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In Praise of Foundations of Analog
and Digital Electronic Circuits

“This book, crafted and tested with MIT sophomores in electrical engineering and computer
science over a period of more than six years, provides a comprehensive treatment of both
circuit analysis and basic electronic circuits. Examples such as digital and analog circuit
applications, field-effect transistors, and operational amplifiers provide the platform for
modeling of active devices, including large-signal, small-signal (incremental), nonlinear and
piecewise-linear models. The treatment of circuits with energy-storage elements in transient
and sinusoidal-steady-state circumstances is thorough and accessible. Having taught from
drafts of this book five times, 1 believe that it is an improvement over the traditional approach
to circuits and electronics, in which the focus is on analog circuits alone.”

-PAUL E. GRAY, Massachusetts Institute of Technology

“My overall reaction to this book is overwhelmingly favorable. Well-written and pedagog-
ically sound, the book provides a good balance between theory and practical application. 1
think that combining circuits and electronics is a very good idea. Most introductory circuit
theory texts focus primarily on the analysis of lumped element networks without putting
these networks into a practical electronics context. However, it is becoming more critical for
our electrical and computer engineering students to understand and appreciate the common
ground from which both fields originate.”

-GARY MAY, Georgia Institute of Technology

“Without a doubt, students in engineering today want to quickly relate what they learn from
courses to what they experience in the electronics-filled world they live in. Understanding
today’s digital world requires a strong background in analog circuit principles as well as
a keen intuition about their impact on electronics. In Foundations. .. Agarwal and Lang
present a unique and powerful approach for an exciting first course introducing engineers
to the world of analog and digital systems.”

-RAVI SUBRAMANIAN, Berkeley Design Automation

“Finally, an introductory circuit analysis book has been written that truly unifies the treat-
ment of traditional circuit analysis and electronics. Agarwal and Lang skillfully combine
the fundamentals of circuit analysis with the fundamentals of modern analog and digital
integrated circuits. I applaud their decision to eliminate from their book the usual manda-
tory chapter on Laplace transforms, a tool no longer in use by modern circuit designers. I
expect this book to establish a new trend in the way introductory circuit analysis is taught
to electrical and computer engineers.”

-TIM TRICK, University of lllinois at Urbana-Champaign
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PREFACE

APPROACH

This book is designed to serve as a first course in an electrical engineering or
an electrical engineering and computer science curriculum, providing students
at the sophomore level a transition from the world of physics to the world of
electronics and computation. The book attempts to satisfy two goals: Combine
drcuits and electronics into a single, unified treatment, and establish a strong
connection with the contemporary worlds of both digital and analog systems.

These goals arise from the observation that the approach to introduc-
ing electrical engineering through a course in traditional circuit analysis is fast
becoming obsolete. Our world has gone digital. A large fraction of the student
population in electrical engineering is destined for industry or graduate study
in digital electronics or computer systems. Even those students who remain in
core electrical engineering are heavily influenced by the digital domain.

Because of this elevated focus on the digital domain, basic electrical engi-
neering education must change in two ways: First, the traditional approach
to teaching circuits and electronics without regard to the digital domain must
be replaced by one that stresses the circuits foundations common to both the
digital and analog domains. Because most of the fundamental concepts in cir-
cuits and electronics are equally applicable to both the digital and the analog
domains, this means that, primarily, we must change the way in which we
motivate circuits and electronics to emphasize their broader impact on digital
systems. For example, although the traditional way of discussing the dynam-
ics of first-order RC circuits appears unmotivated to the student headed into
digital systems, the same pedagogy is exciting when motivated by the switching
behavior of a switch and resistor inverter driving a non-ideal capacitive wire.
Similarly, we motivate the study of the step response of a second-order RLC
drcuit by observing the behavior of a MOS inverter when pin parasitics are
included.

Second, given the additional demands of computer engineering, many
departments can ill-afford the luxury of separate courses on circuits and on
electronics. Rather, they might be combined into one course.! Circuits courses

1. In his paper, “Teaching Circuits and Electronics to First-Year Students,” in Int. Symp. Circuits
and Systems (ISCAS), 1998, Yannis Tsividis makes an excellent case for teaching an integrated
course in circuits and electronics.
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treat networks of passive elements such as resistors, sources, capacitors,
and inductors. Electronics courses treat networks of both passive elements
and active elements such as MOS transistors. Although this book offers
a unified treatment for circuits and electronics, we have taken some pains
to allow the crafting of a two-semester sequence — one focused on cir-
cuits and another on electronics — from the same basic content in the
book.

Using the concept of “abstraction,” the book attempts to form a bridge
between the world of physics and the world of large computer systems. In
particular, it attempts to unify electrical engineering and computer science as the
art of creating and exploiting successive abstractions to manage the complexity
of building useful electrical systems. Computer systems are simply one type of
electrical system.

In crafting a single text for both circuits and electronics, the book takes
the approach of covering a few important topics in depth, choosing more con-
temporary devices when possible. For example, it uses the MOSFET as the
basic active device, and relegates discussions of other devices such as bipolar
transistors to the exercises and examples. Furthermore, to allow students to
understand basic circuit concepts without the trappings of specific devices, it
introduces several abstract devices as examples and exercises. We believe this
approach will allow students to tackle designs with many other extant devices
and those that are yet to be invented.

Finally, the following are some additional differences from other books in

this field:

» The book draws a clear connection between electrical engineering and
physics by showing dearly how the lumped circuit abstraction directly
derives from Maxwell’s Equations and a set of simplifying assumptions.

» The concept of abstraction is used throughout the book to unify
the set of engineering simplifications made in both analog and digital
design.

» The book elevates the focus of the digital domain to that of analog.
However, our treatment of digital systems emphasizes their analog aspects.
We start with switches, sources, resistors, and MOSFETs, and apply KVL,
KCL, and so on. The book shows that digital versus analog behavior is
obtained by focusing on particular regions of device behavior.

» The MOSFET device is introduced using a progression of models of
increased refinement — the S model, the SR model, the SCS model, and
the SU model.

» The book shows how significant amounts of insight into the static and

dynamic operation of digital circuits can be obtained with very simple
models of MOSFETs.



>  Various properties of devices, for example, the memory property of capaci-
tors, or the gain property of amplifiers, are related to both their use in analog
crcuits and digital circuits.

> The state variable viewpoint of transient problems is emphasized for its
intuitive appeal and since it motivates computer solutions of both linear or
nonlinear network problems.

> Issues of energy and power are discussed in the context of both analog and
digital circuits.
>  Alarge number of examples are picked from the digital domain emphasizing

VLSI concepts to emphasize the power and generality of traditional circuit
analysis concepts.

With these features, we believe this book offers the needed foundation
for students headed towards either the core electrical engineering majors —
including digital and RF circuits, communication, controls, signal processing,
devices, and fabrication — or the computer engineering majors — including
digital design, architecture, operating systems, compilers, and languages.

MIT has a unified electrical engineering and computer science department.
This book is being used in MIT’s introductory course on circuits and elec-
tronics. This course is offered each semester and is taken by about 500 students
a year.

OVERVIEW

Chapter 1 discusses the concept of abstraction and introduces the lumped
circuit abstraction. It discusses how the lumped circuit abstraction derives
from Maxwell’s Equations and provides the basic method by which electrical
engineering simplifies the analysis of complicated systems. It then introduces
several ideal, lumped elements including resistors, voltage sources, and current
sources.

This chapter also discusses two major motivations of studying electronic
drcuits — modeling physical systems and information processing. It introduces
the concept of a model and discusses how physical elements can be modeled
using ideal resistors and sources. It also discusses information processing and
signal representation.

Chapter 2 introduces KVL and KCL and discusses their relationship to
Maxwell’s Equations. It then uses KVL and KCL to analyze simple resis-
tive networks. This chapter also introduces another useful element called the
dependent source.

Chapter 3 presents more sophisticated methods for network analysis.

Chapter 4 introduces the analysis of simple, nonlinear circuits.

PREFACE
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Chapter 5 introduces the digital abstraction, and discusses the second major
simplification by which electrical engineers manage the complexity of building
large systems.?

Chapter 6 introduces the switch element and describes how digital logic
elements are constructed. It also describes the implementation of switches using
MOS transistors. Chapter 6 introduces the S (switch) and the SR (switch-
resistor) models of the MOSFET and analyzes simple switch circuits using
the network analysis methods presented earlier. Chapter 6 also discusses the
relationship between amplification and noise margins in digital systems.

Chapter 7 discusses the concept of amplification. It presents the SCS
(switch-current-source) model of the MOSFET and builds a MOSFET amplifier.

Chapter 8 continues with small signal amplifiers.

Chapter 9 introduces storage elements, namely, capacitors and inductors,
and discusses why the modeling of capacitances and inductances is necessary
in high-speed design.

Chapter 10 discusses first order transients in networks. This chapter also
introduces several major applications of first-order networks, including digital
memory.

Chapter 11 discusses energy and power issues in digital systems and
introduces CMOS logic.

Chapter 12 analyzes second order transients in networks. It also discusses
the resonance properties of RLC circuits from a time-domain point of view.

Chapter 13 discusses sinusoidal steady state analysis as an alternative to
the time-domain transient analysis. The chapter also introduces the concepts of
impedance and frequency response. This chapter presents the design of filters
as a major motivating application.

Chapter 14 analyzes resonant circuits from a frequency point of view.

Chapter 15 introduces the operational amplifier as a key example of the
application of abstraction in analog design.

Chapter 16 discusses diodes and simple diode circuits.

The book also contains appendices on trignometric functions, complex
numbers, and simultaneous linear equations to help readers who need a quick
refresher on these topics or to enable a quick lookup of results.

