
Figure 9.36.

To complete the analysis of the circuit, we substitute the correspond-
ing source function from Equation 9.75 into Equation 9.63 and carry out the
indicated integration.3 The substitution of Equation 9.75 into Equation 9.63
yields

v(t) =



0 t ≤ 0

I◦t
C

t > 0
(9.76)

for the circuit shown in Figure 9.36. This result is shown in Figure 9.37b.
Let us now examine the operation of the circuit shown in Figure 9.36

more closely. Once the current source steps its value to I◦, it begins to deliver
charge to the capacitor at that constant rate. The charge then accumulates
linearly in the capacitor, much like water would accumulate in a glass from a
faucet set to deliver that water at a constant rate. Since charge and voltage are
proportional through the constant capacitance C of the linear time-invariant
capacitor, the voltage across the capacitor also increases linearly. This is as
shown in Figure 9.37.

Figure 9.37 also illustrates another very important point, namely that the
charge stored in, and hence the voltage appearing across, a capacitor is a con-
tinuous function of time. Even though I steps discontinuously at t = 0, v does
not; the state q, and hence v, is continuous. The only way for v to take a
discontinuous step would be for the current source to deliver a nonzero charge
in zero time, which requires an infinite current. This is of course not a practical
possibility, although we will see that such a mathematical construction can be
used very effectively to model certain physical phenomena.

3. This is relatively easy for the integration, but as we will see shortly, it requires some thought
when the circuit involves a differentiation.
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The behavior seen in Figure 9.37 also begins to explain the delays seen
in Figure 9.3, although as we shall see in Chapter 10 the details are slightly
different. As we see in Figure 9.37, it takes time for a finite current source to
charge a capacitor, and hence to raise its voltage. In the case of the two inverters
shown in Figure 9.1, it takes time for the first inverter to change the voltage at
the input to the second inverter. This is because it takes time for the first inverter
to charge and discharge the gate-to-source capacitance of the MOSFET in the
second inverter. The time it takes for this voltage to cross the threshold voltage
of the MOSFET is also ultimately responsible for a delay at the output of the
second inverter.

e x a m p l e 9.10 m o s f e t g a t e - t o - s o u r c e c a p a c i t a n c e

Suppose that the gate-to-source capacitance CGS for a particular MOSFET is 100 fF.
What constant gate current would be required to raise the gate-to-source voltage of that
MOSFET from 0 V to 5 V in 10 ns?

L

i(t)

V(t)
+

-

F IGURE 9.38 A voltage source
driving an inductor.

This problem is well modeled by Figure 9.31 with I being a current step. Hence, Equation
9.76 and Figure 9.37 apply. Since the voltage slope is to be 5 V in 10 ns, or 5×108 V/s,
and since the capacitance is 100 fF, the current must be 50 µA.

A second way to solve this problem is to use Equation 9.8 with C = 100 fF and v = 5 V
to determine that the gate current must deliver a charge of 500 fC. Since this charge
flows at a constant rate over a 10-ns period, the current must be 50 µA.

e x a m p l e 9.11 v o l t a g e s t e p i n p u t t o a n i n d u c t o r

As our next example, let us consider a voltage step input of the following form:

V(t) =
{

0 t ≤ 0

V◦ t > 0
. (9.77)

to the circuit shown in Figure 9.33 (redrawn here as Figure 9.38). The voltage step input
is sketched in Figure 9.39a.

t

V(t)
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i(t)
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L
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(b)

F IGURE 9.39 The current and
voltage in the circuit shown in
Figure 9.38.

Since they are duals, the operation of the circuit in Figure 9.38 is much the same as
that of the circuit in Figure 9.36. Once the voltage source steps its value to V◦ the
current through the inductor begins to increase linearly. More formally, the substitution
of Equation 9.77 into Equation 9.65 yields

i(t) =



0 t ≤ 0

V◦t
L

t > 0.
(9.78)

This is as shown in Figure 9.39b.
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Figure 9.39 also illustrates an important point, namely that the flux linked by, and hence
the current through, an inductor is a continuous function of time. Even though V steps
discontinuously at t = 0, i does not; the state λ, and hence i, is continuous. The only way
for i to take a discontinuous step would be for the voltage source to deliver a nonzero
flux linkage in zero time, which requires an infinite voltage. This is of course also not
a practical possibility, although we will see that such a mathematical construction can
also be used very effectively to model certain physical phenomena.

e x a m p l e 9.12 r e l a y A relay is constructed as an electromagnet that
opens and closes a mechanical switch. Suppose that the electromagnet can be mod-
eled as an inductor having a 10-mH inductance. Suppose further that it will close the
mechanical switch once its current reaches 10 mA. What voltage step must be applied
to the electromagnet to close the switch in 100 µs?

This problem is well modeled by Figure 9.33 with V being a voltage step. Hence,
Equation 9.78 and Figure 9.39 apply. Since the current slope is to be 10 mA in 100 µs,
or 100 A/s, and since the inductance is 10 mH, the voltage must be 1 V.

A second way to solve this problem is to use Equation 9.27 with L = 10 mH and
i = 10 mA to determine that the voltage source must deliver a flux linkage of 10−4 Wb.
Since this flux linkage is to be delivered at a constant rate over a 100-µs period, the
voltage must be 1 V.

Let us now turn to the circuit shown in Figure 9.32 (redrawn here as
Figure 9.40). Let us analyze its operation with a voltage source that takes a

C

i(t)

V(t)
+

-

F IGURE 9.40 A voltage source
driving a capacitor.

discontinuous step as expressed in the following equation

V(t) =
{

0 t ≤ 0

V◦ t > 0
. (9.79)

and sketched in Figure 9.45a.
To analyze its operation with a source that takes a discontinuous

step, we refer to Equation 9.64, and notice that we must contend with the
differentiation of the step at t = 0. We can develop an understanding of this
differentiation with the help of the ramping unit step function u(t; T ) defined
in Figure 9.41. Here, u(t; T ) is a function of time t, having the ramp duration T

t

u(t; T)

0

1

T

F IGURE 9.41 The ramping unit
step function u(t; T ).

as a parameter.

t

u(t)

0

1

F IGURE 9.42 The unit step
function u(t).

Note that the ramp in u(t; T ), which occurs over the period 0 ≤ t ≤ T,
becomes increasingly steeper as the ramp width T approaches 0. In fact, it is
u(t; T ) in the limit T → 0, or simply u(t), as illustrated in Figure 9.42. Notice
that the ideal unit step is the function at work in Equation 9.79. Recognizing this
limiting behavior, our approach to dealing with the differentiation of a step will
be to take a more roundabout, but easier route: We will compute the response
of the circuit to a ramping unit step function, and then take the limit as T → 0.
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T
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F IGURE 9.43 The unit-area pulse function
δ(t; T ) obtained by differentiating the ramping
unit step function u(t; T ).
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F IGURE 9.44 The unit-area pulse function becomes the unit
impulse in the limit as T →0.

Thus, we can rewrite Equation 9.79 in terms of the unit step function as

V(t) = V◦ lim
T→0

u(t; T ) ≡ V◦u(t). (9.80)

The ramping unit step function u(t; T ) can be differentiated to yield the unit-area
pulse function δ(t; T ) shown in Figure 9.43. This function becomes increasingly
narrow and tall as T approaches 0, but in doing so it maintains unit area, as
depicted in Figure 9.44. In the limit T → 0, δ(t; T ) becomes the unit impulse
(see the right-most graph in Figure 9.44, which we will simply denote by δ(t).

The unit impulse4 has several important properties for our purposes. These
properties are

δ(t) = 0 for t 	= 0 (9.81)

∫ t

−∞
δ(t)dt = u(t) ⇔ δ(t) = du(t)

dt
(9.82)

∫ ∞

−∞
δ(t)dt = 1. (9.83)

4. u(t) and δ(t) are commonly used to represent the unit step function and the unit impulse function,
respectively. Sometimes, the following notation is also used: u0(t) to represent a unit impulse at
time t = 0. The notation un(t) is used to represent the function that results from differentiating the
impulse n times, and the notation u−n(t) represents the function that results from integrating the
impulse n times. Thus u−1(t) represents the unit step at time t = 0, u−2(t) the ramp, and u1(t)
the doublet at time t = 0.
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Each of these properties can be deduced from the properties of δ(t; T ) in the
limit T → 0. Finally, note that in accordance with Figure 9.43, the units of δ(t)
are reciprocal time.

Now that we have the definitions and limiting interpretations of
u(t; T ) and δ(t; T ) in hand, we can complete the analysis of the circuit shown in
Figure 9.40 with a source that steps discontinuously. Suppose that the voltage
source in the figure produces the ramping voltage step given by

V(t) = V◦u(t; T ). (9.84)

Substitution of Equation 9.84 into Equation 9.64 then yields

i(t) = CV◦δ(t; T ). (9.85)

Equation 9.85 shows that the voltage source supplies the current CV◦/T during
the period 0 ≤ t ≤ T as it ramps up the capacitor voltage from 0 V to V◦; note
that δ(t; T ) = 1/T during that period. In ramping up the capacitor voltage to
V◦, the source delivers the charge CV◦ in accordance with Equation 9.8. This
can be verified by integrating i over 0 ≤ t ≤ T.

Now consider the circuit behavior described by Equations 9.84 and 9.85
in the limit T → 0. In this case, V becomes the discontinuous voltage step
described by Equations 9.79 and 9.80, and i becomes

i(t) = CV◦δ(t) (9.86)

which is the desired response to the discontinuous step in the source voltage.
The forms of the input voltage step and the current impulse response for the
circuit in Figure 9.32 are depicted in Figure 9.45.

t

V(t)

0

Vo

(a)

t

i(t)

0

CVo

(b)

F IGURE 9.45 The voltage and
current in the circuit shown in
Figure 9.32 for a step voltage input.

This response can also be obtained directly by substituting Equation 9.80
into Equation 9.64, and then making use of Equation 9.82. At first glance, it
might not appear that CV◦δ(t) has the units of current, but it does because CV◦
has the units of charge, and δ(t) has the units of reciprocal time. In fact, CV◦ is
the total charge delivered by the impulse current.

From our limiting interpretation of the impulse, we see that i in Equation
9.86 is a current that instantaneously delivers the charge CV◦ to the capacitor
at t = 0. Thus, the charge stored in the capacitor takes a step at t = 0, and so
the voltage steps too as driven by the source. This illustrates an important point
made earlier, namely that it takes an infinite current to cause the charge stored
by, and hence the voltage appearing across, a capacitor to take a discontinuous
step. Thus, except under unusual circumstances involving infinite currents, the
state of a capacitor is a continuous function of time.

e x a m p l e 9.13 c u r r e n t s t e p i n p u t t o a i n d u c t o r

Our next example considers a current step input of the following form (and sketched
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in Figure 9.47a):

I(t) =
{

0 t ≤ 0

I◦ t > 0
(9.87)

to the circuit shown in Figure 9.34 (redrawn here as Figure 9.46).

Since they are duals, the behavior of the circuit shown in Figure 9.46 parallels that of the
circuit shown in Figure 9.40. Suppose that the current source in the figure produces the

+
L

-

v t)(I(t)

F IGURE 9.46 A current source
driving an inductor.

ramping current step given by

I(t) = I◦u(t; T ). (9.88)

Substitution of Equation 9.88 into Equation 9.66 then yields

v(t) = LI◦δ(t; T ). (9.89)

Equation 9.89 shows that the current source supplies the voltage LI◦/T during the
period 0 ≤ t ≤ T as it ramps up the inductor current from 0 A to I◦; note again that
δ(t; T ) = 1/T during that period. In ramping up the inductor current to I◦ the source
delivers the flux linkage LI◦ in accordance with Equation 9.27. This can be verified by
integrating v over 0 ≤ t ≤ T.

Now consider the circuit behavior described by Equations 9.88 and 9.89 in the
limit T → 0. In this case, I becomes the discontinuous current step described by
Equation 9.87 and

I(t) = I◦ lim
T→0

u(t; T ) ≡ I◦u(t) (9.90)

and v becomes

v(t) = LI◦δ(t) (9.91)

which is the desired response to the discontinuous step in the source current. The forms
of the input current step and the voltage impulse response for the circuit in Figure 9.46
are depicted in Figure 9.47.

t

I(t)

0

Io

t

v(t)

0

LIo

F IGURE 9.47 The current and
voltage in the circuit shown in
Figure 9.46 for a step current input.

This response can also be obtained directly by substituting Equation 9.90 into Equation
9.66, and then making use of Equation 9.82. At first glance it might not appear that
LI◦δ(t) has the units of voltage, but it does because LI◦ has the units of flux linkage, and
δ(t) has the units of reciprocal time. In fact, LI◦ is the total flux linkage delivered by the
impulse voltage.

From our limiting interpretation of the impulse we now see that v in Equation 9.91 is a
voltage that instantaneously delivers the flux linkage LI◦ to the inductor at t = 0. Thus,
the flux linked by the inductor takes a step at t = 0, and so the current steps too as
driven by the source. This illustrates an important point made earlier, namely that it takes
an infinite voltage to cause the flux linked by, and hence the current passing through,
an inductor to take a discontinuous step. Thus, except under unusual circumstances
involving infinite voltages, the state of an inductor is a continuous function of time.
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9.4.3 I M P U L S E I N P U T S

We introduced impulse functions in the previous section. Recall that an unit
impulse denoted by δ(t) has the following properties.

δ(t) = 0 for t 	= 0 (9.92)

∫ t

−∞
δ(t)dt = u(t) ⇔ δ(t) = du(t)

dt
(9.93)

∫ ∞

−∞
δ(t)dt = 1. (9.94)

In other words, the impulse δ(t) is nonzero only for t = 0. Its integral produces
the unit step function, and the area under it is 1.

Recall further that the unit-area pulse function in Figure 9.44 becomes the
unit impulse in the limit as T → 0.

Figure 9.48a shows a unit current impulse and Figure 9.48b shows a current
impulse with area under the impulse Q. In other words,

∫ ∞

−∞
i(t)dt =

∫ ∞

−∞
δ(t)dt = 1 (9.95)

for the current in Figure 9.48a, and

∫ ∞

−∞
i(t)dt =

∫ ∞

−∞
Qδ(t)dt = Q (9.96)

for the current in Figure 9.48b.

t0

I t( )

1

(a)

t0

I t( )

Q

(b)

F IGURE 9.48 (a) The unit
impulse δ(t); (b) an impulse with
area Q.

+
C

-

v t)(I(t)

F IGURE 9.49 A current source
driving a capacitor.

Let us analyze the circuit in Figure 9.31 (redrawn in Figure 9.49 for conve-
nience) for an impulse input current with strength Q. In other words, an input
current of the form:

I(t) = Qδ(t).

Recall that solving the circuit implies finding the values of all the branch
variables. The one branch variable that is unknown in the circuit is the voltage
v(t). We can obtain v(t) by integrating the current through the capacitor as

v(t) = 1

C

∫ t

−∞
I(t)dt

= 1

C

∫ t

−∞
Qδ(t)dt

= 1

C
Qu(t). (9.97)
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Thus, a current impulse of strength Q that occurs at time t deposits a charge Q
on the capacitor. This charge results in the capacitor voltage jumping to 1

C
Q

at time t as illustrated in Figure 9.50.

Before ending this subsection, it is worthwhile to comment on impulse
sources. Since impulses are a mathematical invention, and not a physical occur-
rence, it might appear that they have limited practical value. However, this
is not the case. We often encounter sources that produce very narrow pulses
of voltage or current. When these pulses are so narrow that we do not really
care about the details of their shape, then we can model them very simply
by an impulse with an equivalent area. From a mathematical viewpoint, this
offers a significant savings since an impulse source is much easier to deal with
than a source that produces a pulse with a complex shape. Thus, impulses are
actually very useful modeling tools.

t

I(t)

0

Q

t

v(t)

0

Q
C
----

F IGURE 9.50 The current and
voltage in the circuit shown in
Figure 9.32 for an impulse current
input.

W W W 9.4.4 R O L E R E V E R S A L *

9.5 E N E R G Y , C H A R G E , A N D
F L U X C O N S E R V A T I O N

In Section 9.2, we studied the parallel combination of capacitors that stored no
charge at the time of their connection, and the series combination of inductors
that linked no flux at the time of their connection. In this section, we extend
that study to consider connections in the presence of initial charge and flux
linkage.

Consider the parallel connection of the two initially-charged capacitors
shown in Figure 9.51; the connection occurs when the switch closes. We wish

v1 C1 C2 v2

+

--

+
q2q1

F IGURE 9.51 Two capacitors
connected in parallel through a
switch.

to determine the state of the capacitors after the switch is closed. KCL applied
to the bottom node of the circuit dictates that

dq1(t)

dt
+ dq2(t)

dt
= d

dt
(q1(t) + q2(t)) = 0. (9.98)

Equation 9.98 states that the total charge q1+q2 on both capacitors is constant,
and hence conserved for all time, even as the switch closes. Now, let the switch
close at t = 0. After the switch closes, that is, for t > 0, KVL applied to the
loop in Figure 9.51 dictates that

v1(t) = v2(t), (9.99)

and, with the help of Equation 9.8, that

q1(t)

C1
= q2(t)

C2
. (9.100)
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We can now use Equations 9.98 and 9.100 to determine the capacitor
charges, and, with the help of Equation 9.8, the common voltage after the
switch is closed. To begin, let us denote the charges on the two capacitors
prior to switch closure as Q1 and Q2. Then, from Equation 9.98,

q1(t) + q2(t) = Q1 + Q2. (9.101)

Next, Equations 9.100 and 9.101 can be jointly solved to yield

q1(t) = C1

C1 + C2
(Q1 + Q2) (9.102)

q2(t) = C2

C1 + C2
(Q1 + Q2) (9.103)

for t > 0. Finally, Equations 9.102 and 9.103 can be substituted in Equation
9.8 to yield

v1(t) = q1(t)

C1
= Q1 + Q2

C1 + C2
(9.104)

v2(t) = q2(t)

C2
= Q1 + Q2

C1 + C2
, (9.105)

again for t > 0. According to Equations 9.102 and 9.103, the capacitors share
the total charge in proportion to their capacitance.

While charge is conserved during the closure of the switch, it is interesting
to note that energy is not. Using Equation 9.18, the total energy stored between
the two capacitors before the switch is closed is found to be

wE(t < 0) = Q2
1

2C1
+ Q2

2

2C2
. (9.106)

Using Equations 9.102, 9.103, and 9.18, the total energy stored after the switch
is closed is found to be

wE(t > 0) =
(

C1(Q1 + Q2)
C1 + C2

)2 1
2C1

+
(

C2(Q1 + Q2)
C1 + C2

)2 1
2C2

= (Q1 + Q2)2

2(C1 + C2)
. (9.107)
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The two energies are not equal. Further, with a little algebraic manipulation, it
can be seen that

wE(t < 0) − wE(t > 0) = 1

2

C1C2

C1 + C2

(
Q1

C1
− Q2

C2

)2

≥ 0, (9.108)

and so energy is always lost during the closure of the switch, except for the
special case in which v1 and v2 are equal before the switch closes. Where the lost
energy goes is not apparent from Figure 9.51 because it is an idealized figure.
Perhaps the energy is dissipated in the wires used to connect the two capacitors
and the switch. Or, perhaps it is dissipated in a spark as the switch closes. It
might even be lost as radiated electromagnetic energy. In any case, it is lost.
One of the problems at the end of this chapter explores this loss further.

F IGURE 9.52 Two inductors
connected in series through a
switch.

Finally, we note that arguments similar to those presented here can be
made for inductors connected in series. The corresponding circuit is shown
in Figure 9.52. Initially, the switch is closed, allowing each inductor to carry
an arbitrary current. Then, the switch opens. In this way, two inductors with
different initial currents are connected in series. Using arguments similar to
those presented earlier it is possible to determine the inductor currents and flux
linkages after the switch opens. Then, it is straightforward to show that energy
is lost during the opening of the switch.

e x a m p l e 9.14 c h a r g e s h a r i n g i n c a p a c i t o r s In
Figure 9.51, suppose that C1 = 1 µF and C2 = 10 µF. Further, suppose that v1 = 10 V
and v2 = 1 V before the switch is closed. How much energy is stored in the two
capacitors before the switch is closed? Also, how much energy is lost during the switch
closure, and what is the common voltage across the capacitors after the switch closes?

To begin, we find the charge on each capacitor before the switch closes. Using Equation
9.8, Q1 = 10 µC and Q2 = 10 µC. Next, use Equations 9.102 and 9.103 to determine
that q1 = 20/11 µC and q2 = 200/11 µC after the switch closes. Equation 9.103 or
9.104 can then be used to determine that v1 = v2 = 20/11 V after the switch closes.
Finally, Equations 9.106 and 9.108 are used to determine that the initial stored energy
is 55 µJ, and that the energy lost is approximately 36.8 µJ.
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9.6 S U M M A R Y
� In this chapter, we introduced capacitors and inductors, and derived their

lumped element laws from more fundamental distributed physics. Since
those element laws involved time derivatives, or alternatively time inte-
grals, time became an important variable in this chapter. This was not the
case in previous chapters because the circuits we studied there contained
only sources, resistors, and idealized MOSFETs, all of which have purely
algebraic element laws. Because time was an important variable in this chap-
ter, we also began to consider a richer class of functions for the sources
that would input signals into a circuit. These functions included sinusoids,
steps, and impulses. The circuit responses to these inputs became our first
examples of transients in electronic circuits.

� When we first introduced capacitors and inductors, we did so through the
effects that parasitic capacitance and inductance can have on the perfor-
mance of an electronic circuit. This in turn caused us to re-evaluate our
lumped matter discipline, under which such parasitics do not, by defini-
tion, exist. In the end we made a modeling compromise to preserve the
lumped matter discipline while admitting the existence of important par-
asitics. That compromise was to augment an original circuit with lumped
elements to model the important parasitics, with the understanding that
the augmented model obeys the lumped matter discipline. While this is
certainly an important issue, it is also important to realize that capacitors
and inductors are useful well beyond the modeling of parasitics. As we shall
see in future chapters they are frequently used on purpose.

� Through our analysis of capacitors and inductors, and several simple circuits
that contained them, we have seen that these elements exhibit memory and
are capable of reversible energy storage. A simple experiment will illustrate.
As illustrated in Figure 9.53, charge up a capacitor by connecting it to a
power supply (position 1), then disconnect the supply (position 2). The
capacitor will ‘‘remember’’ the voltage of the supply for hours if a high-
quality capacitor is used. A similar experiment performed with a resistor
produces no memory; when the power supply is disconnected, the resistor
voltage instantly falls to zero.

F IGURE 9.53 The capacitor
holds its voltage for a long period
of time.

R

CV
+

-

(1)

(2)

R

CV
+

-

(1)

(2)
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� The corresponding experiment on an inductor yields less exciting results,
however. Establish an inductor current by the circuit in Figure 9.54, with
the switch in position 1. Then move the switch to position 2 (make before
break). The current will decay to zero in fractions of a second, because
the energy stored in the magnetic field is rapidly dissipated in the internal
resistance of the coil.

R

LV
+

-

(1)

(2)

R

LV
+

-

(1)

(2)

RLRL

F IGURE 9.54 The inductor
holds its current for a very short
period of time.

� Memory and reversible energy storage are characteristics associated with
the state of the elements: charge in the case of the capacitor and flux
linkage in the case of the inductor. This behavior is quite different from the
behavior of ideal resistors. Ideal resistors do not exhibit memory, and they
irreversibly dissipate energy.

� The element law for a capacitor is

i = C
dv

dt

and that for an inductor is

v = L
di

dt
.

� The energy stored in a capacitor is

w E(t) = q 2(t)

2C
= Cv(t)2

2
.

� The energy stored in an inductor is

w M(t) = λ2(t)

2L
= Li(t)2

2
.

� Finally, in the process of introducing capacitors and inductors, we defined
the symbols and units for various physical quantities. These definitions
are summarized in Table 9.1. The units can be further modified with the
engineering multipliers listed in Table 1.3.
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q u a n t i t y s y m b o l u n i t s s y m b o l

Time t Second s

Charge q Coulomb C

Capacitance C Farad F

Flux Linkage λ Weber Wb

Inductance L Henry H

Energy w Joule J

TABLE 9.1 Electrical engineer-
ing quantities, their units, and
symbols for both.

E X E R C I S E S e x e r c i s e 9.1 Find the equivalent capacitance between the two terminals in
each of the networks in Figure 9.55.

e x e r c i s e 9.2 Find the equivalent capacitance or inductance for each case in
Figure 9.56.

e x e r c i s e 9.3 Consider a power line on a computer backplane that is 2.5 mm
wide, and separated from its underlying ground plane by 25 µm. Let the permittivity
and permeability of the separating insulator be 2ε◦ and µ◦, respectively. What is the
capacitance and inductance of the line per 10 cm of length?

If the voltage on the line is 5 V, how much energy is stored in its capacitance per 10 cm
of length? If the current through the line is 1 A, how much energy is stored in its
inductance per 10 cm of length?

e x e r c i s e 9.4 A current source drives a capacitor as shown in Figure 9.57. The
source current is as shown in Figure 9.58 for 0 ≤ t ≤ T. If the capacitor voltage is V◦ at
t = T, what was it at t = 0?

(a)

1 µF 3 µF

(b) 1 µF

3 µF

(c) 3 µF

2 µF

1 µF

F IGURE 9.55

+
C

-
v(t)I(t)

F IGURE 9.57 A current source driving a capacitor.

t

I(t)

Io

T
2
---

Qo

T0

F IGURE 9.58 Source current.

e x e r c i s e 9.5 A voltage source drives an inductor as shown in Figure 9.59.
The source voltage is as shown in Figure 9.60 for 0 ≤ t ≤ T. If the inductor current is
I◦ at t = T, what was it at t = 0?

e x e r c i s e 9.6 Figure 9.61 shows four circuits, labeled ‘‘1’’ through ‘‘4,’’
together with the waveform for the source in each circuit. The figure also shows four
branch-variable waveforms, labeled ‘‘a’’ through ‘‘d,’’ that could correspond to the branch
current i or branch voltages v labeled in the circuits. Match the branch variable waveforms
to the appropriate circuit and source waveform.
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2 µF

(a)

1 µF

(b)

10 pF

1 µF

30 pF

1 µF

10 pF

(c)

2 mH

1 mH

(d)

2 mH

1 µH

(e)

1 mH

1 µH

2 mH

(f )

F IGURE 9.56

L

i(t)

V(t)
+
-

F IGURE 9.59 A current source driving an inductor.

t

V(t)

Vo

T
2
---

Λo

T0

F IGURE 9.60 Source current.

t

i

+

t t t

V I V I

V I +
-- v

i

+V I
+

-
v

t t t t

(2) (3)(1) (4)

(a) (b) (c) (d)

-

F IGURE 9.61



496 C H A P T E R N I N E e n e r g y s t o r a g e e l e m e n t s

P R O B L E M S p r o b l e m 9.1 A voltage source is connected in series with two capacitors as
shown in Figure 9.62. The source voltage is V(t) = 5 V u(t), as shown. If the current i
and voltage v are given by i(t) = 4 µC δ(t) and v(t) = 1 V u(t), again as shown, what are
C1 and C2?

+

-
t

V(t)

5 V
V(t)

i

v

C1

C2

+

t

i(t)

t

v(t)

1 V4 µC

F IGURE 9.62

p r o b l e m 9.2 A current source is connected in parallel with two inductors as
shown in Figure 9.63. The source current is i(t) = 400 A/s u(t), as shown. If the current
i and voltage v are given by i(t) = 100 A/s u(t) and v(t) = 0.3 V u(t), again as shown,
what are L1 and L2?

t

I(t)

400 A
S
----

i

L1 L2

+

–

v

t

100 A
S
----

t

1 V
I(t)

i(t) v(t)

F IGURE 9.63

p r o b l e m 9.3 A current source drives a series-connected capacitor and inductor
as shown in Figure 9.64. Let I(t) = I◦ sin(ωt)u(t), and assume that the inductor and

I(t)
C

L

+

–

v(t)

F IGURE 9.64

+V(t)

i(t)

F IGURE 9.65

capacitor both stored no energy prior to t = 0.

Determine the voltage v for t ≥ 0.

Is there any relation between I◦, ω, C, and L for which v is constant for t ≥ 0? If so,
state the relation and determine v.

p r o b l e m 9.4 A voltage source drives a parallel-connected capacitor and induc-
tor as shown in Figure 9.65. Let V(t) = V◦ sin(ωt)u(t), and assume that the inductor and
capacitor both stored no energy prior to t = 0.

Determine the current i for t ≥ 0.

Is there any relation between V◦, ω, C, and L for which i is constant for t ≥ 0? If so,
state the relation and determine i.
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p r o b l e m 9.5 A constant voltage source having value V drives a time-varying

V
+

C(t)

i(t)

F IGURE 9.66

capacitor as shown in Figure 9.66. The time-varying capacitance is given by C(t) =
C0 + C1 sin(ωt). Determine the capacitor current i(t).

p r o b l e m 9.6 A constant current source having value I drives a time-varying
inductor as shown in Figure 9.67. The time-varying inductance is given by L(t) =

I

+

–

L(t)vt

F IGURE 9.67

L0 + L1 sin(ωt). Determine the inductor voltage v(t).

p r o b l e m 9.7 Consider the parallel plate capacitor shown in Figure 9.68.
Assume that the dielectric is free space so that ε = ε◦.

E E

E

E

q

l

ε

+

-

+

-

+

-

+

-

+

++

-

v

Area A

q
i

F IGURE 9.68

Suppose the capacitor is charged to the voltage V. Determine the charge and the electric
energy stored in the capacitor in this case.

The capacitor is disconnected from the charging source so that its stored charge remains
constant. Following that, its plates are pulled apart so as to double the distance between
them; that is, the gap separation is now 2l. For this new configuration, determine the
voltage across the terminals of the capacitor and the energy stored in the capacitor.
Explain how the stored energy changes.

p r o b l e m 9.8 Figure 9.69 shows two capacitive two-port networks. One is a
‘‘�’’ network, and one is a ‘‘T’’ network. For the � network, find i1P and i2P as functions
of v1P and v2P. For the T network, find i1T and i2T as functions of v1T and v2T.

How must C1P, C2P, and C3P be related to C1T, C2T, and C3T for both networks to
have the same terminal relations?

p r o b l e m 9.9 Figure 9.70 shows two inductive two-port networks. One is a
‘‘�’’ network, and one is a ‘‘T’’ network. For the � network, find v1P and v2P as
functions of i1P and i2P. For the T network, find v1T and v2T as functions of i1T and i2T.
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F IGURE 9.69 (a) A capacitive T
two-port network; and (b) a
capacitive � two-port network.

+

–

+

–

v1p

i1p i2p

C1p C2p

C3p
v2p

+

–

+

–

i1T i2T

v1T v2TC3T

C1T C2T

(a) (b)

How must L1P, L2P, and L3P be related to L1T, L2T, and L3T for both networks to
have the same terminal relations?

F IGURE 9.70 (a) An inductive T
two-port network; and (b) an
inductive � two-port network.

+

–

+

–

v1p

i1p i2p

L1p L2p

L3p
v2p

+

–

+

–

i1T i2T

v1T v2TL3T

L1T L2T

(a) (b)

p r o b l e m 9.10 This problem examines in more detail why energy is lost when
the switch in Figure 9.71 closes. To do so, we examine the transient that occurs during
the closure of the switch. In preparation for this, let t = 0 be the time at which the
switch first begins to close, and let t = T be the time at which the circuit reaches steady
state. The charges on the two capacitors prior to switch closure are given to be Q1

and Q2.

v1 C1 C2 v2
+

--

+
q2q1

F IGURE 9.71
Further, let q1(t) be any function defined over the interval 0 ≤ t ≤ T such that

q1(0) = Q1

and q1(T ) is the steady state charge on the capacitor given by

q1(T ) = C1

C1 + C2
(Q1 + Q2).

In this way, the function q1 is an arbitrary transient connecting the initial and final
charge during the switch closure.

(a) Use the charge conservation relation:

q1(t) + q2(t) = Q1 + Q2

to find q2 in terms of q1 for 0 ≤ t ≤ T. Then, use the equation:

dq(t)

dt
= i(t)
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to determine i1 and i2, again in terms of q1 for 0 ≤ t ≤ T. Finally, use the
equation:

q(t) = Cv(t)

to find v1 and v2, also in terms of q1 for 0 ≤ t ≤ T. The entire transient is now
described in terms of the arbitrary function q1.

(b) During the transient, the difference between v1 and v2 must appear across some
element or elements within the circuit. KVL requires this. For example, it could
appear across the wiring resistance or the switch, or a combination of both. In any
case, energy is lost as a current passes through this voltage difference. If we consider
the voltage difference to be (v1 − v2), as opposed to its opposite, then it is i2 that
passes into the positive terminal of this difference. Why?

(c) The product i2(v1 − v2) is the power dissipated during the transient. Determine
this power in terms of q1 for 0 ≤ t ≤ T.

(d) Integrate the power found in the part (c) over the interval 0 ≤ t ≤ T to find the
energy lost during the transient. Also, show that the energy lost is equal to the
energy difference in

w E(t < 0) − w E(t > 0) = 1

2

C1C2

C1 + C2

(
Q1

C1
− Q2

C2

)2
.

Remarkably, the energy lost is independent of the interior details of the function
chosen for q1. Since these details are equivalent to the details of the loss mechanism,
it is apparent that the amount of energy lost is independent of how it is lost.
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f i r s t -order tran s i ent s in

l inear e l ectr i ca l

network s
10

As illustrated in Chapter 9, capacitances and inductances impact circuit behavior.
The effect of capacitances and inductances is so acute in high-speed digital cir-
cuits, for example, that our simple digital abstractions developed in Chapter 6
based on a static discipline become insufficient for signals that undergo transi-
tions. Therefore, understanding the behavior of circuits containing capacitors
and inductors is important. In particular, this chapter will augment our digital
abstraction with the concept of delay to include the effects of capacitors and
inductors.

Looked at positively, because they can store energy, capacitors and induc-
tors display the memory property, and offer signal-processing possibilities not
available in circuits containing only resistors. Apply a square-wave voltage to a
multi-resistor linear circuit, and all of the voltages and currents in the network
will have the same square-wave shape. But include one capacitor in the circuit
and very different waveforms will appear sections of exponentials, spikes,
and sawtooth waves. Figure 10.1 shows an example of such waveforms for
the two-inverter system of Figure 9.1 in Chapter 9. The linear analysis tech-
niques already developed node equations, superposition, etc. are adequate
for finding appropriate network equations to analyze these kinds of circuits.
However, the formulations turn out to be differential equations rather than
algebraic equations, so additional skills are needed to complete the analyses.

+
-

vI
+

-
vO

. . .t

vI

t

vO

F IGURE 10.1 Observed
response of the first inverter
to a square-wave input.
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This chapter will discuss systems containing a single storage element, namely,
a single capacitor or a single inductor. Such systems are described by simple,
first-order differential equations. Chapter 12 will discuss systems containing
two storage elements. Systems with two storage elements are described by
second-order differential equations.1 Higher-order systems are also possible,
and are discussed briefly in Chapter 12.

This chapter will start by analyzing simple circuits containing one capacitor,
one resistor, and possibly a source. We will then analyze circuits containing one
inductor and one resistor. The two-inverter circuit of Figure 10.1 is examined
in detail in Section 10.4.

10.1 A N A L Y S I S O F R C C I R C U I T S

Let us illustrate first-order systems with a few primitive examples containing a
resistor, a capacitor, and a source. We first analyze a current source driving the
so-called parallel RC circuit.

10.1.1 P A R A L L E L R C C I R C U I T , S T E P I N P U T

Shown in Figure 10.2a is a simple source-resistor-capacitor circuit. On the basis
of the Thévenin and Norton equivalence discussion in Section 3.6.1, this circuit
could result from a Norton transformation applied to a more complicated

F IGURE 10.2 Capacitor
charging transient.

I0

t0

i(t)

I0R

t0

v
C

C v
C
 (t)

+
-

i(t) R
(a)

(b)

(c) Time constant RC

1. However, a circuit with two storage elements that can be replaced by a single equivalent storage
element remains a first-order circuit. For example, a pair of capacitors in parallel can be replaced
with a single capacitor whose capacitance is the sum of the two capacitances.
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C
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-
C

F IGURE 10.3 A more
complicated circuit that can be
transformed into the simpler circuit
in Figure 10.2a by using Thévenin
and Norton transformations.

circuit containing many sources and resistors, and one capacitor, as suggested
in Figure 10.3. Let us assume we wish to find the capacitor voltage vC. We will
use the node method described in Chapter 3 to do so. As shown in Figure 10.2a,
we take the bottom node as ground, which leaves us with one unknown node
voltage corresponding to the top node. The voltage at the top node is the same
as the voltage across the capacitor, and so we will proceed to work with vC
as our unknown. Next, according to Step 3 of the node method, we write
KCL for the top node in Figure 10.2a, substituting the constituent relation for
a capacitor from Equation 9.9,

i(t) = vC

R
+ C

dvC

dt
. (10.1)

Or, rewriting,

dvC

dt
+ vC

RC
= i(t)

C
. (10.2)

As promised, the problem can be formulated in one line. But to find vC(t), we
must solve a nonhomogeneous, linear first-order ordinary differential equation
with constant coefficients. This is not a difficult task, but one that must be done
systematically using any method of solving differential equations.

To solve this equation, we will use the method of homogeneous and par-
ticular solutions because this method can be readily extended to higher-order
equations. As a review, the method of homogeneous and particular solutions
arises from a fundamental theorem of differential equations. The method states
that the solution to the nonhomogeneous differential equation can be obtained
by summing together the homogeneous solution and the particular solution.
More specifically, let vCH(t) be any solution to the homogeneous differential
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equation

dvC

dt
+ vC

RC
= 0 (10.3)

associated with our nonhomogeneous differential equation 10.2. The homo-
geneous equation is derived from the original nonhomogeneous equation by
setting the driving function, i(t) in this case, to zero. Further, let vCP(t) be any
solution to Equation 10.2. Then, the sum of the two solutions,

vC(t) = vCH(t) + vCP(t)

is a general solution or a total solution to Equation 10.2. vCH(t) is called the
homogeneous solution and vCP(t) is called the particular solution. When dealing
with circuit responses, the homogeneous solution is also called the natural
response of the circuit because it depends only on the internal energy storage
properties of the circuit and not on external inputs. The particular solution is
also called the forced response or the forced solution because it depends on the
external inputs to the circuit.

Let us now return to the business of solving Equation 10.2. To make the
problem specific, assume that the current source i(t) is a step function

i(t) = I0 t > 0 (10.4)

as shown in Figure 10.2b. Further, we assume for now that the voltage on the
capacitor was zero before the current step was applied. In mathematical terms,
this is an initial condition

vC = 0 t < 0. (10.5)

The method of homogeneous and particular solutions proceeds in three steps:

1. Find the homogeneous solution vCH.

2. Find the particular solution vCP.

3. The total solution is then the sum of the homogeneous solution and the
particular solution. Use the initial conditions to solve for the remaining
constants.

The first step is to solve the homogeneous equation, formed by setting the
driving function in the original differential equation to zero. Then, any method
of solving homogeneous equations can be used. In this case the homogeneous
equation is

dvCH

dt
+ vCH

RC
= 0. (10.6)
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We assume a solution of the form

vCH = Aest (10.7)

because the homogeneous solution for any linear constant-coefficient ordinary
differential equation is always of this form. Now we must find values for the
constants A and s. Substitution into Equation 10.6 yields

Asest + Aest

RC
= 0. (10.8)

The value for A cannot be determined from this equation, but discarding the
trivial solution of A = 0, we find

s + 1

RC
= 0 (10.9)

because est is never zero for finite s and t, so can be factored out. Hence

s = − 1

RC
. (10.10)

Equation 10.9 is called the characteristic equation of the system, and s = −1/RC
is a root of this characteristic equation. The characteristic equation summarizes
the fundamental dynamic properties of a circuit, and we will have much more
to say about it later chapters. For reasons that will become clear in Chapter 12,
the root of the characteristic equation, s, is also called the natural frequency
of the system.

We now know that the homogeneous solution is of the form

vCH = Ae−t/RC. (10.11)

The product RC has the dimensions of time and is called the time constant of
the circuit.

The second step is to find a particular solution, that is, to find any solution
vCP that satisfies the original differential equation; it need not satisfy the initial
conditions. That is, we are looking for any solution to the equation

I0 = vCP

R
+ C

dvCP

dt
. (10.12)

Since the drive I0 is constant in time for t > 0, one acceptable particular solution
is also a constant:

vCP = K . (10.13)
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To verify this, we substitute into Equation 10.12

I0 = K

R
+ 0 (10.14)

K = I0R . (10.15)

Because Equation 10.14 can be solved for K , we are assured that our ‘‘guess’’
about the form of the particular solution, that is, Equation 10.13, was correct.2

Hence the particular solution is

vCP = I0R. (10.16)

The total solution is the sum of the homogeneous solution (Equation 10.11)
and the particular solution (Equation 10.16)

vC = Ae−t/RC + I0R. (10.17)

The only remaining unevaluated constant is A, and we can solve for this by
applying the initial condition. Equation 10.5 applies for t less than zero, and
our solution, Equation 10.17 is valid for t greater than zero. These two parts of
the solution are patched together by a continuity condition derived from Equa-
tion 9.9: An instantaneous jump in capacitor voltage requires an infinite spike
in current, so for finite current, the capacitor voltage must be continuous. This
circuit cannot support infinite capacitor current (because i(t) is finite, the infinite
current would have to come from the resistor, and this is impossible). Thus we
are justified in assuming continuity of vC, hence can equate the solutions for
negative time and positive time by solving at t = 0

0 = A + I0R. (10.18)

Thus

A = −I0R (10.19)

and the complete solution for t > 0 is

vC = −I0Re−t/RC + I0R

2. Alternatively, a guess of
vCP = Kt,

where K is a constant independent of t, would not be correct, since substituting into Equation 10.12
yields

I0 = Kt

R
+ CK

which cannot be solved for a time-independent K.
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I0R

t0
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Large RC 

Small RC

F IGURE 10.4 Significance of
the RC time constant.

or

vC = I0R(1 − e−t/RC). (10.20)

This is plotted in Figure 10.2c.
Some comments at this point help to give perspective. First, notice that

capacitor voltage starts from a zero value at t = 0 and reaches its final value
of I0R for large t. The increase from 0 to I0R has a time constant RC. The
final value of I0R for the capacitor voltage implies that all of the current from
the current source flows through the resistor, and the capacitor behaves like an
open circuit (for large t).

Second, the initial value of 0 for the capacitor voltage implies that at t = 0
all of the current from the current source must be flowing through the capacitor,
and none through the resistor. Thus the capacitor behaves like an instantaneous
short circuit at t = 0.

Third, the physical significance of the time constant RC can now be seen.
Illustrated in Figure 10.4, it is the temporal scale factor that determines how
rapidly the transient goes to completion.

Finally, it may seem that the solution to such a simple problem can’t pos-
sibly be as involved as this appears Correct. This problem and most first-order
systems with step excitation can be solved by inspection (see Section 10.3).
But here we are trying to establish general methods, and have chosen the
simplest example to illustrate the method.

10.1.2 R C D I S C H A R G E T R A N S I E N T

With the capacitor now charged, assume that the current source is suddenly set
to zero as suggested in Figure 10.5a, where for convenience, the time axis is
redefined so that the turn-off occurs at t = 0. The relevant circuit to analyze the
RC turn-off or discharge transient now contains just a resistor and a capacitor
as indicated in Figure 10.5c. The voltage on the capacitor at the start of the
experiment is represented by the initial condition

vC = I0R t < 0. (10.21)

This RC discharge scenario is identical to that of a circuit containing a resistor
and a capacitor, where there is an initial voltage vC(0) = I0R on the capacitor.
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F IGURE 10.5 RC discharge
transient.
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Because the drive current is zero, the differential equation for t greater than
zero is now

0 = vC

R
+ CdvC

dt
. (10.22)

As before, the homogeneous solution is

vCH = Ae−t/RC (10.23)

but now the particular solution is zero, since there is no forcing input, so
Equation 10.23 is the total solution. In other words,

vC = vCH = Ae−t/RC.

Equating Equations 10.21 and 10.23 at t = 0, we find

I0R = A (10.24)

so the capacitor voltage waveform for t > 0 is

vC = I0Re−t/RC. (10.25)

This solution is sketched in Figure 10.5b.
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In general, for a resistor and capacitor circuit with an initial voltage vC(0)
on the capacitor, the capacitor voltage waveform for t > 0 is

vC = vC(0)e−t/RC. (10.26)

Properties of Exponentials

Because decaying exponentials occur so frequently in solutions to simple RC
and RL transient problems, it is helpful at this point to discuss some of the
properties of these functions as an aid to sketching waveforms.

� For a general exponential function of the form

x = Ae−t/τ (10.27)

the initial slope of the exponential is

dx

dt

∣∣∣∣
t=0

= −A

τ
.

Hence the initial slope of the curve, projected to the time axis, intercepts the
time axis at t = τ , irrespective of the value of A, as shown in Figure 10.6a.

� Furthermore, notice that when t = τ , the function in Equation 10.27
becomes

x(t = τ ) = A

e
.

In other words, the function reaches 1/e of its initial value irrespective
of the value of A. Figure 10.6b depicts this point in the exponential
curve.

� Because e−5 = 0.0067, it is common to assume for the t greater than
five time constants, that is,

t > 5τ

the function is essentially zero (see Figure 10.6a). That is, we assume the
transient has gone to completion.

We will see later that these properties of the time constant τ make it useful in
obtaining rough estimates for time durations associated with rising or falling
exponentials.

10.1.3 S E R I E S R C C I R C U I T , S T E P I N P U T

Let us now convert the Norton source in Figure 10.2 to a Thévenin source in
Figure 10.7 and determine the capacitor voltage as a function of time. The input
waveform vS is assumed to be a voltage step of magnitude V applied at t = 0,
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F IGURE 10.6 Properties of
exponentials.
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F IGURE 10.7 Series RC circuit
with step input.
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vC (0) = VO

but this time around, we assume the capacitor voltage is VO just before the
step.3 That is, the initial condition on the circuit is

vC = VO t < 0. (10.28)

3. For the purpose of determining the response for t ≥ 0, it does not really matter to us how the
capacitor voltage became VO for t = 0, or the value of the capacitor voltage for t < 0. Nevertheless,
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The differential equation can be found by using the node method. Applying
KCL at the node with voltage vC, we get

vC − vI

R
+ C

dvC

dt
= 0.

Dividing by C and rearranging terms,

dvC

dt
+ vC

RC
= vI

RC
. (10.29)

The homogeneous equation is

dvCH

dt
+ vCH

RC
= 0 (10.30)

which, as expected, is the same as that in Equation 10.6 for the Norton cir-
cuit, since the Norton and Thévenin circuits are equivalent. Borrowing the
homogeneous solution to Equation 10.6, we have

vCH = Ae−t/RC (10.31)

where RC is the time constant of the circuit.
Let us now find the particular solution. Since the input drive is a step of

magnitude V, the particular solution is any solution to

dvCP

dt
+ vCP

RC
= V

RC
. (10.32)

the following is one possible circuit that will realize the given initial condition on the capacitor and
the effect of a step input:

V

R

C vC

+

-

+

-

iC +

-
VO

t = 0 t = 0 
S1S2

In the circuit, a DC source with value VO is applied across the capacitor using switch S1. The DC
source forces the capacitor voltage to VO. This DC source is switched out as shown at t = 0, and
another DC source with voltage V is switched in using switch S2. This action applies a step voltage
of magnitude V to the capacitor, which has an initial voltage VO at t = 0.
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Because the drive is a step, which is constant for large t, we can assume a
particular solution of the form

vCP = K. (10.33)

Substituting into Equation 10.32, we obtain

K

RC
= V

RC
.

which implies K = V. So the particular solution is

vCP = V. (10.34)

Summing vCH and vCP, we obtain the complete solution:

vC = V + Ae−t/RC. (10.35)

The initial condition can now be applied to evaluate A. Given that the capacitor
voltage must be continuous at t = 0, we have

vC(t = 0) = VO.

Thus, at t = 0, Equation 10.35 yields

A = VO − V.

The complete solution for the capacitor voltage for t > 0 is now

vC = V + (VO − V)e−t/RC (10.36)

where, V is the input drive voltage for t > 0 and VO is the initial voltage on
the capacitor. As a quick sanity check, substituting t = 0, we get vC(0) = VO,
and substituting t = ∞, we get vC(∞) = V. Both these boundary values are
what we expect, since the initial condition on the capacitor is VO, and since the
input voltage must appear across the capacitor after a long period of time.

By rearranging the terms, Equation 10.36 can be equivalently written as

vC = VOe−t/RC + V(1 − e−t/RC). (10.37)

Finally, from Equation 9.9, the current through the capacitor is

iC = C
dvC

dt
= V − VO

R
e−t/RC. (10.38)

This expression for iC also matches our expectations since iC must be 0 when t is
large, and the since the capacitor behaves like a voltage source with voltage VO
during the step transition at t = 0, the current at t = 0 must equal (V − VO)/R.
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These waveforms are shown in Figure 10.7b.
If we desire the voltage vR across the resistor, we can easily obtain it by

applying KVL as

vR = vI − vC

where we take the positive reference for vR on the input side of the resistor.
Alternatively, we can obtain vR by taking the product of the current and the
resistance as

vR = iCR.

As one final point of interest, notice that Equation 10.36 was derived assuming
both an initial nonzero state (VO) and a nonzero input (a step of voltage V).

Substituting V = 0 in Equation 10.36 we obtain the so called zero input
response (ZIR):

vC = VOe−t/RC (10.39)

and substituting VO = 0 in Equation 10.36 we obtain the zero state
response (ZSR):

vC = V − Ve−t/RC. (10.40)

In other words, the zero input response is the response for nonzero initial
conditions, but where the input drive is zero. In contrast, the zero state response
is the response of the circuit when the initial state is zero, that is, all capacitor
voltages and inductor currents are initially zero.

Notice also that the total response is the sum of the ZIR and the ZSR,

as can be verified by adding the right-hand sides of Equations 10.39 and 10.40
and comparing to the right-hand side of Equation 10.36. We will have a lot
more to say about the ZIR and the ZSR in Section 10.5.3.

10.1.4 S E R I E S R C C I R C U I T , S Q U A R E - W A V E I N P U T

Examination of the waveforms in Figure 10.5a and 10.5b indicates that the
presence of the capacitor has changed the shape of the input wave. When a square
pulse is applied to the RC circuit, a decidedly non-square pulse, with slow rise
and slow decay, results. The capacitor has allowed us to do a limited amount
of wave shaping. This concept can be further developed by an experiment in
which we drive the circuit with a square wave.

In this experiment, we will use a Thévenin source as in Figure 10.8. The
source can be a standard laboratory square-wave generator. The input square
wave is marked as a in Figure 10.8. Several quite distinctive wave shapes for
vC(t) can be derived, depending on the relation between the period of the driving
square wave and the time constant RC of the network. These waveforms are
all essentially variations on the solution derived in the preceding sections.
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F IGURE 10.8 Response to
square wave.
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For the case where the circuit time constant is very short compared to the
square-wave period, the exponentials go to completion relatively rapidly, as
suggested by waveform b in Figure 10.8. The capacitor waveform thus closely
resembles the input waveform, except for a small amount of rounding at the
corners.

If the time constant is a substantial fraction of the pulse length, then the
solution appears as waveform c in Figure 10.8. Note that the drawing implies
that the transients still go almost to completion, so there is an upper limit on
the RC product for this solution to apply. Assuming, as noted here, that simple
transients are complete for times greater than five time constants, the RC prod-
uct must be less than one-fifth of the pulse length, or one tenth the square-wave
period for this solution to apply.

When the circuit time constant is much longer than the square-wave
period, waveform d, shown in Figure 10.8, results. Here the transient clearly
does not go to completion. In fact, only the first part of the exponential is
ever seen. The waveform looks almost triangular, the integral of the input
wave. This can be seen from the differential equation describing the circuit.
Application of KVL gives

vI = iCR + vC. (10.41)

Upon substitution of the constituent relation for the capacitor, Equation 9.9,
we obtain the differential equation

vI = RC
dvC

dt
+ vC. (10.42)



10.2 Analysis of RL Circuits C H A P T E R T E N 517

It is clear from Equation 10.42 or Figure 10.8 that as the circuit time constant
becomes bigger, the capacitor voltage vC must become smaller. For waveform
d the time constant RC is large enough that vC is much smaller than vI, so in
this case Equation 10.41 can be approximated by

vI � iCR. (10.43)

Physically, the current is now determined solely by the drive voltage and the
resistor, because the capacitor voltage is almost zero. Integrating both sides of
Equation 10.42 assuming vC is negligible, we obtain

vC � 1

RC

∫
vIdt + K (10.44)

where the constant of integration K is zero. Thus for large RC, the capacitor
voltage is approximately the integral of the input voltage. This is a very useful
signal-processing property. In Chapter 15 we will show that a much closer
approximation to ideal integration can be obtained by adding an Op Amp to
the circuit.

It is a simple matter to find the voltage across the resistor in the circuit of
Figure 10.8 because we can find the current from the capacitor voltage using
Equation 9.9,

vR = iCR = RC
dvC

dt
.

Thus, during the charge interval, for example, from Equation 10.20, assuming
the transients go to completion,

vC = V(1 − e−t/RC).

Hence

vR = Ve−t/RC.

The wave shapes in Figure 10.8 change very little if the input signal vI has zero
average value, that is, if vI is changed so that it jumps back and forth from −V/2
to +V/2. Specifically, vC also has zero average value, and if the transients go to
completion, as in wave forms b and c, the excursions will be −V/2 and +V/2.

10.2 A N A L Y S I S O F R L C I R C U I T S

10.2.1 S E R I E S R L C I R C U I T , S T E P I N P U T

Figure 10.9 will serve as a simple illustration of a transient involving an inductor.
(See the example discussed in Section 10.6.1 for a practical application of the
analysis involving inductor transients.) The input waveform vS is assumed to
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F IGURE 10.9 Inductor current
buildup.
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be a voltage step applied at t = 0 (see Figure 10.9a), and the inductor current
is assumed to be zero just before the step. That is, the initial condition on the
circuit is

iL = 0 t < 0. (10.45)

Suppose that we are interested in solving for the current iL. As before, we
can use the node method to obtain an equation involving the unknown node
voltage vL, and then use the constituent relation for an inductor from Equa-
tion 9.28 to substitute for vL in terms of the variable of interest to us, namely
iL. For variety, however, we will derive the same differential equation in iL by
applying KVL:

−vS + iLR + L
diL
dt

= 0. (10.46)

The homogeneous equation is

L
diLH

dt
+ iLHR = 0. (10.47)

Assume a solution of the form

iLH = Aest. (10.48)
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Hence

LsAest + RAest = 0. (10.49)

For nonzero A (A = 0 is a trivial solution)

Ls + R = 0.

or

s + R

L
= 0 (10.50)

s = −R/L. (10.51)

Equation 10.50 is the characteristic equation for our circuit, and Equation 10.50
gives the natural frequency.

The homogeneous solution is thus

iLH = Ae−(R/L)t (10.52)

where the time constant is in this case L/R.

The particular solution can be obtained by solving

iLPR + L
diLP

dt
= vS. (10.53)

Because the drive is a step, which is constant for large t, it is again appropriate
to assume a particular solution of the form

iLP = K. (10.54)

Substituting into Equation 10.53, and noting that for large t, vS = V, we obtain

KR = V.

or,

K = V

R
. (10.55)

So, from Equation 10.54, the particular solution is

iLP = V

R
(10.56)



520 C H A P T E R T E N f i r s t - o r d e r t r a n s i e n t s

F IGURE 10.10 Response to a
square-wave input. t

vS

t

vL

and the complete solution is of the form

iL = V

R
+ Ae(−R/L)t. (10.57)

The initial condition together with a continuity condition, can now be applied
to evaluate A. The continuity condition for inductor current can be found from
Equation 9.28. If it can be shown that the inductor voltage cannot be infinite
in the circuit, then di/dt must be finite, hence the inductor current must be
continuous. For this particular circuit, with finite vS, we are assured of finite vL,
hence iL in Equation 10.57 can be evaluated at t = 0, and set equal to the initial
value, Equation 10.45:

V

R
+ A = 0. (10.58)

The complete solution for the inductor current for t > 0 is now

iL = V

R

(
1 − e−(R/L)t

)
(10.59)

and, from Equation 9.28, the voltage across the inductor is

vL = L
diL
dt

= Ve−(R/L)t. (10.60)

These waveforms are shown in Figure 10.9b. Notice that the inductor current
has an initial value of 0 and a final value of V/R. Thus the inductor behaves like
an instantaneous open circuit at t = 0 and a short circuit for large t, for the step
voltage input at t = 0. vL is correspondingly V at t = 0 and 0 for large t.

The response to a square-wave input is shown in Figure 10.10.

10.3 I N T U I T I V E A N A L Y S I S

The previous sections illustrated the general method of analyzing linear RC
and RL circuits. The several examples with step-function drive that we worked
previously suggest that such circuits have a very limited range of solutions.
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F IGURE 10.11 Step response
of series RC circuit. The
arrangement of switches provides
for the initial voltage VO on the
capacitor, and an input step voltage
of magnitude V at t = 0.

The two basic forms that we saw are e−αt and (1 − e−αt). Accordingly, it turns
out that for simple excitations, such as the step and the impulse, the response
of first-order systems can be sketched easily using some intuition.

Let us illustrate using the step response of a series RC circuit in
Figure 10.11a as an example. We will address the most general case, namely one
in which there is both a nonzero initial state and a nonzero input. The seemingly
elaborate arrangement of switches simply provides for the initial voltage VO on
the capacitor, and an input step voltage of magnitude V at t = 0, a situation
similar to that in Section 10.1.3. For the purposes of sketching our result, we
will further assume that V > VO. As illustrated in Figure 10.11a, switch S1 is
initially closed and S2 is open, resulting in the voltage VO being applied directly
across capacitor. Just before t = 0, that is, at t = 0−, S1 is opened (S2 remains
open). Then, at t = 0, S2 is closed (S1 remains open). The closing of S2 and
opening of S1 results in an series RC circuit with a step voltage V applied at
t = 0.
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Suppose we are interested in sketching the voltage vC as a function of
time.4 The form of the response can be sketched intuitively by identifying three
intervals of operation as indicated in Figure 10.11d: the initial interval, which
extends until t = 0+ (that is, the time instant just after t = 0), the transition
interval, which is identified as the interval after t = 0+, and the final interval,
where S2 has been closed and S1 has been open for a long time.

The overall response can be quickly sketched through inspection by first
determining the initial and final interval values of the voltage on the capacitor.

Initial Interval (t ≤ 0+) During this initial interval, when S1 is closed (t < 0−),
the effective circuit is as shown in Figure 10.11b, with a DC source with volt-
age VO appearing across the capacitor. Thus, the capacitor voltage is VO
during t < 0−.

Next, notice that in the short period of time between t = 0− and t = 0,
and still within the initial interval, the capacitor is not connected to any other
circuit (recall S1 is opened at t = 0− and S2 is closed immediately thereafter
at t = 0). Assuming the capacitor is ideal, it holds its charge and so its voltage
remains at VO until the switch S1 is closed.

Then, at t = 0, S1 is closed, resulting in a finite step of magnitude V
being applied to a series RC circuit in which the capacitor has a voltage VO
across it. Let us now determine the capacitor voltage at t = 0+, just after the
step. From the element law of the capacitor (Equation 9.7), we know that an
instantaneous jump in capacitor voltage requires an infinite spike (that is, an
impulse) in current. Since a finite step voltage applied across a resistor cannot
support an infinite spike in current, we conclude that the capacitor voltage
cannot change instantaneously, rather it must be continuous. Thus, the voltage
across the capacitor at t = 0+ must also be VO. This is our initial condition
on the capacitor. The voltage across the capacitor during the initial interval
(t ≤ 0+) is sketched in Figure 10.11d.

Final Interval (t � 0) We next turn our attention to the final interval. To
determine the capacitor voltage in the final interval, observe that our situation
is identical to that of a DC source with voltage V applied across the series
combination of R and C as shown in Figure 10.11c. Since the capacitor current
is proportional to the rate of change of the capacitor voltage (Equation 9.7), in
a DC situation, where all transients have died out, the current flowing through
the capacitor must be zero. In other words, in a DC situation, the capacitor
voltage has attained some fixed value, and hence the capacitor current is zero.
Effectively, the capacitor behaves like an open circuit for DC sources. Since
no current is flowing, the drop across the resistor must be zero. Thus, to

4. Other branch variables in the circuit such as iC and vR share the same general form and can be
derived in an analogous fashion.
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satisfy KVL, the capacitor voltage must equal V, the voltage of the DC source.
This value is sketched in the final interval in Figure 10.11d.

Transition Interval (t > 0+) We have now sketched the initial and final values
of the capacitor voltage. The transition interval for t > 0+ remains to be
analyzed. During this interval, observe that the capacitor voltage cannot jump
instantaneously from VO to V due to the continuity condition. Specifically, we
know from the solution to the homogeneous equation for the RC circuit that
the transient follows an exponential form, either rising (1 − e−t/RC) or falling
(e−t/RC), with time constant RC. (For the corresponding inductor-resistor circuit
the time constant will be L/R.) In our case, since V > VO, the transient will be
a rising exponential.

Complete Response The complete response for all of the three regions is
sketched in Figure 10.11e.

The corresponding equation for the capacitor voltage that matches the
initial and final values, and the exponential with time constant RC, for t ≥ 0, is

vC = V + (VO − V)e−t/RC.

In other words, for t ≥ 0,

vC = final value + (initial value − final value)e−t/time constant (10.61)

or equivalently, rearranged a little bit,

vC = initial value e−t/time constant + final value(1 − e−t/time constant)
(10.62)

You might want to confirm that Equation 10.61 combined with the appropriate
boundary conditions results in the same solutions as obtained by solving the
differential equations in the previous sections. For example, for the RC discharge
transient example of Section 10.1.2, the initial capacitor voltage is given as
vC(0) and the final value is zero. Substituting VO = vC(0) and V = 0 into
Equation 10.61, we obtain

vC = vC(0)e−t/RC

which is the same as the expression obtained in Equation 10.26.
At this point, we take a moment to make a couple of other helpful obser-

vations. Sometimes, we desire the response related to the capacitor current.
The responses related to the capacitor current can be easily determined from
the voltage response and the capacitor element law. However, the current
response can also be directly obtained by using the same type of insight that we
used to obtain the voltage response. Here, we would seek the initial and final
values of the current. In our example, the final value of the capacitor current
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after all transients have died out is 0. The initial value of the current (at t = 0)
can also be determined easily. Since the capacitor voltage at t = 0 is VO, the
instantaneous current through the capacitor at t = 0 is given by

iC(t = 0) = V − VO

R

which is the voltage across the resistor (V − VO) divided by the resistance (R).
Thus, at the instant that the switch S1 is closed, the capacitor behaves like
an instantaneous voltage source with voltage VO. In like manner, if the initial
voltage on the capacitor were zero (that is, VO = 0), then the capacitor would
behave like an instantaneous short circuit. In either case, notice that the capacitor
current is not necessarily continuous, only the state variable. In our example,
the capacitor current jumps from 0 to (V − VO)/R at t = 0. The current decays
exponentially with time constant RC from the initial value of (V − VO)/R at
t = 0 to its final value of zero. The current response is plotted in Figure 10.12.

Time constant RC

t

iC

0

V VO–

R
-----------------

Initial 
value

Final
value 0 

F IGURE 10.12 Current
response of a series RC circuit
to a step input.

Inductors can be treated in a similar manner. The key difference is that the
state variable for an inductor is its current. Accordingly, the inductor current
is continuous (recall, from Equation 9.26, an instantaneous jump in induc-
tor current requires an infinite spike, that is, an impulse, in the voltage). To
determine initial and final values of the inductor current, remember that the
inductor behaves like a long-term short circuit for DC current sources, and like
an instantaneous open circuit for abrupt transitions.5 The time constant for
circuits containing an inductor and a resistor is L/R. With these definitions,
Equation 10.61 is equally applicable to inductor-resistor circuits.

As an inductor-resistor example, consider the current response of the series
RL circuit from Figure 10.9a redrawn in Figure 10.13. As sketched in Figure
10.13, the initial current through the inductor is zero. The final current through
the inductor is V/R, because the inductor behaves like a long-term short circuit.
The time constant of the circuit is L/R. Substituting into Equation 10.61, we get

iL = V

R
+

(
V

R
− 0

)
e
− t

L/R

or

iL = V

R

(
1 − e

− t
L/R

)

which is identical to Equation 10.59.

5. If the inductor current were nonzero, then it would behave like an instantaneous current source
for abrupt transitions.
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F IGURE 10.13 Series RL
circuit, step response through
intuitive analysis.

This section showed how we can quickly sketch the step response using
intuition. A similar approach also works for impulse responses. Intuitive
analysis for impulses is discussed further in Section 10.6.4.

10.4 P R O P A G A T I O N D E L A Y A N D T H E
D I G I T A L A B S T R A C T I O N

The RC effects we have seen thus far are the source of delays in digital circuits,
and are responsible for the waveforms shown in Figure 9.3 in Chapter 9, or
those in Figure 10.1 in this chapter. Consider the two-inverter digital circuit
shown in Figure 10.14 in which inverter A drives inverter B. Inverter A is driven
by an input vIN1 and its output is vOUT1. Figure 10.15 replaces the inverters
with their internal circuits comprising MOSFETs and resistors.

Let us begin by reviewing the basic inverter circuit. Assume that the
threshold voltage for both MOSFETs is 1 volt. When vIN1 is low (< 1 volt),
MOSFET A is turned off, and no current flows from its drain to its source.
Output voltage vOUT1 is high. In contrast, when vIN1 is high, MOSFET A is
turned on. Its output voltage vOUT1 is given by the voltage-divider relationship
RON

/
(RON + RL).

Ideally, the input vIN1 (corresponding to a sequence of 1’s and 0’s of
the form shown in Figure 10.16) should produce the ideal output vOUT1(ideal).

A B

vOUT1 vOUT2vIN1

F IGURE 10.14 Inverters connected in series.

RL RL

VIN1

VOUT1

vOUT2

VIN2

F IGURE 10.15 Internal circuits of the inverters.
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F IGURE 10.16 Characteristics
of ideal and actual inverters.
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As shown in Figure 10.16, the output of an ideal inverter should show a change
at the same instant as the input. Furthermore, the output should be an ideal
square wave just like the input.

However, in practice, if we were to observe the output vOUT1 on an oscil-
loscope, we would notice that the change in the output is not instantaneous;
rather the output changes from one valid voltage level (for example, a logical 0)
to another valid voltage level (for example, a logical 1) more slowly over a small
period of time as suggested by the signal marked vOUT1(actual) in Figure 10.16.
How does this slow transition affect the behavior of the digital circuit?

Recall that the vOUT1 signal represents a digital signal, so it must reach VOH
so that the gate that produced it adheres to the static discipline and we obtain
a nonzero noise margin. As suggested in the lowermost signal in Figure 10.16,
notice that the VOH crossing happens at a time interval tpd,1→0 after the input
changes from a 1 to a 0. Thus, effectively, there is a delay of tpd,1→0 between the
moment that the input changes to a 0 to the moment that the output changes
to a valid 1.

This period of time is called the propagation delay6 through inverter A for a 1
to 0 transition at the input and is denoted as tpd,1→0.

As suggested in the lowermost signal in Figure 10.16,

the inverter is also characterized by a 0 → 1 propagation delay. This delay is
denoted as tpd,0→1.

The tpd,1→0 and tpd,0→1 delays are not necessarily equal. For simplicity, we
often characterize digital gates by a single delay called its propagation delay tpd
and choose

tpd = max(tpd,1→0, tpd,0→1). (10.63)

6. The propagation delay is sometimes defined as the time interval from the 50% point of the input
signal transition to the 50% point of the output signal transition.
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10.4.1 D E F I N I T I O N S O F P R O P A G A T I O N D E L A Y S

The following are more general definitions of propagation delays associated
with digital gates with multiple inputs and outputs. The reader wishing to
return to the computation of tpd for our inverter example can skip this section
without loss of continuity and proceed directly to Section 10.4.2.

tpd,1→0 We define tpd,1→0 for a given input terminal and a given output termi-
nal of a combinational digital circuit as the signal propagation delay from
the input terminal to the output terminal for a high to low instantaneous
transition at the input. More precisely, tpd,1→0 for an input-output terminal
pair is the time interval from the moment that the input changes from a 1
to a 0 to the moment that the output reaches a corresponding valid output
voltage level (VOH or VOL).

tpd,0→1 Similarly, we define tpd,0→1 for a given input terminal and a given output
terminal of a combinational circuit as the signal propagation delay through
input-output terminal pair for a low to high instantaneous transition at the
input. More precisely, tpd,0→1 for an input-output terminal pair is the time
interval from the moment that the input changes from a 0 to a 1 to the
moment that the output reaches a corresponding valid output voltage level.

tpd for an Input-Output Terminal Pair: We define the propagation delay tpd
between an input terminal and an output terminal of a combinational
circuit as

tpd = max(tpd,1→0, tpd,0→1)

where tpd,1→0 and tpd,0→1 are the corresponding 1 → 0 and 0 → 1 delays
for the same input-output terminal pair.

Propagation Delay tpd for a Combinational Gate: If ti,jpd is the propagation delay
between input terminal i and output terminal j of a digital gate, then the
propagation delay of the gate is given by

tpd = maxi,jt
i,j
pd ,

which is the maximum delay of all input to output paths. The propagation
delay is also called the gate delay.

In the simple example shown in Figure 10.16, the propagation delay
through the inverter for a low to high transition at the input, tpd,0→1, is also
equal to the rise time of the output of the inverter. Similarly, tpd,1→0, is also
equal to the fall time of the inverter output. The rise and fall times are properties
of output terminals of circuits, while propagation delays measure the relative
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signal transition times between inputs and outputs of circuits. The rise and fall
times are defined as follows:7

Rise Time In general, the rise time for an output is defined as the delay in rising
from its lowest value to a valid high (VOH) at that output.
Fall Time The fall time for an output is defined as the delay in falling from its
highest value to a valid low (VOL) at the same output.

In general, the propagation delay and the rise/fall time are not equal. The
0 → 1 propagation delay for a digital circuit is the time between an input 0 to
1 transition (the input transition is assumed to happen instantaneously) and the
corresponding output transition. The output transition is assumed to complete
only when the output voltage crosses the appropriate output voltage threshold.
The propagation delay and the rise/fall times are usually not equal when the
digital circuit consists of multiple stages. When a circuit consists of multiple
stages, the rise/fall time at the output is usually a function of the properties
of the output circuit alone. However, the propagation delay is the sum of the
delays of each of the stages.

How does the propagation delay impact our digital abstraction? Notice
that the slowly rising output of the inverter now spends a nonzero amount of
time in the invalid output voltage range, namely VIL → VIH. This appears to
violate the static discipline. Recall that the static discipline requires that devices
produce valid output voltages that satisfy the output thresholds when valid input
voltages are supplied. We get around this difficulty by observing that the inverter
output eventually crosses the valid output threshold. Furthermore, notice that
the static discipline does not take a position on time. In other words, it does
not require gates to produce valid outputs instantaneously if the inputs change.
Accordingly, to make the this fact explicit, we can modify the statement of the
static discipline by requiring that devices produce valid output voltages (in a finite
amount of time) that satisfy the output thresholds when valid input voltages are
supplied.

Revised statement of the static discipline The static discipline is a specification
for digital devices. The static discipline requires devices to interpret correctly
voltages that fall within the input thresholds (VIL and VIH). Provided valid

7. The rise and fall times are sometimes defined slightly differently. For example, the rise time of a
node that transitions from a low to a high voltage might be defined as the time taken by a signal
at that node to rise from 5% to 95% of the change in voltage. Alternatively, the rise time can be
defined as the time taken by a signal at that node to rise from a valid low voltage VOL to a valid
high voltage VOH. As one more possibility, the rise time might be defined as the time taken by
a signal to rise from its lowest value to 50% of the voltage difference. Corresponding definitions
for the fall time also exist. The vagueness of these definitions only serves the interests of product
marketeers, but for us, the important thing to learn is how to calculate the time intervals between
any pair of signal values.
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inputs are provided to the devices, the discipline also requires the devices to
produce valid output voltages (in a finite amount of time) that satisfy the output
thresholds (VOL and VOH).

We can also refine our combinational gate abstraction to include the notion
of a propagation delay, so that the abstraction remains valid in the presence of
transitioning signals. Recall, the properties of a combinational gate as previously
defined in Chapter 5.3: (1) The gate’s outputs are a function of its inputs alone
and (2) the gate must satisfy the static discipline. In the presence of a finite gate
delay, there is a small period of time following an input transition in which the
outputs do not reflect the new inputs; rather they reflect the old inputs. Thus our
previously defined gate abstraction is violated. We negotiate this inconsistency
by introducing a timing specification into our gate abstraction.

Revised statement of the combinational gate abstraction A combinational gate
is an abstract representation of a circuit that satisfies these properties:

1. Its outputs will be valid no later than tpd after an instantaneous change in
its inputs.

2. Its outputs are a function of its inputs alone (after an interval of time no
greater than tpd following a change in its inputs).

3. It satisfies the static discipline.

Now that we have included the propagation delay of a device in its abstract
specification, an additional benefit results: A gate-level circuit will now carry
information on both its logic function and its speed. A rough estimate of the
delay from any input to any output of a logic circuit along a path with multiple
gates can be obtained by summing the propagation delays of each of the gates
in that path. Thus, for example, if inverters are characterized by a tpd of 1 ns
and OR gates with a tpd of 2 ns, then in the circuit in Figure 5.16 in Chapter 5,
the delay from the input A to output C would be 2 ns, while the delay from
the input B to output C would be 3 ns. If digital circuit designers need more
accurate timing information for a circuit comprising multiple devices, or if they
need to derive the tpd of a single device, then they must use the analysis methods
discussed in the ensuing sections.

10.4.2 C O M P U T I N G tpd F R O M T H E
S R C M O S F E T M O D E L

Let us now compute the magnitude of the propagation delay. We use the switch
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F IGURE 10.17 The switch-
resistor capacitor model of the
MOSFET.

resistor capacitor (SRC) model of the MOSFET introduced in Section 9.3.1 to
determine this delay. Recall that we augmented the SR model of the MOSFET
with a gate-to-source capacitor and created the SRC MOSFET model shown
in Figure 10.17.
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Recall that the propagation delay results from the finite amount of time
required for the output to transition from a given valid output voltage level to
another when the input to the circuit transitions. The slower transition at the
output is attributable to RC effects. Figure 10.18 replaces the inverters with

RL RL

VIN1

VOUT1

vOUT2

VIN2

F IGURE 10.18 Internal circuits
of the inverters.

their internal circuits comprising MOSFETs and resistors. Figure 10.19 further
replaces the MOSFETs with their SRC circuit model when vIN1 applied to the
inverter A corresponds to a logical 1. For this vIN1, the MOSFET in inverter A
will be on, and the MOSFET in inverter B will be off. Similarly, Figure 10.20
shows the circuit model when vIN1 applied to inverter A corresponds to a
logical 0. For this vIN1, the MOSFET in inverter A will be off, and the MOSFET
in inverter B will be on. Thus, when alternating logical 1’s and 0’s are applied
to the input to the inverter pair, and the inverters are allowed to reach steady
state after each transition, the equivalent circuit model alternates between the
two circuits in Figures 10.19 and 10.20.

Let us first analyze the circuit qualitatively. Consider the case where vIN1 has
been high for a long period of time and focus on the part of the circuit bounded
by the dashed box in the Figure 10.19, which includes the load resistor and
RON of inverter A and the gate-to-source capacitor of inverter B. Since the
circuit is in its steady state, the capacitor behaves as an open circuit, and so the
voltage across the capacitor will be established by the voltage-divider subcircuit
comprising the supply VS, and the resistors RL and RON. Assuming RL � RON,
the capacitor voltage will have a low value (close to 0 volts).

F IGURE 10.19 SRC circuit
model of inverters connected in
series when the input is high.
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F IGURE 10.20 SRC circuit
model of inverters connected in
series when the input is low.
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Next, focus on the time instant when the input voltage vIN1 switches from
a high to a low value (for example, 5 to 0 volts), turning the first MOSFET off.
At this transition instant, the capacitor CGS2 is almost completely discharged
(assuming that RL � RON for the inverters). Therefore, the voltage across
CGS2, which corresponds to the voltage vOUT1 on the output of inverter A, will
be initially close to 0 V. This is depicted as the time instant A in Figure 10.16.

After the first MOSFET turns off, Figure 10.20 applies. Focus again on the
part of the circuit bounded by the dashed box. It is easy to see that the circuit
inside the dashed box is a first-order RC circuit. Remember, the voltage across
CGS2 is low initially. Now, VS begins to charge CGS2 through the resistor RL.
The equivalent RC circuit for the devices in the box are shown in Figure 10.21.
As the capacitor charges up, the output voltage of inverter A rises. This voltage
must rise above the valid logical output high threshold, namely VOH, to satisfy
the static discipline. Notice that although the second MOSFET will turn on
when vOUT1 crosses its VT threshold (for example, 1 V), we require vOUT1 to
reach VOH to achieve a modest noise margin. Notice that the presence of the
capacitor CGS2 makes vOUT1 take a finite amount of time to rise to the required
VOH level. As we saw before, this interval of time is called the propagation delay
for the inverter for a high to low transition at the input and is denoted by tpd,1→0.
As discussed earlier, the output capacitor charge-up time is also called the rise
time of the inverter.

VS

+

-

RL

CGS2

vOUT1

iC+

-

vC

F IGURE 10.21 Equivalent
circuit when CGS2 is charging.

Next, let us consider the time instant when the input voltage switches from
0 volts to 5 volts, turning the first MOSFET on. Let us assume that this 0-V to
5-V transition happens after a sufficiently long period of time so that CGS2 is
initially charged up to its steady state value of 5 V. When the first gate is turned
on, CGS2 begins to discharge. The RC circuit and its Thévenin equivalent for the
discharge is shown in Figure 10.22. For the logical 0 to logical 1 transition at the
input to be reflected at the output of inverter A, the voltage across CGS2 needs
to go below the valid logical output low threshold, VOL. As before, although
MOSFET B will turn off when vOUT1 drops below 1 volt, we require the output
to go below VOL to provide for an adequate noise margin. The interval of time
corresponding to the output capacitor discharge for an inverter is also called
the propagation delay for the inverter for a low to high transition at the input and

VS

+

-

RL

RON
+
-

RL||RON

          (a) RC circuit model                     (b) Thévenin equivalent network

CGS2

VOUT1

CGS2VSRON

RON + RL
----------------------- F IGURE 10.22 Equivalent

circuit when CGS2 is discharging.
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is denoted by tpd,0→1. Furthermore, as stated previously, the output capacitor
discharge time is also called the fall time of inverter A.

The propagation delay tpd for inverter A is simply taken as the maximum
of tpd,0→1 and tpd,1→0.

At this point, it is worth discussing a slight mismatch between the digital
gate abstraction and the physical realities of computing the propagation delay.
From the viewpoint of the digital gate abstraction, the propagation delay tpd is
a property of the digital gate. Accordingly, we might say that an inverter (for
example, one identical to inverter A) always has a propagation delay of 2 ns.
However, the example discussed thus far illustrates that the propagation delay
of an inverter depends not only on the characteristics of its internal compo-
nents, but also on the size of the capacitance that it is driving, and therefore the
propagation delay of the inverter can change depending on its environment.
In particular, the propagation delay of inverter A in our example depends on
the input capacitance of inverter B. Thus, strictly speaking, it makes no sense
to define the propagation delay of a device in isolation. However, for conve-
nience, we would like to characterize devices with a single tpd without defining
their surrounding environment, so this simple device model can be used to
obtain quick estimates of digital circuit delays when multiple gates are con-
nected together. Accordingly, unless explicitly stated otherwise, device libraries
or catalogs define a tpd for a gate assuming it is driving a ‘‘typical’’ load
commonly, four minimum sized inverters.8

Computing tpd,0→1

Let us now determine quantitatively the propagation delay for a low to high
transition at the input of the inverter. Assume through the rest of this example
that a valid output low voltage, VOL, is 1 volt, and that a valid output high
voltage, VOH, is 4 volts. Also assume RON is 1 k�, and that the threshold
on-voltage for the MOSFET is 1 volt. Also assume that RL is 10 k�.

In this case, as discussed earlier, CGS2 is initially charged to 5 volts. We
need to determine the time taken for the capacitor voltage to drop from 5 to
VOL = 1 volts.

When the input is high, Figure 10.22 shows the equivalent circuit. Let us
denote the Thévenin equivalent resistance RL‖RON as RTH, and the Thévenin
equivalent voltage VSRON/(RON +RL) as VTH. Let us also denote the capacitor
voltage vOUT1 by vC, and the current through the circuit by iC as shown in
Figure 10.23.

VTH
+

-

RTH

CGS2

iC

vC

F IGURE 10.23 Equivalent
circuit when CGS2 is discharging.

8. A related metric that is sometimes used to characterize the speed of a process technology is called
the fan-out-of-4 (or FO4) delay. The FO4 delay for a process technology is the propagation delay
of a minimum sized inverter driving four other inverters of the same size.
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Using the node method, we obtain,

vC − VTH

RTH
+ CGS2

dvC

dt
= 0.

Rearranging,

RTHCGS2
dvC

dt
+ vC = VTH. (10.64)

Solving Equation 10.64 yields

vC(t) = VTH + Ae−t/RTHCGS2 . (10.65)

Substituting the initial condition vC(0) = VS, we obtain the final solution:

vC(t) = VTH + (VS − VTH)e−t/RTHCGS2 . (10.66)

How long does it take for vC to drop below 1 volt? To obtain this duration,
we must solve for the value of t that satisfies

VTH + (VS − VTH)e−t/RTHCGS2 < 1.

In other words,

t > −RTHCGS2 ln
(

1 − VTH

VS − VTH

)
.

For RL = 10 k� and RON = 1 k�, RTH = 10000/11, and VTH = VS/11.
Substituting VS = 5 V and VTH = 5/11 V, the value of t must satisfy

t > −RTHCGS2 ln
(

3

25

)
.

Substituting for RTH, the value of t must satisfy

t > −10000

11
CGS2 ln

(
3

25

)
. (10.67)

Suppose the gate capacitance CGS2 = 100 fF. We then have

t > −10

11
× 103 × 100 × 10−15 × ln(3/25)

or,

t > 0.1928 ns. (10.68)

Thus tpd,0→1 = 0.1928 ns.
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Computing tpd,1→0

When the input vIN1 goes low, the circuit model that applies is shown in
Figure 10.21. In this case, we know that initial voltage VC0 on the capacitor is
determined by the voltage-divider relationship:

VC0 = VSRON

RON + RL
= 5/11 V.

Our goal is to solve for the time it takes for the capacitor to charge up to
VOH = 4 volts.

Again, we obtain the following using the node method (writing vC in place
of vOUT1),

vC − VS

RL
+ CGS2

dvC

dt
= 0.

Rearranging, we get

RLCGS2
dvC

dt
+ vC = VS. (10.69)

Solving Equation 10.69 yields

vC(t) = VS + Ae−t/RLCGS2 . (10.70)

Using the initial condition, we get

vC(t) = VS + (VC0 − VS)e−t/RLCGS2 , (10.71)

substituting, VC0 = 5/11 V and VS = 5 V,

vC(t) = 5 − (50/11)e−t/RLCGS2 . (10.72)

How long does it take for vC to go above VOH = 4 V from an initial
5/11 V? To determine the delay, we must solve for the t that satisfies

5 − (50/11)e−t/RLCGS2 > 4.

Simplifying, we get

t > −RLCGS2 ln
(

11

50

)
. (10.73)

In other words,

t > −10 × 103 × 100 × 10−15 ln(11/50)

t > 1.5141 ns. (10.74)

The delay tpd,1→0 is thus 1.5141 ns.
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Notice the RLCGS2 factor in Equation 10.73. In typical circuits, a ballpark
estimate of the delay can be obtained by simply taking the product of the
capacitance and the effective resistance through which it charges. In our case,
tpd,1→0 ≈ RLCGS2 = 10 × 103 × 100 × 10−15 = 1 ns. Similarly, the ballpark
estimate of tpd,0→1 is given by tpd,0→1 ≈ RTHCGS2 = 10/11 × 103 × 100 ×
10−15 = 0.09 ns.

Computing tpd

By our definition, the propagation delay of the gate tpd is the greater of the
rising and falling delays. In other words,

tpd = max(tpd,0→1, tpd,1→0).

Therefore, tpd = 1.5141 ns.

e x a m p l e 10.1 w i r e l e n g t h o n a v l s i c h i p In this exam-
ple, we will examine how wire length becomes an important issue in the design of VLSI
chips. Consider the inverter pair circuit in Figure 10.14. Suppose the two inverters are
on the opposite ends of a chip that is 1 cm on a side. The resulting long wire connecting
them can no longer be treated as an ideal conductor with no resistance or capacitance.
Instead we must replace the wire with an ideal wire in combination with a wire capaci-
tance and a wire resistance. The resulting RC delays can be significantly higher than the
RC delays of inverters connected to each other with short wires.

Figure 10.24 depicts graphically the wire connecting the two inverters on the VLSI chip.
Assume the wire is of length L and width W. The MOSFETs have gate lengths Lg and
gate widths Wg. Since the length of the wire is significant, we need to model it carefully.
Let the wire resistance be denoted Rwire and the wire capacitance Cwire. The circuit
model for the inverter pair taking into account wire parasitics is shown in Figure 10.25.

MOSFET
MOSFET

W

L

Long wire
Insulated

(Grounded)
substrate

Connected
to other
devices F IGURE 10.24 Long wire on a

VLSI chip.
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F IGURE 10.25 Circuit model of
long wire on a VLSI chip.

VS

vIN1

CGS1
RON

RL

VS

RON

RL

CGS2

vC vOUT2

Cwire

Rwire

vOUT1

(Here we assume that the parasitic inductance of the wire according to the model in
Figure 9.7 in Chapter 9 is zero.)

If the sheet resistance of the wire is R� (see Equations 1.10 and 1.9), we know,

Rwire = (L/W)R�.

Similarly, if Co is the capacitance per unit area of the wire, (formed between the wire,
insulation, and the grounded substrate), we know

Cwire = LWCo.

Clearly, the longer the wire, the larger its capacitance and resistance. Recalling that
delays are related to the RC time constants, notice that the RC product for the wire is

RwireCwire = (L/W)R� × LWCo = L2R�Co.

The L2 term in the RC product implies that wire delays grow as the square of wire
lengths. Assume that the wire is 1 µm wide and 1000 µm long. Further, assume R� is
2 � and Co is 2 fF/µm2. Therefore,

Rwire = 1000 × 2 = 2 k�

and

Cwire = 1000 × 2fF = 2 pF.

The RC time constant for the wire is

VS

+

-

RL+Rwire

CGS2+Cwire

vC

F IGURE 10.26 Charging the
wire capacitor on a VLSI chip.

RwireCwire = 2 × 103 × 2 × 10−12 = 4 ns.

Figures 10.26 and 10.27 show the relevant circuit models for charging and discharging
the wire capacitance Cwire and gate capacitance CGS2. Let us assume values for VOL
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VS

+

-

RL

RON
+

-

RL||RON+Rwire

VTH

(a) RC Circuit Model (b) Thévenin Equivalent Network

Rwire

CGS2+Cwire
CGS2+Cwire

vC vC

F IGURE 10.27 Discharging the
wire capacitor on a VLSI chip.

and VOH to be the same as those used in Section 10.4.2. In other words, VOH = 4V
and VOL = 1V.

When the input VIN1 transitions from high to low, Figure 10.26 applies, and we can
use the results from Section 10.4.2 to compute the propagation delay tpd,1→0 by using
(RL + Rwire) in place of RL and (CGS2 + Cwire) in place of CGS2. Thus, the propagation
delay for RL = 10 k, RON = 1 k�, CGS2 = 100 fF is given by

tpd,1→0 = −(RL + Rwire) × (CGS2 + Cwire) ln(11/50)

= −(10 + 2) × 103 × (100 + 2000) × 10−15 × ln(11/50).

Thus,

tpd,1→0 = 38.15 ns. (10.75)

When the input vIN1 makes a low to high transition, Figure 10.27 applies, and we
can use the results from Section 10.4.2 to compute the propagation delay tpd,0→1 with
(RL‖RON +Rwire) in place of RTH and (CGS2 +Cwire) in place of CGS2. For RL = 10 k�,
RON = 1 k�, CGS2 = 100 fF, we get:

tpd,0→1 = −(RL‖RON + Rwire)(CGS2 + Cwire) ln(3/25)

= −
(

10

11
+ 2

)
× 103 × (100 + 2000) × 10−15 × ln(3/25),

or,

tpd,0→1 = 12.9 ns. (10.76)

Thus, we see that tpd,0→1 = 12.9 ns, which is significantly higher than the delay when
the wire effects were not included.

Choosing the larger of the rise and fall delays, we observe that tpd = 38.15 ns. Clearly,
the wire delay has increased the circuit delay by more than an order of magnitude.
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10.5 S T A T E A N D S T A T E V A R I A B L E S

10.5.1 T H E C O N C E P T O F S T A T E

Capacitors and inductors can be discussed from a somewhat different point of
view, one that emphasizes the memory aspect of the devices, as introduced in
Equation 9.13 in Section 9.1.1. This section introduces an analysis of capacitor
and inductor circuits based on their state, and will show that this representation
facilitates computer analysis of circuits, which is particularly useful when the
circuit is nonlinear or if it contains a large number of storage elements.

Let us begin by quickly reviewing the concept of state. If we apply an
arbitrary current waveform to a capacitor, as in Figure 10.28, then the charge
on the capacitor, and hence the capacitor voltage will be the integral of that
current, as indicated in the figure.

q(t) =
∫ t

−∞
i(t)dt. (10.77)

It might at first appear that to perform this integral we need to know the
complete current waveform from t = −∞. Not so. All we need is the charge
(or voltage, since q = Cv) at one time, and the current waveform thereafter.
If the charge at t1 is q(t1) then from Equation 10.77 the charge at some time t2

F IGURE 10.28 Voltage as a
state variable.

t0

i(t)

i(t) vC
+
-

t1

t0

vC (t)

t1
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greater than t1 is

q(t2) =
∫ t1

−∞
i(t) +

∫ t2

t1
i(t)dt (10.78)

= q(t1) +
∫ t2

t1
i(t)dt. (10.79)

All of the relevant past history of the circuit prior to t1 is summarized in
one value, q(t1). Variables that have this property are called state variables. Thus
Equation 10.79 indicates that if we know the value of the state variable at one
time, and the value of the input variable thereafter, we can find the value of the
state variable for any subsequent time.

For linear time-invariant capacitors, the capacitor voltage is also a state
variable, because

q = Cv.

For an inductor, the fundamental state variable is the total flux linked by the
inductor, λ. Recall from Equation 9.32, if the inductor is linear and time-
invariant, the current is equally appropriate as a state variable since it is linearly
related to λ as

i = λ

L
.

From this point of view, the first-order differential equations for the RC and RL
circuits, Equations 10.2, 10.42, and 10.46 can all be written as state equations

d

dt
(state variable) = f (state variable, input variable). (10.80)

For the linear case, f is a linear function, so Equation 10.80 becomes

d

dt
(state variable) = K1(state variable present value) + K2(input variable).

(10.81)
For example, consider Equation 10.2 for the circuit in Figure 10.2a:

dvC

dt
+ vC

RC
= i(t)

C

This equation can be written in the canonic state equation form of Equa-
tion 10.81 as

dvC

dt
= − vC

RC
+ i(t)

C
(10.82)

where the only state variable is vC.
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10.5.2 C O M P U T E R A N A L Y S I S U S I N G
T H E S T A T E E Q U A T I O N

One advantage of the state equation formulation is that even in the nonlinear
case, the equations can be readily solved on a computer.9 If the input signal
and the initial value of the state variable are known, then the slope of the state
variable, that is,

d

dt
(state variable)

can be found from Equation 10.81. The value of the state variable at time
t + �t can now be estimated by standard numerical methods (Euler’s method,
Runge-Kutta, etc.). The process can now be repeated until the entire waveform
is found.

Continuing with our example in Equation 10.82, suppose that the input
signal i(t) is known for all time. Also, suppose that the value of the state variable
at time t = t0, namely vC(t0), is known. Then, Euler’s method10 approximates
the value of the state variable at time t = t0 + �t as

vC(t0 + �t) = vC(t0) − vC(t0)

RC
�t + i(t0)

C
�t. (10.83)

The value of vC at time t = t0 +2�t can be determined in like manner from the
value of vC(t0 + �t) and i(t0 + �t). Subsequent values of vC can be determined
using the same process. By choosing small enough values of �t, a computer
can determine the waveform for vC(t) to an arbitrary degree of accuracy. This
process illustrates the fact that the initial state contains all the information that is
necessary to determine the entire future behavior of the system from the initial
state and the subsequent input.

This procedure works even for circuits with many capacitors and inductors,
linear or nonlinear, because these higher-order circuits can be formulated in
terms of a set of first-order state equations like Equation 10.80, one for each
energy-storage element (with an independent state variable) in the network.
Chapter 12 discusses such an example in Section 12.10.1.

9. To build intuition, we will describe a simple computer method here. However, we note that
other more efficient methods are employed in practice.

10. Euler’s method is based on the following discrete approximation:

dvC(t)

dt
≈ vC(t + �t) − vC(t)

�t
.
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t
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V1 > V2

V1 = V2

V1 < V2
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F IGURE 10.29 Transient with
initial charge on capacitor.10.5.3 Z E R O - I N P U T A N D Z E R O - S T A T E R E S P O N S E

Another advantage of the state variable point of view is that it allows us to
solve transient problems by superposition. Specifically, we find first the zero-
input response, the response for the true initial conditions, with the input drive
zero. Then we find the zero-state response, the response of the circuit when
the initial state is zero, that is, all capacitor voltages and inductor currents are
initially zero. The total response is the sum of the zero-input response (ZIR)
and the zero-state response (ZSR).

Relating these ideas to Equation 10.81, finding the zero-input-response
involves solving the equation:

d

dt
(state variable) = K1(state variable present value) (10.84)

using the true initial conditions for the state variable. Finding the zero-state-
response involves solving the equation:

d

dt
(state variable) = K1(state variable present value) + K2(input variable)

(10.85)
with the initial value of the state variable set to 0.

Let us illustrate these ideas with an example. The circuit shown in
Figure 10.29a contains a switch, which is moved from position (1) to posi-
tion (2) at t = 0. If the switch has been in position (1) for a long time, the
capacitor will be charged to the voltage V1. That is, the initial condition for the
circuit is

vC = V1 t < 0. (10.86)

When the switch is moved to position (2), there will be a transient charge (or
discharge) until the capacitor voltage reaches a new steady state.
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The governing differential equation is the same as the previous capacitor
example in Section 10.1.4, Equation 10.42:

vI = RC
dvC

dt
+ vC. (10.87)

Writing the same equation in canonic state equation form, we get

dvC

dt
= − vC

RC
+ vI

RC
. (10.88)

First, let us first solve for the capacitor voltage directly by finding the homoge-
neous solution and particular solution. We will then derive the capacitor voltage
by obtaining the ZIR and ZSR.

The homogeneous solution is

vC = Ae−t/RC. (10.89)

By inspection from Equation 10.89, the particular solution must be

vC = V2. (10.90)

The complete solution is the sum of these two:

vC = Ae−t/RC + V2. (10.91)

Equating Equation 10.91 at t = 0 to the stated initial condition, Equation 10.86,

vC = V1 = A + V2. (10.92)

A = V1 − V2. (10.93)

Hence the complete solution for t > 0 is

vC = V2 + (V1 − V2)e−t/RC. (10.94)

Plots of this result are shown in Figure 10.29b. As indicated, the response
depends on the relative size of V1 and V2. For one particular value, namely
V1 = V2, there is no transient, as is obvious from physical considerations.

In Equation 10.94 the first term is the particular solution, and the second
is the homogeneous solution.

Next, to obtain insight into the method involving the ZIR and ZSR, a trivial
rewrite of Equation 10.94 yields

vC = V1e−t/RC + V2(1 − e−t/RC). (10.95)

Now the first term is the response to an initial state, in this case an initial
capacitor, and no input. This we call the zero-input response (ZIR). The second
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F IGURE 10.30 Zero-input
subcircuit and response.

term is the response to an external input, for no initial capacitor charge: the
zero-state response (ZSR).11 To verify, let us now solve directly for the ZIR
and the ZSR by superposition.

The subcircuit for finding the ZIR is shown in Figure 10.30a. As before,
the capacitor is initially charged to V1, but here the input for t > 0 is zero, so
after the switch moves to position (2), the capacitor simply discharges to zero.
Formally, the corresponding equation to be solved to obtain the ZIR is

dvC

dt
= − vC

RC
(10.96)

with the initial condition on the capacitor voltage being V1.
The homogeneous solution is

vC = V1e−t/RC. (10.97)

This is the complete zero-input response, because the particular solution is zero.
The subcircuit for finding the zero-state response is shown in Figure 10.31a.
The corresponding equation to be solved to obtain the ZSR is

dvC

dt
= − vC

RC
+ vI

RC
. (10.98)

with the initial condition on the capacitor voltage chosen as 0.

t

vC

(b)
0

V1
vC

+

-

C
+

-

(1)

(2)
R

(a)

F IGURE 10.31 Zero-state
subcircuit and response.

11. Notice the similarity between this and Equation 10.62.
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The homogeneous solution is as in Equation 10.89, and the particular
solution is again V2, so the solution is of the form

vC = Ae−t/RC + V2. (10.99)

This time by definition the initial condition is zero, so evaluating right after the
switch is thrown,

0 = A + V2 (10.100)

and the complete zero-state response for t > 0 is

vC = V2(1 − e−t/RC). (10.101)

The total response is the sum of the ZIR and ZSR from Equations 10.101
and 10.97 and is given by

vC = V1e−t/RC + V2(1 − e−t/RC). (10.102)

Observe that Equation 10.102 agrees with the formulation of Equation 10.94.

Comments

� The particular solution and the homogeneous solution are terms which
apply to a method of solving differential equations.

� Zero-input and zero-state responses arise from a particular way of parti-
tioning the circuit problem into two simpler subproblems. The resulting
subcircuits can be solved by finding the homogeneous solution and
particular solution in each case.

� For the ZIR, the particular solution will by definition be zero. Hence all
ZIRs will be homogeneous solutions.

� But all ZSRs are not particular solutions, because there is also a
homogeneous solution associated with the ZSR. The e−t/RC term in
Equation 10.101 is an example of this.

� A major advantage to the state variable point of view is that any arbi-
trary ZIR can be added to any ZSR solution we have already worked out.
Thus any transient problem with zero initial conditions can be easily gener-
alized to one with arbitrary initial conditions. This concept will be illustrated
in the examples in Section 10.6.

W W W 10.5.4 S O L U T I O N B Y I N T E G R A T I N G F A C T O R S *
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10.6 A D D I T I O N A L E X A M P L E S

10.6.1 E F F E C T O F W I R E I N D U C T A N C E
I N D I G I T A L C I R C U I T S

Section 10.4 showed that RC effects lead to propagation delay in digital circuits.
It turns out that when parasitic inductors are present, RL effects can be a
similar source of propagation delay. Consider the inverter circuit shown in
Figure 10.32a. Assume that a poor design has resulted in a long wire connecting
the MOSFET drain to the output of the inverter. A circuit model of the inverter
showing the parasitic wire inductance is depicted in Figure 10.32b.