2. The point at which to introduce the digital abstraction in this book and in a corresponding
curticulum was arguably the topic over which we agonized the most. We believe that introducing
the digital abstraction at this point in the course balances (a) the need for introducing digital systems
as early as possible in the curriculum to excite and motivate students (especially with laboratory
experiments), with (b) the need for providing students with enough of a toolchest to be able to
analyze interesting digital building blocks such as combinational logic. Note that we recommend
introduction of digital systems a lot sooner than suggested by Tsividis in his 1998 ISCAS paper,
although we completely agree his position on the need to include some digital design.



COURSE ORGANIZATION

The sequence of chapters has been organized to suit a one or two semester
integrated course on circuits and electronics. First and second order circuits are
introduced as late as possible to allow the students to attain a higher level of
mathematical sophistication in situations in which they are taking a course on
differential equations at the same time. The digital abstraction is introduced as
early as possible to provide early motivation for the students.

Alternatively, the following chapter sequences can be selected to orga-
nize the course around a circuits sequence followed by an electronics sequence.
The circuits sequence would include the following: Chapter 1 (lumped circuit
abstraction), Chapter 2 (KVL and KCL), Chapter 3 (network analysis), Chapter 5
(digital abstraction), Chapter 6 (S and SR MOS models), Chapter 9 (capacitors
and inductors), Chapter 10 (first-order transients), Chapter 11 (energy and
power, and CMOS), Chapter 12 (second-order transients), Chapter 13 (sinu-
soidal steady state), Chapter 14 (frequency analysis of resonant circuits), and
Chapter 15 (operational amplifier abstraction — optional).

The electronics sequence would include the following: Chapter 4 (nonlinear
circuits), Chapter 7 (amplifiers, the SCS MOSFET model), Chapter 8 (small-
signal amplifiers), Chapter 13 (sinusoidal steady state and filters), Chapter 15
(operational amplifier abstraction), and Chapter 16 (diodes and power circuits).

WEB SUPPLEMENTS

We have gathered a great deal of material to help students and instructors
using this book. This information can be accessed from the Morgan Kaufmann
website:

www.mkp.com/companions/1558607358

The site contains:

» Supplementary sections and examples. We have used the icon [ in
the text to identify sections or examples.

» Instructor’s manual

» A link to the MIT OpenCourseWare website for the authors’ course,
6.002 Circuits and Electronics. On this site you will find:

»  Syllabus. A summary of the objectives and learning outcomes for
course 6.002.

» Readings. Reading assignments based on Foundations of Analog and
Digital Electronic Circuits.

» Lecture Notes. Complete set of lecture notes, accompanying video
lectures, and descriptions of the demonstrations made by the
instructor during class.
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» Labs. A collection of four labs: Thevenin/Norton Equivalents and
Logic Gates, MOSFET Inverting Amplifiers and First-Order Circuits,
Second-Order Networks, and Audio Playback System. Includes an
equipment handout and lab tutorial. Labs include pre-lab exercises,
in-lab exercises, and post-lab exercises.

» Assignments. A collection of eleven weekly homework assignments.
» Exams. Two quizzes and a Final Exam.

» Related Resources. Online exercises in Circuits and Electronics for
demonstration and self-study.
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THE CIRCUIT ABSTRACTION

1.1 THE POWER OF ABSTRACTION

Engineering is the purposeful use of science. Science provides an understanding
of natural phenomena. Scientific study involves experiment, and scientific laws
are concise statements or equations that explain the experimental data. The
laws of physics can be viewed as a layer of abstraction between the experimental
data and the practitioners who want to use specific phenomena to achieve their
goals, without having to worry about the specifics of the experiments and
the data that inspired the laws. Abstractions are constructed with a particular
set of goals in mind, and they apply when appropriate constraints are met.
For example, Newton’s laws of motion are simple statements that relate the
dynamics of rigid bodies to their masses and external forces. They apply under
certain constraints, for example, when the velocities are much smaller than the
speed of light. Scientific abstractions, or laws such as Newton’s, are simple and
easy to use, and enable us to harness and use the properties of nature.

Electrical engineering and computer science, or electrical engineering for
short, is one of many engineering disciplines. Electrical engineering is the
purposeful use of Maxwell’s Equations (or Abstractions) for electromagnetic
phenomena. To facilitate our use of electromagnetic phenomena, electrical
engineering creates a new abstraction layer on top of Maxwell’s Equations
called the lumped circuit abstraction. By treating the lumped circuit abstrac-
tion layer, this book provides the connection between physics and electrical
engineering. It unifies electrical engineering and computer science as the art
of creating and exploiting successive abstractions to manage the complexity of
building useful electrical systems. Computer systems are simply one type of
electrical system.

The abstraction mechanism is very powerful because it can make the
task of building complex systems tractable. As an example, consider the force
equation:

F = ma. (1.1)

“Engineering is the
purposeful use of science.”

STEVE SENTURIA
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The force equation enables us to calculate the acceleration of a particle with
a given mass for an applied force. This simple force abstraction allows us to
disregard many properties of objects such as their size, shape, density, and
temperature, that are immaterial to the calculation of the object’s acceleration.
It also allows us to ignore the myriad details of the experiments and observa-
tions that led to the force equation, and accept it as a given. Thus, scientific
laws and abstractions allow us to leverage and build upon past experience and
work. (Without the force abstraction, consider the pain we would have to go
through to perform experiments to achieve the same result.)

Over the past century, electrical engineering and computer science have
developed a set of abstractions that enable us to transition from the physical
sciences to engineering and thereby to build useful, complex systems.

The set of abstractions that transition from science to engineering and
insulate the engineer from scientific minutiae are often derived through the
discretization discipline. Discretization is also referred to as lumping. A discipline
is a self-imposed constraint. The discipline of discretization states that we choose
to deal with discrete elements or ranges and ascribe a single value to each
discrete element or range. Consequently, the discretization discipline requires
us to ignore the distribution of values within a discrete element. Of course, this
discipline requires that systems built on this principle operate within appropriate
constraints so that the single-value assumptions hold. As we will see shortly,
the lumped circuit abstraction that is fundamental to electrical engineering and
computer science is based on lumping or discretizing matter.! Digital systems
use the digital abstraction, which is based on discretizing signal values. Clocked
digital systems are based on discretizing both signals and time, and digital
systolic arrays are based on discretizing signals, time and space.

Building upon the set of abstractions that define the transition from physics
to electrical engineering, electrical engineering creates further abstractions to
manage the complexity of building large systems. A lumped circuit element
is often used as an abstract representation or a model of a piece of mate-
rial with complicated internal behavior. Similarly, a circuit often serves as an
abstract representation of interrelated physical phenomena. The operational
amplifier composed of primitive discrete elements is a powerful abstraction
that simplifies the building of bigger analog systems. The logic gate, the digital
memory, the digital finite-state machine, and the microprocessor are themselves
a succession of abstractions developed to facilitate building complex computer
and control systems. Similarly, the art of computer programming involves
the mastery of creating successively higher-level abstractions from lower-level
primitives.

1. Notice that Newton’s laws of physics are themselves based on discretizing matter. Newton’s laws
describe the dynamics of discrete bodies of matter by treating them as point masses. The spatial
distribution of properties within the discrete elements are ignored.
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Figures 1.1 and 1.3 show possible course sequences that students might
encounter in an EECS (Electrical Engineering and Computer Science) or an EE
(Electrical Engineering) curriculum, respectively, to illustrate how each of the
courses introduces several abstraction layers to simplify the building of useful
electronic systems. This sequence of courses also illustrates how a circuits and
electronics course using this book might fit within a general EE or EECS course
framework.

1.2 THE LUMPED CIRCUIT ABSTRACTION

Consider the familiar lightbulb. When it is connected by a pair of cables to
a battery, as shown in Figure 1.4a, it lights up. Suppose we are interested in
finding out the amount of current flowing through the bulb. We might go about
this by employing Maxwell’s equations and deriving the amount of current by
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FIGURE 1.1 Sequence of
courses and the abstraction layers
introduced in a possible EECS
course sequence that ultimately
results in the ability to create the
computer game “Doom,” or a
mixed-signal (containing both
analog and digital components)
microprocessor supervisory circuit
such as that shown in Figure 1.2.

FIGURE 1.2 A photograph of
the MAX8o7L microprocessor
supervisory circuit from Maxim
Integrated Products. The chip is
roughly 2.5 mm by 3 mm. Analog
circuits are to the left and center of
the chip, while digital circuits are to
the right. (Photograph Courtesy of
Maxim Integrated Products.)
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FIGURE 1.3 Sequence of
courses and the abstraction layers
that they introduce in a possible EE
course sequence that ultimately
results in the ability to create a
wireless Bluetooth analog
front-end chip.

FIGURE 1.4 (a) A simple
lightbulb circuit. (b) The lumped
circuit representation.
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a careful analysis of the physical properties of the bulb, the battery, and the
cables. This is a horrendously complicated process.

As electrical engineers we are often interested in such computations in order
to design more complex circuits, perhaps involving multiple bulbs and batteries.
So how do we simplify our task? We observe that if we discipline ourselves to
asking only simple questions, such as what is the net current flowing through
the bulb, we can ignore the internal properties of the bulb and represent the
bulb as a discrete element. Further, for the purpose of computing the current,
we can create a discrete element known as a resistor and replace the bulb with
it.2 We define the resistance of the bulb R to be the ratio of the voltage applied
to the bulb and the resulting current through it. In other words,

R=V/L

Notice that the actual shape and physical properties of the bulb are irrelevant
provided it offers the resistance R. We were able to ignore the internal properties
and distribution of values inside the bulb simply by disciplining ourselves not
to ask questions about those internal properties. In other words, when asking
about the current, we were able to discretize the bulb into a single lumped
element whose single relevant property was its resistance. This situation is

2. We note that the relationship between the voltage and the current for a bulb is generally much
more complicated.
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analogous to the point mass simplification that resulted in the force relation in
Equation 1.1, where the single relevant property of the object is its mass.