Assume that the inverter has a 0-V input as an initial condition. The
MOSFET is in its off state and the current iL through the inductor L will
be 0. The voltage vL across the inductor is also 0. Now suppose that a 0-V
to VS-step is applied to the input of the inverter as illustrated in Figure 10.32a.
Assume that our goal is to determine the current iL through the inductor and
the voltage vL across the inductor as a function of time.

The step input to the inverter results in a corresponding VS-step applied
to the RL circuit at the output of the inverter as illustrated in Figure 10.32c.
From the initial conditions, at t = 0, both iL and vL are 0. From this point on,
the situation is identical to that for the RL transient discussed in Section 10.2.1
with V used in place of VS. Therefore the analysis presented in Section 10.2.1
applies.

It is interesting to speculate as to what will happen if the switch in
Figure 10.32c is opened after being closed for a long time. When the switch is
opened, the inductor current cannot go to zero instantaneously. Since a prac-
tical open switch behaves as an extremely high resistance, the current through
the inductor will result in a huge voltage spike across the switch, and possibly
damage it.

10.6.2 R A M P I N P U T S A N D L I N E A R I T Y

Solutions become somewhat more complicated when we move beyond simple
step inputs. Consider the case of a series RC circuit with a voltage ramp drive,

vI

VS
t

R

vI

vO

VS

(a) Inverter with a long wire connecting
     the output and the MOSFET drain

R

vI

vO

VS

L

(b) Circuit model (c) Circuit for step input at vI

VS

R

L vL

+

-

+
- iL

Switch is closed
at t = 0 

F IGURE 10.32 Inverter circuit
with parasitic inductance.
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that is

vI = S1t t > 0 (10.113)

where S1 has the dimensions of volts per second. The circuit and input waveform
are sketched in Figures 10.33a and b. Let us first find the zero-state response,
by assuming that the capacitor is initially uncharged. The differential equation
is, from before,

vI = S1t = RC
dvC

dt
+ vC. (10.114)

We will solve this using our usual method of homogeneous and particular
solutions. The homogeneous solution has the usual form:

vC = Ae−t/RC. (10.115)

This homogeneous solution is plotted in Figure 10.33c. We must now find a
particular solution that is appropriate for a ramp input. Because the drive is a
ramp, a good first guess is a ramp of the same slope as the input:

vC = K2t. (10.116)

Substituting this into the differential equation, Equation 10.114, we obtain

S1t = RCK2 + K2t. (10.117)

Because there is no solution for K2 unless RC = 0, our initial guess for the
particular solution is not quite correct. We need another degree of freedom in
the solution, so an appropriate second guess is

vC = K2t + K3. (10.118)

Now from Equation 10.114:

S1t = RCK2 + K2t + K3. (10.119)

Whence

S1 = K2 (10.120)

K3 = −S1RC (10.121)

and the particular solution is

vC = S1(t − RC). (10.122)

This is a ramp with the same slope as the input ramp, except delayed in time
by one time constant, as shown in Figure 10.33d.
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F IGURE 10.33 Response of RC circuit to ramp.
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The complete solution is of the form

vC = Ae−t/RC + S1(t − RC) for t > 0. (10.123)

Because we are finding the zero-state response, the initial condition is by
definition zero, so evaluating Equation 10.123 at t = 0, we find

A = S1RC.

Hence the complete solution for t > 0 is

vC = S1(t − RC) + S1RCe−t/RC (10.124)

and is plotted in Figure 10.33e.
The waveforms in Figures 10.33b and 10.33e are related in a special way to

those in Figures 10.2b and 10.2c. Note first that the input signal in this problem
is the integral of the input signal in Figure 10.2 (assuming a Thévenin source).
Now, from Figures 10.33e and 10.2c, or from Equations 10.124 and 10.20, the
output signal here is the integral of the output signal in Figure 10.2,12 again,
assuming that we are dealing with the zero-state response.

In general, as long as one restricts integral operations to t greater than zero,
the zero-state response of the integral of some input signal is the integral of the
zero-state response to that signal.

This follows from superposition if one considers integration as a summation
process. In effect we are commuting two linear operators. The same is true for
differentiation as well:

The response to a signal derived by differentiating an input can be obtained by
differentiating the output.

Let us follow this example one step further, and consider the case where there
is an initial voltage V0 on the capacitor at t = 0, before the ramp is applied.

12. Notice that if we take the integral of Equation 10.20, namely,

vC = I0R(1 − e−t/RC)

we obtain
vC = I0Rt + I0R RCe−t/RC + K1

where, to get the zero initial condition on vC, we set the constant of integration K1 = −I0R RC,
and obtain

vC = I0R(t − RC) + I0R RCe−t/RC,

which is a Thévenin version of Equation 10.124.
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Particular integral

0

vI

Total solution

-S1RC
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V0
F IGURE 10.34 Ramp response
for initial charge on capacitor.

Formally, the initial condition now is

vC = V0 t < 0. (10.125)

This time around, since there is an initial condition on the capacitor, we are no
longer dealing with just the zero-state response, so we cannot simply take the
integral. One approach is to notice that Equation 10.124 is in effect the zero-
state response, so if we find the zero-input response corresponding to the initial
condition of Equation 10.125, then the complete solution is the sum of these
two responses. We know from previous examples, or from Equation 10.97,
that the ZIR for an RC circuit with an initial voltage V0 is

vC = V0e−t/RC (10.126)

so the total solution for t > 0 is

vC = V0e−t/RC + S1t − S1RC(1 − e−t/RC). (10.127)

One possible form of this solution is sketched in Figure 10.34. This example
illustrates one of the advantages of the state-variable approach. Once we have
found the solution for some input waveform and zero initial conditions, the
solution for the same input with arbitrary initial conditions can be found by
adding the appropriate ZIR solution.

e x a m p l e 10.2 t v d e f l e c t i o n s y s t e m Most television sets

iL

t

R

L iL
vI

+
-

F IGURE 10.35 TV deflection
coil.

use magnetic deflection in the cathode-ray tube. To obtain the raster scan for the
picture, it is necessary to develop a ramp of current flowing through the deflection
coil, as sketched in Figure 10.35. We wish to find the required waveform of vI that will
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generate the current ramp. The coil losses have been explicitly modeled in Figure 10.35
by the resistor R.

The differential equation for the circuit is, from KVL

vI = iR + L
di

dt
. (10.128)

We want a current waveform, for t > 0, of the form

i = S1t. (10.129)

Hence

vI = S1Rt + S1L (10.130)

for t > 0. Thus to produce a ramp of current in the inductor, we need to drive with the
sum of a step and a ramp.

W W W e x a m p l e 10.3 s o l u t i o n b y i n t e g r a t i n g

f a c t o r s

10.6.3 R E S P O N S E O F A N R C C I R C U I T T O S H O R T
P U L S E S A N D T H E I M P U L S E R E S P O N S E

It was shown in Section 10.1.4 that when the time constant of an RC circuit
becomes much longer than the period of a periodic input signal, the capacitor
voltage begins to approximate the integral of the input wave. Let us examine this
property in more detail by finding the response of the RC circuit in Figure 10.36
when the input is a short pulse of amplitude Vp and duration tp.

We have seen several problems of this sort, so the general form of the
capacitor voltage can be written by inspection. Assuming that the capacitor
is initially uncharged, the response during the pulse, when the capacitor is
charging is

vC = Vp

(
1 − e−t/RC

)
0 ≤ t ≤ tp. (10.135)

If tp is long enough for this transient to essentially go to completion, then at
t = tp, the end of the pulse, the capacitor voltage will be Vp. The response after
the pulse has ended, when the capacitor is discharging, is thus

vC = Vpe−(t−tp)/RC t ≥ tp � RC. (10.136)

The t − tp factor in the exponent indicates that there is a time delay in the start
of the wave of an amount tp. This solution is shown in Figure 10.36b.



10.6 Additional Examples C H A P T E R T E N 551

ttp

ttp

vC

(a) Circuit

vC

+

-

C
vI

R

Vp

Vp

vI

(b) Waveforms 

vI

Vp

tp
t

0

+
-

F IGURE 10.36 Response of RC
circuit to pulse.
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F IGURE 10.37 Response of RC
circuit to short pulse.

If the pulse is made shorter than in Figure 10.36, the charging transient can
no longer reach completion. This is illustrated in Figure 10.37a. Equation 10.135
is still appropriate for the charging interval, but the response no longer reaches
Vp. The maximum value, at t = tp, is

vC(tp) = Vp

(
1 − e−tp/RC

)
. (10.137)

The discharge now has essentially the same form as before, but is smaller. That
is, for t greater than tp, the capacitor voltage is

vC =
[
Vp

(
1 − e−tp/RC

)]
e−(t−tp)/RC. (10.138)
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If we make the pulse even shorter yet, as in Figure 10.37b, the picture actually
becomes simpler. The charging part of the wave begins to look almost like a
straight line. Mathematically, this can be shown by expanding the exponential
in a series

e−x = 1 − x + x2

2! · · · (10.139)

when the charging waveform becomes, from Equation 10.135

vC = Vp

[
t

RC
− 1

2

(
t

RC

)2

+ · · ·
]

. (10.140)

For times much less than the time constant RC, that is, t 	 RC, we can
discard all higher terms, leaving

vC � Vp
t

RC
, (10.141)

which is the equation for the straight line we observe in the first part of
Figure 10.37b.

Physically, when the pulse is very short the capacitor voltage is always
much smaller than the pulse voltage, so during the pulse the current is roughly
constant at a value

iC � Vp

R
. (10.142)

The capacitor voltage is the integral of this current, hence is a ramp:

vC = 1

C

∫
iCdt (10.143)

� Vp
t

RC
. (10.144)

At the end of the pulse, the capacitor voltage has reached its maximum value of

vC(tp) � Vptp
RC

(10.145)

so the discharge waveform for t greater than tp is

vC �
[

Vptp
RC

]
e−(t−tp)/RC. (10.146)
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The important feature of this equation is that the response is now proportional
to the area (Vptp), rather than the height (Vp), of the input pulse. In other words,

vC �
[

Area of Pulse

RC

]
e−(t−tp)/RC. (10.147)

For very short pulses (that is, for tp 	 RC), even the delay term in the exponent
can be neglected, and the response reduces to

vC � Area of pulse

RC
e−t/RC. (10.148)

Because in the limit (tp 	 RC) a short pulse of large amplitude but constant
area becomes an impulse (see Section 9.4.3) Equation 10.148 is often referred
to as the impulse response of the circuit. In other words, if we have an impulse
voltage input with area (or strength) A

vI(t) = Aδ(t),

the response is given by

vC
A

RC
e−t/RC. (10.149)

Figure 10.38 sketches the impulse voltage input and the corresponding response
according to Equation 10.148.

t

vI (t)

0

A

t

vC (t)

0

A
RC
--------

F IGURE 10.38 Impulse
response of series RC circuit.

The impulse response is a very convenient way of characterizing linear
systems, because the expression contains all of the essential information about
the dynamics of the system. This concept is pursued in depth in courses on
signals and systems.

10.6.4 I N T U I T I V E M E T H O D F O R T H E
I M P U L S E R E S P O N S E

The intuitive method discussed in Section 10.3 applies equally well for impulse
responses. Shown in Figure 10.39a is our familiar parallel source-resistor-
capacitor circuit from Figure 10.2a. Suppose that the current input is an impulse
of area Q that is applied at t = 0 as shown in Figure 10.39b. Assume we wish
to find the capacitor voltage vC.

As discussed in Section 10.3, we will first sketch the form of the response
in the initial interval (t < 0+) and in the final interval (t � 0).

Let us start by looking at the initial interval. For t < 0, the current source
supplies zero current and hence behaves like an open circuit. Assuming that this
situation has existed for a long time, the capacitor will have no charge on it,
and hence vC will be 0. (If the capacitor voltage were nonzero, there would be
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a current through R. This current would deplete the charge on the capacitor,
till no charge exists.)C vC (t)

+

-
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F IGURE 10.39 Intuitive method
of sketching the impulse response
of parallel RC circuit.

Next, the current impulse appears at t = 0. The capacitor behaves like
an instantaneous short to the current impulse, and so the current favors the
capacitor over the resistor. The entire impulse current flows through the capaci-
tor at t = 0, depositing charge Q on it. Corresponding to the appearance of
charge Q on the capacitor, from Equation 9.8, the capacitor voltage jumps
instantaneously to

vC(0) = Q

C
.

Thus, at t = 0+ we are left with the voltage Q/C across the capacitor. Observe
that the impulse has effectively established the initial conditions on the circuit.

This completes our intuitive analysis of the initial interval. vC during this
interval is sketched in Figure 10.39c.

Next, we examine the final interval (t � 0). Since its current is zero for
t > 0, we can again replace the current source with an open circuit. After a long
period of time, a DC situation exists, and the capacitor voltage will be zero.
The zero value for vC for t � 0 is also sketched in Figure 10.39c.

Finally, in the transition interval, the capacitor follows its usual expo-
nential response with time constant RC. The complete curve is sketched in
Figure 10.39d.

10.6.5 C L O C K S I G N A L S A N D C L O C K F A N O U T

In most digital systems, a clock signal is provided to different modules of the
system. A clock signal is typically a square wave between 0 volts and the supply
voltage. The clock signal provides a global time base that prescribes when
actions happen in systems. The use of a clock attempts to solve the following
problem faced by the receiver in a pair of communicating digital systems: How
to determine when a signal supplied by the sender is valid. Or conversely,
how to recognize when a signal might be in the midst of transitioning to a
new value. For example, we might use a stable-high clock discipline in which
the sender promises to provide output signals so that they remain stable during
the high part of the clock waveform. In other words, signals are allowed to
transition only during the low parts of a clock. Correspondingly, the receiver
promises to observe incoming signals only when the clock is high. Accordingly,
the receiver circuit guarantees that its own outputs are stable when the clock is
high, provided, of course, valid inputs are fed to it.

As an example of the benefits of clocked circuits, consider the digital system
in Figure 10.40 in which two digital circuits are coupled to each other. Both
are fed by the same timebase or clock. Inputs are fed to the first circuit in a
way that input transitions happen only during the low parts of the clock signal.
As shown in Figure 10.40, assume an input sequence 011 is fed to circuit 1.
Similarly it produces outputs (for example 101) that are stable during the high
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Digital 
circuit 1 

Digital
circuit 2 

clk clk

F IGURE 10.40 Clocked digital
systems.

periods of the clock. Since the same clock is fed to both circuits, digital circuit 2
can observe the signal only during the periods in which the signal is valid.

Now suppose we did not use a clock. As we saw previously, RC delays
cause signals to go through invalid signal levels for a finite period of time when
they transition from one value to another. Without some mechanism such as a
clock and an associated discipline, there would be no way in which the second
digital circuit could tell when it was receiving a valid signal. As we shall see in a
later chapter, telling apart a valid signal from a transitional value is particularly
difficult when signals display oscillatory or ringing behavior.

The use of a clock discipline represents an instance of time discretization.
Lumping of time into invalid periods and valid periods gives us the clocked
digital abstraction and significantly simplifies the orchestrating of communica-
tion between individual circuit modules. Lumping occurs because we do not
care about the precise moment when a signal is sampled, provided, of course,
the signal is sampled within the valid period.

CLOCK

Module 1

Module 2

Module n

F IGURE 10.41 Clock signal for
digital modules.

Figure 10.41 shows a clocked digital system in which several modules
are provided a global clock timebase produced by a single clock device. One
approach simply connects the clock signal generator to all the modules using
one long wire. This naive approach often fails because of the RC delay asso-
ciated with the long wire and the input capacitances of the driven modules.
Figure 10.42 shows a circuit model for the clock distribution system. We have
lumped the resistance of the wire into a single resistance Rwire. Although it is
not shown in Figure 10.42, the resistance of the gate driving the clock will also
appear in series with the resistance of the wire. The gate capacitors appear as
parallel loads on the wire and therefore add together to yield a large equivalent
capacitor:

Ceq =
n∑

i=1

CGSi.

We know from our previous examples that slow rise and fall times at the output
of a circuit result in signal delay. The rise and fall times are proportional to the
RC time constant. A large value for C results in long rise and fall times, thereby
limiting the clock frequency. As Figure 10.43 illustrates, notice that to achieve a
valid clock signal, the clock period T must be larger than the sum of the rise and
fall times of the clock signal. For the clock example, let us define the rise time
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tr as the time taken for the clock signal to rise from a valid output low voltage
(VOL) to a valid high output voltage (VOH). Let us also define the fall time tf

CGS1

CGS2

CGSn

CLOCK

Rwire

F IGURE 10.42 Clock signal
charging the gate capacitors.

as the time taken for the clock signal to fall from a valid output high voltage
(VOH) to a valid low output voltage (VOL). As is clear from Figure 10.43, to
yield a valid digital clock signal, the clock time period must satisfy the following
constraint:

T > tr + tf .

Figure 10.44 shows a common solution to the clock distribution problem it
limits the number of gate capacitors the signal has to drive by building a fanout
buffer tree. The fanout degree of the circuit shown in Figure 10.44 is 3.

As a simple exercise, let us determine the greatest fanout degree that will
support a clock frequency of 333 MHz. Let us suppose the clock signal is driven
by an inverter as shown in Figure 10.45. Let us characterize the clock driver
inverter by RL = 1 k�, RON = 100 �, and CGS = 100 fF. Let us also assume
that we desire a symmetric clock. Thus the clock period T must be greater than
twice the greater of the rise and fall times at the output of the inverter. Since the
load resistance RL is much bigger than the ON resistance of the MOSFET, the

F IGURE 10.43 Clock frequency.

VOL

VOH

VS

tr tf
Clock period T 

t

F IGURE 10.44 Fanout clock
signal.
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F IGURE 10.45 Clock inverter
charging the gate capacitors.

rise time will be greater than the fall time. Accordingly, we focus on calculating
the rise time tr. As defined earlier, let Ceq represent the total capacitance driven
by the clock inverter.

Let us now compute tr. As defined earlier, tr is the time taken for the
clock signal to rise from VOL to VOH. The equivalent circuit for computing tr
is suggested in Figure 10.46. The circuit shows the equivalent capacitor being

VS

+

-

Req = RL + Rwire

Ceq

vC

iC

F IGURE 10.46 Equivalent
circuit for determining the clock
rise time.

charged by the supply VS through the RL and Rwire resistances. Let us denote
Req = RL + Rwire. The initial voltage on the capacitor VC0 = VOL.

Using the node method for the circuit shown in Figure 10.46, we get

vC − VS

Req
+ Ceq

dvC

dt
= 0.

Rearranging, we obtain the differential equation

ReqCeq
dvC

dt
+ vC = VS. (10.150)

Solving Equation 10.150, we get

vC(t) = VS + Ae−t/ReqCeq . (10.151)

We know that the voltage on the capacitor at t = 0 is VOL. Using this initial
condition, we solve for A and obtain

vC(t) = VS − (VS − VOL)e−t/ReqCeq . (10.152)



558 C H A P T E R T E N f i r s t - o r d e r t r a n s i e n t s

The time taken for vC to reach VOH from its initial value of VOL, namely tr,
can be obtained from

VOH = VS − (VS − VOL)e−tr/ReqCeq . (10.153)

In other words,

tr = −ReqCeq ln
(

VS − VOH

VS − VOL

)
. (10.154)

Assuming VOL = 1 V, VOH = 4 V, and VS = 5 V

tr = −ReqCeq ln
(

1

4

)
.

For RL = 1 k� and Rwire ≈ 0, we get

tr = 1.386 × 103Ceq.

To achieve a frequency greater than 333 MHz, the period T must be less than
1/333 MHz = 3 ns. Accordingly, since tr < T/2 = 1.5 ns,

1.5 × 10−9 > 1.386 × 103Ceq.

In other words,

Ceq < 1.08 pF.

Thus the total driven capacitance must be less than 1.08 pF. Suppose the invert-
ers used in the clock buffer tree are identical to the clock driver inverters, then
if the value of each gate capacitor is 100 fF, the maximum fanout degree must
be less than 1080 fF / 100 fF. Thus the maximum fanout degree is 10.

W W W 10.6.6 R C R E S P O N S E T O D E C A Y I N G
E X P O N E N T I A L *

10.6.7 S E R I E S R L C I R C U I T W I T H S I N E - W A V E I N P U T

Figure 10.48 shows a series RL circuit being driven with a sinewave voltage
source suddenly applied at t = 0:

R

vO

+

-

iL
L

-
vI
+

F IGURE 10.48 RL circuit with
sine-wave drive.

vI = Vsin(ωt) t > 0. (10.167)

Let us find the voltage across the inductor, assumed to be ideal. For simplicity
we assume zero initial state,

iL = 0 t < 0. (10.168)
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From KVL around the loop,

vI = iLR + L
diL
dt

. (10.169)

The homogeneous solution, from Section 10.2.1, Equation 10.52, is

iL = Ae−(R/L)t. (10.170)

Because the input is a sine wave, a reasonable first guess for the particular
solution is

iL = Ksin(ωt). (10.171)

From Equation 10.169 for t > 0,

Vsin(ωt) = KRsin(ωt) + LωKcos(ωt). (10.172)

This can’t be solved for K unless L is zero, so our first guess is not quite right.
We need another degree of freedom in the solution, so try

iL = K1 sin(ωt) + K2 cos(ωt). (10.173)

Now Equation 10.169 becomes

Vsin(ωt) = K1 R sin(ωt)+K2 R cos(ωt)+K1 ω cos(ωt)−K2Lω sin (ωt) (10.174)

Equating sine terms, and equating cosine terms, we find

V = K1R − K2Lω (10.175)

0 = K1Lω + K2R (10.176)

which yields, via Cramer’s Rule (see Appendix D),

K1 = V
R

R2 + ω2L2
(10.177)

K2 = V
−ωL

R2 + ω2L2
. (10.178)

The complete solution is of the form

iL = Ae−(R/L)t + V
R

R2 + ω2L2
sin(ωt) − V

ωL

R2 + ω2L2
cos(ωt), t ≥ 0.

(10.179)
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F IGURE 10.49 Waveforms for
RL circuit with sinewave drive.
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The value of A can be found by applying the initial condition, Equation 10.168,
to Equation 10.179, with t = 0, whence

A = VωL

R2 + ω2L2
. (10.180)

The solution is shown in Figure 10.49.
Equation 10.179 is fairly easy to interpret when t is large enough that the

exponential term has died away. If the drive frequency is very low, such that

ω 	 R

L
, (10.181)
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then the current reduces to

iL � V

R
sin(ωt). (10.182)

That is, at low frequencies, the current is determined only by the resistor, and
the inductor behaves like a short circuit.

At high frequencies, that is, for

ω � R

L
(10.183)

Equation 10.179 reduces to

iL � −V

ωL
cos(ωt). (10.184)

In this case, the current is determined almost solely by the inductor. Note that
the current is still sinusoidal, but now is 90 degrees out of phase with the applied
voltage. Also, the magnitude of the current becomes smaller and smaller as the
frequency of the applied sinewave increases.

It is a little disappointing that such a simple circuit can lead to this level of
algebra. But fortunately there is a simpler approach that can be used for linear
circuits. This approach, discussed in Chapter 13, reduces all the differential
equations to algebraic expressions.

10.7 D I G I T A L M E M O R Y

This chapter demonstrated previously that the memory aspect of capacitors and
inductors formalized using the notion of state variables provided many uses in
the analog domain. The same memory property can also be utilized in the digital
domain to implement digital memory using the analogous concept of digital
state. Digital memory is not only an important application of capacitors, but it
is of fundamental importance in its own right.

10.7.1 T H E C O N C E P T O F D I G I T A L S T A T E

A common example of the use of memory involves the digital calculator.
Suppose we wish to compute the value of the expression (a × b) + (c × d).
We might first multiply a and b and store the result (a × b) in memory. We
might then multiple c and d, and add the resulting value (c × d) to (a × b) by
recalling the latter value from memory. Observe that the calculator contained
a key to explicitly store a given value into the memory. Observe further that
once a value was stored in memory, it could be read from memory any num-
ber of times, without affecting the value in memory. In fact, it remained valid
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until another value was explicitly stored in memory or it was erased. Erasure
corresponds to replacing the existing value with a zero value.

Memory has many uses. In this example, memory is used as a scratchpad
area to store partial results. Memory is also useful to store values input to a
system from the outside world. Memory enables short-lived external inputs to
be available to system circuitry for a longer period of time.

Memory is also useful in enabling better resource utilization. Suppose we
wish to add three numbers A0 through A2. The addition can be accomplished
using two adder circuits as follows: The first and second numbers are fed to
the first adder. The result of the first adder and the third value are fed to the
second adder. The sum S is obtained as the output of the second adder.

Alternatively, we can utilize memory to accomplish the addition of three
numbers with a single adder as follows: Feed the first and second numbers to
the adder. Store the partial result in memory. Then feed the partial result from
memory and the third number to the same adder. The adder output is the
desired result.

The same concept can be generalized to add a long sequence of num-
bers. At any given instant, the memory stores the partial result corresponding
to all the numbers that occurred till that instant. For our addition example,
notice that future results depend only on the value stored in memory and future
inputs. Future results do not depend on the exactly how the memory was time
sequenced, just its final state. This observation stems from the concept of a
‘‘state variable’’ that we saw earlier. The value stored in memory is simply a
digital state variable in a manner analogous to an analog state variable value
stored on a capacitor.

The next section discusses how capacitors can be used to build digital
memory.

10.7.2 A N A B S T R A C T D I G I T A L M E M O R Y E L E M E N T

Before we discuss how to implement memory, let us first define an abstract
memory element and understand how it can be used in a small system.
Figure 10.50 shows an abstract memory element that can store one bit of data.
It has an input dIN, an output dOUT, and a control input called store. As sug-
gested by the waveforms in Figure 10.50, the input dIN is copied into memory
when the store signal is high. The value stored in the memory is available to

F IGURE 10.50 An abstract
one-bit memory element.

Memory

dOUT

Store

dIN

t

dIN

Store

dOUT
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be read as the output dOUT. If no new value is written into the memory, the
last written value is stored indefinitely. If the memory is read while it is being
written (that is, when the store signal is high), then the output simply reflects
the value at the input.

e x a m p l e 10.4 m o t i o n d e t e c t o r c i r c u i t r e v i s i t e d

Let us use the memory element that we have just defined in a simple digital design.
Recall the motion detector circuit from Chapter 5. The motion detector circuit was
required to produce a signal L to turn on a set of lights when the signal M from a
motion sensor was high, provided it was not daytime. We assumed that a light sensor
produced a signal D that was high when it was day. We had written the following logic
expression for L:

L = MD.

A problem with this design is that the lights that were turned on by the assertion of M
would go off the instant M was de-asserted.13 Let us consider a more useful design in
which we require the lights to stay on even after the motion signal M goes away. To
make this happen, we need some form of memory to remember the occurrence of M,

Memory

dOUT

Store

dIN

Reset

even after the M signal goes away. The desired circuit uses a memory element and is
shown in Figure 10.51. In this circuit, the signal M is connected to the store input of the
memory, and the signal D is connected to the dIN input of the memory. As depicted
in the signal waveforms in Figure 10.51, the memory output remains high if motion is
detected even when D is false.14

10.7.3 D E S I G N O F T H E D I G I T A L M E M O R Y E L E M E N T

How do we implement a memory element? The memory element must be
designed so that it stores indefinitely any value that has been written into it.
Recall that a capacitor has the same property. Provided its discharge path has
a high time constant, a capacitor can store a charge for a long period of time.
Furthermore, we can use a switch to enable charging the capacitor from a given
input.

13. To ‘assert’ is to set the value to a logical 1, while to ‘de-assert’ is to set the value to a logical 0.

14. Our circuit shown in Figure 10.51 has one other problem. How do the lights turn off? It
should be apparent from the circuit that L will go back to 0 when motion is detected during the
daytime. However, relying on the appearance of signal M during the daytime to turn off the lights is
unappealing. One solution is to modify our memory abstraction to include a reset signal as follows:
The value in memory is set to 0 when the reset input is high. (Our memory abstraction can include
the additional property that the reset signal overrides the store signal if both are on at the same
time.) Our motion detector circuit output L can now be turned off by asserting the reset signal of
the memory. The reset terminal of memory can be connected to the signal D so that the memory
contents and therefore the lights go off whenever it is day.
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F IGURE 10.51 A motion
detector circuit using memory.

Memory

dOUT

Store

dIN

M

L

D

t

D

M

L

D

Based on this intuition, consider the simple memory element circuit com-
prising a capacitor and an ideal switch shown in Figure 10.52. The switch is
controlled by the store input and has the circuit model shown in Figure 10.53.
When connected as shown in Figure 10.52, assume that a logical high value

dIN dOUT

Store

CM

*

F IGURE 10.52 Circuit
implementation of a memory
element.

on the store input turns the switch into its ON state, while a logical low value
on the store input turns the switch into its OFF state.

As discussed in Section 6.1, a circuit containing a switch can be ana-
lyzed by considering two linear subcircuits: one for the switch in its ON state
(see Figure 10.54) and one for the switch in its OFF state (see Figure 10.56).
A high on the store terminal turns the switch on, and results in the circuit
illustrated in Figure 10.54. The capacitor then charges up (or discharges) to
the value of the input voltage at the dIN terminal when the switch is turned on.
Remember, the switch is symmetric about its input and output terminals. Thus,
for example, if the dIN terminal had a high voltage corresponding to a logical
1 (produced, for example, by a voltage source, as illustrated in Figure 10.55),
the capacitor will offer a high voltage at the node marked with an asterisk
when the store signal is asserted. In this situation, the ideal external voltage

Control

In

Out

+

-

v

i

In

Out

Control = “0”

OFF state

+

-

v
i

In

Out

Control = “1”

ON state

+

-

v
i

F IGURE 10.53 Three-terminal
switch model.

source charges up the capacitor instantly through the ideal switch (assuming
the capacitor had a low voltage initially). Alternatively, if the dIN terminal had a
low voltage corresponding to a logical 0, the capacitor will offer a low voltage
at the node marked with an asterisk when the store signal is asserted. In this
latter situation, the capacitor discharges instantly through the ideal switch and
the ideal external voltage source (assuming that the capacitor had a high voltage
initially) and attains the same voltage as the voltage source.

Conversely, when the store signal goes low, the switch turns off (see
Figure 10.56). Consequently, the dOUT terminal of the capacitor begins to float
and the charge previously deposited on the capacitor is held in place. Thus, for
example, if a high voltage had been previously stored on the capacitor, a high
voltage will appear at the capacitor terminal dOUT even after the store signal
goes low. In the ideal case, if the resistance between the dOUT terminal and
ground is infinite, the capacitor will hold the charge forever.
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The waveforms shown in Figure 10.50 will apply to the memory element
circuit shown in Figure 10.52 under the following idealized assumptions: When

dIN = 1 dOUT
Store = 1 

CM

*

F IGURE 10.54 Charging up the
memory capacitor, when the store
signal is high.

the store signal is high, the RC time constant associated with the capacitor
circuit is negligible, and when the store signal is low, the RC time constant
associated with the capacitor circuit is infinite. The RC time constant of the

dOUT
Store = 1 

CM

*
V
+
-

Memory element

F IGURE 10.55 The memory
element circuit model including the
driving external source, when the
store signal is high.

dIN dOUT
Store = 0 

CM

*

F IGURE 10.56 Charge storage
in the memory capacitor, when the
store signal is low.

circuit when the store signal is high is given by the product of CM and the sum
of the on resistances of the switch and the driving element. Similarly, the RC

dIN dOUT

Store CM

*

time constant of the circuit when the store signal is low is given by the product
of CM and the resistance seen by the capacitor.15

There is, however, one remaining problem with our memory element
circuit. Recall that the static discipline required that our digital circuit elements
such as gates be restoring. In other words, in order to obtain positive noise
margins, the voltage threshold requirements on the outputs of gates was more
stringent than those on the inputs. For example, the static discipline required
that a VIH input to a gate be restored to VOH at the output, where VOH > VIH
for a positive noise margin. In order to inter-operate digital memory elements
with our digital gates, we require that our digital memory elements satisfy the
same set of voltage thresholds.

Unfortunately, our digital memory circuit as described in Figure 10.52 is
non-restoring. In other words, if a voltage VIH corresponding to a valid 1 was
applied to its input, the output of the memory element would not be restored
to VOH, rather it would be at VIH as well.

As suggested in Figure 10.57, a simple modification of our memory circuit
can make it restoring. This design adds a pair of series connected inverters (or
a buffer) to the output of our previous memory element circuit. The buffer will
restore a VIH voltage on the capacitor terminal to a VOH voltage at the dOUT
output. Interestingly, when a buffer is included in the memory element circuit,
we do not need to implement a special capacitor to hold charge. Rather, the
gate capacitance of the buffer CGS forms the memory capacitance CM.

dOUT
dIN

Store

CM

* F IGURE 10.57 Circuit
implementation of a signal
restoring memory element.

15. We can also modify the memory element circuit to include a reset signal as follows: In this
circuit, we use a second switch to discharge the capacitor to ground when the reset signal is high.
Additionally, to make this circuit work, we must use non-ideal switches that are designed such that
the ON resistance of the reset switch is much lower than that of the store switch. By doing so, we
can ensure that reset will override the store when the store and reset are on at the same time.
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F IGURE 10.58 Memory
capacitor discharge due to load
resistances for the unbuffered
memory element.

dIN
dOUT

Store = 0 
CM

*
RL

Memory element External logic device

F IGURE 10.59 Memory
capacitor’s charge is protected in
the buffered memory element.

dIN
dOUT

Store = 0 
CM

*
RL

Memory element External logic device

By isolating the capacitor from the circuit that reads the stored value, the
buffer offers added advantages. As shown in Figure 10.58, devices that read the
value stored on the capacitor might have relatively low resistances associated
with them, thereby discharging the capacitor in our original unbuffered memory
circuit. In contrast, the buffered design of the memory element circuit shown in
Figure 10.59 protects the capacitor’s charge from the external circuit. By careful
design of the memory element, the input resistance of the buffer can be made
to be very large, thereby ensuring a large discharge time constant.

In practice, capacitors will leak their charge over time due to parasitic
resistances. Let us suppose the capacitor gradually discharges through a parasitic
resistance RP (see Figure 10.60). In this situation, for how long will the value
stored in the capacitor remain valid after the store signal is de-asserted?

There are two cases to consider. First, if a 0 is stored on the capacitor, then
the 0 value will be held indefinitely even with a low parasitic resistance. Notice
that as the capacitor discharges to ground, the 0 stored on it will remain a 0.

The second case is more interesting. In this case, a 1 is written on the
capacitor. Assume that the voltage corresponding to a 1 is VS. The value stored
on the capacitor will be read as a valid 1 by the buffer until it reaches the VIH
voltage threshold. Thus the period over which the memory element will store
a valid 1 is the interval over which the voltage drops from VS to VIH. We
can compute this duration from capacitor discharge dynamics (for example,

F IGURE 10.60 Charge leakage
from the memory capacitor for the
buffered memory element.

dIN

Store = 0 
CM

*
RP

dOUT
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see Equation 10.26). When a capacitor CM charged to an initial voltage VS
discharges through a resistor RP, its voltage vC as a function of time is given by
the following equation:

vC = VSe−t/RPCM .

The time taken for vC to drop from VS to VIH is given by

tVS→VIH = −RPCM ln
vIH

VS
.

As an example, suppose that CM = 1 pF, RP = 109 �, VS = 5 V, and
VIH = 4 V. Then tVS→VIH = 0.22 milliseconds.

10.7.4 A S T A T I C M E M O R Y E L E M E N T

The one-bit memory element that we have discussed thus far is called a dynamic
one-bit memory element or a dynamic D-latch. It is dynamic in the sense that it
stores a value written into it only for a finite amount of time (due to nonzero
parasitic resistances in practical implementations). The static one-bit memory
element or a static D-latch is another type of memory element that has the same
logic properties as the dynamic D-latch, but can store a value written into it
indefinitely.

Figure 10.61 shows one possible circuit for a static memory element. In this
circuit, a non-ideal switch with a very high ON resistance is connected between
the power supply and the storage node of the memory element. When the
output of the memory element is a logical 1, this switch is turned on and
introduces a small stream of charge into the storage node to offset any leakage.
Because it trickles charges into the node, this switch is called a trickle switch.
The ON resistance of the trickle switch is made very large compared to the
ON resistance of the store switch, so that the trickle input can be overridden
easily by the input dIN. A detailed circuit design of the static latch is beyond
the scope of this book. The interested reader is referred to ‘Principles of CMOS
VLSI Design,’ by Weste and Eshraghian.

dOUT
dIN

Store

CM

*

VS

F IGURE 10.61 Circuit
implementation of a static memory
element using a trickle switch.
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10.8 S U M M A R Y
� The first-order differential equations that result from applying KVL and

KCL to networks containing sources, resistors, and one energy-storage
element can be derived using the node method or the other approaches
described in Chapter 3. These differential equations can be solved by finding
the homogeneous solution and the particular solution.

� The response of RC circuits resembles rising or decaying exponentials with
the time constant RC. As an example, for a series RC circuit driven by a
voltage step of amplitude VI at t = 0, the capacitor voltage for t > 0 is
given by

vC(t) = VI + (VO − VI)e−t/RC

where VO is the initial voltage on the capacitor.
� In general, the response of a first order circuit (RC or RL) will be of the

form

vC = final value + (initial value − final value)e−t/time constant

where the time constant is RC for a resistor-capacitor circuit and L/R for an
resistor-inductor circuit. This form of the response in RC and RL circuits is
shared by other branch variables such as the capacitor or inductor current
and resistor voltage.

� Capacitors behave like open circuits when a circuit containing capacitors
is driven by a DC voltage source. Conversely, a capacitor behaves like
an instantaneous short circuit when inputs make an abrupt transition (for
example, a step). (If the capacitor voltage were nonzero, then the capacitor
would behave like a voltage source for abrupt transitions.)

� Inductors behave like short circuits when a circuit containing inductors is
driven by a DC current source. Conversely, an inductor behaves like an
instantaneous open circuit for inputs that make an abrupt transition (for
example, a step). (If the inductor current were nonzero, then it would
behave like a current source for abrupt transitions.)

� The zero-input response is the response of the system to the initial stored
energy, assuming no drive.

� The zero-state response is the the response to an applied drive signal, for
no initial stored energy.

� When the input signal is a short pulse (short compared to the time constant
of the circuit), the response is proportional to the area of the applied pulse
rather than to its height or shape.

� It is often convenient to break down a problem involving energy-storage ele-
ments into two parts. First, calculate the zero-input response, the response
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of the system to the initial stored energy, assuming no drive. Then calcu-
late the zero-state response, the response to the applied drive signal, for no
initial stored energy.

� If we restrict integral operations to t greater than zero, the zero-state
response of the integral of some input signal is the integral of the zero-
state response to that signal. The same is true for differentiation: The
response to a signal derived by differentiating an input can be obtained by
differentiating the output.

� The rise time for an output node is defined as the delay in rising from its
lowest value to a valid high (VOH) at that output.

� The fall time for an output node is defined as the delay in falling from its
highest value to a valid low (VOL) at the same output.

� The delay tpd,1→0 for an input-output terminal pair of a gate is the time
interval between a 1 to a 0 transition at the input to the moment that the
output reaches a corresponding valid output voltage level (VOH or VOL).

� The delay tpd,0→1 for an input-output terminal pair of a gate is the time
interval between a 0 to a 1 transition at the input to the moment that the
output reaches a corresponding valid output voltage level (VOL or VOH).

E X E R C I S E Se x e r c i s e 10.1 Using superposition, determine the current i1(t) for the network
shown in Figure 10.62. The network is at rest for t < 0.

i1(t) 1 H

vS (t) +- 3 kΩ iS (t)

iS (t)

vS (t)

1 mA

1 V

t

t

F IGURE 10.62

e x e r c i s e 10.2 Find and sketch the zero state response for t > 0 in
Figure 10.63. iS is a 10-mA step at t = 0. vR(t)iS 100 Ω 10 mH

+

-

iL(t)

F IGURE 10.63

e x e r c i s e 10.3 In the circuit in Figure 10.64, i(t) = 100 µA, 0 < t < 1 s, zero

i(t) 10 µF

+

-

vC

F IGURE 10.64

otherwise. At time t = 2, the voltage vC = 5 V. What is vC at time t = −1 s?

e x e r c i s e 10.4 In the circuit in Figure 10.65, the switch is closed at time t = 0
and opened at t = 1 second. Sketch vC(t) for all times.

100 µF

+

-

vC (t)

+
- 11 V 1 kΩ

10 kΩ

F IGURE 10.65

e x e r c i s e 10.5 Find and sketch the zero-input response for t > 0 in each
network in Figure 10.66 for the given initial conditions.
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e x e r c i s e 10.6 Find and sketch the response for t > 0 in each network in
Figure 10.67. Assume that the input is as shown for t > 0 , and assume an initial zero
state (in other words, show the zero state response).

e x e r c i s e 10.7 For the current source shown in Figure 10.68, assume iS
consists of a single rectangular current pulse of amplitude I0 amps and duration t0
seconds.

i

+
-

1 kΩ1 µF

v(0) = 6 V

1 kΩ

v

1 kΩ1 mH

1 kΩ

i(0) = 6 mA

i
1 kΩ1 mH

1 kΩ

Switch opens at t = 0

+

-
6 V

+
-

1 kΩ1 µF v

+

-
6 V

Switch opens at t = 0

(a)

(b)

(c)

(d)

F IGURE 10.66

a) Find the zero-state response to iS.

b) Sketch the zero-state response for the cases:

i) t0 � RC

ii) t0 = RC

iii) t0 	 RC

c) Show that for t0 	 RC, (the case of a short pulse), the response for t > t0 depends
only on the area of the pulse (I0t0), and not on i0 or t0 separately.

+
-

10 mH

1 µF

vA = 1 V, constant

100 Ω

v

iB = 1 µA, constant

10 kΩ

vA

vC = 10e−103
t

iD = (10−6)e−103
t

(a)

(b)

(c)

(d)

i
+
-

iB

1 mH

1 kΩ

vC

i
+
-

+

- .1 µF
viD

F IGURE 10.67

R
+

-
viS C

F IGURE 10.68

e x e r c i s e 10.8 Identify the state variable in each network in Figure 10.69. Write
the corresponding state equation and find the time constants.

e x e r c i s e 10.9 In the circuit in Figure 10.70, v(t) = 5 mV for 0 < t < 1 s, and
zero otherwise. At time t = 4 s, i(t) = 7 A. What is i(t) at time t = −1 s?

e x e r c i s e 10.10 Identify appropriate state variables for the network in
Figure 10.71 and write the state equations.

e x e r c i s e 10.11 In Figure 10.72, R1 = 1 k�, R2 = 2 k�, and C = 10 µF.
The driving voltage vS = 0 for t < 0. Assume vS is a 3-volt step at t = 0. Make a sketch
of vC(t) for t > 0. Be sure to label the dimensions of the voltage and time axes and
identify characteristic waveform shapes with suitable expressions.

e x e r c i s e 10.12 Identify state variables and write appropriate state equations
for the circuit in Figure 10.73.

e x e r c i s e 10.13 Referring to Figure 10.74, before the switch is closed, the
capacitor is charged to a voltage vS = 2 V. The switch is closed at t = 0. Find an
expression for vC(t) for t > 0. Sketch vC(t).
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e x e r c i s e 10.14 Find the time constant of the circuit shown in Figure 10.75.

e x e r c i s e 10.15 A two-input RC circuit is shown in Figure 10.76. (Parts a, b,
and c are independent questions.)

a) You should realize that the ‘‘bridge’’ of capacitors can be replaced by a single capacitor
in this problem. What is the value of the single equivalent capacitor?

b) Consider operation with iI(t) = 0 and vI(t) = 0 for t ≥ 0. The voltage vO(t) is known
to be 1 volt at a time t = 0. Determine vO(t) for all t > 0.

C

(a)

(b)

1 µF

(c)

(d)

R

L

R

i0

+
-v0

1 kΩ+
-

vC

1 kΩ

1 mH 1 kΩ+
-

v0

1 kΩ

F IGURE 10.69

L = 1 mH

+

-
v(t)

i(t)

F IGURE 10.70

C L
+
-

vS

R1 R2

F IGURE 10.71

C
+
-vS

R1 R2

+

-

vCvS

0, (t < 0)
3 V, (t ≥ 0)




=

F IGURE 10.72
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R1 L1 - M L2 - M
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F IGURE 10.73
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vC(t)V = 1 V
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-
C

F IGURE 10.74

1 µF
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-
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1 kΩ vS(t)

F IGURE 10.75

0.5 µF

iI(t)
+
-

1 kΩ

1 kΩ vI(t)

2 kΩ

+
-
vO

0.5 µF 1.5 µF

1.5 µF

F IGURE 10.76
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c) A different constraint is that sources iI(t) and vI(t) are zero for t < 0 and that
vO(0) = 0. Sources iI(t) and vI(t) undergo step transitions of +1 mA and +1 volt,
respectively, at time t = 0. Determine vO(t) for all time.

e x e r c i s e 10.16 In the circuit in Figure 10.77, R1 = 1 k�, R2 = 2 k�, and
C = 3 µF. Assume initial rest conditions (zero initial state), and assume that v1 has a
6-volt step at t = 0. Find v2(t) for t > 0. Sketch and label.

R2v1
+
− v2

R1 C

+

−

F IGURE 10.77

e x e r c i s e 10.17 Consider the circuit shown in Figure 10.78. Sketch and label
vO(t) for i1(t) a step as shown in Figure 10.79. Assume vO = 0 for t < 0.

R1
i1(t) vO4ib

C
+

−

ib

F IGURE 10.78

I

t

i1

F IGURE 10.79

e x e r c i s e 10.18 For the circuit shown in Figure 10.80, find the characteristic
equation and the zeroinput response assuming that the capacitor was initially charged
to 1 volt. Label your graph.R

vI(t)
+
- vO(t)

4R

C

+

-

F IGURE 10.80

e x e r c i s e 10.19 The excitation function for all four of the circuits shown in
Figure 10.81 is

vS(t) = 0, t < 0

vS(t) = 10 V, t ≥ 0.

For each of the circuits, select the time function on the right that corresponds in magni-
tude and shape to the output, vO(t). Assume that all capacitors and inductors have zero
initial states, (the appropriate state variable is zero for t less than zero). If no matching
response exists, say so and explain briefly. All responses are made up of ‘‘straight lines’’
and ‘‘exponentials.’’ You may choose a time function more than once. (Note that part
(d) shows an op-amp circuit. Op-amps will be covered in later chapters.)

e x e r c i s e 10.20 An RC network is shown in Figure 10.82. The voltage v and
the current i are constant for all time. Prior to t = 0, the circuit is in equilibrium with
the switch closed. At time t = 0, the switch is opened, and it is then closed some time
later. The waveform in Figure 10.83 is observed for vC(t).

What are the value of τ1, τ2, and the final value V1? (Note: The figure may not be to
scale.)
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iv +
-

vC(t)

2 kΩ 

1 µF+
-

1 kΩ
1 kΩ 

2 kΩ

switch

F IGURE 10.82

vC(t)

2 V

Switch open Switch closed

Time
constant τ1

V1 (Final value)
Time
constant τ2

t

F IGURE 10.83
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e x e r c i s e 10.21 In the two following cases in Figure 10.84 the input vIN(t) =
10u−1(t), a 10-V step16 starting at time t = 0. Give for each case:

a) The time constant of the circuit.

b) An analytic expression for the signal vOUT(t) as a function of time.

c) A labeled sketch of the output signal vOUT(t) as a function of time. Be sure to label
the time and voltage scales.

e x e r c i s e 10.22 In each of the following cases, find by inspection and give

1 MΩ

1 µF

+
-vIN(t)

+

-

vOUT(t)

(a)

1 mH500 Ω

+
-vIN(t)

+

-

vOUT(t)

(b)

500 Ω

F IGURE 10.84 i) an expression for the time constant τ ,

ii) a sketch of the signal versus time,

iii) an analytic expression for the signal in terms of τ and any other necessary
parameters.

a) Referring to Figure 10.85, find v(t) for t > 0 given i(t = 0) = I0.

L

i

R1

+

-

vR2

(a)

F IGURE 10.85
b) Referring to Figure 10.86, find i2(t) given i1(t = 0) = I0/2.

L1
i1

I0

R

L2

i2

(b)

F IGURE 10.86

c) Referring to Figure 10.87, find v(t) for t > 0 given that the switch is moved from
1 to 2 at t = 0.

(c)

C2

V0

R1 C1

R2
v
+

−

1

2+

−

F IGURE 10.87

e x e r c i s e 10.23 For the circuit in Figure 10.88, with no charge on the capacitor
at t = 0, given that if vI = Atu−1(t) then vC = [A(t − τ ) + Aτ e−t/τ ]u−1(t). Note that
u−1(t) represents a unit step at t = 0.

16. Recall that the notation u0(t) represents an impulse at time t . The notation un(t) represents
the function that results from differentiating the impulse times, and the notation u−n(t) represents
the function that results from integrating the impulse times. Thus u−1(t) represents the unit step
at time t, u−2(t) the ramp, and u1(t) the doublet at time t. The unit step u−1(t) is also commonly
represented as u(t), and the unit impulse u0(t) as δ(t).
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F IGURE 10.88

t

vCvI

tτ

F IGURE 10.89

Find the following:

a) vC(t) when the input is the same as previously given but vC(t = 0) = V0.

b) vC(t) when vC(0) = 0 and vI(t) = Bu−1(t). Note that u−1(t) represents a unit step
at t = 0.

c) vC(t) for t ≥ T when vC(0) = 0 and

vI(t) =




0 t ≤ 0
At 0 ≤ t ≤ T
AT T ≤ t.

e x e r c i s e 10.24 A digital memory element is implemented as illustrated in
Figure 10.90. Sketch the waveform at the output of the memory element for the input
signals shown in Figure 10.91. Assume that the switch is ideal and that the memory
element has a 0 stored in it initially.

dOUT
dIN

Store

CM

*
F IGURE 10.90

t

dIN

Store

dOUT

F IGURE 10.91
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P R O B L E M S p r o b l e m 10.1 Figure 10.92a illustrates an inverter INV1 driving another
inverter INV2. The corresponding equivalent circuit for the inverter pair is illustrated
in Figure 10.92b. A, B, and C represent logical values, and vA, vB, and vC represent
voltage levels. The equivalent circuit model for an inverter based on the SRC model of
the MOSFET is depicted in Figure 10.93.

INV1 INV2

(a)

A B C

vA

+

-+
-

+
- vB

vC

VS V
S

RL RL

(b)

F IGURE 10.92

a) Write expressions for the rise and fall times of INV1 for the circuit configuration
shown in Figure 10.92. Assume that the inverters satisfy the static discipline with
voltage thresholds VIL = VOL = VL and VIH = VOH = VH.
(Hint: The rise time of INV1 is the time vB requires to transition from the lowest
voltage reached by vB (given by the voltage divider action of RL and RON) to VH

for a VS to 0-V step transition at the input vA. Similarly, the fall time of INV1 is the
time vB requires to transition from the highest voltage reached by vB (that is, VS) to
VL for a 0-V to VS step transition at the input vA.)

b) What is the propagation delay tpd of INV1 in the circuit configuration shown in
Figure 10.92, for RON = 1 k�, RL = 10RON, CGS = 1 nF, VS = 5 V, VL = 1 V,
and VH = 3 V?

VS

vIN

C
GS

RON

RL

vOUT

vIN ≥ VT

VS

vIN

CGS

RL

vOUT

vIN < VT

F IGURE 10.93
p r o b l e m 10.2 The inverter-pair comprising INV1 and INV2 studied in Prob-
lem 10.1 (see Figure 10.92) drives another inverter INV3 as illustrated in Figure 10.94a.
Logically, the series connected pair of inverters INV1 and INV2 function as a buffer,
as depicted in Figure 10.94b. The equivalent circuit of the buffer circuit driving INV3
is illustrated in Figure 10.94c. For this problem, use the equivalent circuit model for
an inverter based on the SRC model of the MOSFET as depicted in Figure 10.93.
Assume further that each of the inverters satisfies the static discipline with voltage thresh-
olds VIL = VOL = VL and VIH = VOH = VH. Assume further that the MOSFET
threshold voltage is VT. (Note that to satisfy the static discipline, the following is true:
VL < VT < VH.)

a) Referring to Figure 10.94c, assume that the input to the buffer vA undergoes a step
transition from 0 V to VS at time t = 0. Write an expression for vB(t) for t ≥ 0
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INV1 INV2 INV3

(a)

BUF

BUF INV3

INV1

vA

VS

+

-
+-+-

+

-
vB vC

vD

VS
VS

INV2 INV3

RL RL RL

(c)

BUF

(b)

F IGURE 10.94

for the step transition in vA. (Hint: See the fall time calculation in Problem 10.1a.)
Sketch the form of vB for t ≥ 0.

b) Referring to Figure 10.94c, assume that the input to the buffer vA undergoes a step
transition from 0 V to VS at time t = 0. Write an expression for vC(t) for t ≥ 0
for the step transition in vA. (Hint: Refer to the sketch of vB drawn in part (a.) The
MOSFET in INV2 stays on for vB ≥ VT, and turns off when vB < VT.) Sketch the
form of vC(t) for t ≥ 0.

c) Write an expression for the rise time of the buffer for the circuit configuration shown
in Figure 10.94c. (Hint: Refer to the sketch of vC from part (b.) The rise time of the
buffer is the time vC requires to transition from the lowest voltage reached by vC to
VH from the time the input vA makes a step transition from 0 V to VS. Note that
the rise time of the buffer includes the internal buffer fall delay, which is the time
vB takes to transition from VS to VT, and the additional time vC takes to transition
from its lowest voltage to VH.)

d) Referring to Figure 10.94c, assume that the input to the buffer vA undergoes a step
transition from VS to 0 V at time t = 0. Write an expression for vB(t) for t ≥ 0 for
the step transition in vA. Sketch the form of vB for t ≥ 0.

e) Referring to Figure 10.94c, assume that the input to the buffer vA undergoes a step
transition from VS to 0 V at time t = 0. Write an expression for vC(t) for t ≥ 0
for the step transition in vA. (Hint: Refer to the sketch of vB drawn in part (d.) The
MOSFET in INV2 stays off for vB < VT, and turns on when vB ≥ VT.) Sketch the
form of vC(t) for t ≥ 0.

f) Write an expression for the fall time of the buffer for the circuit configuration shown
in Figure 10.94c. (Hint: Refer to the sketch of vC from part (e.) The fall time of the
buffer is the time vC requires to transition from VS to VL from the time the input
vA makes a step transition from VS to 0 V. Note that the fall time of the buffer is
the sum of two components: (1) the internal buffer rise delay, or the time vB takes
to transition from its lowest voltage to VT and (2) the additional time vC takes to
transition from VS to VL.)
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g) Compute the rise time and the fall time for the buffer assuming that RON = 1 k,
RL = 10RON, CGS = 1 nF, VS = 5 V, VL = 1 V, VT = 2 V, and VH = 3 V.

h) What is the propagation delay tpd of the buffer when the buffer output is connected
to a single inverter using an ideal wire as shown in Figure 10.94c?

i) Notice that unlike the delay calculation in Problem 10.1, we needed the value of VT

to obtain the buffer delay. Why was it necessary in the case of the buffer?

j) An approximate value for the buffer delay can be obtained by doubling the individual
inverter delay. Estimate the buffer delay by using the inverter delay computed in
Problem 10.1b. What is the percentage error in the value of this estimated delay as
compared to the accurate buffer delay computed in part (i) of this problem?

p r o b l e m 10.3 The circuit depicted in Figure 10.95 implements the logic func-
tion Z = (ABC + D)E. Suppose the output of this circuit drives an inverter with
a gate capacitance of CGS. Assume that the MOSFETs in the circuit have on resis-
tance RON, and that the high and low voltage thresholds are VIH = VOH = VH and
VIL = VOL = VL, respectively.

ZA

B

C

RL

D

E

VS

F IGURE 10.95 a) What combination of logical inputs will result in the worst-case fall time for the
circuit?

b) Derive an expression for the worst-case fall time in terms of VS, RL, RON, VL, and
VH. Not all variables need appear in your answer.

c) Derive an expression for the worst-case rise time.

p r o b l e m 10.4 Figure 10.96 illustrates an inverter INV A connected to another
inverter INV B by a wire of length l on a VLSI chip.

A l C

INVA INVB

DB

F IGURE 10.96

Figure 10.97 shows a lumped circuit model for the (nonideal) wire of length l in a VLSI
chip, and Figure 10.98 shows the equivalent circuit model for the inverter pair connected
by the nonideal wire based on the SRC model for the MOSFET. Assume that the logic
devices satisfy a static discipline with voltage thresholds given by VIL = VOL = VL and
VIH = VOH = VH, and that the supply voltage is VS.

B C
l

CB
lR0

lC0

F IGURE 10.97 Suppose INV A is driven by a 0 to 1 transition at its input (denoted vINA) at time t = 0.
Determine tpd,0→1, the propagation delay through INV A for a 0 to 1 transition at
its input. Recall that by our definition tpd,0→1 is the time taken by the input to INV B,
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VS

vINA

CGSA
RON

RL

VS

RON

RL

CGSB

vINB vOUTB

Cwire

Rwire

vOUTA

F IGURE 10.98

namely vINB, to fall from VS to VL following the 0 to 1 transition at the input of INV A.
Express your answer in terms of VS, VL, RON, CGS, the wire length l, and the wire
model parameters. By what factor does the delay increase for a 2× increase in the wire
length l?

p r o b l e m 10.5 Figure 10.99 illustrates an inverter INV A driving n other invert-
ers INV1 through INVn. As in Problem 10.1, each of the inverters is constructed

INV1

INV2

INV3

INVn

INVA

F IGURE 10.99

using a MOSFET and a resistor RL, and the inverters satisfy the static discipline with
voltage thresholds VIL = VOL = VL and VIH = VOH = VH. Model the MOSFETs
using the SRC model with MOSFET on resistance RON and gate capacitance CGS as in
Problem 10.1 (see Figure 10.93.)

a) What are the rise and fall times for INV A? (Hint: Sum the input capacitances of each
of the inverters into a single lumped value, and use your answer from Problem 10.1
to solve this part.) How does the rise time increase as the number of driven inverters
n increases?

INVA

INV1

INV2

INV3

INVn

wire
 1 

wire 2 

w
ire n

wire 3 

F IGURE 10.100

b) What is the propagation delay tpd of INV A in the circuit configuration shown in
Figure 10.99, for RON = 1 k�, RL = 10RON, CGS = 1 nF, VS = 5 V, VL = 1 V,
and VH = 3 V.

c) Now, assume that each of the wires connecting the output of INV A to each of the
inverters INV1 through INVn is nonideal as depicted in Figure 10.100. Model each
of the wires using the model shown in Figure 10.101. Assuming that the input of
INV A makes a step transition from 1 to 0, find the rise time at the input of any one
of the inverters INVi driven by INV A.

RW

CW

F IGURE 10.101

d) Compute the value of the rise time determined in part (c) for the following param-
eters: RON = 1 k�, RL = 10RON, CGS = 1 nF, RW = 100 �, CW = 10 nF,
VS = 5 V, VL = 1 V, and VH = 3 V.

p r o b l e m 10.6 As can be seen from the answer to Problem 10.4, long wires
have a serious negative impact on the delay. One way to alleviate the wire delay
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problem is to introduce buffers when driving long wires, as illustrated in Figure 10.102.
Assume that the buffer is constructed as depicted in Figure 10.94c using a pair of invert-
ers identical to the inverters in this problem. In other words, the input of a buffer
has a capacitance CGS to ground, and the output of a buffer have the same drive
characteristics as an inverter output. For this problem, you will ignore the internal
delay of the buffer. (See Problem 10.2c and f for a definition of the internal buffer
delay.) In other words, assume that a buffer driving zero output capacitance has zero
delay.

By introducing a buffer, the effective length of wire driven by either the inverter INV A
or the buffer is l/2. For large l, given the nonlinear relationship between wire length and
delay, the sum of the delays in driving the two l/2 wire segments is smaller than driving
a single wire segment of length l.

F IGURE 10.102 A B C D

INVA INVB

l
2
--- l

2
---

a) Compute the propagation delay between the input of INV A and the input of INV B
for the circuit in Figure 10.102. Assume that rising transitions are longer than falling
transitions at the output of either the inverters or the buffers.

(Hint: The total delay from the input of INV A to the output of INV B is the sum
of the following two quantities: (1) the propagation delay of INV A driving the wire
segment of length l/2 and a capacitance CGS corresponding to the gate capacitance
of the buffer, and (2) the propagation delay of the buffer driving the second wire
segment of length l/2 and a capacitance CGS corresponding to the gate capacitance
of INV B. Remember, the buffer has zero delay when it is driving zero output
capacitance.)

b) Figure 10.103 shows a circuit in which n−1 buffers are introduced between INV A
and INV B. INV A and each of the buffers drives a segment of wire of length l/n.
Compute the propagation delay between the input of INV A and the input of INV B
for this case.

F IGURE 10.103 A B C D

INVA INVB

l
n
---

B1

l
n
---

l
n
---… l

n
---

B2 ... Bn-1

c) Determine the number of buffers for which the propagation delay for the circuit in
Figure 10.103 is minimized.
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p r o b l e m 10.7 Figure 10.104 shows a buffer BUF1 driving a large load capacitor
CL. The buffer is built using an inverter pair as in Figure 10.94c. The width-to-length
ratio of each NMOS transistor in the buffer is W/L and the resistors have a value RL.
Accordingly, the gate capacitance seen at the input of the buffer is given by (W/L)CGS.
The buffer satisfies a static discipline with voltage thresholds given by VIL = VOL = VL

and VIH = VOH = VH. The supply voltage is VS. Assume that the internal buffer delay

BUF1

CL

A

W
L
----- RL,

F IGURE 10.104

(as defined in Problem 10.2c) is zero. Assume that there is a 0 to 1 transition at the input
A at time t = 0.

a) Compute the propagation delay for the buffer BUF1 driving the load CL for the
rising transition at the input A.

b) Now consider Figure 10.105. This figure shows the use of a second buffer with
larger transistors and smaller valued load resistors (x > 1) interposed between the
first buffer and the load capacitor. Compute the propagation delay for the buffer
BUF1 in series with BUF2 driving the load CL for the rising transition at the input
A. Assuming that CL is much larger than the input gate capacitances of the two
buffers, and that x > 1, is the delay computed in part (b) greater than or less than
the delay computed in part (a)?

BUF1

CL

A

BUF2

W
L
----- RL,

xW
L
-----

RL

x
------,

F IGURE 10.105

c) Consider Figure 10.106. This figure shows the use of a series of n buffers in which
BUFi has transistors that have a width x times that of BUFi − 1 and resistors that
are a factor x smaller than that of BUFi − 1. n is chosen such that CL is x times the
gate capacitance of BUFn. In other words, n satisfies the equation:

CL = xn W

L
CGS.

Compute the propagation delay for the sequence of n buffers driving the load CL

for the rising transition at the input A. As before, assume that CL is larger than the
input gate capacitances of each of the buffers and that x > 1.

BUF1

CL

BUF2 BUF3 BUFn

W
L
----- RL,

A

xW
L
-----

RL
x----, x2 W

L
-----

RL

x2
-----, xn–1 W

L
-----

RL

xn–1------------,

...

F IGURE 10.106
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c) Determine the value of x for which the propagation delay computed in part (b) is
minimized.

p r o b l e m 10.8 In this problem, you will study the effect of parasitic inductances
in VLSI packages. VLSI chips are sealed inside plastic or ceramic packages and connec-
tions to certain nodes of their internal circuitry (for example, power supply, ground,
input nodes, and output nodes) need to be extended outside the package. These exten-
sions are commonly accomplished by first connecting the internal node to a metallic
‘‘pad’’ on the VLSI chip. In turn, the pad is connected to one end of a package ‘‘pin’’
using a wire that is bonded to the pad at one end and the pin at the other. The package
pin, which extends outside the package, is commonly connected to external connections
using a PC board.

Together the package pin, the bond wire, and the internal chip wire are associated
with a nonzero parasitic inductance. In this problem, we will study the effect of the
parasitic inductance associated with power supply connections. Figure 10.107 shows
a model of our situation. Two inverters with load resistors R1 and R2 and MOSFETs
with width-to-length ratios W1/L1 and W2/L2, respectively, are connected to the same
power supply node on the chip that is labeled with a voltage vP. Ideally this chip-level
power supply node would be extended with an ideal wire outside the chip to the external
power supply VS shown in Figure 10.107. However, notice the parasitic inductance LP

interposed between the power supply node on the chip (marked with voltage vP) and
the external power supply node (marked with voltage VS.)

F IGURE 10.107

vP

C

VS

LP

R2
R1

A B = 0 
W1

L1
------ W2

L2
------

t
t0

0 V

vA

5 V

Assume that the input B is 0 V at all times. Assume further that the input A has 0 V
applied to it initially. At time t = t0, a 5-V step is applied at the input A. Plot the form
of vP as a function of time. Clearly show the value of vP just prior to t0 and just after t0.
Assume that the ON resistance of a MOSFET is given by the relation (W/L)Rn and that
MOSFET’s threshold voltage is VT < VS. Also assume that VT < 5 V.
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F IGURE 10.109

p r o b l e m 10.9 A certain box, known to contain only linear elements (and no
independent sources), is connected as shown in Figure 10.108.

The current waveform i(t) has the form shown in Figure 10.109.

The voltage v is zero for all t < 0, and is 1 volt for 0 < t < 2. What is v during the
interval from t = 2 to t = 5? Show one simple possibility for the circuit in the box.

p r o b l e m 10.10 As illustrated in Figure 10.110, a capacitor and resistor can be
used to filter or smooth the waveforms we derived from a half-wave rectifier, to get
something closer to a DC voltage at the output, for use in a power supply, for example.

V

0

vS

t1 t2 t1

time

vOC

+

-

vS

+

-

R F IGURE 10.110

For simplicity, assume the voltage from source vS is a square wave. Assume that at t = 0,
vO = 0, that is, the circuit is at rest. Now assuming that R is small enough to make
the circuit time constant much smaller than t1 or t2, calculate the voltage waveforms for
each half cycle of the input wave. Find the average value of the output voltage vO for
t1 = t2. Sketch the waveforms carefully. For this choice of R, it should be clear that no
useful smoothing has been accomplished.

p r o b l e m 10.11 For R much larger than the value used in Problem 10.10, so
that the circuit time constant is much larger than t1 or t2, (so that the exponentials can be
approximated by straight lines) calculate vO for the first half cycle of vS, and the second
half cycle. Sketch the result. Note that the solution does not return to the initial point
of vO = 0 after one cycle, so is not in the ‘‘steady state’’ yet.
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p r o b l e m 10.12 You can see from Problem 10.10 that for circuit time constant
τ � t1 and t2 the capacitor voltage starts from some value Vmin and increases when
vS is positive; then when vS is zero, vO starts at some value Vmax and decreases. By
definition, the ‘‘steady state’’ of the circuit is when vO charges from Vmin to Vmax, then
discharges from Vmax to the same Vmin. Assuming t1 = t2, sketch the vO waveform in
the steady state.

Find the average value of the voltage vO. Problem 10.11 may give you a hint. Explain
your answer. It may help to consider the waveform vS to be made up of a DC
voltage V/2 and a symmetrical square wave whose values alternate between +V/2
and −V/2.

p r o b l e m 10.13 This problem (see Figure 10.111) involves a capacitor and two
switches. The switches are periodically driven by external clock controls at frequency f0
such that first S1 is closed and S2 is open for time 1

2f0
, and then S2 is closed and S1 open

for time 1
2f0

.

F IGURE 10.111 vA

Closed

S2C
Time

Switch statesS1

+
-

iA
S1

Open

1
f0
-----

Closed

Time

S2

Open

You can assume that the clock drives are non-overlapping; that is, S1 and S2 are never
both closed at the same instant. S1 opens just before S2 closes, and S2 opens just before
S1 closes.

a) Find an effective average current iA by determining the average rate of charge transfer
over several clock cycles. Suppose vA = A cos(ωt) where ω 	 2π f0. Sketch iA and
vA on the same axes.

b) Examine your results for iA and vA from part (a). They should be in phase, and the
amplitude of iA should be proportional to the amplitude of vA. This is a funny form
of ‘‘resistor.’’ What is the ‘‘resistor’’ value? Where does the energy supplied by vA

actually go?

(Comment: Circuits of this type are now commonly used in a type of MOS integrated
circuit to make elements that simulate resistors with precisely controlled values. The
value of such elements is that precise control of capacitor sizes and clock frequencies is
easy in MOS integrated circuits, but precise control of resistor values is hard.)
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p r o b l e m 10.14 State variables can be used to describe the behavior of a wide
range of physical systems. For each of the examples below, try to determine the
following:

i) The number of state variables that are needed to describe the system, that is, how
many state variables.

ii) Which physical variables can serve as state variables.

iii) The form of the state equations, including the identification of inputs.

iv) A simple circuit that can represent the system (an electrical analog.)

Here are the examples:

a) A hockey puck leaves a hockey player’s stick with velocity v0 and slides along the
ice until it comes to rest (assume a very large hockey rink, or a very weak shot.)

b) Halfway through your shower each morning, the water temperature suddenly
plunges toward freezing, presumably because your roommates were up earlier and
showered first.

c) A simple pendulum starts from rest with an initial angular displacement �0, and
rocks back and forth until it eventually comes to rest.

(COMMENT: Part (a) is easy if you concentrate only on the velocity, and is more difficult
in terms of the circuit analogy if you include the position as well. Parts (b) and (c) lend
themselves to excellent descriptions with circuit analogs.)

p r o b l e m 10.15 Figure 10.112 shows the use of a filter choke. LoadFilter choke

L

vS

i
+
- R

Source

F IGURE 10.112
Assume that the waveform for vS for parts (a) and (b) is a series of square pulses starting
at t = 0 as shown in Figure 10.113.

Assume that the waveform for vS for parts (c) and (d) is a half-rectified sine wave as
shown in Figure 10.114.

V0 -

0

vS

t1 t2 t1

Pulse continues

t1 t1 + t2 ... etc. t

F IGURE 10.113
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F IGURE 10.114

V0 -

vS

Continues

t3 2t3 ... t3t3 etc.

a) Assume initial rest conditions at t = 0−, and assume that both t1 and t2 are long
compared to the time constant of the network. Determine each of the following:

i) Calculate the current waveform for the first cycle (0 ≤ t < t1 + t2), the second
cycle [(t1 + t2) ≤ t < 2(t1 + t2)], and a typical cycle after stead-state periodic
conditions have been reached.

ii) How many cycles are required to go from initial rest to steady-state conditions?

iii) In steady state, determine the average load current, the amplitude of the varia-
tions in load current through one cycle, the average energy stored in the inductor,
and the ratio of this stored energy to the energy dissipated in the load during
one complete cycle.

b) Repeat part (a) for the case where both t1 and t2 are short compared to the time
constant of the network.

c) Now assume that as a filter designer, you are faced with the problem of selecting
the inductor value to produce relatively smooth, ripple-free current in a load from a
voltage source with a strongly pulsating value, such as the half-wave rectified sine
wave shown in Figure 10.114. What method would you use to specify the inductor
value with which to achieve a specified maximum variation in load current? Why
might the specifications of a huge L value, much larger than might be needed, be a
poor design?

d) Try your hand at a design: Assume that the source waveform is half-wave rectified
60 hz 115 V AC, the load resistor is 16.2 �, and it is desired to have a load current
ripple of 5% of the average load current. Make reasonable approximations.

p r o b l e m 10.16 Consider the circuit shown in Figure 10.115.

a) Plot vR and vC for several cycles of the indicated input waveform. Assume the RC
time constant is 10t1.
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vC

+

-

vI
+
-

R
VP -

0

vI

t1 tt1

vR+ -

C

F IGURE 10.115

b) During the first several cycles, the vC waveform does not repeat, but after some
time, vC is cyclic. Find and sketch this cyclic waveform. Dimension key values.

p r o b l e m 10.17 Referring to Figure 10.116, for vI = Kt, a ramp starting at
t = 0, find expressions for vR and vL. Plot the waveforms.

Kt

0

vI

t

vR

+

-

vI
+
-

R

vL+ -

L

F IGURE 10.116

p r o b l e m 10.18 Referring to Figure 10.117, given an initial inductor current
iL(0) = 1 mA, find the expression for vR and vL. Plot the waveforms.

p r o b l e m 10.19 The purpose of this problem is to illustrate the important fact
that although the zero-state response of a linear circuit is a linear function of its input, the
complete response is not. Consider the linear circuit shown in Figure 10.118.

a) Let i(0) = 2 mA. Let i1 and i2 be the responses resulting from voltages e1 and e2

applied one at a time, where

e1 =
{

0, t < 0
10 volts, t ≥ 0

(10.185)

e2 =
{

0, t < 0
20 volts, t ≥ 0.

(10.186)

Plot i1 and i2 as functions of t. Is it true that i2(t) = 2i1(t) for all t ≥ 0?

vR

+ -

IS R
K1t

VS

t

vL

+

-

L2R

VS
iL+

- 2R
K2t

IS

t

F IGURE 10.117

e1

R = 5 kΩ

i+
-

+
-

e2

L = 1 mH

F IGURE 10.118
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b) Consider now the zero-state responses due to e1 and e2; call them i′1(t) and i′2(t).
Plot i′1 and i′2 as functions of t. Is it true that i′2(t) = 2i′1(t) for all t ≥ 0?

p r o b l e m 10.20 In the circuit shown in Figure 10.119, the switch opens at
t = 0. Sketch and label iL(t) and vL(t).

F IGURE 10.119 v1

R1

+
- L v2

+
-

R2

v1 = 5 V v2 = 3 V, R1 = 2 k�, R2 = 3 k�, L = 4 mH

p r o b l e m 10.21 A two-input RC circuit is shown in Figure 10.120.

F IGURE 10.120 R1 = 1 kΩ 

R3 = 2 kΩ 

+

-
vO

0.5 µF

iI(t) vI(t)
+
-

R2 = 1 kΩ 

0.5 µF

0.5 µF0.5 µF

Consider operation with iI(t) = 0, vI(t) = 0 for t ≥ 0. The voltage vO(t) is known to be
1 volt at time t = 0. Determine vO(t) for all t > 0.

A different constraint is that sources iI(t) and vI(t) are zero for t < 0 and that vO(0) = 0.
Sources iI(t) and vI(t) undergo step transitions of +1 mA and +1 volt respectively, at
time t = 0. Determine vO(t) for all time.

p r o b l e m 10.22 The neon bulb in the circuit shown in Figure 10.121 has the
following behavior: The bulb remains off and acts as an open circuit until the bulb voltage
v reaches a threshold voltage VT = 65 V. Once v reaches VT, a discharge occurs and
the bulb acts like a simple resistor of value RN = 1 k�; the discharge is maintained as
long as the bulb current i remains above the value IS = 10 mA needed to sustain the
discharge (even if the voltage v drops below VT.) As soon as i drops below 10 mA, the
bulb again becomes an open circuit.

a) Sketch and dimension v(t) and i(t), showing the first and second charging intervals.

b) Estimate the flashing rate.
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90 V

R = 1 MΩ 

v

i
+

-

+

-
C = 10 µF

Neon
bulb

F IGURE 10.121

p r o b l e m 10.23 Because of the input resistance and capacitance of an oscillo-
scope, laboratory observations of transients, such as the step response of the R1 − C1

circuit in Figure 10.122 may have errors in them.

vB

+

-

R2

R1

C1 C2
vA

+
-

Unit
step

Displayed
on scope

Circuit being tested Scope input impedance

F IGURE 10.122

a) Assuming that the effect of connecting the oscilloscope to the circuit under test is
to add R2 and C2 as shown in Figure 10.122, find and sketch the step response
that will be observed at vB in this circuit. Discuss the errors introduced by the
scope by comparing your result to what would be observed if the scope were ideal
(R2 → ∞, C2 → 0.) Assume zero initial state.

b) A common method of coping with the errors of part (a) is to use a compensated
attenuator in series with the scope (see in Figure 10.123.) For simplicity, we examine
what the compensated scope displays when it is connected directly to the unit step
without the R1 − C1 circuit of part (a). Assume zero initial state before the step is
applied.

i) What is vB immediately after the step is applied, that is, at t = 0+?

ii) What is vB as t → ∞?

vB

+

-

R2

R3

C2
vA

+
-

Unit
step

Displayed
on scope

Compensated Scope input

C3

attenuator impedance

F IGURE 10.123
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iii) Using your results, find vB(t) for all t.

iv) What conditions on R2, C2, R3, and C3 must be satisfied in order that there
be no natural response component, that is, no transient, in vB(t)? What is vB(t)
in this case?

p r o b l e m 10.24 The RL circuit shown in Figure 10.124 is driven with the ramp
vI(t) = K1t, for t greater than zero, and vI(t) = 0, t < 0.

vI(t)
R

L
+
-

iL(t)

vI(t)

t

K1t

F IGURE 10.124

a) Assuming iL(0−) = 0, sketch the current iL(t). Also find an analytic expression for
iL(t).

b) In some applications, such as generating a linear sweep for a magnetically deflected
cathode-ray tube, we want to make iL(t) a linear ramp as shown in Figure 10.125.

iL(t)

t

iL(t) = K2t

F IGURE 10.125

Find a new input waveform vI(t) such that iL(t) = K2t, t > 0. Plot vI(t). Label all
values and slopes.

p r o b l e m 10.25 For the RL circuit shown in Figure 10.126, sketch and label vR

versus time for t > 0. Assume iL(t < 0) = 0, and that T1 is five times as long as the
circuit time constant.

F IGURE 10.126
vI

R
L+

-

iL

vI

0 t
T1

Area = A 

A
re

a 
=

 A
 

p r o b l e m 10.26 With the capacitor initially at rest (vC(0) = 0) and discon-
nected, the switch is closed to position (1) at time t = 0 in Figure 10.127.

a) Sketch the waveform vC(t) for t > 0. Label all relevant points on Figure 10.127 and
calculate the time constant.

F IGURE 10.127
vC(t)

+

-
R3

R1

CV
+
- R2

1 2

t = 0 
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b) At a time T > 0 (at least five time constants later), the switch is thrown (instan-
taneously) to position (2). Sketch vC(t) for t > T and label all relevant points on
Figure 10.127

c) With R1 = R2 = R3, is the time constant in part (a) greater than, less than, or equal
to the time constant in part (b)?

p r o b l e m 10.27 For the circuit shown in Figure 10.128, sketch and label vR

versus time. Assume that vI = K1 for a long time prior to t = 0 as illustrated in the

vI R
C

+
-

vR

+

-

vI

t

K3t

K1

K2

F IGURE 10.128

figure.

Note that this problem can be solved in a number of simple steps by breaking the problem
down into parts and solving each part. There are several ways to do this breakdown, all
of roughly equal ease.

p r o b l e m 10.28 You are given the RC circuit shown in Figure 10.129.

a) Suppose you observe that vO(t) is a triangular pulse, as shown in the sketch in
Figure 10.130. Find and draw the waveform vI(t) that must be applied to produce
this output signal. Label times and magnitudes, and significant parameters of the
function.

b) Now the input signal is changed. You apply a ramp starting at t = 0, vI(t) = tu−1(t),
as the input signal vI(t). (Note that u−1(t) represents a unit step at t = 0.) Sketch
and label the output signal vO(t) for 0 < t < 5.

vI(t)

1 MΩ 

+
- vO(t)

+

-

1 µF

F IGURE 10.129

c) Give an analytic expression for the output signal vO(t) you sketched in (b).

vO (V)

t (s)-10 10-5 5

-5

5

F IGURE 10.130

p r o b l e m 10.29 Consider the digital memory element shown in Figure 10.131.
The voltage at the storage node with respect to ground is denoted vM. The figure also
shows a parasitic resistance RP from the storage node to ground. This resistance will
cause a leakage of the charge stored in the memory.

The signal A is fed to an inverter and the inverter drives the input dIN of the mem-
ory element. All inverters shown in Figure 10.131 have a load resistor RL and the on
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F IGURE 10.131
dOUTdIN

Store

CM

vM
A

RP

resistance of the pulldown MOSFETs in each of the inverters is RON. Assume that the
on resistance of the switch driven by the Store signal is also RON. The supply voltage is
VS and the threshold voltage for the MOSFETs is VT. In doing this problem, assume
that RP is much larger than either RON or RL.

a) Suppose that a 0-V to VS-step is applied at the Store input of the memory element
at t = 0. Sketch vM(t) for t ≥ 0, assuming that vM(t = 0) = 0, and that A is at
0 V throughout. Assuming that RON 	 RP, what is the maximum value attained
by vM?

b) Suppose, now, that a rectangular pulse of height VS is applied at the Store input of the
memory element, and that A is at 0 V throughout. The rising transition of the pulse
occurs at t = 0 and the falling transition at t = T. Determine the minimum value of
the pulse width T so that vM can charge up to VH, where VH = VIH = VOH, the
high voltage threshold of the static discipline. Assume the following: vM(t = 0) = 0;
VH < VS; VH > VT.

c) Let us now consider the case in which A is at VS throughout, and vM(t = 0) = VS.
Sketch vM(t) for t ≥ 0, when a 0-V to VS-step is applied at the Store input of the
memory element at t = 0. What is the minimum value attained by vM?

d) Suppose, now, that a rectangular pulse of height VS is applied at the Store input
of the memory element. The rising transition of the pulse occurs at t = 0 and the
falling transition at t = T. Determine the minimum value of the pulse width T so
that vM can discharge from VS to VL, where VL = VIL = VOL, the low voltage
threshold of the static discipline. Assume as in (c) that A is at VS throughout and
that vM(t = 0) = VS. Assume further that VL < VT and that VL is greater than the
minimum value attainable by vM.

e) Suppose the memory element is storing a 1 (assume vM = VS) at t = 0 and that
Store = 0. Assuming that no further Store signals occur, determine the period of
time for which the output (dOUT) of the memory element will be valid. (Hint: the
output becomes invalid when dOUT switches from 1 to 0.)
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energy and power in

d ig i t a l c i rcu i t s 11
Digital circuits form the basis of a large number of battery-powered appliances
used in our day to day life, including cell phones, beepers, digital watches, cal-
culators, and laptop computers. A battery of a given weight and size stores a
fixed amount of energy. The amount of time that the battery will last before
requiring a replacement or a recharge depends on the amount of energy con-
sumed by the device. Similarly, the heat generated by a device depends on
its energy consumption rate, or power dissipation. Thus, both the amount of
energy consumed by a device and the rate of energy consumption are critical
issues in the design of circuits.

11.1 P O W E R A N D E N E R G Y R E L A T I O N S F O R
A S I M P L E R C C I R C U I T

Let us first develop the power and energy relations for the simple RC circuit
shown in Figure 11.1. Assume that the switch is closed at time t = 0 connecting
the voltage source to the RC network. Further, assume that the capacitor has
zero charge on it initially.

We know that the power delivered to a two-terminal element at any given
instant of time t with a voltage v(t) across it and a current i(t) through it is given by

p(t) = v(t)i(t) (11.1)

where the current i(t) is defined to be positive if it enters the element at the
terminal with the positive voltage. Power is delivered to the element if i(t) is
positive, for example, in a resistor or a charging capacitor. A resistor dissipates

C

vC
R

V
+

-

F IGURE 11.1 Energy drawn
from a power source by a simple
RC circuit.

595
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energy, while a capacitor stores it. Power is delivered by an element if i(t) is
negative, for example, in a battery or in a discharging capacitor.

Referring to Figure 11.1, when the switch is closed, the voltage source
begins to charge the capacitor C through the resistor R. What is the instanta-
neous power drawn from the voltage source? The instantaneous power drawn
from the voltage source is given by

p(t) = Vi(t) (11.2)

where

i(t) = V − vC(t)

R
. (11.3)

Using the equations derived for capacitor charging dynamics in Section 10.4,
we can write

vC = V(1 − e
−t
RC ) (11.4)

Substituting the expression for vC from Equation 11.4 into Equation 11.3, and
that for i(t) from Equation 11.3 into Equation 11.2, we get

p(t) = V2

R
e

−t
RC . (11.5)

What is the total amount of energy supplied by the voltage source if the
switch is closed for a long period of time? Since power is the rate at which
energy is supplied, the energy w supplied over an interval of time 0 → T, is
given by

w =
∫ T

0
p(t)dt. (11.6)

The total amount of energy supplied by the voltage source can be obtained by
taking the limit as T goes to ∞.

Thus, the total amount of energy supplied by the voltage source as T goes
to ∞ is given by

w =
∫ t = ∞

t = 0

V2

R
e

−t
RC dt

= −V2

R
RCe

−t
RC

∣∣∣∣∣
t = ∞

t = 0

= CV2.
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What is the amount of energy stored in the capacitor when T goes to ∞?
After a long period of time, the capacitor will charge up to the voltage V. From
Equation 9.18, the amount of energy stored on a capacitor with a voltage V
across it is given by 1/2CV2.

What is the amount of energy dissipated by the resistor? Since the voltage
source supplies an amount of energy equal to CV2, and the amount of energy
stored in the capacitor is 1/2CV2, the remaining half of the energy supplied by
the voltage source must have been dissipated in the resistor. We can verify this
by explicitly computing the energy dissipated in the resistor as follows. The
instantaneous power for the resistor is given by

p(t) = i(t)2R

=
(

V

R
e

−t
RC

)2

R

= V2

R
e

−2t
RC .

The energy dissipated in the resistor over the interval t = 0 to t = ∞ is
given by

w =
∫ t = ∞

t = 0

V2

R
e

−2t
RC dt

= −V2

R

RC

2
e

−2t
RC

∣∣∣∣∣
t = ∞

t =

= −V2C

2
e

−2t
RC

∣∣∣∣∣
t = ∞

t = 0

= 1

2
CV2.

Interestingly, notice that if the transients are allowed to settle, the total energy
dissipated in the resistor when charging a capacitor is independent of its
resistance value. The same is true when discharging a capacitor through a
resistor.

11.2 A V E R A G E P O W E R I N A N R C C I R C U I T

Let us now derive the average power dissipated by the slightly more compli-
cated circuit depicted in Figure 11.2 comprising two resistors and a capacitor
connected to a voltage source through a switch. Assume that a square wave
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F IGURE 11.2 An RC circuit with
a switch.

C

vC
R1

V
+

-
R2

S

S

T1 T2

Switch
closed

Switch
open

T

signal S with a cycle time of T such as that shown in Figure 11.2 controls the
switch, so that the switch is closed for an interval T1, then open for an inter-
val T2, and so on. When the switch is closed, the voltage source charges up
the capacitor. The capacitor discharges through resistor R2 when the switch is
open. We will be particularly interested in the special case where the T1 and
T2 intervals are large enough that the capacitor voltages during each of the
intervals T1 and T2 reach their respective steady state values.

As current flows through the resistors, energy is dissipated. However, the
capacitor does not dissipate energy. It simply stores energy when the switch
is closed (during T1) and supplies this stored energy when the switch is open
(during T2). We can derive the instantaneous power p(t) dissipated in the circuit
as a function of time. We can also derive the average power p dissipated by the
circuit.

The average power is defined as the total amount of energy w dissipated during
some time interval, divided by the length of the time interval T.

In other words,

p = w

T
.

More specifically, if w1 is the energy dissipated during the interval T1 and w2 is
the energy dissipated during the interval T2, then the average power dissipated
in the circuit is given by

p = w1 + w2

T
. (11.7)
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C

vC
R1

V R2

+

-

F IGURE 11.3 Equivalent circuit with the
switch closed.

C

vC
RTH = R1||R2

VTH

+

-VTH =
V R2 

R1+R2

F IGURE 11.4 Thévenin equivalent circuit
with the switch closed.

We will also use the fact that the energy dissipated within some interval of
time is the time integral of the instantaneous power within that interval. For
example, the energy dissipated within the time interval T is given by

wT =
∫ t=T

t=0
p(t)dt. (11.8)

11.2.1 E N E R G Y D I S S I P A T E D D U R I N G I N T E R V A L T1

Let us first consider the case when the switch is closed and derive the value of w1.
When the switch is closed, the circuit shown in Figure 11.3 applies.

To compute the energy dissipated by the circuit, we first need to determine
the currents through the resistors R1 and R2. To facilitate the computation of
the currents, let us first determine vC. To simplify the calculation of vC, we
transform the circuit shown in Figure 11.3 to its Thévenin equivalent shown in
Figure 11.4. We assume that time t starts from 0 at the moment that the signal
S transitions from low to high. From the circuit in Figure 11.4, we can write an
expression for the voltage vC as

vC = VTH

(
1 − e

−t
RTHC

)
.

We will be particularly interested in the special case in which t → ∞. When
t → ∞, vC → VTH.

We are now ready to determine the instantaneous power dissipated in the
circuit when the switch is closed. In general, we cannot use the Thévenin equiv-
alent circuit to determine the power consumed in the original circuit because the
power computation is a nonlinear process. Therefore, returning to the circuit in
Figure 11.3, the instantaneous power dissipated by the circuit when the switch
is closed is given by the sum of the power dissipated in resistors R1 and R2.
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Recalling that the power dissipated in a resistance R with a voltage v across it
is v2/R, we can write

p(t) = Power in R1 + Power in R2

= (V − vC)2

R1
+ v2

C

R2

= [V − VTH(1 − e
−t

RTHC )]2
R1

+ [VTH(1 − e
−t

RTHC )]2
R2

.

We are now in a position to derive the energy dissipated in the circuit using the
relationship from Equation 11.8.

w1 =
∫ t=T1

t=0




[
V − VTH(1 − e

−t
RTHC )

]2

R1
+

[
VTH(1 − e

−t
RTHC )

]2

R2


 dt,

which yields:

w1 = V2
TH

R2

[
t − RTHC

2
e

−2t
RTHC + 2RTHCe

−t
RTHC

]t = T1

t = 0

+ 1

R1

[
(V − VTH)2t − V2

TH
RTHC

2
e

−2t
RTHC − 2(V − VTH)VTHRTHCe

−t
RTHC

]t = T1

t = 0

= V2
TH

R2

[
T1 − RTHC

2
e

−2T1
RTHC + 2RTHCe

−T1
RTHC

]

− V2
TH

R2

[
−RTHC

2
+ 2RTHC

]

+ 1

R1

[
(V − VTH)2T1 − V2

TH
RTHC

2
e

−2T1
RTHC − 2(V − VTH)VTHRTHCe

−T1
RTHC

]

− 1

R1

[
−V2

TH
RTHC

2
− 2(V − VTH)VTHRTHC

]
.
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Separating the terms containing a T1 factor, we get

w1 = V2T1

R1 + R2
+ V2

TH

R2

[
−RTHC

2
e

−2T1
RTHC + 2RTHCe

−T1
RTHC

]

− V2
TH

R2

[
−RTHC

2
+ 2RTHC

]

+ 1

R1

[
−V2

TH
RTHC

2
e

−2T1
RTHC − 2(V − VTH)VTHRTHCe

−T1
RTHC

]

− 1

R1

[
−V2

TH
RTHC

2
− 2(V − VTH)VTHRTHC

]
.

Rearranging and simplifying,

w1 = V2T1

R1 + R2
+ CV2

TH

2

(
1 − e

−2T1
RTHC

)
. (11.9)

When T1 � RTHC, the capacitor can be assumed to charge up to its steady-
state value of VTH, and e−2T1/RTHC → 0. In this situation, the above expression
for w1 simplifies to:

w1 = V2

R1 + R2
T1 + V2

THC

2
(11.10)

where

VTH = VR2

R1 + R2
.

11.2.2 E N E R G Y D I S S I P A T E D D U R I N G I N T E R V A L T2

Now, let us consider the second interval T2 in which the switch is off. During
T2, the capacitor discharges through the resistor R2. For simplicity, let us
assume the special case considered in the previous section in which T1 � RTHC.
In this case, at the start of the second interval, the capacitor will have an initial

C

vC

R2

F IGURE 11.5 Equivalent circuit
with the switch open.

voltage of VTH across it.
As in the previous section, let us first determine vC. When the switch is

off, the circuit shown in Figure 11.5 applies. For this derivation we assume



602 C H A P T E R E L E V E N e n e r g y a n d p o w e r i n d i g i t a l c i r c u i t s

that time t starts from 0 at the moment that the signal S transitions from high
to low. Since the initial voltage on the capacitor is VTH, the voltage vC is
given by

vC = VTHe
−t

R2C .

Notice that as t → ∞, the capacitor voltage vC → 0.
We are now ready to determine the instantaneous power dissipated in the

circuit when the switch is open. The instantaneous power dissipated in resistor
R2 is given by

p(t) = v 2
C

R2

= 1

R2

(
VTHe

−t
R2C

)2

.

The corresponding energy consumed during T2 is given by

w2 =
∫ t = T2

t = 0
p(t)dt (11.11)

=
∫ t = T2

t = 0

v 2
C

R2
dt (11.12)

=
∫ t = T2

t = 0

1

R2

(
VTHe

−t
R2C

)2

(11.13)

= −1

2R2
V2

THR2Ce
−2t
R2C

∣∣∣∣
t = T2

t = 0
(11.14)

= V2
THC

2

(
1 − e

−2T2
R2C

)
. (11.15)

When T2 � R2C, we can ignore the second term in the above equation and
write:

w2 = V2
THC

2
. (11.16)
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11.2.3 T O T A L E N E R G Y D I S S I P A T E D

Combining Equations 11.10 and 11.16, for the case of T1 � RTHC and
T2 � R2C we obtain the total energy dissipated in a cycle T:

w = w1 + w2 = V2

R1 + R2
T1 + V2

THC

2
+ V2

THC

2
.

Combining terms, we get

w = V2

R1 + R2
T1 + V2

THC.

Dividing by T we get the average power p:

p = V2

(R1 + R2)

T1

T
+ V2

THC

T
. (11.17)

For a symmetric square wave, T1 = T/2, so Equation 11.17 simplifies to:

p = V2

2(R1 + R2)
+ V2

THC

T
. (11.18)

Equation 11.18 shows that the average power is the sum of two terms. The
first term is independent of the time period of the square wave and is called the
static power pstatic. It can be computed independently by removing all capacitors
and inductors from the circuit (in other words, replace the capacitors with open
circuits and inductors with short circuits). The second term is related to the
charging and discharging of the capacitor, and depends on the time period
of the square wave. This term is called the dynamic power pdynamic. In other
words,

pstatic = V2

2(R1 + R2)
(11.19)

pdynamic = V2
THC

T
. (11.20)

Notice that if the switch were kept closed for a long period of time, no
dynamic power is dissipated in the steady state. Notice further that the dynamic
power dissipation is proportional to the capacitor value, the switching fre-
quency, and the square of the voltage, but independent of the resistance
value.
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11.3 P O W E R D I S S I P A T I O N I N L O G I C G A T E S

Let us now compute the power dissipated by our logic gates using the inverter
as an example. The inverter is shown in Figure 11.6 driving a load capacitor. The

vIN

vOUT

RL

CL

VS

F IGURE 11.6 Inverter with load
capacitor.

load capacitor CL is the sum of the wire capacitance and the gate capacitances
of the devices driven by the inverter.

As mentioned earlier, there are two different forms of power dissi-
pated by a MOSFET inverter of the type shown in Figure 11.6 static power
and dynamic power.

� The static power dissipation pstatic is the power loss due to the static or
continuous current drawn from the power supply. It is independent of the
rate at which signals transition. (It can depend, however, on the state of
the input signals.)

� The dynamic power dissipation pdynamic is the power loss due to the
switching currents required to charge and discharge capacitors. As we
saw previously, this component of power depends on the rate at which
signals transition.

11.3.1 S T A T I C P O W E R D I S S I P A T I O N

Let us first compute the static power dissipated in an inverter. The static
power can be determined by removing all capacitive and inductive elements
from the circuit (remember, this means that we replace capacitors with open
circuits and inductors with short circuits). Accordingly, we will assume that
CL = 0 for our static power calculation. When the MOSFET in the inverter is
turned on, a resistive path exists between power and ground. So current flows
through RL and the on resistance of the MOSFET, RON, causing static power
dissipation:

pstatic = V2
S

RL + RON
. (11.21)

Notice that static power is dissipated only in gates that are on.1 When the
MOSFET in the inverter is off, the static power dissipation is zero. Thus,
Equation 11.21 reflects the worst-case static power dissipation.

The static power dissipation of a circuit depends on the particular set
of applied inputs. When the inputs are not known, there are several ways
of estimating static power dissipation. One estimate attempts to compute the
worst-case power dissipation of a circuit. In this method, choose the set of

1. In practice, there are other sources of static power loss, such as that due to leakage currents, but for
simplicity we will ignore these.
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inputs that results in the worst-case power dissipation for the circuit. For the
simple inverter, this estimate is the power dissipated when the input is a logical 1
and the MOSFET is on, for example, as computed in Equation 11.21. Another
estimate is statistical, and is based on determining the expected power over
all possible input sets. Each input set is assigned an occurrence probability and
the power for that input set is determined. Then the expected power is com-
puted by averaging the power for each set of inputs weighted by the occurrence
probability for that input set. Yet another estimate assumes that each input to
the circuit is a square wave comprising an alternating sequence of logical 1’s
and 0’s.

e x a m p l e 11.1 s t a t i c p o w e r d i s s i p a t i o n Let us compute
the worst-case static power dissipation for the logic gate in Figure 11.7. The worst case

A

B

C D

RL

VS

F IGURE 11.7 Worst-case static
power dissipation in a logic gate.

dissipation occurs when all the inputs are high. Suppose RL = 100 k� and RON =
10 k� for each of the MOSFETs. Also assume that VS = 5 V.

When all the inputs are high, the effective resistance Reff between power and
ground is

Reff = RL + (2RON‖RON‖RON).

In other words, Reff = 104 k�. The maximum static power dissipation is

pstatic = V2
S

Reff
= 25/104 = 0.24 mW = 240 µW. (11.22)

11.3.2 T O T A L P O W E R D I S S I P A T I O N

Let us now compute the total power dissipated in the inverter when a time-
varying input signal is applied. The total power will include both the static
power and the dynamic power. Dynamic power dissipation results from the
transient currents that flow through the resistors to charge and discharge the
capacitor, as depicted in Figures 11.8 and 11.9.

Suppose we have a square-wave signal input to the inverter representing
a sequence of alternating 1’s and 0’s. Let the time period of the square wave
be T. Therefore, the frequency of the square wave is f = 1/T. As depicted in
Figure 11.8, when the input voltage is low, the MOSFET is off, and the load
capacitor CL is charged up to VS by the power supply through the resistor RL.
As suggested in Figure 11.9, when the input signal is high, the MOSFET is on,
and the capacitor discharges through the on resistance of the MOSFET. After a
long time, the voltage on the load capacitor will reach the steady state value of
VSRON/(RON + RL). Assume that the period of the input square wave is long
enough for the capacitor to charge and discharge completely.
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VS

vIN vOUT

RL

CL

F IGURE 11.8 Charging the load capacitor.

VS

vIN

vOUT

RL

CL

F IGURE 11.9 Discharging the load capacitor.

We will derive the average total power consumed by the inverter as in the
example in Section 11.2. Let us denote the high part of the input signal as T1
and the low part of the signal as T2. Similarly, let w1 be the energy dissipated
during the interval T1 and w2 the energy dissipated during the interval T2. Then
the average power dissipated in the circuit is given by

p = w1 + w2

T
.

Energy Dissipated During Interval T1

Let us first consider the case when the input to the MOSFET switch is high
and the switch is closed, and derive the value of w1. When the switch is closed,
the situation corresponds to that shown in Figure 11.9 and the circuit shown
in Figure 11.10 applies. Figure 11.11 shows the Thévenin equivalent for this
circuit.