As illustrated in Figure 1.5, a lumped element can be idealized to the point
where it can be treated as a black box accessible through a few terminals. The
behavior at the terminals is more important than the details of the behavior
internal to the black box. That is, what happens at the terminals is more impor-
tant than how it happens inside the black box. Said another way, the black box
is a layer of abstraction between the user of the bulb and the internal structure
of the bulb.

The resistance is the property of the bulb of interest to us. Likewise, the
voltage is the property of the battery that we most care about. Ignoring, for
now, any internal resistance of the battery, we can lump the battery into a
discrete element called by the same name supplying a constant voltage V, as
shown in Figure 1.4b. Again, we can do this if we work within certain con-
straints to be discussed shortly, and provided we are not concerned with the
internal properties of the battery, such as the distribution of the electrical field.
In fact, the electric field within a real-life battery is horrendously difficult to chart
accurately. Together, the collection of constraints that underlie the lumped cir-
cuit abstraction result in a marvelous simplification that allows us to focus on
specifically those properties that are relevant to us.

Notice also that the orientation and shape of the wires are not relevant
to our computation. We could even twist them or knot them in any way.
Assuming for now that the wires are ideal conductors and offer zero resistance,’
we can rewrite the bulb circuit as shown in Figure 1.4b using lumped circuit
equivalents for the battery and the bulb resistance, which are connected by ideal
wires. Accordingly, Figure 1.4b is called the lumped circuit abstraction of the
lightbulb circuit. If the battery supplies a constant voltage V and has zero internal
resistance, and if the resistance of the bulb is R, we can use simple algebra to
compute the current flowing through the bulb as

I=V/R.

Lumped elements in circuits must have a voltage V and a current I defined
for their terminals.* In general, the ratio of V and I need not be a constant.
The ratio is a constant (called the resistance R) only for lumped elements that

3. If the wires offer nonzero resistance, then, as described in Section 1.6, we can separate each wire
into an ideal wire connected in series with a resistor.

4. In general, the voltage and current can be time varying and can be represented in a more general
form as V(#) and I(#). For devices with more than two terminals, the voltages are defined for any
terminal with respect to any other reference terminal, and the currents are defined flowing into
each of the terminals.

CHAPTER ONE 7

Element

o—1{ e

Terminal Terminal

FIGURE 1.5 Alumped element.



CHAPTER ONE

THE CIRCUIT ABSTRACTION

obey Ohm’s law.> The circuit comprising a set of lumped elements must also
have a voltage defined between any pair of points, and a current defined into
any terminal. Furthermore, the elements must not interact with each other
except through their terminal currents and voltages. That is, the internal physical
phenomena that make an element function must interact with external electrical
phenomena only at the electrical terminals of that element. As we will see in
Section 1.3, lumped elements and the circuits formed using these elements must
adhere to a set of constraints for these definitions and terminal interactions to
exist. We name this set of constraints the lumped matter discipline.

The lumped circuit abstraction Capped a set of lumped elements that obey the
lumped matter discipline using ideal wires to form an assembly that performs
a specific function results in the lumped circuit abstraction.

Notice that the lumped circuit simplification is analogous to the point-mass
simplification in Newton’s laws. The lumped circuit abstraction represents the
relevant properties of lumped elements using algebraic symbols. For exam-
ple, we use R for the resistance of a resistor. Other values of interest, such
as currents I and voltages V, are related through simple functions. The
ease of using algebraic equations in place of Maxwell’s equations to design
and analyze complicated circuits will become much clearer in the following
chapters.

The process of discretization can also be viewed as a way of modeling
physical systems. The resistor is a model for a lightbulb if we are interested in
finding the current flowing through the lightbulb for a given applied voltage.
It can even tell us the power consumed by the lightbulb. Similarly, as we will
see in Section 1.6, a constant voltage source is a good model for the battery
when its internal resistance is zero. Thus, Figure 1.4b is also called the lumped
circuit model of the lightbulb circuit. Models must be used only in the domain
in which they are applicable. For example, the resistor model for a lightbulb
tells us nothing about its cost or its expected lifetime.

The primitive circuit elements, the means for combining them, and the
means of abstraction form the graphical language of circuits. Circuit theory is a
well established discipline. With maturity has come widespread utility. The lan-
guage of drcuits has become universal for problem-solving in many disciplines.
Mechanical, chemical, metallurgical, biological, thermal, and even economic
processes are often represented in circuit theory terms, because the mathematics
for analysis of linear and nonlinear circuits is both powerful and well-developed.
For this reason electronic circuit models are often used as analogs in the study of
many physical processes. Readers whose main focus is on some area of electri-
cal engineering other than electronics should therefore view the material in this

5. Observe that Ohm’s law itself is an abstraction for the electrical behavior of resistive material that
allows us to replace tables of experimental data relating V and I by a simple equation.
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book from the broad perspective of an introduction to the modeling of dynamic
systems.

1.3 THE LUMPED MATTER DISCIPLINE

The scope of these equations is remarkable, including as it does the fundamen-
tal operating principles of all large-scale electromagnetic devices such as motors,
cyclotrons, electronic computers, television, and microwave radar.

—HALLIDAY AND RESNICK ON MAXWELL’S EQUATIONS

Lumped circuits comprise lumped elements (or discrete elements) con-
nected by ideal wires. A lumped element has the property that a unique terminal
voltage V(#) and terminal current [(#) can be defined for it. As depicted in
Figure 1.6, for a two-terminal element, V is the voltage across the terminals
of the element,® and I is the current through the element.” Furthermore, for
lumped resistive elements, we can define a single property called the resistance R
that relates the voltage across the terminals to the current through the terminals.

The voltage, the current, and the resistance are defined for an element
only under certain constraints that we collectively call the lumped matter dis-
cipline (LMD). Once we adhere to the lumped matter discipline, we can make
several simplifications in our circuit analysis and work with the lumped circuit
abstraction. Thus the lumped matter discipline provides the foundation for the
lumped circuit abstraction, and is the fundamental mechanism by which we are
able to move from the domain of physics to the domain of electrical engineer-
ing. We will simply state these constraints here, but relegate the development
of the constraints of the lumped matter discipline to Section A.1 in Appendix A.
Section A.2 further shows how the lumped matter discipline results in the sim-
plification of Maxwell’s equations into the algebraic equations of the lumped
drcuit abstraction.

The lumped matter discipline imposes three constraints on how we choose
lumped circuit elements:

1.  Choose lumped element boundaries such that the rate of change of
magnetic flux linked with any closed loop outside an element must be
zero for all time. In other words, choose element boundaries such that

0dp —0
ot

through any closed path outside the element.

6. The voltage across the terminals of an element is defined as the work done in moving a unit
charge (one coulomb) from one terminal to the other through the element against the electrical
field. Voltages are measured 7 volts (V), where one volt is one joule per coulomb.

7. The current is defined as the rate of flow of charge from one terminal to the other through the
element. Current is measured in amperes (A) , where one ampere is one coulomb per second.

CHAPTER ONE

FIGURE 1.6 A lumped circuit
element.
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2. Choose lumped element boundaries so that there is no total time varying
charge within the element for all time. In other words, choose element
boundaries such that

g
a

0

where ¢ is the total charge within the element.

3. Operate in the regime in which signal timescales of interest are much
larger than the propagation delay of electromagnetic waves across the
lumped elements.

The intuition behind the first constraint is as follows. The definition of the
voltage (or the potential difference) between a pair of points across an element
is the work required to move a particle with unit charge from one point to the
other along some path against the force due to the electrical field. For the lumped
abstraction to hold, we require that this voltage be unique, and therefore the
voltage value must not depend on the path taken. We can make this true by
selecting element boundaries such that there is no time-varying magnetic flux
outside the element.

If the first constraint allowed us to define a unique voltage across the
terminals of an element, the second constraint results from our desire to define
a unique value for the current entering and exiting the terminals of the element.
A unique value for the current can be defined if we do not have charge buildup
or depletion inside the element over time.

Under the first two constraints, elements do not interact with each other
except through their terminal currents and voltages. Notice that the first two
constraints require that the rate of change of magnetic flux outside the elements
and net charge within the elements is zero for all time.8 It directly follows that
the magnetic flux and the electric fields outside the elements are also zero.
Thus there are no fields related to one element that can exert influence on
the other elements. This permits the behavior of each element to be ana-
lyzed independently.’ The results of this analysis are then summarized by the

8. As discussed in Appendix A, assuming that the rate of change is zero for all time ensures that
voltages and currents can be arbitrary functions of time.

9. The elements in most circuits will satisfy the restriction of non-interaction, but occasionally they
will not. As will be seen later in this text, the magnetic fields from two inductors in close proximity
might extend beyond the material boundaries of the respective inductors inducing significant electric
fields in each other. In this case, the two inductors could not be treated as independent circuit
elements. However, they could perhaps be treated together as a single element, called a transformer,
if their distributed coupling could be modeled appropriately. A dependent source is yet another
example of a circuit element that we will introduce later in this text in which interacting circuit
elements are treated together as a single element.
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relation between the terminal current and voltage of that element, for example,
V = IR. More examples of such relations, or element laws, will be presented in
Section 1.6.2. Further, when the restriction of non-interaction is satisfied, the
focus of circuit operation becomes the terminal currents and voltages, and not
the electromagnetic fields within the elements. Thus, these currents and voltages
become the fundamental signals within the circuit. Such signals are discussed
further in Section 1.8.

Let us dwell for a little longer on the third constraint. The lumped element
approximation requires that we be able to define a voltage V between a pair of
element terminals (for example, the two ends of a bulb filament) and a current
through the terminal pair. Defining a current through the element means that
the current in must equal the current out. Now consider the following thought
experiment. Apply a current pulse at one terminal of the filament at time instant
t and observe both the current into this terminal and the current out of the
other terminal at a time instant ¢ + dt very close to # If the filament were
long enough, or if df were small enough, the finite speed of electromagnetic
waves might result in our measuring different values for the current in and the
current out.

We cannot make this problem go away by postulating constant currents
and voltages, since we are very much interested in situations such as those
depicted in Figure 1.7, in which a time-varying voltage source drives a circuit.

Instead, we fix the problem created by the finite propagation speeds of
electromagnetic waves by adding the third constraint, namely, that the timescale
of interest in our problem be much larger than electromagnetic propagation
delays through our elements. Put another way, the size of our lumped elements
must be much smaller than the wavelength associated with the V and I'signals.'?

Under these speed constraints, electromagnetic waves can be treated as if
they propagated instantly through a lumped element. By neglecting propagation

+

Rl Vi

: +
Slgl‘lal + o— (1)

generator _ ¢— R, H M

10. More precisely, the wavelength that we are referring to is that wavelength of the electromag-
netic wave launched by the signals.

CHAPTER ONE

FIGURE 1.7 Resistor circuit
connected to a signal generator.
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effects, the lumped element approximation becomes analogous to the point-
mass simplification, in which we are able to ignore many physical properties of
elements such as their length, shape, size, and location.

Thus far, our discussion focused on the constraints that allowed us to treat
individual elements as being lumped. We can now turn our attention to circuits.
As defined earlier, circuits are sets of lumped elements connected by ideal wires.
Currents outside the lumped elements are confined to the wires. An ideal wire
does not develop a voltage across its terminals, irrespective of the amount of
current it carries. Furthermore, we choose the wires such that they obey the
lumped matter discipline, so the wires themselves are also lumped elements.

For their voltages and currents to be meaningful, the constraints that apply
to lumped elements apply to entire circuits as well. In other words, for voltages
between any pair of points in the circuit and for currents through wires to be
defined, any segment of the circuit must obey a set of constraints similar to
those imposed on each of the lumped elements.

Accordingly, the lumped matter discipline for circuits can be stated as

1. The rate of change of magnetic flux linked with any portion of the circuit
must be zero for all time.

2. The rate of change of the charge at any node in the circuit must be zero

for all time. A node is any point in the circuit at which two or more
element terminals are connected using wires.

3. The signal timescales must be much larger than the propagation delay of
electromagnetic waves through the circuit.

Notice that the first two constraints follow directly from the correspond-
ing constraints applied to lumped elements. (Recall that wires are themselves
lumped elements.) So, the first two constraints do not imply any new restrictions
beyond those already assumed for lumped elements.!!

The third constraint for circuits, however, imposes a stronger restriction
on signal timescales than for elements, because a circuit can have a much larger
physical extent than a single element. The third constraint says that the cir-
cuit must be much smaller in all its dimensions than the wavelength of light at
the highest operating frequency of interest. If this requirement is satisfied, then
wave phenomena are not important to the operation of the circuit. The circuit
operates quasistatically, and information propagates instantaneously across it.
For example, circuits operating in vacuum or air at 1 kHz, 1 MHz, and 1 GHz
would have to be much smaller than 300 km, 300 m, and 300 mm, respectively.

11. As we shall see in Chapter 9, it turns out that voltages and currents in circuits result in electric
and magnetic fields, thus appearing to violate the set of constraints to which we promised to adhere.
In most cases these are negligible. However, when their effects cannot be ignored, we explicitly
model them using elements called capacitors and inductors.
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Most circuits satisfy such a restriction. But, interestingly, an uninterrupted
5000-km power grid operating at 60 Hz, and a 30-cm computer mother-
board operating at 1 GHz, would not. Both systems are approximately one
wavelength in size so wave phenomena are very important to their operation
and they must be analyzed accordingly. Wave phenomena are now becoming
important to microprocessors as well. We will address this issue in more detail
in Section 1.4.

When a circuit meets these three constraints, the drcuit can itself be
abstracted as a lumped element with external terminals for which voltages and
currents can be defined. Circuits that adhere to the lumped matter discipline
yield additional simplifications in circuit analysis. Specifically, we will show in
Chapter 2 that the voltages and currents across the collection of lumped cir-
cuits obey simple algebraic relationships stated as two laws: Kirchhoff’s voltage
law (KVL) and Kirchhoff’s current law (KCL).

14 LIMITATIONS OF THE LUMPED CIRCUIT
ABSTRACTION

We used the lumped circuit abstraction to represent the circuit pictured in
Figure 1.4a by the schematic diagram of Figure 1.4b. We stated that it was
permissible to ignore the physical extent and topology of the wires connecting
the elements and define voltages and currents for the elements provided they
met the lumped matter discipline.

The third postulate of the lumped matter discipline requires us to limit
ourselves to signal speeds that are significantly lower than the speed of elec-
tromagnetic waves. As technology advances, propagation effects are becoming
harder to ignore. In particular, as computer speeds pass the gigahertz range,
increasing signal speeds and fixed system dimensions tend to break our abstrac-
tions, so that engineers working on the forefront of technology must constantly
revisit the disciplines upon which abstractions are based and prepare to resort
to fundamental physics if the constraints are violated.

As an example, let us work out the numbers for a microprocessor. In a
microprocessor, the conductors are typically encased in insulators such as sil-
icon dioxide. These insulators have dielectric constants nearly four times that
of free space, and so electromagnetic waves travel only half as fast through
them. Electromagnetic waves travel at the speed of approximately 1 foot or
30 cm per nanosecond in vacuum, so they travel at roughly 6 inches or 15 cm
per nanosecond in the insulators. Since modern microprocessors (for exam-
ple, the Alpha microprocessor from Digital/Compagq) can approach 2.5 cm in
size, the propagation delay of electromagnetic waves across the chip is on the
order of 1/6 ns. These microprocessors are approaching a clock rate of 2 GHz
in 2001. Taking the reciprocal, this translates to a clock cycle time of 1/2 ns.
Thus, the wave propagation delay across the chip is about 33% of a clock
cycle. Although techniques such as pipelining attempt to reduce the number of

CHAPTER ONE
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elements (and therefore distance) a signal traverses in a clock cycle, certain clock
or power lines in microprocessors can travel the full extent of the chip, and will
suffer this large delay. Here, wave phenomena must be modeled explicitly.

In contrast, slower chips built in earlier times satisfied our lumped matter
discipline more easily. For example, the MIPS microprocessor built in 1984 was
implemented on a chip that was 1 cm on a side. It ran at a speed of 20 MHz,
which translates to a cycle time of 50 ns. The wave propagation delay across
the chip was 1/15 ns, which was significantly smaller then the chip cycle time.

As another example, a Pentium II chip built in 1998 clocked at 400 MHz,
but used a chip size that was more or less the same as that of the MIPS
chip — namely, about 1 cm on a side. As calculated earlier, the wave propaga-
tion delay across a 1-cm chip is about 1/15 ns. Clearly the 2.5-ns cycle time of
the Pentium II chip is still significantly larger than the wave propagation delay
across the chip.

Now consider a Pentium IV chip built in 2004 that clocked at 3.4 GHz, and
was roughly 1 cm on a side. The 0.29-ns cydle time is only four times the wave
propagation delay across the chip!

If we are interested in signal speeds that are comparable to the speed of
electromagnetic waves, then the lumped matter discipline is violated, and there-
fore we cannot use the lumped circuit abstraction. Instead, we must resort
to distributed circuit models based on elements such as transmission lines
and waveguides.!? In these distributed elements, the voltages and currents
at any instant of time are a function of the location within the elements. The
treatment of distributed elements are beyond the scope of this book.

The lumped circuit abstraction encounters other problems with time-
varying signals even when signal frequencies are small enough that propaga-
tion effects can be neglected. Let us revisit the circuit pictured in Figure 1.7 in
which a signal generator drives a resistor circuit. It turns out that under certain
conditions the frequency of the oscillator and the lengths and layout of the wires
may have a profound effect on the voltages. If the oscillator is generating a sine
wave at some low frequency, such as 256 Hz (Middle C in musical terms), then
the voltage divider relation developed in Chapter 2 (Equation 2.138) could be
used to calculate with some accuracy the voltage across R,. But if the frequency
of the sine wave were 100 MHz (1 x 103 Hertz), then we have a problem. As
we will see later, capacitive and inductive effects in the resistors and the wires
(resulting from electric fields and magnetic fluxes generated by the signal) will

12. In case you are wondering how the Pentium IV and similar chips get away with high clock
speeds, the key lies in designing circuits and laying them out on the chip in a way that most signals
traverse a relatively small fraction of the chip in a clock cycle. To enable succeeding generations
of the chip to be clocked faster, signals must traverse progressively shorter distances. A technique
called pipelining is the key enabling mechanism that accomplishes this. The few circuits in which
signals travel the length of the chip must be designed with extreme care using transmission line
analysis.
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seriously affect the circuit behavior, and these are not currently represented in
our model. In Chapter 9, we will separate these effects into new lumped ele-
ments called capacitors and inductors so our lumped circuit abstraction holds
at high frequencies as well.

All circuit model discussions in this book are predicated on the assumption
that the frequencies involved are low enough that the effects of the fields can be
adequately modeled by lumped elements. In Chapters 1 through 8, we assume
that the frequencies involved are even lower so we can ignore all capacitive and
inductive effects as well.

Are there other additional practical considerations in addition to the con-
straints imposed by the lumped matter discipline? For example, are we justified
in neglecting contact potentials, and lumping all battery effects in V? Can we
neglect all resistance associated with the wires, and lump all the resistive effects
in a series connected resistor? Does the voltage V change when the resistors
are connected and current flows? Some of these issues will be addressed in
Sections 1.6 and 1.7.

1.5 PRACTICAL TWO-TERMINAL ELEMENTS

Resistors and batteries are two of our most familiar lumped elements. Such
lumped elements are the primitive building blocks of electronic circuits.
Electronic access to an element is made through its terminals. At times, ter-
minals are paired together in a natural way to form porzs. These ports offer an
alternative view of how electronic access is made to an element. An example of
an arbitrary element with two terminals and one port is shown in Figure 1.8.
Other elements may have three or more terminals, and two or more ports.
Most circuit analyses are effectively carried out on circuits containing only
two-terminal elements. This is due in part to the common use of two-terminal
elements, and in part to the fact that most, if not all, elements having more
than two terminals are usually modeled using combinations of two-terminal
elements. Thus, two-terminal elements appear prominently in all electronic
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FIGURE 1.8 An arbitrary
two-terminal circuit element.
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drcuit analyses. In this section, we discuss a couple of familiar examples of
two-terminal elements — resistors and batteries.