For the circuit shown in Figure 11.11, vC is given by the following expres-
sion (assuming that time t starts from 0 at the moment that the input signal

CL

vC
RL

VS
RON

+

-

F IGURE 11.10 Equivalent circuit for the
inverter with the MOSFET switch closed.

CL

vC
RTH =  RL||RON

VTH

+

-
VTH = RL+RON

VS RON

F IGURE 11.11 Thévenin equivalent circuit for the
inverter with the switch closed.
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transitions from low to high):

vC = VTH + (VS − VTH)e
−t

RTHCL .

By substituting t = 0, we can verify that the capacitor is initially charged to
VS when the MOSFET just turns on. Similarly, by substituting t = ∞, we can
confirm that the final voltage on the capacitor is VTH.

The rest of the derivation for w1 follows the steps in Section 11.2. When
T1 � RTHCL, we obtain the following simplified expression for w1:

w1 = V2
S

RL + RON
T1 + V2

SR2
LCL

2(RL + RON)2
. (11.23)

Energy Dissipated During Interval T2

Now, let us consider the second interval T2 in which the input signal is low
and the switch is off. During T2, the capacitor charges through the resistor RL.
The initial voltage on the capacitor is VTH.

As in the previous section, let us first determine vC. When the switch
is off, the circuit shown in Figure 11.12 applies. Since the initial voltage on

CL

vC
RL

VS

+

-

F IGURE 11.12 Equivalent
circuit with the switch open for the
inverter.

the capacitor is VTH and the final voltage is VS, we can write the following
expression for vC:

vC = VTH + (VS − VTH)

(
1 − e

−t
RLCL

)
.

Notice that as t → ∞, the capacitor voltage vC → VS. Similarly, for t = 0, the
capacitor voltage is VTH.

Following the derivation in Section 11.2, we can derive the following
expression for w2 when T2 � RLCL:

w2 = V2
SR2

LCL

2(RL + RON)2
.

Total Energy Dissipated

Combining the expressions for w1 and w2, we obtain total energy dissipated
by the inverter in a cycle:

w = w1 + w2 = V2
S

RL + RON
T1 + V2

SR2
LCL

2(RL + RON)2
+ V2

SR2
LCL

2(RL + RON)2
.
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In other words,

w = V2
S

RL + RON
T1 + V2

SR2
LCL

(RL + RON)2
.

Dividing by T we get the average power p:

p = V2
S

(RL + RON)

T1

T
+ V2

SR2
LCL

(RL + RON)2T
. (11.24)

For asymmetric square wave, T1 = T/2, so Equation 11.24 simplifies to:

p = V2
S

2(RL + RON)
+ V2

SR2
LCL

(RL + RON)2T
. (11.25)

As expected, Equation 11.25 shows that the average power is the sum of a
static component2 and a dynamic component as indicated by the following
equations:

pstatic = V2
S

2(RL + RON)
(11.26)

pdynamic = V2
SR2

LCL

(RL + RON)2T
. (11.27)

Notice that the dynamic power dissipated is proportional to the frequency with
which the input signal transitions. Not surprisingly, high-performance chips
that clock at high frequencies dissipate a lot of power. Also notice that the
power is related to the square of the supply voltage. As clock speeds of VLSI
chips increase, power considerations are causing manufacturers to continually
reduce the supply voltages. Whereas 5-volt power supplies were the norm in
the 80s, voltages closer to 3 volts have been the norm in the 90s, and supplies
closer to 1.5 volts have been commonplace after the year 2000.

It is instructive to compare the relative values of the static and dynamic
power. To do so, we take the ratio of the static and dynamic power as follows:

pstatic

pdynamic
= V2

S

2(RL + RON)
× (RL + RON)2T

V2
SR2

LCL
.

2. The static power for the inverter computed here (Equation 11.26) is half that in Equation 11.21
because here we are assuming that the input is a symmetric square wave, while Equation 11.21
presented the worst case.
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Simplifying and rearranging, we get

pstatic

pdynamic
= RL + RON

RL
× T

2RLCL
. (11.28)

Since for normal operation of the digital gate, T � RLCL, we see that pstatic �
pdynamic. Thus, it becomes imperative to minimize the static power.

e x a m p l e 11.2 d y n a m i c p o w e r d i s s i p a t i o n Let us com-
pute the worst-case dynamic power dissipation for the logic gate in Figure 11.7 using
Equation 11.27 under the following conditions:

� The load capacitor driven by the output of the gate has a value of CL =
0.01 pF.

� The clock frequency f = 1/T at which signals transition is 10 MHz. In other words,
an input cannot change at a rate greater then 10 MHz.

� The power supply voltage VS is 5 V.

� RL = 100 k� and RON = 10 k� for each of the MOSFETs.

Equation 11.27 applies when T/2 � RTHCL and T/2 � RLCL. First, let us confirm
that these relationships hold. Since RL is greater than RTH, it is sufficient to verify
that T/2 � RLCL. For the parameters supplied, T/2 = 1/(20 × 106) = 50 ns and
RLCL = 100×103 ×0.01×10−12 = 1 ns. Clearly, the circuit time constants are much
smaller than the signal intervals.

To obtain the worst-case dynamic power dissipation, we assume that the load capacitor
is charged and discharged every cycle. Under these conditions, Equation 11.27 gives the
formula for the worst-case dynamic power (with RON replaced by RONpd, where RONpd
is the resistance of the pulldown network). We rewrite this equation here by replacing
RON in the equation with the resistance of the pulldown network RONpd:

pdynamic = V2
SR2

LCL

(RL + RONpd)2T
.

Since it is clear from the formula that the dynamic power is maximized when RONpd is
minimized, we assume that all the pulldown MOSFETs are turned on when the clock
signal goes high. Accordingly, if the on resistance for a MOSFET is RON, we must use
the following value for RONpd:

RONpd = (2RON‖RON‖RON).
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We also assume that all the input signals switch at the clock frequency. Thus the worst-
case power dissipation is given by

pdynamic = 52 × (100 × 103)2 × 0.01 × 10−12 × 10 × 106

(100 × 103 + 4 × 103)2

= 2.3 µW.

Observe that for our example, the static power dissipation (from Equation 11.22) is
nearly 100 times larger than the dynamic power dissipation.

e x a m p l e 11.3 t o t a l p o w e r d i s s i p a t i o n i n a m o s

i n v e r t e r The inverter shown in Figure 11.13 drives a load capacitor CL that
models the gate-to-source and interconnect capacitances of the immediate downstream
circuitry. We wish to approximate the average power dissipated in the inverter given
that the input voltage vIN is a 100-MHz square wave. In doing so, we assume that the
MOSFET on-state resistance RON satisfies RON � RPU.

Since RON � RPU, the output voltage rises much more slowly than it falls. The time
constant for the rising transient is RPUCL = 1 ns, which is much smaller than a half
period of the input square wave. Therefore, all inverter transients fully settle, and the
power dissipated in the inverter may be approximated as the sum of a static dissipation
plus a dynamic dissipation.

The static dissipation occurs when the MOSFET is on. The instantaneous value of this
dissipation is approximately V2

S/RPU = 22.5 µW because RON � RPU. However, since
the MOSFET is on only half the time, the average static power dissipation is 11.25 µW.

The dynamic dissipation is caused by the repeated charging and discharging of CL. The
energy CLV2

S/2 is lost during both the charging and discharging of the capacitor. Thus,
the dynamic loss is CLV2

Sf = 1.125 µW, where f = 100 MHz is the switching frequency
of the input voltage.

Finally, the total average power dissipated is 12.375 µW, with the static dissipation
being the dominant component of this loss.

F IGURE 11.13 An inverter
driving a load capacitor. +

-vIN(t) CL = 10 fF

VS = 1.5 V

RPU = 100 kΩ vOUT(t)
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11.4 N M O S L O G I C

The pullup device that we have been using thus far (and seen previously in
Section 6.11) in our digital gates is a resistor (for example, see the inverter in
Figure 11.6). In practice, we do not really use resistors as we know them they
would take up too much area. Rather, as displayed in Figure 11.14), we might
use another MOSFET with its gate connected to a second supply voltage VA,
where VA is at least one threshold voltage higher that the supply voltage VS.
This way, the pullup MOSFET remains in its ON state for any voltage between
0 and VS applied at its source. (b)

VS

(a)

VS

RL
VA

F IGURE 11.14 A MOS pullup
device.

This style of building logic gates using n-channel MOSFETs for both the
pullups and the pulldowns is called NMOS logic.3 The RON of the pullup
serves as the load resistor. The gate length of the pullup MOSFET is sized to
be larger relative to the pulldown MOSFET, so the static discipline is satisfied
(see Section 6.11). The power and energy calculations of Section 11.3 apply to
NMOS devices with RON of the pullup replacing the load resistor RL in the
analyses.

11.5 C M O S L O G I C

Logic gates in the NMOS logic family dissipate static power even when the
circuit is idle. In the example discussed earlier, the static power was nearly 100
times larger than the power associated with signal activity. Because the pullup
MOSFET is always on, the cause of the static power dissipation is the resistive
path from the power supply to ground when the pulldown MOSFET is on.
In this section, we introduce another type of logic called CMOS or Comple-
mentary MOS, which has no static power dissipation. Because of its low static
power dissipation,4 CMOS logic has all but replaced NMOS in modern VLSI
chips.

CMOS logic makes use of a complementary MOSFET called the
p-channel MOSFET or the PFET.5 The n-channel MOSFET that we have

NFET symbol

D

S

G

D

S

G

OFF State

vGS < VTn

D

S

G
RONn

ON State

vGS ≥ VTn

F IGURE 11.15 The switch-
resistor model of the n-channel
MOSFET or the NFET.

dealt with thus far is called an NFET. The symbols and the SR circuit models
for the NFET and PFET are shown in Figures 11.15 and 11.16, respectively.
As we saw previously in Section 6.6, the NFET turns on when its vGS ≥ VTn.

3. NMOS logic families actually use a special kind of pullup called a depletion-mode MOSFET,
which has a negative threshold voltage. The MOSFETs that we have been dealing with thus far
are called enhancement-mode MOSFETs. The depletion-mode MOSFET is used as a pullup with
its gate connected to its source instead of the power supply. One of its advantages is that it does
not require a second supply voltage.

4. Although the static power for CMOS is significantly lower than NMOS, sources of static power
loss still remain, such as leakage currents.

5. We saw the p-channel MOSFET briefly in the context of amplifiers in Chapter 7 in Example 7.7.
Here we will focus on its use in digital circuits.
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When it is on, a resistance RONn appears between its drain and source. In
contrast, the PFET turns on when its vGS ≤ VTp. VTp is usually negative (for
example, −1 volt). When it is on, a resistance RONp appears between its drain
and source. The drain terminal of the PFET is chosen as the terminal with the
lower voltage. In contrast, the channel terminal of the NFET with the higher

D

S

G RONp

ON state

vGS ≤ VTp

PFET symbol
D

S

G

D

S

G

OFF state

vGS > VTp

F IGURE 11.16 The switch-
resistor model of the p-channel
MOSFET or the PFET.

voltage is labeled as the drain.
As an example, an NFET with a threshold voltage VTn = 1 V turns on

when the voltage between its gate and source is raised above 1 V. A PFET with
a threshold voltage VTp = −1 V turns on when the voltage between its gate
and source is lowered below −1 V. In other words, the PFET turns on when
the voltage between its source and gate is raised above 1 V.

A CMOS inverter is shown in Figure 11.17. When the input voltage is high
(vIN = VS), the NFET is ON and the PFET is off, resulting in a low output
voltage. When the input voltage is low (vIN = 0), the NFET turns off and the
PFET turns on, resulting in a high output voltage.

CMOS logic does not suffer static power dissipation. Referring to
Figure 11.17, provided the input vIN is at VS or 0, notice that the two com-
plementary MOSFETs are never on at the same time. Thus, there is never any
direct resistive path from the power supply to ground. Hence there is no static
power dissipation.

VS

vIN
vOUT

PFET

NFET

G

D

S

S

D

G

F IGURE 11.17 CMOS inverter
circuit.

e x a m p l e 11.4 p o w e r d i s s i p a t i o n i n a c m o s i n v -

e r t e r Let us compute the dynamic power dissipated in the CMOS inverter. The
CMOS inverter does not suffer from static power loss, since at any instant of time, either
the pullup or the pulldown device is off, thereby precluding any continuous current flow.

The circuit model of the inverter using the SR MOSFET models for the PFET and the
NFET is shown in Figure 11.18. As the model shows, no current flows directly from VS

to ground for either a high or a low input signal.

Let us assume that a square-wave signal such as a clock with time period T is fed to the
input of the inverter as shown in Figure 11.19. Further assume that the inverter drives
a load capacitor CL. We shall compute the power dissipated by the inverter for this
signal. A signal that transitions every cycle will result in the worst-case dynamic power
dissipation.

During the first half of the cycle, the load capacitor CL is discharged, and during the
second half of the cycle, it is charged up to the supply voltage. Since static and dynamic
currents don’t flow simultaneously in CMOS devices, we can compute the average
dynamic power dissipated using the following very simple method.

Recall that the average power dissipated is defined as the energy dissipated in a cycle
divided by the cycle time T. During the low half cycle of the input signal, a quantity
of charge equal to QL is transferred from the power source to the capacitor. Assuming
that the cycle time of the input signal is large enough for the capacitor to charge up to
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VS

vIN

vOUT

CLT

T/2

F IGURE 11.19 CMOS inverter power dissipation.

the supply voltage,

VS

vOUT

(a)  vIN low

RONP

RONN

VS

vOUT

(b)  vIN high

RONN

RONP

F IGURE 11.18 CMOS inverter
model.

Q L = C LVS.

Then, during the second half cycle, the same charge is transferred from the capacitor to
ground. Effectively, a charge Q L is transferred from the power source to ground during
each cycle. The amount of energy lost during this transfer is given by VSQ L. We divide
this quantity by T to obtain the average power. Thus,

pdynamic = VSQ L/T (11.29)

= VSC LVS/T (11.30)

= fC LV2
S (11.31)

where f is the frequency of the square wave signal.

We can also derive the same answer from first principles as follows. The time-average
dynamic power dissipated is the product of the power supply voltage and the average
current supplied by the power supply. In other words,

pdynamic = VS
1

T

∫ T

0
i(t)dt

where VS is the DC power supply voltage and i(t) is the current supplied by the power
source as a function of time.

Figure 11.20 shows the situation where the input signal is low (second half cycle) and

VS

vOUT

i

CL

RONp

F IGURE 11.20 Load capacitor
charging.

the load capacitor is charging up through the on resistance of the PFET. Figure 11.21
shows the situation where the input signal is high (first half cycle) and the load capacitor
discharges to ground through the on resistance of the NFET.
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Because the pullup switch is off in the first half cycle (when the input is high), notice that
the power supply directly provides a current only during the second half cycle (when
the input is low). Therefore, power is delivered by the power supply only during the
interval T/2 → T. Thus,

pdynamic = VS
1

T

∫ T

T/2
i(t)dt. (11.32)

If Q(t) is the charge on the capacitor as a function of time, we have

vOUT

CL
RONn

i

F IGURE 11.21 Load capacitor
discharging.

i(t) = dQ(t)

dt
.

Therefore

pdynamic = VS
1

T

∫ T

T/2

dQ(t)

dt
dt. (11.33)

Furthermore, we know that

Q(t) = CLvOUT(t)

where vOUT(t) is the voltage across the load capacitor as a function of time. Differenti-
ating both sides with respect to t, we get

dQ(t)

dt
= CL

dvOUT(t)

dt
.

Substituting for dQ(t)/dt in Equation 11.33 and observing that vOUT rises from 0 to VS

during the second half cycle, we obtain:

pdynamic = VSCL
1

T

∫ VS

0
dvOUT (11.34)

= VSCL
1

T
VS (11.35)

= V2
SCL

T
. (11.36)

The dynamic power dissipated by the CMOS inverter is therefore V2
SCL/T. If T = 1/f,

the dynamic power dissipated by the CMOS inverter is fV2
SCL.

In reality, it is difficult to obtain instantaneous input rise and fall times. When the rise and
fall times are finite, there will a short period of time in the middle of an input transition
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t

iT

t

vIN

F IGURE 11.22 Static power
loss due to nonzero signal rise and
fall times.

interval (for example, when vIN = 2.5 V) in which both MOSFETs will be turned on,
resulting in a current path from the power supply to ground. This transient switching
current, iT, depicted in Figure 11.22 is another source of dynamic power loss, but we
ignore it in our analyses.

e x a m p l e 11.5 p o w e r d i s s i p a t i o n i n a n o t h e r c m o s

i n v e r t e r The circuit shown in Figure 11.23 is the same as that shown in
Figure 11.13 except that the inverter in Figure 11.23 is a CMOS inverter. As in Exam-
ple 11.3, we wish to approximate the average power dissipated in the inverter given
that vIN is a 100-MHz square wave. Again, we will assume that the on-state resis-
tance of both MOSFETs is so small that the switching transients of the inverter fully
settle.

Because the two MOSFETs in Figure 11.23 are never on at the same time, the CMOS
inverter does not exhibit static dissipation. This a major advantage of CMOS logic over
NMOS logic. The only dissipation is dynamic dissipation, which is the same as for the

vIN

vOUT

+

-

CL

VS = 1.5 V

10 fF

F IGURE 11.23 CMOS inverter
driving a load capacitor.

inverter in Example 11.3 because VS, CL, and f are all the same. Thus the average power
dissipated in the CMOS inverter is 1.125 µW.

e x a m p l e 11.6 p o w e r c o n s u m e d b y a m i c r o p r o -

c e s s o r In this example, we will estimate the average power consumed by a
microprocessor based on the simple formula developed in Equation 11.31. The Raw
microprocessor designed at MIT using IBM’s 180-nm, SA27E CMOS technology pro-
cess, had about 3 million gates (assume each gate is equivalent to a 2-input NAND gate)
and clocked at 425 MHz. Assume each gate offered a load capacitance of approximately
30-nF, and the nominal supply voltage is 1.5 V. Assume further that approximately 25%
of the gates switch values in a given cycle.
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Substituting the values from the Raw microprocessor into Equation 11.31, we obtain
the dynamic power consumed by the entire chip as

(Fraction Switching) × (#Gates) × fCLV2
S

= 0.25 × (3 × 106) × (425 × 106) × (30 × 10−15) × 1.52

= 21.5 W.

11.5.1 C M O S L O G I C G A T E D E S I G N

How do we build logic gates such as NANDs and NORs using CMOS tech-
nology? Let us look at a few examples and then generalize to arbitrary logic
functions. We have already seen one example the inverter. The CMOS

VS VS

A

B

C

A

B

F IGURE 11.24 CMOS NAND
gate.

inverter comprised a pulldown NFET and a pullup PFET.

a b c

0 0 1

0 1 1

1 0 1

1 1 0

TABLE 11.1 Truth table.

CMOS NAND Gate

As you can verify, the circuit in Figure 11.24 implements a logic function with
the truth table shown in Table 11.1. This is the truth table for a NAND gate.
Notice that pulldown circuit comprising two series-connected NFETs is the
same as in the NMOS logic implementation. The pullup circuit performs a com-
plementary function and comprises parallel-connected PFETs. In other words,
the pullup is off when the pulldown circuit is on, and vice versa. There is no
static power dissipation in this gate.

CMOS NOR Gate

Similarly, we can verify that the circuit in Figure 11.25 implements the truth
table for a NOR gate as shown in Table 11.2.

VS

A

B

C

B

A

F IGURE 11.25 CMOS NOR
gate.

The two pulldown NFETs are connected in parallel as in the corresponding
NMOS implementation. The PFET pullups are series connected to form the
complementary network.

Other Logic Functions

As evident from the previous examples, CMOS logic gates can be visualized as
comprising two complementary modules: the familiar pulldown circuit com-
prising NFETs, and a complementary pullup module using PFETs. If we are
interested in implementing the logic function f, the NFET pulldown network is
designed so it offers a short circuit when f is FALSE and an open circuit when
f is TRUE. Similarly, the PFET pullup network is designed so it offers a short
circuit when f is TRUE and an open circuit when f is FALSE. Thus, the CMOS
implementation of logic function f will assume the form shown in Figure 11.26.
In the figure, f̄ is the complement of f. In other words,

f̄ = NOTf.
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Let us construct a CMOS circuit for the function a b c

0 0 1

0 1 0

1 0 0

1 1 0

TABLE 11.2 Truth table.

f(A, B, C) = (A + B)C.

Assume that the inputs are available in both their TRUE and complement forms.
In the CMOS circuit, the pulldown network must be on when f is FALSE.
Similarly, we must construct a complementary pullup circuit f̄ that is off when
f is on. Let us derive an expression for f̄ :

f (A, B, C) = (A + B)C (11.37)

= (AB) C (11.38)

= AB + C (11.39)

= AB + C. (11.40)

An application of the ideas in Figure 11.26 leads to the circuit in Figure 11.27.
We can verify that the circuit indeed correctly implements the logic by
developing its truth table and comparing it to that of f.

VS

I1
I2

IN

OUT

f

f

F IGURE 11.26 CMOS configuration to implement the logic function f.

VS

A

B

A

Out

C

C

B

F IGURE 11.27 CMOS
implementation of
f(A, B, C) = (A + B)C.
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11.6 S U M M A R Y
� We began this chapter by analyzing the power and energy dissipated in first-

order resistor-capacitor networks driven by voltage-step inputs. The results
of this analysis were then used to determine the losses in NMOS logic gates.
Most importantly, we observed that, if the transients in NMOS logic gates
are allowed to settle, then the average power dissipated in the gates could
be decomposed into two parts: static losses and dynamic losses. Static
loss results when a pull-up resistor is connected across the power supply
by one or more closed MOSFETs. Dynamic loss results from the repeated
charging and discharging of the MOSFET gate-to-source capacitances, and
hence increases linearly with switching speed. We further observed that in
NMOS logic gates in which the switching transients settle, the static losses
are always much larger than the dynamic losses. Finally, this observation
motivated the development of CMOS logic gates, which do not exhibit
static losses. CMOS logic is therefore much more energy efficient that
NMOS logic.

� The dynamic power loss in a CMOS gate driving other CMOS gates was
found to be

CV2f ,

where C is the total driven downstream capacitance, V is the power sup-
ply voltage, and f is the switching frequency. As digital circuits become
ever faster, this loss increases linearly with f. Therefore, in order to
reduce dynamic losses, and hence reduce the associated thermal man-
agement problems, CMOS logic circuits are built from MOSFETs having
ever decreasing gate-to-source capacitances, and are built to operate from
ever decreasing power supply voltages.6 Also, circuits that are not in use are
now commonly shut down to avoid dynamic losses.

E X E R C I S E S e x e r c i s e 11 .1 An inverter built using an NMOS transistor and a resistor RL

drives a capacitance CL. The power supply voltage is VS and the on resistance of the
MOSFET is RON. The threshold voltage for the MOSFET is VT. Assume that logical
0’s are represented using 0 V and logical 1’s using VS volts.

a) Determine the steady-state power consumed by the inverter when a 0 is applied to
its input.

b) Determine the steady-state power consumed by the inverter when a 1 is applied to
its input.

6. As of 2004, for example, commonly available technology processes use power supply voltages
of 1 V to 1.5 V.
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c) Determine the static power and the dynamic power consumed by the inverter when
a sequence of the form 01010101 . . . is applied to its input. Assume that signal
transitions (0 to 1, or 1 to 0) happen every T seconds. Assume further than T is
much greater than the circuit time constant.

d) Assuming the input in part(c), by what factor does the dynamic power decrease if
(i) T is increased by a factor of 2, (ii) VS is decreased by a factor 2, and (iii) CL is
decreased by a factor 2?

e) Suppose that the inverter must satisfy a static discipline with high and low voltage
thresholds VIH = VOH = VH = VOL = VL, respectively. You are given a MOSFET
with on resistance RON and threshold VT. Assume that VL < VT < VH < VS

choose a value for RL in terms of the other circuit parameters such that the power
consumed by the inverter is minimized.

e x e r c i s e 11 .2 Determine f̄ for the following functions. Express your answer
in a simplified sum of products form (Hint: use De Morgan’s laws.)

a) f = A − B

b) f = A + B

c) f = A + B

e x e r c i s e 11 .3 Give a CMOS implementation (using NMOS and PMOS tran-
sistors only) of the following logic functions. In doing these exercises, is the value of the
on resistance of the MOSFETs needed? Why or why not?

a) f = A − B

b) f = A + B

c) f = A + B

e x e r c i s e 11 .4 Write a truth table and a boolean expression that describes the
operation of each of the digital circuits in Figure 11.28.

VS VS VS VS

A

B

A B A B A B A B
Z

C

C

(a)

A

B

Z

C

C

(b)

A

B

Z

C

C

(c)

DD D

DDD A

B

Z

C

C

(d)

F IGURE 11.28
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P R O B L E M S p r o b l e m 11.1 This problem examines the power dissipated by a small digital
logic circuit. The circuit comprises a series-connected inverter and NOR gate as shown
in Figure 11.29. The circuit has two inputs, A and B, and one output, Z. The inputs are
assumed to be periodic with period T4 as shown in Figure 11.29. Assume that RON for
each MOSFET is zero.

F IGURE 11.29

A B

VS VS

RL RL

CLCG

Z

t

t

A

B

0 V 

5 V 

0 V 

5 V 

T1

  T2

  T3

T4

a) Sketch and clearly label the waveform for the output Z for 0 ≤ t ≤ T4. In doing so,
assume that CG and CL are both zero.

b) Derive the time-average static power consumed by the circuit in terms of VS, RL, T1,
T2, T3, and T4. Here, time-average power is defined as the total energy dissipated
by the gate during the period 0 ≤ t ≤ T4 divided by T4.

c) Now assume that CG and CL are nonzero. Derive the time-average dynamic power
consumed by the circuit in terms of VS, RL, CG, CL, T1, T2, T3, and T4. In doing
so, assume that the circuit-time constants are all much smaller than T1, T2 − T1,
T3 − T2, and T4 − T3.

d) Evaluate the time-average static and dynamic powers for VS = 5 V, RL = 10 k�,
CG = 100 fF, CL = 1 pF, T1 = 100 ns, T2 = 200 ns, T3 = 300 ns, and
T4 = 600 ns.
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e) What is the amount of energy consumed by the circuit in 1 minute for the parameters
in part (d)?

f) By what percentage does the total time-average power consumption drop if the
power supply voltage VS drops by 30%?

p r o b l e m 11.2 Implement the logic function Z = A + B + CD using NMOS
transistors alone. In other words, use an NMOS transistor in place of the pull-up resistor.
Your implementation must satisfy a static discipline with low and high voltage thresholds
given by VIL = VOL = VL and VIH = VOH = VH, where 0 < VL < VT < VH < VS.
VS is the power supply voltage. As your answer, specify the W/L values for the pullup
and the pulldown transistors.

For what combination of inputs does the circuit dissipate the greatest amount of static
power? Determine the static power dissipation for this combination of inputs.

p r o b l e m 11.3 A circuit consists of N inverters, where N � 1. Each inverter is
built using a NMOS transistor and a resistor RL. The power supply voltage is VS and
the on resistance of the MOSFETs is RON. The threshold voltage for the MOSFETs
is VT.

a) Suppose we do not know how the inverters are connected to each other or to the
inputs and outputs of the circuit. How might you estimate the amount of static
power that the circuit is likely to consume?

b) Suppose it is known that the inverters are connected in series as one long chain.
Estimate the amount of static power dissipated by the circuit.

p r o b l e m 11.4 Consider the digital memory element illustrated in Figure 11.30.
Assume that the inverters are implemented using a pulldown NMOS transistor with on
resistance RON, and a pullup resistor RL. The power supply voltage is VS. What is the
instantaneous power dissipated by the memory element when it stores a logical 1? What
is the instantaneous power dissipated by the memory element when it stores a logical 0?

dOUTdIN

Store

CM

*
F IGURE 11.30

p r o b l e m 11.5 Give a CMOS implementation (using NMOS and PMOS
transistors only) of the following logic functions:

1. (A + B) · (C + D)

2. (A + B) · (C + D)
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3. A · B · C · D

4. (Y · W)(X · W)(X · Y · W)

p r o b l e m 11.6

a) Express F in a simplified sum-of-products form given that F = AB + CD.

b) Implement the logic function F = AB + CD with an NMOS digital logic circuit that
obeys the static discipline defined by the low-level and high-level logic thresholds
VIL = VOL = VL and VIH = VOH = VH, respectively. Assume the supply voltage
is VS, and that the on-state resistance of the NMOS transistors is RON. Determine
the lowest value of the pull-up resistor RPU for which the circuit will obey the static
discipline in terms of RON, VS, VL, and VH; not all variables need appear in your
answer.

c) Implement the logic function F = AB+CD with a CMOS digital logic circuit. (Hint:
make use of the result from part (a).)

d) Suppose that the NMOS and CMOS circuits above drive a capacitance CL. Assume
that the on-state resistance of both the PMOS and NMOS transistors is RON. For
both the NMOS and CMOS circuits determine the worst-case output rise time. For
the purpose of this problem, assume that the worst-case output rise time is the time
the output takes to go from 0 V to VH. Sketch the form of the output for both the
NMOS and the CMOS circuit.

e) Suppose that the inputs are arranged such that B = 1, C = 0, and D = 1, and
that a 0-V to 5-V square-wave signal is applied to the input A. Assume the square
wave cycle time is T, and that T is large enough so that the output comes close to
its steady state value for both falling and rising transitions. Under these conditions,
compute the power consumed by the CMOS and NMOS circuits when driving the
capacitance CL load.
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tran s i ent s in

s econd -order c i rcu i t s 12
Many familiar physical systems that exhibit oscillatory behavior, such as clock
pendulums, automobile suspensions, tuned filters in radios, and inter-chip dig-
ital interconnections are predominantly second-order systems. That is, their
dynamics are well described by second-order differential equations. Second-
order systems contain two energy storage elements with independent states.
For example, a second-order circuit could contain two independent capacitors,
two independent inductors, or one capacitor and one inductor. In contrast, the
circuits studied in Chapter 10 contained only one energy storage element that
is, one capacitor or one inductor. Therefore, their dynamics were described by
first-order differential equations. As we shall see in this chapter, the dynamics
of first-order circuits and second-order circuits can be very different.

RL RL

VIN1

VOUT1

vOUT2

VIN2

F IGURE 12.1 Two cascaded
inverters.

To illustrate the typical behavior of second-order circuits, and to moti-
vate their study, consider the behavior of the two cascaded inverters shown in
Figure 12.1. Given a square-wave input to the first inverter at vIN1, we expect
to see a square-wave output at vOUT1 and vIN2, as illustrated in Figure 12.2.
However, in Chapter 9 we saw that the presence of the parasitic MOSFET
gate capacitance in the second inverter results in the slower output waveform

t

vIN1

t

vOUT1 = vIN2

F IGURE 12.2 Ideal response of
the first inverter to a square-wave
input.

625
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F IGURE 12.3 Second-order
response of the cascaded inverters
to a square-wave input.

t

vIN1

t

vIN2

VOH

VOL

tpd,0    tpd,1      0 1

shown in Figure 9.3. In Section 10.4 we analyzed this waveform in detail and
found that it contains a decaying exponential. This decaying exponential is
the homogeneous response of the first-order circuit formed by the Thévenin
equivalent of the first inverter and the MOSFET gate capacitance in the sec-
ond inverter. Now suppose that the interconnect between the two inverters is
long, so that its parasitic inductance also becomes important. In this case, the
dynamics of the cascaded inverters change considerably, and the waveform of
vIN2 takes on the second-order character shown in Figure 12.3.

RL RL
VOUT1 vOUT2

CGS2

LI
VIN1 VIN2

F IGURE 12.4 Cascaded
inverters with parasitic wiring
inductance and gate capacitance.

With the inclusion of the gate capacitance CGS2 of the MOSFET in the
second inverter, and the interconnect inductance LI between then two inverters,
the circuit shown in Figure 12.1 becomes the circuit shown in Figure 12.4. The
latter circuit contains a capacitor and an inductor, and so it is a second-order
circuit. Note that vOUT1 and vIN2 are now no longer equal. The second-order
nature of the new circuit is more readily seen in Figure 12.5, which is extracted

F IGURE 12.5 Circuit model of
the cascaded inverters when the
input at vIN1 is low.

VS

RL

VS

RL

vIN1

CGS1

vOUT1

CGS2

vOUT2

RON

LI

RON

vIN2
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from Figure 12.4 for the case of a low-level input at vIN1. The circuit shown
in Figure 12.5 contains the series combination of the resistor RL, the capacitor
CGS2, and the inductor LI. It is the interaction of these three elements that
leads to the oscillatory waveform observed in Figure 12.3. We shall study this
second-order circuit in more detail in Section 12.5.

Close inspection of the waveform of vIN2 shown in Figure 12.3 reveals
that both the correct operation and the speed of the cascaded inverters depends
on the second-order behavior of the capacitor-inductor-resistor circuit formed
between the two inverters. The oscillatory character of the waveform of vIN2
following each rising and falling transition is referred to as ringing. As can be
seen in Figure 12.3, the output of the first inverter as received by the second
inverter is valid only after the ringing transitions settle above VOH for a rising
transition, and below VOL for a falling transition. Waiting for the ringing to settle
within the output thresholds results in the signal propagation delays tpd,1→0
and tpd,0→1. This too is analyzed in more detail in Section 12.5.

In the remainder of this chapter, we will study the behavior of a variety of
second-order circuits similar to the one shown in Figure 12.5. We begin with the
simplest circuit involving only one capacitor and one inductor. Following that,
we study more complex circuits by including resistors and then sources. As we
shall see, there are many such second-order circuits. Fortunately, their behavior
is much the same, and so we need examine only several of them in detail. We
will also study the behavior of two-capacitor and two-inductor second-order
circuits. Finally, we close by addressing several issues of general importance to
the analysis of second-order and higher-order circuits.

12.1 U N D R I V E N L C C I R C U I T

The simplest second-order circuit is the undriven circuit having one capacitor
and one inductor, shown in Figure 12.6. It is lossless because it contains no
elements that dissipate energy. That is, it contains no resistors. It is undriven
because it contains no independent sources to provide external stimuli. There-
fore, it offers us the opportunity to focus on the internal, or homogeneous,
behavior of the circuit itself. The undriven response is also the Zero Input
Response (ZIR) of the circuit. Of course, without a source one should ask how
did the operation of the circuit begin. We will temporarily defer the answer to
this question and simply assume for the moment that its branch voltages and
currents are not all zero.

To examine the behavior of the circuit shown in Figure 12.6, we can
employ the node analysis method outlined in Chapter 3. Since a ground node

vC
C L

v

iL+

-

F IGURE 12.6 A simple
second-order circuit.

is already selected in Figure 12.6, and since the unknown voltage at the other
node is already labeled with the node voltage v, Steps 1 and 2 of the node
analysis are already complete. Note that v will be the primary unknown for the
node analysis.
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In addition to the node voltage v, the states of the two circuit elements are
of interest. These are the capacitor voltage vC and the inductor current iL, and
they too are labeled in Figure 12.6. The states are related to v according to

vC(t) = v(t) (12.1)

iL(t) = 1

L

∫ t

−∞
v(t̃)dt̃ (12.2)

where t̃ is a dummy variable of integration. Equation 12.1 follows from the
fact that v and vC represent the same voltage, and Equation 12.2 follows
from the constitutive law for the inductor given in Equation 9.30. Thus, once
the node voltage v is determined, both vC and iL are easily determined from
Equations 12.1 and 12.2, respectively.

As observed in Equation 12.1 we have chosen to use two separate sym-
bols for the same voltage. Those symbols are v and vC. We have done this
to distinguish between the node voltage v and the branch voltage vC, which
happen to be the same. In the future, for simplicity in such cases we will use
only one symbol.

Returning now to the node analysis, we complete Step 3 by writing KCL
in terms of v for the node at which v is defined. This yields

C
dv(t)

dt
+ 1

L

∫ t

−∞
v(t̃)dt̃ = 0. (12.3)

The first term in Equation 12.3 is the capacitor current, and follows from
the constitutive law for the capacitor given in Equation 9.9. The second
term in Equation 12.3 is the inductor current. Because the circuit contains
an inductor, Equation 12.3 contains a time integral. To remove this integral,
we differentiate Equation 12.3 with respect to time, and also divide by C, to
obtain

d2v(t)

dt2
+ 1

LC
v(t) = 0 (12.4)

which is easier to work with.
To complete the node analysis, we complete Steps 4 and 5 by solving

Equation 12.4 for v, and using it to determine iL and vC, for example. Equa-
tion 12.4 is an ordinary second-order linear differential equation with constant
coefficients. As we did with first-order systems in Section 10.11, we can obtain
a general solution to our second-order differential equation using the following
steps:

1. Find the homogeneous solution. To find the homogeneous solution, the
drive is set to zero.
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2. Find the particular solution.

3. The total solution is then the sum of the homogeneous solution and the
particular solution. Use the initial conditions to solve for the remaining
constants.

In our Equation 12.4, there is no drive to begin with, so Equation 12.4 is also
the homogeneous equation. Thus, the homogeneous solution is also the total
solution. To obtain the homogeneous solution, we proceed as in Section 10.1.1
for solving first-order homogeneous equations. We expect the homogeneous
solution to our linear, constant-coefficient, ordinary, second-order differential
equation (Equation 12.4) to be a superposition of two terms of the form

Ae st

where A is a coefficient and s is a frequency. The substitution of this candidate
term into Equation 12.4 yields

As 2e st + A
1

LC
e st = 0. (12.5)

After factoring out A and e st, this becomes

A
(

s 2 + 1

LC

)
e st = 0. (12.6)

Since e st is never zero for finite st, and since A = 0 is a trivial solution that leads
to v = 0, it follows from Equation 12.6 that

s 2 + 1

LC
= 0. (12.7)

The two roots are

s1 = +jω◦

s2 = −jω◦ (12.8)

where

ω◦ ≡
√

1

LC
(12.9)

and where denotes
√−1. Therefore, the solution for v is a linear combination

of the two functions

e s1t and e s2t
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and takes the form

v(t) = A1e s1t + A2e s2t (12.10)

where A1 and A2 are as yet unknown constants that are equivalent to the two
constants of integration encountered when integrating Equation 12.4 twice to
find v. Substituting for s1 and s2 from Equation 12.8, the solution for v becomes

v(t) = A1e+ ω◦t + A2e− ω◦t.

However, rather than work with these complex exponential functions, it is
more intuitive to work with their scaled sum and difference, namely cos(ω◦t)
and sin(ω◦t).1 Thus, we can take the solution for v to be

v(t) = K1 cos(ω◦t) + K2 sin(ω◦t) (12.11)

where K1 and K2 are as yet unknown constants.
Equation 12.7 is referred to as the characteristic equation of the circuit

because it summarizes the internal dynamics of the circuit. The roots of the
characteristic equation, s1 and s2, are called the natural frequencies of the circuit
because they indicate the oscillation frequency of the natural circuit when no
forcing drive is present (see Equations 12.8 and 12.11). We have seen similar
equations and frequencies before in the context of first-order resistor-capacitor
and resistor-inductor circuits. For example, in Chapter 10, the characteristic
equations took the form

s + 1

RC
= 0

for first-order RC circuits, and

s + R

L
= 0

for first-order LR circuits. Their roots led to the natural frequencies −1/RC
and −R/L, respectively, and the associated time constants RC and L/R,
characteristic of first-order circuits.

To complete the solution to Equation 12.4 we must determine the
unknown constants K1 and K2. To do so, we need specific information
about v. Mathematically, this is provided by specifying v and dv/dt at a particu-
lar time. That is, we provide initial conditions from which Equation 12.4 can be
integrated. However, in working with electronic circuits, it is more common to
know the states of a circuit at the initial time, and this information must be used

1. Recall from the Euler relation, e ω◦t = cos(ω◦t) + sin(ω◦t), that e+ ω◦t + e− ω◦t = 2 cos(ω◦t)
and that e+ ω◦t − e− ω◦t = 2 sin(ω◦t) (See Appendices C and B for more details).
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to find v and dv/dt at that time. Nevertheless, let us assume for the moment
that we know v and dv/dt at an initial time, and complete the solution for v;
we will return to the initial states shortly. Without loss of generality we will
choose the initial time to be t = 0. In other words, we assume we know the
initial conditions

v(0) and
dv

dt
(0).

From Equation 12.11 evaluated at t = 0 we see that

v(0) = K1 (12.12)

and from the derivative of Equation 12.11 evaluated at t = 0 we see that

dv

dt
(0) = ω◦K2. (12.13)

Equations 12.12 and 12.13 can be solved to yield

K1 = v(0) (12.14)

K2 = 1

ω◦
dv

dt
(0). (12.15)

The two unknown coefficients are now known in terms of the initial conditions.
Finally, combining Equations 12.11, 12.14 and 12.15 yields

v(t) = v(0) cos(ω◦t) + 1

ω◦
dv

dt
(0) sin(ω◦t) (12.16)

as the solution for v given that we know v and dv/dt at t = 0. It both satisfies
Equation 12.4 and matches the initial conditions.

While Equation 12.16 is the solution for v, it is not expressed in terms of
the state variables iL and vC evaluated at t = 0, which is often more useful.
To make it so, we must determine v and dv/dt in terms of iL and vC. From
Equation 12.1 we can immediately determine v in terms of vC. Thus evaluating
v(t) at t = 0, we get

v(0) = vC(0). (12.17)

Next, by combining Equations 12.2 and 12.3 we can determine dv/dt in terms
of iL according to

C
dv(t)

dt
= −iL(t). (12.18)
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Thus, evaluating dv(t)/dt at t = 0, we get

dv

dt
(0) = − 1

C
iL(0). (12.19)

Then, combining Equation 12.16 with Equations 12.17 and 12.19 yields

v(t) = vC(0) cos(ω◦t) −
√

L

C
iL(0) sin(ω◦t) (12.20)

as the completed solution for v given the state variables of the circuit at t = 0;
Equation 12.9 has also been used to simplify the result.

The final step in our analysis of the circuit shown in Figure 12.6 is to
determine the state variables. From Equations 12.20 and 12.1 we find that

vC(t) = vC(0) cos(ω◦t) −
√

L

C
iL(0) sin(ω◦t)

=
√

v 2
C(0) + L

C
i 2
L (0) cos


ω◦t + tan−1




√
L

C

iL(0)

vC(0)





 (12.21)

and from Equations 12.20 and 12.18 we find that

iL(t) =
√

C

L
vC(0) sin(ω◦t) + iL(0) cos(ω◦t)

=
√

C

L

√
v 2

C(0) + L

C
i 2
L (0) sin


ω◦t + tan−1




√
L

C

iL(0)

vC(0)





 (12.22)

where the second equalities in Equations 12.21 and 12.22 both result from the
application of trigonometric identities.2 Again, Equation 12.9 has been used to

2. The relevant identities are

a cos(x) − b sin(x) =
√

a2 + b2 cos(x + tan−1(b/a))

and
a sin(x) + b cos(x) =

√
a2 + b2 sin(x + tan−1(b/a)).

These are discussed further in Appendix B.
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F IGURE 12.7 iL and vC for the
undriven LC circuit shown in
Figure 12.6 for the special case of
iL(0) ≡ 0.

simplify the results. We could also have used Equation 12.2 to determine iL
according to

iL(t) = iL(0) + 1

L

∫ t

0
v(t̃)dt̃. (12.23)

Substitution of Equation 12.20 into Equation 12.23 does yield Equation 12.22,
but using Equation 12.18 is easier. Note that Equation 12.23 displays the
memory property of the inductor first observed in 9.33.

A close look at Equations 12.21 and 12.22 shows that, for all choices of
initial condition, iL and vC are sinusoidal functions that are a quarter cycle out
of phase with each other. The initial conditions affect only their amplitudes and
their common absolute phase. Therefore, we can illustrate the behavior of the
circuit without loss of understanding by considering the special case of

iL(0) ≡ 0,

for example. The resulting expressions for iL and vC for iL(0) ≡ 0 are given as
follows, and Figure 12.7 shows the corresponding evolution of both iL and vC:

vC(t) = vC(0) cos(ω◦t) (12.24)

iL(t) =
√

C

L
vC(0) sin(ω◦t). (12.25)

Figure 12.7 illustrates several important points. As mentioned earlier, both
branch variables, or states, are sinusoidal in time. Because of this, the peaks of
one state occur at the zeros of the other. This behavior underlies the ringing
seen in Figure 12.3, and is identical to that of many other lossless second-order
oscillators, such as a spring and mass or a linearized pendulum in which mass
position and velocity are the two states. Given the definitions of positive iL and
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vC in Figure 12.6, vC leads iL by a quarter cycle. Thus, the greatest positive
slope in iL occurs at the positive peaks of vC, and the greatest negative slope
in iL occurs at the negative peaks of vC, in accordance with the constitutive
law for the inductor. Similarly, the greatest positive slope in vC occurs at the
negative peaks of iL, and the greatest negative slope in vC occurs at the positive
peaks of vC, in accordance with the constitutive law for the capacitor. So, each
state drives the growth of the other.

There is also an important energy interpretation to Figure 12.7. It is that
the oscillations in iL and vC carry out a repetitive exchange of energy between
the inductor and the capacitor. Indeed, the state of each element drives the
growth of the other at the expense of the energy it stores. To see this, consider
the energy wE stored in the capacitor, the energy wM stored in the inductor, and
the total energy wT stored between them. In the general case, the substitution
of Equations 12.21 and 12.22 into Equations 9.18 and 9.36, respectively, yields

wE =
(

1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

cos 2


ω◦t + tan−1




√
L

C

iL(0)

vC(0)







(12.26)

wM =
(

1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

sin2


ω◦t + tan−1




√
L

C

iL(0)

vC(0)







(12.27)

and so wT is given by

wT = wE + wM = 1

2
Cv 2

C(0) + 1

2
Li 2

L (0). (12.28)

Thus, the total energy wT is constant in time. This is the case because there
are no resistors in the circuit that could dissipate the energy. Note too that
the energy completely exchanges between the two elements since both wE
and wM periodically go to zero. This behavior is also identical to that of many
other lossless second-order mechanical oscillators in which kinetic and potential
energies are repetitively exchanged. To illustrate this, Figure 12.8 shows the wE,
wM, and wT for the special case of iL(0) ≡ 0. Note that the energies exchange
at the frequency 2ω◦ because both iL and vC go to zero twice during the period
2π/ω◦.

To close this section, let us summarize three important observations. The
first observation is that second-order capacitor-inductor circuits are capable
of oscillation. This is in contrast to first-order resistor-capacitor and resistor-
inductor circuits. The second observation is that we have now seen a third time
constant to go along with the RC time constant associated with first-order
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F IGURE 12.8 wE , wM , and wT
for the circuit shown in Figure 12.6
for the special case of iL(0) ≡ 0.

resistor-capacitor circuits, and the L/R time constant associated with first-order
resistor-inductor circuits. That time constant is

√
LC, which is the time constant

associated with second-order capacitor-inductor circuits. The third observa-
tion is the meaning of the ratio

√
L/C when associated with second-order

capacitor-inductor circuits. This ratio is a characteristic of energy storage.
Because wE and wM exchange completely, it follows from Equations 12.21 and
12.22 that

C

2
v 2

CPeak
= L

2
i 2
LPeak

⇒ vCPeak

iLPeak

=
√

L

C
(12.29)

where vCPeak and iLPeak are the peak values of vC and iL, respectively. Thus, the
ratio

√
L/C, which has the units of resistance, originates from energy consider-

ations and is the ratio of the peak values of the two states. The ratio
√

L/C is
called the characteristic impedance. In the following section, we will see that the
parameter

√
L/C also helps characterize the dynamics of damped second-order

circuits.

e x a m p l e 12.1 a n u n d r i v e n l c c i r c u i t For the circuit
shown in Figure 12.6, suppose that C = 1 µF and L = 100 µH. What is the oscillation
frequency of iL and vC? Further, suppose that at some time, iL = 0.5 A and vC = 10 V.
What will be the peak values of iL and vC?

From Equation 12.9 with C = 1 µF and L = 100 µH,

ω◦ = 1√
LC

= 105 rad/s
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or approximately 15.9 kHz. At the time of the measurement of iL and vC,

wE = 50 µJ and wM = 12.5 µJ.

Thus

wT = 62.5 µJ.

The peak value of iL occurs when this energy is stored entirely in the inductor. In other
words,

1

2
Li2LPeak

= wT = 62.5 µJ.

So,

iLPeak ≈ 1.12 A.

Similarly, the peak value of vC occurs when the energy is stored entirely in the capacitor.
In other words,

1

2
Cv2

CPeak
= wT = 62.5 µJ.

So,

vCPeak ≈ 11.2 V.

Also, note that C, L, vCPeak , and iLPeak do satisfy Equation 12.29. This corresponds to

√
L/C = 10 �.

e x a m p l e 12.2 a n o t h e r u n d r i v e n l c c i r c u i t For the
circuit shown in Figure 12.6, as in the previous example, suppose that C = 1 µF
and L = 100 µH. Further, suppose that at t = 0 the inductor current iL = 0 and the
capacitor voltage vC = 1 V. Plot the waveforms for t > 0 for iL and vC.

Since

ω◦ = 1√
LC

= 105 rad/s

we know that the waveforms for the voltage and the current will be sinusoids of frequency
ωo = 105 rad/s.

Further, since the initial value of the current is given to be 0, we have from
Equations 12.24 and 12.25

vC(t) = vC(0) cos(ω◦t) = 1.0 cos(105t)

iL(t) =
√

C

L
vC(0) sin(ω◦t) = 0.1 × sin(105t).

The waveforms are plotted in Figure 12.9.
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F IGURE 12.9 iL and vC for the
undriven LC circuit shown in
Figure 12.6 for iL(0) = 0 and
vC(0) = 1.0.

e x a m p l e 12.3 s p r i n g - m a s s o s c i l l a t o r The spring-mass
oscillator shown in Figure 12.10 is also a lossless second-order system. Its motion is
described by K

M

x(t)

 

F IGURE 12.10 A second-order
spring-mass oscillator. Note that
the coiled object in this figure is a
spring, not an inductor.

M
d2x(t)

dt2
+ K x(t) = 0. (12.30)

What is its oscillation frequency?

The equation of motion for the spring-mass oscillator is the same as Equations 12.3 and
12.4, but with M replacing C, 1/K replacing L, and x replacing v. So, by analogy to
Equation 12.9, its oscillation frequency is

√
K/M.

Similar analogies can be made to every aspect of our analysis of the capacitor-inductor
circuit.

e x a m p l e 12.4 a n i d e a l i z e d s w i t c h e d p o w e r

s u p p l y In this example, we will analyze the idealized switching charge pump
shown in Figure 12.11. Such charge pumps are used in voltage converters to trans-

vC
CL

iL

+

-

V+
-

S1 S2

F IGURE 12.11 An idealized
switching charge pump.

late one DC voltage to another DC voltage (for example, from a 1.5-volt battery to an
electronic amplifier circuit that needs a 3-volt DC source). The purpose of the charge
pump is to transfer energy losslessly from the voltage source through the inductor
and into the capacitor. In doing so, it charges the capacitor and builds up the voltage
across it.

The charge pump operates cyclically as shown in Figure 12.12. To begin a cycle, switch
S1 closes for the duration T causing the current in the inductor to ramp up. During this
time switch S2 remains open, and so the capacitor charge and voltage remain constant.
Next, switch S1 opens and switch S2 closes. This switch action disconnects the source
from the inductor, and since the inductor current does not change instantaneously, it
redirects the inductor current into the capacitor. The inductor current now rings down
as the capacitor voltage rings up. Finally, switch S2 opens when the inductor current
first goes to zero, and both switches remain open until the start of the next cycle.
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F IGURE 12.12 Charge pump
operation.
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Our goal is to determine the value of the capacitor voltage as a function of time. To
do so, we will analyze the behavior of the circuit during each interval of operation in
sequence. To begin, let us find the inductor current iL as it ramps up over the beginning
of each cycle.

S1 Closed, S2 Open During this initial interval, because S1 is closed and S2 is open,
the DC voltage V appears directly across the inductor, and the inductor current iL ramps
up. This aspect of charge pump operation has already been analyzed in Subsection 9.4.2.
In particular, if we define t = 0 to occur at the beginning of a cycle, then iL is given by
Equation 9.78 for 0 ≤ t ≤ T. Thus, iL builds up as a ramp.

Now suppose that we wish to find the capacitor voltage vC at the end of the nth cycle.
This is most easily done through energy considerations. From Equation 9.36 we see that

iL = VT

L
(12.31)
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at the end of each current ramp. Therefore, from Equation 9.36, the energy wM stored
in the inductor at the end of each current ramp is given by

wM = L

2

(
VT

L

)2
= V2T2

2L
. (12.32)

S1 Open, S2 Closed This energy is completely transferred to the capacitor during the
next interval of the cycle over which switch S2 is closed and S1 is open. Indeed, switch
S2 opens to end the second interval just as iL goes to zero and the energy transfer is
completed.

S1 Open, S2 Open The cycle ends with both S1 and S2 open. All the energy is now
stored in the capacitor. This sequence of actions is repeated during each cycle.

Therefore, the energy wE stored in the capacitor at the end of the nth cycle grows as

wE[n] = wE[n − 1] + V2T2

2L
(12.33)

beginning from

wE[0] = 0 (12.34)

where the notation [n] is used to show that n is a cycle index rather than continuous
time. Equations 12.33 and 12.34 can be solved to yield

wE[n] = n
V2T2

2L
(12.35)

as an explicit statement of the energy stored in the capacitor at the end of the nth cycle.
Finally, by combining Equations 9.18 and 12.35, we find that

vC[n] = V

√
n

T2

LC
. (12.36)

Thus, the voltage across the capacitor is related to the voltage V of the input source, and
grows with the square root of n. This example will be revisited later on in this chapter
and its operation as a DC-DC converter will be established more explicitly.

Finally, suppose that we wish to find the details of iL and vC during the nth ringing
period in which switch S1 is off and switch S2 is on. In this case, we use Equations 12.21
and 12.22 with one modification and several substitutions. The modification is that the
sign of iL in both equations must be reversed since iL is defined in opposite directions
in Figures 12.6 and 12.11. The substitutions are −VT/L for iL(0), vC[n] for vC(0), and
t − T for t since t = 0 occurs at the beginning of a cycle when switch S1 closes.
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W W W e x a m p l e 12.5 g r a p h i c a l i n t e r p r e t a t i o n

12.2 U N D R I V E N , S E R I E S R L C C I R C U I T

The next step in our study of second-order circuits is to include a loss mechanism
through which energy stored in the circuit will dissipate. Second-order circuits
can exhibit loss for two reasons. First, real capacitors and real inductors are
lossy. A common loss mechanism in a capacitor is dielectric leakage, which can
be modeled with a parallel resistor. A common loss mechanism in an inductor
is the resistive loss in its winding, which can be modeled with a series resistor.
Second, we may purposefully introduce loss into a circuit in order to modify
its behavior. For example, we might wish to suppress the oscillations seen in
Figure 12.3. Again, this is accomplished by including one or more resistors.

In this section, we will focus on undriven second-order capacitor-inductor

(a) Parallel RLC circuit

(b) Series RLC circuit

F IGURE 12.14 Two second-
order circuits with one resistor
each.

circuits to which we have added a single resistor. There are two ways in which
we can add a resistor to the circuit shown in Figure 12.6. We can either place
it in parallel or in series with the two original elements. The two resulting
circuits are shown in Figure 12.14. We will study the series RLC circuit in more
detail here, and in Section 12.4 will discuss the corresponding parallel circuit.
As we shall see shortly, the presence of the resistors in these circuits, and their
associated losses, changes the behavior of the original circuit significantly. Most
importantly, the energy stored in the circuit is no longer constant; rather, it
decays in time. As a consequence, the circuit states also decay in time.

Let us now examine the behavior of the series circuit shown in
Figure 12.14b, which is redrawn in Figure 12.15. To analyze the behavior of this

v1 v2

vC C

R
L

iL

Node 1 Node 2 

+

-

F IGURE 12.15 The series
second-order circuit shown in
Figure 12.14b.

circuit we can again employ the node method, and this analysis closely parallels
that of Section 12.1. Since a ground node is already selected in Figure 12.15,
and since the unknown node voltages are already labeled as v1 and v2, we may
proceed immediately to Step 3 of node analysis. Here, we write KCL at Nodes
#1 and #2 in terms of v1 and v2. This yields

C
dv1(t)

dt
+ v1(t) − v2(t)

R
= 0 (12.37)

for Node #1, and

v2(t) − v1(t)

R
+ 1

L

∫ t

−∞
v2(t̃)dt̃ = 0 (12.38)

for Node #2. To treat these two equations simultaneously, we first use Equa-
tion 12.37 to determine v2 in terms of v1, and then substitute the result into
Equation 12.38 to obtain a second-order differential equation in v1. This yields

v2(t) = RC
dv1(t)

dt
+ v1(t) (12.39)
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d2v1(t)

dt2
+ R

L

dv1(t)

dt
+ 1

LC
v1(t) = 0. (12.40)

Note that to arrive at Equation 12.40 we have divided Equation 12.38 by C,
and differentiated it with respect to time.

To complete the node analysis, we complete Steps 4 and 5 by solving
Equation 12.40 for v1, and using it to determine v2 and other branch variables
of interest. Equation 12.40 is an ordinary second-order homogeneous linear
differential equation with constant coefficients. Since the circuit does not have
a drive, its homogeneous solution is also its total solution. Thus, as with Equa-
tion 12.4, we expect its solution also to be a superposition of two terms of the
form

Ae st.

The substitution of this candidate term into Equation 12.40 yields

A
(

s 2 + R

L
s + 1

LC

)
e st = 0 (12.41)

from which it follows that

s 2 + R

L
s + 1

LC
= 0. (12.42)

Equation 12.42 is the characteristic equation of the circuit. It is slightly more
complex than Equation 12.7 because of the term proportional to s. We will see
shortly that this term is responsible for damping and energy loss. To simplify
Equation 12.42, and to put it in a form that is more standard for the characteristic
equation in second-order circuits, we write it as

s 2 + 2αs + ω2◦ = 0 (12.43)

where

α ≡ R

2L
(12.44)

ω◦ ≡ 1√
LC

; (12.45)

note that Equation 12.45 is the same as Equation 12.9. Equation 12.43 is a
quadratic equation having two roots. Those roots are

s1 = −α +
√

α2 − ω2◦ (12.46)

s2 = −α −
√

α2 − ω2◦ . (12.47)
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Therefore, the solution for v1 is a linear combination of the two functions
e s1t and e s2t, and takes the form

v1(t) = A1e s1t + A2e s2t (12.48)

where A1 and A2 are as yet unknown constants that are equivalent to the
two constants of integration encountered when integrating Equation 12.40
twice to find v1. Note that s1 and s2 are the two natural frequencies of the
circuit.3

To complete the solution to Equation 12.40 we must again determine A1
and A2. To do so, we need specific information about v1, which we will again
be provided by specifying v1 and dv1/dt at an initial time, again chosen to be
t = 0. As mentioned earlier, it is actually more common to know iL and vC at
that initial time, and so we must use this information to first determine v1 and
dv1/dt at the initial time, and then A1 and A2. Since v1 and vC represent the
same voltage,

vC(t) = v1(t) (12.49)

so that

v1(0) = vC(0). (12.50)

Next, the constitutive law for the capacitor yields

iL(t) = −C
dv1

dt
(t) (12.51)

so that

dv1

dt
(0) = − 1

C
iL(0). (12.52)

3. At this point, it is worth dwelling for a moment on the two natural frequencies s1 and s2, and
writing a few useful equalities related to them. Adding Equations 12.46 and 12.47 gives us

s1 + s2 = −2α,

subtracting them yields

s1 − s2 = 2(
√

α2 − ω2◦ ),

and multiplying them yields
s1s2 = ω2◦ .

Because they are the roots, both s1 and s2 satisfy the characteristic equation given in Equation 12.42,
or in its more general form, Equation 12.43.
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Next, we evaluate Equation 12.48 and its derivative at t = 0, and equate the
results to Equations 12.50 and 12.52 to obtain

v1(0) = A1 + A2 = vC(0) (12.53)

dv1

dt
(0) = s1A1 + s2A2 = − 1

C
iL(0). (12.54)

Equations 12.53 and 12.54 can be jointly solved for A1 and A2 to obtain

A1 = Cs2vC(0) + iL(0)

C(s2 − s1)
(12.55)

A2 = Cs1vC(0) + iL(0)

C(s1 − s2)
, (12.56)

which can be substituted into Equation 12.48 to yield

v1(t) = Cs2vC(0) + iL(0)

C(s2 − s1)
e s1t + Cs1vC(0) + iL(0)

C(s1 − s2)
e s2t. (12.57)

Finally, substitution of Equation 12.57 in Equations 12.49 and 12.51 yields

vC(t) = Cs2vC(0) + iL(0)

C(s2 − s1)
e s1t + Cs1vC(0) + iL(0)

C(s1 − s2)
e s2t (12.58)

iL(t) = −s1
Cs2vC(0) + iL(0)

(s2 − s1)
e s1t − s2

Cs1vC(0) + iL(0)

(s1 − s2)
e s2t (12.59)

as the states of the series circuit. This completes the formal analysis of the circuit
shown in Figure 12.154.

4. The two circuits shown in Figure 12.14 are duals of one another, and so the response of one
can be directly constructed from the response of the other. To see this, note that KVL applied to
the single loop in the circuit shown in Figure 12.15 results in

d2iL
dt2

+ R

L

diL
dt

+ iL
LC

= 0,

and the element law for the capacitor results in

iL = −C
dvC

dt
.

Similarly, KCL applied to the upper node in the circuit shown in Figure 12.14a results in

d2vC

dt2
+ G

C

dvC

dt
+ vC

LC
= 0,
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Let us now examine the dynamic behavior of vC and iL as expressed by
Equations 12.58 and 12.59. To do so, it is convenient to consider three separate
cases defined by the relative sizes of α and ω◦. These cases are as follows:

α < ω◦ ⇒ under-damped dynamics;
α = ω◦ ⇒ critically-damped dynamics;
α > ω◦ ⇒ over-damped dynamics.

As we shall see in the following three sections, the dynamic behavior of the series
RLC circuit shown in Figure 12.15 is quite different for these three cases.5

12.2.1 U N D E R - D A M P E D D Y N A M I C S

The case of under-damped dynamics is characterized by

α < ω◦

or, after substitution of Equations 12.44 and 12.45 , by

R/2 <
√

L/C.

As R becomes small, the corresponding resistor approaches a short circuit, and
so the circuit shown in Figure 12.15 approaches that shown in Figure 12.6.
Therefore, we should expect the under-damped dynamics to be oscillatory in
nature. As we shall see shortly, this is indeed the case.

With α < ω◦, the quantity inside the radicals in Equations 12.46 and
12.47 is negative, and so s1 and s2 are again complex numbers. To simplify
matters, and to make clear the complex nature of s1 and s2, we define ωd

and the element law for the inductor results in

vC = L
diL
dt

,

where vC is the capacitor voltage defined positively at the upper node, iL is the inductor current
defined positively in the downwards direction, and G, C and L are the conductance, capacitance
and inductance of the resistor, capacitor and inductor respectively. A comparison of the two sets of
equations shows that the second set can be constructed from the first with iL replaced by vC, −vC
replaced by iL, R replaced by G, L replaced by C and C replaced by L. Therefore, the homogeneous
response of the circuit shown in Figure 12.14a can be constructed directly from Equations 12.58
and 12.59 in the same way. See, for example, Equations 12.100 and 12.101. Indeed, all results in
Section 12.4 can be derived from those in Section 12.2 in the same way. Further, duality continues
to hold when the circuit shown in Figure 12.14a is extended to include a parallel current source
while the circuit shown in Figure 12.14b is extended to include a series voltage source. Thus, all
results in Section 12.6 can be derived directly from the results in Section 12.5.

5. Interestingly, as we will see in Section 12.4, the dynamics of the parallel RLC circuit will be
essentially identical to that of the series circuit for all three cases, except for a reversal in the role of
R. The identical dynamics for the two circuits arises because they both have the same characteristic
equation when it is represented in the standard form shown in Equation 12.43.
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according to

ωd ≡
√

ω2
o − α2 (12.60)

so that Equations 12.46 and 12.47 become

s1 = −α + jωd (12.61)

s2 = −α − jωd. (12.62)

The real and imaginary parts of s1 and s2 are now more apparent.
Since s1 and s2 are now complex, the exponentials in Equations 12.58

and 12.59 are also complex. Thus, vC and iL will exhibit both oscillatory and
decaying behavior. To see this, we substitute Equations 12.61 and 12.62 into
Equations 12.58 and 12.59, and use the Euler relation given by

e jωdt = cos(ωdt) + j sin(ωdt)

and the fact that LCs1s2 = 1, to obtain

vC(t) = vC(0)e−αt cos(ωdt) +
(

αCvC(0) − iL(0)

Cωd

)
e−αt sin(ωdt)

=
√

v 2
C(0) +

(
αCvC(0) − iL(0)

Cωd

)2

e−αt

cos
(

ωdt − tan−1
(

αCvC(0) − iL(0)

CωdvC(0)

))
(12.63)

iL(t) = iL(0)e−αt cos(ωdt) +
(

vC(0) − αLiL(0)

Lωd

)
e−αt sin(ωdt)

=
√

i 2
L (0) +

(
vC(0) − αLiL(0)

Lωd

)2

e−αt

sin
(

ωdt + tan−1
(

LωdiL(0)

vC(0) − αLiL(0)

))
. (12.64)

These expressions for vC and iL more clearly expose the oscillatory and decaying
behavior of the circuit states. Sketches of vC and iL are shown in Figure 12.16
for the special case of

iL(0) = 0.

From Figure 12.16, we see that the capacitor voltage is nearly maximum when
the inductor current is zero, and vice versa. A more careful examination of
Equations 12.63 and 12.64, however, reveals that the circuit states are not
exactly in quadrature as they were for the circuit shown in Figure 12.6. In fact,
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F IGURE 12.16 Waveforms of
vC and iL in series RLC circuit for
the case of iL(0) = 0.

examination of Equations 12.63 and 12.64, for example, with iL(0) = 0, shows
that the quadrature lead of vC with respect to iL is reduced by φ = tan−1(α/ωd).
Nonetheless, the peaks of vC occur when iL is nearly zero, and vice versa. This
indicates that the energy is sloshing back and forth, stored first in the electric
field of the capacitor, and then in the magnetic field of the inductor. All under-
damped second-order systems have this property. A simple pendulum is an
obvious example. Here the exchange is between kinetic energy and potential
energy: The kinetic energy is maximum when the potential energy is zero, and
vice versa. We defer a more detailed analysis of the stored energy to Section 12.3.

As R → 0, that is, as the corresponding resistor approaches a short circuit,
it is apparent from Equations 12.44 and 12.60 that α → 0 and ωd → ω◦,
respectively. Therefore, as R → 0, remembering that ω◦ = 1/

√
LC, Equations

12.63 and 12.64 reduce to Equations 12.21 and 12.22, respectively. This is
expected because Figure 12.15 reduces to Figure 12.6 as R → 0. Limiting
behavior such as this can often be used to check the validity of an analysis.

Using Equations 12.63 and 12.64 it is now possible to interpret physically
the parameters α, ω◦, and ωd in the context of the circuit shown in Figure 12.15.
The factor e−αt produces the decay or damping in vC and iL, hence α is referred
to as the damping factor of the circuit. Larger values of α cause the circuit states
to decay more rapidly.

In the absence of damping and the associated energy dissipation in the
circuit, that is for R = 0 and hence α = 0, the circuit states would oscillate at
the frequency

ω◦ = 1√
LC

as they did in the case of the circuit shown in Figure 12.6. Thus, ω◦ is referred
to as the undamped natural frequency or the undamped resonance frequency.

In the presence of damping, the circuit states oscillate at the lower frequency
ωd, hence ωd is referred to as the damped natural frequency. With sufficiently
large damping, ωd goes to zero and the circuit ceases to oscillate. This case is
studied in the next two subsections.
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Since ω◦, ωd, and α are directly related to the roots of the characteristic
equation, s1 and s2 (see Equations 12.60, 12.61, and 12.62), it should also be
clear at this point why s1 and s2 are called the natural frequencies of the system.

Equation 12.60 indicates that α, ωd, and ω◦ respectively, form the two sides
and hypotenuse of a right triangle. In fact, this is part of a more comprehensive
picture of the location in the complex plane of the roots of the characteristic
equation. These locations, given by Equations 12.61 and 12.62, are shown in
Figure 12.17. Note that as R varies so do α and ωd; ω◦, however, remains
constant so that s1 and s2 remain the constant distance ω◦ from the complex-
plane origin for the case of under-damped dynamics.

Real

Imaginarys1
X

s2
X

ϕ

α

ωo

ωd

F IGURE 12.17 The location of
s1 and s2 in the complex plane.

In contrast to the circuit behavior studied in Section 12.1, Equations 12.63
and 12.64 are characterized by two important rates, or frequencies. The first
frequency is ωd, which determines the rate at which the states oscillate. The
second frequency is α, which determines the rate at which the states decay. As a
consequence, another important characteristic of the circuit behavior described
by Equations 12.63 and 12.64 is the relative size of α with respect to ω◦. This
is usually expressed in terms of the Quality Factor Q of the circuit defined by

Q ≡ ω◦
2α

. (12.65)

For the series circuit shown in Figure 12.15, Q is evaluated by substituting
Equations 12.44 and 12.45 into Equation 12.65. This yields

Q = 1

R

√
L

C
. (12.66)

If the damping factor α is small compared to ω◦, as is characteristic of an under-
damped circuit, then Q will be large, and the circuit will oscillate for a long
time near the frequency ω◦. For the series circuit, this is achieved with a small
R, that is, with the corresponding resistor near a short circuit. Alternatively, to
purposefully damp any oscillations and make them slower, one would make R
large.

The preceding discussion suggests an interesting interpretation of Q. From
Equations 12.63 and 12.64 we see that the period of oscillation of the circuit
states is 2π/ωd. Thus, the period of Q oscillations is 2πQ/ωd. In the latter
period of time the same equations show that the amplitude of the circuit states
will decay by

e−2πQα/ωd ≈ e−π

for ωd ≈ ω◦. Thus, as illustrated in Figure 12.18, the state amplitudes of an
under-damped circuit will decay to approximately e−π , or 4%, of their original
values in Q cycles of oscillation.6

6. Or to approximately 20% of their original values in Q/2 cycles.
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F IGURE 12.18 Waveform of vC
in under-damped, undriven, series
RLC circuit for the case of
iL(0) = 0, with a Q of 5.
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12.2.2 O V E R - D A M P E D D Y N A M I C S

The case of over-damped dynamics is characterized by

α > ω◦

or, after substitution of Equations 12.44 and 12.45, by

R/2 >
√

L/C.

In this case, the quantity inside the radicals in Equations 12.46 and 12.47 is
positive, and so both s1 and s2 are real. For this reason, the dynamic behavior
of vC and iL, as expressed by Equations 12.58 and 12.59, does not exhibit
oscillation. Rather, it involves two real exponential functions that decay at
different rates, as the two equations show.

The expressions for vC and iL for the case of iL(0) = 0 with over-damping
are obtained from Equations 12.58 and 12.59, and are shown here:

vC(t) = s2vC(0)

(s2 − s1)
e s1t + s1vC(0)

(s1 − s2)
e s2t (12.67)

iL(t) = −s1
Cs2vC(0)

(s2 − s1)
e s1t − s2

Cs1vC(0)

(s1 − s2)
e s2t. (12.68)

Since α > ω◦ for over-damped circuits, note that s1 and s2 are both real in the
preceding two equations.

Figure 12.19 compares the waveforms of vC and iL for the case of iL(0) = 0
with under-, over-, and critical-damping. We will address the critically-damped
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F IGURE 12.19 Waveforms of
vC and iL in undriven, series RLC
circuit for the case of iL(0) = 0 with
under-, over-, and critical-damping.

circuit in the next subsection. Notice that the circuit displays ringing behavior
only for the under-damped case.

As R becomes large, in particular larger than 2
√

L/C, it becomes a signifi-
cant open circuit between the capacitor and inductor. In this way it absorbs the
oscillating voltage that the capacitor and inductor share for smaller values of
R. As a consequence, the energy exchange between the capacitor and inductor
is interrupted, and the circuit ceases to oscillate. Instead, its behavior is more
like that of an independent capacitor and an independent inductor discharging
through the resistor. To see this, let us determine the asymptotic values of s1
and s2 as R becomes large and hence as α becomes large. They are

s1 = α +
√

α2 − ω2◦ = α


1 +

√
1 −

(
ω◦
α

)2

 ≈ 2α = R

L
(12.69)

s2 = α −
√

α2 − ω2◦ = α


1 −

√
1 −

(
ω◦
α

)2

 ≈ α

ω2◦
2α2

= 1

RC
. (12.70)

As expected, the corresponding time constants approach L/R and RC, the
time constants of an independent inductor-resistor circuit and an independent
capacitor-resistor circuit. Note that, for over-damped dynamics, α > ω◦ from
which it follows that L/R is the faster time constant and RC is the slower time
constant.

12.2.3 C R I T I C A L L Y - D A M P E D D Y N A M I C S

The case of critically-damped dynamics is characterized by

α = ω◦.
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In this case, it again follows from Equations 12.46 and 12.47 that

s1 = s2 = −α

and that the characteristic equation, Equation 12.43, has a repeated root.
Because of this, e s1t and e s2t are no longer independent functions, and so
the general solution for v1 is no longer the superposition of these two func-
tions as given by Equation 12.48. Rather, it is the superposition of the repeated
exponential function

e s1t = e s2t = e−αt and te−αt.

From this observation, and Equations 12.49 and 12.51, it follows that vC and
iL will exhibit similar behavior.

Perhaps the easiest way to determine vC and iL for the case of critical-
damping is to evaluate Equations 12.63 and 12.64 under the conditions of that
case. To do so, observe from Equation 12.60 that, for critical-damping ω◦ = α,
and so ωd = 0. Therefore, we can obtain vC and iL for the case of critical-
damping by evaluating Equations 12.63 and 12.64 in the limit ωd → 0. To do
so, substitute the approximations cos(ωdt) ≈ 1 and sin(ωdt) ≈ ωdt, as ωdt → 0,
into the first equalities in Equations 12.63 and 12.64, and cancel the resulting
terms involving ωd. This results in

vC(t) = vC(0)e−αt + αCvC(0) − iL(0)

C
te−αt (12.71)

iL(t) = iL(0)e−αt + vC(0) − αLiL(0)

L
te−αt. (12.72)

From Equations 12.71 and 12.72 we see that vC and iL contain both the
decaying exponential function e−αt and the function te−αt, as expected.

e x a m p l e 12.6 z e r o i n p u t r e s p o n s e o f a s e r i e s

r l c c i r c u i t What is the general shape of the transient response of the
undriven, series RLC circuit in Figure 12.20, assuming that the capacitor and inductor
have some nonzero initial state?

+

-

vC

R = 50 Ω L = 20 mH

C = 13 nF

F IGURE 12.20 Undriven series
RLC circuit.

The circuit in Figure 12.20 is an undriven series RLC circuit, the same as discussed in
Section 12.2. Its damping factor is given by

α = R

2L
= 1, 250 rad/s,

and its undamped resonance frequency

ωo =
√

1

LC
= 62, 017 rad/s,
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F IGURE 12.21 The response of
the undriven series RLC circuit.

or, 9.8704 kHz. Since

α < ωo

we conclude that the circuit is under-damped and will therefore produce a sinusoidal
response.

As given in Equation 12.66, its Q is
√

L/C/R, which evaluates to approximately 25.

Following the interpretation of Q discussed in Section 12.2.1, the transient response of
any branch variable in the circuit will be an underdamped decaying sinusoid that decays
to 4% of its amplitude in 25 cycles of oscillation.

The oscillation frequency is given by Equation 12.60, which is

ωd =
√

ω2
o − α2 = 62,005 rad/s,

or, 9.8684 kHz.

The waveform for vC assuming vC(0) = 1 V and iL(0) = 0 is plotted in Figure 12.21.

12.3 S T O R E D E N E R G Y I N T R A N S I E N T ,
S E R I E S R L C C I R C U I T

Let us now calculate the stored energy in the series RLC circuit. Specifically, we

vC C

R

L

iL+

-

F IGURE 12.22 Analysis of the
stored energy in a series RLC
circuit.

calculate the decay of energy stored in the under-damped series RLC circuit (see
Figure 12.22) previously analyzed in Section 12.2.1. Recall, the under-damped
case applies when

α < ω◦.
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To simplify matters, we will further assume that Q 	 1. For Q 	 1, α 
 ω◦,
so ωd ≈ ω◦ and α 
 ωd.

The voltage and current expressions for this special case are derived from
Equations 12.63 and 12.64, and simplify to

vC(t) ≈
√

v 2
C(0) + L

C
i 2
L (0) e−αt cos


ωdt + tan−1




√
L

C

iL(0)

vC(0)







(12.73)

iL(t) ≈
√

C

L

√
v 2

C(0) + L

C
i 2
L (0) e−αt sin


ωdt + tan−1




√
L

C

iL(0)

vC(0)





 .

(12.74)

The energy stored in the capacitor is given by

wE(t) = 1

2
CvC(t)2

and that in the inductor is given by

wM(t) = 1

2
LiL(t)2.

Substituting for vC and iL, we get

wE(t) ≈
(

1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

e−2αt cos 2


ωdt + tan−1




√
L

C

iL(0)

vC(0)







(12.75)

wM(t) ≈
(

1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

e−2αt sin2


ωdt + tan−1




√
L

C

iL(0)

vC(0)





 .

(12.76)

The total energy stored in the circuit is the sum of the energy in the capacitor
and that in the inductor and is given by

wT(t) = wE(t) + wM(t) ≈
(

1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

e−2αt. (12.77)

Let us examine the expression for the energy stored in the capacitor
(Equation 12.75). The expression is made up of three factors. The first
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F IGURE 12.23 Energy in RLC
transient.

factor term, (
1

2
Cv 2

C(0) + 1

2
Li 2

L (0)
)

,

is the initial stored energy (wT(0)) in the system. The second factor represents
the decay of energy with time. Finally, by rewriting the third factor as

cos 2


ωdt + tan−1




√
L

C

iL(0)

vC(0)





 =

1 + cos 2
(
ωdt + tan−1

(√
L
C

iL(0)
vC(0)

))

2

we can see that the energy is sloshing back and forth between the capacitor and
inductor, twice per cycle of the transient ring.

Through a comparison with the results of Section 12.1, we also see that
for large Q, that is, for a relatively short-circuited R and hence light damping,
the introduction of a resistor into the circuit causes an exponential decay of the
states and the stored energy. A sketch of the energy versus time is shown in
Figure 12.23 for the case

vC(0) = 0.

The length of time for the stored energy to dissipate can now be readily calcu-
lated. Obviously the controlling function in Equation 12.77 is the exponential
term e−2αt. This can be rewritten using Equation 12.65 as

decay = e−ωot/Q. (12.78)

Since ωd � ωo for large Q, then in Q cycles

ωot � ωdt = 2πQ.
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Hence in Q cycles the decay term is

decay = e−2π , (12.79)

which is much smaller than one. Hence we conclude the following:

The energy in the transient decays to a very small value (approximately 0.2%)
in about Q cycles.

Notice again the significance of Q.
The preceding discussion suggests yet another interpretation for Q. From

Equation 12.77 it is apparent that the energy stored in the circuit during an
oscillation cycle is approximately wT(0)e−2αt. From Equations 12.73 and 12.77
it is also apparent that the average value of v 2

C is approximately wT(0)e−2αt/C
during that same cycle. Therefore the energy dissipated in the resistor during
the cycle is approximately 2πwT(0)e−2αt/RCωd. Division of the stored energy
by the dissipated energy leads to the conclusion that

Q ≈ 2π
Energy stored during an oscillation cycle

Energy dissipated during an oscillation cycle
(12.80)

as an energy interpretation for Q. This interpretation is common to all under-
damped second-order systems.

W W W 12.4 U N D R I V E N , P A R A L L E L R L C C I R C U I T *

W W W 12.4.1 U N D E R - D A M P E D D Y N A M I C S

W W W 12.4.2 O V E R - D A M P E D D Y N A M I C S

W W W 12.4.3 C R I T I C A L L Y - D A M P E D D Y N A M I C S

12.5 D R I V E N , S E R I E S R L C C I R C U I T

In the next two sections, we combine the results of the previous sections and
study the behavior of second-order circuits that have both damping and an
external input. In this section, we study the series circuit obtained by including
a series voltage source in Figure 12.15. The next section studies the parallel
circuit obtained by including a parallel current source in W W W Figure 12.24.
Through the use of Thévenin and Norton equivalence, the results actually apply

+
-

vIN

vOvC
vL-

vC

+

+

-
C

L iLR

F IGURE 12.26 The series
second-order circuit with a resistor,
capacitor, inductor, and voltage
source.

to many other circuits as well.
Consider now the circuit shown in Figure 12.26. As in previous subsections

of this chapter, we will analyze the behavior of this circuit using the node
method beginning at Step 3. In doing so, we will follow the analyses presented
in Subsection 12.2 very closely, using vC and vO as the unknown node voltages.
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We begin by completing Step 3 of the node method. To do so, we write
KCL in terms of vC and vO for the node at which they are defined to obtain

C
dvC(t)

dt
+ vC(t) − vO(t)

R
= 0 (12.116)

for the node at which vC is defined, and

vO(t) − vC(t)

R
+ 1

L

∫ t

−∞
(vO(t̃) − vIN(t̃))dt̃ = 0 (12.117)

for the node at which vO is defined. To treat these two equations simultane-
ously, we first use Equation 12.116 to determine vO in terms of vC, and then
substitute the result into Equation 12.117 to obtain a second-order differential
equation in vC. This yields

vO(t) = RC
dvC(t)

dt
+ vC(t) (12.118)

d2vC(t)

dt2
+ R

L

dvC(t)

dt
+ 1

LC
vC(t) = 1

LC
vIN(t). (12.119)

Note that to arrive at Equation 12.119 we have divided Equation 12.117 by C,
and differentiated it with respect to time. Unlike Equation 12.4, Equation 12.119
is an inhomogeneous differential equation because it is driven by the external
signal vIN.

To complete the node analysis, we complete Step 4 and 5 by solving
Equation 12.119 for vC, and using it to determine iL and any other variables of
interest. Since the capacitor and inductor share the same current, iL in particular
can be obtained from

iL(t) = −C
dvC(t)

dt
. (12.120)

Here, the negative sign follows from the opposing definitions of positive
capacitor and inductor currents.

To solve Equation 12.119, we employ our usual method of solving
differential equations:

1. Find the homogeneous solution vCH(t).

2. Find the particular solution vCP(t).

3. The total solution is then the sum of the homogeneous solution and the
particular solution as follows:

vC(t) = vCH(t) + vCP(t).

Then, use the initial conditions to solve for the remaining constants.
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The homogeneous solution vCH(t) to Equation 12.119 is obtained by solv-
ing this differential equation with vIN ≡ 0. With vIN ≡ 0, the circuit shown in
Figure 12.26 is identical to that shown in Figure 12.15, and so the two circuits
have the same homogeneous equation. Thus, borrowing the homogeneous
solution from Equation 12.48, we can write

vCH(t) = K1e s1t + K2e s2t (12.121)

where K1 and K2 are as yet unknown constants, that will be determined from
the initial conditions after the total solution has been formed. s1 and s2 are the
roots of the characteristic equation

s 2 + 2αs + ω2◦ = 0 (12.122)

where α and ω◦ are given by

α ≡ R

2L
(12.123)

ω◦ ≡
√

1

LC
; (12.124)

The roots are given by

s1 = −α +
√

α2 − ω2◦ (12.125)

s2 = −α −
√

α2 − ω2◦ . (12.126)

As with the undriven, series RLC circuit in Section 12.2, the circuit exhibits
under-damped, over-damped, or critically-damped behavior depending on the
relative values of α and ω◦:

α < ω◦ ⇒ under-damped dynamics;
α = ω◦ ⇒ critically-damped dynamics;
α > ω◦ ⇒ over-damped dynamics.

For brevity, the rest of the section will assume that

α < ω◦

so that the circuit displays under-damped dynamics. For the under-damped
case, s1 and s2 are complex and can be written as

s1 = −α + jωd

s2 = −α − jωd
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where, as in Section 12.2.1,

ωd ≡
√

ω2◦ − α2. (12.127)

Since s1 and s2 are complex, the exponentials in Equation 12.121 are also
complex. To expose the resulting oscillatory and decaying behavior, we can
rewrite into a more intuitive form the homogeneous solution in Equation 12.121
using the complex notation for s1 and s2 as in Equation 12.127 and the
Euler relation:

vCH(t) = A1e−αt cos(ωdt) + A2e−αt sin(ωdt) (12.128)

where ωd is defined as in Equation 12.127, and where A1 and A2 are unknown
constants we will evaluate later depending on the initial conditions of the circuit.

Next, we need to find vCP(t). Knowing it, we can write the total solution as

vC(t) = vCP(t) + vCH(t) = vCP(t) + A1e−αt cos(ωdt) + A2e−αt sin(ωdt).

(12.129)

At this point, only vCP, and A1 and A2, remain as unknowns.
We will now proceed to find vCP, and then A1 and A2, for two cases of

vIN, namely a step and an impulse. That is, we will proceed to find the step
response and the impulse response of the circuit. To simplify matters, we will
continue to assume that the circuit is under-damped, that both the step and
the impulse occur at t = 0, and that the circuit is initially at rest prior to that
time. The latter assumption suggests that we are interested in the zero-state
response7 and provides these initial conditions

vC(0) = 0

iL(0) = 0

for the solution of Equation 12.119 after the step and impulse occur, that is,
for t > 0. Arbitrary initial conditions will modify only A1 and A2.

12.5.1 S T E P R E S P O N S E

Let vIN be the voltage step given by t

vIN

0

Vo

F IGURE 12.27 A voltage step
input.

vIN(t) = V◦u(t) (12.130)

and shown in Figure 12.27.

7. Recall, the zero-state response is the response of the circuit for zero initial state.
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To find vCP, we substitute Equation 12.130 into Equation 12.119 and obtain

d2vC(t)

dt2
+ R

L

dvC(t)

dt
+ 1

LC
vC(t) = 1

LC
V◦ (12.131)

for t > 0. Any function that satisfies Equation 12.131 for t > 0 is an acceptable
vCP. It does not matter whether that function satisfies the initial conditions
or not. One such function is

vCP(t) = V◦. (12.132)

Thus, we have the particular solution for a step input. The total solution is given
by summing the homogeneous solution (Equation 12.128) and the particular
solution (Equation 12.132) as

vC(t) = V◦ + A1e−αt cos(ωdt) + A2e−αt sin(ωdt), (12.133)

again for t > 0. Additionally, the substitution of Equation 12.133 into
Equation 12.120 yields

iL(t) = (αCA1 − ωdCA2)e−αt cos(ωdt) + (ωdCA1 + αCA2)e−αt sin(ωdt),

(12.134)

also for t > 0. Now only A1 and A2 remain as unknowns.
In Chapter 9, we saw that the voltage across a capacitor is continuous unless

the current through it contains an impulse. We also saw that the current through
an inductor is continuous unless the voltage across it contains an impulse. Since
vIN contains no impulses, we can therefore assume that both vC and iL are
continuous across the step at t = 0. Consequently, since both states are zero
for t ≤ 0, Equations 12.133 and 12.134 must both evaluate to zero as t → 0.
This observation allows us to use the initial conditions to determine A1 and
A2. Evaluation of both equations as t → 0, followed by the substitution of the
initial conditions, yields

vC(0) = V◦ + A1 (12.135)

iL(0) = αCA1 − ωdCA2. (12.136)

Equations 12.135 and 12.136 can be solved to yield

A1 = vC(0) − V◦ (12.137)

A2 = αvC(0) − αV◦ − iL(0)/C

ωd
. (12.138)
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Since we are given that vC(0) = 0 and iL(0) = 0,

A1 = −V◦ (12.139)

A2 = − α

ωd
V◦. (12.140)

Finally, the substitution of Equations 12.139 and 12.140 into Equations 12.133
and 12.134 yields8

vC(t) = V◦
(

1 − ω◦
ωd

e−αt cos
(

ωdt − tan−1
(

α

ωd

)))
u(t) (12.141)

iL(t) = − V◦
ωdL

e−αt sin(ωdt)u(t); (12.142)

Equations 12.124 and 12.127 have also been used to simplify the results. Note
that the unit step function u has been introduced into Equations 12.141 and
12.142 so that they are valid for all time. The validity of Equations 12.141 and
12.142 can be demonstrated by observing that they satisfy the initial conditions,
and Equations 12.119 and 12.120, respectively, for all time. Because they do,
our assumption that the states are continuous at t = 0 is justified.

Figure 12.28 shows vC and iL as given by Equations 12.141 and 12.142.
Notice the overshoot of vC above the input voltage V◦ during the initial tran-
sient. Although the average value of vC is close to V◦ during the transient, the
peak value is closer to 2V◦.

As expected, the ringing in both states now decays as t → ∞. This
decay is well characterized by the quality factor Q, as defined in W W W Equa-
tion 12.108 and discussed shortly thereafter. In fact, because the circuits shown
in Figures 12.15 and 12.26 have the same homogeneous response, the entire
discussion of α, ωd, and ω◦ given in Subsection 12.2 applies here as well.

Another observation concerns the short-time behavior of the circuit. We
have seen in Chapter 10 that the transient behavior of an uncharged capacitor is
to act as a short circuit during the early part of a transient, while the correspond-
ing transient behavior of an uncharged inductor is to act as an open circuit. This

8. We can also substitute the expressions for A1 and A2 with nonzero initial conditions as given by
Equations 12.137 and 12.138 into Equation 12.133, for example, and obtain a more general form
of the solution

vC(t) = V◦ + (vC(0) − V◦)e−αt cos ωdt + (αvC(0) − αV◦ − iL(0)/C)

ωd
e−αt sin ωdt.

We can obtain the ZSR from this general solution by substituting vC(0) = 0 and iL(0) = 0.
Alternatively, we can obtain the ZIR by substituting V◦ = 0 and using the appropriate initial
conditions for the state variables.
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0
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C

Vo

π/ωd 2π/ωd 3π/ωd 4π/ωd 5π/ωd 6π/ωd 7π/ωd

|
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0

 i L

π/ωd 2π/ωd 3π/ωd 4π/ωd 5π/ωd 6π/ωd 7π/ωd

F IGURE 12.28 vC and iL for the
series RLC circuit circuit shown in
Figure 12.26 for the case of a step
input through vIN.

behavior is observed in Figure 12.28 since vIN drops entirely across the inductor
(and vC is 0) at the start of the transient, and iL ramps up correspondingly.

A related observation concerns the long-time behavior of the circuit. We
have also seen in Chapter 10 that the transient behavior of a capacitor is to
act as an open circuit as t → ∞, while the corresponding transient behavior
of an inductor is to act as a short circuit. This behavior is also observed in
Figure 12.28, since vIN appears entirely across the capacitor as t → ∞, since
vC → V◦.

Figure 12.28 also explains the ringing transients seen in Figure 12.3. This
is because the circuit shown in Figure 12.26, from which the response in
Figure 12.28 is derived, is essentially the same as the subcircuit containing
the inductor LI shown in Figure 12.5.

e x a m p l e 12.7 s t e p r e s p o n s e o f s e r i e s r l c c i r c u i t

In this example we evaluate the step response of the circuit shown in Figure 12.29 with
R = 50 �, L = 20 mH, and C = 13 pF. Assume that vIN steps from 0 to V◦ at t = 0,
where V◦ = 1 V. In other words, vIN = V◦u(t) = u(t) V, where u(t) is the unit step
function. Let us suppose that we are interested in obtaining iL, vR, vC, and vL.

+
-

vIN

vC
vL

vC

+

+ -

-
C

L iLR

vR+ -

F IGURE 12.29 A driven, series
RLC circuit.

Following Equations 12.123, 12.124, and 12.127, respectively, this circuit is character-
ized by α = 1.25 krad/s, ω◦ = 62.017 krad/s, and ωd = 62.005 krad/s.

From Equation 12.142

iL(t) = −0.8064 mA e−(1250 s−1 t) sin
(

62005
rad

s
t
)

u(t).

Multiplying this result by 50 � yields

vR(t) = −40.32 mV e−(1250 s−1 t) sin
(

62005
rad

s
t
)

u(t).
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From Equation 12.141

vC(t) = 1 V
(

1 − 1.0002 e−(1250 s−1 t) cos
(

62005
rad

s
t − 20.14 mrad

))
u(t).

Finally, using vL = L diL/dt,

vL(t) = −1.0002 V e−(1250 s−1 t) cos
(

62005
rad

s
t + 20.14 mrad

)
u(t).

Since iL is common to all four circuit elements in Figure 12.29, all branch variables
are now known. Finally, as a quick check on our work, note from the preceding that
vC − vR − vL = vIN = 1 V u(t) as is required by applying KVL around the one loop in
the circuit.

12.5.2 I M P U L S E R E S P O N S E

Let vIN be the impulse given by

vIN = �◦δ(t) (12.143)

as shown in Figure 12.30. Because vIN is an impulse, it vanishes for t > 0.
Therefore, Equation 12.119 reduces to a homogeneous equation for t > 0.
Thus the impulse response of the circuit is essentially a homogeneous response,
this response is identical to that studied in Subsection 12.2. In fact, as observed
in Section 10.6.4 for a first-order circuit, the role of the impulse is to establish
initial conditions for the subsequent homogeneous response.

vIN

Λo

t0

F IGURE 12.30 The voltage
impulse vIN.

As previously observed on several occasions, the transient behavior of an
uncharged capacitor is to act as a short circuit during the early part of a transient,
while the corresponding transient behavior of an uncharged inductor is to act
as an open circuit. Since the inductor acts as an open circuit during a sudden
transition, the impulse in vIN falls entirely across the inductor while vC remains
zero at t = 0. An important consequence of this is that the flux linkage �◦
delivered by vIN is delivered entirely to the inductor, and so iL steps to −�◦/L
at t = 0. This establishes the initial conditions immediately after the impulse.
In other words, these will be our initial conditions for the rest of our analysis:

iL(0) = −�◦
L

vC(0) = 0.

Since Equation 12.119 reduces to a homogeneous equation, the simplest
acceptable particular solution is

vCP(t) = 0. (12.144)
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We obtain the total solution by adding this particular solution to the homoge-
neous solution described by Equation 12.128:

vC(t) = vCH(t) + vCP(t) = A1e−αt cos(ωdt) + A2e−αt sin(ωdt), (12.145)

again for t > 0. Additionally, since the capacitor and inductor share the same
current, iL can be obtained by substituting Equation 12.145 into

iL(t) = −C
dvC(t)

dt
(12.146)

as follows:

iL(t) = (αCA1 − ωdCA2)e−αt cos(ωdt) + (ωdCA1 + αCA2)e−αt sin(ωdt),

(12.147)

also for t > 0.
We will now determine the unknowns A1 and A2 from the initial conditions.

vC(0) = A1 = 0 (12.148)

iL(0) = −ωdCA2 − αCA1 = −�◦
L

. (12.149)

Equations 12.148 and 12.149 can be rearranged to yield

A1 = 0 (12.150)

A2 = �◦
LCωd

− αvC(0)

ωd
= �◦

LCωd
. (12.151)

Finally, the substitution of Equations 12.150 and 12.151 into Equations 12.145
and 12.147 yields

vC(t) =
(

�◦
LCωd

)
e−αt sin(ωdt)u(t) (12.152)

iL(t) = −
(

�◦
L

)
e−αt cos(ωdt) −

(
α�◦
Lωd

)
e−αt sin(ωdt)u(t), (12.153)

where the unit step function u has been introduced into Equations 12.152 and
12.153 so they are valid for all time.

Finally, we may also determine vL from KVL according to

vL(t) = vC(t) − vIN(t) − iL(t)R. (12.154)
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Note that Equations 12.152 and 12.153 satisfy the initial conditions estab-
lished by the impulse, and that they respectively satisfy Equations 12.119 and
12.120 for all time. Because they do, they justify our interpretation of the circuit
behavior at t = 0.

Because the impulse response of the circuit is essentially a homogeneous
response, this response is identical to that studied in Section 12.2. In fact,
Equations 12.63 and 12.64 are identical to Equations 12.152 and 12.153 with
the substitution of zero for vC(0) and −�◦/L for iL(0) in the former equations.

Alternatively, we can determine the circuit response to the impulse input by
simply differentiating the step response given in Equations 12.224 and 12.225.
As discussed in Section 12.6, we do this by applying the operator (�◦/V◦)d/dt
because the impulse input can be derived by applying the same operator to the
step input as

(�◦/V◦)
d

dt
V◦u(t) = �◦δ(t).

This results in

vC(t) = �◦
V◦

d

dt

(
V◦

(
1 − ω◦

ωd
e−αt cos

(
ωdt − tan−1

(
α

ωd

)))
u(t)

)

= ω◦�◦e−αt sin
(

ωdt − tan−1
(

α

ωd

))
u(t)

+ αω◦�◦
ωd

e−αt cos
(

ωdt − tan−1
(

α

ωd

))
u(t)

+ �◦
(

1 − ω◦
ωd

e−αt cos
(

ωdt − tan−1
(

α

ωd

)))
δ(t)

= �◦
ω2◦
ωd

e−αt sin(ωdt)u(t) (12.155)

iL(t) = �◦
V◦

d

dt

(
− V◦

ωdL
e−αt sin(ωdt)u(t)

)

= −�◦
L

e−αt cos(ωdt)u(t) + α�◦
ωdL

e−αt sin(ωdt)u(t)

− �◦
ωdL

e−αt sin(ωdt)δ(t)

= −�◦
L

ω◦
ωd

e−αt cos
(

ωdt + tan−1
(

α

ωd

))
u(t). (12.156)
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Note that terms involving the impulse δ vanish in Equations 12.155 and 12.156
because δ is itself zero everywhere except t = 0, and the coefficients of the
impulse in both the equations are zero at t = 0.9

e x a m p l e 12.8 s e r i e s l c c i r c u i t d r i v e n b y a s t e p

Consider the driven, series LC circuit in Figure 12.31. This circuit differs from the series

+

-
vIN

vIN
vC

vL

vC

+

+ -

-
C

LiL

F IGURE 12.31 The driven,
series LC circuit.

RLC circuit in Figure 12.26 in that the series resistance is zero. Suppose that we are
interested in the ZSR for the circuit for a voltage step drive given by

vIN(t) = V◦u(t).

The zero-state response of this circuit to the step input can be obtained from the ZSR
of the series RLC circuit (Equations 12.141 and 12.142) by assuming R = 0. When the
resistance is zero,

α = 0

and

ωd = ω◦

(see Equations 12.123 and 12.210). Thus Equations 12.141 and 12.142 simplify to

vC(t) = V◦(1 − cos(ω◦t))u(t) (12.157)

iL(t) = V◦
ω◦L

sin(ω◦t)u(t). (12.158)

Figure 12.32 shows vC and iL as given by Equations 12.157 and 12.158. Notice that the
oscillations in both states do not decay and continue indefinitely because there are no
resistors in the circuit to damp their response. Similarly, here, vC undergoes a two-fold
overshoot. However, the average value of vC is V◦.

e x a m p l e 12.9 c a s c a d e d i n v e r t e r s We now apply the results
of this section to a practical problem, namely the study of the cascaded inverters shown
in Figure 12.1, and modeled in Figure 12.4. What is new in the latter figure is the
parasitic wiring inductance between the two inverters, which makes the circuit a second-
order circuit. As discussed in Subsections 9.3.2 and 9.3.3, parasitic inductance is present
in all wiring. In some cases it is particularly important, and these cases are generally
characterized by a large Q when they are second-order in nature.