1.5.1 BATTERIES

Cell phone batteries, laptop batteries, flashlight batteries, watch batteries, car
batteries, calculator batteries, are all common devices in our culture. All are
sources of energy, derived in each case from an internal chemical reaction.

The important specifications for a battery are its nominal voltage, its total
store of energy, and its internal resistance. In this section, we will assume
that the internal resistance of a battery is zero. The voltage measured at the
terminals of a single cell is fundamentally related to the chemical reaction
releasing the energy. In a flashlight battery, for example, the carbon central
rod is approximately 1.5 V positive with respect to the zinc case, as noted
in Figure 1.9a. In a circuit diagram, such a single-cell battery is usually rep-
resented schematically by the symbol shown in Figure 1.9b. Of course, to
obtain a larger voltage, several cells can be connected in series: the positive
terminal of the first cell connected to the negative terminal of the second cell,
and so forth, as suggested pictorially in Figure 1.10. Multiple-cell batteries are
usually represented by the symbol in Figure 1.10b, (with no particular cor-
respondence between the number of lines and the actual number of cells in
series).

The second important parameter of a battery is the total amount of energy
it can store, often measured in joules. However, if you pick up a camcorder or
flashlight battery, you might notice the ratings of ampere-hours or watt-hours.
Let us reconcile these ratings. When a battery is connected across a resistive
load in a circuit, it delivers power. The lightbulb in Figure 1.4a is an example
of a resistive load.

The power delivered by the battery is the product of the voltage and the
current:

p=VL (1.2)

Power is delivered by the battery when the current I flowing out of the
positive voltage terminal of the battery is positive. Power is measured in watts.
A battery delivers one watt of power when V is one volt and I is one ampere.

Power is the rate of delivery of energy. Thus the amount of energy w
delivered by the battery is the time integral of the power.

If a constant amount of power p is delivered over an interval T, the energy w
supplied is

w=pT. (1.3)

The battery delivers one joule of energy if it supplies one watt of power
over one second. Thus, joules and watt-seconds are equivalent units. Similarly,
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if a battery delivers one watt for an hour, then we say that it has supplied one
watt-hour (3600 joules) of energy.

Assuming that the battery terminal voltage is constant at V, because the
power delivered by the battery is the product of the voltage and the current,
an equivalent indication of the power delivered is the amount of current being
supplied. Similarly, the product of current and the length of time the bat-
tery will sustain that current is an indication of the energy capacity of the
battery. A car battery, for instance, might be rated at 12 V and 50 A-hours.
This means that the battery can provide a 1-A current for 50 hours, or a 100-A
current for 30 minutes. The amount of energy stored in such a battery is

Energy = 12 x 50 = 600 watt-hours = 600 x 3600 = 2.16 x 10° joules.

EXAMPLE I.I A LITHIUM-ION BATTERY ALithium-Ion (Li-Ion)
battery pack for a camcorder is rated as 7.2 V and 5§ W-hours. What are its equivalent
ratings in mA-hours and joules?

Since a joule(]) is equivalent to a W-second, 5 W-hours is the same as 5 x 3600 =
18000 J.

Since the battery has a voltage of 7.2 V, the battery rating in ampere-hours is 5/7.2 =
0.69. Equivalently, its rating in mA-hours is 690.

EXAMPLE 1.2 ENERGY COMPARISON Does a Nickel-Cadmium
(Ni-Cad) battery pack rated at 6 V and 950 mA-hours store more or less energy than
a Li-Ion battery pack rated at 7.2 V and 900 mA-hours?

We can directly compare the two by converting their respective energies into joules. The
Ni-Cad battery pack stores 6 x 950 x 3600/1000 = 20520 ], while the Li-Ion battery
pack stores 7.2 x 900 x 3600/1000 = 23328 J. Thus the Li-Ion battery pack stores
more energy.

When a battery is connected across a resistor, as illustrated in Figure 1.4,
we saw that the battery delivers energy at some rate. The power was the rate
of delivery of energy. Where does this energy go? Energy is dissipated by
the resistor, through heat, and sometimes even light and sound if the resistor
overheats and explodes! We will discuss resistors and power dissipation in
Section 1.5.2.

If one wishes to increase the current capacity of a battery without increas-
ing the voltage at the terminals, individual cells can be connected in parallel,
as shown in Figure 1.11. It is important that cells to be connected in paral-
lel be nearly identical in voltage to prevent one cell from destroying another.
For example, a 2-V lead-acid cell connected in parallel with a 1.5 V flashlight
cell will surely destroy the flashlight cell by driving a huge current through it.

CHAPTER ONE 17

FIGURE 1.11 Cells in parallel.
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FIGURE 1.12 Discrete resistors
(above), and Deposits integrated-
circuit resistors (below). The image
on the bottom shows a small
region of the MAX8o7L micro-
processor supervisory circuit from
Maxim Integrated Products, and
depicts an array of silicon-
chromium thin-film resistors, each
with 6 um width and 217.5 um
length, and nominal resistance

50 kQ. (Photograph Courtesy of
Maxim Integrated Products.)

R
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FIGURE 1.13 Symbol for
resistor.
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The corresponding constraint for cells connected in series is that the nom-
inal current capacity be nearly the same for all cells. The total energy
stored in a multicell battery is the same for series, parallel, or series-parallel
Interconnections.

152 LINEAR RESISTORS

Resistors come in many forms (see Figure 1.12), ranging from lengths of
nichrome wire used in toasters and electric stoves and planar layers of polysili-
con in highly complex computer chips, to small rods of carbon particles encased
in Bakelite commonly found in electronic equipment. The symbol for resistors
in common usage is shown in Figure 1.13.

Over some limited range of voltage and current, carbon, wire and
polysilicon resistors obey Ohm’s law:

v=1R (1.4)

that is, the voltage measured across the terminals of a resistor is linearly
proportional to the current flowing through the resistor. The constant of pro-
portionality is called the resistance. As we show shortly, the resistance of a
piece of material is proportional to its length and inversely proportional to its
cross-sectional area.

In our example of Figure 1.4b, suppose that the battery is rated at 1.5 V.
Further assume that the resistance of the bulb is R = 10 Q. Assume that the

internal resistance of the battery is zero. Then, a current of i = v/R = 150 mA
will flow through the bulb.

EXAMPLE 1.3 MORE ON RESISTANCE Inthe crcuitin Figure 1.4b,
suppose that the battery is rated at 1.5 V. Suppose we observe through some means a
current of 500 mA through the resistor. What is the resistance of the resistor?

For a resistor, we know from Equation 1.4 that

R=1Y
1

Since the voltage v across the resistor is 1.5 V and the current 7 through the resistor is
500 mA, the resistance of the resistor is 3 Q.

The resistance of a piece of material depends on its geometry. As illus-
trated in Figure 1.14, assume the resistor has a conducting channel with
cross-sectional area a, length I, and resistivity p. This channel is terminated
at its extremes by two conducting plates that extend to form the two terminals
of the resistor. If this cylindrical piece of material satisfies the lumped matter
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--—— | —
Area a

Resistivity p
i />

+ v

discipline and obey’s Ohm’s law, we can write!3

R=p- (1.5)
a

Equation 1.5 shows that the resistance of a piece of material is proportional to
its length and inversely proportional to its cross-sectional area.
Similarly, the resistance of a cuboid shaped resistor with length I, width v,
and height 4 is given by
/

R: —_— 1.6
o (1.6)

when the terminals are taken at the pair of surfaces with area wh.

EXAMPLE T.4 RESISTANCE OF A CUBE Determine the resistance
of a cube with sides of length 1 cm and resistivity 10 ohm-cms, when a pair of opposite
surfaces are chosen as the terminals.

Substituting p = 10 Q-cm, /=1 cm, w = 1 cm, and » = 1 cm in Equation 1.6, we get
R=10Q.

EXAMPLE 1.5 RESISTANCE OF A CYLINDER By what factor is
the resistance of a wire with cross-sectional radius 7 greater than the resistance of a wire
with cross-sectional radius 27?

A wire is cylindrical in shape. Equation 1.5 relates the resistance of a cylinder to its
cross-sectional area. Rewriting Equation 1.5 in terms of the cross-sectional radius 7
we have
)
R=p—.
wr?

From this equation it is clear that the resistance of a wire with radius 7 is four times
greater than that of a wire with cross-sectional radius 2.

13. See Appendix A.3 for a derivation.
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FIGURE 1.14 A cylindrical-wire
shaped resistor.
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FIGURE 1.15 Resistors of
various shapes.
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EXAMPLE 1.6 CARBON-CORE RESISTORS Theresistance of small
carbon-core resistors can range from 1  to 10° €. Assuming that the core of these
resistors is 1 mm in diameter and 5 mm long, what must be the range of resistivity of
the carbon cores?

Given a 1-mm diameter, the cross-sectional area of the core is A ~ 7.9 x 1077 m?.
Further, its length is [ = 5§ x 10~3m. Thus, A/[ ~ 1.6 x 10~% m.

Finally, using Equation 1.5, with 1 < R < 10° €, it follows that the approximate
range of its resistivity is 1.6 x 1074 Qm < p < 1.6 x 10*Qm.

EXAMPLE 1.7 POLY-CRYSTALLINE SILICON RESISTOR
A thin poly-crystalline silicon resistor is 1 wm thick, 10 wm wide, and 100 pm long,
where 1 wm is 1076 m. If the resistivity of its poly-crystalline silicon ranges from
10~ Qm to 102 Qm, what is the range of its resistance?