9. Note that Figure 12.17 is helpful in simplifying trigonometric expressions involving α, ωd, and ω◦.
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F IGURE 12.32 vC and iL for the
series LC circuit circuit for the case
of a step input through vIN.

Long clock and data lines between gates within computer chips can have significant para-
sitic inductance, perhaps as much as tens of pico Henries per millimeter. This inductance
becomes increasingly important as clock rates increase. Similarly, long power supply lines
within computer chips and on printed-circuit boards (see Figure 12.33) can have signifi-
cant parasitic inductance. This inductance becomes increasingly important as circuits are
switched on and off dynamically in an effort to save power and reduce heat dissipation
when the circuits are functionally inactive. Finally, as data lines pass across chip bound-
aries they acquire parasitic inductance arising from the bonding wires within the chips
(see Figure 12.34) and the interconnection between the chips. This inductance can be as
high as tens of nano Henries or more.

For the sake of discussion, consider Figure 12.4 in which one inverter, acting as a pad
buffer, drives a signal off one chip to the input of a second inverter on another chip.

F IGURE 12.33 An example printed-circuit
board showing wiring traces. (Photograph
Courtesy of Maxim Integrated Products.)

F IGURE 12.34 Bond wires connecting integrated
circuit to the posts of a package head frame.
(Photograph Courtesy of Maxim Integrated Products.)
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F IGURE 12.35 Circuit model of
the cascaded inverters when the
input at vIN1 is low.

VS

RL

VS

RL

vIN1

CGS1

vOUT1

CGS2

vOUT2

RON

LIRON

vIN2 = vC

The corresponding circuit model shown in Figure 12.5 is repeated here in Figure 12.35
for convenience. Consistent with this example, we assume that the driving inverter is
characterized by

RL = 900 �

RON = 100 �

VS = 5 V.

We also assume that the receiving inverter is characterized by

CGS2 = 0.1 pF

and that the parasitic wiring inductance is well modeled by

LI = 100 nH.

Given this system description, let us examine the transient voltage that appears at vC,
where

vC = vIN2

is the gate voltage of the receiving inverter, and determine its impact on the propagation
delay. Here there are two separate cases, namely a rising transient and a falling transient
at the node with voltage vC.

The complexity of handling successive rising and falling transients is most easily managed
by modeling the driving inverter with its Thévenin equivalent, which is summarized in
Figure 12.36. This in turn leads to a simpler model for the interconnection as shown in
Figure 12.37. Figure 12.36 shows that

vTH = 5 V

RTH = 900 �
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+
-5 V

RL = 900 Ω

RON = 100 Ω

+
-

RTH = 900 Ω

vTH = 5 V

+
-

5 V

RL= 900 Ω

RON = 100 Ω

+
-

RTH = 90 Ω

vTH =  0.5 V

(a) Rising transient (b) Falling transient

F IGURE 12.36 Thévenin
equivalent of the driving inverter
during a rising and falling transition.when the driving inverter drives a high output during a rising transient. Similarly, it

shows that

vTH = 0.5 V

RTH = 90 �

when the driving inverter drives a low output during a falling transient.

There are two complications to Figure 12.36 that we have not studied so far. The first
complication is that RTH is different for the rising and falling transitions. However,
this complication is inconsequential because RTH is piecewise constant. Thus, we can
separately analyze the rising transient during which RTH = 900 �, and the falling
transient during which RTH = 90 �. Note too that the circuit remains linear even
though RTH is time varying.

vTH

+

-

RTH

LI

CGS2 vC = vIN2

+

-

iL

F IGURE 12.37 Equivalent
circuit of the two-inverter circuit.

The second complication is that vTH does not step to or from 0 V. Rather it falls from
5 V to 0.5 V for a falling transition, and rises from 0.5 V to 5 V for a rising transition.
Because the circuit in Figure 12.37 is linear, we can use the method of superposition to
decompose this problem into two simpler problems. Accordingly, we will break vTH into
two component voltage sources connected in series as shown in Figure 12.38. The first
component, v̄TH, is constant at 0.5 V. The second component, ṽTH, steps from 0 V to
4.5 V for a rising transition, and falls from 4.5 V to 0 V for a falling transition. The circuit
response to these two components may be superimposed to find the total response. We
will denote the vC response to v̄TH by v̄C, and we will denote the corresponding response
to ṽTH by ṽC. Similarly, we will denote the corresponding iL responses as ¯L and ˜L.

The circuit response to the constant v̄TH is most easily determined by observing that
the capacitor and inductor in Figure 12.37, respectively, behave as an open circuit and a
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short circuit after long periods of time. Therefore

v̄C(t) = 0.5 V (12.159)

¯L(t) = 0 A. (12.160)

We will now determine ṽC and ˜L, and then the total vC and iL, first for the falling
transient and then for the rising transient. During the analysis of each transient we will
assume that the previous transient has fully settled.

vTH
+

-

vTH
+

-

vTH
+

-
~

0.5 V ↔ 5 V

0.5 V

0 V ↔ 4.5 V

F IGURE 12.38 Breaking up
vTH into two additive components,
each of whose responses can be
added together to obtain the total
response through superposition.

Falling Transient

Prior to a falling transient, vTH is assumed to equal 5.0 V for a long time. Since the
capacitor and inductor, respectively, behave as an open circuit and a short circuit after
long periods of time, the circuit states will have settled to vC = 5.0 V and iL = 0 prior to
the transient. These are then the initial states for the falling transient. For simplicity, we
will assume that the falling transient begins at t = 0. Therefore, the varying component
of the circuit states begin a falling transient from

ṽC(0) = vC(0) − v̄C = 5.0 V − 0.5 V = 4.5 V (12.161)

˜L(0) = iL(0) −¯L = 0 A − 0 A = 0 A. (12.162)

This transient resembles that of an undriven, series RLC circuit with an initial voltage
on the capacitor, and is studied in Subsection 12.2. To determine whether the circuit is
under-, over-, or critically-damped, we first compute the parameters that describe the
response, namely

α = RTH

2LI
= 4.5 × 108 rad/s (12.163)

ω◦ = 1√
LICGS2

= 1.0 × 1010 rad/s (12.164)

ωd =
√

ω2◦ − α2 = 0.999 × 1010 rad/s (12.165)

Q = ω◦
2α

= 11. (12.166)

Since α < ω◦, the circuit is under-damped, and so we may use Equations 12.63
and 12.64 to determine the falling transient response.

With the substitution of Equations 12.161, 12.162, 12.163, and 12.165 into Equations
12.63 and 12.64, the varying component of the falling transient is found to be

ṽC(t) = 4.5 e−(4.5×108 t) cos(0.999 × 1010 t − 0.045) V (12.167)

˜L(t) = 4.5 × 10−3 e−(4.5×108 t) sin(0.999 × 1010 t) A. (12.168)
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F IGURE 12.39 vC transient
during a falling transition.

The total transient is then obtained by summing the individual responses as follows:

vC(t) = 0.5 V + 4.5 e−(4.5×108 t) cos(0.999 × 1010 t − 0.045) V (12.169)

iL(t) = 4.5 × 10−3 e−(4.5×108 t) sin(0.999 × 1010 t) A. (12.170)

The transient in vC is shown in Figure 12.39.

Interestingly, when ringing occurs during the transient, calculating the propagation delay
is not as straightforward as in the RC case. In the RC case, the propagation delay of the
driving inverter was simply the time required for the output voltage to fall below the
valid output low threshold, VOL (see Section 10.4.2). For our discussion, we will assume
that when the inductance of the connecting wire is relevant, the delay associated with
the driving inverter includes the effect of both the inductor LI and the gate capacitance
CGS2. Accordingly, we can see from the circuit model in Figure 12.37 that the relevant
output node for computing the propagation delay of the driving inverter is vIN2 = vC.
With ringing behavior during a falling transition, this output is a valid low only when all
oscillations remain below the VOL threshold. The corresponding tpd,0→1 propagation
delay is depicted in Figure 12.39; recall that for an inverter tpd,0→1 is the delay of the
inverter for a low to high transition at the input, and hence a high to low transition at
the output.

Finally, notice that if the ringing is sufficiently under damped then vC can fall below VOL

and then rise again above VOH one or more times. However, this behavior does not
violate the combinational gate abstraction because the definition of the combinational
gate in the presence of delay (see Section 10.4.1) does not constrain the gate’s opera-
tion following an input transition during a time interval whose length is equal to the
propagation delay.

Rising Transient

Prior to a rising transient, vTH is assumed to equal 0.5 V for a long time. Since the
capacitor and inductor, respectively, behave as an open circuit and a short circuit after
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long periods of time, the circuit states will have settled to vC = 0.5 V and iL = 0
prior to the transient. These are then the initial states for the rising transient. Again for
simplicity, we will assume that the rising transient begins at t = 0. Therefore, the varying
component of the circuit states begin a rising transient from

ṽC(0) = vC(0) − v̄C = 0.5 V − 0.5 V = 0 V (12.171)

˜L(0) = iL(0) −¯L = 0 A − 0 A = 0 A. (12.172)

This transient resembles that of a series RLC circuit that is initially at rest, driven by a
voltage step of 4.5 volts, and is studied in Section 12.5. We first compute the parameters
that describe the response, namely

V◦ = ṽTH = 4.5 V (12.173)

α = RTH

2LI
= 4.5 × 109 rad/s (12.174)

ω◦ = 1√
LICGS2

= 1.0 × 1010 rad/s (12.175)

ωd =
√

ω2◦ − α2 = 8.9 × 109 rad/s (12.176)

Q = ω◦
2α

= 1.1. (12.177)

Since α < ω◦, the circuit is under-damped, and so we may use Equations 12.141 and
12.142 to determine the rising transient response. With the substitution of Equations
12.173 through 12.176 into Equations 12.141 and 12.142, the varying component of
the rising transient is found to be

ṽC(t) = 4.5(1 − 1.1 e−(4.5×109 t) cos(8.9 × 109 t − 0.47)) V (12.178)

˜L(t) = 5.1 × 10−3 e−(4.5×109 t) sin(8.9 × 109 t) A. (12.179)

The total transient is then

vC(t) = 0.5 V + 4.5(1 − 1.1 e−(4.5×109 t) cos(8.9 × 109 t − 0.47)) V (12.180)

iL(t) = 5.1 × 10−3 e−(4.5×109 t) sin(8.9 × 109 t) A. (12.181)

This transient is shown in Figure 12.40. Again we see that the transient rings, although
with greater damping due to an increase in RTH. With this ringing behavior, the output
is not valid until all oscillations remain above the VOH threshold. The corresponding
tpd,1→0 is depicted in Figure 12.40.
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F IGURE 12.40 vC transient
during a rising transition.

e x a m p l e 12.10 a n o t h e r s w i t c h e d p o w e r s u p p l y In
this example, we will analyze the behavior of the switched power supply circuit shown
in Figure 12.41.The purpose of the circuit is to convert the DC input voltage V to a
different output voltage vOUT. The MOSFETs in the circuit operate as switches, and
the square-wave inputs to the MOSFET’s are shown in Figure 12.42. For variety, the
switched power supply circuit in this example has a slightly different arrangement of
switches than the one previously discussed in Figure 12.11. We will further assume
that the switches have some resistance associated with them. Specifically, assume that
the MOSFET’s have RON = R, the inductor has inductance L, and the capacitor has

V
+

-
C

L

+

-

vOUT
iL

S1

S2

vC

F IGURE 12.41 RLC circuit with switches.

t

t

High

Low

High

Low

S1 control input

S2 control input

F IGURE 12.42 Input to the switches.
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capacitance C. We also assume that the MOSFET’s have no capacitances associated
with them. What is the behavior of this circuit, and in particular, how does vOUT change
over time?

Intuition We first provide an intuitive explanation of the circuit behavior. When the
switch S1 is closed and S2 is open, we have a series RL circuit as shown in Figure 12.43.
Over time, the current through the inductor in this circuit will build up and eventually
reach V/R (if given enough time).

Next, when S1 is open and S2 is closed, we have a series resonant RLC circuit as shown
in Figure 12.44. When all the transients have died out, the capacitor will have the same
voltage (V) as the voltage source and no current flows through the inductor (again, if
given enough time).

Let us first consider the case where S1 is opened and S2 is kept closed for a long period
of time. At the instant that S1 is opened and S2 is closed, the inductor has a current

V
+

-

R

L

iL

F IGURE 12.43 The equivalent
RL circuit when S1 is closed and S2
is open. R is the on resistance of
the MOSFET switch. After a long
period of time, the final value of the
current through the inductor will be
V/R.

equal to V/R flowing through it. Since the current flowing through the inductor cannot
change instantaneously, the same current will flow into the capacitor through the closed
switch S2. As the capacitor charges, its voltage rises and the current decreases. After
some amount of time, the current reaches zero. If the capacitor is small enough, or
if there was a large enough initial voltage on it, its voltage might be at a higher value
than the voltage of the source V. Let us assume this is the case. Because the capacitor
voltage reaches a higher value than V, it begins to supply energy and a current begins to
flow through the inductor in the reverse direction. This process continues as the energy
oscillates between the inductor and the capacitor. If the given switch settings exist for
a long enough period of time, the oscillations will die out as the resistor dissipates the
energy.

V
+
-

C

L

+
-

iL

vC

R

F IGURE 12.44 The equivalent
RLC circuit when S2 is closed and
S1 is open.

Let us now consider the case where S1 is opened and S2 is kept closed only for a
short amount of time. This case starts out just like the previous case. In other words,
at the instant that S1 is opened and S2 is closed, the inductor has a current equal to
V/R flowing through it. Since the current flowing through the inductor cannot change
instantaneously, the same current will flow into the capacitor through the closed switch
S2. As the capacitor charges, its voltage rises past V (again, assuming a small enough
capacitor, or a large enough initial voltage on the capacitor).

Now, an interesting scenario arises if we close S1 and open S2 after the capacitor voltage
has risen past V, but before the current reverses direction. Since S2 is now open, the
capacitor has no path to discharge, and so it holds the final value of its voltage. Then
when S1 is opened and S2 is closed again, the inductor current charges up the capacitor
further, thereby further increasing its voltage. If this process is repeated, notice that the
capacitor voltage will keep rising indefinitely over time.

If, however, a resistive load is applied to the capacitor output as illustrated in Figure 12.48,
its output will not keep rising indefinitely; rather the capacitor gets discharged (fully or
partially depending on the relative charging and discharging time constants). By adjusting
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the switching intervals over which the capacitor is allowed to charge and discharge we
can achieve a range of average voltage values (including values that are higher or lower
than the input voltage) at the output of the circuit. This property forms the basis of
DC/DC converter power supplies.

The following discussion provides a more detailed analysis of the circuit behavior, assum-
ing there is no output load resistor. We will consider the two cases: (a) S1 closed, S2

open, which forms a series RL circuit, and (b) S1 open, S2 closed, which forms a series
RLC circuit.

S1 Closed, S2 Open: Series RL Circuit When S1 is closed and S2 is open, we have the
series RL circuit shown in Figure 12.43. We will assume that S1 is closed long enough
for the transient to die out. Therefore, the current through the inductor will reach V/R
before S1 is opened.

S1 Open, S2 Closed: Series RLC Circuit When S1 is open and S2 is closed, we
have the driven, series RLC circuit shown in Figure 12.44, which is identical to the
circuit in Figure 12.26. This time around, we will analyze this circuit from first principles
following the method shown in Section 12.2. First, let us collect our information on the
drive voltage and the initial conditions. We know that the drive voltage for the circuit is V.

Let us now determine the initial conditions. For convenience, we will take t = 0 as
the instant that S1 is opened and S2 is closed. The state of the circuit at t = 0 is
given by

iL(0) = V

R
(12.182)

vC(0) = v0 (12.183)

where v0 is the voltage on the capacitor at t = 0. Just before S1 is opened and S2 is
closed, there was a current of V/R flowing in the inductor and a voltage v0 on the
capacitor. Therefore, these are our initial conditions. The initial voltage on the capacitor
v0 will be 0 when the circuit starts from rest. If there is no load resistor connected to
the capacitor, then this voltage will simply be the final value on the capacitor from the
previous charging cycle.

We know that the total solution for vC and iL is given by the sum of the homoge-
neous solution (vCH and iLH) and particular solution (vCP and iLP). We know from
Equation 12.121 that the homogeneous solution is given by

vCH = K1e s1t + K2e s2t. (12.184)

Further, using

iLH = C
dvCH

dt
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we obtain the homogeneous solution for the current as

iLH = K1Cs1e s1t + K2Cs2e s2t. (12.185)

In the preceding equations, s1 and s2 are given by

s1 = −α +
√

α2 − ω2◦

s2 = −α −
√

α2 − ω2◦

where

α ≡ R

2L

ω◦ ≡
√

1

LC
.

If we wait long enough for all the transients to die out, there will be no current flowing
in the inductor and the capacitor voltage will be the same as the voltage source. Thus,
we have the following particular solution:

iLP = 0 (12.186)

vCP = V. (12.187)

Therefore the total solution is given by

vC = K1e s1t + K2e s2t + V (12.188)

iL = K1Cs1e s1t + K2Cs2e s2t. (12.189)

Now, we are in a position to solve for K1 and K2 using the initial conditions as follows:

v0 = K1 + K2 + V (12.190)

V

R
= K1Cs1 + K2Cs2. (12.191)

Solving for K1 and K2 we get

K1 = (v0 − V )Cs2 − V
R

C(s2 − s1)
(12.192)

K2 = (v0 − V )Cs1 − V
R

C(s1 − s2)
. (12.193)
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Substituting the preceding expressions for K1 and K2 into Equations 12.188 and 12.189,
we obtain the complete solutions:

vC = (v0 − V )Cs2 − V
R

C(s2 − s1)
e s1t + (v0 − V )Cs1 − V

R

C(s1 − s2)
e s2t + V (12.194)

iL = (v0 − V )Cs2 − V
R

C(s2 − s1)
Cs1e s1t + (v0 − V )Cs1 − V

R

C(s1 − s2)
Cs2e s2t. (12.195)

Suppose we choose the element values in our switched power supply circuit such that

α < ω◦,

then the circuit will be under-damped, and s1 and s2 will be complex. s1 and s2 can now
be written as

s1 = −α + jωd

s2 = −α − jωd

where

ωd =
√

ω2◦ − α2.

As discussed in Section 12.5, for complex s1 and s2, our solution in Equation 12.195
can be rewritten using the Euler relation into the following form:

vC = V + A1e−αt sin(ωdt) + A2e−αt cos(ωdt) (12.196)

iL = A3e−αt sin(ωdt) + A4e−αt cos(ωdt). (12.197)

The form of the waveforms for vC and iL are shown in Figures 12.45 and 12.46. The
waveforms in the figures assume that S1 is left open and S2 is left closed for a long period
of time.

Notice that the voltage waveform in Figure 12.45 first increases and the current wave-
form first decreases. This corresponds to the observation we made earlier that the current
can’t change direction within an inductor instantaneously. Thus, if we close S1 and open
S2 quickly, (for example, before t1, which is the instant that the inductor current goes
to zero as seen in Figure 12.46), we can accumulate more charge, and hence more volt-
age, on the capacitor during each cycle. In this situation, the waveform of the capacitor
voltage vOUT (where vOUT = vC) will look like that shown in Figure 12.47.

The value of the voltage vOUT at the end of the nth cycle can be calculated iteratively.
Let vOUT[n] denote the value of vOUT at the end of the nth cycle. In the first iteration,
we compute vOUT[1] = vC by substituting v0 = 0 and t = t1 in Equation 12.197. In
the second iteration, we compute vOUT[2] by substituting v0 = vOUT[1] and t = t1 in
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F IGURE 12.45 Components of
the capacitor voltage waveform.
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F IGURE 12.46 Components of
the inductor current waveform.
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Equation 12.197. Using this iterative process, we can determine the value of the output
voltage after n cycles.

Alternatively, if are interested only in the maximum value of the output voltage at the
end of each cycle, and we do not care about the exact waveforms, we can use the
much simpler energy method discussed in Example 12.4, with one difference. In our
example, since the switches have a finite resistance, and since we have assumed that S1

is closed and s2 is open for a long period of time, iL in Equation 12.31 is computed
differently as

iL = V

R
.

Charging and Discharging the Capacitor through a Load Resistor Let us make the
circuit a little more interesting by adding a load resistor RL at the output port as shown
in Figure 12.48. How does this new circuit behave?
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F IGURE 12.47 Behavior of
vOUT over time.
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F IGURE 12.48 The modified circuit.

t

vOUT

t1t0

0

F IGURE 12.49 Behavior of the output port.

The mathematical computation of the form of the output voltage is complicated, so
we do not present it here. Instead, we present a qualitative discussion of the circuit,
behavior. First, when S2 is closed and S1 is open, we have a slightly more complicated
RLC circuit, which behaves in a manner similar to the original circuit. Essentially, the
inductor current charges the capacitor to a higher voltage.

Now, when S1 is closed and S2 is opened, we have two subcircuits operating. The first
circuit is a series RL circuit identical to the original circuit. The second circuit is an RC
circuit in which the capacitor discharges through the load resistor RL. Depending on the
exact values of the charging and discharging capacitor time constants, we might obtain
the waveform shown in Figure 12.49 at the output port. The waveform in the figure
assumes that RLC 	 t0, where t0 is the time interval for which S2 is open.
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12.7 I N T U I T I V E A N A L Y S I S O F
S E C O N D - O R D E R C I R C U I T S

Second-order circuits are amenable to a quick, intuitive analysis when they are
driven by simple inputs such a step or an impulse, much like first-order circuits
(see Section 10.3). To illustrate, we will show how vC, the voltage across the
capacitor, in the series RLC circuit in Figure 12.55 can be plotted by inspection.

-
+

R
vIN C

L

-

+

vC

iL

F IGURE 12.55 A driven, series
RLC circuit.

We will assume the following element values:

L = 100 µH

C = 100 µF

R = 0.2 �.

The initial state of the circuit at t = 0 is given by

vC(0) = 0.5 V

iL(0) = −0.5 A.

The circuit is driven by a DC voltage source, with

vIN = 1 V.

Based on the initial conditions and the drive, we can immediately determine
the initial value and the final value of vC. From the initial conditions that we are
given, we know that

vC(0) = 0.5 V

iL(0) = −0.5 A.

In the steady state, the capacitor behaves like an open circuit. Therefore, the
inductor current vanishes and the input drive appears across the capacitor. Thus,

vC(∞) = vIN = 1 V

iL(∞) = 0.

The initial and final values of vC are plotted in Figure 12.56a.
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F IGURE 12.56 Sketching the
form of vC .

Next, we obtain additional information by writing the characteristic equa-
tion for the circuit. A simple method for writing the characteristic equation by
inspection will be discussed in Sections 14.1.2 and Section 14.2 in Chapter 14.
That method will be based on the impedance approach, which will be discussed
in Chapters 13 and 14. For now, proceeding based on what we know thus far,
we can obtain the characteristic equation by writing the differential equation for
the system with the drive set to zero,

d2vC(t)

dt2
+ R

L

dvC(t)

dt
+ 1

LC
vC(t) = 0

and then substituting the candidate solution Ae st and dividing throughout
by Ae st

s 2 + R

L
s + 1

LC
= 0.
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Comparing to the standard form of the characteristic equation

s 2 + 2αs + ω2
o

we obtain a few more parameters that describe the behavior of our second-order
system

α = R

2L
= 103 rads/s

ωo =
√

1

LC
= 104 rads/s

Since

α < ωo,

we conclude that the system is under-damped. The oscillation frequency is
given by

ωd =
√

ω2
o − α2 ≈ 9950 rads/s ≈ 1584 cycles/s

and the quality factor

Q = ωo

2α
= 5.

Since Q = 5, we also know that the system will ring for approximately 5 cycles.
To complete the picture, we must now combine the boundary values

shown in Figure 12.56a with a sinusoid of frequency 1584 Hz (or cycle time 0.6
ms) that decays over about 5 cycles. To do so, it helps to determine the initial
trajectory of the capacitor voltage (increasing or decreasing) starting from its
initial value of 0.5 V. It turns out that we can obtain this information by looking
at the initial state on the other memory element, namely the inductor. The
initial inductor current is given as −0.5 A. In the absence of a driving impulse,
since the magnitude of this current cannot change instantaneously, and since
the given direction of the initial current tends to discharge the capacitor, we can
conclude that the capacitor voltage will tend to decrease. This decreasing initial
trajectory of the capacitor voltage is illustrated in Figure 12.56b.

Knowing the initial trajectory, we can stitch in a sinusoid that decays over
about 5 cycles with the correct initial trajectory. The resulting approximate
sketch is illustrated in Figure 12.56c. Notice that a simple intuitive analysis
allowed us to guess the values of the following parameters of the curve in
Figure 12.56c:

1. The initial value.

2. The final value.
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3. The initial trajectory of the curve.

4. The frequency of ringing.

5. The approximate length of the time interval over which the ringing lasts.

Unfortunately, our list does not include the maximum amplitude of the envelope
that governs the decay of the sinusoid, a parameter that when combined with
the rate of decay α would add even more accuracy to our sketch. Although we
can determine this value, it adds significant complexity of our analysis, and so
we will not attempt to solve for the general form. It turns out, however, that
the maximum amplitude can be calculated much more easily when an initial
state and a driving voltage are not both present. We will work out the following
example to illustrate this fact.

e x a m p l e 12.11 i n t u i t i v e a n a l y s i s e x a m p l e This exam-
ple shows how the maximum initial amplitude of the decaying sinusoid can be calculated
with ease when an initial state and a driving voltage are not present simultaneously. Sup-
pose we set the voltage drive to zero in our circuit in Figure 12.55, but we let all other
conditions remain the same. In other words, suppose that

L = 100 µH

C = 100 µF

R = 0.2 �.

Further, suppose that the initial state of the circuit at t = 0 is given by

vC(0) = 0.5 V

iL(0) = −0.5 A.

However, the input drive is given by

vIN = 0.

As we did in Section 12.7, we can quickly guess the following:

1. The initial value of the capacitor voltage is given by

vC(0) = 0.5 V.

2. Since there is no drive, and since there is a dissipative element in the circuit, the
final value of the capacitor voltage is given by

vC(∞) = 0 V.

These initial and final values are plotted in Figure 12.57a.
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(a) (b)

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

 t (ms)

O v
C

 (
V

)

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

 t (ms)

O
V

 v
C

  (
V

)

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

 t (ms)

O v
C

 (
V

)

VCM

-VCM

F IGURE 12.57 Sketching the
form of vC when the drive is set to
zero.

3. The capacitor voltage will tend to decrease initially, since the initial inductor
current tends to discharge the capacitor. This decreasing initial trajectory of the
capacitor voltage is illustrated in Figure 12.57b.

4. The ringing frequency is ωd ≈ 9950 rads/s.

5. Since Q = 5, the ringing will last for approximately 5 cycles.

Additionally, we can use energy arguments to determine the envelope bounding the
decaying capacitor voltage. Recall that the magnitude of the capacitor voltage peaks
whenever the system energy resides entirely in the capacitor, and the inductor cur-
rent is zero. At t = 0, had all the energy been stored in the capacitor, the capacitor
voltage would have attained an absolute maximum value that we denote by VCM.
Accordingly, the decay in the capacitor voltage will be governed by a pair of expo-
nential curves (positive and negative) with initial values +VCM and −VCM at t = 0,
decaying to zero in about 5 cycles, as illustrated by the dotted curves in Figure 12.57c.
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The value of VCM can be computed from the total energy in the system at t = 0 as
follows:

1

2
CvC(0)2 + 1

2
LiL(0)2 = 1

2
CV2

CM.

Substituting for vC(0) and iL(0) we obtain

VCM ≈ 0.7 V.

The form of the decaying sinusoid can now be completed as also shown in
Figure 12.57c.

e x a m p l e 12.12 i n t u i t i v e a n a l y s i s e x a m p l e :

i m p u l s e r e s p o n s e In this example, we will use intuition to sketch the form
of vC in the parallel RLC circuit shown in Figure 12.58 when it is driven by an input
impulse current given by

iIN(t) = Qoδ(t).

The strength of the impulse is given as

Qo = 10−4 C.

Assume that

L = 100 µH

C = 100 µF

R = 5 �

and that the circuit is initially at rest (that is, both the capacitor voltage and the inductor
current are zero before the impulse).

Recalling that the impulse serves to establish initial conditions on the circuit, let us first
determine the values of the state variables immediately following the impulse, namely,

iIN

iL

vC

vC

+

-
C LR

F IGURE 12.58 A parallel
second-order circuit with a resistor,
capacitor, inductor, and current
source.
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vC(0+) and iL(0+). The capacitor looks like an instantaneous short to the current pulse,
and so the impulse passes entirely through the capacitor depositing a charge of Qo = 1
C on it. Thus,

vC(0+) = Qo

C
= 1 V

and iL(0+) = 0.

As we did in Section 12.7, we can now determine the following:

1. The initial value of the capacitor voltage is 1 V.

2. Since there is no drive, and since there is a dissipative element in the circuit, the
final value of the capacitor voltage is given by

vC(∞) = 0 V.

3. The capacitor voltage will tend to decrease initially, since all the energy starts out
in the capacitor. Since there is no drive, the maximum voltage across the capacitor
is also 1 V.

4. Since we have a parallel RLC circuit,

α = 1

2RC
= 103 rads/s

ωo = 1√
LC

= 104 rads/s

and the ringing frequency is

ωd =
√

ω2
o − α2 ≈= 104 rads/s.

5. The quality factor

Q = ωo

2α
= 5,

so the ringing will last for approximately 5 cycles.

The form of vC(t) can now be plotted as shown in Figure 12.59.

12.8 T W O - C A P A C I T O R O R T W O - I N D U C T O R
C I R C U I T S

In the previous sections of this chapter, we focused on second-order circuits
containing one capacitor and one inductor. It is also possible to construct a
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F IGURE 12.59 Sketching the form of vC for a
parallel RLC circuit driven by an impulse current input.

v1 v2

R2 C2

R3

R1C1

F IGURE 12.60 A second-order circuit
containing two independent capacitors.

second-order circuit from two capacitors or two inductors. In this section, we
will briefly examine the analysis and behavior of such circuits.

As an example of a two-capacitor circuit, consider the circuit shown in
Figure 12.60. To analyze this circuit we again employ the node method begin-
ning with Step 3, just as we have in previous sections. To do so, we write KCL
at Nodes #1 and #2 in terms of v1 and v2. This yields

C1
dv1(t)

dt
+ 1

R1
v1(t) + 1

R3
(v1(t) − v2(t)) = 0 (12.238)

for Node #1, and

C2
dv2(t)

dt
+ 1

R2
v2(t) + 1

R3
(v2(t) − v1(t)) = 0 (12.239)

for Node #2. To treat these two equations simultaneously, we first use Equa-
tion 12.238 to determine v2 in terms of v1, and then substitute the result into
Equation 12.239 to obtain a second-order differential equation in v1. This yields

v2(t) = R3C1
dv1(t)

dt
+

(
1 + R3

R1

)
v1(t) (12.240)

d2v1(t)

dt2
+

(
1

R1C1
+ 1

R2C2
+ 1

R3C1
+ 1

R3C2

)
dv1(t)

dt

+
(

1

R1R2C1C2
+ 1

R1R3C1C2
+ 1

R2R3C1C2

)
v1(t) = 0. (12.241)
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Equation 12.241 is an ordinary second-order linear homogeneous differential
equation with constant coefficients similar to those derived in earlier sections
of this chapter.
To complete the node analysis, we complete Steps 4 and 5 by solving Equa-
tion 12.241 for v1, and using it to determine v2 and any other branch variables
of interest. Given the form of Equation 12.241, we expect its solution to be a
superposition of two terms of the form Ae st. The substitution of this candidate
term into Equation 12.241 yields

s 2 + 2αs + ω2◦ = 0 (12.242)

as the characteristic equation of the circuit where

α ≡ 1

2

(
1

R1C1
+ 1

R2C2
+ 1

R3C1
+ 1

R3C2

)
(12.243)

ω2◦ ≡ 1

R1R2C1C2
+ 1

R1R3C1C2
+ 1

R2R3C1C2
. (12.244)

Except for the details of α and ω◦, Equation 12.242 is the same as every other
characteristic equation seen so far in this chapter. Because Equation 12.242 is a
quadratic equation it has two roots. Those roots are

s1 = −α +
√

α2 − ω2◦ (12.245)

s2 = −α −
√

α2 − ω2◦ . (12.246)

Therefore, the solution for v1 is a linear combination of the two functions e s1t

and e s2t, and takes the form

v1(t) = A1e s1t + A2e s2t (12.247)

where A1 and A2 are unknown constants that depend on the initial states of
the two capacitors. To find A1 and A2, two equations are required. The first
equation comes from the evaluation of v1 in Equation 12.247 at the initial time.
The second equation comes from the substitution of Equation 12.247 into
Equation 12.240 to determine v2 followed by the evaluation of v2 at the initial
time. The solution of the two equations yields A1 and A2; we will not carry
out the details here.

On the surface, it appears that the analysis and behavior of a second-
order circuit containing two independent capacitors is identical to that of a
second-order circuit containing one capacitor and one inductor. The same
conclusion is reached by examining a circuit containing two independent induc-
tors. While this conclusion is largely true, there is one important difference
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between second-order circuits containing two capacitors or two inductors, and
second-order circuits containing one capacitor and one inductor. That differ-
ence is that the latter circuits can exhibit under-damped oscillatory behavior,
while the former circuits cannot. That is, s1 and s2 are always real and non-
positive, for second-order circuits containing two independent capacitors or two
independent inductors. In fact, we can extend this statement, without proof,
to higher-order circuits as well.10 Circuits containing only resistors and capaci-
tors, or only resistors and inductors, will have characteristic equations with only
real non-positive roots. For this reason, such circuits can not oscillate. Rather,
their states may have only as many as N−1 zero crossings where N is the order
of the circuit. The exact number of zero crossings actually depends upon the
initial conditions of the circuit.

To see that s1 and s2 as given in Equations 12.245 and 12.246 are always
real and negative, we examine the term inside the radicals. With the substitution
of Equations 12.243 and 12.244, this term becomes

α2 − ω2◦ = 1

4

(
1

R1C1
+ 1

R3C1
− 1

R2C2
− 1

R3C2

)2

+ 1

R2
3C1C2

, (12.248)

which is always positive. Therefore, s1 and s2 are always real and negative, and
the circuit exhibits only over-damped dynamics.

e x a m p l e 12.13 a n u m e r i c a l e x a m p l e Plot v1 and v2 for the
circuit in Figure 12.60 given that

R1 = R2 = R3 = 1 M�

C1 = C2 = C3 = 1 µF

and initial states on the capacitors given by

v1(0) = 0

and

v2(0) = 1 V.

10. For an outline of a proof, see Problem 4.6 in W. M. Siebert, Circuits, Signals, and Systems, MIT
Press, 1986.
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Substituting these values into Equation 12.241, we obtain the second-order differential
equation that must be solved to obtain v1:

d2v1(t)

dt2
+ 4

dv1(t)

dt
+ 3v1(t) = 0.

Substituting the candidate term Ae st into the preceding differential equation we get the
characteristic equation

s 2 + 4s + 3 = 0.

Comparing corresponding terms with the standard form of the characteristic equation
for the following second-order circuits:

s 2 + 2αs + ω2◦ = 0

we can write

α = 2 rads/s

ω◦ = √
3 rads/s.

The two roots of the characteristic equation are

s1 = −1

s2 = −3.

Therefore, the solution for v1 is a linear combination of the two functions e−t and e−3t,
and takes the form

v1(t) = A1e−t + A2e−3t.

The corresponding solution for v2 is related to that for v1 by Equation 12.240 and is
given by

v2(t) = dv1(t)

dt
+ 2v1(t) = A1e−t − A2e−3t.

Substituting the initial conditions (v1(0) = 0 and v2(0) = 1) into the expressions for v1

and v2, we get

A1 + A2 = 0

A1 − A2 = 1.
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These two equations can be solved to yield

A1 = 1

2

A2 = −1

2
.

Thus, the solutions for v1 and v2 are

v1(t) = 1

2
e−t − 1

2
e−3t

v2(t) = 1

2
e−t + 1

2
e−3t.

Plots of v1 and v2 are given in Figure 12.61.
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F IGURE 12.61 v1 and v2 for the
two-capacitor circuit.

12.9 S T A T E - V A R I A B L E M E T H O D

In the preceding sections of this chapter, we used the node method to analyze
the behavior of various second-order circuits. This form of analysis directly yields
the node voltages within a circuit expressed as functions of time. However, as
noted earlier, we are often more interested in the circuit states than we are in
the node voltages. In this case, we must use the node voltages to determine the
states, and this takes additional effort. As we shall see shortly, there exists an
alternative method of analysis that is particularly useful when the circuit states
are of primary interest. We will refer to this method as state-variable analysis.
Its principal advantage is that it offers a more direct way to obtain the equations
which govern state evolution, and hence a more direct way to determine the
states themselves. Of course, to determine the node voltages from the results
of a state-variable analysis also requires additional effort. Thus, when both the
states and node voltages are of interest, there may be no best choice of analysis.

The first step of a state-variable analysis is to derive the differential equations
that explicitly govern the evolution of the circuit states. The second step is to
solve these state equations for the states as functions of time. The states may
then be used to determine any other branch variables of interest. Here, we
will focus only on the first step since the solution of the differential equations
that are the state equations may be executed using the same method employed
earlier in this chapter, or the method developed in Section 12.10.

The desired state equations express the derivative of each state as functions
of the states themselves, and any external signals applied through independent
sources. As we shall see now, there is a relatively simple method for deriving
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these equations. To motivate this method, consider the constitutive laws for the
capacitor and inductor, namely Equations 9.9 and 9.28. They can be written as

dvC(t)

dt
= 1

C
iC(t) (12.249)

diL(t)

dt
= 1

L
vL(t), (12.250)

respectively. From these equations we see that the derivative of the capacitor
voltage is proportional to the capacitor current, and that the derivative of the
inductor current is proportional to the inductor voltage. Therefore, to determine
expressions for the state derivatives, we can equivalently find expressions for the
capacitor currents and inductor voltages. These expressions should be derived
in terms of the states and any independent external signals. This suggests a
method for deriving the state equations.

First, we replace each capacitor by an independent voltage source having
a voltage equal to the corresponding capacitor state. Additionally, we replace
each inductor by an independent current source having a current equal to the
corresponding inductor state. Second, we analyze the new circuit, which now
contains only sources and resistors, to find the capacitor currents and inductor
voltages. This analysis may be carried out using the node method developed
in Chapter 3. It results in expressions that depend on the independent sources
within the new circuit, namely the original independent sources and the sources
representing the circuit states. Finally, we substitute the expressions for the
capacitor currents and inductor voltages into equations of the form of Equations
12.249 and 12.250. This yields the desired state equations.

To illustrate the state-variable analysis of a circuit, consider the analysis of
the circuit shown in W W W Figure 12.50. To analyze this circuit we replace
the capacitor by a voltage source and the inductor by a current source as
shown in Figure 12.62. Next we analyze this circuit to determine iC and vL.
This results in

iC(t) = iIN(t) − iL(t) − vC(t)

R
(12.251)

vL(t) = vC(t). (12.252)

F IGURE 12.62 The equivalent
circuit used for the state-variable
analysis of the circuit shown in
W W W Figure 12.50.

iIN

iC

vC R vL

+

-

+
-

iL
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Finally, the substitution of Equations 12.251 and 12.252 into Equations 12.249
and 12.250, respectively, yields

dvC(t)

dt
= 1

C
iIN(t) − 1

C
iL(t) − 1

RC
vC(t) (12.253)

diL(t)

dt
= 1

L
vC(t). (12.254)

Equations 12.253 and 12.254 are the desired state equations.
It is important to emphasize that a state-variable analysis introduces no new

physics. Rather it offers only an alternative analysis of the same circuit. To see
this for the previous example, note that the substitution of Equation 12.254 into
Equation 12.253 to eliminate vC yields W W W Equation 12.201. Thus, the state
equations predicts the same circuit behavior as found previously in Section 12.6.

To close this section, it is valuable to identify the similarities and differences
of the node and state-variable analyses. To begin, it is again important to
emphasize that both analyses predict the same behavior for any given circuit.
The main difference is that they do so in terms of different sets of variables, and
through different mathematical mechanics. A node analysis does so in terms of
the node voltages, and often results in a single high-order differential equation.
A state-variable analysis does so in terms of the states, and results in a set of
coupled first-order differential equations. For this reason, if the initial conditions
for a circuit analysis are expressed in terms of the states, then the state-variable
analysis will make easier use of that information. Further, a coupled set of
first-order differential equations is more likely to be compatible with typical
numerical analysis packages. On the other hand, it is often the node voltages,
defined with respect to a common ground, that are most easily measured in an
experiment. Thus, both sets of variables are useful.

W W W 12.10 S T A T E - S P A C E A N A L Y S I S *

W W W 12.10.1 N U M E R I C A L S O L U T I O N *

W W W 12.11 H I G H E R - O R D E R C I R C U I T S *
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12.12 SUMMARY
� The primary goal of this chapter was to examine the behavior of second-

order circuits, primarily circuits containing at least one capacitor and one
inductor. To analyze these and other second-order circuits we again relied
on the node method of analysis. The mechanics of this analysis were essen-
tially unchanged from Chapter 10, except for the details of the solution of
second-order, as opposed to first-order, differential equations.

� Through our analysis of second-order circuits we observed that their behav-
ior can be very different than the behavior of first-order circuits. Most
importantly, a circuit containing one capacitor and one inductor can exhibit
oscillations that correspond to an exchange of energy between the capaci-
tor and inductor. Not surprisingly, these oscillations were found to decay
in the presence of energy loss (for example, when a resistor is introduced in
the circuit). To characterize this oscillatory behavior we introduced several
key parameters: the undamped natural frequency (or undamped resonance
frequency, or simply resonance frequency)

ω◦ ≡ 1/
√

LC

the damping factor α, the damped natural frequency

ωd ≡
√

ω2◦ − α2

and the quality factor

Q ≡ ω◦/2α.

The details of α depend on the circuit topology. For a parallel resonant
circuit,

α = 1

2RC

and for a series resonant circuit,

α = R

2L
.

� The response of second-order systems can be classified as under-damped,
critically-damped, or over-damped according to

α < ω◦ ⇒ under-damped;
α = ω◦ ⇒ critically-damped;
α > ω◦ ⇒ over-damped.
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� When the system is under-damped, the parameter ωd determines the rate
at which the states oscillate, and α determines the rate at which the states
decay. ω◦ is the oscillation frequency in the absence of damping. Intuitively,
Q determines the amount of ringing exhibited by the circuit, and is the
approximate number of cycles after which the energy in an RLC circuit can
be considered to have decayed to zero.

� The zero-input response (ZIR) is the response of the system to the initial
stored energy, assuming no drive.

� The zero-state response (ZSR) is the the response to an applied drive signal,
for no initial stored energy.

� The zero-input response of under-damped second-order systems resemble
sinusoids with amplitudes that decay with time. As an example, the ZIR
for an under-damped parallel resonant circuit, with Vo as the initial voltage
on the capacitor and zero initial current through the inductor, is given by

vC(t) = Vo
ωo

ωd
e−αt cos(ωdt + φ)

for the capacitor voltage, and

iL(t) = Vo

ωdL
e−αt sin(ωdt)

for the inductor current, for t > 0. In the previous equation

φ = tan−1
(

α

ωd

)
.

� To facilitate the analysis of second-order circuits, we also introduced two
new methods of circuit analysis, namely state-variable analysis and state-
space analysis. State-variable analysis was introduced as an alternative to
node analysis, which is particularly useful when the state variables of a
circuit, as opposed to the node voltages, are of primary interest. State-
space analysis was introduced as a means of solving the coupled first-order
differential equations that commonly result from a state-variable analysis.
However, we also saw that it could be used as a means of solving the
differential equations that naturally result from a node analysis. Finally, we
briefly examined the analysis of higher-order circuits. The important finding
from that examination was that the analysis of higher-order circuits can be
carried out in a manner identical to the analysis of second-order circuits.

E X E R C I S E Se x e r c i s e 12.1

a) Is the zero input response of the circuit shown in Figure 12.64 under-damped, over-
damped, or critically-damped?
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F IGURE 12.64 VS

R

+
+

-
L C

-
vC

R = 15 Ω L = 1 µH

C = 0.01 µF

b) What is the form of the zero input response (vC) for the same circuit? Make a rough
sketch.

c) Compare the envelope of the zero input response with the rate of decay of the zero
input response of the RC circuit in Figure 12.65.

F IGURE 12.65 VS

R

++

-
C

-
vC

R = 15 Ω

C = 0.01 µF

How do they differ?

e x e r c i s e 12.2 For each of the circuits in Figure 12.66, find and sketch the
indicated zero-input response corresponding to the indicated initial conditions

a) In Figure 12.66, find v2, assuming v1(0) = 1 V, v2(0) = 0

b) In Figure 12.67, find v, assuming i(0) = 0, v(0) = 1 V

c) Repeat (b), but with the resistor changed to 5 �.

vS

8 kΩ

+
+

- -
v1

v2

6 kΩ

1
24
------ µF

1
18
------ µF

+

-

F IGURE 12.66

vS

1 mH

+

-
v 10 µF
+

-

i

100 Ω

F IGURE 12.67
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e x e r c i s e 12.3 In the circuit in Figure 12.68, a constant voltage source of 10 V
is applied at t = 0. Find all branch voltages and all branch currents at t = 0+ and at
t = ∞ given iI(0−) = 2 A and v4(0−) = 4 V.

v4

L

R1
+

-

i1

10 V
+

-

i2
+ -

R2 i3 C

i4
v1

R2 = 1 Ω
L  = 1 H
C = 0.5 F
R1= 2 Ω F IGURE 12.68

e x e r c i s e 12.4 Is the zero-input response of the circuit in Figure 12.69 under-
L

R1 R2

C
+
-vS

F IGURE 12.69

iL
R1 = 1 Ω

vC

C = 4 F
L = 3 H

R2 = 2 Ω

+ -

F IGURE 12.70

damped, over-damped, or critically-damped? (Provide some kind of justification for your
answer, either a calculation or a sentence of explanation.)

L − 1 µH C = 0.01 µF and R1 = R2 = 15 �

e x e r c i s e 12.5 In the circuit in Figure 12.70, the inductor current and capacitor
voltage have been constrained by some external magic to be iL = 5 A, vC = −6 volts.
At t = 0, the external restraints are removed, and the natural response of the circuit is
allowed to evolve. Find the initial slopes of the state variables.

e x e r c i s e 12.6

a) Write the differential equations for the circuit in Figure 12.71 in state-variable form.

L
R

C
+
-vC(t)

F IGURE 12.71

b) Assuming vC(0) = 0, sketch vC(t) for a very short pulse of height vi. Don’t work it
out: just show the form.

e x e r c i s e 12.7 Solve the following sets of coupled first-order state equations
for t > 0 with the indicated inputs and initial values. Plot the positions of the natural
frequencies in the complex plane. Sketch the state trajectories.

a)

dx1

dt
= −3x1 + x2

dx2

dt
= x1 − 3x2

x1(0) = 2

x2(0) = 0
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b)
dx1

dt
= −4x2

dx2

dt
= 4x1

x1(0) = 2

x2(0) = 0

e x e r c i s e 12.8 Find the roots of the characteristic polynomial (often called the
network natural frequencies) in each of the networks in Figure 12.72.

C

(a)

LvS

R1

+
-

(b)

C

R2

+
-vS

L

(c)

+
-

vS

R1 R2

L L

(d)

iS
R1 R2

L L

F IGURE 12.72

Numerical values: R1 = 10 �, L = 10 µH, C = 10 µF, R2 = 2 �.

P R O B L E M S p r o b l e m 12.1 Electrical networks are used to model physical systems governed
by linear differential equations. The most important problems that arise in such modeling
concern the interplay of accuracy and simplicity. It is usually very important to know
when certain effects can safely be ignored in order to simplify the model and subsequent
analysis. Such knowledge can be obtained by understanding the consequences of making
the simplifying assumptions.

Two networks that could be used to model an acoustic system are shown in Figure 12.73.
It is known that the inductance L is small (specifically L << (R2C)/4) but it is not known
whether a circuit model with no inductances will be adequate. You are to help answer
this problem by determining the difference in the responses of the capacitor voltage vC

for the two circuits. Specifically, assume:

iS(t) = Iu−1(t) (a step of amplitude I)

vC(0−) = 0

iL(0−) = 0.

Determine vC(t) for t > 0 for both circuits. You should identify the effects of the
inductance on such characteristics of the response as the natural frequencies, approximate
behavior for small t, and asymptotic behavior.

You can greatly simplify the form of your results by making use of some assumptions
derived from Taylor’s theorem. For x << 1,

√
1 − x � 1 − 1/2x (12.297)

and

e−x � 1 − x. (12.298)
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p r o b l e m 12.2 Capacitor C1 has an initial voltage v1(0) = V. Capacitor C2 is
initially uncharged, v2(0) = 0. The voltage across element A tends to zero as time tends
to infinity. At time t = 0, the switch is closed. Refer to Figure 12.74.

+

-
vCRiS C

L

+

-
vCRiS C

F IGURE 12.73

+

-
v2C2

A
i

vA

+

-
v1 C1

+ - Switch closes
at t = 0

F IGURE 12.74

a) Compute the initial charge of the system.

b) Find the voltage across both capacitors a long time after the switch has been closed.
Remember that the total charge of the system must be conserved.

c) Find the energy stored in the system after a long time.

d) Find the ratio of final stored energy to initial energy. Where did the rest of the energy
go?

e) Assume element A is a resistor R. Find its voltage or current, and from that, find out
the energy lost in it.

f) Find the ratio of lost energy to initial energy. Is it what you expected? Does it depend
on R?

g) What would happen if an inductor was placed in series with R? Sketch the behavior
of the current. (No calculations are needed.)

p r o b l e m 12.3 Shown in Figure 12.75 is one possible circuit model for a trans-
former, for use where there can be a common ground between primary and secondary.
Assume: L1 = 2.5 H, L2 = 0.025 H, M = k

√
L1L2, where k < 1, R1 = 1 k�,

R2 = 10 �.

+

-

v2M

i1

+

-

v1

L1-M L2-M

+
- v1

+

-

vS

R1 i1

v2

+

-
R2

i2

Transformer

F IGURE 12.75

a) Write the state equations for this network using i1 and i2 as state variables, and using
the given circuit model to represent the transformer.

b) Determine the behavior of the natural frequencies of the network as a function of
the coupling constant k. In particular, what are the natural frequencies in the limit of
small k, and in the so-called tight-coupling limit, where k approaches unity?

c) Assume that vS is a 1-volt square pulse of length 5 msec. Find v2(t) for the case
k = .98. Is the output a good replica of a square pulse, or are there obvious
departures from the square pulse shape?

p r o b l e m 12.4 Assuming y(t) = Be st, for each differential equation, find the
particular solution and the general form of the homogeneous solution. Plot the natural
frequencies in the complex plane.

Assume τ , α, ω0 are constants. Do not worry about the dimensions of the right-hand
side. Assume B always has the appropriate dimension.

1) dx
dt

+ x
τ

= y
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2) dx
dt

+ x
τ

= dy
dt

3) x
τ

= y
τ

+ dy
dt

4) d2x
dt2

+ ω2
0x = y

For 5) and 6), assume α and ω0 are both positive numbers.

5) d2x
dt2

+ 2α dx
dt

+ ω2
0x = y Assume α > ω0.

6) d2x
dt2

+ 2α dx
dt

+ ω2
0x = dy

dt
Assume α < ω0.

p r o b l e m 12.5 The circuit in in Figure 12.76 is the electrical analogue of a
temperature control system.

F IGURE 12.76 vA

RA

iSCA

+

-

+

-

CB
vBRB

Assuming CA = 1 F, CB = 4 F, RA = 1 �, RB = 4 �.

iS = K(V0 − vB)2 where K = 25 A/V2, V0 = 1.1 V.

a) Write dynamical equations for this network in state form. Use vA and vB as state
variables.

(As a check on your state equations, the stable steady-state value of vB is 1 V. That
is, you should have dvA/dt = dvB/dt = 0 for vB = 1 V.)

b) Now assume vA = VA + v0 and vB = VB + vb, where VA and VB are the steady-
state values and va and vb are small variations. Determine a small-signal linear circuit
model in which va and bb are the state variables.

c) Is the zero-input response of the small-signal circuit under-damped, over-damped,
or critically-damped?

p r o b l e m 12.6 In the circuit in Figure 12.77, the switch has been in position 1
for all t < 0. At t = 0, the switch is moved to position 2 (and remains there for t > 0).
Find and sketch vC(t) and iL(t) for t > 0.

F IGURE 12.77 2
iL

2 V 
+

-

+

-
.01 FvC

1 H 10 Ω

1
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p r o b l e m 12.7 Figure 10.107 (Problem 10.8 in the chapter on first-order tran-
sients) illustrated a parasitic inductance associated with VLSI package pins. Figure 12.78
is a modification of Figure 10.107 and shows a lumped parasitic capacitor CP associated
with the power node within the VLSI chip. In this problem, we will study the combined
effect of the parasitic inductance LP and capacitance CP.

vP

C

VS

LP

R2
R1

A B = 0
W1

L1

------ W2

L2

------

CP

t
t0

0 V

vA

5 V

F IGURE 12.78Assume that the input B is 0 V at all times. Assume further that the input A has 0 V applied
to it initially. At time t = t0, a 5-V step is applied at the input A. Plot the form of vP as a
function of time for the under-damped and over-damped cases, assuming that vP = VS

for t < t0. Clearly show the value of vP just prior to t0 and just after t0. Assume that the
on resistance of a MOSFET is given by the relation (L/W)Rn and that the MOSFET’s
threshold voltage is VT < VS. Also assume that VT < 5 V. Compare this result with
that for the inductor acting alone as computed in Problem 10.8 (Figure 10.107) in the
chapter on first-order transients.
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13.1 I N T R O D U C T I O N

This chapter represents a major change in point of view for circuit analysis,
hence it is important to review where we have been and where we are going.
The analysis method discussed in preceding chapters has four basic steps:

1. Draw a circuit model of the problem.

2. Formulate the differential equations.

3. Solve these equations. If the equations are linear, then find the homogene-
ous solution and the particular solution. If the equations are nonlinear,
then numerical methods often are required.

4. Use the initial conditions to evaluate the constants in the homogeneous
solution.

This approach, diagrammed in the top of Figure 13.1, is basic and power-
ful, in that it can handle both linear and nonlinear problems, but often it
involves substantial mathematical manipulations if the drive signals are other
than simple impulses, steps, or ramps. Thus there is considerable incentive to
look for easier methods of solution, even if these methods are more restricted
in application. Simplified methods are indeed possible if the system is linear
and time invariant, and we assume sinusoidal drive and focus on the steady-
state behavior. Because in many design applications such as audio amplifiers,
oscilloscope vertical amplifiers, and Op Amps linearity is a basic design con-
straint, systems that are linear or at least incrementally linear represent a large
and important class, hence are worthy of special attention. Further, more com-
plicated input signals such as square waves can be considered to be the sum of
many sinusoids; hence the problem can be solved by superposition.

Equally important, we often characterize systems by their frequency
response (that is, sinusoidal response). Examples include our hearing, audio
equipment, ultrasonic pest deterrents, and wireless network receivers. The fre-
quency related behavior of such systems is as important as their time-domain
behavior. Therefore, the sinusoidal steady state response is useful because it is
a natural and convenient way to describe the behavior of linear systems.

703
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F IGURE 13.1 Analysis methods.
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We wish to show in this chapter that the solution to linear circuit problems
is greatly simplified by assuming a drive of the form est as illustrated in the center
panel of Figure 13.1, primarily because under this assumption the differential
equation is transformed into an algebraic equation, and because the response
to a sinusoidal drive can be directly obtained from the response to the est drive.
This leads further to a shorthand solution method involving the concept of
impedance, whereby the algebraic equation can be found directly from the
circuit model, without writing the differential equation at all, as diagrammed in
the lowermost panel of the Figure 13.1.

The insight behind the employment of a drive of the form est, where s = jω,
is the following: Recall, we wish to find the system response in the steady
state1 to a sinusoidal input of the form cos(ωt). We will show that directly
solving system differential equations with a sinusoidal input leads to a tangle of
trigonometry and is very complicated. (You have already seen an example of a
direct solution of an RL circuit for a sinusoidal drive in Section 10.6.7.) Instead,
we employ the following mathematical trick: Realizing that

e jωt = cos(ωt) + j sin(ωt) (13.1)

(the Euler relation), we first obtain with relative ease the circuit response to an
unrealizable drive of the form e jωt. The resulting response will contain a real

1. Interestingly, the substitution of s = jω will give us the response of the circuit in sinusoidal
steady state. Although not covered in this book, the use of Laplace Transforms where we substitute
s = σ + jω will yield the total response.
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RL

CGS
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vO2vO

-
+
-
+

F IGURE 13.2 A two-stage
MOSFET amplifier showing the
MOSFET gate capacitor.

part and an imaginary part. For real linear systems, by superposition, the real
part of the response is due to the real part of the input (namely, cos(ωt)) and
the imaginary part of the response is due to the imaginary part of the input
(namely, j sin(ωt)). Accordingly, by taking the real part of the response to e jωt,
we obtain the response to a real sinusoidal input of the form cos(ωt). (Similarly,
by taking the imaginary part of the response to e jωt, we obtain the response to
an input of the form sin(ωt).)

To motivate the study of methods based on the sinusoidal steady state,
let us present an example of the type of problem that can be solved with ease
using these methods. Suppose we construct the linear small-signal amplifier
shown in Figure 13.2 by concatenating two single stage MOSFET amplifiers
of the type studied in Chapter 8. The DC voltage VI is chosen to bias the
first stage appropriately, and the DC value of the first stage output voltage VO
provides the bias for the second stage. Figure 13.2 further shows the presence
of a capacitor CGS at the input node of the second stage (for example, reflecting
the gate capacitance of the MOSFET in the second stage).

Suppose, now, that we wish to find the first-stage output voltage vo in
response to vi, a small sinusoidal signal applied to the input of the amplifier. In
particular, we are interested in determining how the presence of the capacitor
CGS affects the amplification afforded by the first amplifier stage. Suppose,
further, that we do not care about initial transients, rather, we are interested
in the steady-state behavior when all transients have died out. Experimental
application of a sinusoid to the input and measurement of the response vo will
show very different behavior as the frequency of the input is swept from a low
to a high value. We will observe that for low-frequency signals the gain of the
first stage is no different from our earlier calculations in Chapter 8 in the absence
of the capacitor CGS. However, we will also observe that the presence of the
capacitor makes the gain of the amplifier fall off rapidly at high frequencies.

Analytical analysis based on the methods we learned in the previous chap-
ters would suggest writing the differential equation for the circuit comprising the
resistor RL and the capacitor CGS and finding the forced response to an applied
sinusoid. As demonstrated by the example in Section 10.6.7, this type of anal-
ysis is very cumbersome. In contrast, the analysis methods that we will learn
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F IGURE 13.3 RC circuit with
tone burst in. The amplitude of the
input waveform is Vi , where Vi
is real.
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-+

Vi
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t
vi =Vi cos (ωIt)0
for t 0≥

in this chapter will make this a trivial exercise. In particular, Section 13.3.4
will analyze the circuit of Figure 13.2 in detail and explain the observed
behavior.

13.2 A N A L Y S I S U S I N G C O M P L E X
E X P O N E N T I A L D R I V E

To illustrate this new approach, let us analyze the simple linear first-order RC
circuit shown in Figure 13.3, and presume that we wish to find the capacitor
voltage vc, in response to a cosine wave suddenly applied at t = 0, often called
a tone burst. The tone burst is mathematically represented as

vi = Vi cos (ω1t) for t ≥ 0,

where Vi is the amplitude of the cosine, and ω1 its frequency. (Note that we do
not use ωo in the input signal to avoid confusion with the ωo used to represent
the undamped natural frequency in a second order systems.)

The differential equation for the circuit is

vi = vc + RC
dvc

dt
. (13.2)

Let us attempt to solve this differential equation by summing its homogeneous
and particular solutions. Recall, when dealing with circuit responses, the homo-
geneous solution is also called the natural response, and the particular solution
is also called the forced response. Recall further that the forced response depends
on the external inputs to the circuit. Let us denote the homogeneous solution
as vch and the particular or forced solution as vcp. Then, we know that the total
solution is given by

vc = vch + vcp.

13.2.1 H O M O G E N E O U S S O L U T I O N

From Equation 13.2, the homogeneous solution can be derived by solving

RC
dvch

dt
+ vch = 0. (13.3)
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As we have seen in Chapter 10, the homogeneous solution for this equation is

vch = K1e−t/RC (13.4)

where K1 is a constant to be determined from the initial conditions.

13.2.2 P A R T I C U L A R S O L U T I O N

The straightforward approach to finding the particular or forced solution vcp
involves finding any solution to the differential equation

vi = vcp + RC
dvcp

dt
. (13.5)

Since the input vi is given by

vi = Vi cos (ω1t)

(where Vi is real), this amounts to finding any solution to

Vi cos (ω1t) = vcp + RC
dvcp

dt
. (13.6)

Obviously the forced response vcp must be some combination of sines and
cosines, so we assume

vcp = K2 sin (ωt) + K3 cos (ωt) (13.7)

or, equivalently,

vcp = K4 cos (ωt + �). (13.8)

There is nothing wrong with this approach, except that it leads to a tangle of
trigonometry. So, we will abandon this path.

Instead, let us launch out in a slightly different direction. The Euler
relation

e jωt = cos(ωt) + j sin(ωt) (13.9)

shows that e jωt contains the cosine term we want, in addition to an unwanted
sine term. Hence, by a sort of inverted superposition argument, we replace the
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actual source vi with a source of the form

ṽi = Vi e s1t (13.10)

and return later to unscramble the cosine and sine parts. In this equation we
have used

s1 as a shorthand for jω1,

and have included a ‘‘˜’’ above vi to indicate that this is not the true drive voltage.
For consistency, we will use the same notation for all variables related to this
fake drive voltage. The differential equation to find the particular solution to ṽi
now becomes

ṽi = Vi e s1t = ˜vcp + RC
d ˜vcp

dt
. (13.11)

It is clear that a reasonable assumption for the particular solution is

˜vcp = Vc e st (13.12)

in which we must somehow find Vc and s. On substitution of the assumed
particular solution into Equation 13.11, we obtain

Vi e s1t = Vc e st + RCsVc e st. (13.13)

We note first that s must equal s1, otherwise Equation 13.13 cannot be satisfied
for all time. Now, on the basis that e st can never be zero for finite values of
t, the e s1t terms can be divided out, to yield an algebraic equation relating the
complex amplitudes of the voltages rather than a differential equation relating
the voltages as time functions:

Vi = Vc + VcRCs1 (13.14)

which can be solved to yield

Vc = Vi

1 + RCs1
for s1 �= − 1

RC
(13.15)

a restriction clearly satisfied in this case because s1 = jω1 where ω1 is a real
number. Thus Equation 13.15 becomes

Vc = Vi

1 + jω1RC
(13.16)

or, from Equation 13.12, the particular solution for the fake input ṽi is

˜vcp = Vi

1 + jω1RC
e jω1t. (13.17)
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F IGURE 13.4 RC circuit with
exponential drive est .

At this point you should protest. No waveform measured in the labora-
tory will have a ‘‘j ’’ associated with it. The problem arises because we have
used a complex rather than a real drive. That is, we have analyzed the cir-
cuit shown in Figure 13.4a, rather than Figure 13.3. The complex exponential
drive ṽi can be represented by the Euler relation as the sum of two sources
as depicted in Figure 13.4a. If the circuit is linear, the two-source circuit can
be analyzed by superposition, as suggested in Figure 13.4b and 13.4c. Specifi-
cally, the voltage ˜vcp can be found by summing the response to Vi cos(ωt), as
obtained from Figure 13.4b with j times the response to Vi sin(ωt), as found from
Figure 13.4c:

˜vcp = vcp1 + jvcp2. (13.18)

From the perspective of Figure 13.3, we have calculated in Equation 13.18
the response ˜vcp, and what we really want is vcp1. Notice that vcp1 is none other
than the vcp that we had originally set out to find, namely, the solution to Equa-
tion 13.6. So we want to ‘‘de-superimpose’’ the two sources in Figure 13.4a.
This is a simple matter because of the j flag: vcp1 is the real part of ˜vcp.

The next task, then, is to find an easy way of calculating the real part of a
complex expression. (Those readers who are a little hazy about manipulation
of complex numbers, and in particular the conversion between rectangular and
polar form, should review at this point Appendix C on complex numbers or a
suitable math text.) In this specific problem, we must find the real part of the
˜vcp expression, Equation 13.17. The difficulty is that the expression has two

factors, one in Cartesian or rectangular form, and the other in polar, whereas
multiplication is simpler if both factors are in polar form. Hence we rewrite
Equation 13.17 in polar form as

˜vcp = Vi√
1 + (ω1RC)2

e j�e jω1t (13.19)
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where

� = tan−1
(−ωRC

1

)
. (13.20)

Now, to find the real part of ˜vcp, we use the Euler relation to write
Equation 13.19 as

˜vcp = Vi√
1 + (ω1RC)2

cos (ω1t + �) + j
Vi√

1 + (ω1RC)2
sin (ω1t + �)

from which the real part of ˜vcp is available by inspection,

vcp1 = Vi√
1 + (ω1RC)2

cos (ω1t + �). (13.21)

This, finally, is the particular solution of Equation 13.6.

13.2.3 C O M P L E T E S O L U T I O N

The complete expression for the capacitor voltage in response to a cosine tone
burst is the sum of this particular solution (vcp1) and the homogeneous solution
(vch) previously found in Equation 13.4:

vc = K1e−t/RC + Vi√
1 + (ω1RC)2

cos
(
ω1t + �

)
. (13.22)

The one remaining unknown constant, K1, can be found from the initial condi-
tions by setting t to zero in the usual manner. However, as we will see shortly,
we usually do not care about the first term.

13.2.4 S I N U S O I D A L S T E A D Y - S T A T E R E S P O N S E

Under sinusoidal drive, we are almost always interested in the steady-state value
of the capacitor voltage, which can be readily obtained from Equation 13.22 by
assuming t is very large. When t → ∞, Equation 13.22 reduces to

vc = Vi√
1 + (ω1RC)2

cos
(
ω1t + �

)
, (13.23)

which is simply the particular solution to a cosine input (compare with Equa-
tion 13.21). For a cosine input, the steady-state response is often termed
the response to a cosine. The corresponding complete response is termed the
response to a cosine burst, and includes both the homogeneous and particular

terms. In Equation 13.23, the Vi/
√

1 + (ω1RC)2 factor gives the amplitude
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(or magnitude) of the response, and � is the phase. The phase is the angu-
lar difference between the output and input sinusoids. Notice that both the
magnitude and phase (see Equation 13.20) of the response are frequency
dependent.

Equation 13.22 is really quite general, in that it gives the capacitor voltage
for any amplitude and any frequency of cosine tone burst. For example, it is
obvious that at low frequencies, (that is, for ω1 small), and after the transient
has died away:

vc � Vi cos(ω1t). (13.24)

Thus, after the transient has died away, the output looks almost like the input.
We conclude that for ω1 small, the capacitor behaves like an open circuit.
Further, for ω1 large, that is, at high frequencies, after the transient has died
away

vc � Vi

ω1RC
cos(ω1t − 90◦) (13.25)

so the output will be sinusoidal, but 90 degrees out of phase with the input,
and much smaller. At high frequencies then, the magnitude of the capacitor
voltage will get very small, so we can say that the capacitor begins to behave
like a short circuit.

There are four general conclusions to be drawn from this specific example:

1. The use of an e st drive reduces a differential equation to an algebraic
equation, thereby simplifying the solution. This solution process replaces
trigonometry with complex algebra, which is a wise trade.

2. The last couple of pages from Equation 13.17 to Equation 13.22,
although necessary for completeness, did not add any new insight about
the circuit behavior. For example, the same information about the form of
vc in the steady state, or its value at low frequencies and high frequencies
could have been found from Equation 13.17, or even from the complex
amplitude Vc, Equation 13.16, just as easily as from Equation 13.21,
without the intervening ‘‘real part’’ calculation.2

For example, the steady state value of vc (or the particular or forced
response) can be determined from the value of Vc as

vc = Re
[
Vc e jω1t

]
(13.26)

2. Recall from Equation 13.16 that Vc is the complex amplitude of the forced response to our fake
input ṽi = Vie jω1t.
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F IGURE 13.5 The amplitude and phase of
the response vc compared to the input
sinusoid vi .
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F IGURE 13.6 A circuit interpretation of
Equation 13.15.

or, equivalently,

vc = |Vc| cos(ω1t + ∠Vc). (13.27)

Figure 13.5 shows a sketch of the input cosine and the output response
with the various magnitudes and phases marked. Notice that the complex
amplitude Vc carries both the amplitude and phase information of the
response (|Vc| and ∠Vc respectively) in an easily accessible manner. Thus,
our analysis can stop at Equation 13.16.

3. The denominator of the Vc expression, Equation 13.15, has the same
form as the characteristic polynomial in the homogeneous solution,
(see Chapter 10, Equation 10.9 for example) so the value of s in the
homogeneous solution could have been found from this denominator
without any formal solution of the homogeneous equation. That this is
a general result can be shown by examining the two derivations.

4. The Vc expression, Equation 13.15, looks very much like a voltage
divider expression, especially if we divide through by Cs1.

Vc = 1/Cs1

R + 1/Cs1
Vi. (13.28)

This suggests a very simple method for finding the complex amplitude Vc
directly from the circuit: Redraw the circuit, replacing resistors with R
boxes, capacitors with 1/Cs1 boxes, and cosine sources by their ampli-
tudes, in this case Vi, as shown in Figure 13.6. Now Vc can be found in
one line. But what are these boxes? And what is Vc? The next section
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F IGURE 13.7 Impedance
calculations.

will provide the answers.

13.3 T H E B O X E S : I M P E D A N C E

To get a better idea of the meaning of the boxes in Figure 13.6, let us examine
some trivial cases, as sketched in Figure 13.7. In Figure 13.7a, a voltage source
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Vi cos(ω1t) is connected across a capacitor, hence

i = C
dv

dt
. (13.29)

On the basis of Section 13.1, assume the voltage and current are of the form

v = Ve st (13.30)

i = Ie st (13.31)

where, as before, we use s as a shorthand notation for jω.
On substituting these relations in Equation 13.29, and dividing by e st

(never zero for finite s and t) we find

I = CsV (13.32)

or

V = 1

Cs
I. (13.33)

Similar calculations on the inductor and the resistor yield

V = LsI (13.34)

V = I R. (13.35)

These equations indicate that for linear R, L, or C, in each case the complex
amplitude of the voltage is related to the complex amplitude of the current
by very simple algebraic expressions which are generalizations of Ohm’s Law.
The constants relating V to I in Equations 13.33, 13.34, and 13.35 are called
impedances, and these equations are the constituent relations for C, L, and R
expressed in impedance form. The constituent relations for these elements and
for voltage and current sources are summarized in Figure 13.8.

Just as we used R to denote resistances, we commonly use the letter Z to
denote impedances.

Thus, the impedances of an inductor, a capacitor, and a resistor are given by

ZL = sL = jωL (13.36)

ZC = 1

sC
= 1

jωC
(13.37)
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F IGURE 13.8 Constituent
relations for a voltage source, a
current source, and R, L, and C in
impedance form. Note that Vo and
Io are terminal variables, while Va

and Ia are element parameters.
Note also that s = jω.
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and

ZR = R (13.38)

respectively.

Furthermore, just as the conductance was defined as the reciprocal of resistance,
we define admittance as the reciprocal of impedance.

Impedances are complex numbers in general. They are also frequency
dependent. Figure 13.9 plots the magnitude of the impedances of an inductor,
a capacitor, and a resistor as a function of frequency. The curves in the figure
reinforce the following intuition developed in Chapter 10 and summarized in
Section 10.8:

Inductors behave like short circuits for DC (or very low frequencies) and like
open circuits for very high frequencies. Capacitors behave like open circuits for
DC (or very low frequencies) and like short circuits for very high frequencies.
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Z

(Inductor)

ω (rad/s)

ωL

(Capacitor)
1

ωC
--------

R (Resistor)

F IGURE 13.9 Frequency
dependence of the impedances of
inductors, capacitors, and resistors.

Now, generalizing from these results, the relations among complex amplitudes
of voltages and currents for any linear RLC network can be found by replacing
the (sinusoidal) sources by their complex (or real) amplitudes, and replacing
resistors by R boxes, capacitors by 1/Cs boxes, and inductors by Ls boxes. The
resultant diagram is called the impedance model of the circuit. The complex
voltages and currents in circuits can now be found by standard linear circuit
analysis: Node Equations, Thévenin’s theorem, etc.

The impedances follow the same combination rules as resistors, for exam-
ple, impedances in series add, although here the addition involves complex
numbers.

Therefore, the intuitive method based on series and parallel simplifications
also applies.

We note that the impedance representation does not change the topology
of the circuit devices are simply replaced by their corresponding impedance
models drawn as boxes. The reason is that KVL and KCL apply to a given
circuit irrespective of the form of the drive. In other words, KVL and KCL apply
irrespective of whether the voltages and currents are sinusoids, DC values, or
any other form, for that matter. The impedance form simply assumes sinusoidal
drive and response and captures in a convenient form individual device behavior
when the drives are sinusoids. Thus, because the KVL and KCL equations are
unchanged for sinusoidal drive, the circuit topology remains the same because
it captures the same information as expressed by KVL and KCL.

If desired, the expressions for the actual voltages and currents, the par-
ticular solutions or forced responses in Chapter 10 parlance, can be found by
multiplying the corresponding complex variable by e jωt and taking the real part.

For example, to obtain the actual voltage vx(t) from the corresponding
complex variable Vx( jω), we use

vx(t) = Re
[
Vx (jω) e jωt

]
(13.39)
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or equivalently,

vx(t) = |Vx| cos(ωt + ∠Vx). (13.40)

We emphasize again, however, that this step is usually not necessary, because
the complex amplitude expression contains all the key information about circuit
behavior.

At this point it is necessary to explicitly introduce a notation for voltages
and currents to clearly differentiate complex amplitudes from time functions.
We abide by the international standard in this matter:

� DC or operating-point variables: uppercase symbols with uppercase
subscripts (for example, VA)

� Total instantaneous variables: lowercase symbols with uppercase
subscripts (for example, vA)

� Incremental instantaneous variables: lowercase symbols with lowercase
subscripts (for example, va)

� Complex amplitudes or complex amplitudes of incremental components,
and real amplitudes of sinusoidal input sources: uppercase symbols with
lowercase subscripts (for example, Va)

Summarizing, the impedance method allows us to determine with ease the
steady-state response of any linear RLC network for a sinusoidal input. The
method works with complex amplitudes of voltages and currents at its variables
and has the following general steps:

1. First, replace the (sinusoidal) sources by their complex (or real)
amplitudes. For example, the input voltage vA = Va cos(ωt) is replaced
by its real amplitude Va.

2. Replace circuit elements by their impedances, namely, resistors by R
boxes, inductors by Ls boxes, and capacitors by 1/Cs boxes. Here s = jω.
The resulting diagram is called the impedance model of the network.

3. Now, determine the complex amplitudes of the voltages and currents
in the circuit by any standard linear circuit analysis technique Node
method, Thévenin method, intuitive method based on series and parallel
simplifications, etc.

4. Although this step is not usually not necessary, we can then obtain the
time variables from the complex amplitudes. For example, the time
variable corresponding to node variable Vo is given by

vO(t) = |Vo| cos(ωt + ∠Vo). (13.41)
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e x a m p l e 13 .1 r e v i s i t i n g t h e r c e x a m p l e To illustrate
the power of the method, let us revisit the RC circuit from Figure 13.3 (redrawn
here as Figure 13.10a for convenience) and analyze it using the impedance method just
described. As before, suppose that we wish to find the steady-state capacitor voltage vc in

-
+

C
R

vc
-

+

vi = Vi cos(ω1t)

(a) Circuit

-
+ Vc

-

+

Vi 1/Cs

R

(b) Impedance model

F IGURE 13.10 Impedance
model of RC circuit with sinusoidal
input.

response to an input of the form vi = Vi cos ω1t.

Figure 13.10b shows the corresponding impedance model. In the model, notice that we
have replaced the input voltage vi with the real amplitude Vi, and the capacitor voltage
vc with the complex amplitude Vc, according to the first step of the impedance method.
Further, according to the second step of the method, we have replaced the resistor with
an R box and the capacitor with a box with impedance 1/Cs. As before, s is a shorthand
notation for jω.

We can derive an expression for Vc by applying the generalized voltage divider relation
in the impedance model in Figure 13.10b as

Vc = ZC

ZR + ZC
Vi (13.42)

where ZR and ZC are the impedances of the resistor and the capacitor, respectively.
Substituting the actual impedance values, we obtain

Vc = 1/Cs

R + 1/Cs
Vi = 1

RCs + 1
Vi. (13.43)

Since s is a shorthand for jω, at a specific frequency ω1,

Vc = 1

1 + jω1RC
Vi. (13.44)

Having obtained the expression for Vc, the complex amplitude of the desired voltage,
we have completed the third step of the impedance method. Amazingly, notice that we
have arrived at the same result as in Equation 13.16 in a few easy steps.

Although not always necessary, we will proceed with the fourth step of the impedance
method and obtain the actual voltage vc as a function of time. We can do so by substitut-
ing the magnitude and phase of Vc, and the frequency of our input into Equation 13.41
as follows:

vc(t) = |Vc| cos(ω1t + ∠Vc)

= Vi√
1 + (ω1RC)2

cos
(

ω1t + tan−1 −ω1RC

1

)
.

Not surprisingly, this expression for vc(t) is the same as that in Equation 13.23, but
derived with significantly less effort.
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F IGURE 13.11 Impedance
model of LR circuit.
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(b) Impedance model

Vi
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R

As a final note, this is the forced response for a cosine wave drive. If the excitation is
a tone burst, then the homogeneous solution must be added to obtain the complete
solution.

13.3.1 E X A M P L E : S E R I E S R L C I R C U I T

Next, as a further illustration of the concept of impedance, let us find
the voltage across the resistor in the RL circuit of Figure 13.11, assuming
that vi = Vi cos(ω1t). Figure 13.11b shows the corresponding impedance
model.

The generalized voltage divider relation for Vo in the impedance model,
Figure 13.11b, is

Vo = ZR

ZR + ZL
Vi (13.45)

where ZR and ZL are the impedances of the resistor and the inductor,
respectively. Substituting the actual impedance values, we obtain

Vo = R

R + Ls
Vi. (13.46)

Recall from Equation 13.10 that we have been using s as a shorthand for jω. So
at any frequency, ω1,

Vo = R

R + jω1L
Vi. (13.47)

The denominator on the right-hand side of Equation 13.47 is the
impedance Z seen by the voltage source at the frequency ω1. In other words,

Z( jω1) = R + jω1L.
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To find vo, the actual output voltage as a time function, convert Equation 13.47
to polar form, then substitute into Equation 13.39

Vo = R√
R2 + ω2

1L2
e j�Vi (13.48)

where

� = tan−1 −ω1L/R. (13.49)

From Equation 13.39, the time function is

vo(t) = R√
R2 + ω2

1L2
Vi cos(ω1t + �). (13.50)

This is the forced response for a cosine wave drive. If the excitation is a
tone burst, then the homogeneous solution must be added to obtain the com-
plete solution. By comparing Equation 13.50 to Equation 13.48, we conclude
that the complex amplitude Vo in Equation 13.48 is a complex number con-
taining information about both the amplitude and the phase of the sinusoidal
output waveform vo(t) at any frequency.

Again it is easy to find vo(t) when the drive frequency ω1 is either low or
high. At low frequencies, (ω1 small) we note from Equations 13.50 and 13.49
that � = 0 and

Vo = Vi (13.51)

so after the transient has died out, vo(t) � vi(t). That is, the resistor voltage
looks just like the drive voltage. The inductor at low frequencies must behave
like a short circuit, because its impedance approaches zero for ω small.

At high frequencies, specifically, where ω1 is such that (ω1L)2 � R2,

|Vo| � R

ω1L
Vi (13.52)

and � approaches −90◦. Thus in this frequency range vo(t) becomes smaller
and smaller in amplitude with increasing frequency, and lags behind vi by
nearly 90◦.

At this point, we can also look at the impedance of each component (ZL
and ZR) in Figure 13.11 and develop the same qualitative intuition about the
behavior of the circuit from the voltage-divider relationship. For instance, when
ω1 is small, the impedance of the inductor is small, and so Vo = Vi. Similarly,
for high frequencies, the impedance of the inductor becomes much greater than
that of the resistor and so Vo becomes very small.
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e x a m p l e 13 .2 r l e x a m p l e w i t h n u m b e r s Let us rework
the example of Figure 13.11 and obtain the amplitude of vo using numbers this time
around. Suppose that

L = 1 mH

R = 1 k�

vi = Vi cos(2π ft), where Vi = 10

where we will look at three values of the frequency f : 100 kHz, 1 MHz, and 10 MHz.

Using impedances and the voltage divider relation

Vo = ZR

ZR + ZL
Vi (13.53)

= 1000

1000 + 0.001s
Vi (13.54)

= 1000

1000 + 0.001s
10 (13.55)

= 10

1 + 0.000001s
(13.56)

where s = j2π f.

We can also write Equation 13.54 in the form of a transfer function H(s) relating the
complex output voltage to the complex input voltage:

H(s) = Vo

Vi
= 1000

1000 + 0.001s
. (13.57)

Since

vo = |Vo| cos(2π f + ∠Vo)

using Equation 13.56, we get

Amplitude of vo = |Vo|

=
∣∣∣∣ 10

1 + j 0.000001 × 2π f

∣∣∣∣

= 10√
1 + 3.9 × 10−11f 2

.
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Let us now plug in the three values of f and obtain the amplitudes of the response at
those frequencies

f = 100 kHz:

Amplitude of vo = 10√
1 + 3.9 × 10−11(100000)2

= 8.5 V
f = 1 MHz:

Amplitude of vo = 10√
1 + 3.9 × 10−11(1000000)2

= 1.6 V
f = 10 MHz:

Amplitude of vo = 10√
1 + 3.9 × 10−11(10000000)2

= 0.16 V.

The numbers clearly show the increasing impedance of the inductor as the frequency is
increased. At the relatively low frequency of 100 kHz, the low impedance of the inductor
causes the amplitude of the response to be similar to that of the input signal (8.5 V versus
10 V). Conversely, at the high frequency of 10 MHz, the amplitude of the response is
much smaller than that of the input (0.16 V versus 10 V).

Thus far, in this example, we computed the amplitude of vo at three specific frequencies.
In general, we can also graph any parameter of interest as a function of frequency.
Commonly, we graph the form of the amplitude and the phase of the transfer function
Vo/Vi as a function of frequency ω (Equation 13.57). Although this seems difficult to do
by inspection, we will learn a technique for doing so in Section 13.4. A computer
generated plot of the magnitude and phase of Vo/Vi versus frequency is shown in
Figure 13.12. The same magnitude graph plotted on a log-log scale in Figure 13.13
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F IGURE 13.12 Magnitude and
phase of Vo/Vi versus frequency ω.
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F IGURE 13.13 Magnitude and
phase of Vo/Vi versus frequency ω

on log scales.
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is much more revealing. The corresponding phase graph is also plotted on a log scale.
Notice the interesting frequency related behavior of the magnitude and phase plots in
Figure 13.13. The log plot instantly reveals that high frequencies are severely attenuated
while low frequencies are passed through unattenuated. We will have much more to
say about this variable frequency view of responses in Section 13.4.

13.3.2 E X A M P L E : A N O T H E R R C C I R C U I T

Let us now work another example with numerical quantities. Figure 13.14a
shows an RC circuit driven by a sinusoidal voltage vi = 10 cos(1000 t) V. Find
the impedance Z seen by the voltage source at the frequency ω = 1000 rad/s.
Also, find the voltage Vr across the resistor.

Figure 13.14b shows the impedance model for the circuit. Since the capaci-
tor and the resistor are in series, the impedance Z seen by the source is given
by the sum of the impedances of the capacitor and the resistor as

Z = 500 × 103 + 1

1 × 10−9s
�

where, we have used the shorthand s = jω. Since ω = 1000 rad/s, we get

Z = 500 × 103 + 1

1 × 10−9j1000
�

F IGURE 13.14 Impedance
model of RC circuit.
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or

Z = 0.5 − j M�.

Next, let us determine Vr. Applying generalized voltage divider relation for Vr
in the impedance model,

Vr = 500 × 103

500 × 103 + 1
1×10−9s

Vi. (13.58)

Substituting s = j1000 and Vi = 10 we get

Vr = 500 × 103

500 × 103 + 1
1×10−9j1000

10. (13.59)

Simplifying,

Vr = 0.5 M�

0.5 M� − j M�
10

or,

Vr = 5

0.5 − j
.

Impedance analysis can end here, since the expression for Vr contains all
the information about the amplitude and the phase of the time function vr.
However, let us take the extra step and determine vr by writing

vr = Re
[

5

0.5 − j
e j1000t

]
.

Simplifying, and writing the previous expression in polar form

vr = Re
[
4.47e j1.1e j1000t

]
.

Taking the real part,

vr = 4.47 cos(1000t + 1.1) V.

Notice from Equation 13.59 that if the frequency of the input were
increased from 1000 rad/s to, say, 106 rad/s, Vr ≈ 10 V. This says that
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F IGURE 13.15 A second-order
circuit example.

the capacitor offers very low impedance compared to that of the resistor at
high frequencies, and the entire input voltage falls across the resistor.

On the other hand, if the frequency of the input is decreased from
1000 rad/s to, say, 1 rad/s, Vr ≈ 0 V. This says that the capacitor has a very
high impedance compared to that of the resistor at low frequencies. Therefore,
nearly all of the input voltage falls across the capacitor, resulting in Vr ≈ 0.

13.3.3 E X A M P L E : R C C I R C U I T W I T H T W O
C A P A C I T O R S

Consider the second-order circuit containing resistors and capacitors shown in
Figure 13.15a. The impedance model of the circuit is shown in Figure 13.15b.

Suppose we are interested in deriving vo(t) for an input of the form
vi(t) = Vi cos(ωt). Observing that

vi(t) = Re
[
Vie jωt

]

our usual method will be to find the output response Voe jωt to the input Vie jωt,
and then to determine the actual output voltage vo(t) using

vo(t) = Re
[
Voe jωt

]
.

For convenience, as in the past, we will use the variable s as a substitute for jω.
Let us first use the impedance method to derive the complex output voltage

amplitude Vo as a function of the input voltage amplitude Vi. We will use the
method of series and parallel simplification from Section 2.4 to do so. Notice
that the voltage Va can be obtained using a voltage-divider relationship between
1/C1s and R1‖(R2 + 1/C2s). Then, observe that Vo can be obtained from
yet another voltage-divider relationship between R2 and 1/C2s. Accordingly,
we have

Va =
(

R2 + 1
C2s

)
‖R1(

R2 + 1
C2s

)
‖R1 + 1

C1s

Vi (13.60)
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Vo =
1

C2s

R2 + 1
C2s

Va (13.61)

=



(
R2 + 1

C2s

)
‖R1(

R2 + 1
C2s

)
‖R1 + 1

C1s







1
C2s

R2 + 1
C2s


 Vi. (13.62)

Simplifying, we get

Vo = R1C1s

R1R2C1C2s2 + (R1C1 + R1C2 + R2C2)s + 1
Vi. (13.63)

Equation 13.63 written in the form of a transfer function H(s) relating the
complex output voltage to the complex input voltage is

H(s) = Vo

Vi
= R1C1s

R1R2C1C2s2 + (R1C1 + R1C2 + R2C2)s + 1
. (13.64)

Let us assume the following set of parameters: R1 = 1 k�, R2 = 1 k�,
C1 = 1 mF, and C2 = 1 mF. For these parameters, we get:

Vo = s

s2 + 3s + 1
Vi. (13.65)

Factoring the denominator polynomial, we get

Vo = s(
s − −3 − √

5
2

) (
s − −3 + √

5
2

)Vi. (13.66)

Observe that the denominator polynomial has real roots at (−3 − √
5) / 2 and

(−3 + √
5) / 2.

Substituting s = jω, we obtain the complex amplitude Vo as a function of
Vi for a given frequency ω:

Vo = jω(
jω − −3 − √

5
2

) (
jω − −3 + √

5
2

)Vi. (13.67)

In general, Vi and Vo are complex amplitudes.3 We can determine the
actual time-varying voltage by multiplying the complex amplitude by e jωt

3. In this instance, we know that Vi is real since we chose

vi(t) = Re
[
Vie jωt

]
= Vi cos(ωt).
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and taking the real part of the resulting expression. Therefore the complex
amplitude Vo given by Equation 13.67 contains all the information about the
amplitude and phase of the actual sinusoidal output vo(t). Therefore we could
very well stop at this point. However, as an exercise, let us go ahead and
determine the actual output voltage.

The actual output voltage vo(t) is given by

vo(t) = Re
[
Voe jωt

]
= Re


 jω(

jω − −3 − √
5

2

) (
jω − −3 + √

5
2

)Vie jωt


 .

Simplifying,

vo(t) = Re
[
A1A2A3Vie j(φ1 − φ2 − φ3)e jωt

]
(13.68)

where

A1 = ω , A2 = 1√
ω2 + 7 + 3

√
5

2

, A3 = 1√
ω2 + 7 − 3

√
5

2

and

φ1 = π

2
, φ2 = tan−1 2ω

3 + √
5

, φ3 = tan−1 2ω

3 − √
5

.

In the preceding equation, notice that the expression within the brackets exclud-
ing the e jωt term is simply a polar representation of the complex amplitude Vo.
In other words,

Vo = A1A2A3Vie j(φ1 − φ2 − φ3). (13.69)

In Equation 13.69, A1A2A3Vi is the magnitude of Vo and (φ1 − φ2 − φ3) is the
phase.

Now, to obtain vo(t), we can simplify Equation 13.68 to get

vo(t) = A1A2A3Vi cos(ωt + φ1 − φ2 − φ3). (13.70)

The preceding expression for vo(t) is actually the particular solution for an
excitation given by vi(t) = Vi cos(ωt), and is the steady-state response of the
circuit for a cosine wave excitation. If we care to obtain the complete solution,
we must add in the homogeneous solution as illustrated in Equation 13.22.

A computer generated plot of the magnitude and phase of Vo/Vi (Equa-
tion 13.69) versus frequency is shown in Figure 13.16. The same magnitude



13.3 The Boxes: Impedance C H A P T E R T H I R T E E N 727

0 20 40 60 80 100
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

 Frequency (rad/s)

 M
ag

ni
tu

de

0 20 40 60 80 100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

Frequency (rad/s)

 P
ha

se
 (

de
gr

ee
s)

F IGURE 13.16 Magnitude and
phase of Vo (assuming Vi is unity)
versus frequency ω.

0.1 1.0 10.0 100.0

|0.01

0.10

1.00

Frequency (rad/s)

 M
ag

ni
tu

de

0.1 1.0 10.0 100.0

|-90

|-80

|-70

|-60

|-50

|-40

|-30

|-20

|-10
0

10
20
30
40
50
60
70
80
90

 Frequency (rad/s)

 P
ha

se
 (

de
gr

ee
s)

F IGURE 13.17 Magnitude and
phase of Vo (assuming Vi is unity)
versus frequency ω on log scales.

graph plotted on a log-log scale in Figure 13.17 is much more revealing. The
corresponding phase graph is also plotted on a log scale. Notice the interesting
frequency related behavior of the magnitude and phase plots in Figure 13.17.
The log plot reveals that both low and high frequencies are severely
attenuated.

e x a m p l e 13 .3 n o d e m e t h o d a n a l y s i s w i t h i m p e d -

a n c e s Consider again the circuit shown in Figure 13.15a and its impedance model
shown in Figure 13.15b. The node method applies equally well when impedances are
used in place of resistances and complex amplitudes are used in place of time functions



728 C H A P T E R T H I R T E E N s i n u s o i d a l s t e a d y s t a t e

F IGURE 13.18 Using node
analysis with impedances.

Vi VoVa

Z3 = R2

Z2 = R1

Z1 = 1/C1s

Z4 = 1/C2s

for sources. Let’s use the node method to determine Vo as a function of the input voltage
amplitude Vi.

As the first and second steps of node analysis, Figure 13.18 shows our choice of ground
node and the node voltages labeled with respect to this selection of a ground node.

As the third step of node analysis, let us write KCL for the nodes with unknown node
voltages. For the node with voltage Va we have,

Vi − Va

Z1
− Va

Z2
− Va − Vo

Z3
= 0.

Substituting for the impedance values,

Vi − Va
1

C1s

− Va

R1
− Va − Vo

R2
= 0

or, simplifying,

Vi −
(

1 + 1

R1C1s
+ 1

R2C1s

)
Va + 1

R2C1s
Vo = 0 (13.71)

and, for the node with voltage Vo we have,

Va − Vo

R2
− Vo

1/C2s
= 0.

Simplifying, we get

1

R2C2s
Va −

(
1 + 1

R2C2s

)
Vo = 0. (13.72)

Eliminating Va from Equations 13.71 and 13.72 and solving for Vo in terms of Vi

we get
Vo

Vi
= R1C1s

R1R2C1C2s2 + (R1C1 + R1C2 + R2C2)s + 1
. (13.73)

It should come as no surprise that the solutions for Vo in Equations 13.73 and 13.64
are the same.
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13.3.4 E X A M P L E : A N A L Y S I S O F S M A L L - S I G N A L
A M P L I F I E R W I T H C A P A C I T I V E L O A D

Consider the two-stage MOSFET amplifier shown in Figure 13.19. When biased
properly, this circuit behaves as a linear amplifier for small signals. This example
was used in Section 13.1 (Figure 13.2) to motivate the study of methods based
on the sinusoidal steady state. There we made the experimental observation
that the presence of the capacitor CGS makes the gain of the amplifier fall off
rapidly at high frequencies. We now explain why.

Let us analyze the steady-state response of the first stage of the amplifier
to a small sinusoid signal applied at its input when the output of the first stage
is loaded with the gate capacitance CGS of the second stage. In other words,
our goal is to find the relationship between vo and vi in the presence of the
capacitor CGS when vi = Vi cos(ωt).

We first construct the small-signal circuit model for the first stage including
the load capacitor. We can ignore the loading of the second stage because the
MOSFET has an infinite input resistance. It is easy to see that the small-signal
circuit model can be developed from the circuit in Figure 8.16 by adding the
load capacitor CGS as illustrated in Figure 13.20.

If CGS were absent, we would get the usual amplifier response relation

vo = −K(VI − VT)RLvi

= −gmRLvi.

When vi = Vi cos(ωt), and CGS = 0, the output is simply an amplified version
of the input, and is given by

vo = −gmRLVi cos(ωt). (13.74)

RL

CGS

VS

RL

VS

vi

VI

vO2vO

-
+
-
+

F IGURE 13.19 A two-stage MOSFET amplifier showing
the MOSFET gate capacitor.

+
-

vi

vo

id  = K(VI – VT)vi

RL CGS

= gmvi

F IGURE 13.20 Small-signal circuit model for a MOSFET
amplifier including a load capacitor.
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F IGURE 13.21 Impedance
model. To find the relation between vo and vi in the presence of the capacitor, we first

draw the impedance model of the circuit as shown in Figure 13.21a, and replace
the load resistance RL with the effective load impedance ZL in the computation
of the amplifier response. As illustrated in Figure 13.21b, the load impedance
ZL is given by

ZL = RL ‖ 1

sCGS

= RL

1 + sRLCGS
.

From the circuit in Figure 13.21a, we can write the following expression for the
complex amplitude of the output:

Vo = −gmZLVi = −gm
RL

1 + sRLCGS
Vi.

Substituting s = jω, the response becomes

Vo = −gm
RL

1 + jωRLCGS
Vi. (13.75)

As usual, we can derive the time domain value vo of the output voltage by
multiplying the complex amplitude Vo by e jωt and taking the real part. In other
words,

vo = Re
[
Vo( jω)e jωt

]
. (13.76)

To simplify the analysis, let us first convert Vo to polar form:

Vo = −gm
RL√

1 + (ωRLCGS)2
Vie jφ where φ = tan−1(−ωRLCGS).
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Substituting the polar form of Vo( jω) into Equation 13.76 we get

vo = Re

[
−gm

RL√
1 + (ωRLCGS)2

Vie j(ωt + φ)

]
(13.77)

= −gm
RL√

1 + (ωRLCGS)2
Vi cos(ωt + φ) (13.78)

where φ = tan−1(−ωRLCGS).
Let us analyze the response at various frequencies. Equation 13.78 shows

that at low frequencies (ω → 0) the expression for vo is no different from
that in Equation 13.74. Thus the response to a DC signal or a very low fre-
quency sinusoid is similar to the response when the capacitor is absent. This
is not surprising because the capacitor behaves as an open circuit at very low
frequencies.

However, notice that as the frequency of the input sinusoid increases, the
amplitude of the output sinusoid decreases. In fact, for very high frequencies
(ω � 1/RLCGS), the amplitude of vo tends to 0. The insight behind the high
frequency result is that the capacitor behaves as a short for high frequencies.
The resulting zero impedance of the load reduces the amplifier gain to 0.

13.4 F R E Q U E N C Y R E S P O N S E : M A G N I T U D E
A N D P H A S E V E R S U S F R E Q U E N C Y

We characterize the behavior of a network by its frequency response.

Frequency response A plot of the magnitude and the phase of the network’s
transfer function as a function of frequency.

Transfer function Also known as a system function, is the ratio of the complex
amplitude of the network output to the complex amplitude of the input.

Equation 13.57 is one example of a system function, and Figure 13.13, a plot
of the magnitude and phase of the system function versus frequency, is the
frequency response.

The frequency response contains a lot of information about the system. It
includes a magnitude plot and a phase plot, both as a function of frequency.
The magnitude of the network’s transfer function is the ratio of the amplitudes
of the output and the input, and indicates the gain of the system as a function
of frequency. The phase is the angular difference between the output and the
input sinusoids.

Observing the frequency response of networks represents a major difference
in perspective from the preceding chapters. The earlier chapters presented time-
domain analyses in which our focus was on finding an output signal value as a
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function of time for a given input signal also specified as a function of time. For
example, as shown in Figure 10.2, the step response of an RC network plotted
the output voltage of an RC network as a function of time in response to a
step input. In contrast, the frequency response represents a frequency domain
analysis in which output behavior is presented as a function of input frequency.
In a frequency domain analysis our goal is to determine the magnitude and phase
of the output in response to an input sinusoidal signal of a given frequency in
steady state.

Plotting the frequency response of a network with the aid of a computer
for arbitrary system transfer functions as illustrated in Figure 13.13 is quite easy.
Nevertheless, it is still useful to be able to make approximate sketches of the
frequency response by inspection. We’ve already seen that obtaining insight into
the frequency response at low frequencies and high frequencies is a relatively
simple matter, as demonstrated by Equations 13.51 and 13.52 in Section 13.3.1.
At intermediate frequencies, however, the relation between output and input is
somewhat more complicated, especially for a network with several inductors
or capacitors. This section will show how the general shape of the frequency
response for first-order circuits can be sketched by inspection. Chapter 14 will
do the same for an important class of second-order circuits. We will resort to
computer analysis for other circuits.4

Section 13.4.1 begins by reviewing the frequency response of resistors,
capacitors, and inductors. This simple process will help us build some intuition,
which will then be used in Section 13.4.2 to develop a more general method of
sketching by inspection the frequency response for circuits containing a single
storage element and a resistor.