The cross-sectional area of the resistor is A = 10~ m, and its length is / = 10~* m.
Thus /A = 107 m~!. Using Equation 1.5, and the given range of resistivity, p, the
resistance satisfies 10 @ < R < 10° Q.

EXAMPLE 1.8 RESISTANCE OF PLANAR MATERIALS ON
A CHIP Figure 1.15 shows several pieces of material with varying geometries.
Assume all the pieces have the same thickness. In other words, the pieces of material
are planar. Let us determine the resistance of these pieces between the pairs of terminals
shown. For a given thickness, remember that the resistance of a piece of material in the
shape of a cuboid is determined by the ratio of the length to the width of the piece of
material (Equation 1.6). Assuming that R, is the resistance of a piece of planar material

4
3
| | 2
M1 M2 M3 /

2

/1.//* 12 > 7

M4 e -

M6 M7
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with unit length and width, show that the resistance of a piece of planar material with
length L and width W is (L/W)R,.

From Equation 1.6, the resistance of a cuboid shaped material with length L,
width W, height H, and resistivity p is

R=p—. 1.7
P WH (1.7)

We are given that the resistance of a piece of the same material with L =1and W =1
is Ro. In other words,

1
Ro=p. (1.8)

Substituting R, = p/H in Equation 1.7, we get
R= V—VR,,. (1.9)

Now, assume R, = 2 k2 for our material. Recall that Ohms are the unit of resistance
and are written as . We denote a 1000-2 value as kilo-Q or kQ. Assuming that the
dimensions of the pieces of material shown in Figure 1.15 are in p.-m, or micrometers,
what are their resistances?

First, observe that pieces M1, M2, and M6 must have the same resistance of 2 k2 because
they are squares (in Equation 1.9, notice that L/W = 1 for a square).

Second, M3 and M7 must have the same resistance because both have the same ratio
L/W = 3. Therefore, both have a resistance of 3 x 2 = 6 k2. Among them, M4 has
the biggest L/ W ratio of 12. Therefore it has the largest resistance of 24 k2. M5 has the
smallest L/ W ratio of 1/3, and accordingly has the smallest resistance of 2/3 k.

Because all square pieces made out of a given material have the same resistance (provided,
of course, the pieces have the same thickness), we often characterize the resistivity of
planar material of a given thickness with

Ro =R,, (1.10)

where R, is the resistance of a piece of the same material with unit length and width.
Pronounced “R square,” Rg is the resistance of a square piece of material.

EXAMPLE 1.9 MORE ON PLANAR RESISTANCES Referring
back to Figure 1.15, suppose an error in the material fabrication process results in each
dimension (L and W) increasing by a fraction e. By what amount will the resistances of
each of the pieces of material change?

CHAPTER ONE
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Recall that the resistance R of a planar rectangular piece of material is proportional to
L/W. If each dimension increases by a fraction e, the new length becomes L(1 + ¢) and
the new width becomes W(1 + ¢). Notice that the resistance given by

R = MRO - £Ro
W1 + e w

is unchanged.

EXAMPLE T.TO RATIO OF RESISTANCES Referring again to
Figure 1.15, suppose the material fabrication process undergoes a “shrink” to decrease
each dimension (this time around, increasing the thickness H in addition to L and
W) by a fraction « (e.g., @ = 0.8). Assume further, that the resistivity p changes by
some other fraction to p’. Now consider a pair of resistors with resistances Ry and
Ry, and original dimensions L, W and Ly, W, respectively, and the same thickness
H. By what fraction does the ratio of the resistance values change after the process
shrink?

From Equation 1.7, the ratio of the original resistance values is given by

Ry _ pLi/(WiH) _ Ly/Wi
Ry pLy/(WoH)  L/W,

Let the resistance values after the process shrink be R} and R. Since each dimension
shrinks by the fraction «, each new dimension will be « times the original value. Thus,
for example, the length L{ will change to oL. Using Equation 1.7, the ratio of the new
resistance values is given by

R} _ plaly/(@WiaH)  Li/W,

R,  paly/@WraH)  Ly/W,

In other words, the ratio of the resistance values is unchanged by the process
shrink.

The ratio property of planar resistance — that is that the ratio of the resistances
of rectangular pieces of material with a given thickness and resistivity is independent
of the actual values of the length and the width provided the ratio of the length and the
width is fixed — enables us to perform process shrinks (for example, from a 0.25-um
process to a 0.18-pum process) without needing to change the chip layout. Process
shrinks are performed by scaling the dimensions of the chip and its components by the
same factor, thereby resulting in a smaller chip. The chip is designed such that relevant
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signal values are derived as a function of resistance ratios,'# thereby ensuring that the
chip manufactured after a process shrink continues to function as before.

VLSI stands for “Very Large Scale Integration.” Silicon-based VLSI is the technology
behind most of today’s computer chips. In this technology, lumped planar elements
such as wires, resistors, and a host of others that we will soon encounter, are fabricated
on the surface of a planar piece of silicon called a wafer (for example, see Figures 1.15
and 1.12). A wafer has roughly the shape and size of a Mexican tortilla or an Indian
chapati (see Figure 1.16). The planar elements are connected together using planar wires
to form circuits. After fabrication, each wafer is diced into several hundred chips or
“dies,” typically, each the size of a thumbnail. A Pentium chip, for example, contains
hundreds of millions of planar elements (see Figure 1.17). Chips are attached, or bonded,
to packages (for example, see Figure 12.3.4), which are in turn mounted on a printed-
circuit board along with other discrete components such as resistors and capacitors (for
example, see Figure 1.18) and wired together.

14. We will study many such examples in the ensuing sections, including the voltage divider in
Section 2.3.4 and the inverter in Section 6.8.
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FIGURE 1.16 A silicon wafer.
(Photograph Courtesy of Maxim
Integrated Products.)

FIGURE 1.17 A chip photo of
Intel's 2-GHz Pentium IV processor
implemented in 0.18um-technology.
The chip is roughly 1 cm on a side.
(Photograph courtesy of Intel
Corp.)
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FIGURE 1.18 A printed-circuit
board containing several inter-
connected chip packages and
discrete components such as
resistors (tiny box-like objects) and
capacitors (tall cylindrical objects).
(Photograph Courtesy of Anant
Agarwal, the Raw Group.)
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As better processes become available, VLSI fabrication processes undergo periodic
shrinks to reduce the size of chips without needing significant design changes. The
Pentium III, for example, initially appeared in the 0.25-pum process, and later in the
0.18-pm process. The Pentium IV chip shown in Figure 1.17 initially appeared in a
0.18-pum process in the year 2000, and later in 0.13-pm and 0.09-pum processes in
2001 and 2004, respectively.

There are two important limiting cases of the linear resistor: open circuits
and short circuits. An open circuit is an element through which no current
flows, regardless of its terminal voltage. It behaves like a linear resistor in the
limit R — oo.

A short circuit is at the opposite extreme. It is an element across which no
voltage can appear regardless of the current through it. It behaves like a linear
resistor in the limit R — 0. Observe that the short circuit element is the same
as an ideal wire. Note that neither the open circuit nor the short circuit dissipate
power since the product of their terminal variables (v and 7) is identically zero.

Most often, resistances are thought of as time-invariant parameters. But if
the temperature of a resistor changes, then so too can its resistance. Thus, a
linear resistor can be a time-varying element.

The linear resistor is but one example of a larger class of resistive elements.
In particular, resistors need not be linear; they can be nonlinear as well. In
general, a two-terminal resistor is any two-terminal element that has an alge-
braic relation between its instantaneous terminal current and its instantaneous
terminal voltage. Such a resistor could be linear or nonlinear, time-invariant or
time-varying. For example, elements characterized by the following element
relationships are all general resistors:

Linear resistor: v(f) = i({)R(z)
Linear, time-invariant resistor: v(f) = i(t)R

Nonlinear resistor: v(f) = Ki(#)?
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However, as introduced in Chapter 9, elements characterized by these
relationships are not general resistors:

U(t) = L@

dt
1 [t .
i = [_ it

What is important about the general resistor is that its terminal current
and voltage depend only on the instantaneous values of each other. For our
convenience, however, an unqualified reference to a resistor in this book means
a linear, time-invariant resistor.

153 ASSOCIATED VARIABLES CONVENTION

Equation 1.4 implies a specific relation between reference directions chosen for
voltage and current. This relation is shown explicitly in Figure 1.19: the arrow
that defines the positive flow of current (flow of positive charge) is directed i at
the resistor terminal assigned to be positive in voltage. This convention, referred
to as associated variables, is generalized to an arbitrary element in Figure 1.20
and will be followed whenever possible in this text. The variables v and i are
called the terminal variables for the element. Note that the values of each of
these variables may be positive or negative depending on the actual direction
of current flow or the actual polarity of the voltage.

Associated Variables Convention Define current to flow iz at the device
terminal assigned to be positive in voltage.

When the voltage v and current i for an element are defined under the
associated variables convention, the power #nto the element is positive when
both v and 7 are positive. In other words, energy is pumped into an element
when a positive current 7 is directed #nto the voltage terminal marked positive.
Depending on the type of element, the energy is either dissipated or stored.
Conversely, power is supplied by an element when a positive current 7is directed
out of the voltage terminal marked positive. When the terminal variables for a
resistor are defined according to associated variables, the power dissipated in
the resistor is a positive quantity, an intuitively satisfying result.

While Figure 1.20 is quite simple, it nonetheless makes several important
points. First, the two terminals of the element in Figure 1.20 form a single port
through which the element is addressed. Second, the current 7 circulates through
that port. That is, the current that enters one terminal is instantaneously equal
to the current that exits the other terminal. Thus, according to the lumped
matter discipline, net charge cannot accumulate within the element. Third, the
voltage v of the element is defined across the port. Thus, the element is assumed
to respond only to the difference of the electrical potentials at its two terminals,

CHAPTER ONE 25

FIGURE 1.19 Definition of
terminal variables v and / for the
resistor.