13.4.1 F R E Q U E N C Y R E S P O N S E O F C A P A C I T O R S ,
I N D U C T O R S , A N D R E S I S T O R S

Resistors, inductors, and capacitors result in transfer functions of the form s,
1/s, or a constant. Recall from Section 13.3 that the element laws for resis-
tors, inductors, and capacitors in terms of complex amplitudes of voltages and
currents are given by

Resistor: Vo = R Io

Inductor: Vo = sLIo = jωLIo

Capacitor: Vo = 1

sC
Io = 1

jωC
Io

4. There do exist methods for sketching frequency response plots for arbitrary circuits without
the use of a computer. One of these, the Bode plot method, is discussed in Section 13.4.2. The
popularity of these methods, however, has waned in recent times due to the widespread use of
computers.
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respectively. We can rewrite the preceding expressions in the form of Vo/Io
transfer functions that relate the complex voltage amplitudes to the complex
current amplitudes as a function of frequency as follows:

Resistor:
Vo

Io
= H( jω) = R

Inductor:
Vo

Io
= H( jω) = jωL

Capacitor:
Vo

Io
= H( jω) = 1

jωC
.

Here each of the transfer functions is an impedance. These transfer functions
are complex numbers. They are also frequency dependent. The corresponding
magnitudes and phases are given by

Resistor:
∣∣∣∣Vo

Io

∣∣∣∣ = R and ∠Vo

Io
= 0

Inductor:
∣∣∣∣Vo

Io

∣∣∣∣ = ωL and ∠Vo

Io
= 90◦

Capacitor:
∣∣∣∣Vo

Io

∣∣∣∣ = 1

ωC
and ∠Vo

Io
= −90◦.

Figure 13.22 plots the frequency response for the resistor, inductor, and the
capacitor using the following values for the elements:

R = 1 �

L = 1 µH

C = 1 µC.

As shown in Figure 13.22, the frequency response is a plot of the magnitude
and phase of the transfer function versus frequency.

Frequency response plots are commonly plotted using log scales. As we will
see shortly, log scales make the magnitudes of the responses due to capacitors
and inductors appear as straight lines in the graph. Log scales also allow us to
observe the response over many orders of magnitude variation in the frequency
without necessarily compressing the low frequency behavior of the response
(near zero rad/s) into the magnitude and phase axes. The frequency responses
for the resistor, inductor, and the capacitor can be sketched on log scales by
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F IGURE 13.22 Frequency
response of inductors, capacitors,
and resistors plotted on linear
scales. using the following relations:5

Resistor: log
∣∣∣∣Vo

Io

∣∣∣∣ = log R

Inductor: log
∣∣∣∣Vo

Io

∣∣∣∣ = log ωL = log L + log ω

Capacitor: log
∣∣∣∣Vo

Io

∣∣∣∣ = log
1

ωC
= − log C − log ω.

Figure 13.23 shows the corresponding plots. We can make several observations
about the plots. The first set of observations relate to the nature of logarithmic
plots in general.

� If x is the variable being plotted using a log scale, x is multiplied by a fixed
factor for each fixed length increment along the axis. In contrast, on a
linear scale, x is incremented by a fixed amount for each fixed length
increment along the axis. For example, equal length increments along the
frequency axis on a linear scale might correspond to the values 0, 2 × 106,
4 × 106, 6 × 106, 8 × 106, and so on. On the other hand, equal length

5. In deriving the log relations here and in the future, we assume that both the left- and right-hand
sides of the equations are divided by appropriate unit constants before taking the logs so that the
arguments to the log functions are unitless.
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F IGURE 13.23 Frequency
response of inductors, capacitors,
and resistors plotted on log scales.

increments along the frequency axis on a log scale might correspond to
the values 104, 105, 106, 107, and so on.6

� There are two equivalent ways of plotting log functions:

1. Plot log x on a linear scale.

2. Plot x on a logarithmic scale.

In Figure 13.23, we have plotted the magnitude functions both ways. In
other words, for the abscissa, we plot both log ω on a linear scale and ω

on a logarithmic scale. For the ordinate, R, ωL, and 1/ωC are also plotted
both ways. In the future, we will choose to plot x on a logarithmic scale.7

On the phase plot, the horizontal scale is logarithmic, and the vertical
scale is linear.

� The function

|H| = ω

6. Historically, an octave is used to indicate a 2 times change in frequency. For example, 2 kHz is
a 1-octave increase in frequency from 1 kHz. Similarly, 4 kHz is a 2-octave increase from 1 kHz,
and 8 kHz is a 3-octave increase from 1 kHz. In like manner, 500 Hz is 1 octave below 1 kHz.

Another useful term is a decade. A decade is a range of frequencies in which the highest
frequency is 10 times the lowest frequency. For example, the range from 1 kHz to 10 kHz is
1 decade, and that from 1 kHz to 100 kHz is 2 decades.

7. In the literature it is also common to plot the response magnitude in decibels (dB), defined as

Response ratio in dB = 20 log10 |H( jω)|. (13.79)
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plots as a straight line with slope of +1 in log space, given consistent
horizontal and vertical scales, because it changes by a factor of 10 for
a factor of 10 increase in ω.

� Correspondingly,

|H| = 1/ω

plots as a straight line with slope of −1 in log space. (Notice that
log|H| = log 1/ω = − log ω.)

� The value of L in |H| = ωL establishes the offset. Writing

log |H| = log L + log ω.

Thus, log |H| = 0 when log L = − log ω, or when ω = 1/L. Put another
way, |H| = 1, when ω = 1/L.

The second set of observations relate to the specific magnitude and phase curves
for our three transfer functions.

� Notice in Figure 13.23 that the magnitude curve for the inductor appears
as a straight line with +1 slope on log-log scales. This implies that the
magnitude of the transfer function (or the impedance of the inductor)
increases with increasing frequency.

Because L = 1 µH, the magnitude curve for the inductor passes through
unity for ω = 1/L = 106 rad/s.

� In contrast, the magnitude curve for the capacitor appears as a straight
line with −1 slope on log-log scales. This implies that the magnitude of
the transfer function decreases with increasing frequency.

Because C = 1 µF, the magnitude curve for the capacitor passes through
unity for ω = 1/C = 106 rad/s.

� The magnitude plot for the resistor appears as a horizontal line.

� The phase plot for the inductor shows that the inductor causes a fixed
phase shift of 90◦, while that for the capacitor indicates a phase shift of
−90◦. The resistor does not introduce any phase shift.

As we will see next, these simple plots for resistors, capacitors, and induc-
tors provide much of the necessary insight to plot the frequency responses for
circuits containing a resistor and a storage element.
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13.4.2 I N T U I T I V E L Y S K E T C H I N G T H E F R E Q U E N C Y
R E S P O N S E O F R C A N D R L C I R C U I T S

Let us now examine the frequency response of circuits with a single storage
element and a single resistor, an important class of first-order circuits, and
see how their responses can be sketched by inspection. Such circuits result in
transfer functions of the form 1/(s + a), (s + a), s/(s + a), (s + a)/s, where a is
some constant. We will illustrate the approach using as an example the series
RL circuit from Figure 13.11 in Section 13.3.1.

The input-output relationship as a function of the input drive frequency ω

for the series RL circuit of Figure 13.11 is given by

Vo = R

R + sL
Vi (13.80)

(see Equation 13.47). Dividing by Vi, we obtain its transfer function:

H( jω) = Vo

Vi
= R

R + sL
. (13.81)

For reasons that will be clear shortly, let’s rewrite this in a more standard
form as

H( jω) = Vo

Vi
= R/L

R/L + s
. (13.82)

The magnitude of the transfer function is

∣∣H( jω)
∣∣ =

∣∣∣∣ R/L

R/L + jω

∣∣∣∣ (13.83)

and its phase is

∠H( jω) = tan−1 −ωL

R
. (13.84)

This frequency response using logarithmic scales for the horizontal and vertical
axes was previously shown in Figure 13.13. We repeat here in Figure 13.24
a computer-generated plot of the same response plot (assuming, as before,
L = 1 mH, R = 1 k�, so that R/L = 106 rad/s).

The same frequency response can also be sketched easily by making the
following observations about the magnitude and phase plots. Let us first deal
with the magnitude plot. Observe from Figure 13.24 that the magnitude plot
is asymptotic to two straight lines. At low frequencies (ω → 0), the magnitude
becomes ∣∣H( jω)

∣∣ � 1. (13.85)

Thus, at low frequencies the magnitude is unity, and hence appears as a
horizontal line.
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F IGURE 13.24 Magnitude and
phase of Vo/Vi versus frequency ω

on log scales.

At high frequencies (ω → ∞), the ω term dominates the expression in the
denominator and the magnitude becomes

∣∣H( jω)
∣∣ = R/L

ω
. (13.86)

From our observations on log plots in Section 13.4.1, we know that the log
plot for the expression in Equation 13.86 will appear as a straight line with a
slope of −1 for consistent horizontal and vertical scales, and passes through the
point |H| = 1 when ω = R/L.

Clearly the two asymptotes intersect at

ω = R

L
= 106 rad/s

called the break frequency or corner frequency. At the break frequency, the true
magnitude of H( jω) is

|H( jω)| = |106/(106 + j106)| = 1√
2

= 0.707.

Thus the break frequency is also called the 0.707 frequency. At this frequency,
the real and imaginary parts of the function are equal.8

8. Since 0.707 in decibels is 20 log 0.707 = −3 dB, the break frequency is also called a −3 dB
frequency. Since 0.7072 = 0.5, the break frequency is also called the half-power point. When the
magnitude curve begins to dip after the break frequency, the break frequency is also called the cutoff
frequency.
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As is clear from Figure 13.24, the high- and low-frequency asymptotes
approximate the frequency response curve pretty well.

Let us now address the phase plot. Like the magnitude plot, the phase
curve can also be approximated by the low and high frequency asymptotes.
At low frequencies the phase becomes

∠H( jω) � 0 (13.87)

while at high frequencies the phase is

∠H( jω) = −90◦. (13.88)

Notice that the phase curve goes smoothly from 0◦ at ω = 0 to −90◦ at ω = ∞.
At the break point, the real and imaginary parts of Equation 13.83 are equal,
hence the angle of H( jω) is −45◦ at this frequency.

Examination of Equations 13.16 and 13.47 (or Equations 13.21 and 13.50
for the corresponding time functions) shows that the RC circuit of Figure 13.3
and the RL circuit of Figure 13.11 will have frequency response plots of the same
form: unit magnitude and zero phase at low frequencies, and magnitude falling
as 1/ω (slope of −1 in log-log plot) with −90◦ phase shift at high frequencies.
These functions are called low-pass filters, because in signal-processing terms
they pass low frequencies and reject high frequencies. In other words, they do
not affect low frequencies, while they provide a low gain for high frequencies.
However, in many circuit applications the opposite effect is desired. We wish
to get rid of low frequencies, and pass high frequencies. Decoupling amplifier
stages so that the DC offset from one stage does not affect the next stage is a
case in point. We will study these and other filters in more detail in Section 13.5.

To summarize, the frequency response of circuits containing a single stor-
age element and a single (Thévenin ) resistor is of the form 1/(s + a), (s + a),
s/(s + a), (s + a)/s, where a is some constant, and can be sketched intuitively as
follows:

� Magnitude Plot

1. Sketch the low frequency asymptote.

2. Sketch the high frequency asymptote. The two asymptotes intersect
at the break frequency a.

� Phase Plot

1. Sketch the low frequency asymptote.

2. Sketch the high frequency asymptote.
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3. At the break frequency, the phase will be 45◦ or −45◦ as
appropriate. Draw a smooth line starting with the low frequency
asymptote, passing through 45◦ or −45◦ as appropriate at the break
frequency, and finishing off at the high frequency asymptote.

e x a m p l e 13 .4 i n t u i t i v e s k e t c h o f t h e f r e q u e n c y

r e s p o n s e o f r c c i r c u i t Let us sketch the frequency response for the
transfer function relating Vr to Vi for the RC circuit shown in Figure 13.14.

From Equation 13.58, we can immediately write the transfer function as

Vr

Vi
= H(s) = 500 × 103

500 × 103 + 1
1×10−9s

. (13.89)

Simplifying,

H(s) = s

s + 2000
.

Substituting, s = jω,

H( jω) = jω

jω + 2000
. (13.90)

Since the transfer function is of the form s/(s + a), we can apply our intuitive method for
sketching the frequency response:

� Magnitude Plot

1. Sketch the low-frequency asymptote.

The low-frequency asymptote (ω � 2000) is given by:

|H| = ω

2000
.

2. Sketch the high-frequency asymptote. The two asymptotes intersect at the
break frequency.

The high-frequency asymptote (ω � 2000) is given by:

|H| = 1.

The two asymptotes intersect at the break frequency:

ω = 2000 rad/s.

The dashed lines in the magnitude plot in Figure 13.25 show these two
asymptotes. They intersect at ω = 2000 rad/s. A computer-generated plot of
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F IGURE 13.25 Frequency
response.

the magnitude versus frequency is also shown. Together, the asymptotes are a
fairly good approximation of the magnitude curve.

� Phase Plot

1. Sketch the low-frequency asymptote.

The low-frequency asymptote for the phase is given by:

∠H = 90◦.

2. Sketch the high-frequency asymptote.

The high-frequency asymptote for the phase is given by:

∠H = 0◦.

The dashed lines in the phase plot in Figure 13.25 show these two
asymptotes.

3. The point (2000, 45◦) denoting the phase at the break frequency is also
marked. The true phase curve is also shown, starting with the low-frequency
asymptote, passing through 45◦ at the break frequency, and finishing off at
the high-frequency asymptote.

W W W 13.4.3 T H E B O D E P L O T : S K E T C H I N G T H E
F R E Q U E N C Y R E S P O N S E O F G E N E R A L
F U N C T I O N S *
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W W W e x a m p l e 13 .5 b o d e p l o t f o r s e r i e s r l

c i r c u i t

W W W e x a m p l e 13 .6 a n o t h e r b o d e p l o t e x a m p l e

13.5 F I L T E R S

The frequency response of several of the circuits considered in the previ-
ous sections indicated their frequency selective behavior (for example, the
RL circuit in Figure 13.11 or the RC circuit in Figure 13.15). We can use
such circuits to process signals according to their frequency. Circuits used
in this manner are called filters. Filters are a major application of frequency
domain analysis. The signal-processing property of filtering is fundamental
to the operation of all television, radio, and cellular phone receivers, which
must select one transmitted signal from among many present at the receiver
antenna.

The frequency response plots (see Figure 13.24) of the RL circuit in
Figure 13.11 show that it rejects (that is, attenuates) high frequencies and passes
(that is, does not affect) low frequencies, and therefore behaves like a low-pass
filter. The RC circuit in Figure 13.15 behaves like a band-pass filter because
it passes frequencies that fall within a certain band and rejects both very low
frequencies and high frequencies (see Figure 13.17). In general, we can build
many other types of filters as well. Figure 13.30 shows in abstract form the
magnitude curves of the frequency response for several types of filters.

This section analyzes circuits from a filter point of view. Let us begin with a
detailed analysis of a simple RC circuit with a view towards using it as a filter. To
illustrate the concept of filtering, let us find the voltage across the capacitor in the
simple RC circuit of Figure 13.31a, assuming that vi = Vi cos(ωt). In particular,
we wish to find the amplitude of the output signal as the frequency ω of the
input signal is changed.

F IGURE 13.30 Various forms of
filters.
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-
+ vo

vi = Vi cos (ωt)
-

+

R

(a) Circuit

vi -
+ Vo

-

+

(b) Impendance model

Vi

R

1
Cs
------ F IGURE 13.31 A simple RC

filter circuit and its impedance
model.

The generalized voltage divider relation for Vo in the impedance model,
Figure 13.31b, is

Vo =
1

Cs

R + 1
Cs

Vi = 1/RC

s + 1/RC
Vi. (13.101)

Recall from Equation 13.10 that we have been using s as a shorthand for jω. So
at any frequency, ω, the complex output voltage is given by:

Vo = 1/RC

jω + 1/RC
Vi. (13.102)

The corresponding system function is

H( jω) = Vo

Vi
= 1/RC

jω + 1/RC
. (13.103)

It is easy to see that the magnitude of the system function at low frequen-
cies is close to unity. At high frequencies, on the other hand, the magnitude
of the system function approaches 0. Because low frequencies are passed and
high frequencies are rejected or attenuated, this circuit acts as a low pass filter.

Figure 13.32 plots the frequency response of the RC circuit assuming that
the RC time constant of the circuit is RC = 1 / 20 seconds. The shape of the
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F IGURE 13.32 Frequency
response of the simple RC filter
circuit.
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magnitude plot is indicative of a low-pass filter. The break frequency is 20 rad/s.
This says that the filter begins to reject input signals whose frequencies are in the
vicinity of 20 rad/s. The level of attenuation increases as the frequency increases
beyond the break frequency.

Frequency cutoff begins in the vicinity of the break frequency. Hence the
break frequency is also called the cutoff frequency. Thus we can design our RC
low-pass filter to have any cutoff frequency by an appropriate choice of the RC
time constant. As pictured in Figure 13.33, the higher the value of RC, the
lower the cutoff frequency of the filter.

Finally, noting the similar forms of Equations 13.75 and 13.103, we
conclude that Figure 13.32 reflects the frequency response of the circuit in
Figure 13.21 as well. In fact, the circuit in Figure 13.21 is a Norton version of
the circuit in Figure 13.31.

13.5.1 F I L T E R D E S I G N E X A M P L E :
C R O S S O V E R N E T W O R K

Jeb is building a stereo amplifier system and needs some help. As illustrated
in Figure 13.34, Jeb needs to take the output of his CD player and somehow
split it into high and low frequencies, then pass each of the signals through
MOSFET amplifiers, and then send the amplified high and low signals to a

F IGURE 13.33 Designing the
cutoff frequency (or break
frequency) of a filter.
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1
Increasing   1/RC

|H
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ω
)|

F IGURE 13.34 Crossover
system for an amplifier.
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F IGURE 13.35 Crossover network circuit.
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Vi

-+ Vr
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Ls R

F IGURE 13.36 Impedance model of the crossover
network.

tweeter and a woofer, respectively. Together, the tweeter and woofer form the
speaker system.

Jeb asks his science teacher for help. The science teacher tells him, ‘‘Take
a resistor and an inductor and connect them in series. Then take the high
frequencies off one element and the low frequencies of the other,’’ and then
rushes off to teach a class. Unfortunately, Jeb forgot to ask which element
to connect to the low-frequency woofer and which to connect to the high-
frequency tweeter.

Jeb goes to one of his friends Nina for help, and sketches the network
suggested by the science teacher (see Figure 13.35). Nina has just read about
filters in her electronics class and is confident she can figure this out quickly.

As a first step, Nina draws the impedance model of the circuit as shown in
Figure 13.36.

She then writes down the transfer functions corresponding to the inductor
and resistor outputs as follows:

Vl

Vi
= − Ls

Ls + R

Vr

Vi
= − R

Ls + R
.

Substituting, s = jω,

Vl

Vi
= − jωL

jωL + R

Vr

Vi
= − R

jωL + R
.

By taking the limit as ω → 0, Nina observes that signal across the inductor,
Vl, goes to zero. Similarly, Vl tends to Vi as ω → ∞. Thus Nina concludes
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F IGURE 13.37 The magnitude
of the transfer functions for the two
signals from the crossover network. ω

1

Break
frequency

Vr
Vi
-----

R
L
---

ω

1

Break
frequency

Vl
Vi
----

R
L
---

that the transfer function for the signal across the inductor resembles that of
a high-pass filter.

In contrast the signal across the resistor, Vr, tends to Vi as ω → 0. It tends
to zero as ω → ∞. Thus the transfer function for the signal across the resistor
resembles that of a low-pass filter.

Nina plots the two transfer functions in Figure 13.37, and based on her
analysis, recommends that Jeb connect the signal from the inductor to the
tweeter and the signal from the resistor to the woofer.

Jeb then asks Nina to walk down with him to an electronics store, eShack
Inc., so they can select an appropriate resistor and inductor. Since the human
ear responds to frequencies up to 20 kHz,9 Nina decides that an appropriate
break frequency for the filters is fbreak = 5 kHz. In radians, the break frequency
is given by:

ωbreak = 2π5000

or 31,416 radians. Thus, Nina begins to look for an inductor and a resistor
with values L and R such that R/L = 31416. She is able to find a resistor
of value 100 � and an inductor of value 3.2 mH, thus solving Jeb’s design
problem.

13.5.2 D E C O U P L I N G A M P L I F I E R S T A G E S

In this section, we will discuss an application of an RC filter. Recall the

RL

VS

vO

vI

(a)

+
-

vi
+
-

VI

VO + vo

RL

VS

vI

(b)

VO + vo

RL

VS

vI

vi
+
-

VS

R1

R2

(c)

F IGURE 13.38 Amplifier circuit
discussed in Chapter 8.

MOSFET amplifier circuit discussed in Chapter 8. The same circuit is shown in
Figure 13.38a. The circuit has an input port and an output port. Figure 13.38b

9. In reality, only a young human ear responds to frequencies up to 20 kHz. Humans lose their
sensitivity to high frequencies as they grow older at the rate of roughly 1 Hz per day starting in
their teenage years. Loud music accelerates the sensitivity loss!
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shows the same amplifier circuit supplied with an input DC bias voltage VI
and a small signal input vi. The bias voltage VI might be provided by a resistor
divider circuit as in Figure 13.38c. Unlike the DC bias, the small signal input vi is
commonly a time-varying voltage, for example a sine wave. Correspondingly,
the output voltage vO is the sum of a DC output bias VO and a small-signal
voltage vo.

A problem with the amplifier circuit shown in Figure 13.38a is that it

RLR1

R2

C

VS VS

(a)

+
-

vI

RLR1

R2

vO
C

VS VS

vGS

(b)

F IGURE 13.39 New amplifier
circuit with decoupling capacitor.

cannot be cascaded easily. In other words, the output port of an amplifier
A cannot easily be coupled to the input of another amplifier B because the
biasing of one stage affects the biasing of all cascaded stages. This form of
coupling might be useful if a designer wants to build an amplifier whose gain
is greater than that of a single amplifier stage. Notice in Figure 13.38 that the
output of the amplifier is the sum of a bias output voltage VO and a small-
signal output vo. Notice further that the output of our amplifier in Figure 13.38
(call it amplifier A) cannot be fed directly to the input of another amplifier
B because of the biasing requirement for saturation operation of B. If the
output of amplifier A is fed directly to the input of amplifier B, then the out-
put bias voltage of A will become the input bias for B, and amplifier design
requirements often result in conflicting values for the output and input bias
voltages.

We will now discuss another implementation of the amplifier circuit based
on an input coupling capacitor as shown in Figure 13.39a. This circuit makes use
of the fact that most small-signal inputs of interest are time-varying signals with
a reasonably high-frequency content. As illustrated in Figure 13.39b, a small-
signal input can be fed directly to the input port of the amplifier in Figure 13.39a,
even if the small signal is superimposed over some DC bias voltage. As we will
show shortly, the capacitor C and the resistors R1 and R2 filter out any DC
bias voltage over which the small signal is superimposed, and pass through the
time-varying small signal. Furthermore, we will show that the resistive divider
formed by R1 and R2 provides the necessary input bias voltage.

+

-

R1

R2

C

VS

vGS

vI

F IGURE 13.40 Subcircuit to
compute vGS .

Let us determine the voltage vGS at the gate of MOSFET as a function of the
input voltage vI for the amplifier in Figure 13.39b. We will use the impedance
method to do so. Our goal is to determine vGS as a function of frequency so
we can see how the circuit behaves for DC for and time-varying signals. Since
the gate input of the MOSFET is an open circuit, the subcircuit relevant to the
computation of vGS is shown in Figure 13.40. The corresponding impedance
model is shown in Figure 13.41.

Figure 13.41 shows that Vgs is a function of two inputs: Vi and VS. We will
use superposition to compute their combined effect. Let Vgsi be the component
due to Vi and Vgss be the component due to VS.

To find the effect of VS acting alone, namely Vgss, we short out Vi, and
obtain the equivalent circuit shown in Figure 13.42a. The MOSFET has infinite
input impedance, so it does not figure in the calculation of Vgss. (We ignore the
MOSFET’s gate capacitance for simplicity.) Vgss can now be found through a
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simple voltage divider relationship:

Vgss = 1/Cs ‖ R2

R1 + 1/Cs ‖ R2
VS (13.104)

= R2

R1R2Cs + (R1 + R2)
(13.105)

= R2

R1R2Cjω + (R1 + R2)
. (13.106)

Since VS is a DC voltage, we know that its frequency ω is 0. Therefore,

+

-
Vi

R1

R2

VS

1/Cs
Vgs

+

-

F IGURE 13.41 Impedance
model relevant to the computation
of Vgs .

Vgss = R2

R1 + R2
VS. (13.107)

Notice that Vgss does not depend on C.
Now let us short out VS and compute Vgsi. The relevant equivalent circuit

R1

R2

VS

1/Cs
Vgss

+

-

(a)

+

-
Vi

R1

R2

1/Cs
Vgsi

+

-

(b)

F IGURE 13.42 (a) Equivalent
circuit to compute Vgss , the
component due to VS ; (b) equi-
valent circuit to compute Vgsi , the
component due to Vi .

is shown in Figure 13.42b. The voltage Vgsi can again can be found through a
simple voltage-divider relationship:

Vgsi = R1 ‖ R2

1/Cs + R1 ‖ R2
Vi (13.108)

= Req

1/Cs + Req
Vi (13.109)

= ReqCs

1 + ReqCs
Vi (13.110)

where Req = R1 ‖ R2. Substituting s = jω

Vgsi = ReqCjω

1 + ReqCjω
Vi. (13.111)

We can also write a transfer function H( jω) relating the complex input voltage
to Vgsi as follows:

H( jω) = Vgsi

Vi
= ReqCjω

1 + ReqCjω
. (13.112)

Let us analyze Equation 13.112 at low and high frequencies:

� When ω is small, H( jω) is close to 0. In particular, ω = 0 for DC signals,
and H( jω) = 0. This implies that the circuit will filter out any DC bias
over which the input signal is superimposed. Thus, any DC bias voltage
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F IGURE 13.43 Frequency
response plot (magnitude only) for
the high-pass filter formed by C,
R1, and R2.

carried by the input will not affect the node voltage vGS, which means that
the biasing of the MOSFET in Figure 13.39 is independent of the applied
input vI. We will discuss the issue of biasing in more detail shortly.

� When ω is large, H( jω) is close to unity. Therefore high frequencies are
passed through without any attenuation.

The magnitude portion of the frequency response plot for the preceding system
function is shown in Figure 13.43. It is easy to see that the plot resembles that
for a high-pass filter. Signals with frequencies significantly greater than the break
frequency 1/ReqC will pass through, while signals with frequencies significantly
lower than 1/ReqC will be attenuated.

Next, to study the impact of cascading, suppose the input Vi is composed
of a DC component Vi0 and a time-varying component Viω, as might be the
case if the output of a previous amplifier stage is used as an input to the next
stage. In other words, suppose

Vi = Vi0 + Viω

then, from Equation 13.111,

Vgsi = ReqCjω

1 + ReqCjω
Vi (13.113)

= ReqCjω

1 + ReqCjω
Vi0 + ReqCjω

1 + ReqCjω
Viω. (13.114)

Since Vi0 is a DC signal, the first term in the preceding equation van-
ishes, so

Vgsi = ReqCjω

1 + ReqCjω
Viω. (13.115)
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Therefore, if we choose ReqC to be large compared to the lowest frequency
component of interest in the input signal, (ω � 1/ReqC), we get

Vgsi � Viω. (13.116)

This completes our derivation of Vgsi. The expression for Vgsi demonstrates
that the DC component of the input signal does not influence Vgsi.

To complete the analysis, we obtain Vgs by adding the contributions due
to VS and Vi:

Vgs = Vgss + Vgsi = R2

R1 + R2
VS + ReqCjω

1 + ReqCjω
Viω. (13.117)

Further, choosing a large value for ReqC so that the lowest frequency component
of the input signal (ω) is much greater than 1/ReqC, we get

Vgs = R2

R1 + R2
VS + Viω. (13.118)

Equation 13.118 indicates that the voltage at the gate of the MOSFET is the
sum of two components: a DC bias voltage, R2VS/(R1 + R2), and Viω, the
time-varying component of the input. The values of R1 and R2 can be chosen
to achieve a desired input DC bias. Thus, from the viewpoint of biasing the
amplifiers, as shown in Figure 13.44, multiple amplifier stages can be designed
independently, and cascaded without the output bias of one stage impacting
the input bias of the next stage.10 The decoupling capacitor is instrumental in

F IGURE 13.44 Cascading
multiple amplifiers together.

RLR1

R2

C

VS VS

RLR1

R2

C

VS VS

RLR1

R2

C

VS VS

10. Note, however, that the small-signal gain of each amplifier stage depends on the load offered by
the subsequent stage. Specifically, when computing the small-signal gain, assuming the capacitor
C behaves as a short for the frequencies of interest, the load seen by each of the first and second
stages will not by RL alone, rather it will be RL in parallel with R1 and R2. We saw an example of
a loading effect, specifically a capacitive loading effect, in Section 13.3.4.
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filtering out the DC bias component of the input, thereby allowing multiple
amplifiers to be coupled directly.

13.6 T I M E D O M A I N V E R S U S F R E Q U E N C Y
D O M A I N A N A L Y S I S U S I N G V O L T A G E -
D I V I D E R E X A M P L E

In this section, we compare frequency domain versus time domain analysis using
the compensated attenuator (or compensated voltage divider) as an example.
The simple voltage dividers discussed in Section 2.3.4 do not work very well at
high frequencies. In most circuits, some parasitic shunt capacitance is present,
represented in Figure 13.45a by capacitor C2. If the drive is a low-frequency sine
wave, the attenuation of the voltage divider is R2/(R1 + R2) as expected, but at
high frequencies the capacitance causes the attenuation to increase beyond this
desired value. This effect can be readily shown by a frequency domain analysis
of the voltage divider.

13.6.1 F R E Q U E N C Y D O M A I N A N A L Y S I S

The frequency domain analysis begins by constructing the impedance model
for the circuit, Figure 13.45b. The generalized voltage divider relation is

Vo = R2 ‖ (1/C2s)

R1 + R2 ‖ (1/C2s)
Vi, (13.119)

which simplifies to

Vo = R2

R1 + R2 + R1R2C2s
Vi. (13.120)

At high frequencies, (ω large, and s = jω), this expression reduces to

Vo � 1

jωR1C2
Vi (13.121)

so vo(t) becomes an increasingly small sinusoid, lagging 90◦ behind the input
sine wave. Thus the attenuation of the voltage divider is not fixed as desired,

-
+

Vo

+

(b) Impedance model

Vi

R1

R2 1/C2s

-
-
+ vo(t)

-

+
R2

(a) Circuit

C2

R1

vi(t) F IGURE 13.45 Voltage divider
with parasitic capacitance.
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F IGURE 13.46 Compensated
voltage divider. -

+ vo(t)

-

+
R2vi(t)

-
+ Vo

+

(b) Impedance model

Vi

R1

R2

C2 1/C2s

-

R1

1/C1s
C1

(a) Circuit

but increases with increasing frequency. This effect is readily observable if one
tries to build a 2:1 divider at the input of an oscilloscope by using two one-
megohm resistors for R1 and R2. (Such a divider circuit might be used in a
scope probe, for example.) Two problems will arise. The input resistance of
the scope will change the desired attenuation at low frequencies, and the scope
input capacitance will cause the attenuation to change with frequency, as can
be seen from Equation 13.120.

To remedy the capacitance problem, it is necessary to add a small capacitor
in parallel with the series resistor, as shown in Figure 13.46. This design is used
in all good oscilloscope probes. Analysis of the impedance model yields

Vo = R2 ‖ (1/C2s)

R1 ‖ (1/C1s) + R2 ‖ (1/C2s)
Vi, (13.122)

which expands to

Vo = R2(R1C1s + 1)

R1(R2C2s + 1) + R2(R1C1s + 1)
Vi. (13.123)

If we choose one particular value of C1 such that

R1C1 = R2C2, (13.124)

then Equation 13.123 reduces to

Vo = R2

R1 + R2
Vi (13.125)

so the real output time function is

vo(t) = R2

R1 + R2
vi(t) (13.126)



13.6 Time Domain versus Frequency Domain Analysis C H A P T E R T H I R T E E N 753

| | | | | | | ||| | | | | | | ||| | | | | | | ||| | | | | | | ||||0.01

|
|

|
|

|
|

||
|0.10

|
|

|
|

|
|

||
|

1.00
 |H

| 

100 101 102 103 104
 ω

C1 small

C1  correct

C1  large

| | | | | | | ||| | | | | | | ||| | | | | | | ||| | | | | | | ||||-90

|-80

|-70

|-60

|-50

|-40

|-30

|-20

|-10

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

 <
H

100 101 102 103 104
 ω

C1 small

C1 correct

C1 large

F IGURE 13.47 Magnitude and
phase for compensated attenuator

independent of frequency! The voltage divider has now been compensated for
the effect of C2. Let us examine Equation 13.123 in more detail, and form the
frequency response plots for under-compensation, correct compensation, and
over-compensation. For this purpose it is helpful to rearrange Equation 13.123,
to obtain the system function in our standard form,

H(s) = Vo

Vi
=

(
C1

C1 + C2

) 
 s + 1

R1C1

s + (R1+R2)
R1R2(C1+C2)


 . (13.127)

Let us assume that

C1

C1 + C2
= 0.025

R1C1 = 1 ms

and

R1 + R2

R1R2(C1 + C2)
= 100

and so that Equation 13.127 in our standard form becomes

H( jω) = Vo

Vi
= 0.025(1000 + jω)

100 + jω
. (13.128)

The frequency response for the under compensated case (C1 too small)
is plotted with solid lines in Figure 13.47. The plots appropriate for
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F IGURE 13.48 Compensated
attenuator, step drive. -

+
vo(t)
-

+
R2

vi(t)
C2

R1

t

VS

vi

C1

under- and over-compensation are also shown in dashed lines. The circuit
is properly compensated when the attenuation is constant, independent of
frequency.

13.6.2 T I M E D O M A I N A N A L Y S I S

To relate back to the analysis methods used in Chapter 10, let us now calculate
the response of the attenuator to a voltage step, as shown in Figure 13.48. Note
first that the system is still first order, in spite of the two capacitors. We know
this because it is not possible to specify two independent initial conditions,
only one.

Let us assume that the capacitor C2 is initially uncharged, so the initial
condition is

vo(t = 0 ) = 0. (13.129)

It follows that the initial voltage on C1 must also be zero, if we assume vi = 0
for t < 0. A homogeneous solution of the form

vo = Ke st (13.130)

is appropriate. (Note that here s is not a shorthand notation for jω.) But as
noted in Section 13.2, we have already solved this problem: The character-
istic polynomial is the denominator of the system function, in this case the
denominator of Equation 13.127. Setting the characteristic polynomial to zero,
we find

s = −1

(R1 ‖ R2)(C1 + C2)
. (13.131)

By inspection, the particular solution, which will satisfy the differential equation
after the transient has died away, is

vo = R2

R1 + R2
VS (13.132)
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where VS is the height of the applied step. Thus the complete solution is of
the form:

vo = Ke−t/(R1‖R2)(C1+C2) + R2

R1 + R2
VS for t > 0. (13.133)

The constant K cannot be evaluated in the usual way (that is, setting vo = 0
for t = 0 and solving for K), because the two capacitors form a loop facing
the voltage source. Thus when the step is applied, in theory infinite current
flows through the capacitors for an instant, and the capacitor voltages change
instantaneously. Thus immediately after the step, at t = 0+, the initial condition
on vo will not be 0.

Instead, we can proceed as follows to find the initial condition at t = 0+.
Because the same current flows through each capacitor, both capacitors receive
equal charge:

q = C1vc1 = C2vo. (13.134)

Also

vi = vc1 + vo; (13.135)

hence right after the step, at t = 0+,

vo = C1

C1 + C2
VS. (13.136)

This, then, is the initial condition to use.
Now K can be evaluated by setting t to zero in Equation 13.133, and

equating the voltage to that given in Equation 13.136

C1

C1 + C2
VS = K + R2

R1 + R2
VS (13.137)

whence

K =
(

C1

C1 + C2
− R2

R1 + R2

)
VS. (13.138)

The complete solution is sketched in Figure 13.49 for C1 too small, correctly
chosen, and too large. The correct choice is obviously the one that makes K
equal to zero in Equation 13.138, so that there is no transient. This is equivalent
to making the capacitor voltage at t = 0+, Equation 13.136, equal to the final
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F IGURE 13.49 Time response
of compensated attenuator to a
step input.

t

vo(t)

Over-compensated

Under-compensated

Step input

t

vi(t)

capacitor voltage derived from the particular solution, Equation 13.132. These
conditions both require, as before:

R1C1 = R2C2. (13.139)

13.6.3 C O M P A R I N G T I M E D O M A I N A N D F R E Q U E N C Y
D O M A I N A N A L Y S E S

It is possible to tie together the time-domain solution with the previous
frequency-domain solution by assuming the driving waveform to be a square
wave. The time-domain solution for the over-compensated case (C1 is large)
now looks like Figure 13.50. In particular, make a note of the relatively higher
values of the output signal at the transition points.

In terms of the frequency domain, the square-wave drive can be considered
as a sum of the sine waves:11 A sine wave with the same period as the square
wave, a sine wave at three times this frequency and one-third the amplitude,
another at five times the frequency and one-fifth the amplitude, etc. The higher
frequency sine waves are called harmonics. It is relatively easy to visualize how
each of these components will be altered as they pass through the attenuator
by examining the appropriate frequency response plot. Again looking at the
over-compensated case (C1 is large), the magnitude plot of Figure 13.47 shows

11. The theory behind such a decomposition of waveforms into sinusoids can be found in any text
that deals with Fourier Series, for example, Signals and Systems, Alan V. Oppenheim and Alan S.
Willsky, 1996, Prentice Hall Publishers.
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vi(t)

t

vo(t)

t

Square-wave input, over-compensated case

F IGURE 13.50 Time response
of compensated attenuator to
square-wave input.

that the high-frequency harmonics will be larger than they are supposed to be
compared to the low frequencies, and the phase plot of the same figure shows
that they will be shifted in phase.

We can correlate the larger amplitude of the high-frequency harmonics
in the output as observed in the frequency domain with the relatively larger
values of the square wave immediately following a signal transition in the time
domain.

The important conclusions from these two quite different analysis methods
are as follows:

� The two analyses provide complementary views of the same circuit.

� Often in an experimental situation it is easier to adjust C1 for perfect
compensation by the time-domain approach of looking at the response
to a square wave. The alternative technique more consistent with the
frequency-domain view is to apply first a low-frequency sine wave, and
then a high-frequency sine wave, and check that the response amplitude
is the same in both cases.

13.7 P O W E R A N D E N E R G Y I N
A N I M P E D A N C E

In this section, we wish to address some of the issues of power and energy
flow in RLC circuits. As discussed in Chapter 11, power and energy are critical
issues in the design of circuits. The size of the battery required by a device so
it will function for a desired amount of time is related to the energy efficiency
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of the device. Similarly, the cooling requirements for a device depend on the
power dissipated by the device.

13.7.1 A R B I T R A R Y I M P E D A N C E

Let us examine first the power delivered to some arbitrary impedance Z =
R + jX by a sinusoidal source, as depicted in Figure 13.51. The quantity X is
usually referred to as the reactance of the circuit.

Vi

+

-
R + jX 

Ii

F IGURE 13.51 Power
calculations in an arbitrary
impedance.

A general sinusoidal drive can be written as:

vi(t) = |Vi| cos(ωt + φ). (13.140)

Hence the complex amplitudes of the voltage and current are

Vi = |Vi|e jφ (13.141)

Ii = Vi

Z
= |Vi|e jφ

R + jX
(13.142)

= |Vi|e j(φ−θ )√
R2 + X2

(13.143)

= |Ii|e j(φ−θ ). (13.144)

where

θ = tan−1 X

R
. (13.145)

The power delivered to the impedance is by definition the product of v(t)
and i(t).

Because power is not a linear function of v and i, we must be cautious about
using impedance concepts in power calculations.

Thus we start with time expressions such as Equation 13.140 rather than
complex amplitudes. From Equation 13.143, the current as a function of
time is

i(t) = Re
[
Iie jωt

]
(13.146)

= |Vi|√
R2 + X2

cos (ωt + φ − θ ). (13.147)
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Hence, from Equations 13.140 and 13.147 the instantaneous power is given by:

p(t) = vi = |Vi|2√
R2 + X2

[cos(ωt + φ)][cos(ωt + φ − θ )] (13.148)

= 1

2

|Vi|2√
R2 + X2

[cos(2ωt + 2φ − θ ) + cos θ ]. (13.149)

Thus, in general, the instantaneous power for sinusoidal drive has a sinusoidal
component at twice the frequency of the input signal, and the DC component.
We will examine this expression for some simple cases shortly, but first let us
complete the general derivation by calculating the average power, because this
is the quantity that determines your monthly bill from the power company.

Because the average value of cos
(
ωt

)
is zero, the average power flowing

into an arbitrary impedance is just the DC term in Equation 13.149:

p = 1

2

|Vi|2√
R2 + X2

cos θ . (13.150)

From Equations 13.141 and 13.143, this can be written as

p = 1

2
|Vi ‖ Ii| cos θ (13.151)

where Vi and Ii are the complex amplitudes of the voltage and current respec-
tively, and θ is the angle between them. The term cos θ is often called the power
factor.

The average power in terms of complex amplitudes of voltages and currents
is one-half the product of the two magnitudes multiplied by the cosine of the
angle between them.

The average power can also be written directly in terms of complex voltage and
complex current. Again from Equations 13.141 and 13.143

p = 1

2
Re[ViI∗i ] (13.152)

= 1

2
Re[V∗

i Ii] (13.153)

where I∗i is the complex conjugate of Ii, and V∗ is the complex conjugate of
V. Using this notation, 1/2 VI∗ is often called complex power, whence the
real part of the complex power is the average power, the ‘‘real’’ power, as per
Equation 13.151, and the imaginary part is called reactive power.
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F IGURE 13.52 Power flow in a
pure resistance.

p = Vi
2/2R

 t
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2 /R

π /ω 2π /ω

13.7.2 P U R E R E S I S T A N C E

To develop some insight concerning power and energy flow, let us examine
a few special cases. First, assume that the impedance in Figure 13.51 is a pure
resistance R. That is, X = 0. Further, we assume for simplicity that the time
origin is selected to make the voltage drive a cosine wave, that is, φ = 0 in
Equation 13.140. Then 13.149 is reduced to:

p(t) = V2
i

2R
(1 + cos 2(ωt)). (13.154)

Again we have a double-frequency term and a DC term. A plot of power as
a function of time for the resistive case is shown in Figure 13.52. From the
figure or from Equation 13.154, the average power dissipated in the resistor for
sinusoidal drive is

p = V2
i

2R
. (13.155)

Remember from Section 1.8.1, this is exactly one half of the power delivered
by the DC voltage of the same amplitude. Recall, also from Section 1.8.1, the
voltage unit called the root-mean-square voltage, abbreviated rms, which is
related to the peak amplitude of the sinewave by the square root of two

Vrms = Vi√
2

. (13.156)

In terms of the rms unit, average power is

p = (Vrms)2

R
(13.157)

just as for DC power. For non-sinusoidal voltages, the general definition of
rms voltage is, as the name implies,

Vrms =
√

(v(t))2. (13.158)
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Most voltages related to the AC power line are quoted in terms of rms values,
unless specifically designated as peak values. Thus the 115-V AC power from
a wall socket is 115 volts rms, or 115 × √

2 = 162.6 volts peak.

13.7.3 P U R E R E A C T A N C E

Next, we examine the case where the impedance in Figure 13.51 consists only
of inductors and/or capacitors, that is, R = 0. Regardless of the circuit con-
figuration, at any given frequency the impedance must look like either a pure
inductor or a pure capacitor (although it will change from one to the other as
frequency changes, when we go through a resonant frequency). If the circuit is
inductive, then from Equation 13.145, θ = π/2. Again assuming a cosine drive
voltage (φ = 0), Equation 13.149 reduces to:

p(t) = V2
i

2X
cos (2ωt − π/2) (13.159)

= V2
i

2X
sin 2(ωt). (13.160)

If the circuit is capacitive at the frequency of interest, then X in Equation 13.143
must equal −1/ωC, hence from Equation 13.145 with R = 0, θ = −π/2, and

p(t) = − V2
i

2X
sin(2ωt). (13.161)

Power flow as a function of time for both of these cases is shown in Figure 13.53.
Note that in both cases the average power is zero. Thus, circuits with inductors
and capacitors but no resistors do not dissipate any power. The L’s and C’s
absorb power for two quarters of each cycle, and deliver the power back to the
source during the other two quarter cycles. Power companies are not happy
about this state of affairs, because they still must supply the power depicted
in Figure 13.53, even though they get it all back a few milliseconds later. The
problem is that the current associated with this instantaneous power causes i2R
power losses in the transmission lines, and the power company must pay for
this power loss, even though the customer is consuming zero power on the
average.12

Although there is no average power supplied to this lossless circuit in the
sinusoidal steady state, there is energy stored on the average. For example, for

12. Not surprisingly, it turns out that the customers pay for it eventually, because the rates assume
a loss factor.
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F IGURE 13.53 Power flow in
inductor and capacitor. The
maximum value of p(t) for both the
inductor and capacitor is 1/2(V 2

i /X).
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a capacitor, the stored energy is, from Equation 9.18,

WC = 1

2
Cv(t)2. (13.162)

For sinusoidal v(t),

WC = 1

2
C(Vi cos(ωt))2 (13.163)

= 1

2
CV2

i

(
1

2
+ 1

2
cos (2ωt)

)
. (13.164)

Again a DC term and a double-frequency term. Hence the average stored energy
is

WC = 1

4
CV2

i . (13.165)

A similar derivation for an inductor yields

WL = 1

4
LI2i (13.166)

for an inductor current of the form

iL(t) = Ii cos (ωt). (13.167)
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F IGURE 13.54 Power flow in an
inductive circuit. The average
power is given by
p = 1/2V 2

i /
√

R2 + X 2 cos θ . The
maximum value of p(t) is
1/2V 2

i /
√

R 2 + X 2 (cos θ + 1), and
the minimum value is
1/2V 2

i /
√

R2 + X 2 (cos θ − 1).

For the general case when the network contains resistors, capacitors, and induc-
tors, the power flow will have some intermediate form between Figure 13.52
and Figure 13.53. Assuming that the circuit is net inductive at the frequency of
interest, then θ is positive but less than π/2, and Equation 13.149 with φ = 0
becomes

p(t) = 1

2

V2
i√

R2 + X2
[cos(2ωt − θ ) + cos θ ].

The power waveform is as depicted in Figure 13.54.

13.7.4 E X A M P L E : P O W E R I N A N R C C I R C U I T

Let us examine a specific circuit with both resistive and reactive components,
the RC circuit of Figure 13.55. To calculate the average power from either
Equation 13.151 or 13.152, we must find the complex amplitude of the current.
By inspection of Figure 13.55:

Ii = Vi

Z
= Vi

R + 1/jωC
(13.168)

= Vi√
R2 + (1/ωC)2

e−jθ (13.169)

where

θ = tan−1
(

1

ωRC

)
(13.170)

Now the average power dissipated in the circuit is, from Equation 13.151:

-

+ R

i(t)
C

vi = Vi  cos (ωt)

-
+

Vi
R

1/jωC
I

F IGURE 13.55 Series RC
circuit.p = 1

2

V2
i√

R2 + (1/ωC)2
cos(θ ) (13.171)

= 1

2

V2
i

|Z| cos(θ ). (13.172)
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Note from Equation 13.171 that if we choose ω such that

R = 1

ωC
(13.173)

that is, at the break frequency or corner frequency of the circuit, then

p = 1

2

V2
i

2R
. (13.174)

Hence the frequency ω = 1/RC is also called the half-power frequency of
the impedance, because the average power is one half of the value found in
Equation 13.151 for the capacitor being a short circuit. Note also that because
there is no average power dissipated in the capacitor, the average power dis-
sipated in the resistor must be identical to the average power supplied by the
source to the impedance.

W W W e x a m p l e 13 .7 m a x i m i z i n g p o w e r t r a n s f e r

u s i n g a t r a n s f o r m e r

W W W e x a m p l e 13 .8 n o n - i d e a l t r a n s f o r m e r s
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13.8 S U M M A R Y
� Sinusoidal steady state is an important characterization of a linear system.

It comprises a frequency response, which includes a gain plot and a phase
plot as a function of frequency.

� The impedance approach provides an analysis of circuits for sinusoidal
inputs, which complements the time-domain calculations of Chapter 12,
by showing the behavior of the circuit as a function of frequency.

� By assuming complex exponential drives instead of sinusoidal drives for
linear time-invariant circuits, the differential equations describing circuit
behavior reduce to algebraic equations.

� These algebraic equations can be found directly by using impedance. The
constituent relations for R, L, and C, relating complex amplitudes are

V = I R

V = Ls I

and

V = (1/Cs) I

where s is a shorthand notation for jω. Accordingly, the impedance of an
inductor is sL, that for a capacitor is 1/sC and that for a resistor is R.

� We extended our variable notation to distinguish between total variables,
DC operating values, small-signal variables, and complex amplitudes.

� We denote total variables with lowercase letters and uppercase
subscripts, for example, vD.

� DC operating-point variables using all uppercase, for example, VD.
� Incremental values using all lowercase letters, for example, vd.
� Complex amplitudes use uppercase letters and lowercase subscripts,

for example, Vd.

� Inductors behave like short circuits for DC (or very low frequencies) and
like open circuits for very high frequencies. Capacitors behave like open
circuits for DC (or very low frequencies) and like short circuits for very high
frequencies.

� The steady state values of the real voltages or currents (functions of
time) can be found from their corresponding complex amplitudes by multi-
plying the complex amplitude by e jωt and taking the real part. For example,



766 C H A P T E R T H I R T E E N s i n u s o i d a l s t e a d y s t a t e

the steady state value of vc can be determined from the value of Vc as

vc = Re
[
Vce jωt

]

or, equivalently,

vc = |Vc| cos(ωt + ∠Vc).

� The impedance method allows us to determine with ease the steady-state
response of any linear RLC network for a sinusoidal input. The method
works with complex amplitudes of voltages and currents at its variables
and has the following steps:

1. First, replace the (sinusoidal) sources by their complex (or real) ampli-
tudes. For example, the input voltage vA = Va cos(ωt) is replaced by its
amplitude Va.

2. Replace resistors by R boxes, inductors by Ls boxes, and capacitors by
1/Cs boxes. The resulting diagram is called the impedance model of the
network.

3. Now, determine the complex amplitudes of the voltages and currents
in the circuit by any standard linear circuit analysis technique Node
method, Thévenin method, etc.

4. Although this step is not usually not necessary, we can then obtain the
time variables from the complex amplitudes.

� The frequency response characterizes the behavior of a network as a func-
tion of frequency. Frequency domain analysis of a network is carried out by
examining the network’s system function, which is the ratio of the complex
amplitude of the network output to the complex amplitude of the input.

� A frequency response plot is a convenient way of summarizing how a
network behaves as function of frequency. A frequency response plot has
two graphics:

� the log magnitude of the system function plotted against log frequency,
and

� the angle of the system function plotted against log frequency.

� |H( jω)| = ω plots as a straight line with slope of +1 in log space, given
consistent horizontal and vertical scales.

Correspondingly, |H( jω)| = 1/ω plots as a straight line with slope of −1
in log space.

� The frequency response for system functions arising from circuits contain-
ing a single storage element and a single (Thévenin) resistor is of the form
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1/(s+a), (s+a), s/(s+a), (s+a)/s, where a is some constant. Such responses
can be intuitively graphed as follows:

� The magnitude plot is sketched by drawing the low-frequency and the
high-frequency asymptotes. The two asymptotes intersect at the break
frequency a.

� The phase plot can also be graphed by sketching the low-frequency
and the high-frequency asymptotes. At the break frequency, the phase
will be 45◦ or −45◦ as appropriate.

� The average power in terms of complex amplitudes of voltages and currents
is one-half the product of the two magnitudes multiplied by the cosine of
the angle between them.

E X E R C I S E Se x e r c i s e 13 .1 Find the magnitude and phase of each of the following
expressions:

a) (8 + j 7)(5e j30◦
)(e−j39◦

)(0.3 − j 0.1)

b)
(8.5 + j 34)(20e−j25◦

)(60)(cos(10◦) + j sin(10◦))

(25e j20◦ )(37e j23◦ )

c) (25e j30◦
)(10e j27◦

)(14 − j 13)/(1 − j 2)

d) (13e j30(15◦+j1.5)
)(6e(1−j30◦))

e x e r c i s e 13 .2 Find the real and imaginary parts of the following expressions:

a) (3 + j 5)(4e j50◦
)(7e−j20◦

)

b) (10e j50◦
)(e j20◦

)

c) (10e j50◦
)(e jωt)

d) Ee jωt where E = |E|e j�

e x e r c i s e 13 .3 Find the system function VL/I for the network shown in Figure
13.62. Then find the response vl(t) for i(t) = I cos(ωt) under steady-state conditions.

e x e r c i s e 13 .4 Referring to Figure 13.63, given i(t) = I0 cos(ωt), where I0 =
3 mA and ω = 106 rad/s, determine v(t) in the sinusoidal steady state. Assume R = 1 k�

and L = 1 mH.

e x e r c i s e 13 .5 The two-terminal linear network in Figure 13.64 is known to
contain exactly two elements. The magnitude of the impedance function is as shown
(log-log coordinates).
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R

+

-

vL
i(t) L

F IGURE 13.62

R

+

-

v(t)i(t) L

F IGURE 13.63

F IGURE 13.64

ω

+

-
v(t)

i(t)

100

Linear
network

70.7

104 rad/s

Slope = -1

|Z( jω)|

Draw a two-element circuit that has the impedance magnitude function indicated in your
sketch. Specify the numerical value of each element.

e x e r c i s e 13 .6 For each of the circuits shown in Figure 13.65, select the magni-
tude of the frequency response for the system function (that is, impedance, admittance,

F IGURE 13.65

(1) (4)(3)(2)

-1 +1 -1+1

log ω log ω log ω log ωω1 ω1 ω1 ω2

(5)

+1

log ωω1 ω2
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-1

log ωω1

(8)

None of
the above

(7)

ωω1

C
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+
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v1
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+
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V1( jω)

V1( jω)
I1( jω)

V1( jω)
I1( jω)
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or transfer function) from those given. It is not necessary to relate the critical frequencies
to the circuit parameters, and you may choose a magnitude response more than once.

Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

e x e r c i s e 13 .7 A linear network is excited with a sinusoidal voltage vI(t) =
cos

(
t − 5π/8

)
for all time, as shown in Figure 13.66.

iI(t)

Z(s)+
-vI(t) = t

5π
8

------– 
 cos F IGURE 13.66

The current observed under the sinusoidal steady-state conditions is iI(t) =√
2 sin(t + π/8).

What is Z(s = j1), the impedance of the network at an excitation frequency of one
radian per second?

e x e r c i s e 13 .8 Find v2(t) in the sinusoidal steady state in Figure 13.67. Assume
L = 10 H, R1 = 120 �, and R2 = 60 �.

3 V cos(4t) v2R2L
+

-

+
-

R1

F IGURE 13.67

e x e r c i s e 13 .9 A sinusoidal test signal is applied to a linear network that is
v(t)

i(t)

Network
-

+

F IGURE 13.68

constructed from exactly two circuit elements as shown in Figure 13.68.

The magnitude portion of the Bode plot for the impedance Z( jω) = V( jω)/I( jω) is
shown in Figure 13.69.

ω105 106 107 108

103

104

105

V jω( )
I jω( )
----------------

F IGURE 13.69

Draw the network and find the element values.

e x e r c i s e 13 .10 The circuit shown in Figure 13.70 is a highly simplified model
of a power transmission system.
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+
-

v1(t)

L1 L2

vL(t) v2(t)
+

-

1

2

+
-

F IGURE 13.70

v1(t) and v2(t) are the voltages of two power generators:

v1 = V cos(ωt) v2 = V cos(ωt + |�)

Find the Thévenin equivalent of this circuit at the terminals 1 2 in terms of a complex
amplitude Voc and a complex Thévenin impedance Zth.

e x e r c i s e 13 .11 Write expressions for H( jω) = Vo/Vi, its magnitude |H( jω)|,

C

(a)

(b)

(c)

(d)

R

+
-

+

-

vo

L

R

+
-

+

-

vo

C = 1 µF = 10-6 F

+
-

+

-

voR = 106 Ω

L = 1 H

+
-

+

-

voR = 10 Ω

Vi = e jωt

Vi = 2 e jωt

Vi = 5 e jωt

Vi = 10 e jωt

F IGURE 13.71

and its phase angle ∠H( jω), as a function of ω in the four cases shown in Figure 13.71.

e x e r c i s e 13 .12 Plot the log magnitude and the phase angle, both as functions
of frequency (on a logarithmic scale), of the following complex quantity:

H( jω) = 1 − jω

1 + jω
.

Label all significant asymptotes, slopes, and break points.

e x e r c i s e 13 .13 In the network shown in Figure 13.72,

C1

vo(t)
+

-

+
-

R

C2vi(t)

F IGURE 13.72

R = 1 k� C1 = 20 µF C2 = 20 µF.

a) Determine the magnitude and phase of H( jω), the transfer function relating V0/Vi.

b) Given vi(t) = cos(100t) + cos(10000t), determine the sinusoidal steady state output
voltage, vo(t).

e x e r c i s e 13 .14 Find v2(t) in the sinusoidal steady state for the circuit in Figure
13.73.

L = 10 H R1 = 120 � R2 = 60 �

e x e r c i s e 13 .15

a) Write the transfer function Vo(s)/Vi(s) for the circuit in Figure 13.74.

b) Write the transfer function Ia(s)/Vi(s).
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L3 cos4t
+
-

R2

+

-

v2

R1

F IGURE 13.73

vO(t)

+

-

vI(t)

iA(t)
Z1

Z2

Z3

Z4
+
-

F IGURE 13.74

e x e r c i s e 13 .16 Write the transfer functions Vo(s)/Vi(s), Ia(s)/Vi(s) in the circuit
in Figure 13.75.

vO(t)

+

-

CvI(t)

iA(t)

R1 L

R2
+
- F IGURE 13.75

e x e r c i s e 13 .17 Write the transfer function Ia(s)/Is(s) for the circuit in
Figure 13.76.

iS
Y2

Y3

Y4

iA

Y1 F IGURE 13.76

e x e r c i s e 13 .18 Find Ia/Is in the circuit in Figure 13.77.

L

iA(t)

R    (let G = 1/R)

C2iS(t) C1
F IGURE 13.77

P R O B L E M Sp r o b l e m 13.1 For each of the networks shown in Figure 13.78:

a) Determine an expression for the indicated complex impedance or transfer
function.
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b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you
learn to use both kinds of axes.CRZ

LRZ

C2

RZ C1

F IGURE 13.78

p r o b l e m 13.2 Shown in Figure 13.79 is one possible circuit model for a
transformer, for use where there can be a common ground between primary and
secondary.

+

-

v2M

i1

+
-

v1

+

-

vS

R1 i1

v2

+

-

R2

i2

+

-

v1

L1-M L2-M

F IGURE 13.79

Assume:

L1 = 2.5 H, L2 = 0.025 H, M = k
√

L1L2 where k < 1, R1 = 1 k�, R2 = 10 �.

a) Determine an expression for the sinusoidal steady-state transfer function V2/Vs.

b) In the tight-coupling limit, k → 1, the two natural frequencies are far apart. (See
Problem 12.3 in the previous chapter.) For this specific case, sketch the magnitude
and angle of the transfer function on log-log scales.

p r o b l e m 13.3 An electrical system has the following transfer function:

H( jω) = Y( jω)

X( jω)
= 105(10 + jω)(1000 + jω)

(1 + jω)(100 + jω)(10000 + jω)
.

a) Plot the magnitude of H( jω) in decibels versus the logarithm of frequency, labeling
all 3dB points.

b) Sketch the phase of H( jω) versus the logarithm of frequency.

c) For what values of ω does the magnitude of H( jω) equal 0db? What is the
relationship between the magnitudes of X( jω) and Y( jω) at these frequencies?

d) List the frequencies at which the phase of H( jω) equals −45 degrees.

p r o b l e m 13.4 Refer to Figure 13.80 for this problem. Assume R1 = 1 k� and
L1 = 10 mH.

a) Find the transfer function H( jω) = V1/Vo.
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V1

R1

+

-

R L

+
-

L1

Vo
F IGURE 13.80

b) Find R so that the DC gain is 1/10.

c) Find a value of L so that the response at high frequencies is equal to response at DC.

d) Plot H( jω) (magnitude and phase) versus. log ω for the values of R and L found
previously.

p r o b l e m 13.5 This problem examines the simple doorbell circuit commonly
used in homes (see Figure 13.81).

+

-

V2M

I1

+
-

V1

+

-

I1

V2

+

-

I2

+

-

V1

L1-M L2-M

Bell transformer  Power line

Door
bell

Push-button
switchM I2

Circuit model for
bell transformer

    120 V AC, 60 Hz

F IGURE 13.81

Data for the transformer in Figure 13.81 is:

L1 = 2.5 H, L2 = .025 H, M = k
√

L1L2, where k < 1.

a) In the limit k � 1, what is the voltage V2 with the push-button switch not pressed
(open)? You should use root-mean-square amplitudes for all quantities. The voltage
source is given as 120-V root-mean-square M = 0.25 H.

b) The doorbell operates by repetitive making and breaking of a contact and can
normally be modeled as a 10 � resistance at 60 Hz. Determine the magnitude of
the root-mean-square primary current I1 under normal doorbell operation (push
button closed, doorbell = 10 �) in the limit of k � 1.

c) An important safety issue in such circuits is the prevention of fire in the event that
the doorbell should accidently stick with its contact closed, thus becoming equal to
a short circuit. This can be accomplished by adjusting the value of k. Find the value
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of k that will limit the root-mean-square primary current to 500 mA for the case
where the push button is pressed and the doorbell acts like a short circuit.

p r o b l e m 13.6 In the circuit in Figure 13.82, the switch has been in Position (1)
for a long time. At t = 0, the switch is moved instantly to Position (2). For the particular
parameter values of this circuit, the complete output waveform for all time greater than
zero is

F IGURE 13.82 Vc(t)
+

-

R

CVo

-
+

(1)

(2)
+

-
v(t) = V1 cos (ωt)

vc(t) = |Vc| cos(ωt + �)

a) Find |Vc| and � in terms of V1, ω, R, and C.

b) Find Vo in terms of |Vc|, ω, R, and C required to produce the vc(t) waveform.
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s i nu so ida l s t eady s tate :

r e sonance
14

Chapter 12 showed that circuits containing an inductor and a capacitor could
display oscillatory behavior when the circuit was under-damped. This chapter
will show that oscillatory behavior occurs when the system function has com-
plex roots. Such systems are called resonant systems. The behavior of resonant
circuits was characterized by parameters such as their quality factor and reso-
nant frequency. This chapter revisits resonant circuits from an impedance and
frequency point of view.

Resonant circuits are useful in analog design to build filters with high selec-
tivity such as radio tuners and channel selectors in cell phones and wireless
networks. Resonant circuits are also used to build oscillators to produce sinu-
soids of a given frequency. The same oscillators also form the basis of clock
generators in digital design.

Many physical systems can also be modeled as second-order resonant cir-
cuits. Because the injection of even miniscule amounts of energy at or near
the resonant frequency of a second-order resonant circuit can cause a massive
and sustained response, physical structures such as buildings and bridges are
carefully modeled and designed to avoid such responses. In fact, resonators
excited at their resonance can be viewed as energy accumulators in the sense
that they continuously extract and store energy from their excitation. In this
case, the only limit to the amplitude of their response is internal dissipation
or nonlinear behavior resulting from the stresses of large amplitude responses.
The most notorious case of such a response is the Tacoma Narrows Bridge dis-
aster. Alternating winds injected enough energy into the bridge structure at its
resonant frequency that the entire bridge entered into resonance and began to
sway back and forth and finally collapsed. Sections 14.5.2 and 14.6 will provide
more insight into this type of resonant behavior.

14.1 P A R A L L E L R L C , S I N U S O I D A L R E S P O N S E

The response of a second-order system, specifically a parallel RLC system as
in Figure 14.1, to a brief pulse and to a step was calculated in Chapter 12. We
now wish to examine this same system from the impedance point of view, to
show how such circuits can be used as filters. In particular, we will discuss the
factors that affect the selectivity of the filter. To tie back to the calculations in
Chapter 12, let us first calculate the total time-domain response v(t), when the

777
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F IGURE 14.1 Parallel RLC
circuit.

Ri(t) CL

iL

v(t)

+

-

circuit is driven with a tone burst at some frequency ω1:

i(t) = Io cos
(
ω1t

)
for t > 0. (14.1)

We acknowledge that the total response to a sinusoid is rarely necessary; we
are more often interested in just the forced (or particular) response to sinusoids.
Accordingly, you may skip directly to Section 14.1.2 and then to Section 14.2
without loss of continuity. We, however, will plow through the total response
for completeness.

Application of KCL to the top node gives

i(t) = C
dv

dt
+ v

R
+ iL (14.2)

and the constituent relation for the inductor is

v = L
diL
dt

. (14.3)

Differentiating Equation 14.2, and substituting Equation 14.3, we obtain a
second-order differential equation describing the system:

1

C

di

dt
= d2v

dt2
+ 1

RC

dv

dt
+ 1

LC
v. (14.4)

As in the past, we will solve this differential equation by summing together the
homogeneous and particular solutions, vh and vp, respectively.

14.1.1 H O M O G E N E O U S S O L U T I O N

The homogeneous solution for this equation was worked out in detail in
Chapter 12, so will be only briefly reviewed here. The homogeneous equation is

d2v

dt2
+ 1

RC

dv

dt
+ 1

LC
v = 0. (14.5)
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Assuming a homogeneous solution of the form:

vh = Ke st (14.6)

the characteristic equation is

s 2 + 1

RC
s + 1

LC
= 0 (14.7)

which, to simplify notation, is written in canonic form as

s 2 + 2αs + ω2
o = 0 (14.8)

where

ω2
o = 1

LC

and

α = 1

2RC
.

We saw in Chapter 12 that the system is resonant, that is, displays oscillatory
behavior, when it is under-damped. As further discussed in Section 12.2.1,
under-damped systems are characterized by the condition:

ωo > α. (14.9)

Since we are focusing on resonant systems in this chapter, we will assume
that the system is under-damped, that is, ωo > α. Under this assumption, the
characteristic equation has these two roots:

sa = −α + jωd (14.10)

sb = −α − jωd (14.11)

where

ω2
d = ω2

o − α2. (14.12)

It follows from our assumption (ωo > α) that the two roots identified in Equa-
tions 14.10 and 14.11 are complex. Furthermore, the roots form a complex
conjugate pair. In other words, resonant systems are characterized by a pair of
complex conjugate roots.
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Hence the homogeneous solution is

vh(t) = e−αt
[
Kae jωdt + Kbe−jωdt

]
(14.13)

= Ke−αt cos
(
ωdt + θ

)
(14.14)

where K and θ are constants to be determined from the two initial conditions,
the inductor current and the capacitor voltage before the tone burst, after the
expression for the total solution has been written.

14.1.2 P A R T I C U L A R S O L U T I O N

Now let us find the particular solution for this system using the impedance
approach. One possible particular solution is the steady-state response of the
system vp(t) to the cosine signal Io cos

(
ω1t

)
. The impedance model derived

from the original circuit, Figure 14.1, is shown in Figure 14.2. The complex
constants Io and Vp in Figure 14.2 are related to the original time variables by
the expressions:

i(t) = Re
[
Ioe s1t

]
= Io cos ω1t (14.15)

vp = Re
[
Vpe s1t

]
. (14.16)

Direct application of KCL to the top node in the impedance model yields

Io = Vp

Ls1
+ Vp

R
+ Vp

1/Cs1
. (14.17)

Solving for Vp we find

Vp = Io
1/Ls1 + 1/R + Cs1

(14.18)

= Ios1/C

s2
1 + s1/RC + 1/LC

. (14.19)

F IGURE 14.2 Impedance model,
parallel RLC.

RIo
1/Cs1Ls1

+

-

Vp
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Note that we could have obtained the characteristic equation, Equation 14.7,
without writing the differential equation by using the denominator of this system
function.

The particular solution for this system can now be found from Equa-
tions 14.16 and 14.18:

vp(t) = |Vp| cos
(
ω1t + ∠Vp

)
. (14.20)

This example is continued in Section 14.1.3 where the homogeneous and
particular solutions are added to derive the total solution.

14.1.3 T O T A L S O L U T I O N F O R T H E P A R A L L E L
R L C C I R C U I T

Now we are in a position to calculate the total solution, or the complete time
function v(t), which is the capacitor voltage in response to the cosine tone
burst. The complete solution for the cosine tone burst drive is the sum of
the homogeneous solution vh (Equation 14.14), and the particular solution vp
(Equation 14.20):

v(t) = Ke−αt cos
(
ωdt + θ

) + |Vp| cos
(
ω1t + ∠Vp

)
(14.21)

where the constants K and θ are chosen to match the initial conditions for iL
and vC.

Equation 14.21 gives the complete response for our parallel circuit for a
cosine tone burst of frequency ω1. As t becomes large, the first term dies away,
and only the second cosine term with frequency ω1 remains. Accordingly, the
second term is the steady-state response to a cosine of frequency ω1.

Equation 14.21 further shows that, in general, the two cosine terms in
this expression are not at the same frequency. The first term is the natural
response, at a frequency ωd, the damped natural frequency of the system. The
second term is the forced or driven response, at the frequency (ω1) of the
input signal. Thus one would expect interference or beating to occur between
these two components. Computer generated plots of v(t) (see Figure 14.3) from
Equation 14.21 show the interference effect clearly for ω1 ≈ ωd. Observation
of the response of any high Q resonant circuit1 to a step cosine slightly off the
resonant frequency will reveal such interference.

1. Those of you taken aback by the sudden reappearance of Q (introduced in Section 12.4.1,
Equation 12.65) take heart from the fact that we will have a lot more to say about Q from a
frequency point of view in Section 14.2. For now, it suffices to understand that for a high Q
resonant circuit the value of the damping factor α is small, and therefore the natural response of
the circuit will last for a long time.
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F IGURE 14.3 Computer
calculation of the response v(t) to a
step cosine: (a) drive at ωd ,
(ω1 = ωd = 1 rad/s); (b) drive a
little below ωd , (ωd = 1 rad/s,
ω1 = 0.9 rad/s); (c) drive frequency
lower still, (ωd = 1 rad/s, ω1 = 0.8
rad/s).

(a)

(b)

(c)
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Next, Figure 14.4 shows plots of v(t) when ω1 � ωd and ω1 � ωd. When
the drive frequency is very low (for example, Figure 14.4b), the response looks
almost like that for a step.

This section analyzed the total response of the resonant circuit. How-
ever, as mentioned earlier, we tend to be less interested in the total response,
and more concerned with the particular solution or the steady-state response.
Accordingly, Section 14.2 will analyze the steady state response of Equa-
tion 14.19 in more detail. It will also show how to draw the frequency
response plot for quadratic roots, and revisit the parameters Q, α, ωo,
and ωd, the stalwarts of second-order systems, from a frequency point of
view. The frequency response plot of our parallel resonant circuit will show
vividly the filtering that occurs when a signal is passed through the resonant
circuit.
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F IGURE 14.4 Computer
calculation of the response v(t) to a
step cosine: (a) drive at a much
lower frequency than ωd , that is,
ω1 � ωd , (ωd = 1 rad/s, ω1 = 0.1
rad/s); (b) drive near DC, (ωd =1
rad/s, ω1 = 0.004 rad/s); (c) drive
frequency much greater than ωd ,
(ωd = 0.1 rad/s, ω1 = 3 rad/s).

14.2 F R E Q U E N C Y R E S P O N S E F O R R E S O N A N T
S Y S T E M S

The previous section determined the total response of a parallel RLC circuit
for a sinusoidal input by solving its differential equation, which tended to be a
fairly grungy calculation. But as noted previously, we tend to be more inter-
ested in the steady-state response of circuits to sinusoidal inputs. As introduced
in Chapter 13, plotting the frequency response is a convenient way of visu-
alizing how the circuit responds in the steady state to sinusoids of various
frequencies. The frequency response of a network is examined by plotting two
graphics:

� the log magnitude of the system function of the network plotted against
log frequency, and

� the angle of the system function plotted against log frequency.
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F IGURE 14.5 Impedance model,
parallel RLC.

RIo 1/CsLs

+

-

Vp

A network’s system function is the ratio of the complex amplitude of the output
to the complex amplitude of the input.

Let us study the frequency response of our parallel RLC resonant circuit.
Its impedance model is shown in Figure 14.5. Its system function can be written
by inspection using the impedance method as illustrated in Section 14.1.2.
Referring to Figure 14.5, we can write the following expression relating the
output Vp to the input Io:

Vp = Io
1/Ls + 1/R + Cs

.

Thus, the system function is given by

H(s) = Vp

Io
= 1

1/Ls + 1/R + Cs
(14.22)

= s/C

s2 + s/RC + 1/LC.
(14.23)

Notice that the denominator of Equation 14.23, which computes the steady-
state response of our parallel RLC circuit, and is the characteristic equation,
yields a pair of complex roots under certain conditions. From Equation 14.9,
we know that the roots are complex when

ωo > α

or specifically, when √
1

LC
>

1

2RC

and we expect the frequency response to look substantially different from those
we have seen thus far. The rest of this section will focus on the frequency
response of system functions with complex roots. This discussion will expand
the repertoire of system functions we have seen thus far, which included both
first- and second-order system functions with real roots (Chapter 13).
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F IGURE 14.6 Computer-
generated plot of the magnitude
and phase of the frequency
response.

For concreteness, let us examine the frequency response of the circuit for
the following element values:

L = 0.5 µH

C = 0.5 µF

R = 4 �.

For these element values, the system function becomes

H(s) = 2 × 106s

s2 + 0.5 × 106s + 4 × 1012
. (14.24)

For the element values that we have chosen, the denominator of Equation 14.24
indeed yields a pair of complex roots, and hence the system is resonant.
Figure 14.6 shows a computer-generated plot of the corresponding frequency
response. The magnitude plot clearly displays the frequency sensitive behavior
of the circuit: Both low and high frequencies are attenuated, giving this response
the characteristics of a bandpass filter.

More interestingly, observe the behavior of both the magnitude and phase
plots at the frequency 2 × 106 rads/sec. At this frequency, the magnitude plot
displays a sharp peak and the phase plot shows an abrupt phase transition.
The rest of this section will provide more insight into this response, and will
discuss how we can quickly guess the form of the frequency response for system
functions with complex roots. Section 14.2.1 will further show that the sharp
transitions of the magnitude and phase at the resonant frequency are directly
related to the complex roots. Section 14.4 goes on to show how we can sketch
the complete form of the response of resonant system functions without the
use of a computer.
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To obtain insight into resonant system functions, let us start by examining
the system function from Equation 14.23, repeated here for convenience:

H(s) = Vp

Io
= s/C

s2 + s/RC + 1/LC
.

Observe that the denominator of the system function can be written in the
following standard form for second-order systems:

s2 + 2αs + ω2
o (14.25)

where

ωo =
√

1

LC
(14.26)

and

α = 1

2RC
(14.27)

which is the same as the characteristic polynomial for second-order systems
(see Equation 12.85 from Chapter 12). Depending on the relative values of
α and ωo, the roots of this second-order polynomial will be real or complex.
Shortly, we will show that the behavior of the system response depends heavily
on the nature of these roots, and that the values of ωo and α provide substantial
insight into the form of the frequency response plot. We will also study the
correspondence between the frequency domain interpretation of α and ωo and
our previous time-domain interpretation of Chapter 12.

As a first step towards obtaining some insight into the relationship between
the system function and the shape of the frequency response, we divide
Equation 14.25 throughout by s/C and rewrite as

H(s) = 1

1/Ls + 1/R + Cs
. (14.28)

To simplify further, we set G = 1/R in Equation 14.28 and write s as jω and
1/jω as −j/ω, which yields

H( jω) = 1

G + j
(
ωC − 1/ωL

) . (14.29)

Certain features are already obvious without recourse to any complicated cal-
culations. At one particular frequency, the L and C terms in the denominator
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will cancel, and |H| will be maximum. This cancellation occurs where

ωC = 1/ωL. (14.30)

At this frequency,

ω = ωo = 1√
LC

. (14.31)

This frequency is called the resonant frequency ωo of the system. In the context
of the homogeneous solution in the time domain developed in Chapter 12, this
was called the undamped resonant frequency. Notice also that this resonant
frequency is none other than the ωo obtained by writing the system function in
standard form as in Equation 14.25.

In our example, L = 0.5 µH and C = 0.5 µC, so

ωo =
√

1

LC
= 2 × 106 rad/s.

The peak in the value of H(s) occurs at this frequency, as can be verified by
looking at the magnitude plot in Figure 14.6.

Next, let us focus on the behavior of the circuit at this resonant frequency.
At the resonant frequency,

|H ( jωo) | = R (14.32)

so the complex amplitude of the capacitor voltage simplifies to

Vp = Io/G = IoR. (14.33)

The capacitor voltage (time function) at this particular frequency is thus

vp(t) = IoR cos
(
ωot

)
. (14.34)

Thus at resonance the effect of the inductor cancels out the effect of the
capacitor, and the circuit behaves like a pure resistor.

Put another way, the parallel connection of the inductor and capacitor offers
infinite impedance to an input signal whose frequency is ω = ωo.

Next, let us study the behavior of the circuit for very small and very large
value frequencies. For ω very small, Equation 14.29 indicates that

H( jω) � jωL (14.35)
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or that

Vp � jωLIo (14.36)

and hence

vp(t) � wLIo cos
(
ωt + π/2

)
. (14.37)

That is, the circuit behaves like an inductor. This is not surprising since
the effect of the smallest impedance in a parallel circuit dominates. Relating
back to the frequency response, Equation 14.35 further implies that the low-
frequency asymptote of the magnitude plot will resemble that of an inductor
(see Figure 13.9).

Similarly, for ω very large, we find that

H( jω) � 1

jωC
(14.38)

or that

Vp � Io
jωC

(14.39)

and

v(t) � Io
ωC

cos
(
ωt − π/2

)
(14.40)

and the circuit appears to contain only a capacitor. In terms of the frequency
response, Equation 14.38 implies that the high frequency asymptote of the
magnitude plot will resemble that of a capacitor (see Figure 13.9).

At this point, although we do not as yet have a complete understand-
ing of the frequency response (for example, the cause of the peakiness of
certain second-order system functions), we know enough to develop the
form of the response plot by identifying a few constraints. Specifically, Equa-
tions 14.32, 14.35 and 14.38 establish the basic structure of the frequency
response, Figure 14.7. As illustrated in the figure, the system function mag-
nitude has low-frequency and high-frequency asymptotes of ωL and 1/ωC,
respectively. From Equations 14.29 and 14.30, these asymptotes intersect at
ωo, the resonant frequency. Further, we know at frequency ω = ωo, the sys-
tem function H( jω) = R. These three constraints are shown in Figure 14.7.
Together, the three constraints point to the form of the actual magnitude curve
as shown in Figure 14.8.

The phase of H( jω) is also relatively easy to guess. From Equations 14.35
and 14.38, it is easy to see that the low- and high-frequency asymptotes of the
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F IGURE 14.7 Frequency response asymptotes for parallel RLC circuit.
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F IGURE 14.8 Form of the frequency response for parallel RLC circuit.

phase are +90◦ and −90◦, respectively. Furthermore, at resonance, since

H( jωo) = R

the angle is zero. These three phase constraints are shown in Figure 14.7.
Compare the three phase constraints in Figure 14.7 with the actual curve drawn
in Figure 14.8.

The process discussed here for guessing the form of the frequency
response for Equation 14.23 generalizes to other resonant systems and can
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be summarized as follows:

� Magnitude Plot Constraints

1. Mark the low-frequency asymptote.

2. Mark the high-frequency asymptote.

3. Mark |H( jωo)|, the magnitude of the system function at the
frequency ωo. The frequency ωo can be determined by writing the
system function in standard form (Equation 14.25).

� Phase Plot Constraints

1. Mark the low-frequency asymptote.

2. Mark the high-frequency asymptote.

3. Mark ∠H( jωo), the angle of the system function at the frequency ωo.

e x a m p l e 14.1 t r a n s f e r f u n c t i o n f o r p a r a l l e l

r l c c i r c u i t Determine the transfer function Hc = Vc/I for the parallel RLC
circuit shown in Figure 14.9 given that

i(t) = 0.1 A cos
(
2π ft

)

L = 0.1 mH

C = 1 µF

R = 10 �

Sketch the asymptotes of the magnitude and phase of the frequency response. Determine
the values of Q, ωo, α, the two ω.707 frequencies, and the bandwidth. Write the
time-domain expression for the steady state value of vc for f = 1 MHz.

We can obtain Vc by multiplying the current I by the impedance of the parallel R, L, C
combination as:

Vc = I
1

1/Ls + 1/R + sC
.

F IGURE 14.9 Parallel resonant
circuit example.

Ri(t) CL

iL

vc(t)

+

-



14.2 Frequency Response for Resonant Systems C H A P T E R F O U R T E E N 791

The transfer function is given by

Hc = Vc

I
= 1

1/Ls + 1/R + sC

or in standard form,

Hc = s/C

1/LC + s/RC + s2
.

Substituting the actual element values,

Hc = 106s

1010 + 105s + s2
. (14.41)

The frequency response obtained by substituting s = jω is

Hc( jω) = j106ω

(1010 − ω2) + j105ω
.

To determine the form of the magnitude plot of the frequency response, we must
find the low- and high-frequency asymptotes and the value of the response at ωo. The
low-frequency asymptote is given by

Hc( jω) = jω

104

and the high-frequency asymptote is

Hc( jω) = 106

jω
.

Comparing the denominator of Equation 14.41 to the canonic form s2 + 2αs + ω2
o ,

we get

ωo = 105

and

|Hc( jωo)| = 10.

The corresponding low- and high-frequency phase asymptotes are 90◦, and −90◦,
respectively. The phase at ωo is 0◦.

The dashed lines in the plots in Figure 14.10 show the low- and high-frequency asymp-
totes, and the X symbols mark the values at ωo. The solid lines show the actual
plots.
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F IGURE 14.10 Magnitude and
phase of the frequency response.

Finally, to determine the time domain expression for vc, we know that

Vc = Hc I

where, since i(t) = 0.1 cos
(
2π ft

)
,

I = 0.1 A

Thus, the time-domain expression for vc in the steady state is given by:

vc(t) = |0.1Hc(ω)| cos(ωt + ∠Hc(ω)).

At f = 1 MHz, or ω = 2π106 rad/s, this expression becomes

vc(t) = 0.016 cos(2π106t − 89◦).

14.2.1 T H E R E S O N A N T R E G I O N O F T H E F R E Q U E N C Y
R E S P O N S E

We will now take a closer look at the resonant region of the frequency response
in Figure 14.6 where there are sharp transitions in the magnitude and phase. In
particular, we would like to determine the width of the resonant peak and the
factors that affect its sharpness.

To obtain some indication of the width of the resonance in Figure 14.6, two
points that are easy to calculate are the frequencies where |H( jω)| is down to
0.707 (or 1/

√
2) of its maximum value.2 These frequencies ω0.707 can be readily

2. A frequency at which |H( jω)| falls to 1/
√

2 or 0.707 of its maximum value is called a 0.707
frequency or ω0.707. As defined for first-order circuits in Chapter 13, such a frequency is also called
a half power frequency. Since 0.707 in decibels is 20 log(0.707) = −3dB, it is also called a −3dB
frequency.
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calculated from Equation 14.29 because |H| will be at 0.707 of its maximum
when the denominator becomes G(1 ± j1). (Notice that when the denomi-
nator of H becomes G(1 ± j1), the magnitude |H| becomes 1/

√
2G, which

is equivalent to 0.707/G.) In other words, for ω1 = ω0.707, |H| will be at
0.707 of its maximum, and

G + j
(
ω0.707C − 1/ω0.707L

) = G(1 ± j1).

Simplifying,

G = ± (
ω0.707C − 1/ω0.707L

)
. (14.42)

This is a quadratic in ω0.707:

ω2
0.707 ± G

C
ω0.707 − 1

LC
= 0. (14.43)

Solving for ω0.707

ω0.707 = ± G

2C
±

√(
G

2C

)2

+ 1

LC
. (14.44)

The two positive roots, namely,

ω0.707 = + G

2C
+

√(
G

2C

)2

+ 1

LC
(14.45)

and

ω0.707 = − G

2C
+

√(
G

2C

)2

+ 1

LC
(14.46)

diagramed as in Figure 14.11a on a linear frequency scale, indicate that the width
of the curve between the two 0.707 frequencies, usually called the bandwidth,
is G/C. In other words,

Bandwidth = G

C
= 1

RC
.

Comparing Equation 14.25 with the standard form for second order
circuits, Equation 14.25, we can write

1

RC
= 2α = Bandwidth.
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F IGURE 14.11 Bandwidth
calculation; in the figure, G = 1/R.

Recall, we came across this same damping factor in Equation 12.85 in Chapter 12
from a time-domain point of view. There, in the time domain view, the damping
factor was an indication of how quickly the natural response died out. Notice
the presence of the decaying exponential term containing α in Equation 14.21,
the time domain response for our parallel RLC circuit.

Notice also from Figure 14.11a that the 0.707 frequencies are not usually
symmetric about ωo, rather they are symmetric about

√(
G

2C

)2

+ 1

LC

or √
α2 + ω2

o .

However, for low values of G, this value is close to the resonance fre-
quency. Therefore, the terms center frequency and resonance frequency are used
interchangeably.

A useful gauge of the sharpness of the resonance is the ratio of the resonance
frequency to the bandwidth:

Resonance frequency

Bandwidth
= ωo

G/C
= Q = ωoRC = R

ωoL
. (14.47)

Again, this very Quality Factor was introduced in Chapter 12 (Equations 12.65
and 12.66) from a quite different point of view. There, in the time domain view,
Q indicated the length of time for which the circuit would ‘‘ring’’ when excited
by an input such as a step. If we know the quality factor Q and the frequency
ωo, we can derive the bandwidth as:

Bandwidth = ωo

Q
. (14.48)
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The relative importance of the two terms under the radical in Equations 14.45
and 14.46 can be assessed by noting from Equation 14.31 that

1

LC
= ω2

o . (14.49)

By dividing out the ω2
o from under the radical, and substituting from

Equation 14.47, we obtain

ω0.707 = + G

2C
+ ωo

√
1 + 1

4Q2
(14.50)

and

ω0.707 = − G

2C
+ ωo

√
1 + 1

4Q2
. (14.51)

For Q greater than five, the radicals in the expressions for the two 0.707 fre-
quencies are within 1/2 percent of unity. In such a case, it is reasonable to
neglect the small offset, and assume that the resonant curve is symmetric about
ωo, as illustrated Figure 14.11b, and as summarized in the following equations:

ω0.707 ≈ ωo + G

2C
(14.52)

and

ω0.707 ≈ ωo − G

2C
. (14.53)

Knowing the five constraints, namely the two 0.707 frequencies in addition
to the resonance frequency ωo and the low- and high-frequency asymptotes,
we can guess the form of the frequency response more accurately than that in
Figure 14.8. The five constraints, along with the actual curve, are shown in
Figure 14.12.

The phase of H( jω) is also relatively easy to sketch. At the 0.707 frequency,
the real and imaginary parts of the denominator in Equation 14.29 are equal (see
Equation 14.42), so the phase must be +45◦ below resonance, and −45◦ above.
These two constraints, along with the low- and high-frequency asymptotes at
+90◦ and −90◦ respectively, and the phase at resonance of zero, form five
constraints that allow us to draw a fairly accurate phase plot as also shown in
Figure 14.12.

At this point, a few observations are in order. Recall from Equation 14.47
that Q = R/ωoL. Thus, it should be clear from this expression for Q and
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F IGURE 14.12 Sketch of the
frequency plot for parallel RLC
circuit along with the five
constraints, namely the two 0.707
frequencies, the resonance
frequency ωo , and the low- and
high-frequency asymptotes.
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Figure 14.12 that Q is the ratio of the peak height of the curve to the height
of the intersection point of the asymptotes. Thus, Q is an indication of the
‘‘peakiness’’ of the frequency response curve. Several magnitude and phase
plots illustrating the relationship between the peakiness and Q are shown in
Figures 14.13 and 14.14.

Next, relating to the time domain (see the discussion surrounding
Equation 12.65 in Chapter 12), since

Q = ωo

2α
(14.54)

a high value of Q means that the damping factor α is small compared to
ωo, and the circuit will ring for a long time when excited by a step or an
impulse.3

3. In fact, it can be shown that Q itself is an approximate measure of the number of oscillations.
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F IGURE 14.13 High Q versus low Q circuits.

Vp ⁄Io

Frequency
(rad/s)

0

π/2

–π/2

<

0.1ωo ωo 10ωo0.01ωo

High Q

Low Q
Moderate Q

F IGURE 14.14 Phase of high Q and low Q circuits.

A high value of Q, which implies that ωo is large compared to α, also
means that the roots of the characteristic polynomial will be complex. Notice
that the roots of the characteristic polynomial (Equation 14.25) are given by

−α +
√

α2 − ω2
o and − α −

√
α2 − ω2

o .

We can also see from Equation 14.54 that for Q > 0.5, the roots will be complex
because

α < ωo.

Notice, further, from our observations in Section 12.4.1, that when α < ωo
the circuit is under-damped. We now see the explicit correlation between com-
plex roots, resonant circuits, under-damping, and peakiness in the frequency
response.

Finally, using the frequency response plot in Figure 14.11 or Figure 14.12,
on the basis of Equation 14.20, it is relatively simple to visualize the filtering
that occurs when a signal is passed through the resonant circuit. Any frequency
components near the resonant frequency will pass through the system relatively
unattenuated, but all other frequency components will be substantially atten-
uated and shifted in phase. If, for example the filter input is a 990-Hz square
wave, and the filter resonant frequency is 3000 Hz, the output will be nearly
sinusoidal at 2970 Hz, because the filter will pass this third-harmonic compo-
nent of the square wave and reject the fundamental and other harmonics. As
mentioned previously, this signal-processing property of filtering is fundamen-
tal to the operation of all television, radio, and cellular phone receivers, which
must select one transmitted signal from among many present at the receiver
antenna.
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e x a m p l e 14.2 d e t e r m i n i n g c r i t i c a l p a r a m e t e r s

Determine the values of Q, ωo, α, the two ω0.707 frequencies, and the bandwidth, for
the circuit shown in Figure 14.9 in Example 14.1 given that

i(t) = 0.1 cos(2π ft)

L = 0.1 mH

C = 1 µF

R = 10 �.

Plot the magnitude and phase curves on both log and linear scales for those element
values. Also, keeping the resonance frequency and the peak magnitude constant, show
frequency response plots for Q = 0.5, 0.75, 1, 2, 4, 8, and 16.

As worked in Example 14.1, the transfer function for the circuit in Figure 14.9 written
in standard form is

Hc = s/C

1/LC + s/RC + s2
= 106s

1010 + 105s + s2
. (14.55)

Comparing the denominator of Equation 14.55 to the canonic form s2 + 2αs + ω2
o ,

we get

ωo =
√

1

LC
= 105 rad/s

α = 1

2RC
= 105

2
rad/s

Q = ωo

2α
= R

√
C

L
= 1. (14.56)

The two ω0.707 frequencies are given by Equations 14.45 and 14.46 as4

ω0.707 = + G

2C
+

√(
G

2C

)2
+ 1

LC
= 1.618 × 105 rad/s

and

ω0.707 = − G

2C
+

√(
G

2C

)2
+ 1

LC
= 0.618 × 105 rad/s.

4. where G = 1/R
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F IGURE 14.18 Phase of the frequency
response on a linear scale.

The bandwidth is

1.618 × 105 − 0.618 × 105 = 105 rad/s.

The bandwidth and the resonance frequency ωo are marked in Figure 14.15, which
shows the magnitude plot on a log scale. The bandwidth and resonance frequency are
also marked on the magnitude plot drawn on a linear scale in Figure 14.16. The phase
is plotted in Figures 14.17 and 14.18 on log and linear scales, respectively.
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F IGURE 14.20 Phase for different values of Q.

Figures 14.19 and 14.20 show the frequency response for different values of Q, keep-
ing the resonance frequency and the peak magnitude constant. To keep the peak
magnitude the same, we keep R constant at 10 �. Similarly, to keep the resonance
frequency the same we keep

√
1/LC a constant at 105 rad/s. We obtain different values

of Q by choosing different C/L ratios (Equation 14.56), while keeping both R and LC
constant. Thus, for example,

L = 0.1 mH

C = 1 µF

R = 10 �

yield Q = 1, while

L = 0.05 mH

C = 2 µF

R = 10 �

yield Q = 2, and

L = 0.2 mH

C = 0.5 µF

R = 10 �

yield Q = 0.5.
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14.3 S E R I E S R L C

A second topology for RLC circuits is shown in Figure 14.21, the series resonant
circuit. Direct analysis of the impedance model, Figure 14.21b, yields

I = Vi

Rs + Ls + 1/Cs
(14.57)

=
(
s/L

)
Vi

s2 + sRs/L + 1/LC
. (14.58)

Thus,

H(s) = I

Vi
=

(
s/L

)
Vi

s2 + sRs/L + 1/LC
. (14.59)

Again we obtain an expression identical in form to Equation 14.23, so this too
is a resonant circuit. The difference this time is that the current is the output
variable, so here the current is maximum at resonance, whereas for the parallel
circuit of Figure 14.1, the voltage was maximum. By comparing corresponding
terms in the two derivations, for this series circuit,

Resonant frequency = ωo = 1√
LC

(14.60)

Bandwidth = Rs

L
. (14.61)

Comparing this expression for the bandwidth with the expression for the damp-
ing factor α developed in our time-domain analysis for a series RLC circuit
(see Section 12.12), we can write

Bandwidth = 2α.

-
+

Rs

vi(t) C

(a) Circuit

L

i(t)

-
+Vi

IRs Ls

(b) Impedance Model

1
sC------

F IGURE 14.21 Series resonant
circuit.
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Furthermore, because Q is defined in this chapter as the ratio of resonance
frequency to bandwidth, for the series circuit,

Q = ωoL

Rs
(14.62)

the same relation we found in Chapter 12 (Equation 12.109) by examining the
response to a short pulse. Comparison with the corresponding expression for
the parallel RLC circuit indicates that for high Q in a parallel resonant circuit, R
should be large, whereas in the series case, Rs should be small. Confusing, but
correct.

The plots of the magnitude and phase of H ( jω) versus ω, Figure 14.12,
again apply to this circuit, except now the system function is defined as

H ( jω) = I

Vi
. (14.63)

e x a m p l e 14.3 t r a n s f e r f u n c t i o n o f s e r i e s r l c

c i r c u i t Determine the transfer function Hr = Vr/Vi for the series RLC circuit
shown in Figure 14.22, given that

vi(t) = 0.1 cos(2π ft)

L = 0.1 mH

C = 1 µF

R = 5 �.

Sketch the asymptotes of magnitude and phase of the frequency response. Determine
the values of Q, ωo, and α. Write the time-domain expression for the steady state value
of vr for f = 1 MHz.

From the impedance model, we get the transfer function

Hr = Vr

Vi
= R

Ls + R + 1
sC

. (14.64)

F IGURE 14.22 Series resonant
circuit example. -

+
R

vi(t) C

L

-+ vr
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Multiplying the numerator and denominator by s/L we get

Hr =
sR
L

s2 + s R
L

+ 1
LC

.

Substituting the actual element values,

Hr = 5 × 104s

s2 + 5 × 104s + 1010
. (14.65)

The frequency response obtained by substituting s = jω is

Hr( jω) = j5 × 104ω

(1010 − ω2) + j5 × 104ω
.

To determine the form of the magnitude plot of the frequency response, we must
find the low- and high-frequency asymptotes and the value of the response at ωo. The
low-frequency asymptote is given by

Hr( jω) = jω

2 × 105

and the high-frequency asymptote is

Hr( jω) = 5 × 104

jω
.

Comparing the denominator of Equation 14.65 to the canonic form s2 + 2αs + ω2
o ,

we get

ωo = 105 rad/s

α = 2.5 × 104 rad/s

and

Q = ωo

2α
= 2.

At ω = ωo,

|Hr( jωo)| = 1.

The corresponding low- and high-frequency phase asymptotes are 90◦ and −90◦,
respectively. The phase at ωo is 0◦.

The dashed lines in the plots in Figure 14.23 show the low- and high-frequency asymp-
totes, and the X symbols mark the values at ωo. The solid lines show the actual plots.
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F IGURE 14.23 Magnitude and
phase of the frequency response.
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Finally, from

Vr = HrVi

where Vi = 0.1 V, we can obtain time domain expression for vr in the steady state as

vr(t) = |0.1Hr(ω)| cos(ωt + ∠Hr(ω)).

At f = 1 MHz, or ω = 2π106 rad/s, this expression becomes

vr(t) = 0.0008 cos(2π106t − 89.5◦).

e x a m p l e 14.4 m e t a l d e t e c t o r u s i n g a r e s o n a n t

c i r c u i t The circuit shown in Figure 14.24 can be used as a metal detector. To
do so, the inductor is wound as a large flat coil. In the presence of nearby metal, the+

-

vOUT
50 Ω

+
-

13 pF

L C

R

20 mH

1 cos(ωt)

F IGURE 14.24 A metal
detector circuit.

inductance of the coil changes, and so vOUT changes as well. Suppose that we can
detect a 0.1-mV change in the amplitude of vOUT in the sinusoidal steady state. What
is the corresponding minimum detectable change in inductance, and how should the
frequency ω be chosen to maximize the sensitivity of the metal detector?

To analyze the metal detector, we first compute Vout, the complex amplitude of vOUT

in the sinusoidal steady state. The magnitude of Vout is then the amplitude of vOUT in
the sinusoidal steady state. Thus, using impedances

|Vout| = ωRC√
(1 − ω2LC)2 + (ωRC)2

1 V,

which is also the amplitude of vOUT. Next, we differentiate the amplitude of vOUT with
respect to L to determine the sensitivity. This yields

d|Vout|
dL

= ω3RC2(1 − ω2LC)

((1 − ω2LC)2 + (ωRC)2)3/2
1 V.
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For the parameters given in Figure 14.24, the absolute value of the sensitivity is
maximized near 62.920 krad/s, or 10.014 kHz. This is slightly above the resonance
frequency:

ω◦ = √
1/LC = 62.017 krad/s.

At this frequency, the peak sensitivity is approximately −484.3 V/H. Therefore, given a
minimum measurable change in voltage amplitude of 0.1 mV, the minimum measurable
change in inductance is approximately 0.2 µH, or about 0.001% of the coil inductance.

e x a m p l e 14.5 a n o t h e r r l c c i r c u i t e x a m p l e The input
vz in the second-order circuit in Figure 14.25 is a sinusoid. Determine the impedance
Z. Determine also ωo, α, ωd, and Q for the circuit. Show that the circuit is resonant
for the element values indicated in Figure 14.25. Plot the magnitude and phase of the
system function Iz/Vz as a function of frequency, and sketch the low- and high-frequency
asymptotes.