A -
°

[ ] :

FIGURE 1.20 Definition of the
terminal variables v and / for a
two-terminal element under the
associated variables convention.
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FIGURE 1.21 Terminal variable
assignments for a battery.

FIGURE 1.22 Terminal variable
assignments for a two-terminal
element.

FIGURE 1.23 Terminal variable
assignments for a resistor.
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and not to the absolute electric potential at either terminal. Fourth, the current is
defined to circulate positively through the port by entering the positive voltage
terminal and exiting the negative voltage terminal. Which terminal is chosen as
the positive voltage terminal is arbitrary, but the relation defined between the
current and voltage is not. Lastly, for brevity, the current that exits the negative
voltage terminal is usually never labeled, but it is always understood to be equal
to the current that enters the positive voltage terminal.

EXAMPLE I.IT TERMINAL VARIABLES VERSUS ELEMENT
PROPERTIES Figures 1.21a and b shows two possible legal definitions for ter-
minal variables for a 3 V battery. What is the value of terminal variable v in each
case?

For Figure 1.21a, we can see that terminal variable v = 3 V. For Figure 1.21b, however,
v=-3V.

This example highlights the distinction between a terminal variable and an element
property. The battery voltage of 3 V is an element property, while v is a terminal
variable that we have defined. Element properties are usually written inside the element
symbol, or if that is inconvenient, they are written next to the element (e.g., the battery
voltage). Terminal polarities and terminal variables are written close to the terminals.

EXAMPLE 1.12 FUN WITH TERMINAL VARIABLES Figure
1.22 shows some two-terminal element connected to an arbitrary circuit at the points
x and y. The element terminal variables v and i are defined according to the associ-
ated variables convention. Suppose that a current of 2 A flows into the circuit terminal
marked x. What is the value of terminal variable 72

Since the chosen direction of the terminal variable i is opposite to that of the 2 A current,
i=-2A

Now suppose that the two terminal element is a resistor (see Figure 1.23) with resistance
R = 10 Ohms. Determine the value of v.

We know that under the associated variables convention the terminal variables
for a resistor are related as

Giventhat R=10 Qandi= -2 A,
v=(-2)10=-20V

Next, suppose that the two terminal element is a 3 V battery with the polarity shown
in Figure 1.24a. Determine the values of terminal variables v and .

As determined earlier, i = —2 A. For the polarity of the battery shown in Figure 1.24a,
v=3V.
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Now, suppose the 3 V battery is connected with the polarity shown in Figure 1.24b.
Determine that values of v and .

As before, i = —2 A. With the reversed battery connection shown in Figure 1.24b,
v=-3V.

Under the associated variables convention, the instantaneous power p supplied
into an element is given by

p=vi (1.11)

with units of watts (W).

Note that both v and 7, and therefore the instantaneous power p, can be
functions of time. For a resistor, p = vi represents the instantaneous power
dissipated by the resistor.

Correspondingly, the amount of energy (in units of joules) supplied to an
element during an interval of time between # and # under the associated
variables convention is given by

1]
w= vidt. (1.12)
151
For a resistor, by noting that v = iR from Equation 1.4, the power relation
for a two-terminal element (Equation 1.11) can be equivalently written as

p=1i’R (1.13)
or
2
v
=_. 1.14
P=7 (1.14)

EXAMPLE I.13 POWER INTO A RESISTOR Determine the power
for the resistor in Figure 1.23. Confirm mathematically that the power is indeed supplied
into the resistor.

We know that i = —2 A and v = —20 V. Therefore, the power is given by

p=vi=(-20V)(—2A) =40 W

By our associated variables convention, the product p = vi yields the power supplied
into the element. Thus, we can confirm that 40 W of power is being supplied into the
resistor. From the properties of a resistor, we also know that this power is dissipated in
the form of heat.
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(b)

FIGURE 1.24 The two-terminal
element is a battery.
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(b)

FIGURE 1.25 Alternative
assignments of terminal variables.
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EXAMPLE 1.14 POWER SUPPLIED BY A BATTERY Determine

the power for the battery using the two assignments of terminal variables in Figures 1.25a
and 1.25b.

For the assignment of terminal variables in Figure 1.25a,i = —2 A and v = 3 V. Thus,
by associated variables, power into the battery is given by

p=vi=Q@V)(-2A)=—-6W
Since the power into the battery is negative, the power supplied by the battery is positive.

Thus, in the circuit of Figure 1.25a, the battery is delivering power.

Next, let us analyze the same circuit with the assignment of terminal variables in
Figure 1.25b. For this assignment, i = 2 A and v = —3 V. Thus, by associated variables,
power into the battery is given by

p=vi=(-3V)2A) = -6 W
In other words, the battery is delivering 6 watts of power. Since the circuit is the same, it

is not surprising that our result has not changed when the terminal variable assignments
are reversed.

EXAMPLE 1.1I§ POWER SUPPLIED VERSUS POWER
ABSORBED BY A BATTERY Insimple crcuits, for example, circuits con-
taining a single battery, we do not have to undergo the rigor of associated variables
to determine whether power is being absorbed or supplied by an element. Let us work
out such an example. In our lightbulb circuit of Figure 1.4b, suppose that the battery
is rated at 1.5 V and 1500 J. Assume that the internal resistance of the battery is zero.
Further assume that the resistance of the bulb is R = 10 Q. What is the power dissipated
in the resistor?

The power dissipated in the resistor is given by

2 2
R 10

Since the entire circuit comprises a battery and a resistor, we can state without a lot of
analysis that the resistor dissipates power and the battery supplies it. How much power
does the battery provide when it is connected to the 10-Q resistor? Suppose the battery
supplies a current I. We can quickly compute the value of this current as:

I=‘—/=£=0.15A
R 10
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Thus the power delivered by the battery is given by
p=VI=15x015=0225W

Not surprisingly, the power delivered by the battery is the same as the power dissipated
in the resistor. Note that since the circuit current I has been defined to be directed out of
the positive battery terminal in Figure 1.4b, and since the current is positive, the battery
is supplying power.

How long will our battery last when it is connected to the 10-€2 resistor? Since the
battery is supplying 0.225 W of power, and since a watt represents energy dissipation
at the rate of one joule per second, the battery will last 1500/0.225 = 6667 s.

EXAMPLE I.I6 POWER RATING OF A RESISTOR In a drcuit
such as that shown in Figure 1.4b, the battery is rated at 7.2 V and 10000 ]J. Assume that
the internal resistance of the battery is zero. Further assume that the resistance in the
drcuit is R = 1 k2. You are given that the resistor can dissipate a maximum of 0.5 W
of power. (In other words, the resistor will overheat if the power dissipation is greater
than 0.5 W.) Determine the current through the resistor. Further, determine whether
the power dissipation in the resistor exceeds its maximum rating.

The current through the resistor is given by

R 1000

The power dissipation in the resistor is given by
p=IR=(72x10737210° = 0.052 W

Clearly, the power dissipation in the resistor is well within its capacity.

1.6 IDEAL TWO-TERMINAL ELEMENTS

As we saw previously, the process of discretization can be viewed as a way
of modeling physical systems. For example, the resistor is a lumped model
for a lightbulb. Modeling physical systems is a major motivation for studying
electronic circuits. In our lightbulb circuit example, we used lumped electrical
elements to model electrical components such as bulbs and batteries. In general,
modeling physical systems involves representing real-world physical processes,
whether they are electrical, chemical, or mechanical, in terms of a set of ideal
electrical elements. This section introduces a set of ideal two-terminal elements
including voltage and current sources, and ideal wires and resistors, which form
our primitives in the vocabulary of circuits.
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FIGURE 1.26 Circuit symbol for
a voltage source: (a) battery;

(b) voltage source; (c) voltage
source.
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The same set of ideal two-terminal elements serve to build either informa-
tion processing or energy processing systems as well. Information and energy
processing includes the communication, storage, or transformation of informa-
tion or energy, and is a second major motivation for studying electronic circuits.
Whether we are interested in modeling systems or in information and energy
processing, it is essential to be able to represent five basic processes in terms of
our lumped circuit abstraction.

1. Sowurces of energy or information

2. Flow of energy or information in a system

3. Loss of energy or information in a system

4. Control of energy flow or information flow by some external force
5

Storage of energy or information

We will discuss ideal two-terminal elements that represent the first three
of these in this section, deferring control and storage until Chapters 6 and 9,
respectively.

1.61 IDEAL VOLTAGE SOURCES, WIRES,
AND RESISTORS

Familiar primary sources of energy in our daily lives are sunlight, oil, and coal.
Secondary sources would be power plants, gasoline engines, home-heating
furnaces, or flashlight batteries. In heating systems, energy flows through air
ducts or heating pipes; in electrical systems the flow is through copper wires.!s
Similarly, information sources include speech, books, compact discs, videos,
and the web (some of it, anyway!). Information flow in speech systems is
through media such as air and water; in electronic systems, such as computers
or phones, the flow relies on conducting wires. Sensors such as microphones,
magnetic tape heads, and optical scanners convert information from various
forms into an electrical representation. None of these elements is ideal, so our
first task is to invent ideal energy or information sources and ideal conductors
for energy or information flow.

Conceptually, it is relatively easy to extrapolate from known properties
of a battery to postulate an ideal voltage source as a device that maintains a
constant voltage at its terminals regardless of the amount of current drawn
from those terminals. To distinguish such an ideal element from a battery'®
(see Figure 1.26a), we denote a voltage source by a single circle with polarity

15. Or, more accurately, in the fields between the wires.

16. In general, a physical battery has some internal resistance, which we ignored in our previous
examples. A more precise relationship between the ideal voltage source and the battery is developed
in Section 1.7.
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markings inside it, as in Figure 1.26b. If the voltage source supplies a voltage V,
then we also include the V symbol inside the circle (or just outside the circle if
there is not enough room to write the symbol inside). In the same manner, we
might also represent an information source, such as a microphone or a sensor, as
avoltage source providing a time-varying voltage () at its output (Figure 1.26¢).
We can assume that the voltage v(¢) depends solely on the microphone signal
and is independent of the amount of current drawn from the terminals. (Note
that V and ¢(#) in Figure 1.26 are element values and not terminal variables.)