Using the impedance model, the impedance Z is given by:

Z = 1
1

R+Ls
+ sC

=
s
C

+ R
LC

s2 + s R
L

+ 1
LC

.

The desired system function is the admittance Iz/Vz = 1/Z and is given by:

H(s) = Iz
Vz

= 1

Z
= s2 + s R

L
+ 1

LC
s
C

+ R
LC

(14.66)

Comparing

s2 + s
R

L
+ 1

LC

to the canonic form

s2 + 2αs + ω2
o

Z
C = 10 µFR = 1 Ω

L = 1 mH

+
-

vz

iz

F IGURE 14.25 A second-order
circuit.
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we get

ωo =
√

1

LC

and

α = R

2L
.

Thus, we can compute

ωd =
√

ω2
o − α2

and
Q = ωo

2α
.

For

L = 1 mH

C = 10 µF

R = 1 �

we get

ωo = 104 rad/s,

α = 500 rad/s,

ωd = 9988 rad/s,

and
Q = 10.

Since Q > 0.5, or equivalently, since ωo > α, the roots of the characteristic equation
are complex and therefore the circuit is resonant.

Substituting the numerical quantities into our system function, we get

H(s) = s2 + 1000s + 108

105s + 108
. (14.67)

Let us now determine the the low- and high-frequency asymptotes, and the magnitude
and phase of the response at the resonant frequency. For low frequencies, the system
function in Equation 14.67 reduces to

H(s) = 1.

This directly yields the low-frequency asymptote for the magnitude. The corresponding
low-frequency phase asymptote is 0◦. This asymptote implies that the admittance is
similar to that of a 1-� resistor.

For high frequencies, the system function becomes

H(s) = 10−5s,
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which gives us our high-frequency asymptote. This asymptote implies that at high
frequencies the admittance is similar to that of a 10-µF capacitor.

The magnitude and phase of the response at the resonance frequency ωo = 104 rad/s
is obtained by substituting ω = 104 in Equation 14.67 as

|H( jωo)| ≈ 0.01

and

∠H( jωo) ≈ 6◦.

The three constraints for the magnitude and phase are sketched in Figures 14.26a
and 14.27a, respectively. Figures 14.26b and 14.27b contain the corresponding com-
puter generated plots for the magnitude and phase of the system function versus
frequency.
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W W W 14.4 T H E B O D E P L O T F O R R E S O N A N T
F U N C T I O N S *

W W W e x a m p l e 14.6 b o d e p l o t e x a m p l e

14.5 F I L T E R E X A M P L E S

Depending on where the output is taken, the series and parallel RLC resonant
circuits can be used as highly selective filters of various types. The higher the
Q, the higher the selectivity. Here, we revisit the series resonance circuit (see
Figure 14.32a) and demonstrate how various types of filters can be derived from
the same basic circuit.

-
+

R

vi(t) C

(a) Circuit

L

i(t)

-
+Vi

I
R Ls

(b) Impedance Model

+ -Vl+ -Vr

+

-
Vc

+

-
Vn

1
sC
-----

F IGURE 14.32 Resonant series
RLC circuit.

Figure 14.32b shows the impedance model of the series RLC circuit. Apply-
ing the impedance method, we obtain the following relation between the
complex amplitude of the current I and the input voltage Vi:

I = Vi

R + Ls + 1/Cs
(14.68)

= (s/L)Vi

s2 + sR/L + 1/LC
. (14.69)

We can also rewrite the denominator of the expression for I in our general
form as

I = (s/L)Vi

s2 + 2αs + ω2
o

(14.70)

where ωo and α for the series resonance circuit are given by

ωo =
√

1

LC

α = R

2L
.

The corresponding system function relating I and Vi is

H(s) = I

Vi
(14.71)

= s/L

s2 + sR/L + 1/LC
(14.72)
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= s/L

s2 + 2αs + ω2
o

. (14.73)

We will now show that the system function relating the voltage across each of
the elements (see Figure 14.32b) to the input voltage represents different kinds
of filters. For concreteness, we will plot our results using the following element
values:

L = 1 µH

C = 1 µF

R = 1 �.

These element values result in

ωo = 106 rad/s.

In Hertz, the resonant frequency is 106/2π = 159, 154 Hz.
The damping factor is

α = 5 × 105 s

and the quality factor is

Q = ωo

2α
= 1.

14.5.1 B A N D - P A S S F I L T E R

First, let us look at the behavior of the voltage across the resistor, Vr. Multiplying
the expression for the current in Equation 14.70 by the impedance R, we get

Vr = I R =
sR
L

Vi

s2 + 2αs + ω2
o

,

which leads to the following system function relating Vr to Vi:

Hr(s) = Vr(s)

Vi(s)
= sR/L

s2 + 2αs + ω2
o

.

Since α = R/2L, we can write the system function for the voltage across the
resistor as

Hr(s) = 2αs

s2 + 2αs + ω2
o

.

We can plot the frequency response for this system function by substituting
s = jω and taking the magnitude and phase of Hr(s). The computer-generated
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F IGURE 14.33 Frequency
response of the bandpass filter.
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frequency response corresponding to the preceding system function is shown
in Figure 14.33.

It is clear from Figure 14.33 that Hr represents a bandpass filter as we
discussed in Section 14.2. As also discussed in Section 14.2, notice that the
magnitude of the bandpass system function at ω = ωo = 106 rad/s is unity.

The bandwidth is

Bandwidth = ωo

Q
= 106

1
= 106 rad

as can also be verified from Figure 14.33 by taking the difference between the
high- and low-frequencies at which the magnitude falls to 1/

√
2 of the peak

value.
It is instructive to plot the frequency response for a range of values of Q

by choosing different values for R (see Figure 14.34). For the series resonant
circuit, since

Q = ωoL

R

we can hold the values of L and C constant, and choose resistance values of
2 �, 1 �, 0.1 �, and 0.01 �, to obtain Q’s of 0.5, 1, 10, and 100, respectively.
It is easy to see from Figure 14.34 that higher the value of Q, the greater the
‘‘peakiness’’ or selectivity of the curve. Notice also that the phase curves show
a corresponding sharper transition as Q increases.

14.5.2 L O W - P A S S F I L T E R

Let us now look at the voltage across the capacitor, Vc. Multiplying the expres-
sion for the current in Equation 14.70 by the impedance of the capacitor 1/sC,
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F IGURE 14.34 Frequency
response of the bandpass filter for
several values of Q.
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F IGURE 14.35 Frequency
response of the lowpass filter for
Q= 1.

we get

Vc = I

sC
=

1
LC

Vi

s2 + 2αs + ω2
o

,

which leads to the following system function relating Vc to Vi:

Hc(s) = Vc(s)

Vi(s)
=

1
LC

s2 + 2αs + ω2
o

.

Since ω2
o = 1/LC, we can write the system function for the voltage across the

capacitor as

Hc(s) = ω2
o

s2 + 2αs + ω2
o

.

The frequency response plot corresponding to Hc is shown in Figure 14.35.
Because it passes through low-frequency signals unattenuated, Hc represents a
low-pass filter.
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F IGURE 14.36 The magnitude
curves of the frequency response
for the low-pass filter for several
values of Q.
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The magnitude curves of the frequency response for a range of values of Q
are shown in Figure 14.36. As in our bandpass example, Q can be increased by
decreasing the value of the resistance R. Notice that the response curve displays
some very interesting behavior for values of the drive frequency ω that are close
to ωo. Specifically, the magnitude of the capacitor voltage for drive frequency
ω = ωo can far exceed the input drive voltage for large values of Q. This is in
stark contrast to the magnitude of the voltage across the resistor, which never
exceeds the input drive voltage (see Figure 14.34). Furthermore, as with the
bandpass filter, the higher the value of Q, the greater the ‘‘peakiness’’ of the
curve near ωo.

Let us now derive the relationship between Q and the magnitude of the
response at ωo. We know that

Vc(s) = ω2
oVi

s2 + 2αs + ω2
o

.

To obtain the response for any frequency ω, we substitute s = jω as follows:

Vc = ω2
oVi

( jω)2 + 2αjω + ω2
o

Substituting ω = ωo and simplifying we obtain the following response at
resonance:

Vc = jωoVi

2α
.

Taking the magnitude and substituting Q = ωo/2α we get at resonance:

|Vc| = QVi. (14.74)
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This tells us that the magnitude of the capacitor voltage in a series RLC circuit
that is driven at its resonance frequency is Q times the input voltage! If, for
example, a series resonant circuit with a Q of 100 is connected to a 10-V
sinusoidal source, then at resonance the capacitor voltage will be 1000-V! Put
another way, even small excitations can cause massive responses in second-
order circuits when the excitation frequency is close to that of the circuit’s
resonance frequency. This now sheds some insight into the Tacoma Narrows
Bridge disaster. Because the frequency of alternating winds was close to the
bridge’s resonant frequency, the bridge began to sway back and forth and finally
collapsed. We will have a lot more to say about Q and the response of resonant
circuits in Section 14.6.

e x a m p l e 14.7 r e s o n a n t r e s p o n s e o f a d r i v e n

h i g h - q c i r c u i t The circuit shown in Figure 14.37 is a resonant circuit
driven by a 1-Volt cosinusoidal voltage source. We wish to find: (a) the frequency
at which the capacitor voltage vC has its largest amplitude, and the value of that ampli-
tude; (b) the undamped resonance frequency (or, simply, resonance frequency) of the
circuit, and the amplitude of vC at that frequency; (c) the damped resonance frequency
of the circuit, and the amplitude of vC at that frequency; (d) the amplitude of vC at the
frequency of 1 kHz; and (e) the amplitude of vC at the frequency of 100 kHz. To carry
out the analysis, we first determine Vc, the complex amplitude of vC, and then take its
magnitude. The magnitude of Vc is the amplitude of vC in sinusoidal steady state. Using
impedances, the magnitude of the complex amplitude Vc is given by:

|Vc(ω)| = 1 V√
(1 − ω2LC)2 + (ωRC)2

.

Again, this is also the amplitude of vC in sinusoidal steady state. The phase of vC is the
angle of Vc.

(a) To find the maximum amplitude, we take the derivative and find ω for which the
derivative goes to zero. Doing so, we find that the amplitude of vC is maximized when

ω =
√

1

LC
+ R2

2L2
,

or when ω = 61.992 krad/s, or 9.8664 kHz, given the parameters shown in Figure 14.37.
At this frequency, the amplitude of vC is 24.8120 V, considerably higher than the
magnitude of the 1-Volt drive!

-
+vi = 1 V cos (ωt)

+

-
vC

R = 50 Ω L = 20 mH

C = 13 nF F IGURE 14.37 Series resonant
circuit.
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(b) Substituting the resonance frequency ω◦ = √
1/LC for ω in the preceding expression

for |Vc|, we obtain

|Vc(ωo)| = 1 V

ωoRC
=

√
L/C 1 V

R
= Q × 1 V.

Recall that for a series resonant circuit Q = ωoL/R = (
√

L/C)/R. Note from the previous
equation that at the resonance frequency, the amplitude of the output is Q times the
amplitude of the input. For the parameters in Figure 14.37, the resonance frequency
ω◦ = 62.017 krad/s, or 9.8074 kHz. At the resonance frequency, the amplitude of vC is
24.8069 V, which is not the maximum amplitude, but is very close it. Note too that
Q = 24.8069.

(c) The damped resonant frequency is ωd =
√

ω2
o − α2 = √

(1/LC) − (R/2L)2. This
is the oscillation frequency of the homogeneous response, and thus the oscillation
frequency of the response to initial conditions. For the parameters in Figure 14.37,
ωd = 62.005 krad/s, or 9.8684 kHz. At this frequency, the amplitude of vC is
24.8107 V, which is again very close to the maximum amplitude.

(d) At 1 kHz the amplitude of vC is 1.01 V. It is clear that at this frequency, the input
is being passed through without degradation to the output. However, the amplitude is
significantly lower than those near the resonance frequency, as derived previously.

(e) At the higher frequency of 100 kHz the amplitude of vC is 0.01 V, which is
significantly lower than that of the input.

Thus, this circuit is behaving like a low-pass filter as it passes low frequencies without
degradation, while it significantly attenuates high frequencies. However, since this circuit
has a very high Q, it probably will not serve as a useful low-pass filter, as it can produce
voltages that are significantly higher than the input when driven near its resonance
frequency. If a more or less flat response is desired at low frequencies (from DC to
approximately the resonance frequency) then the circuit designer must change the circuit
parameters to obtain a lower value of Q, for example, Q = 1.

One final point is worth noting: The circuit parameters shown in Figure 14.37 make
for a high-Q circuit, with Q ≈ 25. In this case, the undamped resonance frequency, the
damped resonance frequency, and the frequency at which the circuit yields the maximum
amplitude of vC are all very nearly equal. Further, the amplitudes at all three frequencies
are all very nearly equal to Q times the input amplitude.

14.5.3 H I G H - P A S S F I L T E R

The voltage across the inductor is obtained by multiplying the current I with
the impedance of the inductor sL:

Vl = I sL = s2Vi

s2 + 2αs + ω2
o

,
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F IGURE 14.38 Frequency
response of the high-pass filter.

which leads to the following system function relating Vl to Vi:

Hl(s) = Vl(s)

Vi(s)
= s2

s2 + 2αs + ω2
o

.

The frequency response plot for Hl is shown in Figure 14.38. Because high-
frequency signals pass through unattenuated, Hl represents a high-pass filter.

14.5.4 N O T C H F I L T E R

A notch filter is also called a bandstop filter. It eliminates a range of frequencies
about a notch frequency. As shown here, the system function corresponding
to the voltage Vn forms a notch filter. Multiplying I with the combined series
impedance of the inductor and the capacitor we have

Vn = I(sL + 1

sC
) = (s2 + 1

LC
)Vi

s2 + 2αs + ω2
o

,

which leads to the following system function relating Vn to Vi:

Hn(s) = Vn(s)

Vi(s)
= (s2 + 1

LC
)

s2 + 2αs + ω2
o

.

The frequency response plot for Hn as shown in Figure 14.39 clearly demon-
strates that Hn behaves as a notch filter. In fact, at ωo, Hn goes to 0.

The four types of filters constructed using a resonant RLC circuit are sum-
marized in Figure 14.40. The general behavior of each of the filters can be
deduced quickly by observing the behavior of each circuit element within the
filter for low, moderate, and high frequencies. For example, because a capacitor
behaves like an open circuit for low frequencies, and a short circuit for high



816 C H A P T E R F O U R T E E N s i n u s o i d a l s t e a d y s t a t e : r e s o n a n c e

F IGURE 14.39 Frequency
response of the notch filter.

Frequency (rad/s)
104 105 106 107 108

10-3

10-2

10-1

100

|H
n|

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

Frequency (rad/s)
104 105 106 107 108

  <
H

n 
(d

eg
re

es
)

frequencies, it is easy to see that the circuit built by taking the output across the
capacitor is a low-pass filter.
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F IGURE 14.40 Filters built
using resonant RLC circuit. The
filters include a low-pass filter
(LPF), a high-pass filter (HPF), a
bandpass filter (BPF), and a
bandstop filter (BSF).

14.6 S T O R E D E N E R G Y I N A R E S O N A N T
C I R C U I T

Let us examine the energy flow in a series resonant circuit such as Figure 14.32,
and obtain further insight into its highly sensitive behavior for input frequencies
close to its resonance, as suggested by Equation 14.74. Assuming a cosine wave
for the voltage source:

vi = Vi cos(ωt)

(where Vi is real), the complex amplitude of the current is

I = Vi

R + j
(
ωL − 1/ωC

) . (14.75)

If we assume that the circuit is being driven at its resonant frequency,

ω = ωo = 1√
LC

, (14.76)

then

I = Vi

R
. (14.77)

Therefore, if the series RLC circuit is driven at its resonant frequency, that is at
ω = ωo, we see that

Vc = I

jωoC
= Vi

jωoRC
= −jVi

(
ωoL

R

)
(14.78)
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Vl = jωoLI = jVi

(
ωoL

R

)
. (14.79)

Using the expression for the Q of a series resonant circuit, Equation 14.62,
we find

|Vc| = |Vl| = QVi. (14.80)

That is, the voltage across either the capacitor or the inductor in a series reso-
nant circuit is Q times the input voltage when the circuit is driven at its resonant
frequency.

However, notice from Equations 14.78 and 14.79 that the sum of the inductor
and capacitor voltages is zero. Thus, the combination of the two elements
appears as a short. Any solace one obtains from this fact, however, should
be short lived because for high Q resonant circuits, the capacitor or inductor
voltage can still be massive, and can damage an element if its voltage rating is
exceeded.5 On a more positive note, this principle is used in instruments for
measuring the Q of inductors.

Next, to better understand the goings on within the capacitor and inductor,
let us examine the stored energy at resonance. From Equation 14.78

vC = Re
[
Vce jωot

]
(14.81)

= Re
[
−jViQe jωot

]
(14.82)

= ViQ sin ωt. (14.83)

Hence, from Equation 13.162, the stored energy is

wC = 1

2
CV2

i Q2 sin2(ωot) (14.84)

= 1

4
CV2

i Q2 (
1 − cos(2ωot)

)
. (14.85)

For the inductor,

iL = Re
[
Ie jωot

]
(14.86)

= Vi

R
cos(ωot) (14.87)

5. Note that it is not strictly necessary for the circuit to be driven with a sinusoid at its resonant
frequency for a potentially harmful response, rather any signal that has even a miniscule component
at the resonant frequency can cause a huge and sustained response.
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wL = 1

4

L

R2
V2

i
(
1 + cos(2ωot)

)
. (14.88)

By substituting both Equation 14.62 and 14.76 into Equation 14.85, the stored
energy in the capacitor can be written in a form closer to Equation 14.88:

wC = 1

4

L

R2
V2

i
(
1 − cos(2ωot)

)
. (14.89)

Now it is obvious that at resonance, the total stored energy in the system is
constant:

wtotal = wL + wC = 1

2

L

R2
V2

i . (14.90)

The energy is first stored in the inductor, then in the capacitor, shifting back
and forth at twice the input frequency.

If the circuit is not driven at its resonant frequency, the stored energy will
no longer be constant. wtotal will have a time dependence, requiring reactive
power from the source.

It is possible to define a quality factor Q based on stored and dissipated
energy at resonance:

Q = Stored energy

Average energy dissipated per radian
. (14.91)

Because at resonance I = Vi/R, the average power dissipated in the resistor is

p = V2
i

2R
. (14.92)

The average energy dissipated per radian is this quantity divided by the frequency
expressed in radians per second,

wdiss = V2
i

2Rωo
. (14.93)

Substituting into Equation 14.91 from Equations 14.90 and 14.93, we obtain

Q = LV2
i /2R2

V2
i /2Rωo

= ωoL

R
(14.94)

as before.
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We have now seen three definitions for the quality factor Q of a resonant
circuit. The first, encountered in Chapter 12, was based on the ratio of the
undamped resonant frequency to the damping factor for transient excitation
(Equation 12.65):

Q = ωo

2α
. (14.95)

The second, derived in this chapter (Equation 14.47), was based on the width
of the resonant peak in the frequency response for sinusoidal excitation:

Q = ωo

ω2 − ω1
(14.96)

where ω2 − ω1 is the bandwidth, and ω1 and ω2 are the frequencies where the
response magnitude is down to 0.707 of its peak value.

The third is the relation in terms of stored and dissipated energy at
resonance, Equation 14.91:

Q = Stored energy

Average energy dissipated per radian
. (14.97)

These definitions all reduce to the same value for second-order circuits, but they
yield slightly different values in higher order circuits.

e x a m p l e 14.8 t i m e - d o m a i n v e r s u s f r e q u e n c y -

d o m a i n b e h a v i o r f o r a h i g h - q r l c c i r c u i t This
example uses the quality factor Q for the circuit in Figure 14.37 to deduce the general
form of the frequency domain response and the time domain response (specifically, the
zero input response) of the circuit. We will focus on vC and consider two cases: R = 50 �

and R = 500 �.

Using the impedance method, the magnitude of the system function relating Vc to Vi is
given by

|Hc(ω)| = 1√
(1 − ω2LC)2 + (ωRC)2

.

Q for the series resonant circuit is given by

Q = 1

R

√
L

C
.

For R = 50 �, Q = 25. For this high value of Q, following the discussion of Q in
Section 14.5.2, we expect to see a peaky frequency response, as can be confirmed by
observing the magnitude plot of the frequency response of Hc in Figure 14.41a. The
plot in Figure 14.41a also shows that the peak value is 25.
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F IGURE 14.41 Time-domain
versus frequency-domain behavior
of an RLC circuit: (a) frequency
response for Q = 25, (R = 50 �);
(b) transient response Q = 25,
(R = 50 �); (c) frequency
response for Q = 2.5, (R = 500 �);
(d) transient response for Q = 2.5,
(R = 500 �).

In the time domain, according to the interpretation of Q discussed in Section 12.2.1,
the high value of Q implies that the circuit will ring for many cycles if the input is set
to 0 and an initial voltage is present on the capacitor. Figure 14.41b shows the zero
input response for this circuit for vC(0) = 1 V. The time domain plot in Figure 14.41b
also shows that the circuit oscillates for approximately 25 cycles before it decays to an
unobservable level in the graph.

For R = 500 �, Q = 2.5, a rather modest value. Thus, we do not expect to
see significant peakiness in the frequency response, as can be confirmed by observing
Figure 14.41c.

Similarly, from a time-domain viewpoint, we do not expect the circuit to ring for many
cycles. Rather, we expect the transients due to an initial voltage on the capacitor to die
out quickly. Figure 14.41d confirms this observation.
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14.7 SUMMARY
� Resonant systems are characterized by a quadratic expression of the form

s2 + 2α s + ω2
o , with complex roots, in its system function. Systems with

complex roots in their system functions display oscillatory behavior.

� The impedance approach provides an analysis of resonant circuits which
complements the time-domain calculations of Chapter 12, by showing the
behavior of the circuit as a highly selective filter. The selectivity of the filter
is related to the quality factor Q of the circuit.

� The performance of a resonant circuit is summarized by its frequency
response. The frequency response comprises plots of magnitude and phase
angle versus frequency.

� The following constraints provide intuition into the shape of the frequency
response (including magnitude and phase) for resonant second-order
systems:

1. the low-frequency asymptote,

2. the high-frequency asymptote, and

3. the magnitude and phase of the response at the resonant frequency.

� The quality factor Q, the resonant frequency ωo, and the damping factor α

are three key parameters that characterize the behavior of resonant systems.
These three parameters can be determined by inspection by writing the
resonant system function in standard form, such that a quadratic expression
of the form s2+2αs+ω2

o is identifiable. The parameters α and ωo are directly
identified from the quadratic term, while Q is obtained from:

Q = ωo

2α
.

The bandwidth and damped resonant frequency ωd are two other impor-
tant parameters in resonant systems and are given by:

Bandwidth = 2α

and

ωd =
√

ω2
o − α2,

respectively. ωd is the frequency at which a resonant circuit actually
oscillates. The value of ωd is close to that of ω◦ for high-Q circuits.
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� For the parallel RLC resonant structure, the voltage across the parallel
combination reaches a maximum at

ωo = 1/
√

LC, (14.98)

the resonant frequency. The damping factor is given by:

α = 1

2RC

and the quality factor Q is

Q = ωo

2α
= R

√
C

L
.

The bandwidth for the parallel resonant structure is

Bandwidth = 2α = 1

RC
.

� In the series RLC resonant structure, the current through the elements is
maximum at the resonance frequency:

ωo = 1/
√

LC.

The damping factor is given by:

α = R

2L

and the quality factor Q is

Q = ωo

2α
= 1

R

√
L

C
.

The bandwidth for the series resonant structure is

Bandwidth = 2α = R

L
.

� The bandwidth is related to the resonant frequency by the quality factor:

Q = Resonant frequency

Bandwidth
(14.99)

so high Q means narrow bandwidth (or high selectivity).
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� Other equivalent definitions for Q are

Q = ωo

2α
(14.100)

and

Q = Stored energy

Average energy dissipated per radian
(14.101)

at resonance.

� Using Q as the common parameter, the time-domain step response of
a circuit can be visualized from the circuit’s frequency response, and vice
versa. For example, a ‘‘peaky’’ gain versus frequency plot implies ringing in
the step response, while the absence of peakiness implies a quick decay of
the step response.

� Resonant systems are the basis of second-order filters including the LPF,
HPF, BPF, and BSF.

� In later chapters, we will see many RC active filter topologies that exhibit
resonance without requiring inductors.6

E X E R C I S E Se x e r c i s e 14.1

a) For the circuit in Figure 14.42, assume a sinusoidal steady state at a fixed frequency
ω0. Determine an equivalent circuit for the R − L parallel combination (Z1) in terms
of a resistor R′ in series with a suitable inductance L′.

Z Z
L′

R′RL

Z2 Z1 Z2 Z1

F IGURE 14.42

b) Determine the impedance Z that must be added in series with Z1 such that the total
impedance Z2 is equivalent to a pure resistance at frequency ω0. What is this value
of this resistance?

e x e r c i s e 14.2 For a parallel RLC network with R = 1 k�, L = 1/12 H, C =
1/3 µF, find ω0, f0, α, Q0, ωd, ω1, ω2, and β = ω2 − ω1. (ω1 and ω2 are the half-power
frequencies.)

6. We care about this because inductors are hard to fabricate in integrated circuits.
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e x e r c i s e 14.3 A parallel resonant RLC circuit (see Figure 14.43) driven by a
current source, 0.2 (cos ωt), (units of amperes) shows a maximum voltage response
amplitude of 80 V at ω = 2500 rad/s. and 40 V at 2200 rad/s. Find R, L, and C.

L v(t)

+

-

R Ci(t)

F IGURE 14.43L
v2

R C
V cos (ωt) +

-

R
v1

F IGURE 14.44

e x e r c i s e 14.4 Find an expression for the value of L that will balance the bridge
(see Figure 14.44) to make v1 − v2 = 0, for an input voltage V cos(ωt).

e x e r c i s e 14.5 One or two of the following statements made about the second-
order RLC network in Figure 14.45 is/are inconsistent with the rest. Circle the

i(t)

vS
+

-

RLC
network

F IGURE 14.45

jω

j12

j12

-5

x

x

σ

F IGURE 14.46

inconsistent statement(s):

a) The natural frequencies s1 and s2 of this circuit are as shown in the complex plane
(see Figure 14.46).

b) Q = 1.2.

c) The admittance function Y( jω) = I( jω)/Vs( jω) = j2ω/[(169 − ω2) + j10ω].

d) The step response for t > 0 is of the form:

i(t) = Ae−5t cos(12t + φ). (14.102)

e) The steady-state response to vs(t) = B cos(25t) is of the form:

i(t) = C cos(25t + �). (14.103)

e x e r c i s e 14.6 Consider the network shown in Figure 14.47.

a) Show that by proper choice of the value of L, the impedance Vi(s)/Ii(s) = Zi(s) can
be made independent of s. What value of L satisfies this condition?

b) With L as determined in part (a), what is the value of Zi?

c) Assume that the capacitor voltage and the inductor current are both zero for t < 0.
Determine iC(t) for t > 0 when vI(t) is a unit step.



14.7 Summary C H A P T E R F O U R T E E N 825

L1 FiC(t)
vI(t)

1 Ω1 Ω
iI(t)

iL(t)

+
-

F IGURE 14.47

vO(t)C1vI(t)
+
-

R1
+

C2

R2

-

F IGURE 14.48

e x e r c i s e 14.7 Each of the following parts makes a statement about a second-
order system. Indicate whether the statement is true or false.

a) The network shown in Figure 14.48 (with both R’s and C’s positive) can exhibit
natural responses of the form e−αt sin ωt.

b) The natural response of an RLC network is given by: vO(t) = 25e−5t cos(12t+π/7).
The Q of the network is 1.2.

c) For the circuit shown in Figure 14.49, the output voltage under sinusoidal steady
state conditions is zero.

d) The circuit shown in Figure 14.50 contains 3 energy storage elements and thus has
3 natural frequencies.

vO(t)R

+

C

-

L
IS

t

LC
------------cos

F IGURE 14.49

iS(t) R C
L1

L2

F IGURE 14.50

e x e r c i s e 14.8 The voltage-transfer ratio of a certain network is shown in
Figure 14.51 in Bode-plot form.

This transfer ratio can be expressed in the form:

Vo(s)

Vi(s)
= Ks

(s2 + sω0/Q + ω2
0)(τ s + 1)

. (14.104)

Determine the parameters K, Q, ω0, and τ .
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1 10

Slope = +1
5

1

Slope = -1

Slope = -2
(log scale)

ω rad/s 
(log scale)

Vo

Vi
------ jω( )

F IGURE 14.51

vo

R
+

C

-

L
vi

+
-

F IGURE 14.52

e x e r c i s e 14.9

a) In the circuit in Figure 14.52, find an expression for the complex amplitude Vo

as a function of Vi after transients have died out, assuming vi is a sinusoid: vi =
Vi cos(ωt).

b) Find vo(t) at the frequency ω0 = 1/
√

LC.
Z( jω)

R

+

C

-

1 mH

R

F IGURE 14.53

e x e r c i s e 14.10 The impedance of the network shown in Figure 14.53 is found
to be 2 k� and is purely real at all frequencies. The value of the inductor is one mH as
shown. What are the values of R and C?

P R O B L E M S p r o b l e m 14.1 For the series-resonant circuit in Figure 14.54, draw the
impedance model, and find the transfer function Vo/Vi. Sketch the Bode plot of log
magnitude and phase of this function versus log frequency by sketching the asymptotes,
then sketching the function. This is a second-order low-pass filter.

For this topology, the maximum amplitude does not occur at the resonant frequency

R
+

C

-

L

+
-vI(t) vO(t)

F IGURE 14.54

ω0 (prove this, but don’t work out all the math). However, this is a small effect for all
but very low Q. Find expressions for the resonant frequency (defined as the frequency
where the s2 and the s0 terms cancel in the denominator) and the Q.

p r o b l e m 14.2 Consider the circuit in Figure 14.55.

a) Draw the Bode plot of |Z(w)| for R = L = C = 1. What is the resonant
frequency?

b) Draw the Bode plot of |Z(w)| for R = 1, L = C = 2. What is the resonant
frequency?

c) Comment on the results of part (a) and part (b).
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L C v(t)i(t)
+

-
R

F IGURE 14.55

VoVin

+

-

R sL

1
sC

+
-

F IGURE 14.56

p r o b l e m 14.3 The circuit shown in Figure 14.56 has an input voltage vin1(t) =
V1 cos (120π t), and L = 500 mH, C = 80 µF, and R = 50 �.

a) Compute the transfer function H(s) = Vo(s)/Vin1(s).

b) Set vin1(t) = 0. What is the equivalent complex impedance of the circuit evaluated
between Vo and ground?

c) Parts (a) and (b) might lead you to believe that Thévenin’s Theorem also applies to
complex impedances. If this is true, then we can replace the circuit between Vo and
ground by a complex Thévenin impedance (Zth) and a complex open circuit voltage
(Voc). Taking vin1(t) = 10 cos(120π t) compute Zth and Voc.

d) Having represented the circuit by its Thévenin’s equivalent, we wish to connect it
to another circuit having vin2(t) = 10 cos(200t) as shown in Figure 14.57.

Vo

Voc

RsL

1
sC

+
-

Zth

Vin2
+

-
F IGURE 14.57

1) Are there any problems with this approach? If so state them explicitly.

2) Compute the complex Vo for this circuit.

3) Now let vin1 = vin2 = 10 cos(120π t). Evaluate Vo for this case.

4) If vin1(t) = vin2(t) = 10 cos(120π t) compute the real output voltage vo(t).

p r o b l e m 14.4

a) Determine ωo, α, ωd, and Q1 for each of the circuits in Figure 14.58 (Q1 = ωo/2α).

LR1 CZ1

L

R2
C

Z2

F IGURE 14.58
b) Assume L = 1 mH and C = 10 µF. Find values of R1 and R2 that will yield

Q1 = 10. What is the ratio of R1 to R2?
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c) Make a parallel L′ − R′ equivalent circuit for the L − R2 series combination (as in
Exercise 14.1) and use this equivalent circuit to calculate what the ratio of R1 and
R2 in part (b) should be for Q1 = 10 in both circuits. How large is the discrepancy,
if any?

d) Using the values for R1 and R2 found in part (b), make plots of |Z1| and |Z2| versus
frequency and ∠Z1 and ∠Z2 versus frequency. Identify the following features of
your plot:

i) The maximum impedance, the frequency ωr at which this occurs, and the
phase angle at ωr.

ii) The frequencies ω1 and ω2 at which |Z| is 1/
√

2 smaller than the maximum,
and the phase angles at ω1 and ω2. Calculate the quantity Q2 = ωr/(ω2 − ω1).

e) Now suppose that you have just been given a ‘‘parallel resonant’’ circuit Z, but
you don’t know whether it is of the Z1 form or the Z2 form. Suggest a step-by-
step experimental procedure based on measurements of |Z| and perhaps ∠Z as a
function of frequency to determine the following:

i) which of the two forms of parallel resonant circuit is the best model, and

ii) specific values for the three elements, R, L, and C.

p r o b l e m 14.5

a) Write down the differential equation describing the circuit in Figure 14.59.

b) Write the transfer function Vo(s)/Vi(s).

c) Solve for iI(t) assuming vI(t) = cos(ωt) (let ω = 1).

d) Plot the roots of the characteristic polynomial from part (b) on the complex s-plane
(assume R2C2 < 4CL).

p r o b l e m 14.6

a) In the circuit in Figure 14.60, given that vS = VS cos(ωt), where ω = 106 rad/s.
Design a lossless coupling network containing one inductor and one capacitor that
will maximize the power transferred to the antenna at frequency ω.

+

vI(t)
+
-

R

-

C

L vO(t)

iI(t)

F IGURE 14.59

vS
+
-

RL

RS
Lossless

coupling

network

RS = 50 Ω 

RL = 1 Ω 

Transmitter Antenna

F IGURE 14.60
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b) Now suppose that vS = VS cos(ωt) + ε cos(3ωt), where ε represents a small
amount of third-harmonic distortion introduced by nonlinearities somewhere in the
transmitter. Since the FCC forbids the broadcast of harmonics, it is important to
check that coupling networks do not inadvertently favor the coupling of harmonics
to the transmitter. For your design in (a), calculate how much third harmonic reaches
the antenna.

p r o b l e m 14.7 Refer to Figure 14.61 for this problem.

RS

L

Simple model of  a
physical inductor

RS

RP

More complex model

L

F IGURE 14.61

The Q of a physical energy storage element may be defined as

Q1 = Im(Z )

Re(Z )
(14.105)

where Z is the terminal impedance of the element. The Q may also be defined in terms
of energy as

Q2 = 2π < W >

Ediss/cycle
(14.106)

where < W > is the average stored energy and Ediss/cycle is the energy dissipated per
cycle.

a) For the simple inductor model, calculate and compare Q1 and Q2 as functions of
frequency.

b) For the more complex model, and assuming RP � RS, sketch Q1 as a function of
ω making reasonable approximations.

c) Suppose two inductors with the same Q1 and Q10 are connected in series. Express
Q1 for the series combination in terms of Q10.

p r o b l e m 14.8 Communications receivers require high-Q circuits to separate
signals broadcast on adjacent channels. Due to losses, modeled by the parallel resistance
r, there is a limit to the Q that can be achieved with passive components. In the amplifier
circuit in Figure 14.62, a variable resistor RF has been added which has the effect of
increasing the Q of the passive tuned circuit.

RS

L

RF

Source

C r vO

+

-

i bivS
+
-

Amplifier Tuned circuit

F IGURE 14.62
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RS = 1 k�, r = 10000 �, L = 100
π

µH, β = 11, RF and C variable.

a) Consider first the tuned circuit by itself, disconnected from the amplifier. If C is
chosen so that the circuit has a 1-MHz resonant frequency, what is its Q?

b) Determine the overall transfer function H(s) = Vo/Vs.

c) Select values for C and RF so that the overall frequency response is peaked at a
frequency 1 MHz and has a half-power band width of 2 kHz. (Note, the half-power
bandwidth = 2α.) What is the Q in this case?

p r o b l e m 14.9

a) Consider the two circuits in Figure 14.63.

F IGURE 14.63 LR

i1

iS C L

i2

iS C

Determine the following transfer functions:

H1(s) = I1/Is and H2(s) = I2/Is.

b) Given is(t) = u−1(t), draw the circuits as they would appear in steady state. (Recall
that u−1(t) represents a unit step at time t = 0.) What are the ‘‘forced responses’’
i F
1 and i F

2 ?

c) Calculate the ‘‘natural responses’’ i N
1 and i N

2 . Assume
iL(0) = 0, vC(0) = 0, R � √

L/4C.
Why is i F

2 not the complete steady-state response of the second circuit?

d) Write the step response i1 = i F
1 + i N

1 and i2 = i F
2 + i N

2 in terms of ω0 and Q.
Answer:

i1(t) = 1 − e−ωot/2Q
(

1

2Q
sin(ωoT ) + (cos ωot)

)

i2(t) = 1 − cos ωot.

e) i2(t) reaches maxima/minima at t = nπ

ωo
, n = 0, 1, 2, . . . . For what value of n does

i N
1 ( nπ

ωo
) = 1

5
i N
2 ( nπ

ωo
)?

For Q = 5, 50, and 500 calculate:

i N
1 ( 2π

ωo
)

i N
2 ( 2π

ωo
)
. (14.107)

Sketch i1(t) for Q = 50.
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L

R = 100 Ω vO
iS(t)

C

+
-

+

-

+ -
vC

i

vS(t) = VS cos (ωt)

1

0.707

ωω− ωc ω+

ω

Vo

Vs
------

<Vo

(a)

(b)

F IGURE 14.64

p r o b l e m 14.10 The circuit in Figure 14.64a is to be used as a bandpass filter
having the magnitude-frequency curve shown in Figure 14.64b (linear coordinates). The
input voltage is

vs(t) = Vs cos(ωt)

and

wc = 1 × 106 rad/s

w+ = 1.05 × 106

w− = 0.95 × 106 (14.108)

a) Find the appropriate values of L and C. Using these values:

i) Sketch ∠Vo vs. ω.

ii) Let vS = 10 cos 106t. Calculate vC(t), i(t), and vO(t).

iii) For vS = 10 cos 106t, determine the total stored energy Ws and the time-
averaged power dissipated.

p r o b l e m 14.11 An RLC circuit is shown in Figure 14.65.

The magnitude of Ii/Vi( jω) is measured and is as plotted in Figure 14.66 (on log-log
coordinates).
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R

vO(t)vI(t) C+
-

iI(t) L = 1 mH

F IGURE 14.65

0.01 S 

106 rad/s 
ω

Ii

Vi
----- jω( )

∆ω

Slope = -1
Slope =

 +1

0.01 S 
2

F IGURE 14.66

a) What is the value of C?

b) What is the value of R?

c) What is the value of �ω?

d) The circuit is now excited with a unit step of voltage. The values of iI(t) and vO(t)
are zero prior to time t = 0.
Sketch the signal vO(t) for t greater than zero, labeling important features.

p r o b l e m 14.12 Refer to Figure 14.67 for this problem.

vA = A cos(400t) A = 141 kV, L = 0.25 H

This problem examines a simple model of an electric power system. The source vA

represents the generator in the power plant. The inductance L represents the net effect
of all power lines and transformers. The customer’s load is represented by resistance RL

to which the capacitor C is added in parts (b) and (c).

a) No capacitor. RL = 100 �. Find the magnitude of vB and the average power
dissipated in RL.

b) In an attempt to improve on the situation in part (a), the customer adds a capacitor
in parallel with his load. He finds that a 25-µF capacitor works well. Find the
magnitude of vB and the power dissipated in RL for RL = 100 � and C = 25 µF.

F IGURE 14.67

vB

+

-
RL

L

Power line Customer
load

Power
plant

vA
+
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c) The customer is now very happy. However, before going home for the night, he
turns off 90% of his load (making RL = 1 k�), at which point sparks and smoke
begin to appear in the equipment still connected to the power line. The customer
calls you in as a consultant to straighten things out:

i) Why did sparks appear when the customer tried to turn off 90% of the load?

ii Assuming a variable RL in the range 100 ≤ RL ≤ 1000 � provide the customer
with a simple formula he can use to calculate the right value of C so that the
magnitude of vB is always equal to 141 kV.

p r o b l e m 14.13 Refer to Figure 14.68 for this problem.

+

-

R
L

vC(t)

+

- C

iL(t)

i(t) v(t)

F IGURE 14.68

R
2L

= 5 1
LC

= 16 R = 25 1
RC

= 1.6

a) Assume that i(t) = 0 for t > 0, and that iL(0) = 0, vC(0) = Vo. Find vC(t) for t > 0.
Simplify your answer, and make a rough sketch of vC(t) showing its behavior.

b) Find the transfer function (system function) relating V(s) to I(s).

c) When i(t) = 2e−3t, it is known that the voltage v(t) can be expressed as:

v(t) = Ae s1t + Be s2t + De−3t. (14.109)

Find s1, s2, and D. (You need not find A and B.)

p r o b l e m 14.14 Refer to Figure 14.69 for this problem.

VI
+
-

R

VS

vO
vi

+
-

L C

+

-

vI

+

-

F IGURE 14.69

VT = 1 V K = 1 mA/ V2

For vi(t) a small sinusoidal voltage, choose VI, R, L, and C to give a resonance at
ω = 105 rad/s, Q = 10, and an incremental gain vo/vi at resonance of −2. Use
the incremental model.

p r o b l e m 14.15 The two networks shown in Figure 14.70 are driven in sinu-

+

-

vO (t)

+

-

vI (t) L
C

R

+

-

vO (t)

+

-

vI (t)

R
L

C

F IGURE 14.70

soidal steady state by the voltage vI(t) = VI cos(ωt). Their outputs take the form
vO(t) = VO cos(ωt + φ).

a) For both networks, find VO and φ as functions of VI and ω using impedance
methods.

b) For both networks, let R = 1000 �, L = 47 mH, and C = 4.7 nF. Plot and clearly
label VO/VI for 2π × 103 rad/s ≤ ω ≤ 2π × 105 rad/s; use a linear axis for
VO/VI, and a logarithmic axis for ω. You need only plot enough points to outline
the dependence of VO/VI on ω.

c) Describe the filtering function of each network, and how each network acts to
perform its function.
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F IGURE 14.71 I(t) v(t)
+

-
C RLv(t)

+

-
CL

Remainder
  of  radio

Antenna

Tuner

p r o b l e m 14.16 This problem examines the very simple tuner for an AM radio
shown in Figure 14.71. Here, the tuner is the parallel inductor and capacitor. The
injection of radio signals into the tuner by the antenna is modeled by a current source,
while the Norton resistance of the antenna in parallel with the remainder of the radio
is modeled by a resistor. (You can learn more about antenna modeling in follow-on
courses in Electromagnetic Waves.) The AM radio band extends from 540 kHz through
1600 kHz. The information transmitted by each radio station is constrained to be within
±5 kHz of its center frequency. (You can learn more about AM radio transmission in
courses in signals and systems.) To prevent frequency overlap of neighboring stations,
the center frequency of each station is constrained to be a multiple of 10 kHz. Therefore,
the purpose of the tuner is to pass all frequencies within 5 kHz of the center frequency
of the selected station, while attenuating all other frequencies.

a) Assume that I(t) = I cos(ωt). Find v(t) where v(t) = V cos(ωt + φ), and both V and
φ are functions of ω. Note that v(t) is the output of the tuner, namely the signal that
is passed on to the remainder of the radio.

b) For a given combination of I, C, L, and R, at what frequency is V maximized?

c) Assume that L = 365 µH. Over what range of capacitance must C vary so that
the frequency of maximum V/I may be tuned over the entire AM band? (Note that
tuning the frequency of maximum V/I to the center frequency of a particular station
tunes in that station.)

d) As a compromise between passing all frequencies within 5 kHz of a center frequency
and rejecting all frequencies outside that band, let the design of R be such that
V(1 MHz ± 5 kHz)/V(1 MHz) ≈ 0.25 when the tuner is tuned to 1 MHz. Given
this design criterion, determine R.

e) Given your design for R, determine V(1 MHz ± 10 kHz)/V(1 MHz). Also,
determine Q for the tuner and its load resistor when the tuner is tuned to 1 MHz.
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the operat ional

ampl i f i e r ab s tract ion 15
15.1 I N T R O D U C T I O N

This chapter introduces a very powerful amplifier abstraction called the opera-
tional amplifier or Op Amp. Much as the gate abstraction forms the foundation
of most of digital electronics, the operational amplifier forms the basis for much
of electronic circuit design.

The Op Amp is a multistage two-input differential amplifier that is designed
to be an almost ideal control device, specifically, a voltage-controlled volt-
age source. An abstract representation of the operational amplifier shown in
Figure 15.1 suggests it is a four-port device. The four ports are an input port,
an output port, and a pair of power ports. A +VS-voltage (for example, 15 volts)
is applied at the plus power port and a −VS-voltage (for example, −15 volts) is
applied at the minus power port. An input voltage (the control) applied across
the non-inverting and inverting input terminals of the Op Amp is amplified by
a large amount and appears at the output port. In the operational amplifier
abstraction, the input impedance across the input port is infinity, and the out-
put impedance is zero. The gain, or the factor by which the input voltage is
amplified, is also infinity.

This chapter uses the Op Amp to construct more complex circuits using
its simple, abstract model. Internally, the Op Amp itself is a moderately compli-
cated circuit (see, for example, Figure 15.2) and its design is beyond the scope of
this book. Briefly, it contains an input stage not unlike the differential amplifier

+

-
Input port

Output port

+ Power supply port

- Power supply port

F IGURE 15.1 The operational
amplifier abstraction.

837



838 C H A P T E R F I F T E E N t h e o p e r a t i o n a l a m p l i f i e r a b s t r a c t i o n

F IGURE 15.2 A chip
photograph of the MAX406 Op
Amp from Maxim Integrated
Products. The chip is roughly 2mm
on a side. (Photograph Courtesy of
Maxim Integrated Products)

discussed in Example 7.21 in Chapter 7, or Example 8.3 in Chapter 8. This dif-
ferential input stage gives the Op Amp its high input resistance, and a high gain.
It also converts the differential input voltage to a single-ended output.1 Typical
Op Amps also have a second stage similar to the second stage in Example 7.21
in Chapter 7, which provides additional amplification and level shifts the output
voltage to zero when both inputs are equal. Op Amps may also have an output
stage similar to the buffer illustrated in Figure 8.40 in Chapter 8, which gives
the Op Amp its low output impedance.

In this chapter, initially, our discussion will be in terms of circuits con-
taining Op Amps and resistors. After the basic ideas of Op Amps used as
dependent sources and negative feedback have become familiar, circuits with
both capacitors and resistors will be introduced.

15.1.1 H I S T O R I C A L P E R S P E C T I V E

The name operational amplifier originates from the bygone days of the ana-
log computer (1940 1960), in which the constants in differential equations
were represented by the gains of amplifiers. Thus these amplifiers, con-
structed from balanced pairs of specially manufactured vacuum tubes, had
to have reliable, known, fixed gains. Because transistors are inherently more
temperature-dependent than vacuum tubes, it was at first thought that satisfac-
tory transistor Op Amps could not be built. But in 1964, it was discovered that
by fabricating balanced transistor pairs close together on a single silicon chip to
minimize thermal gradients, the temperature problems could be overcome. And
thus were born in rapid succession the 703, the 709, and then the ubiquitous
741. Op Amps are rarely used for analog computers now, but instead have
become universal building blocks in all aspects of analog circuitry.

1. Op Amps with single-ended inputs are also useful. Example 15.1 discusses one such circuit.
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15.2 D E V I C E P R O P E R T I E S O F T H E
O P E R A T I O N A L A M P L I F I E R

The symbol and standard labeling for the operational amplifier are shown in
Figure 15.3a. The two required external power supplies have been explicitly
shown in the diagram, although showing them is not the usual practice. All five
currents have been labeled, in addition to appropriate node voltages, referred to
the indicated common ground terminal. In this primitive circuit, the voltage vi
is used to control the output voltage vo. Let us examine this control function in
detail to find out both the extent of the control, and the cost of the control; that
is, how much power must be applied from source vi to control a given amount
of power at the vo terminal. To address the first problem, we set up the circuit
exactly as in Figure 15.3, and measure the output voltage vo, both as a function
of time and as a function of vi, assuming vi is some low-frequency sinusoid.
The results are shown in Figures 15.3b and 15.3c. Note the difference in scale
of the voltage axes, indicating that the output voltage is perhaps 300,000 times
as large as the input voltage. The plot of vo versus vi shows a region around
the origin where vo is fairly linearly related to vi, but much beyond this range
the control becomes ineffective, and vo stays at a fixed voltage, or saturates, at
roughly either +12 volts or −12 volts, depending on the polarity of vi. The
curves will also differ for different samples of the same Op Amp type.

Separate measurements on the device, not illustrated in Figure 15.3, would
indicate that the maximum output current io is about 10 mA for the 741, and
that the input currents i− and i+ are extremely small, of the order of 10−7 amps.
Thus it is obvious without any formal calculation that the amount of input
power required for the control function is orders of magnitude smaller than the
power that can be controlled at the output.

The curve of output voltage versus input voltage, Figure 15.3c, is nonlinear.
But we also observe that the device has very large voltage gain, defined as
�vo/�vi. We certainly would be willing to sacrifice substantial amounts of gain
in return for a corresponding improvement in linearity. Fortunately, the addition
of two resistors to the circuit results in precisely this trade-off. Figure 15.4 shows
one possible circuit configuration, and the resulting relation between vo and vi.
We will have more to say about this circuit in Section 15.3.1.

15.2.1 T H E O P A M P M O D E L

To gain some insight about how the circuit in Figure 15.4 is working, we first
need a circuit model that approximates the Op Amp behavior illustrated in the
data in Figure 15.3. On the basis of the preceding chapters, we are led to assign
node voltages as in Figure 15.3a, and apply KCL to the circuit. The current
law equation turns out to be not very helpful, but it is important to understand
why, so we proceed. From Figure 15.3a,

i+ + i− + ip1 + ip2 + io = 0. (15.1)
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F IGURE 15.3 Operational
amplifier characteristic. As
illustrated by the dashed lines in
(c), different devices of the same
type might have different
characteristics. The characteristics
might also depend on temperature.
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F IGURE 15.4 Non-inverting Op
Amp amplifier. The characteristic in
(b) assumes R1/R2 = 11.
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As noted in Equation 15.1, i+ and i− are about four orders of magnitude smaller
than io hence

io � −ip1 − ip2. (15.2)
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But ip1 and ip2 are both power supply currents, so Equation 15.2 merely states
that the output current comes from the power supplies. Important, but not
very useful (except possibly for the calculation of power dissipation).

Figure 15.3c offers more insight. We see that in the center of the charac-
teristic, the output voltage is approximately proportional to the input voltage,
or, more precisely, to the difference between v+ and v−. (Note that v+ and v−
are labels for voltages, and hence each can be positive or negative, depending
on the circuit.) If we idealize this relationship by making it linear, then the curve
of Figure 15.5 results. The curve can now be expressed mathematically as

vo = A(v+ − v−). (15.3)

This is the mathematical representation of a voltage-dependent voltage source,

vo

+12 V

-12 V

40 µV
(v+ - v-)

-40 µV

F IGURE 15.5 Linearized
characteristic.

controlled by (v+ − v−). For this particular device the constant A, the voltage
gain, is 300,000.

The model in Figure 15.6 represents Equation 15.3 in circuit terms. To
clearly distinguish the dependent source from an independent source, as before,
all dependent sources are represented by diamond-shaped symbols. The disem-
bodied wires on the left of the diagram are distressing at first sight, but merely
indicate that the input current to this ideal voltage-controlled voltage source is
zero by definition; that is, i+ = i− = 0.

The dependent source of Figure 15.6 by itself is clearly an imperfect model
of an Op Amp. The saturation so clearly present in Figure 15.3c is missing
from Figure 15.5 and from the model of Figure 15.6, as is the temperature
dependence. To simplify the initial discussion, we shall ignore saturation effects
in Op Amps when discussing linear circuits by assuming that we always operate
in the central linear part of the amplifier characteristic. We will specifically
examine saturation behavior of Op Amps in Section 15.7.

As a summary, the idealized Op Amp model shown in Figure 15.6 has the
following properties:

� The output voltage

vo = A(v+ − v−)

where the gain A → ∞. The output resistance is 0.

� The input currents i+ = 0 and i− = 0. Accordingly, the input resistance
is infinite.

vo

A(v+ - v-)

v+

v-

+

-

i+ = 0

i- = 0

F IGURE 15.6 Voltage-
controlled voltage source.
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15.3 S I M P L E O P A M P C I R C U I T S

15.3.1 T H E N O N - I N V E R T I N G O P A M P

Now we are in a position to find an analytical relation between vo and vi for
the circuit in Figure 15.4. We replace the Op Amp by the linear model in
Figure 15.6, as shown in Figure 15.7, then analyze this linear circuit by the
methods of Chapter 3. The voltage variables defined in Figure 15.7 are in fact
the node variables for the circuit, so we can use the node method to derive
three independent expressions relating the three unknown voltages.

First, notice that

v+ = vi (15.4)

since vi is the branch voltage between v+ and the ground node.
Next, recalling that the model specifically assumes no input current, that

is, i− � 0, we write the node equation at the node with voltage v− as

v−

R2
+ v− − vo

R1
= 0.

or,

v− = R2

R1 + R2
vo. (15.5)

The dependent-source relation yields our third equation:

vo = A(v+ − v−). (15.6)

Substituting and solving, we obtain

vo = Avi

1 + A R2
R1+R2

. (15.7)

F IGURE 15.7 Model of a
non-inverting Op Amp amplifier. vi

vo

R1

R2

A(v+ - v-)
v+

v-

+

-+

-
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Recall that A is very large, 300,000 in our case, so if the voltage divider does
not introduce too much attenuation,

AR2

R1 + R2
� 1 (15.8)

hence we can neglect the ‘‘1’’ term in the denominator of Equation 15.7 to
obtain the approximate result:

vo � R1 + R2

R2
vi. (15.9)

This is an important result. It says that the relation between vo and vi, is almost
independent of the somewhat unreliable gain constant A of the original Op Amp.

In other words, because resistor values are stable, reliable and very insensi-
tive to temperature, we expect vo in this circuit to be a stable reliable function
of vi. But this reliability has come at a price: The gain is now much less than
for the Op Amp alone somewhere between 1 and 1,000 depending on the
choice of R1 and R2 (but not more than 1000, or the inequality, Equation 15.8,
will no longer be valid).

Several important conclusions can be drawn from this simple example:

� It is possible to construct from a high-gain Op Amp and a pair of resistors
a reliable amplifier with a known fixed gain. This particular configuration
is called the non-inverting connection.

� Negative feedback.

The basic structure of this circuit, in which some of the output signal is
brought back to the input of the circuit, and compared with the input signal,
is called negative feedback.

For the feedback to be negative in simple Op Amp circuits, the attenuated
output signal must be fed back to the v− terminal. If the output signal is
fed back only to the v+ input, very different behavior results, as we shall
see. The first-order consequences of these connections will be explored in
this chapter, but more complex issues of stability and oscillations are dealt
with in books on Signals and Systems.

� We have chosen to model the Op Amp by the dependent source of
Figure 15.6, which is a voltage-controlled voltage source, for obvious
reasons.

� Although the +12 volt and −12 volt DC power supplies are obviously
necessary for Op Amp operation, (they power the voltage-controlled
voltage source), their inclusion in the circuit model we use for analysis is
not very helpful, because the KCL calculation does not yield a
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useful relation. Calculating the current through a voltage source rarely
provides useful insight, because a voltage source can support any current.

The use of feedback as a way of building stable reliable systems is so inter-
twined with our daily lives that we are totally unaware of it. Familiar examples
are household furnace controls, and cruise controls and anti-lock brakes on
automobiles.

15.3.2 A S E C O N D E X A M P L E : T H E I N V E R T I N G
C O N N E C T I O N

Another very common Op Amp circuit, the ‘‘inverting connection’’, is shown
in Figure 15.8a. For negative feedback, the signal from the output must find its
way to the negative terminal of the Op Amp, as shown.

If we use the Op Amp model in Figure 15.6, hereafter referred to as the
ideal Op Amp model, then the circuit model for the inverting amplifier is as
shown in Figure 15.8b. Following the same analysis method as before, we will
derive three independent equations relating the three unknown node voltages
v+, v−, and vo. Accordingly, by inspection:

v+ = 0.

Summing the currents at the v− node, we find, assuming the v− terminal of the
Op Amp draws no current:

(vi − v−)

Ra
+ (vo − v−)

Rb
= 0. (15.10)

Hence

v− = Rb

Ra + Rb
vi + Ra

Ra + Rb
vo.

F IGURE 15.8 Inverting Op Amp. vi
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+
-
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The Op Amp output relation yields

vo = A(v+ − v−). (15.11)

Substituting and solving, we obtain

vo = −ARb/(Ra + Rb)

1 + ARa/(Ra + Rb)
vi. (15.12)

As before, if we assume A is of the order of 105, and the resistor ratio Ra/(Ra +
Rb) is not less than 0.001, then

A
Ra

Ra + Rb
� 1 (15.13)

and Equation 15.12 can be approximated as:

vo � −Rb

Ra
vi. (15.14)

Again we have a relation between the input and the output voltage that is
almost independent of the unreliable gain A, and dependent only on resistor
ratios. But this time the output signal is inverted compared to the input signal,
as indicated by the minus sign. Equation 15.14 for the inverting connection
and the corresponding equation for the non-inverting case, Equation 15.9, are
encountered so frequently that they rapidly become primitives in our circuit
analysis repertoire, as with the voltage-divider and current-divider relations.

One might be tempted to use superposition on vi and the dependent source
A(v+ − v−) in Figure 15.8b to find v−, but as discussed in Section 3.5.1 this is
a hazardous approach. The problem is that the value of the dependent source
is controlled by some other variable in the circuit, so we are not free to simply
set the source to zero.

The safest rule to follow is: Do not set dependent sources to zero in
superposition calculations.

e x a m p l e 15 .1 s i n g l e - e n d e d a m p l i f i e r Circuits containing
single-input amplifiers can be analyzed in much the same way as circuits containing
Op Amps, as this example shows. Consider the circuit shown in Figure 15.9, which
contains a single-input inverting amplifier having gain −A. Except for its finite gain, the
amplifier is assumed to be ideal. Thus, its input current is zero, it drives vOUT = −AvMID,
and its negative feedback makes the circuit stable.
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F IGURE 15.9 A single-ended
amplifier in a feedback loop. Note
that power supply and ground
connections to the Op Amp are not
shown.

vIN

vOUT

R1

R2

-

+

-A
vMID

Following the node method,

0 = vMID − vIN

R1
+ vMID − vOUT

R2

with

vOUT = −AvMID.

Combining these two equations yields

vOUT = −A(R2/R1)

A + 1 + (R2/R1)
vIN,

which is identical to the result obtained for the inverting amplifier constructed with an
Op Amp. For example, with R1 = 1 k�, R2 = 100 k�, and A = 105, vOUT = 99.9vIN.

Further, in the limit A → ∞,

vOUT = −R2

R1
vIN.

15.3.3 S E N S I T I V I T Y

It is helpful at this point to be more precise about just how ‘‘independent’’ vo
really is to changes in the Op Amp gain A. Let G be the gain vo/vi of the
Op Amp circuit. Then for the non-inverting connection, for example, we find
from Equation 15.7:

G = vo

vi
= A

1 + A R2
R1+R2

. (15.15)

Taking the differential, assuming small changes in A and constant R1 and R2,
we obtain

dG = 1

(1 + A R2
R1+R2

)2
dA. (15.16)
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The fractional change in circuit gain is then, from Equation 15.15,

dG

G
=


 1

1 + A R2
R1+R2


 dA

A
. (15.17)

Thus with negative feedback a given percentage change in the Op Amp gain A
results in a much smaller percentage change in the overall circuit gain G, smaller
by a factor 1 + AR2/(R1 + R2). Note from Equation 15.7 that this is exactly
the factor by which the gain is reduced as a result of applying the feedback. By
inspection of Figure 15.7, the gain term AR2/(R1 + R2) represents the gain for
a signal traveling all the way around the feedback loop: through the Op Amp
with its gain of A, then through the feedback resistor network with a ‘‘gain’’ of
R2/(R1 + R2), (hence called the loop gain). In general, for negative feedback,
gain changes are suppressed by a factor 1 + (loop gain), and the overall gain is
reduced by this same factor.

15.3.4 A S P E C I A L C A S E : T H E V O L T A G E F O L L O W E R

A useful circuit for isolating one electrical system from another is the voltage
follower shown in Figure 15.10. Comparison with Figure 15.4a indicates that
this circuit is a degenerate case of the non-inverting connection, in which R1 = 0
and R2 = ∞. Hence, from Equation 15.9, the input-output relation for the
follower is

vo � vi. (15.18)

That is, within a part of 10−5 or so, the output voltage is equal to the input
voltage. An obvious question: Why not just use a piece of copper wire to
get the gain of one in Equation 15.18? To answer, we need only look at the
currents. The current that must be supplied by the input source is i+, hence is
a few nanoamps. The maximum current that can be supplied to some load by
the Op Amp output circuit is a few milliamperes. Thus for a one-volt signal
level, the circuit is drawing perhaps 10−8 watts from the signal source, but can
deliver 10−3 watts to the load resistor RL. A piece of wire obviously produces
no such power gain. Said in another way, the Op Amp is providing isolation

vi
RL

+
-

+
-

vo

F IGURE 15.10 Voltage follower.
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between the input and the output parts of the circuit, in the sense that the
output resistor RL can be changed by many orders of magnitude, with a corre-
sponding orders-of-magnitude change in output current, but the output voltage
and the input current will be virtually unchanged. This isolation is referred to as
buffering.

15.3.5 A N A D D I T I O N A L C O N S T R A I N T : v+ − v− � 0

In all preceding Op Amp calculations, we have made an approximation that
because the so-called loop gain in the denominator is much bigger than one, the
‘‘one’’ term can be neglected. This approximation is almost always valid in Op
Amp calculations. It is the factor 1+ (loop gain) that determines how insensitive
the circuit is to changes in the Op Amp gain constant A (see Equation 15.17,
for example), hence large loop gain is clearly a desirable design goal. If the loop
gain is almost always going to be large, it seems a bit clumsy (although clearly
correct) to make the circuit calculations without taking this fact into account
until the last line. One would hope that with some hindsight, it might be possible
to make the ‘‘large loop gain’’ assumption at the start of the circuit calculation,
thereby simplifying the math. Let us re-examine the circuit of Figure 15.8b with
this in mind.

We know that for most Op Amps, A will be 100,000 or larger, and the
maximum allowed vo will be about 12 V (see Figure 15.3c). Hence the largest
value of (v+ −v−) for linear operation will be around 120 mV, a voltage orders-
of-magnitude smaller than either the input or the output voltage. On this basis
it is reasonable to assume, as before, i+ � 0, and i− � 0, but include an
additional constraint:

v+ − v− � 0. (15.19)

Not equal to zero, just small compared to other circuit voltages. When these
three constraints are applied to the circuit in Fig 15.8b, we find

v+ = 0

v− � 0.

Hence KCL at the v− node yields

vi

Ra
+ vo

Rb
� 0 (15.20)

(compare with Equation 15.10). Solving for vo, we find

vo � −Rb

Ra
vi (15.21)
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as before, except this time the calculation is much simpler, because the combined
constraints of approximately zero voltage and approximately zero current are
quite powerful. For the non-inverting circuit of Figure 15.7, for example, we
can write, using the voltage-divider relation,

vi = v+ � v− = R2

R1 + R2
vo. (15.22)

Hence

vo � R1 + R2

R2
vi (15.23)

as before. The voltage constraint of Equation 15.19 is also called the virtual
ground constraint,2 and can be interpreted in physical terms by noting that the
output of a circuit with negative feedback must adjust itself to force (v+ −v−) to
be nearly zero, because that nearly-zero voltage is in turn multiplied by 100,000
to become the output voltage.

The v+ −v− � 0 constraint can be applied only if the Op Amp is not saturated
and the feedback is negative; that is, the net feedback signal comes from the
output back to the negative input terminal.

15.4 I N P U T A N D O U T P U T R E S I S T A N C E S

15.4.1 O U T P U T R E S I S T A N C E , I N V E R T I N G O P A M P

Negative feedback has a profound effect on the Thévenin-equivalent input and
output resistances of circuits. To illustrate, we calculate first the Thévenin out-
put resistance of the simple inverting Op Amp assumed to be operating in the
active (non-saturated) region, that is, the circuit in Figure 15.8b. Obviously if
we model the Op Amp by the ideal Op Amp model, the Thévenin output resis-
tance is by definition zero, with or without feedback. So to show any effect, we
must use a more accurate device model that includes some finite resistance in
series with the dependent source, as in Figure 15.11. One way of calculating the
Thévenin output resistance is to apply a test current it, at the output terminals,
as shown in Figure 15.11, and calculate the resulting voltage vt, when all other
independent sources, in this case vi, are set to zero.

2. Or more accurately, the virtual short constraint, or the virtual node constraint, since the inverting
and non-inverting inputs need not always be at ground potential.
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F IGURE 15.11 Calculation of
output resistance. +

-

ri

Rs

Rf

+

-

+

-

it

rt
vt

A(v+ - v-)

v+

v-

v = 0 

In calculating the Thévenin resistance do not casually set dependent sources to
zero, as their value is dictated by some other variable in the circuit which may
or may not be zero.

The calculation of vt is straightforward. We use the node method with
conductances in place of resistances for convenience. In other words, we use
gi = 1/ri, Gs = 1/Rs, Gf = 1/Rf, and gt = 1/rt. Applying KCL at the nodes with
unknown node voltages, we get the following three independent equations:

v+ = 0 (15.24)

v− = Gf

Gf + Gs + gi
vt (15.25)

it + [
A

(
v+ − v−) − vt

]
gt + (

v− − vt
)

Gf = 0. (15.26)

(15.27)

To simplify the mathematics, we now assume for this calculation that ri is infinite
(gi = 0), because it is always much larger than Rs or Rf. Now, eliminating v+
and v− from Equation 15.26,

it
vt

= Go = AGf gt

Gf + Gs
+ gt + Gf Gs

Gf + Gs
. (15.28)

Thus the output conductance is the sum of three conductances. The first term
is the effect of the feedback, the second term is the output conductance of the
Op Amp alone, and the third term in resistance notation is Rf + Rs, hence is
the effect of the feedback resistors in the absence of the Op Amp. For large
A, this last term is not important, so the Thévenin output conductance with
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feedback is

it
vt

= Go � gt

[
1 + AGf

Gf + Gs

]
(15.29)

or, in more familiar terms

Go � gt

[
1 + A

Rs

Rs + Rf

]
. (15.30)

Hence the Thévenin output resistance of the circuit is

Ro � rt

1 + A Rs
Rs+Rf

. (15.31)

For large loop gain

Ro � rt

A Rs
Rs+Rf

. (15.32)

The Thévenin output resistance rt for the Op Amp alone, without feedback is
typically of the order of 1000 ohms, so for large A and reasonable Rs and Rf,
the overall Thévenin output resistance Ro for this topology circuit is a fraction
of an ohm.

Equation 15.31 is in fact a general result. For any linear circuit in which the
feedback resistor is sampling the output node voltage (rather than the output
current), the Thévenin equivalent output resistance with feedback is equal to the
output resistance without feedback, divided by a factor 1+ (loop gain), the same
factor involved in gain calculations and calculation of sensitivity to changes in
the gain constant A.

15.4.2 I N P U T R E S I S T A N C E , I N V E R T I N G C O N N E C T I O N

To calculate the Thévenin-equivalent input resistance of the inverting Op Amp
circuit, we apply a test source at the input, and measure the resulting response.
(There are no internal independent sources to be set to zero.) In Figure 15.12
we have chosen to drive with a test voltage vt, and calculate the resulting current
it. As before, it is equally valid to apply a test current source, and calculate the
resulting voltage. The calculations are greatly simplified if the circuit topology
is taken into account. The input consists of two elements in series: the resistor
Rs, and a complicated circuit that will reduce to the Thévenin-equivalent input
resistance of the rest of the Op Amp circuit. Recognizing this, we can first
calculate the resistance to the right of the Rs (just set Rs to zero in Figure 15.12)
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F IGURE 15.12 Input resistance
calculation.

ri

Rs

Rf

+

-

+

-

it

rt

voA(v+ - v-)v+

v-

vt -

+

and then add Rs to this calculated value to get the complete answer. We will
denote the resistance of the Op Amp circuit to the right of Rs as Ri, and the
complete input resistance, including resistor Rs, as R′

i.
Because we chose a test voltage, and Rs is zero for now, the control variable

is directly constrained:

v+ = 0 (15.33)

v− = vt. (15.34)

Now apply KCL at the input node:

it = vt

ri
+ vt − A(v+ − v−)

Rf + rt
. (15.35)

hence

it
vt

= Gi = 1

ri
+ 1

Rf + rt
+ A

Rf + rt
. (15.36)

Again we have the sum of three conductances. So the corresponding resis-
tance expression, the Thévenin input resistance for the circuit, is the parallel
combination of three terms:

Ri = ri ‖ (Rf + rt)‖
(

Rf + rt

A

)
(15.37)

the Op Amp input resistance, the feedback resistor plus Op Amp output resistor,
and an effective resistance generated by the feedback. For large A,

Ri � Rf + rt

A
(15.38)
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that is, we expect the input resistance to be very low. For example, for a typical
case of Rf = 10 k�, rt = 1000 �, A = 105, the input resistance measured
at the v− terminal will be 0.1 ohm. Simple physical reasoning serves to support
this result. If we imagine applying a small voltage to the input, say 0.1 mV, then
the Op Amp will immediately drive vo to -A times 0.1 mV, or -10 volts. So
resistor Rf has a large voltage across it, hence a large current will flow. This large
current must come from the input source, and is 105 times as large as one might
expect for such a small input voltage. Large current for small voltage means the
effective input resistance will be very small, in fact roughly the feedback resistor
Rf divided by A.

In accordance with our initial assumptions, the complete input resistance
of the inverting Op Amp, including resistor Rs, is

R′
i = Ri + Rs (15.39)

as can be verified by calculating the input resistance directly from Figure 15.12
including Rs. Because Ri is so small,

R′
i � Rs. (15.40)

15.4.3 I N P U T A N D O U T P U T R F O R N O N - I N V E R T I N G
O P A M P

The active-region output resistance of the non-inverting Op Amp circuit can be
calculated in much the same way as for the inverting circuit. We set the indepen-
dent source to zero and apply a test current source to the output terminals, as
shown in Figure 15.13. Now calculate vt. As usual, we apply the node method
to find three independent equations. First find expressions for v+ and v−, and
then write KCL at the output node. Again we assume ri is much larger than R2
to simplify the math:

v+ = 0 (15.41)

v− = vt
R2

R1 + R2
(15.42)

it − vt

R1 + R2
− vt − A(v+ − v−)

rt
= 0. (15.43)

Hence

it
vt

= Go = 1

R1 + R2
+ 1

rt
+ AR2/(R1 + R2)

rt
. (15.44)
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F IGURE 15.13 Output
resistance calculation,
non-inverting circuit.

vi = 0 

+

-
ri

vt

+

-

A(v+ - v-)

R2

R1v+

v- it

rt

For large A and reasonable R1 and R2,

Ro � rt

AR2/(R1 + R2)
. (15.45)

This is the Thévenin output resistance rt of the Op Amp alone, divided by the
loop gain, or, more accurately, from Equation 15.44, 1 + (loop gain). As before,
the output resistance is very low.

The input resistance for the active (nonsaturated) region can be found from
the circuit in Figure 15.14. As before, we need expressions for v+ and v−, and
a KCL equation involving it:

v+ = vt (15.46)

v− = vt − itri. (15.47)

KCL at Node 1 yields

it + A(v+ − v−) − v−

R1 + rt
− v−

R2
= 0. (15.48)

F IGURE 15.14 Input resistance
calculation, non-inverting Op Amp.

vt

+

-

ri
A(v+ - v-)

R2

R1

v+

v-

it

rt

Node 1

-

+
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Substituting and solving, assuming A is large, we find

Ri = vt

it
� ri

[
AR2

R1 + rt + R2

]
. (15.49)

This expression shows that for the non-inverting connection, the effective input
resistance in the active region is very high, (roughly the Op Amp input resis-
tance ri multiplied by the loop gain) in contrast to the result for the inverting
case, Equation 15.38. Reasoning physically, if we apply a voltage vt at the
input, the output voltage adjusts itself so that v− is very nearly equal to vt,
so there is very little voltage across ri, hence much less current flowing in it
than we might expect. Hence the circuit input resistance is large. This prop-
erty enables the non-inverting connection to be particularly useful in buffering
applications.

This point of view suggests an alternative approach to the calculation. If
we assume at the outset that v+ − v− � 0, then

vt � A(v+ − v−)
R2

R2 + R1 + rt
. (15.50)

But v+ − v−, although small, must not be zero for finite rt:

v+ − v− = itri. (15.51)

When Equation 15.51 is substituted into Equation 15.50, we find Ri as before
(Equation 15.49).

W W W 15.4.4 G E N E R A L I Z A T I O N O N I N P U T
R E S I S T A N C E *

15.4.5 E X A M P L E : O P A M P C U R R E N T S O U R C E

We have shown that both the inverting and non-inverting Op Amp connections
have very low output resistance, that is, they approximate ideal voltage sources.
But in some circuit applications, we may want the Op Amp to look like a
current source, that is, we want a very high output resistance. It follows from
the discussion at the end of Section 15.4.1 that such a design can be realized by
a change in the topology of the output circuit.

In the two circuits already discussed, the feedback network sends a signal
back to the negative input terminal that is proportional to the output voltage
vo. Thus the circuit tends to stabilize this variable, thereby creating a voltage
source. By analogy, to make a current source, we must arrange to feed back
a signal proportional to the output current flowing in the circuit being driven
by the Op Amp. One possible topology is shown in Figure 15.15a. The circuit
looks, at first glance, like the non-inverting connection shown in Figure 15.15b,
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but there is an important difference. In the new topology, the resistor RL we
are trying to drive is now part of the voltage divider feedback network. Thus
in Figure 15.15a we are using the resistor Rs to sample the current through
RL, whereas in Figure 15.15b R1 and R2 sample the voltage across RL. The
distinction seems trivial until we think in terms of RL varying in value, or even
being nonlinear. Then it is clear that there is a fundamental difference in the
two topologies.

Once the topological issues are understood, the circuit analysis is trivial.
Assuming v+ � v−, we note from Figures 15.15a or 15.15c

v+ = vi (15.52)

v− = iLRs (15.53)

v+ � v−. (15.54)

Therefore

iL � vi

Rs
(15.55)

independent of the value of RL.

vi

Circuit being driven

Rs

RLiL
-

+
by Op Amp, here
shown as resistor RL

vi
R1 RL

iL-

+

R2

(b) Standard non-inverting connection

(a) Current source connection

vi

i

-

+

(c)

A(v+-v-)

v+

v-

+

-

-

+
+

-

vo

F IGURE 15.15 Op Amp current source.
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vi = 0

vt it
-

+

Rs

A(v+ - v-)
v+

v-

ro

+

- F IGURE 15.16 Output
resistance of current source.

The fact that the current through RL is independent of the value of RL
suggests that the Op Amp circuit looks like a current source. It is a simple
matter to verify this more formally: Replace RL by a test source, and find the
Thévenin output resistance of the circuit. In this case we choose a test current
source it, as in Figure 15.16:

v− = −itRs (15.56)

v+ = 0 (15.57)

vt = A(v+ − v−) + itro − v− (15.58)

= (1 + A)itRs + itro (15.59)

Ro = vt

it
= (1 + A)Rs + ro. (15.60)

For reasonable circuit parameters, Ro could well be many megohms.
Again these results can be generalized to summarize the effect of negative

feedback on the effective output resistance of a circuit. If the Op Amp, the load
resistor RL and the feedback network appear to be connected in series, in a
loop, hence sharing a common current, then the output resistance will be high.
If the Op Amp, RL, and the feedback circuit all appear to be in parallel, tied
to a common node, sharing a common voltage, then the output resistance will
be low.

15.5 A D D I T I O N A L E X A M P L E S

This section contains a number of examples of Op Amp circuits. They are
intended both to illustrate the versatility of the Op Amp as a circuit design
building block and to serve as a review and extension of analysis techniques
introduced earlier in this chapter.
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F IGURE 15.17 Adder.
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v1

+

-
+

-

+

R3
R1

R2

vo

-

15.5.1 A D D E R

An Op Amp circuit for adding two signals together is shown in Figure 15.17.
If we assume v+ � v−, then application of KCL to the v− node yields

v1

R1
+ v2

R2
+ vo

R3
� 0. (15.61)

Therefore

vo � −
(

R3

R1
v1 + R3

R2
v2

)
, (15.62)

which represents the weighted sum of the two input signals.3 Note that within
the accuracy of the voltage constraint v+ − v− � 0, the two input signals do
not cross-couple; that is, no current from v2 flows in R1, and vice versa. Thus
the circuit is an ideal adder.

15.5.2 S U B T R A C T E R

If we wish to take the difference between two signals, then the circuit of
Figure 15.18 is appropriate. Direct application of superposition to the inde-
pendent sources yields the two subcircuits shown in Figures 15.18b and 15.18c.
In Figure 15.18b, source v2 has been set to zero. On the assumption of i+ � 0,
there will be no current through R3 and R4, so v+ � 0, and the topology is
seen to be that of an inverting amplifier. Hence

voa = −R2

R1
v1. (15.63)

3. Because the Op Amp model is linear, the same result can be derived using superposition.
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v2 = 0v1

+

-

+
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+
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-
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(b)  Subcircuit for v1

+
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R1

R2
R4 vob
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(c)  Subcircuit for v2

v2
+

-

R3

F IGURE 15.18 Subtracter.When source v1 is set to zero, and the circuit slightly rearranged, the non-
inverting topology emerges, with a voltage divider at the input, as indicated in
Figure 15.18c. Hence

vob =
(

R1 + R2

R1

) (
R4

R3 + R4

)
v2. (15.64)

The total output voltage is the sum of the two voltages voa and vob. To make
a subtracter, the resistor ratios in Equations 15.63 and 15.64 should be equal.
This can be achieved by setting R3 = R1 and R4 = R2. Then

vo = R2

R1
(v2 − v1). (15.65)

Now vo is proportional to the difference between the two input voltages.

15.6 O P A M P R C C I R C U I T S

15.6.1 O P A M P I N T E G R A T O R

The circuit in Figure 15.19 gives a much closer approximation to ideal inte-
gration than the simple RC circuits discussed in Chapter 10. The analysis to
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(b) Active region subcircuit
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-
vo

+
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vi vi
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F IGURE 15.19 Op Amp
Integrator. show this is quite straightforward. Assuming linear-region operation, we replace

the Op Amp by the dependent-source model, as in Figure 15.19b, and ana-
lyze the resulting linear circuit using the node method. KCL at the v− node
yields

vi − v−

R
+ Cd(vo − v−)

dt
= 0. (15.66)

If we assume at the outset that the Op Amp gain A is large enough to ensure
that

v+ � v− (15.67)

then because v+ = 0, Equation 15.66 reduces to

vi

R
+ Cdvo

dt
� 0 (15.68)

or,

vo � − 1

RC

∫
vidt. (15.69)

That is, the circuit calculates the (negative) integral of the input voltage.
A more exact calculation involves substituting the Op Amp equation:

vo = A(v+ − v−) (15.70)
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into Equation 15.66, again noting v+ = 0:

vi

R
− v−

R
− CA

dv−

dt
− C

dv−

dt
= 0. (15.71)

Hence

RC(1 + A)
dv−

dt
+ v− = vi. (15.72)

The effective time constant of the circuit (by analogy with Equation 10.150, for
example) is

τ = (1 + A)RC. (15.73)

Thus the time constant associated with the passive elements alone is multiplied
by the gain of the Op Amp. This is often referred to as the Miller Effect, originally
in reference to the fact that a small input to output capacitance in early vacuum
tubes seriously limited the frequency response of amplifier circuits. The time
constant can be made very large for modest component values. For example, if
the RC time constant is 1 second, and A is 105 or greater, the effective circuit
time constant in measured in days. On this time scale almost any waveform
lasting for less than a minute or so will seem like a ‘‘short pulse.’’ Thus the
analysis of Section 10.6.3 is applicable, and on the time scale of minutes, the
circuit acts like an integrator.

The ultimate test of an integrator is to apply a small voltage step, V, and see
how closely the integrator output conforms to a ramp. From Equations 15.70
and 15.72,

(1 + A)RC
dvo

dt
+ vo = −AV. (15.74)

For vi a small fixed value V after t = 0, vo will follow the usual exponential
charging curve toward (−AV), (see Equation 10.101, for example). That is,

vo = −AV
(

1 − e−t/(1+A)RC
)

. (15.75)

This curve is plotted in Figure 15.20 on the basis that the RC time constant
(without the Op Amp) is roughly one second. Obviously on the time scale of
minutes, the circuit looks like an almost-perfect integrator, provided, of course,
the Op Amp is always operating in the active region.
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F IGURE 15.20 Waveforms of
integrator.

vi

V

t
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vo

t

-AV(1- e-t/(1+A)RC)

Heading toward -AV
(on a time scale of days)

15.6.2 O P A M P D I F F E R E N T I A T O R

The Op Amp differentiator shown in Figure 15.21 complements the integrator.
Because v− � v+ and v+ = 0, we know that the current i1 through the
capacitor is given by:

i1 = C
dvi

dt
.

Since virtually no current flows into the Op Amp, i1 = i2, and therefore

+

-
vi

i1

C
R

i2

vo

F IGURE 15.21 Differentiator
circuit.

vo = −Ri1.

Eliminating i1 from the preceding two equations, we obtain

vo = −RC
dvi

dt
. (15.76)

That is, this circuit calculates the (negative) time derivative of the input
voltage.

Sample input and output waveforms for the differentiator are shown in
Figure 15.22. For the square-pulse input shown, the outputs are a pair of
spikes each at the time instant the input makes a transition. As illustrated in the
example, the differentiator circuit is often used in detecting shape transitions in
waveforms.
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t

vi(t)

t

vo(t)

F IGURE 15.22 Differentiator
waveforms.

15.6.3 A N R C A C T I V E F I L T E R

An Op Amp embedded in a more complicated RC circuit is shown in
Figure 15.23a. This is an RC active filter, with all of the useful resonance prop-
erties of a capacitor-inductor circuit. To show this, we calculate the output
voltage vo in terms of vi. First draw the linear-region circuit model with the
dependent source, Figure 15.23b. Then write Node equations, taking cur-
rent entering the node as positive. We assume at the outset v+ − v− � 0.
because v+ is zero in this circuit, the appropriate constraint is v− � 0. For
Node v1,

(vi − v1)g1 − C1
dv1

dt
+ C2

d(vo − v1)

dt
= 0 (15.77)

and for Node v−

C1
dv1

dt
+ vog2 = 0. (15.78)

vi v+

v-

+
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A(v+ - v-)

-

(b)

+

-
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v1 C1
+

-

vo

vi

+

-
+

R1

vo

-

(a)

+

-

C2

C1

R2
v1

F IGURE 15.23 Op Amp RC active filter.
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Hence

vig1 = g1v1 + (C1 + C2)
dv1

dt
− C2

dvo

dt
(15.79)

0 = C1
dv1

dt
+ vog2. (15.80)

These equations can be solved by taking the derivative of both sides of both
equations, and eliminating terms in v1 and its derivative by substitution from
Equation 15.80 and the derivative of Equation 15.80. By so doing we obtain a
second order differential equation for vo:

d2vo

dt2
+ g2

C1 + C2

C1C2

dvo

dt
+ g1g2

C1C2
vo = − g1

C2

dvi

dt
. (15.81)

This equation is identical in form to that of an RLC resonator (see Equation
12.119), but this circuit contains no inductors. The effect of an inductor is
created by an active element, in this case the Op Amp, and the capacitors,
hence the name RC active filter. The advantages of an RC active filter (this is
only one realization; there are many others) are that it can provide a power
gain unlike an RLC network and that it does not require inductors. Because
inductors are difficult to fabricate in VLSI technology, this is an important design
advantage for integrated circuits. Furthermore, inductors are not very ideal
elements, especially for low-frequency applications (for example, for frequencies
below perhaps 100 kHz). Thus in this frequency range, resonant circuits are
often built out of Op Amps, resistors, and capacitors.

The properties of filter circuits were explored previously in Chapters 10
and 13. As we did in Chapter 13, the circuit of Figure 15.23 can also be
analyzed using the impedance method by using impedance values 1/sC1 and
1/sC2 for the capacitors (see Section 15.6.4). We will also see other examples
of impedance based analysis for Op Amps later in this chapter.

Since Equation 15.81 is identical in form to Equation 12.119 for the RLC
circuit, we can readily determine the behavior of our RC active filter. Notice
that the output response vo of the Op Amp RC active filter corresponds to the
capacitor voltage vC in Section 12.5. The equation corresponding to the series
RLC circuit in Section 12.5 was

d2vC

dt2
+ R

L

dvC

dt
+ 1

LC
vC = 1

LC
vIN (15.82)

with the damping factor α = R/2L and the undamped resonant frequency
ωo = 1/

√
LC.
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Thus, the corresponding damping factor in our Op Amp circuit is

α = g2
C1 + C2

2C1C2
(15.83)

and the undamped resonant frequency is

ωo =
√

g1g2

C1C2
. (15.84)

15.6.4 T H E R C A C T I V E F I L T E R—
I M P E D A N C E A N A L Y S I S

Let us analyze the Op Amp active filter circuit of Section 15.6.3 for a sinusoidal
drive. Since the Op Amp is a linear device (namely, a VCVS) we can use the
impedance method for the analysis.

The circuit configuration is repeated in Figure 15.24a. The impedance
model for the circuit is shown in Figure 15.24b. The circuit is sufficiently
complicated that node analysis is advisable. At node V1 assuming v+ � v−,

(Vi − V1) g1 + (Vo − V1) sC2 − V1sC1 = 0 (15.85)

where g1 = 1/R1. At the V− node,

V1sC1 + Vog2 = 0 (15.86)

where g2 = 1/R2.

-
+

R1

C2

R2

C1

v-

v1

vi vo

-

+

-
+

(a) Circuit

v+
-
+

V1

Vi Vo

-

+

-
+

R1 1/sC1

1/sC2

R2

(b) Impedance model

V-

V+

F IGURE 15.24 RC active filter analysis using the impedance method.
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Now Vo can be found by Cramer’s Rule. First, rewrite with source terms
on the left

Vig1 = V1 [g1 + s (C1 + C2)] − VosC2 (15.87)

0 = V1sC1 + Vog2 (15.88)

(These equations should be compared to the corresponding differential equa-
tions, Equations 15.79 and 15.80.) Solving for the complex amplitude Vo,

Vo = −g1sC1Vi

[g1 + s (C1 + C2)] g2 + s2C1C2
(15.89)

= −g1sC1Vi

g1g2 + s (C1 + C2) g2 + s2C1C2
(15.90)

= −s
(
g1/C2

)
Vi

s2 + s C1+C2
C1C2

g2 + g1g2
C1C2

. (15.91)

Equation 15.91 has exactly the form of Equation 14.19 (except for the minus
sign), hence the circuit is equivalent to a parallel RLC filter. By comparing
corresponding terms we find, as in Chapter 12,

Resonant frequency = ωo =
√

g1g2

C1C2
(15.92)

Bandwidth = g2
C1 + C2

C1C2
. (15.93)

With these scaling factors, the frequency response plot of Figure 14.12 directly
applies to this circuit (except for the additional 180◦ in the phase), along with
all other properties discussed in Section 14.1.

W W W 15.6.5 S A L L E N - K E Y F I L T E R

15.7 O P A M P I N S A T U R A T I O N

Thus far we have used the Op Amp in its active region. In the active region, the
voltage-controlled voltage source model of the Op Amp shown in Figure 15.6
applies. Furthermore, when negative feedback is applied, and the Op Amp is
operated in the active region, we can use the input voltage constraint given
by v− � v+. However, the voltage-controlled voltage source model and the
input voltage constraint no longer apply when the Op Amp output reaches
saturation. In saturation, the Op Amp output will be close to one of the power
supply voltages, +12 or −12 V. In positive saturation, the output will be close
to +12 V and in negative saturation the output will be close to −12 V.
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The Op Amp exits the active region and enters the saturation region when
the external inputs are such that the Op Amp output is required to go above
+12 or below −12 V. As an example, suppose the Op Amp has power supply
voltages of +12 and −12, then if two volts are applied as the input to a non-
inverting Op Amp amplifier circuit with a gain of 10, the Op Amp will be driven
into positive saturation. Similarly, if minus two volts are applied to the same
amplifier, the Op Amp will be driven into negative saturation.

How do we model the Op Amp when it is in saturation? When an Op Amp
enters positive saturation, a near-short circuit forms between the Op Amp
output and the positive power supply. Similarly, when the Op Amp enters
negative saturation, a near-short circuit forms between the Op Amp output and
the negative power supply. Accordingly, simple positive and negative saturation
models for the Op Amp are illustrated in Figure 15.28. The normal dependent

vOv-

v+ -

+
12

vOv-

v+

-

+
12

Negative saturation

Positive saturation

F IGURE 15.28 Op Amp model
in saturation.

voltage source is not shown in the saturation models because its output gets
limited by the power supply voltages and so it turns into a simple voltage source.

15.7.1 O P A M P I N T E G R A T O R I N S A T U R A T I O N

If the Op Amp integrator in Figure 15.19 is driven into negative saturation, then
the appropriate subcircuit is shown in Figure 15.29. Our negative saturation
model for the Op Amp says that vO is fixed at some voltage close to the
negative power supply voltage, say −12 V. Because of the 12-V battery assumed
at the output when the Op Amp is in saturation, the dependent source is no
longer involved in the calculations, so the circuit reduces to a simple series RC
configuration, as indicated in Figure 15.29b.

vi

V

t

v-
+V

t

-VvO

-12 V 

(c)

-V

R

vi
+

-

+

-
+

-

v-

vC

vO = -12 V 

(b)
C

+ -

vi
+

-

R
vOv- vC

v+ -
+
12 V 

C

(a) -

+

F IGURE 15.29 Integrator Op Amp in saturation.
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Assuming a step input of vi as in Figure 15.29c, the solution for vC and v−
can be found by inspection using the methods of Section 10.5.3. The voltage
across vC at the instant before entering saturation is

vinit = +12 V (15.104)

because v− at this point is almost zero due to the Op Amp constraint. If the
transient went to completion, the final capacitor voltage would be

vfinal = V + 12 V. (15.105)

Hence from Equation 10.62, assuming a time origin at the instant of entering
saturation,

vC = 12e−t/RC + (V + 12)(1 − e−t/RC) (15.106)

= V(1 − e−t/RC) + 12. (15.107)

(This is a general result for fixed voltages in series with capacitors: By super-
position such problems can be solved without the fixed voltage, then the fixed
voltage can be added back in. In other words, the transient part is unaffected
by the fixed voltage.) It follows that

v− = V(1 − e−t/RC) (15.108)

(a result that an experienced analyst of RC circuits would have written down
directly). Waveforms appropriate to these equations are shown in Figure 15.29c.

An important issue of circuit performance is how long it takes the circuit
to recover from the effects of saturation. To this end, assume that the input
step is now reversed in polarity. The Op Amp will still be held in saturation by
the large positive voltage on the v− terminal, and will remain in saturation until
v− has decayed virtually to zero. Figure 15.29b remains the appropriate circuit
representation for this interval. Thus with vi = −V,

v− = −V + 2Ve−t/RC (15.109)

vO = −12 (15.110)

where the time origin is now defined to be at the instant of negative transition
of vi. Appropriate waveforms are shown in Figure 15.29c. As noted earlier, this
saturation state persists until v− has decayed almost to zero. Only then will the
Op Amp come out of saturation, and integrate back toward zero, as shown in
Figure 15.29c.

In summary, driving the Op Amp into saturation has two serious conse-
quences on the performance of the integrator. First, the integration is truncated
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+

-

vi
+

-

+

-

R

R

vO

vO

vi

+12 V 

-12 V 

-6 V +6 V 

(a) (b)

F IGURE 15.30 Positive
feedback.

when the Op Amp saturates. Second, when the input wave goes negative, there
is a substantial delay before the circuit recovers, and again acts as an integrator.

15.8 P O S I T I V E F E E D B A C K

In every Op Amp circuit discussed thus far, the feedback network has been con-
nected from the Op Amp output to the negative input terminal of the Op Amp.
Such a connection provides negative feedback, which tends to make the circuit
more linear, more temperature independent, more reliable. An obvious ques-
tion: What happens if the feedback is connected to the positive input terminal,
as in Figure 15.30a?

The complete relation between vO and vi, Figure 15.30b, shows both
saturation and hysteresis. To understand the circuit action, assume that vO is
initially positive and vi is negative. Then, because of the feedback, v+ is still
at +6.

To get the Op Amp out of saturation, vi must be made positive enough to
bring (v+−v−) approximately to zero, hence vi must be approximately +6 volts.
If vi is slightly more positive than +6, vO will be driven negative, whereupon v+
will be driven negative, driving v0 even more negative. Hence, vO undergoes a
regenerative negative transition to −12 V. Now vi must be made more negative
than −6 volts to initiate a regenerative transition to +12 V. the width of the
hysteresis region can be controlled by the ratio of the feedback resistors.

The circuit is obviously no longer a linear amplifier: The positive feedback
has enhanced rather than suppressed the basic nonlinearity of the unadorned
Op Amp. One application of this circuit is as a digital comparator, to convert a
continuous analog signal to a two-state signal.

15.8.1 R C O S C I L L A T O R

Shown in Figure 15.31 is another Op Amp circuit that uses positive feedback.
Assume that the power supply voltages are VS and −VS. This circuit behaves

+

-C

R1
R2

R3
vO

v+

vC

v-

F IGURE 15.31 RC oscillator
circuit.

as an oscillator, and uses positive feedback to saturate the Op Amp at both
positive and negative values of VS. Let’s examine how this oscillator works.
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Let us first analyze the circuit qualitatively, referring to the waveforms for
vC and vO in Figure 15.33. As depicted in Figure 15.33, let us assume that the
system starts from rest so the capacitor voltage vC = 0. Thus the inverting
terminal v− of the Op Amp is at 0 V. Let us also assume that the output is in
positive saturation initially, in other words at the positive power supply voltage,
VS. Since the output is fed back to the positive input, we observe that

v+ = VSR1

R1 + R2
.

This positive voltage at the non-inverting input terminal will result in a positive
voltage difference at the Op Amp input port (between v+ and v−), and conse-
quently, the output will continue to be driven to the positive saturation voltage,
namely VS. The equivalent circuit is as shown in Figure 15.32. The capacitor C

R3

+

-
+

-

v-

vC

VS

vO

C

F IGURE 15.32 Equivalent
circuit for the RC oscillator when
the Op Amp is in positive
saturation.

begins to charge up towards VS through the resistor R3. Since no current flows
into the v− terminal, the charging dynamics are that of a simple RC circuit.

As the capacitor charges up, eventually its voltage vC crosses v+ =
VSR1/(R1 + R2), resulting in an effective negative voltage across the Op Amp
input port, namely across the v+ and v− terminals. The Op Amp amplifies this
negative voltage difference at its input to a large negative voltage at its output.
Since the negative voltage at the output is fed back to the non-inverting terminal
by the voltage divider formed by R1 and R2, the non-inverting terminal voltage
becomes negative, which makes the voltage difference at the Op Amp input
even more negative, and which in turn makes the output voltage fall even more.
This positive feedback process continues until the output reaches the negative
saturation voltage −VS. At this point, we have

v+ = −VSR1

R1 + R2
.

Notice that the output voltage transitions from VS to −VS very quickly at the
moment that the capacitor voltage vC crosses VSR1/(R1 + R2).

F IGURE 15.33 Oscillator
behavior. t

vC

0

R1

R1 + R2
--------------------- VS

–R1

R1 + R2
--------------------- VS

(a)

VS

–VS

t

vO

0

(b)
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Therefore, at the instant the output reaches −VS and v+ transitions to
−VSR1/(R1 + R2), we can assume that the capacitor voltage is still at approx-
imately VSR1/R1 + R2, since the voltage across the capacitor changes much
more slowly.

Now, since the capacitor voltage vC is higher than the output voltage, the
capacitor begins to discharge through R3. Figure 15.34 shows that the equiva-
lent circuit that applies. When the capacitor voltage falls below −VSR1/R1+R2,
the voltage v− will be lower than v+ resulting in a positive voltage difference at
the Op Amp input. The Op Amp amplifies this positive difference to a positive

R3

+

-

+

-

v-

vC

VS

vO

C

F IGURE 15.34 Equivalent
circuit for the RC oscillator when
the Op Amp is in negative
saturation.

voltage at its output, which when fed back to the non-inverting terminal causes
a larger positive voltage to appear across the Op Amp input. The resulting pos-
itive feedback causes the Op Amp output to go into positive saturation. Thus,
the output voltage reaches VS and that at v+ will again be

v+ = VSR1

(R1 + R2)
.

As in the beginning, the capacitor voltage is now lower than the output and
therefore the capacitor begins to charge up. This cycle repeats and results in a
square wave at the output of the Op Amp.

Let us derive the time period of the oscillator in Figure 15.31. Assume that
at time T1, vO transitions from VS to −VS as illustrated in Figure 15.35. We
know that at T −

1 , vO = VS and from the voltage-divider relationship, we know
that v+ = R1VS/(R1 + R2). We also know that v− is lower than v+ at T −

1 , and
that the capacitor voltage is increasing.

At time T +
1 , v− becomes slightly greater than v+. In other words, v− ≈

VSR1/(R1 + R2). Output vO transitions virtually instantaneously to −VS and
v+ becomes −R1VS/(R1 + R2). The capacitor now begins to discharge and v−
begins to decrease. We know that vO will transition from low to high when v−
falls below v+ = −R1VS/(R1 + R2).

VS

-VS

R1

R1 + R2
-------------------- VS

–R1

R1 + R2
-------------------- VS

t
vC

Tlow

(a) vC going from high to low 

T1

vO

VS

-VS

R1

R1 + R2
-------------------- VS

–R1

R1 + R2
-------------------- VS

t

vC

Thigh

(b) vC going from low to high 

T2

vO

F IGURE 15.35 Computing the
time period of the oscillator.
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Thus the interval Tlow is the time taken for the capacitor to discharge from
its initial value of VSR1/(R1 + R2) to its final value of −VSR1/(R1 + R2). The
capacitor discharge dynamics are governed by a simple first-order differential
equation whose solution is given by

vC = −VS +
(

R1

R1 + R2
+ 1

)
VSe−t/R3C. (15.111)

We need to find Tlow, the time taken for vC to drop below −R1VS/(R1 + R2)
from Equation 15.111. In other words, we need to solve for the time that
satisfies

vC = −VS +
(

R1

R1 + R2
+ 1

)
VSe−t/R3C < − R1

R1 + R2
VS. (15.112)

Thus,

−VS +
(

R1

R1 + R2
+ 1

)
VSe−Tlow/R3C = − R1

R1 + R2
VS,

which yields

Tlow = R3C ln
(

1 + 2R1

R2

)
. (15.113)

It is easy to verify that the duration of the high period Thigh is exactly the same
as the low period. Thus, the period T of the oscillator is simply

T = 2R3C ln
(

1 + 2R1

R2

)
.

W W W 15.9 T W O - P O R T S *
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15.10 S U M M A R Y
� The Op Amp is a widely used amplifier abstraction that forms the founda-

tions of much of electronic circuit design. Op Amp devices are constructed
using primitive elements such as transistors and resistors.

� The Op Amp is a four-ported device. The ports include an input port
with terminals usually labeled v+ and v−, an output port with one terminal
labeled vo, and the other being ground, a positive power supply port with a
+VS voltage applied with respect to ground, and a negative power supply
port with a −VS voltage applied with respect to ground. Although the
ground terminal is not explicitly shown in the Op Amp symbol, it is very
much a part of all Op Amp circuits.

� The Op Amp behaves like a voltage-dependent voltage source. Its input-
output relationship can can be expressed mathematically as

vo = A(v+ − v−)

where A is a large number called the open loop gain of the amplifier. In
most practical Op Amp applications, A is treated as infinity.

� Most useful Op Amp circuits are built using the negative feedback connec-
tion, in which a portion of the output signal of the Op Amp is fed back to
the v− input of the Op Amp. Examples of Op Amp circuits built this way
include inverting and non-inverting amplifiers, buffers, adders, integrators,
and differentiators.

� We commonly apply the constraint:

v+ ≈ v−

in analyzing Op Amp circuits, if the Op Amp is not saturated and the
feedback is negative.

� Op Amp circuits are sometimes built using the positive feedback connec-
tion, in which a portion of the output signal of the Op Amp is fed back to
the v+ input of the Op Amp. Examples of such Op Amp circuits include
oscillators and comparators.

E X E R C I S E Se x e r c i s e 15 .1 Find the Thévenin equivalent for the circuit in Figure 15.41. The
circuit contains two resistors and a dependent current source.

e x e r c i s e 15 .2 Calculate vO in terms of I1, V1, and V2 in Figure 15.42. You
may assume the operational amplifier has ideal characteristics.
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gv1
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F IGURE 15.41
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-
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F IGURE 15.42

e x e r c i s e 15 .3 Calculate the sensitivity of the gain, dG/G, as a function of
fractional change in Op Amp gain, dA/A for the inverting Op Amp connection shown
in Figure 15.43.

F IGURE 15.43 Inverting Op
Amp. vi

vo

Ra

Rb

+

-

(a)

vi

A(v+ - v-)

Ra

Rb

+

-

(b)

v-

v+

-

+

-

+

vo

e x e r c i s e 15 .4 The circuit in Figure 15.44 is called a differential amplifier.

a) Using the ideal Op Amp model, derive an expression for the output voltage vO in
terms of v1, v2, R1, R2, R3, and R4.

b) Does connecting a load resistor RL between the output and ground change the
previous expression for vO? Why?

c) Let v1 = v2 and R1 = 1 k�, R2 = 30 k�, and R3 = 1.5 k�. Find R4 so that
vO = 0.

d) Let v2 = 0 and v1 = 1 V. Using the preceding resistor values (including that
computed for R4), find vO.

e x e r c i s e 15 .5 For the circuit shown in Figure 15.45, D is a silicon diode, where

i = IS
(

e qv/nkT − 1
)

, kT/q = 26 mV, and n is between 1 and 2.

a) Find vO in terms of v1 and R1.

b) Make a quick sketch of the answer to (a).



15.10 Summary C H A P T E R F I F T E E N 875

+

-

vO

+

v2

R1

R4

R2

+

+
-

-

-

-15 V

+15 V

R3
v1 741

F IGURE 15.44

+

-

vO

+

R1

v1

v

D

+ -

-

i

+
-

F IGURE 15.45

-

+
vO

R1

vS
+
-

R3

R2

+15 V

-15 V

F IGURE 15.46

+

-
v2

R

vD

+15 V

-15 V
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F IGURE 15.47

e x e r c i s e 15 .6 Refer to the figure in Figure 15.46 for this exercise.

Given that vS = 2 cos(ωt) (in volts), make a sketch of vO(t) through one complete cycle.
Be sure to label the dimensions of the voltage and time axes and identify characteristic
waveform shapes with suitable expressions. (Make reasonable assumptions based on
your lab experience.)

e x e r c i s e 15 .7 Refer to Figure 15.47 for this exercise.

Diode data iD = IS
(

e qvD/kt − 1
)

where IS = 10−12 A

and kT/q = 25 mV.

For v1 in the range |v1| < 575 V, how should the value of R be chosen to keep the Op
Amp in the linear region? Make reasonable approximations.

e x e r c i s e 15 .8 Find the Norton equivalent circuit to the left of terminal pair
a a′ in Figure 15.48.

e x e r c i s e 15 .9 In the circuits (a) and (b) shown in Figure 15.49 the operational
amplifiers are ideal and have infinite gain. If the input to each amplifier is v1 = I V, what
is the output voltage vO for (a) and for (b)?
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F IGURE 15.48 va

ia

100 Ω

a

5ia 100 Ω

100 Ω

+
-

+
-

a′

F IGURE 15.49 +
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e x e r c i s e 15 .10 You may assume that the operational amplifiers used in the
connections shown in Figure 15.50 have very high gain and input resistance, and low
output resistance when operating in the linear region.

The input signals have the form shown in Figure 15.51.

a) Plot the output voltage vO for the circuit of Figure 15.50a for A = 1 V. Note: In all
of your plots, be sure to clearly indicate peak values and times when signals change
character abruptly.

b) Plot the output voltage vO for the circuit of Figure 15.50a for A = 10 V.

c) Plot the output voltage vO for the circuit of Figure 15.50b for A = 10 V.

e x e r c i s e 15 .11 For the circuit shown in Figure 15.52 (which includes a voltage-
controlled voltage source) determine:

a) The input resistance vI/iI.

b) The Thévenin equivalent resistance at the terminals a and b.

F IGURE 15.50 +

-
vO

1 kΩ

+vI

3 kΩ

(a)

-

+15 V

-15 V

-

+
vO

1 kΩ

+vI
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(b)

-

+15 V

-15 V
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e x e r c i s e 15 .12 Find and label clearly the Thévenin equivalent for the network
in Figure 15.53.

e x e r c i s e 15 .13 Find i in terms of v for the linear network in Figure 15.54.
Assume an idealized operational amplifier.

e x e r c i s e 15 .14 Determine the Thévenin equivalent for the circuit shown in
Figure 15.55, to the left of terminal pair a a′. The circuit contains a current-controlled
voltage source.
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F IGURE 15.55
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F IGURE 15.56
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e x e r c i s e 15 .15

a) Draw a circuit model for the Op Amp circuit in Figure 15.56.

b) Write the node equations for the va and the v− nodes, and enough more independent
relations to specify vo in terms of vi. Do not solve.

e x e r c i s e 15 .16 For the circuit in Figure 15.57 find vout as a function of
v1, v2, Ra, and Rb in the limit of very high Op Amp gain. Assume input resistance ri = ∞,
output resistance rt = 0, and non-saturated operation.

F IGURE 15.57
+

-
v1

Ra Rb
vout

Ra Rb

+
-

-
+v2

e x e r c i s e 15 .17 For the circuit in Figure 15.58 find i1 as a function of vi, R1, R2,
and the Op Amp gain A. Assume input resistance ri = ∞ output resistance rt = 0, and
non-saturated operations.

-

+

R1vi

i1

R2

+
-

F IGURE 15.58

+

-

R3

i2 R2

+

-

i1 R1 RL-VSS

+VSS

vO

F IGURE 15.59

e x e r c i s e 15 .18 Consider the circuit illustrated in Figure 15.59.

Assume that the operational amplifier is ideal with input resistance ri very large and
output resistance rt negligibly small, so that i+ �, i− � 0, and vO = A

(
v+ − v−)

, with
A very large. Assume it is operating in its linear range.

a) Draw a linear equivalent circuit for this circuit valid for operation with the Op Amp
in its linear range.

b) Derive an expression for vO as a function of i1,i2, and the resistors in the circuit.
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e x e r c i s e 15 .19 In the circuit in Figure 15.60 determine the voltage gain G =
vo/vi:

a) when terminal x is connected to terminal a.

b) when terminal x is connected to terminal b. Assume the Op Amp is ideal.

+

-

R

10R

vi

R

vo
R

+
-

x

a

b

+

-

F IGURE 15.60

+

-

RF

is
io

RO

F IGURE 15.61

e x e r c i s e 15 .20 For the amplifier shown in Figure 15.61, find the current
transfer ratio io/is. Assume that the Op Amp is ideal.

e x e r c i s e 15 .21 Find the Thévenin output resistance of the circuit shown in
Figure 15.62. That is, find the resistance seen looking in at the terminals X X, the
terminals that drive the load resistance RL. (Resistor RL should not be included when you
make this calculation.) Do not assume v+ � v−, as it leads to trouble here. Now, state a
condition on the value of RS to ensure that the circuit acts as a current source driving RL.

+

-

RL

vi

RS
X X- +vout

-
+

F IGURE 15.62

+

-

R2

iin

R1

R3

+

-
vout

F IGURE 15.63

e x e r c i s e 15 .22 For the Op Amp circuit in Figure 15.63:

a) Assume that the Op Amp is ideal (very large gain A, zero output resistance, infinite
input resistance, operating in the linear region) and find vout as a function of iin, R1, R2,
and R3.
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b) Draw the circuit model, assuming the Op Amp has finite A, keeping the other
assumptions from (a).

c) Analyze the circuit and find an expression for vout as a function of iin, R1, R2, and R3

and (finite) A.

e x e r c i s e 15 .23 The operational amplifier circuit shown in Figure 15.64 is
driven with a ramp.

You may assume that the operational amplifier has infinite open-loop gain, zero output
resistance, and infinite input resistance, and that the capacitor voltage is zero for t < 0.
What are the value of vO(t) at t = 0+ and t = 2 ms?

vI(t)

-+

vO(t)+

-

-
+

1 µF

1 kΩ 

2 kΩ 

vI(t) = 0,    t < 0 

vI(t) = 103 s-1 t  V,    t < 0

F IGURE 15.64

vI

-

+

vO(t)
+

-

-
+

R1

500 Ω

C = 0.02 µF

R2 = 5 kΩ

F IGURE 15.65

e x e r c i s e 15 .24 An operational amplifier is connected as shown in
Figure 15.65.

a) What is the gain of the amplifier for ω = 0?.

b) Find the expression for Vo(jω)/Vi(jω).

c) At what frequency does |Vo| fall to 0.707 of its low-frequency value?

e x e r c i s e 15 .25 For the circuit shown in Figure 15.66, determine Vout(s) in
terms of Vin(s).

e x e r c i s e 15 .26 R1 = R2 = 20 � C = 2.4µF L = 0.25 mH

Find the system function H(s) = Vb/Va for the circuit in Figure 15.67.

e x e r c i s e 15 .27 For the circuit shown in Figure 15.68, select the magnitude of
the frequency response for the system function given. It is not necessary to relate the
critical frequencies to the circuit parameters.
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vIN -

+

vOUT

-

+

-
+

R1 C1

R2

C2

F IGURE 15.66

vB

R

C

L

vA

R2

+
-

F IGURE 15.67

v2

C

R2

+
-

R1v1

H( jω) =
V2( jω)
V1( jω)
------------------

(1) (4)(3)(2)

-1 +1 -1+1

log ωlog ωlog ω

log ω log ω

log ωω1 ω1 ω1 ω2

(5)

+1

ω1 ω2

(6)

-1

ω1

(8)

None of
the above

(7)

ωω1

F IGURE 15.68

Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

P R O B L E M Sp r o b l e m 15.1 The circuit shown in Figure 15.69 is very similar to the standard
non-inverting Op Amp except that RL is some external resistor, and we are interested
in showing that the current through RL is nearly constant, regardless of the value of RL,
that is, the circuit acts like a current source for driving RL.
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F IGURE 15.69

-

+

vI -
+ RL

R2

iL
A

A′

a) Using the ideal Op Amp assumption of large gain, zero output resistance, infinite
input resistance, show that the expression for iL as a function of vI is independent
(or weakly dependent) on RL.

b) To verify the ‘‘current source’’ action more directly, find the Thévenin equivalent
resistance looking to the left of terminals AA′, with RL an open circuit.

p r o b l e m 15.2 Zener diodes are most often used to establish stable reference
voltages, independent of power supply variations, and independent of any lingering AC
signals that may be present in the power supply.

a) For the characteristics shown in Figure 15.70, find vO assuming vA is a clean DC
voltage of value 15 V.

F IGURE 15.70
+

-
vA R

10 kΩ 

-15

-

+ iD

-vZ
vO

Zener diode

+15

Zener

vD

iD

vD

vZ = 6.2 V, RZ = 7 Ω

Slope
~1/Rz

b) Determine the sensitivity of vO to changes in vA. That is, find dvO/dvA. If vA has
0.1 V of DC drift or so of 120-Hz AC ripple, how much drift or ripple shows up
on vO?

p r o b l e m 15.3 Consider the circuit in Figure 15.71.

Find vO assuming that all Op Amps are ideal and operating in the linear region.

p r o b l e m 15.4 You are faced with the problem of constructing a current trans-
mitter, a circuit that forces a load current iL into a load under accurate control of a
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vB

+

-

+

-
+

-

vA

1 kΩ 10 kΩ 

2 kΩ 

10 kΩ 

vO1 kΩ 

1 kΩ F IGURE 15.71 vA = 0.1 V and
vB = 0.2 V.

source voltage vS, independent of variations in load resistance. That is, you need a
voltage-controlled current source.

The design requirements for your problem are to achieve

iL = −KvS

where K = 10 mA/V for the ranges |vS| < 1 V, RL < 1 k�.

While looking through a handbook of practical circuits, you come across the schematic
in Figure 15.72 as a proposed solution to your problem. The question is, will it work?

+

-

vS

R1

-
+

R1

R2

R2 RL

iL

+15 V 

-15 V 

Control voltage Current transmitter Load

F IGURE 15.72

a) As a first step, analyze the basic principle of operation of the above circuit. Show
explicitly whether it is capable of performing the desired function.

b) Next, determine whether there will be any problems in selecting resistor values R1

and R2 to meet the specifications for your particular application. You should draw
on experience with Op Amp limitations. Can you meet the specs?
(Note: Part (a) is easy. Part (b) is endless, so look only for the larger issues, that is,
major sources of error or failure.

p r o b l e m 15.5 Find the Norton equivalent of the circuit in Figure 15.73 looking
into terminals A and A′.
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F IGURE 15.73

+

-

vI

R

-
+

R

R

R
A

A′

vO

F IGURE 15.74

-

+

v1

R2

-

+

R1

Rb

Ra

vOv2
+
-

+
-

p r o b l e m 15.6 You are asked to design the circuit shown in Figure 15.74 so
that the output voltage vO is the weighted sum of v1 and v2; specifically:

vO = 3v1 + 5v2

It is known that the magnitudes of v1 and v2 are never larger than 1 volt.

a) Determine the values for R1, R2, Ra, and Rb that will make the circuit perform
that sum.

b) Given that the op amp is powered from +15 and −15 V, and has output current
limits of +1 mA and −1 mA, redesign if necessary to meet these additional design
constraints.

c) How would you change the design to perform the sum:

vO = −3v1 − 5v2

using only one Op Amp (given Figure 15.74, a two-op amp design is obviously
trivial, but unnecessarily complicated)?
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p r o b l e m 15.7 For the circuit in Figure 15.75, assuming an ideal Op Amp with
large A:

a) Calculate vO in terms of vI and the resistor values.

b) Find i in terms of vI and the resistor values.

c) For what resistor values in (a) will the voltage gain become infinite? Explain why
this occurs (one sentence).

d) Find the limits on the solutions in the (a) and (b) imposed by using a real Op Amp.

-

+

vI

R1

-
+

R2

R3

R4

+

-

vO

i

F IGURE 15.75

p r o b l e m 15.8 Choose values for R1 through R5 in Figure 15.76 so that

vO = +2v1 − 5v2 − v3 − 3v4.

+

-

R1
R6

R2

R3

+

v3

v1

v2

v4

-

R4

R5

vO

F IGURE 15.76

You may assume the operational amplifier has ideal characteristics.

p r o b l e m 15.9 For the circuit in Figure 15.77, find vO in terms of vI. Ana-
lyze with literal resistor values, then substitute numbers: R1 = R2 = R3 = 10 k�,
R4 = 100 �.

p r o b l e m 15.10 This question concerns the circuit illustrated in Figure 15.78:

The operational amplifier is a high gain unit (A = 105) with high input resistance, ri,
and negligibly low output resistance, rt. Assume that it is operating in its linear region.
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+

-

vI

R1

-
+

R2

vO

R3

R4

F IGURE 15.77

-

+

vS -
+

RLvO

i+

+

-

+Vss

-Vss

F IGURE 15.78

The following data is given:

vS = 1 V

i + = 10 pA = 10−11 A

RL = 1 k�.

a) What is vO? (Accurate to within 1%.)

b) What is the power delivered by the source vS? What is the power dissipated in the
load resistor, RL?

c) The power dissipated in the load resistor, RL, is much larger than the power supplied
by the source, vS. Where does this additional power come from?

p r o b l e m 15.11 The equivalent circuit of an amplifier is shown in Figure 15.79.

F IGURE 15.79 iS R1 i1
vS R2

a

a′

+

-

b

b′

bi1

a) Find the input resistance seen by the current source iS at the input terminals a a′.

b) Find the output resistance seen at the output terminals b b′ (with the current source
shut off).

p r o b l e m 15.12 For the circuit in Figure 15.80 find vO in terms of v1 and v2.
You can use in your analysis the ideal Op Amp model.
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+

-

v2

R3

R4

R7

R8

R5

R6

R2

v1

R1

-
+

-
+ vO

-

+

F IGURE 15.80

v1 -
+

v2 -
+

R

2R

2R

+

-

vO

R -

+

F IGURE 15.81

vI
+
vO-

+

R C

-

+

-

F IGURE 15.82

p r o b l e m 15.13 An operational amplifier circuit is shown in Figure 15.81.

You may assume that the operational amplifier has ideal characteristics, including zero
input current and output resistance and further make the simplifying assumption that
its open-loop gain is infinite. Also, assume that the amplifier does not saturate.

a) With v2 = 0, what is the value of the gain vO/v1?

b) Voltage v2 is now made 3 volts. Plot the vO vs. v1 characteristics. Be sure to show
important values and slopes.

p r o b l e m 15.14 By combining Op Amps with RC circuits, we can make circuits
that perform elementary mathematical operations, such as integration and differentiation.
The circuit in Figure 15.82 is, over some range, an integrator.

a) Use the ideal Op Amp model to determiner the ideal function performed by this
circuit.
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b) Based on your knowledge of Op Amp limitations, indicate the constraints that must
be placed on the component values R and C to achieve satisfactory operation, assum-
ing that the input is a sine wave with angular frequency ω and peak amplitude A.
Express your answer as a constraint on the RC product imposed by the voltage
limit, and a separate constraint imposed by the current limit.

c) For practical reasons, R usually should not be greater than 1 megohm. Calculate
the value of C required to meet the voltage constraint listed above for operation at
20 Hz and above, and A = 1 V.

p r o b l e m 15.15 The capacitor you calculated in Problem 15.14c is (or should
be) much larger than the maximum capacitor that can be included on a VLSI chip. For
this reason, the circuit in Figure 15.82 must usually be built of Op Amps, discrete R’s
and C’s. To allow the circuit to be built on a chip, the resistor is replaced by a switched
capacitor, which can produce a very large ‘‘effective resistor’’ with reasonable capacitor
values. This circuit is shown in Figure 15.83.

F IGURE 15.83

-
+

vI C1

C2

-

+

vO

1 2

+

-

At time t = t1, the switch moves to position (1), and C1 charges (instantly) to voltage
v1(t1). Then at time t2, the switch moves to position (2), and C1 discharges into C2.
Assuming that the usual Op Amp approximation of (v+ − v−) � 0 can still be used,
calculate the charge that is ‘‘dumped’’ at each cycle, hence the average current (a function
of both vI and the switching frequency fc), and hence the effective resistance of the
switched capacitor. Also, show that the overall system equation relating vO to vI is the
same as in Problem 5.14.

p r o b l e m 15.16 In Figure 15.83, what are the constraints on C1 and C2 set by
the Op Amp voltage and current limits? Calculate the appropriate values of C1, C2, and
fc for operation at 20 Hz and above. Can the circuit now be built on an IC chip if we
replace the switch by MOS transistors, and Cmax = 100 pF?

p r o b l e m 15.17 Design a differentiator circuit out of RC circuits and Op Amps.

Calculate the constraints as in Problem 5.14b.
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p r o b l e m 15.18 This problem deals with switched-capacitor circuits introduced
in Problem 15.15. Referring to Figure 15.84, assume both S1 switches are closed for
time 1/2f0 with S2 open, and S2 closed for 1/2f0 with s1 open. Assume no overlap, that
is, and S1 and S2 switches are never both closed at the same time.

vA

S1

+

-

S2

S1

C2

C1

vB

F IGURE 15.84

a) For vA = A volts (constant), go through one complete clock cycle, identifying the
charge on each capacitor and the voltage at each node.

b) Now assume vA = A cos (ωt) where ω 
 2π f0. Sketch vB. In the circuit as
constructed, vB is zero half the time. During the other half cycles, vB and vA are
related by a simple gain expression, just as in a normal inverting amplifier. What is
the ‘‘gain’’?

p r o b l e m 15.19 Figure 15.85 is a practical implementation of a switched capac-
itor circuit (see Problem 15.15). As in the previous problem, it is useful to examine the
behavior of an ‘‘average vB’’ over a clock cycle.

a) Show that if vA = A volts (constant), the cycle-average of vB has a steady-state value
equal to −(C1/C2)A. In other words, for low-frequency signals, the circuit behaves
like a non-inverting amplifier with gain −(C1/C2).

b) Show, for vA a step of amplitude A volts, and assuming vB is initially zero, that
the cycle average of vB ‘‘charges up’’ to its steady-state value with time constant
τ = c3/f0C2. That is, show that the cycle-average of vB obeys a first-order linear
differential equation with time constant C3/f0C2.

p r o b l e m 15.20

a) Use the ideal Op Amp model to determine the ideal function performed by the
circuit in Figure 15.86.

b) Based on your knowledge of Op Amp limitations, discuss the accuracy with which
the circuit will perform the intended function, or indicate any constraints that must
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vA

S1

+

-

S2

S1

C1

vB

S2

C2

C3

F IGURE 15.85

v1

+

-
v2

C

R

+15 V

-15 V

F IGURE 15.86

be placed on the component values R and C to achieve satisfactory operation,
assuming that the input is as follows:

i: A sine wave with angular frequency ω and peak amplitude A.

ii: A triangle wave with period T and peak amplitude A.

iii: A square wave with period T and peak amplitude A.

c) The leakage of an actual capacitor can often be modeled by a large resistor in parallel
with an ideal capacitor. What effects on circuit performance would capacitor leakage
have?

p r o b l e m 15.21

a) Using the ‘‘ideal operational amplifier’’ assumption, that is, infinite gain, infinite
input resistance, and zero output resistance, determine the relationship between
vO(t) and vI(t) in Figure 15.87.

b) If the signal vI(t) is the rectangular pulse in Figure 15.88, sketch vO(t) for t > 0,
assuming that vO(0) = 0.

vI +

-

vO

R = 10 kΩ

+
-

C = 10 µF

+

-

F IGURE 15.87

0,0 100 ms t

10 VvI

F IGURE 15.88
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p r o b l e m 15.22 An operational amplifier is connected as shown in Figure 15.89.

+

-
+
-

2 kΩ 

2 kΩ 

2 kΩ 

2 kΩ 2 µF

+

-

vO

vI
F IGURE 15.89

The voltage vI is 2 volts for 0 < t < 1 ms, and 0 otherwise. Assuming that vO = 0 for
t < 0, sketch vO for t > 0.

p r o b l e m 15.23 Consider the two circuits in Figure 15.90.

vI +

-

vO

R1

+
-

C1

+

-

vI +

-

vO

R1

+
- C2

+

-

F IGURE 15.90

Use the Op Amp model to find the transfer function vO/vI for the two circuits.

Assume only moderate gain (say 100) for the Op Amp so you cannot assume v+ = v−.
How large does C2 have to be compared to C1 in order for the two circuits to behave
the same? The increase in the effective size of C1 because of the gain of the amplifier is
called the Miller Effect, and is used in Op Amp design.

p r o b l e m 15.24 Assuming an ideal Op Amp (large gain, v+ � v−, rin infinite,
rout zero, but including amplifier saturation effects).

a) Plot a curve of iIN versus vIN between −20 and +20 V for the circuit in Figure 15.91,
assuming R2 = R3. Dimension your plot.

b) A capacitor is initially charged to 1 volt (switch in position (1)) in Figure 15.92, then
connected to the circuit at t = 0 (switch in position (2)). Sketch and dimension the
waveform vC(t) for t greater than zero.

p r o b l e m 15.25 An operational amplifier is connected as shown in Figure 15.93.

a) Assuming that the amplifier has infinite gain and infinite input resistance and zero
output resistance, determine the relationship between vO(t) and vI(t).
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R2

vO

R1

+
-

+15 V 

-15 V 

R3

A

A

vIN

iIN -

+

F IGURE 15.91

R2 = R3

R1

+

-

+15 V 

-15 V 

R3

C vC

-

+

+

-
1 V 

1 2

F IGURE 15.92

vO(t)

vI(t)
+

-

+
-

10 kΩ

10 µF

F IGURE 15.93

0,0 100 ms t

10 V vI

F IGURE 15.94

b) The signal vI(t) is a rectangular pulse as Figure 15.94.
Assuming that vO(0) = 0, draw vO(t), for t > 0.

c) The operational amplifier is now connected as in Figure 15.95.
The voltage vO(t) is held at zero (by some means not shown) for t < 0. The switch
is initially in the up position, connecting the 10 k� resistor to a fixed voltage VF. At
time t = 100 ms, the switch is thrown to the down position. The observed voltage
vO(t) is shown in Figure 15.96.

vO(t)
10 kΩ

10 µF

VF

-10 V

+

-

F IGURE 15.95

vO(t)

100 ms

t

0,0

F IGURE 15.96
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Determine the relationship between VF and τ , the time required for vO(t) to return
to zero volts.

p r o b l e m 15.26 We wish to show that the circuit shown in Figure 15.97
behaves in a manner very similar to an RLC circuit.

v1

+

-
v4

C2

R2

R1

C1

v3v2

F IGURE 15.97

a) Write the node equations for v2 and v3.

b) Simplify these equations by using the Op Amp assumption, that is, v− � v+. This
allows you to neglect v3 terms compared to v4 terms, and dv3/dt terms compared
to dv2/dt and dv4/dt terms, provided C1 and C2 are comparable. (You must later
check on this last assumption.)

c) Find the characteristic equation. Compare with the RLC case.

d) For the following numerical values, is the circuit under-, over-, or critically-damped?
What is the Q of the circuit, in literal form?

C1 = C2 = .01 µF

R1 = 10 �

R2 = 1 k�

p r o b l e m 15.27 What is the differential equation relating to vO to vI in the
network in Figure 15.98? Assume that the Op Amps are ideal.

+
-

vO

6 kΩ

+
-

4 kΩ4 kΩ

+
-

3 kΩ

250 kΩ

250 kΩ

vI

20 mH

8 kΩ

2 kΩ

F IGURE 15.98



894 C H A P T E R F I F T E E N t h e o p e r a t i o n a l a m p l i f i e r a b s t r a c t i o n

vI +

-
vO

C2

R2

C1 vB

vA
R2

F IGURE 15.99

vs

-

+

v1

+
-

-
+

R1

C1

R2

C2

+

-
v2

R1 = 10 kΩ R2 = 1 kΩ

C1 = 1 µF C2 = 0.01 µF

F IGURE 15.100

p r o b l e m 15.28 The circuit in Figure 15.99 behaves in a manner very similar to
an RLC circuit.

a) Write the node equations.

b) Assume vA = Vaest, vB = Vbest, and find the characteristic equation.

c) Find α and ωo in terms of C1, C2, G1, and G2.

p r o b l e m 15.29

a) Find H1(S) = V1/Vs in Figure 15.100. Plot and dimension log |H1| and ∠H1 vs.
log ω.

b) Find H2(S) = V2/V1. Plot and dimension log |H2| and ∠H2 vs. log ω.

c) Find Ht(S) = V2/Vs = H1(S)H2(S). Plot and dimension log |Ht| and ∠Ht vs. log ω.
Compare with the plots you obtained in parts (a) and (b).

p r o b l e m 15.30

a) Find the transfer function for the network in Figure 15.101.

F IGURE 15.101

vO

R1

C2

R2 C1

vIN
+
-
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b) Synthesize the function Vo/Vin = −(s+4)/(s+6) using the circuit in Figure 15.101.
That is, find values of R1, R2, C1, and C2 that satisfy Vo/Vin. You may use capacitors
of 1 µF.

p r o b l e m 15.31 The circuit shown in Figure 15.102 is a capacitance multi-
plier. It may be incorporated into circuits that might otherwise require unrealistically
large physical capacitors. You may assume that the operational amplifier has ideal
characteristics.

A
R1

R2

C

+
-

R3

A′
Z

B
Req

Zeq

B′Ceq

F IGURE 15.102

a) Find the impedance Z looking into terminal A A′ for the circuit.

b) Show that the model on the right corresponds to an impedance equivalent to the
result obtained in part (a).

c) For R1 = R2 = 10 M�, and R3 = 1 k�, what is Ceq in terms of C?

p r o b l e m 15.32 Show that the Op Amp circuit in Figure 15.103 has the same
form of transfer function as the circuit in Problem 14.1 (shown on the left-hand side of
Figure 15.103). Find expressions for the resonant frequency and the Q.

R
+

C

-

L

+
-

vO(t)

R1

C2
vI(t)

+
-

-
+

C1

R2

vI(t) vO(t)

+

-

F IGURE 15.103

p r o b l e m 15.33 The circuit in Figure 15.104 is a switched capacitor filter. The
switches S1 and S2 are driven by nonoverlapping clocks as in Problem 15.15. Both S1

switches are closed for time 1/2fc with S2 open, and S2 closed for 1/2fc with S1 open.
Vin = A cos(ωt), ω 
 2π f0.
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F IGURE 15.104

Op Amp 2

R

V3

-

C1

+
-

+ -
+

-
+

-

+

C2

R

R

2R
R

V2

V1

S2
S1

S1 S2

Op Amp 3

Op Amp 1
Vin

CR2

CR1

a) Find (in the sinusoidal steady state) the transfer functions V3/V2 and V2/V1. Refer
to Problem 15.15 to see how to handle the switches. Note that there are no switches
across C1 and C2.

b) Now find a simple equation to describe the operation of Op Amp 1, that is, find an
expression for V1 in terms of V2, Vin, and V3. (Note that in all of our impedance
calculations, we have been implicitly assuming that the relation among V ’s for such
a circuit is the same as the relation among the time variables v(t).)

c) Now substitute from (a) into (b) to find the overall transfer function V2/Vin. Find
expressions for the resonant frequency ω0 and the bandwidth �ω in terms of the
circuit constants. The easiest way to do this is to get the transfer function into the
form:

Vo = KsVin

s2 + 2αs + ω2
0

(15.122)

and work by analogy to the parallel RLC case. How does the resonant frequency
ω0 depend on the clock frequency fc?

p r o b l e m 15.34 The circuit shown in Figure 15.105 behaves like an RLC circuit.

a) Find the transfer function V4/V1. (You may assume that the Op Amp is ideal, that
is V+ = V− to simplify your calculations.)

b) Sketch the magnitude of the transfer function |V4/V1| versus frequency. Indicate
the frequency at which the peak occurs, the magnitude of the transfer function at
the peak, and the Q of the resonance. Use the following numerical values:

C1 = C2 = 0.01 µF R1 = 10 � R2 = 1 k�
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V4

C1

-
+

-

+

C2

V1

-
+

R2

R1

F IGURE 15.105

Vo

C

-
+

-

+

Vi

-
+

R2

R1

F IGURE 15.106

c) This circuit is known as an RC active filter. Is it a low-pass, high-pass, or band-
pass filter? What is the expression for bandwidth in terms at R1, C1, etc.? That is,
B = ω2 − ω1 where ω1 and ω2 are the half power frequencies.

p r o b l e m 15.35

a) Find an expression for the complex amplitude ratio Vo/Vi for the active filter circuit
in Figure 15.106, given that R2 = 10R1. Sketch the Bode plot, |Vo/Vi| versus ω

and Vo/Vi versus ω.

b) An equivalent filter can be made with the circuit shown in Figure 15.107. Find the
value of C2 needed to make a filter equivalent to that in part (a), assuming that R1

and R2 are the same here as for part (a). How does the value of Cx here compare
to that of C in the filter of part (a)?

Vo

Cx-
+

-

+

Vi

-
+

R2

1/2 R1 1/2 R1

F IGURE 15.107
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Vo

C1

-
+

-

+

Vi

R2

+

-

C2

R1

Va

Vb

F IGURE 15.108

Vo

C1

Vi

R
+

-
L2

L1

C2

F IGURE 15.109

p r o b l e m 15.36 The circuit shown in Figure 15.108 behaves in a way very
similar to an RLC circuit.

a) Write the sinusoidal steady state node equations for the complex amplitudes Va

and Vb.

b) Solve for Vo/Vi using the results in (a), and noting that Vo = Vb.

c) Assuming the circuit is under-damped, sketch the magnitude of the transfer function
|Vo/Vi| versus frequency. Indicate the frequency at which the peak occurs, the
magnitude of the transfer function at the peak, and the Q of the resonance.

p r o b l e m 15.37 Plot the frequency response (magnitude and phase) of the active
filter shown in Figure 15.109. Assume the Op Amp is ideal.

p r o b l e m 15.38 The circuit shown in Figure 15.110 has a resonance very similar
to an RLC circuit.

a) Write the sinusoidal steady-state equations for V2 and V3.

b) Solve for V4/V1 using the results in (a), and noting that V3 = −V4/A, where the
Op Amp gain A can be assumed to be very large.

F IGURE 15.110
v4

C1

v1(t)

-

+
v2

R1

C2

R2

v3
+
-
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c) Assuming now that C1 = C2 = 0.1 µF, R1 = 10 �, R2 = 1 k�, sketch the
magnitude of the transfer function |V4/V1| versus frequency. Indicate the frequency
at which the peak occurs, the magnitude of the transfer function at the peak, and
the Q of the resonance.

p r o b l e m 15.39 For the circuit in the figure in Figure 15.111

Vo

C1
Vi

+

-C2

R2

+
-

R1

+

-

F IGURE 15.111

a) Find a set of equations which, if solved, would give Vo/Vi.

b) Assuming that these equations, when solved, yield

Vo/Vi = (jωC1)(jωC2)

G1G2 + jω(C1 + C2)G2 + (jω)2C1C2
. (15.123)

Find the expression for the undamped resonant frequency (ω0) of the circuit.

c) Find an expression for the low-frequency asymptote of Vo/Vi. (Zero is not an
acceptable answer.)

d) Find an expression for the high-frequency asymptote of Vo/Vi. (Zero is not an
acceptable answer.)

e) Assuming Q = 1/2, sketch the magnitude and phase of Vo/Vi versus ω. Specify
coordinates and dimension key features.

p r o b l e m 15.40 Tech Hi-Fi advertises a car stereo system that can deliver
10 watts average power into a 4-� speaker. Given your demonstrated proficiency in
electronics, you decide to build one using an (hefty) Op Amp. To save yourself the prob-
lems associated with designing the receiver, you plan to use a small transistor AM-FM
radio as the signal source.

You try the circuit shown in Figure 15.112.

In the following parts, you may assume that the hefty Op Amp has very high open-loop
gain, zero output resistance, infinite input resistance, and other good features.

a) What is the operating-point value of the voltage at the output of the operational
amplifier?
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F IGURE 15.112
+12 V

vI

-

+

Rf

+
-

Ci

CL
(From
radio)

1 kΩ

1 kΩ

1 kΩ
4 Ω speaker

12 V (Battery) Cf

b) Why is capacitor CL included?

c) Assume that the maximum signal from your radio is 1 volt peak to peak. What is
the maximum value of Rf that ensures the operational amplifier will remain in the
linear region?

d) What is the maximum average power that can be delivered to the 4-� speaker with
vI as a constant amplitude sinusoid?

e) In spite of your answers to parts (b) and (c), assume that you choose Rf = 10 k�

and that capacitor CL is very large. In order to reduce low frequency noise, you
decide that you should make the lower half-power frequency 100 radians per second.
What value of Ci should be selected? You also want to filter high-frequency noise
by making the upper half-power frequency 105 radians per second. What value of
Cf should be selected?

p r o b l e m 15.41

a) Using the ideal Op Amp assumptions, write the node equations for the complex
voltage for the circuit in Figure 15.113. Solve for Vo.

F IGURE 15.113

Vo

C2

-
+

-

+

Vi

-
+

R2
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Va VbC1



15.10 Summary C H A P T E R F I F T E E N 901

vO(t)

C2

-
+

-

+

vI(t)

+
-

R1

C1

vX(t)

R2

vY(t)

F IGURE 15.114

b) Assume Vo is of the form:

Vo = sKVi

s2 + 2αs + ω2
0

. (15.124)

If a short pulse is now applied to this circuit, the output voltage after the pulse is

vO(t) = 3e−100t sin(1000t + 20o). (15.125)

For K = 400(sec−1) find the response vO(t) in the steady state to a one-volt cosine
wave at the resonant frequency:

vI(t) = 1 V cos
(
ω0t

)
. (15.126)

(Provide numbers for ω0, etc.)

c) Repeat (b), for a one-volt cosine wave at the lower 0.707 frequency ω1.

p r o b l e m 15.42

a) For the circuit in Figure 15.114 write the node equations needed to find Vo(s) in
terms of Vi(s). Your answer must be arranged with the source terms on the left, the
unknown variables on the right, and must use conductances g(= 1/R).

b) Solving these equations, you should obtain for C1 = C2,

Vo(s) = s2Vi

s2 + s 2
R2C

+ 1
R1R2C2

. (15.127)

For R1 = 1 k�, find the values of R2 and C that give a Q of 10 and a resonant
frequency, defined as the frequency where the s2 term and the s0 term cancel in the
denominator of Equation 15.127, of ωo = 1000 rad/s.
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p r o b l e m 15.43 For the network shown in Figure 15.115:

F IGURE 15.115 +

-

+
-

+

-

R2

R1

vI vO

C

Find Vo/Vi

a) Determine an expression for the indicated transfer function.

b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you
learn to use both kinds of axes.
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d iode s 16
16.1 I N T R O D U C T I O N

The diode was introduced in Chapter 4 as an example of a nonlinear device.
We used its nonlinear v i characteristic to develop several methods of analyzing
nonlinear circuits. It turns out that the diode is a particularly useful nonlinear
device, and merits closer examination. Figure 16.1 shows a few discrete diodes.
This chapter explores several useful diode circuits, and develops additional
analysis methods that are specific to diodes.

16.2 S E M I C O N D U C T O R D I O D E
C H A R A C T E R I S T I C S

We will consider semiconductor diodes made out of silicon. Recall, we have
previously seen an example of a silicon-based device, namely the MOSFET. Let
us first review briefly the properties of silicon and semiconductors. Silicon is an
element in the cubic crystal class of Group IV in the periodic table (along with
germanium). In pure crystalline silicon, each atom forms covalent bonds with
its nearest neighbors, so that at room temperature almost all valence electrons
are involved in the structural bonding, and very few are free to move about
the crystal. Hence pure silicon at room temperature is a very poor conductor
of electricity.

However, if minute amounts of impurities are added to the silicon by high
temperature diffusion, or by ion implantation, for example, then the electrical

F IGURE 16.1 Discrete diodes.
( Photograph Courtesy of Maxim
Integrated Products.)

905
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properties change dramatically. Add a part per million of a Group V element,
such as phosphorus, to the Group IV element silicon, and we obtain a crystal
that has many ‘‘mobile’’ electrons not involved in covalent bonds. Hence the
material is now a good conductor. We call this material n-type silicon (n stand-
ing for negative, indicating mobile negative charge carriers, that is, electrons).
Similarly, if we add small amounts of a Group III element such as aluminum
to the pure silicon, the resulting crystal will have a large deficit of electrons in
the bonding structure. One useful way of visualizing the effect of this deficit is
to imagine that we have created not a deficit of negative charges, but a surplus
of positive charges, which we call holes. (A hole is thus a convenient way of
representing the absence of an electron.) This is called p-type silicon, signifying
mobile positive charge carriers. Both n-type and p-type silicon are electrically
neutral, because the constituents were electrically neutral. But unlike pure sili-
con, both are relatively good conductors of electricity. You may recall the use
of both p-type and n-type silicon in the fabrication of MOSFETs.

One way to make a semiconductor diode is to metallurgically create a
wafer of silicon containing n-type material adjoining p-type material. In an
n-channel MOSFET, for example, the n-type drain juxtaposed to the p-type
channel region forms a diode. The circuit symbol for the diode, shown in
Figure 16.2, emphasizes this asymmetric structure by denoting the p region
with an arrow, and the n region as a line. If a battery and a resistor are connected
to the diode to make the p region positive with respect to the n region, as in
Figure 16.3a, large currents will flow. This is called forward bias. But if the
battery is connected in the opposite way (Figure 16.3b), to make the n region
more positive than the p region to reverse bias the diode, almost no current
will flow. This gross asymmetry in electrical behavior is the essence of the
semiconductor diode.

An analytical expression for the relation between the voltage vD and the
current iD for the diode can be derived from semiconductor physics:

iD = Is(e vD/VTH − 1). (16.1)

The parameter, VTH = kT/q, is called the thermal voltage, and the constant Is
is the saturation current. For silicon Is is typically 10−12 amps. q is the charge

iD

vD
-+

np

F IGURE 16.2 A semiconductor diode.

-+ R - + R(a) (b)

F IGURE 16.3 (a) Forward bias; (b) reverse bias.
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vD

10 pA

iD

vD

10 mA

iD

5 V(a) (b)0.5 V 

F IGURE 16.4 v–i characteristics
of a silicon diode.

of an electron,1 k is the Boltzmann’s constant,2 and T is the temperature in
kelvins.3 At room temperature, kT/q is approximately 0.025 volts.

Typical measured v i characteristics for a silicon diode are shown
in Figure 16.4. If we plot on a current scale of pico-amps (10−12 amps), as
in Figure 16.4a, then the expected exponential shape appears. But if we plot on
a more typical scale of milliamps (Figure 16.4b), then the curve looks quite
different. The current appears to be zero until the diode voltage is almost
0.6 volts, at which point the characteristic rises very sharply. This apparent
knee is entirely due to the mathematical behavior of exponentials, rather than
some physically-related threshold in the device. Nonetheless, on the scale of
milliamperes, silicon diodes appear to have a voltage threshold of 0.6 to 0.7 V,
(0.2 V for germanium diodes). This threshold has important consequences for
semiconductor circuit design, some detrimental but others of great value. For
example, recall that digital logic depends critically on the presence of such a
threshold, as we saw in Chapter 6.

e x a m p l e 16.1 a n a l y s i s o f a d i o d e - b a s e d t e m p e r -

a t u r e m e a s u r e m e n t c i r c u i t To achieve the greatest possible
computational performance, microprocessors in notebook computers and servers
operate with a variable-frequency clock. The faster the clock, the more operations per
second a microprocessor can perform. However, as its clock frequency increases, a
microprocessor becomes hotter for reasons that are discussed in Chapter 11. Generally,
the temperature of a microprocessor should be limited to about 110 ◦C. To increase
its performance, the clock frequency of a microprocessor is increased until the thermal
limit is reached. How does a microprocessor determine its temperature?

Diodes in a microprocessor can be used to sense temperature. For example, the MAXIM
MAX1617 device measures temperature by forcing two different currents through a

1. The electron charge q = 1.602 × 10−19 C.

2. The Boltzmann’s constant k = 1.380 × 10−23 J /◦K.

3. The temperature in kelvins can be obtained from the temperature in degrees Celsius as follows:

T [◦K] = T [◦C] + 273.15 [◦C].
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diode and comparing the resulting voltages. For sufficiently large voltages, the diode
equation can be approximated by:

iD ≈ Ise qvD/kT.

Therefore, the voltage vD across the diode is given approximately by:

vD = kT

q
ln

(
iD
Is

)
.

To measure temperature, the MAX1617 first forces the current iD1 through the diode,
and next forces the current iD2 through the diode. The resulting voltages, vD1 and vD2,
are then differenced to obtain

vD1 − vD2 = kT

q
ln

(
iD1

iD2

)
.

This voltage difference is proportional only to absolute temperature in kelvins if the ratio
between iD1 and iD2 is fixed.

Suppose iD1 = 100 µA and iD2 = 10 µA. Then, for T = 300 ◦K, or 27 ◦C, the volt-
age difference is 59.5 mV. If the temperature rises to T = 383 ◦K, or 110 ◦C, the voltage
difference rises to 76.0 mV.

16.3 A N A L Y S I S O F D I O D E C I R C U I T S

Given the analytical expression for the diode characteristic, Equation 16.1, how

-

+
R

-

+

-+

vD

iD

E

vR

F IGURE 16.5 Circuit with diode.

can we calculate the voltages and currents in a simple circuit such as Figure 16.5?
Depending on our requirements, as discussed in Chapter 4, we can use one
of the four methods of analyzing nonlinear circuits developed previously: (1)
analytical solutions, (2) graphical analysis, (3) piecewise-linear analysis, and (4)
incremental analysis. However, circuits with multiple diodes and other elements
get algebraically complex quickly and become virtually impossible to analyze
directly. Fortunately, it turns out that the dichotomous behavior of the diode
under forward bias and reverse bias allows us to decompose more complex
diode circuits into simple subcircuits, each of which can be independently ana-
lyzed using one of the four methods. This decomposition method is called the
method of assumed diode states.

16.3.1 M E T H O D O F A S S U M E D S T A T E S

Recall from the graphical construction illustrated in Figure 16.6 (as well as
from the original definition of the ideal diode outlined in Equations 16.2 and

iD

vD

(a)

 iD
+

-

vD

(b)

Short

Open
circuit

circuit

F IGURE 16.6 Ideal diode model.

16.3), that the ideal diode has two mutually exclusive states: the ON state, for
which the diode voltage vD is zero (the diode is a short circuit), and the OFF state,
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where the diode current iD is zero (the diode is an open circuit). This suggests
a very simple analysis technique: Draw two subcircuits corresponding to the
two diode states, and analyze each subcircuit. Because in each subcircuit the
diode is either a short or an open circuit, the subcircuits are linear. Hence linear
analysis methods can again be used to find the output voltage. Some insight is
then required to piece together a complete solution from these two parts.

Diode ON: v = 0 for all positive i. (16.2)

Diode OFF: i = 0 for all negative v. (16.3)

To illustrate, consider the half-wave rectifier circuit discussed in Chapter 4
(redrawn in Figure 16.7). Let us analyze this circuit using the method of assumed
states and the ideal diode piecewise linear model depicted in Figure 16.6.

The two subcircuits for the half-wave rectifier corresponding to the two
diode states are shown in Figure 16.8a and 16.8b. One circuit applies whenever

+
-

+

-
R vr

E = Eo cos(ωt)
F IGURE 16.7 Half-wave
rectifier circuit using the ideal
diode model.

+

-

R vra 

t

 vrb

(a) Diode OFF

(b) Diode ON

(c)

+
-

+

-
R vrb

iD = 0

vi

vra

t

t

vr

vD = 0

+
-

vi F IGURE 16.8 Analysis by
assumed diode states.
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F IGURE 16.9 Diode model
comprising an ideal diode, the
0.6-volt source, and a resistor.

+

-

+

-
0.6 V

iD

vD

Rd

iD

vD0.6 V

Slope = 1/Rd  

the diode is OFF, the other when the diode is ON. Analysis of these two
circuits is trivial in this case: For the diode OFF, Figure 16.8a, vra = 0, and
for the diode ON, Figure 16.8b, vrb = vi. Now we must apply the diode
constraints, Equations 4.34 and 4.35, to find which portions of these waveforms
are valid. The ON circuit applies only for iD positive, hence only for vi positive,
as indicated by the darker line segments. The OFF circuit applies only for vD
negative, hence vi negative, so the valid parts of the vr waveform here are again
darkened. The two parts of the solution can now be combined to yield the
complete solution for the output wave, Figure 16.8c.

Generalizing from this simple example, to analyze a diode circuit by the
method of assumed states:

1. Draw a subcircuit for each possible state (ON or OFF) of the diodes. For
one diode there are two subcircuits. For n diodes there are 2n such states,
and hence 2n subcircuits.

2. Analyze each resulting linear circuit to find an expression for the desired
output variable. Because in each subcircuit the diode is either a short or
an open circuit, the subcircuits are linear. Hence linear analysis methods
can be used.

3. Establish the range of validity of each of the expressions in (2); then
assemble the appropriate segments to form the complete output
waveform.

e x a m p l e 16.2 m e t h o d o f a s s u m e d s t a t e s w i t h

i m p r o v e d p i e c e w i s e l i n e a r d i o d e m o d e l The method
of assumed states can also be applied with other diode models and analysis methods.
To illustrate, let us use the diode model comprising the ideal diode and both the
0.6-volt source and the resistor Rd shown in Figure 16.9 (see Chapter 4.4.1 for details)
to re-analyze the half-wave rectifier circuit of Figure 16.7.

An appropriate circuit model is shown in Figure 16.10a. The subcircuits for the ON and
the OFF states of the diode are shown in Figures 16.10b and 16.10c. As both subcircuits
are linear (by definition), analysis is easy.
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F IGURE 16.10 Analysis with
more accurate model.

For the ON state,

vra = (vi − 0.6)
R

R + Rd
(16.4)

and for the OFF state, vr = 0.

The regions of validity for these waveforms can be found from the constraint equations
for the ideal diode, Equations 16.2 and 16.3. The ON subcircuit only applies for iD
positive, hence the valid regions of vra are the positive segments. The OFF subcircuit
must therefore fill in the gaps. More formally, the OFF circuit applies when the voltage
across the ideal diode is negative, hence for vi less than 0.6 V. The composite solution is
shown in Figure 16.10d.
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16.4 N O N L I N E A R A N A L Y S I S W I T H
R L A N D R C

Circuits that contain one energy-storage element (capacitor or inductor) and
resistive nonlinearities such as diodes, Op Amps, and MOSFETs are very
common in electronic systems: sweep circuits in oscilloscopes or television
sets, rectifier circuits in all types of equipment. Fortunately, such circuits can be
analyzed and designed quite readily using a combination of two techniques we
have already discussed. If we represent each nonlinear element by a piecewise
linear model, then the circuit can be represented by two or more subcircuits,
each representing one diode state. By definition each of these subcircuits is
linear, and contains one L or one C, so can be solved by methods of Chapter 10.

16.4.1 P E A K D E T E C T O R

A simple example is shown in Figure 16.11, a circuit identical to the half-wave
rectifier already discussed, except for an added capacitor. The output waveform
of this circuit will follow the positive peaks of the input wave, so is more efficient
for converting AC to DC. The node equation at the vC node is

iD = vC

R
+ C

dvC

dt
. (16.5)

F IGURE 16.11 Peak detector.

R

(a) Circuit

vi = Vp sin(ωt) vC

(b) Diode ON subcircuit
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-
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-
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(c) Diode OFF subcircuit
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-
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The v i relation for the semiconductor diode can be written in terms of vC by
noting that

vD = vi − vC. (16.6)

Hence

iD = Is
(

eq (vi−vC)/kT − 1
)

. (16.7)

Substituting this into Equation 16.5 and recasting as a state equation we obtain

dvC

dt
= − vC

RC
+ Is

C

[
eq (vi−vC)/kT − 1

]
. (16.8)

This equation could be solved by standard numerical methods, but much
insight can be obtained from a piecewise-linear solution.

If we model the diode as an ideal diode, then two linear RC subcircuits
result, one for the diode ON, and the other for the OFF state, as shown in
Figures 16.11b and 16.11c. For the diode ON,

vC = vi. (16.9)

For the diode OFF, the drive is disconnected from the capacitor, so vC is a
zero-input response, of the form:

vC = Ke−t/RC. (16.10)

The constraints which determine the range of validity of each of these solutions
are derived from the conditions on the diode states, repeated from Section 4.4:

Diode ON: iD positive, vD = 0 (16.11)

Diode OFF: vD negative, iD = 0. (16.12)

Applying Equation 16.12 to the OFF circuit, we find that to keep vD negative:

vi < vC. (16.13)

In the ON state, Equation 16.11 requires that iD be positive. From Equa-
tion 16.5,

iD =
[

vC

R
+ C

dvC

dt

]
> 0. (16.14)

The solution for a sine wave vi can now be sketched. As shown in Figure 16.12,
during the first quarter cycle, the source is charging the capacitor, so iD is
positive, and the diode is ON. Now as the sine wave comes down from its
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F IGURE 16.12 Peak detector
waveforms.

Voltage

0

Diode OFF Diode ON

vi

vC
t

τ
4
--- τ

2
--- 5τ

4
-----3τ

4
----- τ

peak, the capacitor starts to discharge, but from Equation 16.14 this forces iD
to zero, and the diode changes to the OFF state. A simple exponential discharge
follows of the form given in Equation 16.10. At some later point in the cycle, the
input voltage rises up to the capacitor voltage, the constraint of Equation 16.13
is no longer met, and the diode switches back to the ON state.

It is somewhat messy to calculate the exact voltages or times at which the
diode switches state. But frequently in nonlinear circuit design the fundamental
design constraints of the circuit make exact calculations of this sort unneces-
sary. For example, for rectifier applications, it is desirable to have the RC time
constant much longer than the sine wave period, as we shall see. In this case
the diode switches to the OFF state only a few degrees beyond the peak of the
wave. Hence the starting amplitude for vC in the diode OFF state is roughly
the peak of the input sine wave, and the OFF state waveform is

vC � Vpe
− (t−τ /4)

RC . (16.15)

Note that the peak of the size wave occurs at t = τ /4, where τ is the cycle
time. For the very long time-constant case, this discharge will be approximately
linear:

vC � Vp

(
1 − t − τ /4

RC

)
. (16.16)

The return to the ON state occurs when vi = vC, hence when

Vp sin(ωt) = Vp

(
1 − t − τ /4

RC

)
, 2π < ωt ≤ 5π

2
. (16.17)

This is still a transcendental equation, but it can be solved readily on a calculator.
Often we are interested only in an upper bound on the size of the ripple on

the vC wave when the circuit is in the ‘‘steady state,’’ that is, when the waveforms
become repetitive. In this case the first quarter cycle in Figure 16.12 is ignored,
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and attention is focused on the repeating waveform thereafter. This would be
the case if we were using the circuit as a rectifier to convert a 60-Hertz AC
signal to DC to supply DC power to Op Amps and MOSFETs. Rather than
solving Equation 16.17 for the turn-on time, and then calculating the capacitor
voltage at turn-on, we just assume the transient continues for the complete
period of the sine wave. This gives a slightly larger ripple than the actual value,
so designs based on this approximation will be conservative. We are in effect
assuming that Equation 16.16 applies for the entire period τ of the input sine
wave, and at the end of one cycle, vC instantly jumps to Vp, then decays
again. Under this assumption the peak-to-peak value of the ripple will be, from
Equation 16.16,

Peak-to-peak ripple � Vp
τ

RC
. (16.18)

If, for example, the RC time constant is chosen to be ten times the period of the
sine wave, the peak-to-peak ripple will be 10% of Vp, the peak of the input sine
wave. The DC voltage from the rectifier is the average value of vC. This can be
found by inspection of the vC waveform in Figure 16.12, again, assuming that
the transient continues for the complete period of the sine wave:

vC = 1

τ

∫ τ

0
Vp

(
1 − t

RC

)
dt (16.19)

= VP
(
1 − τ /2RC

)
. (16.20)

For RC = 10τ , the DC is 0.95 Vp.

16.4.2 E X A M P L E : C L A M P I N G C I R C U I T

A simple diode clamping circuit is shown in Figure 16.13. Assuming that the
diode can be modeled by an ideal diode, then the two subcircuits for the ON
and OFF states have a very simple form, as shown in Figure 16.13b and c. In
the ON state,

vC = vi (16.21)

vo = 0. (16.22)

Any time vi is less than vC, the circuit will be forced into the ON state. The
degenerate nature of the circuit, which is modeled here as having zero resis-
tance in this state, may be troublesome. Think of adding a small resistance
associated with the source, or with the forward-biased diode. Now to keep the
diode ON, the diode current iD must be positive, so

vi < vC. (16.23)
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F IGURE 16.13 Diode clamping
circuit.

Rvi vo
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(c) Diode OFF subcircuit
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+
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vi
+
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vi
+
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(a) Complete circuit

In the OFF state, the circuit reduces to the linear RC circuit discussed in
Chapter 10. If we assume vi is a square wave to simplify the problem, then
in this state vC will be

vC = Vinite
−t/RC + Vfinal(1 − e−t/RC). (16.24)

The resistor voltage can be found from the capacitor voltage:

vo = iCR (16.25)

= RC
dvC

dt
. (16.26)

For the square-wave input case, this can be evaluated from Equation 16.24:

vo = [
Vfinal − Vinit

]
e−t/RC. (16.27)

To keep the circuit in the OFF state, vD must be negative, hence from KVL

vC − vi = vD < 0. (16.28)



16.4 Nonlinear Analysis with RL and RC C H A P T E R S I X T E E N 917

0
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vC (V)

-10

0

0

F IGURE 16.14 Diode clamp
waveforms.

Hence the circuit constraint is

vC < vi. (16.29)

Now the waveforms can be sketched. Assuming that the capacitor is ini-
tially uncharged and the input voltage goes positive to +10 V on the first
half cycle, as suggested in Figure 16.14, then the initial circuit state is the OFF
state, from Equation 16.29. Hence the capacitor will charge toward +10 volts.
Here Vinit = 0, and Vfinal = 10, so

vC = 10
(

1 − e−t/RC
)

. (16.30)

At the same time

vo = 10e−t/RC. (16.31)

The Figure 16.14 show these waveforms for the case where the transients
only go part-way to completion, that is, for the RC time constant long
compared to the period of the square-wave.

The input waveform undergoes an abrupt transition at t1, at the end of
the first half-cycle, dropping to −10 volts. Because vC had been positive, the
constraint of Equation 16.23 now applies, and the circuit is forced into the ON
state. Physically, the diode is ON, so the capacitor is connected directly across
vi, and vo is zero. Note that for this over-idealized circuit the capacitor voltage
is forced to change instantaneously from some positive voltage to −10 volts
in response to the input transition. A more realistic model which included
either diode forward resistance or a resistance associated with the source would
eliminate this anomaly, and produce a rapid transition in vC rather than an
instantaneous jump.

As noted in the waveforms, the ON state persists until the input wave
undergoes a transition back to +10 volts. As soon as vi moves away from
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−10 volts, the constraint of Equation 16.29 will be satisfied, and the circuit
will be forced to the OFF state. The capacitor starts at −10 volts, and would
charge to +10 volts if the input remained at +10 for long enough, so from
Equation 16.24

vC = 10 − 20e−t/RC. (16.32)

Also, from Equation 16.27, the output voltage must be

vo = 20e−t/RC. (16.33)

Reasoning physically from the circuit, right after the transition the capaci-
tor is still charged to −10 volts, and the source is at +10 volts, so the voltage
across the resistor at this point is 20 volts. If it were not for the intervening
transition, the resistor voltage would decay to zero; hence Equation 16.33.

At t3, vi moves abruptly to −10 V, and forces the diode to the ON state,
as before. From here on, the waveform patterns repeat.

The waveforms in Figure 16.14 have been drawn for the case where the
capacitor discharges appreciably during each half-cycle. This case was chosen
for clarity rather than functionality. When the circuit is used as a DC restorer in
a television set, the RC time constant would normally be chosen to be much
longer than the period of the input wave. In such designs, the output wave
has the same shape as the input wave, except that the waveform is shifted so
as to be always positive. The most negative value of the input voltage is now
clamped to 0 V.

W W W 16.4.3 A S W I T C H E D P O W E R S U P P L Y U S I N G
A D I O D E

W W W 16.5 A D D I T I O N A L E X A M P L E S
W W W 16.5.1 P I E C E W I S E L I N E A R E X A M P L E :

C L I P P I N G C I R C U I T

W W W 16.5.2 E X P O N E N T I A T I O N C I R C U I T

W W W 16.5.3 P I E C E W I S E L I N E A R E X A M P L E : L I M I T E R

W W W 16.5.4 E X A M P L E : F U L L - W A V E D I O D E B R I D G E

W W W 16.5.5 I N C R E M E N T A L E X A M P L E : Z E N E R - D I O D E
R E G U L A T O R

W W W 16.5.6 I N C R E M E N T A L E X A M P L E :
D I O D E A T T E N U A T O R
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16.6 S U M M A R Y
� The following is an analytical expression for the relation between the

voltage vD and the current iD for the diode:

iD = Is(e vD/VTH − 1).

The parameter, VTH = kT/q, is called the thermal voltage. The constant
Is for silicon is typically 10−12 amps. q is the charge of an electron, k is
the Boltzmann’s constant, and T is the temperature in kelvins. At room
temperature, kT/q is approximately 0.025 V.

� The ideal diode model approximates the v i characteristics of a diode using
two straight-line segments given by:

Diode ON: v = 0 for all positive i

Diode OFF: i = 0 for all negative v.

� A more accurate diode model comprises an ideal diode in series with a
voltage source, and can be summarized as:

Diode ON (vertical segment): vD = 0.6 V for iD > 0

Diode OFF (horizontal segment): iD = 0 for vD < 0.6 V.

� An even more accurate diode model comprises an ideal diode in series
with a voltage source and a resistor, and can be summarized as:

Diode ON (vertical segment): vD = 0.6 V + iDRd for iD > 0

Diode OFF (horizontal segment): iD = 0 for vD < 0.6 V.

� The method of assumed states to analyze a diode circuit has the follow-
ing steps:

1. Draw a subcircuit for each possible state (ON or OFF) of the diodes.
For one diode there are two subcircuits. For n diodes there are 2n such
states, and hence 2n subcircuits.

2. Analyze each resulting linear circuit to find an expression for the desired
output variable. Because in each subcircuit the diode is either a short or
an open circuit, the subcircuits are linear. Hence linear analysis methods
can be used.

3. Establish the range of validity of each of the expressions in (2),
then assemble the appropriate segments to form the complete output
waveform.
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E X E R C I S E S e x e r c i s e 16.1 Determine and graph the v i relation imposed at its port by the
network shown in Figure 16.27. Assume that the diode is ideal.

e x e r c i s e 16.2 Consider the circuit shown in Figure 16.28. Determine and

+
-3 V

+

-

v

1 kΩ

3 kΩ

i

F IGURE 16.27

+

-

vOUT

+

-

vIN

1 kΩ

4 kΩ

2 kΩ

F IGURE 16.28

graph vOUT as a function of vIN for the following two diode models. Clearly label the
breakpoints between neighboring piecewise-linear regions in the graph. In addition, indi-

+

-

+

-
0.6 V

iD

vD

F IGURE 16.29

cate the regions of the graph that correspond to the different on/off state combinations
of the diodes.

a) Assume that each diode is ideal.

b) Model each diode as an ideal diode in series with a 0.6-V source, as shown in
Figure 16.29.

e x e r c i s e 16.3 The diode in the circuit shown in Figure 16.30 is ideal. Assuming
that vIN(t) = 1 V sin(2π100 rad/s t), determine and graph vOUT for 0 ≤ t ≤ 20 ms.

e x e r c i s e 16.4 Determine and graph vOUT as a function of vIN for the circuit
shown in Figure 16.31. In doing so, model the diode as shown in Figure 16.29, and
assume that the Op Amp is ideal. Also, contrast the input-output behavior of the circuit
shown in Figure 16.31 with that of the half-wave rectifier studied in the chapter on
nonlinear analysis.

e x e r c i s e 16.5 This exercise explores the use of superposition to analyze net-
works containing diodes. For this purpose, assume that the diodes in Figure 16.32 are
all ideal.

a) Let vIN2 = 0. Determine vOUT as a function of vIN1.
b) Let vIN1 = 0. Determine vOUT as a function of vIN2.
c) Finally, determine vOUT for the general case in which both vIN1 and vIN2 are nonzero.
d) Your answer to Part (c) should not be a superposition of your answers to Parts (a)

and (b). Why not?

vOUT+
- vIN

10 kΩ

20 kΩ

20 kΩ

+

-
+

-

F IGURE 16.30

vOUT

+
-

vIN

+

-

R

F IGURE 16.31
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P R O B L E M Sp r o b l e m 16.1 For the two circuits shown in Figure 16.33, determine and
graph vOUT as a function of vIN. Assume that all diodes and Op Amps are ideal.

vOUT
+
-

vIN2 R+
-

vIN1

F IGURE 16.32

vOUT

vIN

+
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R3

vOUT

+
-

vIN

+
-

R1

R2

R1

R3

R2+
-

F IGURE 16.33

p r o b l e m 16.2 The diodes in the networks shown in Figure 16.34 are ideal.
Both networks are driven by a voltage source which produces a pulse of amplitude V◦
for a duration T. Prior to t = 0, both networks are at rest.

a) Find vC(t) and iL(t) for 0 ≤ t ≤ T.
b) Find vC(t) and iL(t) for T ≤ t.

+

-
T

V(t)

Vo

0 t
vC(t) C

V(t)

iL(t)

R2

L
R1

 V(t)
R2

+
-

+
-

R1

F IGURE 16.34

p r o b l e m 16.3 The diodes in the networks shown in Figure 16.35 are ideal.
Both networks are driven by a current source which produces a pulse of amplitude I◦
for a duration T. Prior to t = 0, both networks are at rest.

a) Find vC(t) and iL(t) for 0 ≤ t ≤ T.
b) Find vC(t) and iL(t) for T ≤ t.

+

-T

I(t)
Io

0 t

C

I(t) R2

LR1

R1

I(t) R2

iL(t) vC(t)

F IGURE 16.35
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F IGURE 16.36 +
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vOUT1+
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R
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-
vIN2

+
-

R

p r o b l e m 16.4 This problem studies the construction of multipliers, dividers,
and exponentiators using diodes and Op Amps. Throughout this problem assume that
the diodes exhibit the relation iD ≈ ISe qvD/kT, and that the Op Amps are ideal.

a) For both circuits shown in Figure 16.36, determine vOUT as a function of vIN. Also,
in view of the approximation used to describe the behavior of the diodes, state the
range of vIN over which the analysis holds.

b) Multiplication can be performed by adding logarithms. Using this fact, construct a
circuit that produces an output voltage that is proportional to the product of two
input voltages. State the input-output relation of the circuit, and state the range of
input voltages over which the circuit will act as a multiplier.

c) Division can be performed by subtracting logarithms. Using this fact, construct a
circuit that produces an output voltage that is proportional to the quotient of two
input voltages. State the input-output relation of the circuit, and state the range of
input voltages over which the circuit will act as a divider.

d) Exponentiation can be performed by scaling logarithms. Using this fact, con-
struct circuits that produce an output voltage that is proportional to the square
and cube, respectively, of an input voltage. State the input-output relation of the
circuits, and state the range of input voltages over which the circuits will act as
exponentiators.

p r o b l e m 16.5 Determine vOUT for the circuit shown in Figure 16.37 given
that vIN is a 100-kHz square wave that switches between 0 V and 5 V. The buffer in

+

-

vOUT+
-

vIN

1 kΩ

2 nF

F IGURE 16.37

the circuit produces an output of 0 V for an input of 2.5 V and below; it produces an
output of 5 V for an input above 2.5 V. Assume that the diode is ideal.

p r o b l e m 16.6 The circuit shown in Figure 16.38 is a very simple power supply
for a resistive load. With a sufficiently large value for C, it produces a reasonably constant
vOUT from a 60-Hz input of the form vIN = 10 V cos(2π 60 rad/s t).

a) Also shown in Figure 16.38 is a graph of vIN and vOUT. Assume that C = 103 µF.
Determine T1 and T2, the times at which vOUT breaks away from and returns to
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voltages

0

Diode OFF
Diode ON

vIN

vOUT

10 V

-10 V

T1 T2 1
60
------ s

C

vIN

+
-

10 Ω +

-
vOUT

F IGURE 16.38

vIN, respectively, as shown in the figure. Also find vOUT(T2), the minimum value
of vOUT.

b) Repeat Part (a) for C = 104 µF.
c) Approximately how large should C be if vOUT is to drop no more that 0.1 V?
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ap p end ix a

maxwel l ’ s equat ion s

and the lumped matter

d i s c i p l ine

This appendix develops the constraints of the lumped matter discipline and
demonstrates that the constraints result in a simplification of Maxwell’s
Equations into algebraic equations.

I

V
+ -

F IGURE A.1 A lumped circuit
element.A.1 T H E L U M P E D M A T T E R D I S C I P L I N E

Lumped circuits comprise lumped elements connected by ideal wires. A lumped
element has the property that a unique terminal voltage V(t) and terminal current
I(t) can be defined for it. As depicted in Figure A.1, for a two-terminal element,
V is the voltage across the terminals of the element, and I is the current through

a

l

F IGURE A.2 Resistive bulb
filament.

the element. As we will show shortly, the voltage and the current are defined
for an element or for points within a circuit only under certain constraints that
we collectively call the lumped matter discipline.

Let us use our familiar lightbulb as an example and derive the conditions
under which we can treat pieces of matter as lumped elements for inclusion

x

y

V

+

-

I

F IGURE A.3 Defining a voltage
and current for the terminals of the
filament.

in electronic circuits. Suppose for the sake of discussion the lightbulb is made
out of a cylindrical piece of filament of length l and cross-sectional area a as
depicted in Figure A.2.

As shown in Figure A.3, let us assume that the terminals labeled x and
y are attached to the end surfaces of the filament, and that the end faces are
equipotential surfaces. Let us determine the set of conditions under which (1) a
unique voltage V can be defined across x and y and (2) a unique current I can
be defined through x and y.

A.1.1 T H E F I R S T C O N S T R A I N T O F T H E L U M P E D
M A T T E R D I S C I P L I N E

Let’s begin with the voltage. We define voltage as the line integral of the electric
field E according to1

Vyx = −
∫ y

x
E · dl.

1. Alternatively, observing that

qVyx = −
∫ y

x
qE · dl,

927
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d i f f e r e n t i a l i n t e g r a l p o p u l a r

f o r m f o r m n a m e

∇ · E = ρ

ε0

∮
E · dS = q

ε0
Gauss’s law for electricity

∇ · B = 0
∮

B · dS = 0 Gauss’s law for magnetism

∇ × E = −∂B

∂t

∮
E · dl = −∂�B

∂t
Faraday’s law of induction

∇ × B = µ0ε0
∂E

∂t
+ µ0J

∮
B · dl = µ0ε0

∂�E

∂t
+ µ0i Ampere’s law (extended)

∇ · J = −∂ρ

∂t

∮
J · dS = −∂q

∂t
Continuity equation

TABLE A.1 Maxwell’s Equations
(for a vacuum). The fifth equation is
the continuity equation implicit in
Maxwell’s Equations. It can be
derived by combining the time
derivative of the first equation with
the divergence of the fourth
equation. E is the electric field, B
the magnetic flux density, ρ the
charge density (note that this ρ is
different from the resistivity used in
computing the resistance of an
element), J the current density, ε0
the permittivity of free space, µ0
the magnetic permeability of free
space, �E the electric flux, and
�B the magnetic flux. �E is
defined as the area integral of E
and �B as the area integral of B.

Note that E is a vector. As illustrated in Figure A.4, the preceding equation
indicates that the voltage depends on the path x → y. However, for our
lumped abstraction to apply, we require that we be able to assign a unique
voltage between the x and y terminals. Clearly, this voltage cannot be a function
of the specific path between the x and y points. It seems we have already hit a
snag in our attempt to create the abstraction of a lumped element to which the
lumped parameters V and I apply.

x

y

x → y

F IGURE A.4 The voltage
between the x and y terminals.

Put another way, we know from Maxwell’s Equations (summarized in
Table A.1) that ∮

E · dl = −∂�B

∂t

where E is the electric field and �B is the magnetic flux which passes through
the surface outlined by the closed path of the integral, as depicted in Figure A.5.
We also know the preceding equation as Faraday’s law of induction. Notice

E   dl•

∂ΦB
t∂----------–

F IGURE A.5 Pictorial depiction
of

∮
E · dl.

that if we choose the two points x and y to be the same, then we can obtain a
nonzero value for

∫ y
x E · dl = ∮

E · dl. Thus it appears our definition of potential
difference or voltage has no useful meaning in this case. However, are there
constraints that we can apply for which a unique voltage can be defined?

In the absence of a time-varying magnetic flux, we can write∮
E · dl = 0.

the voltage Vyx at point y measured relative to point x can also be defined as the energy required
to move a particle with unit charge against the force due to the electrical field from x to y.
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The preceding equation says that integral of E over a closed circuit vanishes
in the absence of a time-varying magnetic flux. Suppose we choose the closed
circuit to include the points x and y as shown in Figure A.6. We can then write

x

y

x ← y
Path 2

x → y
Path 1

F IGURE A.6 Line integral of E
over a closed circuit that includes
the points x and y.

∫ y

x
E · dl+

∫ x

y
E · dl = 0

Path 1 Path 2

or ∫ y

x
E · dl = −

∫ x

y
E · dl

Path 1 Path 2
or ∫ y

x
E · dl =

∫ y

x
E · dl

Path 1 Path 2.

Notice that for this equality to hold even when Path 1 and Path 2 are chosen
independently, each integral must be independent of path. It follows from this
that the computed voltage Vyx between any pair of points x and y given by
− ∫ y

x E · dl is independent of the path.2 Thus, we have our desired outcome:
We can ascribe a unique potential difference or voltage across the terminals x
and y, provided

∂�B

∂t
= 0.

Additionally, we assume that the rate of change of flux is 0 for all time, so that
the voltage can be a uniquely defined function of time. This directly leads to
the first constraint of our lumped matter discipline.

First constraint of the lumped discipline Choose lumped element bound-
aries such that

∂�B

∂t
= 0

for all time, through any closed path outside the element.
Since we have assumed that the rate of change of flux is 0 for all time, and

because any flux build up would require a non zero rate of change of flux, it
follows that the flux must also be 0.3

2. Notice that the internal behavior of the element can be arbitrarily complicated, but the spe-
cific relationship between the voltage and current at the terminals will completely characterize its
behavior to any circuit to which this element is connected.

3. We can arrive at the same property in a different way, as follows: A nonzero but constant flux
external to an element can be the result of a current flowing internal to the element, or produced
by an external source.
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A.1.2 T H E S E C O N D C O N S T R A I N T O F T H E L U M P E D
M A T T E R D I S C I P L I N E

Now, let us focus on the current I. The current I through some cross-sectional
surface (Sz) of the filament at some point z is given by

I =
∫

Sz

J · dS

where J is the current density at a given point within the filament. Note that
J is a vector. If we choose the surface of the filament Sx at the terminal x,
then we get the amount of current entering the filament. Alternatively, if we
choose the surface Sy at the y terminal, then we get the amount of current
leaving the filament. What can we say about the current entering and leaving the
filament?

It turns out that J can be a complicated function of position. So let us
try to answer the preceding question using the continuity equation (derived
from Maxwell’s Equations), which gives the following relationship between the
surface integral of the current out of a closed surface and the time derivative of
the charge enclosed by the surface (see Figure A.7):

J • dS

∂q∂q
∂t
----−

F IGURE A.7 Pictorial depiction
of

∮
J · dS.

∮
J · dS = −∂q

∂t
.

In the preceding equation , q is the total amount of charge within the closed
surface. If we choose the closed surface to envelop the entire filament as depicted
in Figure A.8, then q will be the total charge within the enclosed volume. Let
us assume that the faces of the filament at the terminals x and y are the only
entry and exit points for the current, and that there is no charge outside the
element. It is clear from the preceding equation that the current into the element
will not equal the current out of the element in the presence of a time-varying
total charge within the element. Thus, it makes no sense to define a current
‘‘through’’ the element in the presence of a time-varying total internal charge.

If an internal current produces a significant amount of flux, then a time-varying current will
produce a nonzero time-varying flux a situation we have explicitly disallowed. Thus, the flux
resulting from an internal current must be negligible. If the flux is significant, then we will introduce
a new lumped element called the inductor and capture the flux inside it, thereby adhering to the
constraint.

Next, consider the case where there is an external source producing a temporally-constant
amount of flux. Clearly we would like to be able to define a fixed voltage across the terminals
of our element even when the element moves. However, since a moving element would create
the same effect as a time-varying flux a situation we have disallowed, the external flux must
also be 0.
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y

x

Closed surface enveloping
the filament

Sx

Sy

F IGURE A.8 Integral of J over a
closed surface.

However, consider the situation in which there is no time-varying charge
within the element. In other words, consider the situation in which

∂q

∂t
= 0

for the element taken as a whole. With this situation, we derive the nice result
that ∮

J · dS = 0.

Simply stated, when there is no total time-varying charge within an element,
the total current into the element is 0. Returning to our filament example, if
there is no current flow across the curved cylindrical surface of the filament, we
can rewrite the total current flowing into the element as the different between
the current flowing into the end surface at x and the current flowing out of the
end surface at y:

∮
J · dS = −

∫
Sx

J · dS +
∫

Sy

J · dS = 0.

Since the sum of the two components of the current must be 0, it follows they
must be equal. Thus we are able to define a meaningful current flowing through
the element when there is no net time varying charge within the element.
This outcome directly leads to the second constraint of the lumped matter
discipline.
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Second constraint of the lumped discipline Choose the lumped element
boundaries so that there is no total time varying charge within the element. In
other words, choose element boundaries such that

∂q

∂t
= 0

for all time, where q is the total charge within the element.
Notice that we have assumed explicitly that the rate of change of charge is

zero for all time so that the current can be an arbitrary function of time. Since
we have assumed that the rate of change of charge is zero for all time, and
because any charge build up would require a nonzero rate of change of charge,
it follows that the net charge within any element must also be zero.4

A.1.3 T H E T H I R D C O N S T R A I N T O F T H E L U M P E D
M A T T E R D I S C I P L I N E

Finally, let us consider the practical matter of the propagation speeds of elec-
tromagnetic waves. The lumped element approximation requires that we be
able to define a voltage V between a pair of element terminals and a current
through the terminal pair. Defining a current through the element means that
the current in must equal the current out. Now consider the following thought
experiment. Apply a current pulse at the terminal x of the filament at time
instant t and observe both the current into terminal x and the current out
of terminal y at a time instant t + dt very close to t. If the filament were
long enough or if dt were small enough, the finite speed of electromagnetic
waves might result in our measuring different values for the current in and the
current out.

We fix the problem created by the finite propagation speeds of electro-
magnetic waves by adding a third constraint. We include the constraint that
the timescale of interest in our problem be much larger than electromagnetic
propagation delays through our elements. Put another way, the size of our
lumped elements must be much smaller than the wavelength associated with
the V and I signals.5

Under the preceding speed constraints, electromagnetic waves can be
treated as if they propagated instantly through a lumped element. By neglecting
propagation effects, the lumped element approximation becomes analogous to

4. If an element does store charge, then we will collect equal amounts of charges of opposite
polarities inside a new lumped element called a capacitor, so that there is no net charge inside the
element.

5. More precisely, the wavelength that we are referring to is that wavelength of the electromagnetic
wave launched by the signals.
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the point-mass simplification, in which we are able to ignore many physical
properties of elements such as their length, shape, size, and location.

Third constraint of the lumped discipline Operate in the regime in which
signal timescales are much larger than the propagation delay of electromagnetic
waves across the lumped elements.

A.1.4 T H E L U M P E D M A T T E R D I S C I P L I N E A P P L I E D
T O C I R C U I T S

Circuits are sets of lumped elements connected by ideal wires. A node is formed
at the junction point at which the terminals of two or more elements are con-
nected. We choose the wires such that they obey the lumped matter discipline,
so the wires themselves are also lumped elements. For their voltages and cur-
rents to be meaningful, the constraints that apply to lumped elements apply to
entire circuits as well. In other words, for voltages between any pair of points
in the circuit and for currents through wires to be defined, any segment of the
circuit must obey a set of constraints similar to those imposed on each of the
lumped elements.

Accordingly, the lumped matter discipline for circuits can be stated as:

1. The rate of change of magnetic flux linked with any portion of the circuit
must be 0 for all time.

2. The rate of change of the charge at any node in the circuit must be 0 for
all time. A node is any point in the circuit at which two or more element
terminals are connected using wires.

3. The signal timescales must be much larger than the propagation delay of
electromagnetic waves through the circuit.

Notice that the first two constraints follow directly from the corresponding
constraints applied to lumped elements. Remember that a node is simply a
junction point of a set of wires, which are themselves lumped elements. So, the
first two constraints do not imply any new restrictions beyond those already
assumed for lumped elements.6 The third constraint for circuits, however,
imposes a stronger restriction on signal timescales than for elements, because a
circuit can have a much larger physical extent than a single element. The third
constraint says that the circuit must be much smaller in all its dimensions than
the wavelength of light at the highest operating frequency of interest.

6. As seen in Chapter 9, it turns out that voltages and currents in circuits result in electric and
magnetic fields, thus appearing to violate the set of constraints to which we promised to adhere.
In most cases these are negligible. However, when their effects cannot be ignored, we explicitly
model them using elements called capacitors and inductors.
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A.2 D E R I V I N G K I R C H H O F F ’ S L A W S

This section uses the lumped matter discipline to derive Kirchhoff’s laws from
Maxwell’s Equations. To illustrate the basic ideas, let us suppose that we are
interested in deriving the voltages across and the currents through each of the
elements in the circuit in Figure A.9.

i4V
+
-

a b

c

d

v4

+

-

F IGURE A.9 Simple resistive
network.

In general, we can resort to Maxwell’s Equations and the related continuity
equation to solve the circuit. The relevant equations are:

∮
E · dl = −∂�B

∂t

and ∮
J · dS = −∂q

∂t
.

Recall that according to the lumped matter discipline we have agreed to
constrain ourselves to the circuit domain in which

∂�B

∂t
= 0

for closed circuit loops, and

∂q

∂t
= 0

for circuit nodes. In this constrained domain, the general equations can be
simplified to the following: ∮

E · dl = 0 (A.1)

and ∮
J · dS = 0. (A.2)

Equation A.1 says the line integral of the field around any closed path must
equal 0. Similarly, Equation A.2 says that the surface integral of the current
over any surface must be 0. Of course, Equations A.1 and A.2 are valid only
under the lumped matter discipline.

Applying Equation A.1 to the closed loop defined by the three circuit edges
a → b, b → c, and c → a, as depicted in Figure A.10 we obtain

∮
E · dl =

∫ b

a
E · dl +

∫ c

b
E · dl +

∫ a

c
E · dl = 0.
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i4

a b

c

+v1-

+
v

4  -+
 v

3 
-

V
+

-

d

F IGURE A.10 The line integral over a closed loop in the
network.

V
+

- i4

ibia

ic

b

c

d

a

Sb

Sa

Sc

F IGURE A.11 The surface integral over a closed surface
in the network.

Since we know that
∫

E ·dl = 0 along an ideal wire is 0, and since the potential
difference Vxy across the xy terminals of an element is given by

Vxy =
∫ y

x
E · dl,

we can write

∫ b

a
E · dl +

∫ c

b
E · dl +

∫ a

c
E · dl = v1 + v2 + v3 = 0.

In other words, the sum of the voltages along any closed path in the circuit
must equal 0. Accordingly, we can write Kirchhoff’s voltage law:

KVL The algebraic sum of the voltages around any closed path in a network
must be zero.

We will now derive Kirchhoff’s current law. Let us apply Equation A.2 to the
closed box-like surface depicted in Figure A.11. We notice that there are currents
flowing only through surfaces Sa, Sb, and Sc. Therefore,

∮
J · dS =

∫
Sa

J · dS +
∫

Sb

J · dS +
∫

Sc

J · dS = 0.

Since our currents are confined to the wires entering the three surfaces we
obtain ∫

Sa

J · dS +
∫

Sb

J · dS +
∫

Sc

J · dS = −ia − ib − ic = 0.
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In other words, the sum of the currents flowing into any closed surface must
be zero. Simply put, the preceding statement is a statement of the conservation
of charge. We can now write Kirchhoff’s current law:

KCL The current flowing out of any junction or node must equal the current
flowing in. That is, the algebraic sum of the currents flowing into any node
must be zero.

A.3 D E R I V I N G T H E R E S I S T A N C E O F A
P I E C E O F M A T E R I A L

The resistance of a piece of material depends on its geometry. As illustrated in
Figure A.12, assume the resistor has a conducting channel with cross-sectional

E, J

Area a

i
+ -v

l

ρ

F IGURE A.12 A cylindrical-wire
shaped resistor.

area a, length l, and resistivity ρ. This channel is terminated at its extremes by
two conducting plates that extend to form the two terminals of the resistor.

For lumped elements that both obey Ohm’s Law and satisfy the lumped
matter discipline, we can obtain a lumped resistance value from the microscopic
form of Ohm’s Law:

E = ρJ (A.3)

where J is the current density, ρ is the resistivity, and E is the electrical field at
any point within the resistor.

As the current i enters the resistor through a terminal, it spreads out to
conduct uniformly through the channel. This current is given by

i =
∫

J · dS

evaluated at any cross-sectional surface.7

The voltage across the resistor8 is defined as

v =
∫

E · dl.

We can substitute the expressions for v and i into Ohm’s Law to get

R = v

i
=

∫
E · dl∫
J · dS

. (A.4)

For a cylindrical-wire shaped resistor with cross-sectional area a and
length l, with the terminals taken at the circular end surfaces (see Figure A.12),

7. We are able to obtain i in this fashion directly as a result of our second constraint.

8. We know this voltage is unique because of our first constraint.
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the Equation A.4 reduces to the following equation through cylindrical
symmetry:

R = El

Ja
,

where E and J are the magnitudes of the electrical field E and current density J,
respectively. From Equation A.3 we know that E/J = ρ, so we get

R = ρ
l

a
. (A.5)

Similarly, the resistance of a cuboid shaped resistor with length l, width w, and
height h is given by

R = ρ
l

wh
(A.6)

when the terminals are taken at the pair of surfaces with area wh.
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tr igonometr i c funct ion s

and ident i t i e s

This appendix briefly reviews the three trigonometric functions cos(θ ), sin(θ ),
and tan(θ ), and various identities involving them. These functions are often
encountered during the analysis of transients in second-order linear circuits,
and during the analysis of any linear circuit in sinusoidal steady state.

Consider a point located on the unit circle in the x y plane. If the angular
position of the point around the circle is the angle θ measured from the x-axis,
then the x and y coordinates of the point are cos(θ ) and sin(θ ), respectively. This
defines the functions cos(θ ) and sin(θ ), as shown in Figure B.1. Additionally, we
consider here the ratio of these two functions, namely tan(θ ) ≡ sin(θ )/cos(θ ).
All three functions are shown in Figure B.2.

In the identities that follow, θ is treated as a constant angle, specified in
radians.1 However, the identities hold whether θ is constant or not. It could
just as well be a function of time or any other variable. In fact, it is often a
function of time.

sin(q)

cos(q)

q

Unit
circle

F IGURE B.1 The definitions of
cos(θ ) and sin(θ ) as the x and y
coordinates, respectively, of a point
on the unit circle in the x–y plane.

B.1 N E G A T I V E A R G U M E N T S

cos(−θ ) = cos(θ ) (B.1)

sin(−θ ) = − sin(θ ) (B.2)

tan(−θ ) = − tan(θ ) (B.3)

1. Angles measured in degrees can be converted into radians using

θrads = 2π

360
θdegs

Notice, 2π radians is equivalent to 360 degrees, or one cycle.

941
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F IGURE B.2 The functions
cos(θ ), sin(θ ), and tan(θ ).
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B.2 P H A S E - S H I F T E D A R G U M E N T S

cos
(

θ ± π

2

)
= cos

(
θ ∓ 3π

2

)
= ∓ sin(θ ) (B.4)

sin
(

θ ± π

2

)
= sin

(
θ ∓ 3π

2

)
= ± cos(θ ) (B.5)

tan
(

θ ± π

2

)
= −1

tan(θ )
(B.6)

cos(θ ± π ) = − cos(θ ) (B.7)

sin(θ ± π ) = − sin(θ ) (B.8)

tan(θ ± π ) = tan(θ ) (B.9)

cos(θ ± 2π ) = cos(θ ) (B.10)

sin(θ ± 2π ) = sin(θ ) (B.11)

tan(θ ± 2π ) = tan(θ ) (B.12)

B.3 S U M A N D D I F F E R E N C E A R G U M E N T S

cos(θ1 ± θ2) = cos(θ1) cos(θ2) ∓ sin(θ1) sin(θ2) (B.13)

sin(θ1 ± θ2) = sin(θ1) cos(θ2) ± cos(θ1) sin(θ2) (B.14)

tan(θ1 ± θ2) = tan(θ1) ± tan(θ2)

1 ∓ tan(θ1) tan(θ2)
(B.15)
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B.4 P R O D U C T S

cos(θ1) cos(θ2) = 1

2
(cos(θ1 − θ2) + cos(θ1 + θ2)) (B.16)

sin(θ1) cos(θ2) = 1

2
(sin(θ1 − θ2) + sin(θ1 + θ2)) (B.17)

sin(θ1) sin(θ2) = 1

2
(cos(θ1 − θ2) − cos(θ1 + θ2)) (B.18)

B.5 H A L F - A N G L E A N D T W I C E - A N G L E
A R G U M E N T S

cos(θ/2) = ±
√

1 + cos(θ )

2
(B.19)

sin(θ/2) = ±
√

1 − cos(θ )

2
(B.20)

tan(θ/2) = 1 − cos(θ )

sin(θ )
= sin(θ )

1 + cos(θ )
= S

√
1 − cos(θ )

1 + cos(θ )
;

S =
{ +1 for θ/2 in Q1 or Q3

−1 for θ/2 in Q2 or Q4 (B.21)

cos(2θ ) = cos2(θ ) − sin2(θ ) (B.22)

sin(2θ ) = 2 sin(θ ) cos(θ ) (B.23)

tan(2θ ) = 2 tan(θ )

1 − tan2(θ )
(B.24)

B.6 S Q U A R E S

cos2(θ ) = 1

2
(1 + cos(2θ )) (B.25)

sin2(θ ) = 1

2
(1 − cos(2θ )) (B.26)

cos2(θ ) + sin2(θ ) = 1 (B.27)

B.7 M I S C E L L A N E O U S

The scaled sums and differences of sinusoidal functions are among the most
common identities we will use. Notice from the following equations that
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the scaled sums and differences of sinusoids (of the same frequency) are also
sinusoids:

A1 cos(θ ) + A2 sin(θ ) =
√

A2
1 + A2

2 cos
(

θ − tan−1
(

A2

A1

))
(B.28)

=
√

A2
1 + A2

2 sin
(

θ + tan−1
(

A1

A2

))
(B.29)

A1 cos(θ ) − A2 sin(θ ) =
√

A2
1 + A2

2 cos
(

θ + tan−1
(

A2

A1

))
(B.30)

=
√

A2
1 + A2

2 sin
(

θ − tan−1
(

A1

A2

))
(B.31)

B.8 T A Y L O R S E R I E S E X P A N S I O N S

cos(θ ) = 1 − θ2

2! + θ4

4! − θ6

6! · · · (B.32)

sin(θ ) = θ

1! − θ3

3! + θ5

5! − θ7

7! · · · (B.33)

tan(θ ) = θ + θ3

3
+ 2θ5

15
+ 17θ7

315
+ 62θ9

2835
· · · (B.34)

B.9 R E L A T I O N S T O e jθ

eθ = 1 + θ

1! + θ2

2! + θ3

3! + θ4

4! + θ5

5! · · · (B.35)

e jθ = 1 + jθ

1! − θ2

2! − jθ3

3! + θ4

4! + jθ5

5! · · ·

=
(

1 − θ2

2! + θ4

4! · · ·
)

+ j

(
θ

1! − θ3

3! + θ5

5! · · ·
)

= cos(θ ) + j sin(θ ) (B.36)

Equation B.36 is called the Euler relation.

cos(θ ) = e jθ + e−jθ

2
(B.37)

sin(θ ) = e jθ − e−jθ

2
(B.38)

tan(θ ) = e jθ + e−jθ

e jθ − e−jθ
(B.39)
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complex number s

A complex number, z for example, takes the form:

z = a + jb (C.1)

where a and b are both real numbers, and j is the imaginary unit defined
according to:

j2 = −1. (C.2)

Here, a is referred to as the real part of z, and b is referred to as the imaginary
part of z. These two parts can be extracted from z using the real-part function
�( ) and the imaginary-part function �( ), respectively. Thus, we write

a = �(z) (C.3)

b = �(z) (C.4)

and more generally,

z = �(z) + j�(z). (C.5)

If �(z) = 0, then z is a purely real number. If �(z) = 0, then z is a purely
imaginary number. Otherwise, z is a complex number.

C.1 M A G N I T U D E A N D P H A S E

A complex number can be viewed as a point in the two-dimensional complex
Re(Z)

Im(Z)

b

a

r

q

(a, b)

F IGURE C.1 The location of the
complex number z in the complex
plane. The distance r is the mag-
nitude of z, and the angle θ are
referred to as the angle, or phase,
of z.

plane, as shown in Figure C.1 for z as given in Equation C.1. The distance r
measured from the origin to the point is referred to as the magnitude of z, and
the angle θ measured from the real axis to the radius on which the point lies is
referred to as the angle, or phase, of z. Thus we write

r = |z| (C.6)

θ = ∠z. (C.7)

947
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C.2 P O L A R R E P R E S E N T A T I O N

Similarly, a complex number can be viewed as a vector in the complex plane.
In this case, its components are a and b, or �(z) and �(z), and its magnitude
and direction are r and θ , or |z| and ∠z.

From the geometry of Figure C.1 it is apparent that

r =
√

a2 + b2 (C.8)

θ = tan−1
(

b

a

)
. (C.9)

In Equation C.9, the tan−1( ) function is understood to be a two-argument
inverse having full range such that 0 ≤ ∠z < 2π or −π ≤ ∠z < π ; the
choice of range is a matter of convenience. From Equations C.8 and C.9 we
can identify the more general expressions:

|z| =
√

�(z)2 + �(z)2 (C.10)

∠z = tan−1
( �(z)

�(z)

)
. (C.11)

Equations C.10 and C.11 express |z| and ∠z in terms of �(z) and �(z). It is
also possible to invert these expressions. Again from the geometry of Figure C.1,
this yields

a = r cos(θ ) (C.12)

b = r sin(θ ), (C.13)

from which we may identify the general expressions

�(z) = |z| cos(∠z) (C.14)

�(z) = |z| sin(∠z). (C.15)

In summary, �(z) and �(z) are the Cartesian coordinates of z in the com-
plex plane while |z| and ∠z are the polar coordinates of z in the same plane.
Correspondingly, Equations C.10 and C.11 are a Cartesian-to-polar coordi-
nate transformation, while Equations C.14 and C.15 are a polar-to-Cartesian
coordinate transformation.

We can now use the polar coordinates |z| and ∠z to form an alter-
native expression for a complex number. Beginning with z as presented in
Equation C.1,

z = a + jb = r cos(θ ) + jr sin(θ ) = r(cos(θ ) + j sin(θ )) = re jθ . (C.16)
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The first equality in Equation C.16 follows from the substitution of Equations
C.12 and C.13. The last equality follows from the substitution of the Euler
identity:

cos(θ ) + j sin(θ ) ≡ e jθ , (C.17)

which is derived in Equation B.36 using Taylor Series expansions for the func-
tions e( ), cos( ) and sin( ). From Equation C.16 we can identify the more general
expression:

z = |z|e j∠z. (C.18)

Equation C.18 is the polar equivalent of Equation C.5. We will use these two
expressions interchangeably. Which one is preferred depends on the application.
For example, we shall see shortly that addition and subtraction are most easily
carried out using complex numbers in Cartesian form; while multiplication,
division, and determining a magnitude are most easily carried out using complex
numbers in polar form.

C.3 A D D I T I O N A N D S U B T R A C T I O N

Mathematical operations are performed on complex numbers just as they are
on purely real numbers. For example, the addition and subtraction of the two
complex numbers (a1 + jb1) and (a2 + jb2) proceeds according to:

(a1 + jb1) + (a2 + jb2) = a1 + jb1 + a2 + jb2 = (a1 + a2) + j(b1 + b2)
(C.19)

(a1 + jb1) − (a2 + jb2) = a1 + jb1 − a2 − jb2 = (a1 − a2) + j(b1 − b2).
(C.20)

Thus, the real and imaginary parts of complex numbers add and subtract
separately, just like the components of a vector. This is because the real
and imaginary parts are defined along orthogonal axes of the complex plane.
Because of this the addition and subtraction of complex numbers in polar form
is less convenient.

C.4 M U L T I P L I C A T I O N A N D D I V I S I O N

The multiplication and division of complex numbers proceeds as directly as
does their addition and subtraction. The only difference is that we com-
monly substitute −1 for each occurrence of j2, as permitted by Equation C.2.
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For example, the multiplication and division of the two complex numbers
(a1 + jb1) and (a2 + jb2) proceeds according to:

(a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + jb1a2 + j2b1b2

= (a1a2 − b1b2) + j(a1b2 + a2b1) (C.21)

a1 + jb1

a2 + jb2
= a1 + jb1

a2 + jb2
· a2 − jb2

a2 − jb2
= (a1a2 + b1b2) + j(b1a2 − a1b2)

a2
2 + b2

2

= a1a2 + b1b2

a2
2 + b2

2

+ j
b1a2 − a1b2

a2
2 + b2

2

. (C.22)

Note in particular the use of (a2−jb2) in Equation C.22 to clear the denominator
of terms involving j. While multiplication and division of complex numbers in
Cartesian form is not inconvenient, it is much more convenient using complex
numbers in polar form. For example,

r1e jθ1 r2e jθ2 = r1r2e j(θ1+θ2) (C.23)

r1e jθ1

r2e jθ2
= r1

r2
e j(θ1−θ2). (C.24)

Equations C.23 and C.24 demonstrate that magnitudes multiply and divide,
and that angles add and subtract, during the multiplication and division of
complex numbers, respectively. Taking powers of complex numbers is equally
convenient when the numbers are in polar form.

C.5 C O M P L E X C O N J U G A T E

The complex conjugate of z, denoted here by z∗ is defined such that

�(z∗) = �(z) (C.25)

�(z∗) = −�(z). (C.26)

For z as given in Equation C.1,

z∗ = a − jb (C.27)

while for z as given in Equation C.16,

z∗ = re−jθ . (C.28)

In general, z∗ can be derived from z by replacing each occurrence of j in z by −j.
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By combining z with z∗, several useful relations can be expressed. In
particular,

zz∗ = |z|2 (C.29)

z + z∗

2
= �(z) (C.30)

z − z∗

2j
= �(z) (C.31)

1

z
= z∗

zz∗
z∗

|z|2 . (C.32)

Each of these relations can be readily proven with the substitution of Equations
C.1 and C.27. Equation C.29 is a particularly useful means of computing |z|
when z is expressed in Cartesian form. In fact, it was used in Equation C.22 to
clear the denominator of terms involving j.

C.6 P R O P E R T I E S O F e jθ

In Equations C.16 and C.17 we introduced the complex number e jθ . As we
shall see shortly, numbers of this form are very important for our purposes, and
to this end it has several important properties. First,

|e jθ | = 1 (C.33)

∠e jθ = θ . (C.34)

This can be seen by comparing e jθ with Equation C.17, or by substituting
Equation C.18 into Equation C.29. Second,

�(e jθ ) = cos(θ ) (C.35)

�(e jθ ) = sin(θ ). (C.36)

These relations can be seen by comparing Equations C.18 and C.5.

C.7 R O T A T I O N

Finally, the multiplication of another complex number by e jθ acts to rotate that
number in the complex plane by the angle θ . To see this consider that:

(
r1e jθ1

) (
e jθ2

) = r1e j(θ1+θ2). (C.37)
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Here, the multiplication of r1e jθ1 by e jθ2 preserves the magnitude r1 while adding
θ2 to the angle θ1. Thus, the complex number r1e jθ1 is rotated in the complex
plane by the angle θ2.

C.8 C O M P L E X F U N C T I O N S O F T I M E

Our discussion of complex numbers to this point has focused on constant
complex numbers. However, none of the discussion has actually relied on z
being constant. Indeed, the entire discussion applies to complex functions of
time, and in particular to the time function e jωt, in which the substitution θ = jωt
has been made. This time function is central to our study of the sinusoidal steady
state operation of linear electronic circuits. Following Equations C.33 through
C.36, we see that:

|e jωt| = 1 (C.38)

∠e jωt = ωt (C.39)

�(e jωt) = cos(ωt) (C.40)

�(e jωt) = sin(ωt). (C.41)

Equations C.38 and C.39 show that e jωt is a unit vector in the complex plane that
rotates with the angular frequency ω. Equations C.40 and C.41 are projections of
this vector onto the real and imaginary axes, respectively. An angular frequency
ω measured in radians per second is equivalent to the angular frequency ω/2π

in cycles per second.

C.9 N U M E R I C A L E X A M P L E S

We close this appendix with a several numerical examples. For these exam-
ples, let

z1 = −2 + j2 (C.42)

z2 = 1 + j
√

3. (C.43)

We can find the complex conjugates of z1 and z2 using Equations C.25 and
C.26. This yields

z∗
1 = −2 − j2 (C.44)

z∗
2 = 1 − j

√
3. (C.45)
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We can find the real and imaginary parts of z1 and z2 by association with
Equation C.5, or by using Equations C.30 and C.31. By either method,

�(z1) = −2; �(z1) = 2 (C.46)

�(z2) = 1; �(z2) = √
3. (C.47)

We can find the magnitude and angle of z1 and z2 using Equations C.10 and
C.11. This yields

|z1| = 2
√

2 ; ∠z1 = 3π

4
(C.48)

|z2| = 2 ; ∠z2 = π

3
. (C.49)

We can find the polar form of z1 and z2 using Equation C.18. This yields

z1 = 2
√

2e
j 3π

4 (C.50)

z2 = 2e
j π

3 . (C.51)

Following Equations C.19 and C.20, the sum and difference of z1 and z2 are

z1 + z2 = −1 + j
(

2 + √
3
)

; z1 − z2 = −3 + j
(

2 − √
3
)

. (C.52)

Following Equations C.21 and C.22, the product and ratio of z1 and z2 are

z1z2 = −
(

2
√

3 + 2
)

− j
(

2
√

3 − 2
)

;
z1

z2
=

(√
3

2
− 1

2

)
+ j

(√
3

2
+ 1

2

)
.

(C.53)

Alternatively, following Equations C.23 and C.24, the product and ratio of z1
and z2 are

z1z2 = 4
√

2e
j 13π

12 ;
z1

z2
= √

2e
j 5π

12 . (C.54)
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ap p end ix d

solv ing s imultaneous

l inear equat ion s

The need to solve a simultaneous set of linear algebraic equations is a common
occurrence during the analysis of electronic circuits. Of course, such equations
are easily solved for special cases with numerical analysis packages, but at times
the insight gained from an analytic solution is more valuable. To this end, this
appendix reviews the analytic solution of equations of the form:

Mx = y

where M is a known matrix, y is a known vector, and x is a vector of
unknowns.1 From the start, we assume that the equations have a unique
solution, and so M is a square matrix with det(M) �= 0.

Consider the case of two equations and two unknowns. In this case,

[
M11 M12
M21 M22

] [
x1
x2

]
=

[
y1
y2

]
. (D.1)

The solution to Equation D.1 is

[
x1
x2

]
= 1

�

[
M22 −M12

−M21 M11

] [
y1
y2

]
(D.2)

� = M11M22 − M12M21; (D.3)

here, � = det(M). The validity of Equation D.2 can be verified by direct
substitution into Equation D.1. Consider next the case of three equations and

1. For a more detailed treatment, the reader is referred to G. Strang, Linear Algebra and its
Applications, Academic Press 1988.
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three unknowns. In this case,


M11 M12 M13

M21 M22 M23
M31 M32 M33





x1

x2
x3


 =


y1

y2
y3


 . (D.4)

The solution to Equation D.4 is




x1

x2

x3


 = 1

�




M22M33 − M23M32 M32M13 − M12M33 M12M23 − M22M13

M31M23 − M21M33 M11M33 − M31M13 M21M13 − M11M23

M21M32 − M31M22 M31M12 − M11M32 M11M22 − M21M12







y1

y2

y3




(D.5)

� = M11M22M33 + M12M23M31 + M13M21M32 − M31M22M13

− M32M23M11 − M33M21M12; (D.6)

again, � = det(M). The validity of Equation D.5 can be verified by direct
substitution into Equation D.4.

Finally, for higher-order cases, we can turn to an elimination process, or to
Cramer’s Rule,2 although the algebra may be excessive in either case. Cramer’s
Rule states that:

xn = det(Bn)

det(M)
(D.7)

where Bn is the matrix formed by replacing the nth column of M with y.

2. Again, see G. Strang, Linear Algebra and its Applications, Academic Press 1988.



an swer s to s e l ected

problems

c h a p t e r 1

Ex1.1 R = 12 �

Ex1.3
V2

DC
R

c h a p t e r 2

Ex2.1 (a) 2.5 � (b) 1 � (c) 2R

Ex2.3 (a) 10 � (b) 1 � (c) 2 � (d) 2 �

Ex2.5 (a) R1 + R2 + R3, (b)
R1R2 + R3(R1 + R2)

R1 + R2
(c)

R1(R2 + R3)
R1 + R2 + R3

(d)
R1R2

R1 + R2
+ R3R4

R3 + R4
(e)

(R1 + R2)(R3 + R4)
R1 + R2 + R3 + R4

Ex2.7 R2 and R3

Ex2.9 (b) 2 (c) 3 (d) (Depending on your assignment of branch variables, your answer may be different.) KVL: VA + VE +
VC + VB = 0, VC − VD = 0 KCL: iB − iC − iD = 0, iA − iB = 0, −iA + iE = 0 (e) iA = iB = iE = 0.2A iC = 1 A
iD = −0.8 A (f) VD = −2 V, VC = −2 V, VE = 2 V, VB = 1 V, VA = −1 V

Pr2.1 0.5 �

Pr2.3
4
5

�

Pr2.5 (a) RT = R1 + R2 + R3 (b) RT = R1R2R3

R1R2 + R1R3 + R2R3
(c) RT = R1R2 + R1R3

R1 + R2 + R3
(d) RT = R1 + R2R3

R2 + R3

(e) RT = R1R3 + R1R4 + R2R3 + R2R4

R1 + R2 + R3 + R4

Pr2.7 i3 = − vR2

R1R2 + R1R3 + R2R3

Pr2.9 Power = 2 W

Pr2.13 (a) i1 = vAR2 + vAR3 − vBR2

R1R2 + R2R3 + R1R3
, i2 = vAR3 + vBR1

R1R2 + R2R3 + R1R3
, i3 = vBR2 + vBR1 − vAR2

R1R2 + R2R3 + R1R3

Pr2.15 v4 = vR2R4 + IR1R2R4 + IR1R3R4 + IR2R3R4

R1R2 + R1R3 + R1R4 + R2R3 + R2R4

Pr2.17 vC = 225 V

c h a p t e r 3

Ex3.1 8/53 A

Ex3.3 Left: VOC = ISR2, RT = R1 + R2, Right: VOC = ISR2R3

R1 + R2 + R3
, RT = R3‖(R1 + R2)
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Ex3.5 1/3 V
Ex3.7 ISC = 1 mA, and RT = 8 k�

Ex3.9 (a) i(t) = 1
4

(v1(t) + v2(t)) (b) Energy = 1
16

∫ T2
T1

(v1(t) + v2(t))2dt (c)
∫ T2

T1
v1 · v2 · dt ≡ 0

Ex3.11 RT = 2 � and VOC = 6 V
Ex3.13 RT = R2 and vT = I3 · R2 + V3

Ex3.15 (1) ( g1 + g3 + g5) va − g3 · vb + 0 · vc = g1 · V, (2) −g3 · va + ( g3 + g4) vb − g4 · vc = I,
(3) 0 · va − g4 · vb + ( g2 + g4 + g6) · vc = g2 · V

Ex3.17 RT = R1(R2 + R3)
R1 + R2 + R3

, VOC = R1R2 · I + (R2 + R3) V
R1 + R2 + R3

Ex3.19 RT = 100 �, VOC = 16
2
3

V, ISC = 1/6 A

Ex3.22 (a) RT = R6 + R7 + R8 and VOC = I · R6, (b) RT = R4‖(R1 + R3), and ISC = V/(R2 + R3)
Ex3.24 RT = 5 k�, VOC = 49 V
Ex3.26 V · g1 = va ( g1 + g2 + g4) − vb · g4, and V · g3 − I = +va (−g4) + vb ( g3 + g4)

Pr3.1 15 A
Pr3.3 8.57 V
Pr3.5 (a) Req = R, (b) vTH = 0.125 V, RTH = 1 �

Pr3.7 (a) 0, b) i) V
( R

R + R1
− 1

2

)
, ii)

V(R − R1)
3R + 5R1

, c) RTH = R, VTH = 0.

Pr3.9
A0

2
− 4 V

Pr3.13 (a) RTH = 100 k�, vT = −10βVS (b) RL = RT

c h a p t e r 4

Ex4.3 iD = 4.7 mA, vD = 5.7 V
Ex4.5 (a) i = 2 · Is

(
e q·VD/KT − 1

)
, (b) i = Is

(
e q·VD/2KT − 1

)
Ex4.7 Diode on: i(t) = (V1(t) + 5V )/R; Diode off: i(t) = 0

Pr4.1 (a) iA = 2Rc2vI + Rc1 + 1 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − vI)
2R2c2

for vI ≥ Rc0; iA = 0 otherwise,

vA =
√

(Rc1 + 1)2 − 4Rc2(Rc0 − vI) − (Rc1 + 1)
2Rc2

for vI ≥ Rc0, VA = VI otherwise

(b) VA =
√

(Rc1 + 1)2 − 4Rc2(Rc0 − VI) − (Rc1 + 1)
2Rc2

, IA = 2Rc2VI + Rc1 + 1 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − VI)
2R2c2

(c)
�ia
�vi

= 1
R

(
1 − 1√

(Rc1 + 1)2 + 4R2c0c2 + 4Rc2VI

)
(d) 1 − 1√

(Rc1 + 1)2 + 4R2c0c2 + 4Rc2VI

(e) �iA = 1
1.02R


vI−

√
(1.02Rc1+1)2−4.08Rc2(1.02Rc0−vI)−(1.02Rc1+1)

2c2(1.02R)2


− 1

R


vI−

√
(Rc1+1)2−4Rc2(Rc0−vI)−(Rc1+1)

2c2R2



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(f)
diA
dvA

= 2c2VA + c1; VA ≥ 0 (g) rN = 1
2c2VA + c1

, ia = v0 cos ωt

R + R√
(Rc1 + 1)2 − 4Rc2(Rc0 − VI) − 1

(h) (i) IA = 20Rc2 + Rc1 + 1 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − 10)
2R2c2

(ii) ia = 1

R + R√
(Rc1 + 1)2 − 4Rc2(Rc0 − 10) − 1

(iii) iA =20Rc2 + Rc1 + 1 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − 10)
2R2c2

+ 1

R + R√
(Rc1 + 1)2 − 4Rc2(Rc0 − 10) − 1

(iv) iA = 22Rc2 + Rc1 + 1 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − 11)
2R2c2

(v) ia = 2Rc2 − √
(Rc1 + 1)2 − 4Rc2(Rc0 − 11) + √

(Rc1 + 1)2 − 4Rc2(Rc0 − 10)
2R2c2

(vi)
1

R+ R√
(Rc1+1)2−4Rc2(Rc0−10)−1

− 2Rc2−√
(Rc1+1)2−4Rc2(Rc0−11)+√

(Rc1+1)2−4Rc2(Rc0−10)
2R2c2

Pr4.3 (a) i ≈ 1.4 A; v ≈ 2.8 V (b) i ≈ 1.9 A; v ≈ 2.9 V (d) i ≈ 1 A; v ≈ 3 V

Pr4.5 (a) vo = 0.024�v (b) DC: 4.5 V AC: 1.2 mV (c) 25 �

Pr4.7 Assume Ipss = 5 mA and Vp = 5 V. (a) i =
2VS −

(
V2

P
RIDSS

+ 2VP

)
+

√√√√
(

V2
P

RIDSS
+ 2VP

)2

− 4V2
PVS

RIDSS

2R
for

VS < V P + IDSSR

(b) VS = 5 V; iaverage = 3.1 mA, VS = 10 V; iaverage = 5 mA, VS = 15 V; iaverage = 5 mA

Pr4.9 (a) ii; if S current source, i (b) 1 A

Pr4.11 (a) RTH = 0.5 k�, VOC = 1
4

vI (b) vD = 0.6 V, iD = 0.8 mA (c) rd = VTH

IS
exp

(−VD

VTH

)
= 9.44 × 10−4�

(d) vd = 7.55 × 10−9 cos(ωt)

Pr4.13 vout = R
R + 500

10−3 sin(ωt)

c h a p t e r 5

Ex5.1 Z = X + Y

Ex5.3 Z = WXY

Ex5.5 100, 0100

Ex5.7 (c) B C D, BD, B + D, B CD (d) B C D, 0, 1, BCD

Ex5.9 (c) 0.5 V (d) 4.4 V (e) 1.5 V (f) 3.5 V (g) Yes. NM0 = 1 V and NM1 = 0.9 V
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Pr5.1 (a) AB + CD (b) AB + CD (c) AB + BC (d) B + C (e) AB + AC + BC (f) 1

Pr5.3 OUT2 = ABCD, OUT1 = ACD + BCD + BCD + ABC + AB · CD + ABC · D, OUT0 = A · B · CD + A · BCD +
ABC · D + ABCD + AB · C · D + ABCD + ABCD + ABCD

Pr5.5 OUT0 = IN · S1 · S2, OUT1 = IN · S1 · S0, OUT2 = IN · S1 · S0, OUT3 = IN · S1 · S0

Pr5.7 Z = A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0 +
A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0 + A3 · A2 · A1 · A0

Pr5.9 OUT0 = IN0, OUT1 = IN0IN1 + IN0IN1

Pr5.11 C1 = A1A0B1B0 + A1A0B1B0 + A1B1 + B1B0C0 + A1A0C0 + A1B0C0 + A0B1C0

Pr5.13 (c) 0.5 V (d) 4.4 V (e) 1.6 V (f) 3.2 V (g) 8 (f) N M0 = 1.1 V, N M1 = 1.2 V, unchanged

c h a p t e r 6

Ex6.3 (b) yes (c) no (d) 2 (e) 2

Ex6.5 2.27 mW

Ex6.7 (b) 0.5 (c) 4.4 (d) 1.6 (e) 3.2 (f) 1.1 (g) 1.2 (h) 2.4

Pr6.1 (a) Z = A + B (b) Z = ABC

Pr6.3 N = 100k
(Vs−1)RON

, PMAX = V2
S

100k + N RON

Pr6.5 n ≤ VOLR
(VS − VOL)RON

, m:any value, PMAX = V2
S

R
as m becomes large

Pr6.7 Area = 1

12
√

2
+ 3

2
√

2

c h a p t e r 7

Ex7.1 vO = VS − (RK)
1
3

Ex7.3 vB = RBVS − K
RA + RB

Ex7.5 (a) RON = 2
K(5 − VT)

Ex7.7 (a) vO = VS − K RLv2
I

2
(b) 0 ≤ iDS ≤ 1 + K RLVS − √

1 + 2K RLVS

K R2
L

(c) VI =
√

1 + 2K RLVS − 1
2K RL

,

VO = 3K RLVS − 1 + √
1 + 2K RLVS

4K RL
, IDS = 1 + K RLVS − √

1 + 2K RLVS

4K R2
L

Ex7.9 (b) vO = VS − iCRL (c) iC = β
vI − 0.6 V

RI
(d) iE = iB(β + 1) (e) vO = 6.2 − 2vI (f) vO = 4.8 V, iB = 0.2 µA,

iC = 20 µA and iE = 20.2 µA.

Pr7.1 VO = VA − VT −
√

W2L1

L2W1
(VB − VT)2

Pr7.3 (d)

√
2VS

K R
− 2VT

K R
+ 2

K2 R2 −
√

4
K4 R4 + 8VS

K3 R3 ≤ vIN ≤ vT +
√

2VS

K R
− 2VT

K R
Pr7.5 VT ≤ vIN ≤ VS + VT
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Pr7.7 (a) vS = −VT −
√

1
K

, vO = VS − RLI
2

(b)
W
L

= 2K
Kn

, VB = VT +
√

I
K

− VS

Pr7.9 (b)
VS − VT

RC
≥ I ≥ VS − VT − VL

RC − RL

Pr7.11 (b) iD = K
2

(VS − vIN − VT)2 , vOUT = VS − K RD

2
(VS − vIN − VT)2 (c) −VT ≤ vOUT ≤ VS

Pr7.15 vOUT = vIN − VT + 1
K RS

−
√

2(vIN + VS − VT)
K RS

+ 1

K2R2
S

Pr7.19 (b) β ′ = (β + 2)β (c) 1.2 V

c h a p t e r 8

Ex8.1 (a) VO = VS − K RL

2
(VI − VT)2 (b)

dvO

dvI
|vI=VI = −K RL (VI − VT)

Ex8.3 current source iDS = K
2

so that the small signal model is an open circuit

Ex8.5 (a) vI−VT ≤VS− KRL

2
(vI−VT)2 ,

√
1+2KRL VS−1

KRI
≤vO ≤VS (b) VI =VT+

√
1+2KRL VS−1

2KRL
,

VO = 3KRL VS+√
1+2KRL VS−1

4KRL
(c)

√
1+2KRL VS−1

2KRL
(d)

1−√
1+2KRL VS

2

(e) vo = A
2

(
1 − √

1 + 2K RL VS
)

sin
(
ωt

)

Ex8.7 (a) VO = 10 V (c) −50 (d) vO = −0.05 sin(ωt) (e) ri = 100 k � and ro = 50 k � (f)
io
ib

= −50 and
vo

vi

io
ib

= 1250

Pr8.1 (a) VMID =
√

2(VS−VOUT)
KR

+vT,VIN =
√

2(VS−VMID)
KR

+vT (b) Gm =K2R2 [
VS− .5KR(VIN−vT)2−vT

]
(VIN−vT)

(c) 136

Pr8.3 −3R KV2
IN

Pr8.5 (a)
vo

vi
= −βRL

RB
(b)

vo

vi
= −βRLR1

RB(R1 + R2)

Pr8.7
√

2VSK R − 2VTK R

Pr8.9 (b) VOUT = 1
K RS

+VI−VT−
√

2
K Rs

(VIN + VS − VT) + 1

K2R2
S

(d)
dVOUT

dVIN
= 1−(

2K RS [VIN + VS − VT] + 1
)− 1

2

(e)
vtest

itest
= RS (f) infinite

Pr8.11 (b) − RL RE

RL + RE
K(VIN − VT)

Pr8.13 (a) VO = VI − 0.6

1 + RI

(β + 1)RE

and IE = VI − 0.6

RE + RI

(β + 1)

(c)
vo

vi
= 1

1 + RI

(β + 1)RE

(d) ro = (RE‖RI)/
(

1 + β
RE‖RI

RI

)

and ri = RI + βRE (f)
io
ib

= (β + 1)
RE

RE + RO
and Power Gain = (β + 1)2

R2
E

(RE + RO)2
1

RI + (β + 1)RE‖RO
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c h a p t e r 9

Ex9.1 (a) 3/4 µF (b) 4 µF (c) 4/3 µF

c h a p t e r 1 0

Ex10.1 i1(t) = 4
3

(
1 − e t/τ

)
mA for t ≥ 0; τ = 1

3
ms

Ex10.3 −5 volts
Ex10.5 (a) v = 6 e−t/τ , τ = 500 µs (b) i = (6 × 10−3)e−t/τ , τ = 2 µs (c) v = 6e−t/τ , τ = 1 ms

(e) i = (6 × 10−3)e−t/τ , τ = 1 µs

Ex10.7 (a) For 0 ≤ t ≤ t0, v = RI0
(

1 − e−t/RC
)

, and for t > t0, v = RI0
(

1 − e−t0/RC
)

e−(t−t0)/RC

Ex10.9 2A

Ex10.11 vC = 2
(

1 − e−t/τ
)

, for τ = 20
3

ms

Ex10.13 vC = 1 + e−t/τ

Ex10.15 (a) CEQ = 1 µF (b) τ = 1 ms, v0(t) = 1 · e−t/τ (c) v0(t) =
(

1 − e−t/τ
)

; τ = 1 ms for t > 0

Ex10.17 v0(t) = I1R1

5

(
1 − e−t/τ

)
, τ

R1C
5

Ex10.19 (A) v0(t) = 10 V
(

1 − e−t/τ
)

; τ = R · C, (B) v0(t) = 10 V
(

R
R + R

) (
1 − e−t/τ

)
; τ = R · C,

(C) v0(t) = 10
(

1 − e−t/τ
)

; τ = L/R, (D) v0 = −10
RC

t

Ex10.21 (a) (i) τ = 1s (ii) v0 = 10e−t/τ ; τ = 1 s (b) (i) τ = 1 µ s (ii)v0(t) = 5
(

1 − e−t/τ
)

; τ = 1 µs

Ex10.23 (a) vc =
[
A(t−RC)+(V0+ARC)e−t/RC

]
u−1(t) (b) vc =B

(
1−e−t/RC

)

(c) vc(t) = AT +
[
ARC

(
e−T/RC − 1

)]
e−(t−T )/RC

Pr10.1 (a) trise =−τ ln


 VS−VH

VS−VS
RON

RON+RL


 τ =RLCGS, tfall =−τ ln




VL−VS
RON

RON+RL

VS−VS
RON

RON+RL


 τ =CGS

RONRL

RON+RL

(b) tpd =8.2µs

Pr10.3 (a) A, B, C, and E must all be high and D must be low (b) tfall =−τfall ln




VL−VS
4RON

4RON+RL

VS−VS
4RON

4RON+RL




τfall =CGS
4RONRL

4RON+RL
(c) trise =−τrise ln


 VS−VH

VS−VS
2RON

2RON+RL




Pr10.5 (a) trise =−τ ln


 VS−VH

VS−VS
RON

RON+RL


 τ =nCGSRL (b) trise =n8.2µs (c) trise =−τ ln


 VS−VH

VS−VS
RON

RON+RL




τ = (CW+CGS)(nRL+RW) (d) trise = (0.9+n90.3)µs
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Pr10.9 v=−1 V for 2< t<3 and v=−1/2 V for 3< t<5

Pr10.11 0< t < t1 : vO(t)= V
RC

t, t1 < t < t1 + t2 : vO(t)= Vt1
RC

− Vt1
(RC)2

(t−t1)

Pr10.13 (a) iAVG =CVA f0 (b) R= vA

iA
= 1

Cf0

Pr10.17 vL =τK(1−e−t/τ ), vR =Kt−τK
(

1−e−t/τ
)

τ =L/R

Pr10.19 (a) not true (b) true

Pr10.21 First: vO = e−t/τ , Second: vO =1−e−t/τ , τ =0.5 ms

Pr10.23 (a) vB =vA
R2

R1+R2

(
1−e−t/τ

)
, τ = R1R2(C1+C2)

R1+R2
(b) (i) vB(0−)=0 (ii) vB(t→∞)=vA

R2

R3+R2

Pr10.27 vR = (K2−K1)e−t/τ +K3τ
(

1−e−t/τ
)

Pr10.29 (a) VS (b) Tmin =−CM (RL+RON) ln
(

1− VH

VS

)
(c)

RON

RON+RL
VS (d) Tmin =−CM

(
RON+ RONRL

RON+RL

)

ln




VL− RON

RON+RL
VS

RL

RON+RL
VS


 (e) −CMRP ln

(
Vτ

VS

)

c h a p t e r 1 1

Ex11.1 (a) Psteady−state,0 = 0, (b) Psteady−state,1 = V2
S

RON + RL
, (c) Pstatic = V2

S
2 (RL + RON)

, Pdynamic = V2
SR2

LCL

(RL + RON)2 T
,

(d)(i) halved, (ii) quartered, (iii) halved, (e) Maximize RL while looking out for dynamic constraints

Pr11.1 (b)
V2

S
RL

(−T1 + T2 + T4

T4

)
(c)

V2
S

T4
(CG + 2CL) (d) Pstatic = 2.9 mW, Pdynamic = 87.5 µW, (e) 0.18 J (f) 51%

Pr11.3 (b) Pstatic = N
2

· V2
S

RL + RON

c h a p t e r 1 2

Ex12.1 (a) 2α = 1
RC

, ω2
o = 1

LC
, since α < ωo, underdamped, (b) vC = Ke−αt cos

(
ωdt + φ

)
, ωd =

√
ω2

o − α2,

φ = tan−1
(

α

ωd

)
, ωo = 10 × 106, α = 3.33 × 106, (c) vC in RC circuit decays as e−t/RC, while vC in RLC circuit

decays with ‘‘envelope’’ e−t/2RC

Ex12.3 t = 0+ : i1 = 2A, v1 = 6V, i2 = 3A, v2 = 6V, i3 = 4A, v3 = 4V, i4 = 1A, v4 = 4V. At t = ∞ :
i1 = 10A, v1 = 0, i2 = 0, v2 = 0, i3 = 10A, v3 = 10V, i4 = 0, v4 = 10V

Ex12.5
dvC

dt
|t=0+= 2V/s,

diL
dt

= 1
3

A/s

Ex12.7 (a) x1 = e−2t + e−4t, x2 = e−2t − e−4t, (b) x1 = 2 cos(4t), x2 = 2 sin(4t)
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Pr12.1 with small inductor: vC(t) = I R − LI R
L − R2C

e
−Rt

L + I R3C
L − R2C

e
−t
RC , without inductor: vC(t) = I R

(
1 − e

−t
RC

)
.

Pr12.3 (a) i ′1 = L2

M2 − L1L2
R1i1 −

(
R2

M
+ R2L1L2

M(M2 − L1L2)

)
i2 − L2

M2 − L1L2
vS, i ′2 = −M

M2 − L1L2
R1i1 + R2L1

M2 − L1L2
i2 +

M
M2 − L1L2

vS, (c) v2(t) =
(

0.05e−202 02t − 0.05e−20000t
)

u(t) −
(

0.05e−202 02(t−0.005) − 0.05e−20000(t−0.005)
)

×

u(t − 0.005)

Pr12.5 (a) CA
dvA

dt
+ vA − vB

RA
= K(V0 − vB)2, CB

dvB

dt
+ vB

RB
= vA − vB

RA
, (b)is = −2K(V0 − VB)vb, (c) Overdamped

c h a p t e r 1 3

Ex13.1 (a) M AG = 16.8, P H ASE = 13.75 deg, (b) M AG = 45.47, P H ASE = 18◦, (c) M AG = 2136,
P H ASE = 78◦, (d) M AG = 47.3, P H ASE = −15◦

Ex13.3
VL

I
= RLs

Ls + R
, vL(t) = RLI ω√

(L ω)2 + R2
· cos( ωt + φ), φ = tan−1

(
R
ωL

)

Ex13.5 Z = R
j ωRC + 1

,
1

RC
= 104rad/s, R = 100 �, C = 1 µF

Ex13.7 Zs=j = 1√
2

e−(π/4)j

Ex13.9
R
L

= 2 × 106rad/s,
v( j ω)
I( j ω)

= R + L ωj

Ex13.11 (a)
V0

Vi
= 1√

( ωRC)2 + 1
e jφ , φ = tan−1(−RC ω), (b)

V0

Vi
= ωL√

( ωL)2 + R2
e jφ , φ = tan−1

(
R
ωL

)
,

(c)
V0

Vi
= RC ω√

(RC ω)2 + 1
e jφ , φ = tan−1

(
1

RC ω

)
, (d)

V0

Vi
= R√

( ωL)2 + R2
e jφ , φ = tan−1

(
− ωL

R

)

Ex13.13 (a)
V0

Vi
= 1√

1 + ω2

1002

(
1
2

)
e jφ , φ = tan−1

(
− ω

100

)
, (b) v0(t) = 1

2
√

2
cos(100t − 45◦) + 1

200.01
cos(10,000t −

89.4◦)

Ex13.15 (a)
V0

Vi
= Z2 · Z4

(Z2 + Z3 + Z4) · Z1 + (Z3 + Z4) · Z2
,

(b)
Ia(s)
Vi(s)

= Z3 + Z4

(Z3 + Z4)Z2 + Z1(Z2 + Z3 + Z4)

Ex13.17
Ia(s)
Is(s)

= Y‖
Y‖ + Y1

; Y‖ = Y2(Y3 + Y4)
Y2 + Y3 + Y4

Pr13.1 (a) (i) Z = R
1 + j ωRC

(ii) Z = j ωRL
R + j ωL

(iii) Z = j ωRC2 + 1
j ωC1 − ω2C1C2R + jωC2

Pr13.3 (c) H( j ω) = 0 db at ω = 105 (d) 1; 10; 100; 1,000; 10,000

Pr13.5 (a) 12 (b) I =
√

409
25

(c) k =
√

13
5
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c h a p t e r 1 4

Ex14.1 (a) L′ = R2L
(L ωo)2 + R2 , R′ = ω2

oL2R
(L ωo)2 + R2 , (b) C = R2 + ( ωoL)2

R2 ωo2L
Ex14.3 R = 400 �, L = 23.7 mH, C = 6.7µF

Ex14.5 (b) is inconsistent with the other statements, Q = 1.3 actually

Ex14.7 (a) False (roots are real and negative), (b) False (Q = 1.3), (c) True (at s = j√
LC

, | H( j ω) | = 0),

(d) False (system is second order)

Ex14.9 (a) V0(s) = 1 + LCs2

1 + RCs + LCs2 Vi(s), (b) v0(t) = 0

Pr14.1
VO

VL
= 1

(1 − ω2LC) + j ωRC
, ω0 = 1√

LC
, Q = 1

R

√
L
C

Pr14.3 (a)
1

(1 − ω2LC) + j ωRC
(b) Zeq = R + j ωL

(1 − ω2LC) + j ωRC
(c) Voc = 2.03e j (120 π t + 0.311), Zth = 39.6e j (1.622)

Pr14.5 (a)
1
L

v ′
I(t) = i ′′ + R

L
i ′ + 1

LC
i (b)

LCs2

LCs2 + RCs + 1
(c) i(t) = C√

(1 − LC)2 + R2C2
cos

[
t + tan−1

(
1 − LC

RC

)]

(d) − R
2L

± i

√
1

LC
− R2

4L2

Pr14.7 (a) Q1 = Lω

RS
, Q2 = Lω

2RS
(b) Q1 ≈ RPLω

RSRP + L2ω2

Pr14.9 (a) H1(s) = R
R + RLs + RLCs2 , H2(s) = 1

1 + LCs2 (b) i F
1 = 1, i F

2 = 1 (c) i N
1 = −e−αt

(
1

2Q
sin(ω0t)

)
+

cos(ω0t), i N
2 = − cos(ω0t) (d) i1(t) = 1 − e−ωot/2Q

(
1

2Q
sin(ωot)

)
+ cos(ωot), i2(t) = 1 − cos(ωot)

Pr14.11 (a) C = 10−9 F (b) R = 100 � (c) �ω = 100,000
rad
s

(d) vO(t) = 1−e−5000t [0.005 sin(988,749t) + cos(988,749t)]

Pr14.13 (a) vC = 4V0

3
e−2t − V0

3
e−8t (b)

RLCs2 + Ls
LCs2 + RCs + 1

(c) s1 = −2, s2 = −8, D = −42

Pr14.15 (a) (i) VO =
(

1 − LCω2√
(1 − LCω2)2 + (ωRC)2

)
VI, φ − tan−1

(
ωRC

1 − LCω2

)
(ii) VO = |VO( jω)| =

(
ωL√

R2(1 − LCω2)2 + (ωL)2

)
VI, φ = ∠VO( j ω) = π

2
− tan−1

(
ωL

R(1 − LCω2)

)
= tan−1

(
R(1 − LCω2)

ωL

)

(c) (i) notch (ii) band-pass

c h a p t e r 1 5

Ex15.1 Rth = R2

gR2 + 1
, vth = 0

Ex15.3
dG
G

= 1
1 + ARA/(RA + RB)

Ex15.5 vO = −nkT
q

ln
(

v1

ISR1
+ 1

)
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Ex15.7 R ≤ 1539 �

Ex15.9 (a) vO = −vI, (b) vO = −1
2

vI

Ex15.11 (a) 2 �, (b) 2/3 �

Ex15.13 i = V
(

R3

R1R3 − R2R4

)

Ex15.15 (vi − va)g1 + (v− − va)g3 + (vO − va)g2 = 0 and (va − v−)g3 + (0 − v−)g4 = 0, and either vO = A(v+ − v−) and
v+ = 0, or v+ ≈ v− and v+ = 0

Ex15.17 i1 = A
R1 + (1 + A)R2

vi

Ex15.19 (a) vo = −10vi, (b)vo = −10
3

vi

Ex15.21 RTH = (1 + A)RS, RS(1 + A) � RL

Ex15.23 v0(t = 0+) = −2 V and v0(t = 1 ms) = −4 V

Ex15.25 Vout = R1C2s
(R1C1s + 1)(R2C2s + 1)

· Vin

Ex15.27 (2)

Pr15.1 iL = AvI

AR2 + R2 + RL
≈ vI

R2

Pr15.1 AR2

Pr15.3 1.5 V

Pr15.5 iN = vI

R
, RTH = R

Pr15.7 (a) vOUT = vIN
(R2)(R3 + R4)

−R1(R3 + R4) + R4(R1 + R2)
, b) i = vIN

R3

−R1(R3 + R4) + R4(R1 + R2)
, c) R1R3 = R2R4

Pr15.9
VOUT

vIN
= − (R2‖R4) + R3

R1
= −1.9091.

Pr15.11 (a) RIN = R1

1 + β
, (b) ROUT = R2

Pr15.13 (a)
vO

v1
= −2

Pr15.17 C <
IL

A ω
; RC <

VL

A ω

Pr15.21 (a) vO = −10
∫

vIdt

Pr15.23 C2 = C1(A + 1).

Pr15.25 (c) τ = vF

100

Pr15.27 vO − 2 ∗ 10−6 dvO

dt
= 7.5 ∗ 10−6 dvI

dt
.

Pr15.33 (a)
V2

V1
= −1

R1C1s
,

V3

V2
= −1

R2C2s
, (b) V1 = V2 − V3 − VIN, (c)

V2

VIN
= R2C2s

R1R2C1s2 − R2C2s + 1
,

� ω = 1
R1C1

, ω0 =
√

1
R1R2C1C2

.
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Pr15.35 (a)
VO

VI
= −10

10R1Cs + 1
, (b) Cx = 40C.

Pr15.37 Vo = Vi
C2L2s2 + 1

C2L2s2 .

Pr15.39 (a)
VO

VI
= R1R2C1C2s2

R1R2C1C2s2 + R1(C1 + C2)s + 1
, (b) ωo =

√
G1G2

C1C2
, (c)

∣∣∣∣Vo

Vi

∣∣∣∣ = 2(ω − ωo) + 1, (d)
∣∣∣∣Vo

Vi

∣∣∣∣ = 1.

Pr15.41 (a)
∣∣∣∣Vo

VI

∣∣∣∣= −R2C1s
R1R2C1(C1+C2)s2+R1C2s+1

, (b) vO(t)=2 cos(1005t),

(c) vO(t)=1.3758 cos(1005t−47.5 degrees)

Pr15.43 (a)
Vo

vi
= −R2

jωR1R2C+R1
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NOTE: Web-based material is listed by chapter and page range (W W W Chapter Number:Page Range).

Special characters
� (imaginary-part) function, 947 948
δ(t), 485 488
δ(t; T ), 485 487
µ, 466
µ0, 928

Numbers
0.707 frequency (break frequency), 738
1-V source, 154
2-V source, 154 155
741 Op Amp, 838

A
absolute electric potential, 26
abstract digital memory element, 562 563
abstraction, circuit, see circuit abstraction
abstract representations, 4
A-B terminal pair, 93
across variables, 36
active pullups, W W W 6:321a 6:321g
active region, 371 372
actual output voltage (vo(t)), 726
adder circuit, 135
addition, 949
admittance, 714
algebraic equations, 8, 59, 708, 765, 935
Alpha microprocessor, 13
α, 646
alternative expressions, 948 949
aluminum, 906
ampere-hours, 16
amperes, 9
Ampere’s law, 928
amplifier design, 353
amplification, 318 319, 331 402, 705, see also

MOSFET amplifier
characteristics, 335 340
overview, 331
review of dependent sources, 332 335
signal amplification, 331 332
switch-current source (SCS) MOSFET model,

340 344

amplifier gain, 346, 838
amplifier response relation, 729 730
amplifier transfer curve, 355
amplitude, 41, 804
analog computer, 838
analog signals, 41
analog transmission, 243
analytical solutions, 197
AND function, 256
AND-OR configurations, 288
angle (phase), 948, 951 952
angular frequency, 952
answers to selected problems, 959 969
arbitrary nodes, 58
associated variables, 25
assumed states, 209, 909 910, 919
asymmetric noise margins, 250
attenuated output signal, 843
attenuation requirement, 318
attenuator response, 754
average power, 597
average stored energy, 762
average value (DC offset), 41, 215 217
averaging circuit, 149

B
band-pass filters, 742
bandstop filter (notch filter), 815 816
bandwidth, 793
base-collector diode, 372 373
base current, 370 371
base-to-collector diode, 375
basic circuit analysis method,

W W W 2:97a 2:97c
basic method of circuit analyses, 15 16
batteries, two-terminal elements, 16 18
battery model, 36 40
battery power equation, 28 29
beehive network, superposition applied to,

W W W 3:153a 3:145d
bias current, 408 409
biasing MOFSET amplifier, 349 352
bias point, 217, 351
bias voltage, 438
bimodal gate voltage, 300
binary digit, 244
binary numbers, 269
binary representation, 44 45, 244 245

binary signal, 245
bipolar junction transistor (BJT), 370 381,

438 443, W W W 7:381a 7:381b
bit, 268
Bode plot, W W W 13:742a 13:742g

for resonant functions,
W W W 14:808a 14:808e

for RL circuits, W W W 13:742a 13:742g
Boltzmann’s constant, 907, 919
boolean equation, 256
boolean expression, 257
boolean logic, 256
boosting signal, 350 352
branch currents, 55
branch variables, 73 74, 92, 106 107, 121, 633

definitions, 102
labeling, 67
polarities of, 69 70

branch voltage, 55
break frequency (0.707 frequency), 738
bridge circuit, 173 174
buffer, 565 566
buffer circuit, 349
buffer gate (identity gate), 259, 314 315
buffering, 847 848
buffer output stage, 838
buffer transfer characteristics, 318 319

C
canonic form (standard form), 261, 265 266
canonic state equations, 539, 542
capacitance, 14 15, 457 458, 471 472
capacitive load, 729 731
capacitor charges, 490
capacitor charging dynamics, 596
capacitor combinations, 472
capacitor current, 690, 862
capacitor discharge dynamics, 566 567,

872
capacitor frequency response, 732 736
capacitor-inductor circuit, 863
capacitor leakage, 465, 566
capacitors, 461 466, 471 472
capacitor voltage (vC), 552 554, 602, 628,

638 639, 645, 672 673, 678 683, 706
capacitor voltage waveform, 510 511
carbon-core resistors, 19
Cartesian coordinates, 948, 950 951

973
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Cartesian-to-polar coordinate
transformation, 948

cascaded inverters, 664 671, 747
CCCS (current-controlled current source), 101,

105 106, 141 142, 334, 479
CCVS (current-controlled voltage source), 101
center frequency (resonance frequency), 794
CGS , 475 476
channel geometry, 305
channel length, 305, 474
channel region, 303
channel resistance, 305
channel width, 305, 474
characteristic equation, 507, 630, 641, 679 680,

686, 688, 779
characteristic impedance, 635
characteristic polynomial, 754, 786, 797
charge, 482, 493
charge conservation, 498
charge leakage, 566
charge pump, 637 638
charge sharing, 491
chip size, 14, 22 24
circuit abstraction, 3 50

lumped circuit abstraction, 5 9
lumped matter discipline, 9 13
lumped matter discipline abstraction, 13 15
modeling physical elements, 36 40
overview, 3
power of abstraction, 3 5
signal representation, 40 50

analog signals, 41 43
digital signals, 43 50
native and non-native signal representation,

42 43, 45 50
overview, 40 41

two-terminal elements, 15 36
associated variables convention, 25 29
batteries, 16 18
current source, 33 36
element laws, 32 33
ideal voltage sources, wires, and

resistors, 30 32
linear resistors, 18 25
overview, 29 30

circuit analyses, 15 16
circuit behavior, 677
circuit constraint, 917, 933 934
circuit delays, 457 458, 482 484
circuit effects, 459
circuit integral, 934 935
circuit loops, 54
circuit response, 663, 667 668, 704 705
circuits, defined, 54
circuit theory, 8
circuit time constant, 515 517
circuit topology, 132 133, 415
clamping circuit, 918
clipping, 351
clipping circuit, W W W 16:918f
CL (load capacitor), 604
clock cycle time, 13 14
clocked digital systems, 4
clock frequency, 555 556
clock period, 555 556
clock signals and clock fanout, 554 558
clock tree, 556, 558

CMOS (complementary MOS) logic, 611 618
CMRR (common-mode rejection ratio), 431
coil resistance, 470
collapsing resistances, 90
collapsing the circuit, 213
collector current, 370 371
collector diode, 373 374
combinational gates, 258 261
combinational logic, 294 295
combination rules, 715
combined current, 408
common emitter amplifier, 376
common ground, 125
common-mode component signal, 430, 432
common-mode gain, 431
common-mode model, 433 435
common-mode noise, 431
common-mode rejection ratio (CMRR), 431
common-mode signal, 431
common representation, 245 248, 274
common-source stage, 384, 445
common voltage, 490
complement, 261, 264, 275, 617
complementary MOS (CMOS) logic, 611 618
complement form input, 617
complete solution, 542, 559, 675, 755 756
complete time function v(t), 781 782
complex amplitudes, 711
complex conjugate, 779, 950 951
complex constants, 780
complex current, 759
complex current amplitudes, 733
complex input voltage, 748
complex numbers, 947 953

addition and subtraction, 949
complex conjugate, 950 951
complex functions of time, 952
magnitude and phase, 947
multiplication and division, 949 950
numerical examples, 952 953
overview, 947
polar representation, 948 949
properties of e j θ , 951
rotation, 951 952

complex plane, 947 949
complex power, 759
complex roots, 777, 784 786, 797, 806, 821
complex voltage, 743, 759
complex voltage amplitudes, 724, 733
composability, 296, 315
computing current, 6 7
conductance, 127, 147
conductance and source matrices,

W W W 3:145f 3:145h
conductance matrix, 132
conducting channel, 18 19, 936
conservation of change, 56
conservation of charge, 936
conservation of energy, 109
constant-coefficient, 100, 507, 629
constant of proportionality, 220 221
constituent relations, 32
constitutive laws, 415, 461 470, 690

capacitors, 461 466
inductors, 466 470
overview, 461

constraint curve, 341 342, 363 364

constraints
on lumped circuit elements, 9 12, 46
on lumped circuits, 12 13, 46

continuity condition, 508, 520
continuity equation, 930, 934
control, 30
control function, 839
controlled source, 99
controlled values, 98
control port, 99, 322
control terminal, 285
corner frequency (0.707 frequency), 738
correct compensation, 753 754
cosine signal, 780
cosine wave drive, 719, 760 761
cos(θ ), 941 944

(power factor), 759
cos θ (power factor), 759, 941 944
cos(ωt) input, 705
COX , 475 476
Cramer’s Rule, 88
critically-damped dynamics, 656
cubic network, 92 93
current, 7, 9, 12, 16 17, 25 26, 801, 930 931
current capacity, increasing, 17 18
current computation, 599
current-controlled current source (CCCS), 101,

105 106, 141 142, 334, 479
current-controlled voltage source (CCVS), 101
current density, 930, 936 937
current divider relation, 108, 148, 152, 287
current equation, 6, 18, 28, 407 408
current gain, 334
current impulse, 554
current law equation, 839
current out, 11
current ratio, 341
current response, 523 524
current sampling, 856
current source, 33 36, 99, 168 170
current source power, 34
current step input, 486 487
current transfer ratio, 101
current waveform, 538
curve-plotter configuration, 33
cutoff frequency, 744
cutoff region, 359, 371 372, 374, 422
cutoff regions, 337
cycle time, 41, 914
cylindrical conductor, 477

D
damped natural frequency, 646
damped resonant frequency, 815, 821
damping factor, 646 647
DC bias, 351, 748 749
DC current signal, 41 42
DC input voltage, 409
DC offset (average value), 41, 215 217
DC offset voltage, 350 352, 365, 405, 413,

420 421
DC operating values, 229, 765
DC restorer, 918
DC variables, 716
DC voltage, 915
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decade, 174, 735
decaying behavior, 645, 657, 681 683
decaying exponential, 626, 650, 794
decibel, 735
decimal number, 268 269, 275
decimal representation, 269
decimal system, 244
decoupling amplifier stages, 739
decoupling capacitor, 750 751
deflection coil, 549 550
degree of freedom, 546, 559
delay, 569
De Morgan’s laws, 263 265
denominator, 146
denominator polynomial, 725
density of magnetic flux, 467
dependent current source, 105
dependent sources, 98, 332
dependent voltage source, 101 102
depletion-mode MOSFET, 611
deposites integrated-circuit resistors, 18
dielectric permittivity, 461
difference amplifier (differential amplifier),

382 384, 429 430
difference-mode component signal, 430 431
difference-mode gain, 431, 435
difference-mode model, 432 433
difference-mode signal, 430, 433
differences, 953
differential amplifier (difference amplifier),

382 384, 429 430
differential equations, 503, 510, 516, 518,

542, 546, 550, 556, 568, 655, 679,
688

differential input stage, 837 838
differentiation, 481, 484, 548, 569
differentiator, 862 863
diffusion, 302, 304, 905
diffusion regions, 302
digital abstraction, 43, 243 282, see also

propagation delay and digital abstraction
boolean logic, 256 258
combinational gates, 258 261
number representation, 267 282
overview, 243 245
simplifying logic expressions, 262 267
standard sum-of-products representation,

261 262
voltage levels and static discipline, 245 256

digital calculator, 561
digital circuits, 322. see also energy and power in

digital circuits
digital gates, 322
digital memory, 561 569

abstract digital memory element, 562 563
concept of digital state, 561 562
design of digital memory element, 563 567
overview, 561
static memory element, 567 569

digital signals, 43 50
digital state variable, 562
digital systems, 4
digital systolic arrays, 4
digital transmission, 243
diode attenuator, W W W 16:918L
diode based switched power supply, 671, 675
diode constraints, 910 911, 913

diode current, 215, 909, 915
diode equation, 201, 908
diode example, 195 196
diode regulator, W W W 4:228a 4:228b
diodes, 905 923

analysis of diode circuits, 908 911
exercises, 920
exponentiation circuit,

W W W 16:918f 16:918h
full-wave diode bridge example,

W W W 16:918j 16:918l
incremental example,

W W W 16:918l 16:918m
nonlinear analysis with RL and RC,

912 918
overview, 905
piecewise linear example, W W W 16:918f
problems, 921 923
semiconductor diode characteristics, 905 908
switched power supply using,

W W W 16:918a 16:918e
diode voltage, 908 909
discharge waveform, 552
discipline, 4
discontinuous steps, 484 486,
discrete elements, 6 7, 9
discrete representation, 243 244
discrete resistors, 18
discrete signals, 44
discretization discipline, 4, 8
discretization of voltage, 44
discretization threshold, 44
dissipated energy, 818 819, 822 823
distributed circuit models, 14
distributed connection, 54 55
divide-and-conquer technique, 271
dividers, 73 82
division, 949 950
D-latch, 567
doping, 302
doublet, 485, 574
drain, 289
drain current, 359, 445
drain terminal, 417
drain-to-source current, 344
drain-to-source voltage, 417
drain voltage, 336 337
drive frequency, 781, 812
driven, parallel RLC circuit, 678
driven, series RLC circuit, 654 677

impulse response, 661 677
falling transient, 668 669
overview, 661 668
rising transient, 669 677

overview, 654 657
step response, 657 661

driven circuit, 813 814
driven response (forced response), 781
drive voltage, 708
driving function, 506
driving inverter, 666 667
driving waveform, 756
dual properties, 33 34
duality, 80
duals, 481, 483 484
dynamic behavior, 644

dynamic D-latch (dynamic one-bit memory
element), 567

dynamic memory, 567
dynamic power (pdynamic), 603

E
edges, 54, 93, 934
EECS (Electrical Engineering and Computer

Science), 5
EE (Electrical Engineering) curriculum, 5
effective resistance, 84, 852
eight-bit adder, 273
e j θ , 715, 726, 944, 951 952
electrical circuits, 43
electrical engineering, 3 4
Electrical Engineering and Computer Science

(EECS), 5
Electrical Engineering (EE) curriculum, 5
electrical potentials, 25 26
electrical signals, 41
electrical switching analysis, 307
electric field, 927 928, 936 937
electromagnetic propagation delays, 11, 932
electromagnetic waves, 11 12, 13 14
electronic sound amplifier, 43
electrons, 301 303
element boundaries, 9 10, 932
element laws, 32 33
element properties, 26, 32 33
element relation, 32
element values, 785, 791, 803, 809
eliminating currents, 137
emitter current, 370 371
emitter diode, 373 374
energy, conservation of, 109
energy and power in digital circuits, 595 622, see

also logic gates, power dissipation in
average power in RC circuit, 597 603

energy dissipated during interval T1,
599 601

energy dissipated during interval T2,
601 602

overview, 597 599
total energy dissipated, 603

CMOS logic, 611 618
CMOS logic gate design, 616 618
overview, 611 616

exercises, 618 619
NMOS logic, 611
overview, 595
power and energy relations for simple RC

circuit, 595 597
problems, 620 622

energy-based approaches, 71 72
energy capacity of a battery, 17
energy comparison, 17
energy consumption, 602
energy dissipation, 597 598, 646
energy equation, 17, 27, 47
energy in a capacitor, 465, 470, 496 497,

634, 762
energy in an inductor, 470, 634
energy loss, 491
energy processing systems, 30
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energy storage elements, 457 499
constitutive laws, 461 470

capacitors, 461 466
inductors, 466 470
overview, 461

energy, charge, and flux conservation,
489 494

exercises, 494 495
overview, 457 461
problems, 496 499
series and parallel connections, 470 473

capacitors, 471 472
inductors, 472 473
overview, 470

simple circuit examples, 480 489
impulse inputs, 488 489
overview, 480 481
role reversal, W W W 9:489a
sinusoidal inputs, W W W 9:482a 9:482c
step inputs, 482 487

special examples, 473 480
IC wiring capacitance and inductance,

477 478
MOSFET gate capacitance, 473 476
overview, 473
transformers, 478 480
wiring loop inductance, 476 477

energy storage property, 465, 469 470,
492 493, 597 598, 761 762

energy stored in batteries, 17
engineering multipliers, 48
enhancement-mode MOSFET, 611
equation of motion, 637
equivalent circuit, 320
equivalent conductance, 77
equivalent ratings, 17
equivalent resistance, 159
e st drive, 704, 711
estimate of delay, 535
Euler identity, 949
Euler relation, 707, 944
expanded view, 90
expanding circuits, 213
exponential changing curve, 861
exponential decay, 652 653
exponential drives, 765
exponential functions, 648, 650
external load resistance, 426
extremum points, 248

F
fake drive voltage, 708
falling transition, 667
fall time, 527 528
FALSE, 244 245
fanout degree, 556
Farad, 462
feedback resistors, 850, 852
filters, 742 751

bandpass filter, 809 810
decoupling amplifier stages, 746 751
design example: crossover network,

744 746
high-pass filter, 814 815
low-pass filter, 739, 742, 810 814

notch filter, 815 816
overview, 742 744

filter selectivity, 821
final value, 681
finite current, 508
first-order circuits, 625 626
first-order differential equations, 504
first-order resistor-inductor circuits, 634 635
first-order transients in linear electrical networks,

503 592
clock signals and clock fanout, 554 558
digital memory, 561 569

an abstract digital memory element,
562 563

concept of digital state, 561 562
design of digital memory element, 563 567
overview, 561
static memory element, 567 569

effect of wire inductance indigital circuits, 545
exercises, 569 575
intuitive analysis, 520 525
intuitive method for impulse response,

553 554
overview, 503 504
problems, 576 592
propagation delay and digital abstraction,

525 537
computing tpd from SRC MOSFET model,

529 537
definitions of propagation delays, 527 529
overview, 525 526

ramp inputs and linearity, 545 550
RC circuits, 504 517, 517 520

overview, 504, 517
parallel, step input, 504 509
RC discharge transient, 509 511
RC response to decaying exponential,

W W W 10:558a 10:558c
response to short pulses and impulse

response, 550 553
series, square-wave input, 515 517
series, step input, 511 515, 517 520
series, with sine-wave input, 558 561

state and state variables, 538 544
computer analysis using state equation,

540 541
concept of state, 538 539
overview, 538
solution by integrating factors,

W W W 10:544a 10:544b
zero-input and zero-state response,

541 544
first-stage output voltage (vo), 705
fixed resistance model, 300
fixed voltage, 868
flat conductor, 477
floating independent voltage sources, 126,

135 139
floating voltage source, 135, 137
flow, 30
flux linkage, 467
FO4 delay, 532
foil-wound capacitors, 466
forbidden region, 247 248
forced response (forced solution), 506, 706,

719, 781
forced response (driven response), 781

force equation, 3 4
forward bias, 906
four-port device, 837, 873
Fourier Series, 756
fractional ripple, 227
frequency, 14 15
frequency compensation, 753 754, 757
frequency domain analysis, 732, 766
frequency-domain behavior, 819 820
frequency-impedance relationship, 721
frequency response, 731 742

of capacitors, inductors, and resistors,
732 736

of general functions, sketching,
W W W 13:741a 13:741d

overview, 731 732
of RC and RL circuits, intuitively sketching,

737 741
frequency response plots, 742 744, 766,

815, 866
full adder, 271 273
full-wave diode bridge, 918
functions. see also trigonometric functions and

identities
fundamental method, 66 67, 108

G
g, 100
G, 31
gain, 837, 846 847, 860, 864
gain constant, 843
gain parameters, 431
gate capacitance, 476, 536 537
gate delay (propagation delay), 527
gate lengths, 305
gate-level implementation, 260 261
gate oxide level, 303
gate symbols, 259
gate terminal, 417
gate-to-channel capacitance, 474 475
gate-to-source capacitance, 475, 483
gate-to-source voltages, 290 291, 303 304,

336 337, 417, 474, 747, 750
Guass’s law, 928
general resistors, 24 25
general solution, 506
geometry of a material, 18 24
germanium, 905, 907
global time base, 554
gm , 99
graphical analysis, 203 206
graphical interpretation, W W W 12:640a
graphical method, 354 356
ground, 119
ground node, 94, 125 126
ground plane, 477
ground potential, 156
ground-zero potential (zero V), 120

H
half-angle arguments, 943
half-power frequency, 764, 792
half power point, 738
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half-wave rectifier, 205 206,
W W W 4:214a 4:214b

half-wave rectifier circuit, 909 910
harmonics, 756 757
Henrys [H], 467
higher-order circuits, W W W 12:691h 12:691j
high frequency asymptote, 788, 790 791, 803,

806 807, 821
high-pass filter, 814 815
high-Q circuit, 813 814, 819 820
high voltage threshold, 247
holes, 301 302
homogeneous equations, 506
homogeneous response, 661
homogeneous solution, 505 506, 628
H(s), 720
hysteresis, 869

I
IC (integrated circuit), 477 478
ideal adder, 858
ideal circuit elements, 47
ideal conductor, 31
ideal current source, 34
ideal diode, 206 209
ideal inverter, 525 526
idealized switched power supply, 637 639
ideal linear resistor, 31
ideal Op Amp model, 844 846
ideal switch, 564
ideal voltage source, 30 31, 34, 855
ideal wire equation, 32
ideal wires, 7, 9, 12
identity gate (buffer gate), 259, 314 315
iDS curve, 337, 340, 342
iG , 289 290
iL (inductor current), 628, 638, 645, 672
imaginary denominator parts, 795
imaginary input, 705
imaginary part, 947, 949, 953
imaginary-part (�) function, 947 948
impedance method, 715 717
impedance model, 715 718
impedances, 712 731

analysis of small signal amplifier with
capacitive load example, 729 731

overview, 712 718
series RL circuit examples, 718 728

impulse, 485 489, 553 554, 574, 657 658,
661 664, 683 685, 796

impulse function, 485, 488
impulse inputs, 488 489, 663
impulse notation, 485
impulse response, 683 684
impulse sources, 489, 658
incremental analysis (small-signal analysis), 214
incremental change, 410 412, 415, 429, 439
incremental current gain, 425, 442 443
incremental energy storage, 465
incremental input resistance, 424
incremental input voltage, 410
incremental instantaneous variables, 716
incremental output current, 410
incremental output resistance, 425
incremental power gain, 427, 443

incremental signal responses, 413
incremental subcircuit, 230
incremental transconductance, 410
independent capacitor-resistor circuit, 649
independent current source, 139
independent equations, 69
independent inductor-resistor circuit, 649
independent source, 103
independent sources, 98, 690
independent term, 220
independent voltage source, 31, 68 69, 149
inductance, 457 458, 467, 470, 472 473
inductive effects, 14 15
inductor combinations, 473
inductor current (iL), 628, 638, 645, 672
inductor-element law, 468
inductor frequency response, 732 736
inductors, 12, 457, 460 461, 466 470,

472 473, 503 504, 517 520,
524, 539

inductor voltage, 690, 817
infinite divisibility, 44
infinite resistance, 100
information levels, 44
information processing systems, 30
information sources, 30
initial amplitude, 681
initial condition, 506 509
initial trajectory, 680
initial value, 681
initial voltage, 673, 754
input and output resistances

current and power gain, 423 446
common-mode model, 433 435
difference-mode model, 432 433
input resistance ri , 424 425
MOSFET implementation of difference

amplifier, 431 432
output resistance rout, 425 427
overall behavior, 435 437
overview, 423 424
power gain, 427 431
small-signal input and output resistances,

437 447
operational amplifier abstraction, 849 857

generalization on input resistance,
W W W 15:855a

input and output R for non-inverting
OP Amp, 853 855

input resistance, inverting connection,
851 853

OP Amp current source example, 855 857
output resistance, inverting OP Amp,

849 851
overview, 849

input bias voltage, 365 367
input capacitance, 753
input cosine, 712
input coupling capacitor, 747
input current, 81, 839 840, 842
input drive voltage, 812 813
input impedance, 837
input-output relationships, 293, 345 348, 405,

412, 737, 847
input-output transfer, 306
input port, 99, 104, 837, 873

input power, 334
input pulse area, 553
input resistance, 424 425, 753, 841
input signal, 331 332, 350 351
input sinusoid, 355 356
input terminal, 285
input thresholds, 298
input transition, 315 317
input variables, 539
input voltage, 250, 297, 345 349, 809, 817, 837
input waveform, 917 918
instantaneous power, 596 600
instantaneous power equation, 27, 46
instantaneous short circuit, 509, 524
instantaneous terminal current, 24
instantaneous terminal voltage, 24
instantaneous voltage source, 524
insulators, 13
integrated circuit (IC), 477 478
integrating factors, W W W 10:544a
integrator, 481, 860 862, 867 869, 873
integration, 481, 488, 516 517, 548, 550
intercept, 40
interference effect, 781
internal capacitances, 475 476
internal resistance, 16, 36 37
intuitive analysis of first-order circuit, 520 525
intuitive analysis of second-order circuits,

678 684
intuitive approach, 108
intuitive method for impulse response, 553 554
intuitive sequential approach, 106
inverter, 291
inverter behavior, 474 475
inverter characteristic, 297
inverter circuit, 292, 344, 525 527
inverter design, 309 311
inverter gate, 292, 314
inverter pair, 530
inverter transfer characteristics, 306
inverting devices, 316 317
inverting input, 429
inverting Op Amp, 844 846
Is , 193
i−v relationship, 97 98

J
joule ( J ), 16 17

K
KCL, 55 60, 936
Kirchhoff’s laws, 934 936

current law (KCL), 55 60, 936
voltage law (KVL), 55 60, 935

Kn , 341, 385 386, 394, 444 445
KVL, 55 60, 935

L
language of circuits, 8
large loop gain, 848, 851
large signal analysis, 377 380, 382 386, 390
large-signal input-output behavior, 369 370
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lightbulb circuit, 5 8
Li-Ion (Lithium-Ion) battery, 17
limiter, W W W 16:918h
linear amplifier, 351, 368, 405 406, 411,

729, 869
linear, time-invariant capacitors, 463 464, 539
linear, time-invariant inductors, 468 469
linear, time-invariant resistors, 24, 42
linear analysis, 909 910, 919
linear applications, 405 407
linear circuit techniques, 220
linear conductance, 221
linear dielectrics, 462
linear electrical networks, see first-order transients

in linear electrical networks
linear equations, simultaneous, 957 958
linearity, 146, 703 704
linearization, 408 409, 414 415
linearization technique, 408
linear networks, 130, 148 149
linear-region circuit model, 863
linear resistance, 221
linear resistors, 18 25, 221, 387
linear scale, 734
linear subcircuits, 287
line integral, 934
Lithium-Ion (Li-Ion) battery, 17
LMD (lumped matter discipline), 8 9, 25, 46,

458 459, 462, 467, 492. see also
Maxwell’s equations and lumped matter
discipline

load capacitor (CL), 604
load impedance (ZL), 730
load line, 354, 363 364
load resistance, 320, 730
load resistors, 292, 676 677
logarithmic plots, 734 736
logarithmic scale, 734
log frequency, 766, 783
logical 0, 244 256
logical 1, 244 255
logical high value, 564
logical low value, 564
logic expressions, simplifying, 262 267
logic gates, power dissipation in, 604 610

overview, 604
static power dissipation, 604 605
total power dissipation, 605 610

energy dissipated during interval T1,
606 607

energy dissipated during interval T2, 607
overview, 605 606
total energy dissipated, 607 610

log magnitude, 766, 783
log plots, 734
log scale, 734
long-time behavior, 660
loop, 54
loop current, 145, 177, 249
loop gain, 848, 855, 873
loop method, 177, W W W 3:145i 3:145l
loss, 30
lossless circuit, 761
loss mechanisms, 640
low-frequency asymptote, 788, 790 791, 803,

806, 821
low-pass filters, 739, 742, 810 814

low voltage threshold, 247
lumped circuit abstraction, 5 9, 46, 458 460
lumped circuit elements, 9 12, 46, 54
lumped circuit model, 8
lumped circuits, 12 13, 46, 927
lumped elements, 7, 9, 11 12, 492, 927, 929
lumped matter discipline (LMD), 8 9, 25, 46,

458 459, 462, 467, 492. see also
Maxwell’s equations and lumped matter
discipline

lumped-parameter summary, 32
lumping, 4
L/W, 21 22, 305, 326 327, 536, 699,

W W W 6:321b

M
magnetic flux, 9 10, 12, 466 467, 928 929, 933
magnetic permeability, 466, 928
magnitude, 947, 953
magnitude curve, 736, 788, 812
magnitude of complex numbers, 948
magnitude of gain, 316 317
magnitude of response, 812 813
magnitude of slope, 319
magnitude plot, 731, 736 740, 749, 766, 785,

790 791, 798 799, 803, 807, 819, 821
mA-hours, 17
mapping, 252
mathematical grunge, 72
mathematical solutions, 198
MAX807L microprocessor supervisory circuit, 5
MAXIM MAX1617 device, 907 908
maximum amplitude, 814 815
maximum current, 801, 847
maximum input swing, 380 381
maximum power dissipation (pmax), 38
maximum power transfer, W W W 13:764c
Maxwell’s equations and lumped matter

discipline, 927 937
deriving Kirchhoff’s laws, 934 936
deriving resistance of piece of material,

936 937
first constraint of lumped matter discipline,

927 929
lumped matter discipline applied to

circuits, 933
overview, 927
second constraint of lumped matter discipline,

930 932
third constraint of lumped matter discipline,

932 933
mechanical pressure, 288
memory, 561 567
memory element, 562 567
memory property, 463 465, 468 469,

492 493, 538
metal connections, 304 305
metal detector, 804 805
metal oxide semiconductor field-effect transistor,

see MOSFET amplifier
method of assumed states, 209, 909 910, 919
method of homogeneous and particular solutions,

505 508, 510 514, 519, 542 544,
546 547, 559 560, 568, 628 629,
655

micrometer, 301
microphone model, 37
microprocessors, 13 14, 614 615
Miller Effect, 861
milliamps, 907
minimum sum-of-products form, 266
MIPS microprocessor, 14
model accuracy, 37
modeling physical elements, 36 40
modeling physical systems, 29
model simplicity, 37
MOSFET amplifier, 344 353

amplifier abstraction and saturation discipline,
352 353

biasing, 349 352
exercises, 390 394
large-signal analysis of, 353 365

alternative method for valid input and
output voltage ranges, 363 365

overview, 353
valid input and output voltage ranges,

356 363
vIN versus vOUT in saturation region,

353 356
nonlinear input-output relationship, 405
operating point selection, 365 386
overview, 344 349
problems, 394 402
small-signal circuit for, 418 420
switch unified (SU) MOSFET model, 386 390

MOSFET characteristics, 291, 300, 335 340,
387

MOSFET drain, 289 291, 293, 300, 303 304,
335 336, 340 345, 359 360, 371,
373

MOSFET gate capacitance, 473 476
MOSFET physical structure, 301 306, 341, 473
MOSFET - S model, 289 293
MOSFET - SCS model, 339 345
MOSFET source, 289 291
MOSFET - SR model, 300
MOSFET - SRC model, 475
MOSFET switch model, 289 293. see also

MOSFET -S model
MOSFET transconductance, 410, 420, 436, 444
MOS inverter, 610
motion detector circuit, 563
motion detector logic, 257
multiple-cell batteries, 16
multiple-digit binary numbers, 268
multiple sources, 199 201
multiplication, 949 950
multi-terminal devices, 99. see also MOSFET

amplifier
‘‘mutual’’ conductances, 132

N
natural frequencies, complex, 646
n+ (n-type semiconductor), 302
NAND function, 259
NAND gate, 293 294, 311 313
narrow operating range, 214, 446
native and non-native signal representation,

42 43, 45 50
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natural frequency, 507, 630, 642, 646, 781
natural response, 506
n-channel MOSFET (NFET), 289
negative arguments, 941 942
negative binary numbers, 268 269
negative branch voltage, 61
negative feedback, 843 844
negative input terminal, 869
negative number, 268 269
negative power supply port, 873
negative saturation, 866 867
negative slope, 634
negative voltage, 870
net current, 56 57
network resistance, 91
network theorems, 119 189

loop method, W W W 3:145i 3:145l
node method, 125 145

conductance and source matrices,
W W W 3:145f 3:145h

and dependent sources, 139 145
floating independent voltage sources,

135 139
overview, 125 130

Newton’s laws of physics, 4, 8
NFET (n-channel MOSFET), 611 612
Nickel-Cadmium battery, 17
NM0, 251 252
NM1, 251 252
NMOS logic, 611, 618
node, 54

node voltage, 119 125
Norton equivalent network, 167 171

determining IN, 170 171
determining RN, 171
examples, 171 189
overview, 167 170

overview, 119
superposition, 145 157

1-V source acting alone, 154
2-V source acting alone, 154 155
applied to beehive network,

W W W 3:153a 3:145d
first method, 150 151
overview, 145 150
rules for dependent sources, 153 154
second method, 151 153
v1 acting alone, 155 156
v2 acting alone, 156 157

Thévenine quivalent network, 157 167
determining RTH, 166 167
determining vTH, 166
examples, 171 189
overview, 157 166

node analysis, 125 128, 135 138
node charge, 933
node equation, 132, 198, 202 203, 842,

863 864, 912
node method, 125 145

conductance and source matrices,
W W W 3:145f 3:145h

and dependent sources, 139 145
floating independent voltage sources, 135 139
overview, 125 130

node voltage, 119 127
noise, 243 244, 248 249
noise decoupling, 315

noise immunity, 248 249
noise margins, 249 252
nominal current capacity, 18
nominal voltage, 16, 40
non-electrical quantities, 43
nonhomogeneous, first-order differential

equation, 503 507
non-interaction, 10 11
non-inverting connection, 843, 847, 859
non-inverting input, 429
non-inverting Op Amp, 842 843
nonlinear analysis, 197 203
nonlinear circuits, analysis of, 193 239

analytical solutions, 197 203
graphical analysis, 203 206
incremental analysis, 214 239
introduction to nonlinear elements, 193 197
overview, 193
piecewise linear analysis, 206 214

improved piecewise linear models for
nonlinear elements,
W W W 4:214c 4:214h

overview, 206 214
nonlinear device voltage regulator, 225 228
nonlinear elements, 205
nonlinear resistor, 24, 193, 387
nonlinearity, 314 320
nonzero noise margins, 315 316
non-zero resistance, 7, 300
NOR operation, 259, 267
Norton equivalent network, 167 171

determining IN, 170 171
determining RN, 171
examples, 171 189
overview, 167 170

notch filter (bandstop filter), 815 816
notch frequency, 815
NOT function, 257
NOT gate, 259
N-resistor current divider, W W W 2:83a 2:83b
N resistors, 77 78
n-type channel, 474
n-type semiconductor (n+), 302
n-type silicon, 906
number representation, 267 282
numbers. see also complex numbers
numerical analysis, 386
numerical examples, 952 953
numerical quantities, 720 724

O
octave, 735
OFF state, 908 911, 913 916, 919
Ohm’s law, 18
one-bit full adders, 271 273
on-resistance, 301
ON resistance, 567
ON state, 908 911, 913 914, 917, 919
OP Amp circuits, 842 849
Op Amp current source, 855 857

non-inverting OP Amp, 842 844
overview, 842
second example : inverting connection,

844 846
sensitivity, 846 847

special case : voltage follower, 847 848
v+ − v− ∼= 0, 848 849

OP Amp RC circuits, 859 866
OP Amp differentiator, 862 863
OP Amp integrator, 859 862
overview, 859
an RC active filter, 863 865
RC active filter impedance analysis,

865 866
sallen-key filter, W W W 15:866a 15:866d

Op Amp saturation, 573, 841, 866 871
open circuits, 24, 32, 146, 290, 415, 509, 616
open circuit segment, 208
open-circuit voltage, 174
operating point, 217, 351, 380 381, 418 419,

431
operating point selection, 365 386
operating point variables, 716
operational amplifier, 384 386, 443 446
operational amplifier abstraction, 837 902

additional examples, 857 859
device properties of operational amplifier,

839 841
OP Amp model, 839 841
overview, 839

exercises, 873 881
input and output resistances, 849 857

generalization on input resistance,
W W W 15:855a

input and output R for non-inverting OP
Amp, 853 855

input resistance, inverting connection,
851 853

OP Amp current source example, 855 857
output resistance, inverting OP Amp,

849 851
overview, 849

introduction, 837 838
historical perspective, 838
overview, 837 838

OP Amp in saturation, 866 869
OP Amp integrator in saturation, 867 869
overview, 866 867

OP Amp RC circuits, 859 866
OP Amp differentiator, 862 863
OP Amp integrator, 859 862
overview, 859
an RC active filter, 863 865
RC active filter impedance analysis,

865 866
sallen-key filter, W W W 15:866a 15:866d

overview, 837
positive feedback, 869 872

overview, 869
RC oscillator, 869 872

problems, 881 902
simple OP Amp circuits, 842 849

non-inverting OP Amp, 842 844
overview, 842
second example : inverting connection,

844 846
sensitivity, 846 847
special case : voltage follower, 847 848
v+ − v− ∼= 0, 848 849

two-ports, W W W 15:872a 15:872f
opposite resistor, 81
OR configuration, 288
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OR function, 257, 261
OR gate, 259
oscillating voltage, 649
oscillation, 634
oscillation cycle, 654
oscillation frequency, 637, 651, 680, 815
oscillator model, 38
oscillatory behavior, 645, 657, 777, 779, 821
oscillatory waveform, 627
output circuit topology, 855 856
output conductance, 850
output current, 839 841, 855
output impedance, 837
output port, 99, 322, 837, 873
output power, 334
output relation, 845
output resistance rout, 425 427
output response, 712, 864
output signal, 331 332
output terminal, 285
output thresholds, 298
output voltage (vo), 250, 297, 345 349,

365 367, 676, 719, 724, 730,
747, 839

output waveform, 910, 919
over-compensation, 753 754, 756 757
over-damped dynamics, 656

P
p+ (p-type semiconductor), 302
parallel conductances, 82
parallel-connected elements, 62
parallel connected switches, 288
parallel connections, see series and parallel

connections
parallel plate capacitor, 466
parallel-plate capacitor, 474
parallel RC circuits, 504 509, 511 515
parallel RLC, sinusoidal response, 777 783

homogeneous solution, 778 780
overview, 777 778
particular solution, 780 781
total solution for parallel RLC circuit,

781 783
parallel resistors, 80, 82 84, 470
parallel simplification, 724
parasitic inductance, 664 666
parasitic inductors, 545, 625 626
parasitic resistances, 566
parasitics, 459 460, 473, 492
particular integral, 547, 549
particular solution, 508, 510, 513 514, 542, 544
path independence, 62
p-channel MOSFET (PFET), 385 386, 611,

615 616
peak amplitude, 42
peak detector, 912 915
peakiness, 796, 810, 823
peak magnitude, 798, 800
peak sensitivity, 805
peak-to-peak swing, 41, 368, 422
peak-to-peak value, 41, 915
peak-to-peak voltage, 365
peak values, 635 636
Pentium chip, 23

Pentium II, 14, 24
Pentium IV, 14, 23 24

chip photo, 23 24
period, 41 42
periodic voltage signal, 42
permeability, 466, 470, 477, 928
permittivity, 461, 466, 474, 477, 928
PFET (p-channel MOSFET), 385 386, 611,

615 616
phase (angle), 948, 951 952
phase constraints, 789
phase offset, 41
phase plot, 731, 739 741, 766, 785, 788 789,

795, 798 799, 807, 821
phase shift, 41
phase-shifted arguments, 942
phosphorus, 906
physical device, 199
physical quantities, 42 43
physical signals, 43 44
pico-amps, 907
piecewise linear analysis, 206 214
piecewise linear device model, 214
piecewise linear diode model, 372 375, 910,

W W W 4:228c 4:228d
piecewise-linear graph, 209
piecewise-linear modeling, 338, 374 375,

438 439, 446
pipelining, 13 14
planar layers, 301 302
planar materials, 22 24
planar resistance, 18, 20 23, 47, 84
planar resistor, 84
point-mass simplification, 12
polar form, 709, 950, 953
polar representation, 948 949
polar-to-Cartesian coordinate

transformation, 948
pole, definition, W W W 13:741a
poly-crystalline silicon resistor, 19
polysilicon, 18, 303, 461
ports, 15, 35
positive branch voltage, 61
positive feedback, 870, 873
positive input terminal, 869
positive integer, 269
positive power supply port, 873
positive quantity, 25
positive saturation, 866 867, 870 871
positive slope, 634
positive voltage, 871
potential difference, 61, 120, 122, 125
PO versus PI , 334
power, 595 618
power absorption, 28
power and energy in impedances, 757 767

arbitrary impedance, 758 760
overview, 757 758
power in RC circuit example, 763 767
pure reactance, 761 763
pure resistance, 760 761

power dissipation, 17, 25, 28 29, 38, 42
power equation, 16
power factor (cos θ ), 759
power gain, 331, 334, 427 431
power in digital circuits, see energy and power in

digital circuits

power ports, 837
power ratings, 29, 38
power relation, 27
power supply, 28
primary sources of energy, 30
primitive rules, 262 263
primitives, 148
printed-circuit-board trace, 478
processing, 40 41
process shrink, 22 24
propagation delay, 10, 12, 545, 932 933
propagation delay and digital abstraction,

525 537
computing tpd from SRC MOSFET model,

529 537
definitions of propagation delays, 527 529
overview, 525 526

propagation delay (gate delay), 527
propagation effects, 13
propagation speeds, 932
p-type semiconductor (p+), 302
p-type silicon, 906
p-type substrate, 302 304, 473 475
pulldown circuit, 615 616
pulldown network resistance, 320
pulldowns, 611
pullup circuit, 615 616
pullups, 611
pulse function, 485 489
pulse voltage, 552
purely imaginary number, 947
purely real number, 947

Q
Q, 647
quadratic equation, 686
Quality Factor (Q), 647, 680, 794 797, 800,

802, 809 810, 812, 815, 817 820
quasistatic operation, 12

R
ramping, 861
ramping unit step function, 484 487
ramp function, 484 485
ramp inputs and linearity, 545 550
ramp notation, 485, 574
range of resistivity, 20
rate of change, 12
rate of delivery of energy, 16 17
ratio of resistances, 22 24
ratio of resonance frequency to bandwidth, 794
ratios, 953
RC active filter, 863 865
RC circuits, 517 520

average power in, 597 603
energy dissipated during interval T1,

599 601
energy dissipated during interval T2,

601 602
overview, 597 599
total energy dissipated, 603

frequency response of, intuitively sketching,
737 741
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OP Amp, 859 866
OP Amp differentiator, 862 863
OP Amp integrator, 859 862
overview, 859
an RC active filter, 863 865
RC active filter impedance analysis,

865 866
sallen-key filter, W W W 15:866a 15:866d

overview, 504, 517
parallel, step input, 504 509
RC discharge transient, 509 511
RC response to decaying exponential,

W W W 10:558a 10:558c
response to short pulses and impulse response,

550 553
series, square-wave input, 515 517
series, step input, 511 515, 517 520
series, with sine-wave input, 558 561

RC oscillator, 869 871
RC response to short pulse, 550 553, 568, 802,

861
RC time constant, 507
RC transient, 509 511. see also RC circuits:RC

discharge transient
reactance, 758
reactive power, 759
real amplitudes, 716
real denominator parts, 795
real input, 705
real part, 709 710, 947, 949, 953
real roots, 687, 725, 784, 786
receiving inverter, 307, 666
reciprocal capacitances, 471
reciprocal inductances, 473
reciprocal resistance equation, 31
reference direction, 25, 35
reference ground connection, 331 332
reference node, 119
regenerative transition, 869
relays, 484
repetitive exchange of energy, 634
reset signal, 563, 565
resistance, 6 7, 18 23, 127 128, 146, 159 162,

166 167, 612
resistance calculation, 851 853
resistance equation, 6, 18 24, 42, 47
resistance ratio, 7 8
resistive networks, 53 115

circuit analysis: basic method, 66 89
energy conservation, 71 73
more complex circuit, 84 89
overview, 66 67
quick intuitive analysis of single - resistor

circuits, 70 71
single - resistor circuits, 67 70
voltage and current dividers, 73 84

dependent sources and control concept,
98 107

circuits with dependent sources, 102 107
overview, 98 102

formulation suitable for computer solution,
W W W 2:107b 2:107c

intuitive method of circuit analysis: series and
parallel simplification, 89 94

Kirchhoff’s laws, 55 66
KCL, 56 60
KVL, 60 66

overview, 55
more circuit examples, 94 98
overview, 53 54
terminology, 54 55

resistivity, 936 937
resistor-capacitor circuit, 568
resistor-capacitor networks, 618
resistor current, 168 170
resistor current equation, 29
resistor-inductor circuit, 568
resistor power equation, 27
resistor ratio, 845, 859
resistor ratios, 93 94
resistors, 18

adding, 640
frequency response of, 732 736
two-terminal elements, 30 32

resistors in parallel, 94, 108, 151. see also parallel
resistors

resistors in series, 73, 76 80, 84, 108, 470
resistor self-heating, 38
resistor voltage, 916, 936
resonance, see sinusoidal steady state: resonance
resonance frequency (center frequency), 787
resonant circuits, 797, 804 805, 821
resonant curve, 795
resonant frequency, 777 788, 816 818
resonant response, 813 814
resonant RLC circuit filters, 815 816, 823
resonant systems, frequency response for,

783 800
overview, 783 792
resonant region of frequency, 792 800

response amplitude, 711, 720 721
response magnitude, 711
response phase, 711
restoring circuit, 565
restricted range, 214
result verification, 72 73
reverse bias, 906
reverse injection region, 374
ringing, 627
ripple-carry adder, 273
rise time, 527 528
rising transition, 667
RLC circuits

driven, parallel, 678
driven, series, 654 677

overview, 654 657
step response, 657 661

parallel, sinusoidal response, 777 783
homogeneous solution, 778 780
overview, 777 778
particular solution, 780 781
total solution for parallel RLC circuit,

781 783
stored energy in transient, series, 651 654
undriven, parallel, W W W 12:654a 12:654h

critically-damped dynamics,
W W W 12:654h

over-damped dynamics,
W W W 12:654g 12:654h

under-damped dynamics,
W W W 12:654d 12:654g

undriven, series, 640 651
critically-damped dynamics, 649 651
over-damped dynamics, 648 649

overview, 640 644
under-damped dynamics, 644 648

RL circuits
Bode plot for, W W W 13:742a 13:742g
frequency response of, intuitively sketching,

737 741
series, impedance example, 718 728

RL transient, 511, 517, 545, 673 674
rms (root mean square) value, 41 42
rms (root-mean-square) voltage, 760 761
Rn , 305
RON, 301, 305 307
RONpd , 609
role reversal, W W W 9:489a
root mean square (rms) value, 41 42
root-mean-square voltage (rms), 760 761
roots of the characteristic equation, 507. see also

natural frequency
rotation, 951 952
R square, 21 22, 47

S
Sallen-Key filter, W W W 15:866a 15:866d
saturation, 373, 839, 841
saturation conditions, 361 363
saturation current, 906
saturation discipline, 352
saturation region, 337 339
scaled differences, 943 944
scaled sums, 943 944
scaling factors, 305
SCS equation, 409
SCS (switch current source) model, 338 339
secondary sources of energy, 30
second-order circuits, 724 727. see also

transients in second-order circuits
‘‘self ’’ conductances, 132
selectivity, 777, 808, 810, 821 822
semiconductor diode, 463, 905 908, 913
sequential approach to circuit analysis, 103 104,

108
series and parallel connections, 470 473

capacitors, 471 472
inductors, 472 473
overview, 470

series-connected diodes, 202
series connected switches, 288
series impedance, 815
series LC circuit, 664
series-parallel reductions, 213
series-parallel simplifications, 92 93, 108
series RC circuits

square-wave input, 515 517
step input, 517 520

series resistances, 76 78
series resonant circuit, 801, 808 809
series RLC, 801 807
series RLC circuit, 650 651
series RL circuit, 673, 718
series simplification, 724
sheet resistance, 536
short-circuit current, 174 175
short circuits, 24
short pulse response, 550 553
short pulse signal, 568
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Siemens, 31, 48
signal clipping, 357
signal fanout, See clock signals and clock fanout
signal representation, 40 50
signal restoration, 314 318

analog signals, 41 43
digital signals, 43 50
native and non-native signal representation,

42 43, 45 50
overview, 40 41

signal speeds, 13 14
signal timescales, 10, 12, 933
signal transmission, 332
signal type, 43
silicon dioxide, 13, 301, 303, 474, 46
silicon properties, 905 906, 919
simplifying logic expressions, 262 267
simultaneous linear equations, 957 958
sine wave, 14 15, 756, 913 915
single-ended amplifier, 352, 845 846
single-ended output, 838
single-resistor circuit, 68 69
sin(θ ), 941 944
sinusoidal component, 759
sinusoidal drive, 759
sinusoidal equation, 41
sinusoidal functions, 633
sinusoidal inputs, 766, W W W 9:482a 9:482c
sinusoidal response, 650, 703, 777 782. see also

frequency response
sinusoidal signal, 41 42
sinusoidal steady state

power and energy in impedances, 757 767
arbitrary impedance, 758 760
overview, 757 758
power in RC circuit example, 763 767
pure reactance, 761 763
pure resistance, 760 761

problems, 771 774
time domain vs. frequency domain analysis

using voltage divider example, 751 757
sinusoidal steady state: impedance and frequency

response, 703 774
analysis using complex exponential drive,

706 712
complete solution, 710
homogeneous solution, 706 707
overview, 706
particular solution, 707 710
sinusoidal steady-state response, 710 712

exercises, 767 771
filters, 742 751

decoupling amplifier stages, 746 751
design example: crossover network,

744 746
overview, 742 744

frequency response, 731 742
of capacitors , inductors , and resistors,

732 736
of general functions, sketching,

W W W 13:741a 13:741d
overview, 731 732
of RC and RL circuits, intuitively sketching,

737 741
impedances, 712 731

analysis of small signal amplifier with
capacitive load example, 729 731

another RC circuit example, 722 724
overview, 712 718
RC circuit with two capacitors example,

724 728
series RL circuit example, 718 722

overview, 703 706
sinusoidal steady state: resonance, 777 834

bode plot for resonant functions,
W W W 14:808a 14:808e

exercises, 823 826
filter examples, 808 816

bandpass filter, 809 810
high-pass filter, 814 815
low-pass filter, 810 814
notch filter, 815 816
overview, 808 809

frequency response for resonant systems,
783 800

overview, 783 792
resonant region of frequency, 792 800

overview, 777
parallel RLC, sinusoidal response, 777 783

homogeneous solution, 778 780
overview, 777 778
particular solution, 780 781
total solution for parallel RLC circuit,

781 783
problems, 826 834
series RLC, 801 807
stored energy in resonant circuit, 816 823

sinusoids, 943 944
sin(ωt) input, 705
slope, 40
small-signal amplifier, 729 731
small-signal analysis (incremental analysis), 214
small signal circuit, 413 415
small-signal discipline, 406
small signal equivalent, 415 418, 423, 428, 440
small-signal gain, 421, 436, 441, 443 445
small signal input resistance, 423 425, 435 446,

747
small signal method, 229
small-signal model, 405 447
small signal notation, 222 223, 229

circuit representation, 413 417
exercises, 447 450
input and output resistance, current and

power gain, 423 446
common-mode model, 433 435
difference-mode model, 432 433
input resistance ri , 424 425
MOSFET implementation of difference

amplifier, 431 432
output resistance rout, 425 427
overall behavior, 435 437
overview, 423 424
power gain, 427 431
small-signal input and output resistances,

437 447
overview, 405 413
problems, 450 454
selecting operating point, 420 423
small-signal circuit for MOSFET amplifier,

418 420
small signal output resistance, 423, 425 426,

435 446
small-signal variables, 229, 765

small superimposed time-varying signal, 407
S model, 289 293
source-coupled pair, 431
source current, 480 481
source follower circuit, 361, 368 369, 436 438
source matrix, 132
source voltage, 480 481
speed constraints, 932
SPICE software package, 133
spring-mass oscillator, 637
square law device, 194 195, 223 225
squares, 943
square-wave case, 916
square-wave drive, 756
square-wave period, 515 516
square wave power dissipation estimate, 605
square wave signals, 41
SRC (switch-resistor-capacitor) model, 300, 475
SR model, 335 336, 339 340, 389
stable-high clock discipline, 554 555
standard form (canonic form), 261, 265 266
standard sum-of-products representation,

261 262
state and state variables, 538 544

computer analysis using state equation,
540 541

concept of state, 538 539
overview, 538
solution by integrating factors,

W W W 10:544a 10:544b
zero-input and zero-state response,

541 544
state equations, 539, 689 690
state of an inductor, 469, 487
state of the capacitor, 464 465, 489
state-space analysis, 693,

W W W 12:691a 12:691g
state-variable analysis, 693
state-variable method, 689 691
state variables, 539
static discipline, 245 256, 296, 298 299
static D-latch, 567
static memory element, 567 569
static power (pstatic), 603, 608 609, 610, 611,

618
steady-state response, 726, 729, 766, 914 915,

952
steady-state value, 710 712, 765 766
steering logic, 288
step function, 482, 484 485, 488, 506, 520,

659 660, 662
step input, 545, 868
step notation, 482, 484 485
step response, 521
stored energy, 651 654, 817 818, 822 823
straight-line segments, 338 339
subcircuits, 909 910, 919
substrate, 302
subtracter, 430, 858 859
subtraction, 949
sum and difference arguments, 942
summing voltages, 65
SU model, 389 390
sum-of-products representation, standard,

261 262
sum of resistance values, 77
super node, 136 139
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superposition, 145 157, 177
1-V source acting alone, 154 156
2-V source acting alone, 154 155, 156 157
applied to beehive network,

W W W 3:153a 3:145d
first method, 150 151
overview, 145 150
rules for dependent sources, 153 154
second method, 151 153

superposition calculations, 845
supply voltage, 608
surface integral, 930
SU (switch unified) MOSFET model, 386 390
switch, 285 322, 888
switch current source (SCS) model, 338 339
switched power supply, 671 677,

W W W 16:918a 16:918e
switching analysis of inverter, 307
switch-resistor-capacitor (SRC) model, 300, 475
switch unified (SU) MOSFET model, 386 390
symmetric noise, 244, 251
symmetric peak-to-peak swings, 366
system function denominator, 786 787
system function (transfer function), 731 733
system gain, 731

T
Tacoma Narrows Bridge disaster, 777, 813
tan−1( ) function, 948
tangent approximation, 410
tan(θ ), 941 944
Taylor series, See Taylor series expansions
Taylor series expansions, 215 218, 408 409,

413, 944, 949
temperature measurement circuit, 907 908
temperature variation, 75 76
terminal current (I(t)), 9, 11, 932
terminals, 15, 54
terminal variables, 25 26, 32 33, 55
terminal voltage (V(t)), 9, 17, 34, 39 40, 932
test current source, 158
tf , 556, 616
theory-experiment discrepancy, 35 37
thermal voltage, 906, 919
Thévenin characterization, 423
Thévenin equivalent circuit, 159 163, 174 178,

606
Thévenin equivalent model, 433 435
Thévenine quivalent network, 157 167

determining RTH, 166 167
determining vTH, 166
examples, 171 189
overview, 157 166

Thévenin equivalent resistance, 158 159,
199 201, 532

Thévenin equivalent voltage, 532
Thévenin input resistance, 849 850,
Thévenin output conductance, 850 851
Thévenin output resistance, 849 851, 854, 857
Thévenin source, 511 517
three-ported devices, 331
three-terminal device, 285 286, 322
threshold voltage parameters, 251 252
through variables, 36
time, complex functions of, 952

time constant, 507, 568, 634 635, 861
time derivative, 862, 930
time discretization, 555
time domain, 751 757, 792, 794, 796, 804
time-domain behavior, 819 820
time-domain calculations, 821
time-domain response, 823
time expressions, 758
time functions, 716, 719, 952
time integrals, 492
time variables, 766
time-varying change, 930 932
time varying charge, 10
time-varying component, 405, 750
time-varying element, 24
time-varying magnetic flux, 928 929
time-varying signals, 14, 365, 605 610
time-varying voltage source, 11
tone burst, 706, 711, 719, 778, 781
toroidal inductor, 470
total ampere-turns, 479
total charge, 10, 486
total energy, 652
total instantaneous variables, 716
total output voltage, 410 411, 859
total solution, 508, 629, 641, 657 658, 674
total store of energy, 16
total time-domain response v(t), 777 778
total transient, 669 670
total variables, 222, 229, 406, 765
tpd , 526 527
tpd,0→1, 526 527
tpd,1→0, 526 527
tr , 556 558
transconductance, 100
transducers, 43
transfer curve, 319, 407
transfer function (system function), 731 733
transformers, 10, 478 480

maximizing power using,
W W W 13:764a 13:764c

non-ideal, W W W 13:764d 13:764e
transient behavior, 660 661
transient excitation, 819
transient response, 650
transients in second-order circuits, 625 699

driven, parallel RLC circuit,
W W W 12:678a 12:678j

impulse response, W W W 12:678g 12:678j
step response, W W W 12:678d 12:678g

driven, series RLC circuit, 654 677
impulse response, 661 668
overview, 654 657
step response, 657 661

exercises, 693 696
higher-order circuits, W W W 12:691h 12:691j
intuitive analysis of second-order circuits,

678 684
overview, 625 627
problems, 696 699
state-space analysis, W W W 12:691a 12:691g
state-variable method, 689 691
stored energy in transient, series RLC circuit,

651 654
two-capacitor or two-inductor circuits,

684 689

undriven, parallel RLC circuit,
W W W 12:654a 12:654h

critically-damped dynamics,
W W W 12:654h

over-damped dynamics,
W W W 12:654g 12:654h

under-damped dynamics,
W W W 12:654d 12:654g

undriven, series RLC circuit, 640 651
critically-damped dynamics, 649 651
over-damped dynamics, 648 649
overview, 640 644
under-damped dynamics, 644 648

undriven LC circuit, 627 639
transient voltage, 666 667
transistors, 288, 838
transmission lines, 14
transresistance, 101
trickle switch, 567
trigonometric functions and identities, 941 944

half-angle and twice-angle arguments, 943
miscellaneous, 943 944
negative arguments, 941 942
overview, 941
phase-shifted arguments, 942
products, 943
relations to e jθ , 944
squares, 943
sum and difference arguments, 942
Taylor series expansions, 944

triode region, 337, 339, 341, 358, 386 389, 422
TRUE form input, 617
truth table, 257 258, 261 262, 615, 617
turn-off transient, 509 511
turns ratio, 479 480
TV deflection system, 549 550
twice-angle arguments, 943
two-bit adder, 269 273
two-bit positive integers, 269 273
two-capacitor or two-inductor circuits, 684 689
two independent sources, 95 96
two-level representation, 44
two-level signals, 244
two-port network, 498
two-terminal elements, 15 36, 24, 27

associated variables convention, 25 29
batteries, 16 18
current source, 33 36
element laws, 32 33
ideal voltage sources, wires, and resistors,

30 32
linear resistors, 18 25
overview, 15 16
power delivered to, 595 596

two-terminal resistor, 24

U
u0(t) 485, 574
u1(t) 485
u−1(t) 485, 574
u1(t) 574
u−2(t) 485, 574
undamped natural frequency, 646
undamped resonant frequency, 787, 819,

864 865
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under-compensation, 753 754
under-damped dynamics, 651, 656, 668, 670,

675
under-damped oscillatory behavior, 687
under-damped systems, 779, 797
undriven, parallel RLC circuit,

W W W 12:654a 12:654h
critically-damped dynamics, W W W 12:654h
over-damped dynamics,

W W W 12:654g 12:654h
under-damped dynamics,

W W W 12:654d 12:654g
undriven, series RLC circuit, 640 651

critically-damped dynamics, 649 651
over-damped dynamics, 648 649
overview, 640 644
under-damped dynamics, 644 648

undriven LC circuit, 627 639
unique potential difference, 928 929
unique terminal current, 927
unique terminal voltage, 927 929
unique value, 10
unit-area pulse function, 485
unit current impulse, 488 489
unit impulse function, 485
unit step function (u), 659, 662
unknown branch variables, 69
unknown node voltages, 136
u(t) 484 485, 487 488, 574, 657, 659 664
u(t; T), 484 487

V
valid high input voltage, 297, 317, 358 363
valid low input voltage, 297
valid output voltages, 318 319, 532, 556 558
valid signals, 555
value discretization, 243
variables

across, 36
associated, 25 29, 46, 66
branch, 73 74, 92, 106 107, 121, 633

definitions, 102
labeling, 67
polarities of, 69 70

DC, 716
vC (capacitor voltage), 552 554
VCCS (voltage-controlled current source),

99 101, 333 335, 427 428
VCVS (voltage-controlled voltage source), 101,

837, 843 844, 865 866

vDS curve, 340
vectors, 948
Very Large Scale Integration (VLSI), 23, 535 536
very large value frequencies, 788
very small value frequencies, 787 788
vGS , 289 291
VH , 247 248, 250
VIH , 250 256
VIL , 250 256
v−i relationship, 32 34, 167, 194, 197 199,

223 225, 229
violating static discipline, 254
virtual ground constraint, 848 849
virtual short constraint, 849
VL , 247 248, 250
VLSI (Very Large Scale Integration), 23,

535 536
vo (first-stage output voltage), 705
VOH , 250 256
VOL , 250 256
voltage follower, 847 848
voltage, 7 8, 9, 10 11, 14 15, 18, 25, 166, 482,

927 928. see also capacitor voltage (vC)
voltage amplitude, 708
voltage-controlled current source (VCCS),

99 101, 333 335, 427 428
voltage-controlled nonlinear resistor,

W W W 4:203b
voltage-controlled resistor, W W W 2:107a
voltage-controlled voltage source (VCVS), 101,

837, 843 844, 865 866
voltage-current nonlinear relation, 193
voltage-current relation, 157 159, 906, 919
voltage-dependent voltage source, 479, 841,

873
voltage difference, 908
voltage divider action, 149 150
voltage-divider circuit, 134
voltage divider expression, 712
voltage divider feedback network, 856
voltage-divider primitive, 146 147
voltage-divider relation, 14, 74 75, 108, 147
voltage drop, 37
voltage follower, 847 848
voltage gain, 334, 348, 426, 839
voltage impulse response, 487
voltage levels and static discipline, 245 256
voltage measurement instruments, 125
voltage polarities, 121
voltage regulator, 225 228
voltage sampling, 856
voltage signal, 41, 43

voltage sources, 159 161
floating independent voltage sources, 135 139
two-terminal elements, 30 32

voltage step, 861
voltage step input, 483, 754
voltage-step inputs, 618
voltage thresholds, 253 256, 274, 297 298,

308 312, 907
voltage transfer ratio, 101, 317
volt-ampere relation, 159
voltmeter, 174
volts, 9
VT , 289 293
VTH , 193

W
wafers, 23, 301
watt-hours, 16
watts, 16
waveform plotting, 636 637
waveforms, 709
waveform shape, 862 863, 918
waveguides, 14
wavelength, 11
wave phenomena, 13
wave propagation delay, 14
wave shaping, 515
ωd, 644 647
Weber [Wb], 467
wire capacitance, 535 536
wire inductance indigital circuits, 545
wire length, 535 536
wire resistance, 535 536
wiring loop inductance, 476 477
W/L ratio, 305, 307 308, 313
worst-case power dissipation, 604 605, 609 610
W-second, 17

Z
Zener diode regulator, 234, 882
zero, 541, W W W 13:741b
zero-input response (ZIR), 515, 541, 549, 568,

627, 650 651, 693, 820, 913
zero-state response (ZSR), 515, 541, 546 548,

568 569, 657, 664, 693
zero V (ground-zero potential), 120
ZIR, See zero input response (ZIR)
ZSR, See zero state response (ZSR)
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