We will see two types of voltage sources: independent and dependent. An
independent voltage source supplies a voltage independent of the rest of the
drcuit. Accordingly, independent sources are a means through which inputs
can be made to a circuit. Power supplies, signal generators, and microphones
are examples of independent voltage sources. The circle symbol in Figure 1.26b
represents an independent voltage source. In contrast to an independent voltage
source, a dependent voltage source supplies a voltage as commanded by a signal
from within the circuit of which the source is a part. Dependent sources are
most commonly used to model elements having more than two terminals. They
are represented with a diamond symbol; we shall see examples of these in future
chapters.

In a manner similar to our invention of the ideal voltage source, we pos-
tulate an ideal conductor to be one in which any amount of current can flow
without loss of voltage or power. The symbol for an ideal conductor is shown
in Figure 1.27a. Notice that the symbol is just a line. The ideal conductor is no
different from the ideal wire we saw earlier. Ideal conductors can be used to
represent a channel for fluid flow in hydrodynamic systems.

Any physical length of wire will have some nonzero resistance. The resis-
tance dissipates energy and represents a loss of energy from the system. If this
resistance is important in a particular application, then we can model the wire
as an ideal conductor in series with a resistor, as suggested in Figure 1.27b. To
be consistent, we now state that the resistor symbol introduced in Figure 1.19
represents an ideal linear resistor, which by definition obeys Ohm’s law

v=1iR (1.15)

for all values of voltage and current. Resistors can be used to model processes
such as friction that result in energy loss in a system. Note that because this
element law is symmetric, it is unchanged if the polarities of the current and
voltage definitions are reversed. Sometimes it is convenient to work with recip-
rocal resistance, namely the conductance G having the units of Siemens (S). In
this case,

G= (1.16)

1
R
and

i = Gu. (1.17)
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(a) (b)

FIGURE 1.27 Circuit symbol for
an ideal conductor: (a) perfect
conductor; (b) wire with nonzero
resistance.
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FIGURE 1.28 Plot of the v—i
relationship for a resistor.
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FIGURE 1.29 (a) Independent
voltage source with assigned
terminal variables, (b) v—i relation-
ship for the voltage source.
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Most often, resistances and conductances are thought of as time-invariant
parameters. But if the temperature of a resistor changes, then so too can
its resistance and conductance. Thus, a linear resistor can be a time-varying
element.

1.62 ELEMENT LAWS

From the viewpoint of circuit analysis, the most important characteristic of a
two-terminal element is the relation between the voltage across and the current
through its terminals, or the v~i relationship for short. This relation, called
the element law, represents the lumped-parameter summary of the electronic
behavior of the element. for example, as seen in Equation 1.15,

v=1iIR

is the element law for the resistor. The element law is also referred to as the
constituent relation, or the element relation. In order to standardize the manner
in which element laws are expressed, the current and voltage for all two-terminal
elements are defined according to the associated variables convention shown in
Figure 1.19. Figure 1.28 shows a plot of the v—i relationship for a resistor when
v and 7 are defined according to the associated variables convention.

The constituent relation for the independent voltage source in Figure 1.26b
supplying a voltage V'is given by

v=V (1.18)

when its terminal variables are defined as in Figure 1.29a. A plot of the v—i
relationship is shown in Figure 1.29b. Observe the clear distinction between
the element parameter V and its terminal variables v and .

Similarly, the element law for the ideal wire (or a short circuit) is given by

v=0. (1.19)

Figure 1.30a shows the assignment of terminal variables and Figure 1.30b
plots the v~ relationship.

Finally, the element law for an open circuit is given by

i1=0. (1.20)

Figure 1.31a shows the assignment of terminal variables and Figure 1.31b
plots the v — i relationship.

Comparing the v~i relationship for the resistor in Figure 1.28 to those for a
short circuit in Figure 1.30 and an open circuit in Figure 1.31, it is evident that
the short circuit and open circuit are limiting cases for a resistor. The resistor
approaches the short circuit case as its resistance approaches zero. The resistor
approaches the open circuit case as its resistance approaches infinity.
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EXAMPLE 1.7 MORE ON TERMINAL VARIABLES VERSUS
ELEMENT PROPERTIES Figure 1.32 shows a 5-V voltage source connected
to an arbitrary circuit at the points x and y. Its terminal variables v and 7 are defined
according to the associated variables convention as indicated in the figure. Suppose
that a current of 2 A flows into the circuit terminal marked x. What are the values of
vand i?

For the assignment of terminal variables shown in Figure 1.32, i = 2 A and
v=-5V.

Notice the distinction between terminal variables and element properties in this
example. The source voltage of 5 V is an element property, while v is a terminal variable
that we have defined. Similarly, the polarity markings inside the circle are a property of
the source, while the polarity markings outside the circle representing the source relate
to the terminal variable v. When possible, we attempt to write the element values inside
the element symbol, while the terminal variables are written outside.

EXAMPLE 1.1I8 CHARTING V-] RELATIONSHIPS An experi-
mental way of charting the v—i relationship for a two-terminal element is to connect
an oscilloscope and an oscillator (or a signal generator set to produce an oscillatory out-
put) in a curve-plotter configuration as suggested in Figure 1.33. The oscillator produces
a voltage given by

v; = Vcos(wt).

The basic concept is to use the oscillator to drive current into some arbitrary two-terminal
device, and measure the resulting voltage vp and current 7ip. Notice that the terminal
variables for the two-terminal device, vp and ip, are defined according to the associated
variables convention. As can be seen from the circuit, the horizontal deflection will be
proportional to vp, and the vertical deflection will be proportional to vg, and hence
to ip, assuming resistor R obeys Ohm’s law, and the horizontal and vertical amplifier
inputs to the oscilloscope draw negligible current.

1.63 THE CURRENT SOURCE—ANOTHER IDEAL
TWO-TERMINAL ELEMENT

In some fields of engineering, there are two obvious sources of power that
appear to have dual properties. Think, for example, of air pumps. For an
ordinary tire pump, the higher the air pressure, the harder the person at the
pump-handle has to work. But with a household vacuum cleaner, also an air
pump of sorts, you can hear the motor actually speed up if the air flow out of
the machine is blocked, and a measurement of motor current would confirm
that the power to the motor goes down under these conditions.
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FIGURE 1.30 (a) Ideal wire with
terminal variables, (b) v—i relation-
ship for the wire.
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FIGURE 1.31 (a) An open
circuit element with terminal
variables, (b) v—i relationship
for the open circuit.
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FIGURE 1.32 Terminal variables
versus element properties.

FIGURE 1.33 Charting on an
oscilloscope the v—i relationship for
a two-terminal element.
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It seems reasonable, then, to look for an electrical source that has charac-
teristics that are the dual of those of the battery, in that the roles of current and
voltage are interchanged. From the point of view of v—i characteristics, this is
a simple task. The ideal voltage source appears as a vertical line in v~ space,
so this other source, which we call an ideal current source, should appear as a
horizontal line, as in Figure 1.34. Such a source maintains its output current at
some constant value I regardless of what voltage appears across the terminals.

The element law for a current source supplying a current [ is given by

i=1 (1.21)

If the source were left with nothing connected across its terminals, then, in
theory at least, the terminal voltage must rise to infinity because the constant
current flowing through an infinite resistance gives infinite voltage. Recall the
analogous problem with the ideal voltage source: If a short circuit is applied,
the terminal current must become infinite.

It is difficult at first to have an intuitive grasp of the current source, princi-
pally because there is no familiar device available at the electronic parts counter
that has these properties. However, one can still find special devices that deliver
constant current to the arc lamps to illuminate the streets of Old Montreal,
and we will show later that MOSFETs and Op Amps make excellent current
sources. But these are not as familiar as the flashlight battery.

EXAMPLE T.19 CURRENT SOURCE POWER Determine the
power for the 3-A current source in Figure 1.35 if a measurement shows that v = 5 V.

For the assignment of terminal variables in Figure 1.35, i = —3 A. Further, we are given
that v = 5V. Power into the current source is given by

p=vi=(SV)(-3A) = 15 W.

Since the power into the current source is negative, we determine that power is being
supplied by the current source.

Test Unknown
oscillator YD %—te_rmlnal Oscilloscope
T _7| device g+ with
v, =V cos(or) b~ | balanced

inputs

Resistor of
known value
R




1.6 Ideal Two-Terminal Elements

Before proceeding further, it is important to distinguish between the model
of a two-terminal element and the element itself. The models, or element laws,
presented in this section are idealized. They describe a simplified behavior
of the real elements (a voltage source for a battery, for instance). From this
point forward, we will focus on circuits comprising only ideal elements, and
make only occasional reference to reality. Nonetheless, it is important to realize
in practice that the result of a circuit analysis is only as good as the models
on which the analysis is based. Part of any discrepancy between theory and
experiment may be a result of the fact that the elements do not really behave
as the elements laws predict.

The v—i relation is useful to describe other systems as well, not just primi-
tive two-terminal elements such as sources and resistors. When creating circuit
models for these systems, it is often the case that an electronic circuit can
be abstracted as a black box accessible through a few terminals. As with any
abstraction, the details of behavior at the interfaces (terminals, in our case)
are more important than the details of behavior internal to the black box.
That is, what happens at the terminals is more important than how it hap-
pens inside the black box. Furthermore, it is often the case that the terminals
can be paired into ports in a natural way following the function of the circuit.
For example, a complex amplifier or filter is often described by the relation
between an input signal presented to the amplifier or filter at one pair of ter-
minals or port, and an output signal presented by the amplifier or filter at
a second port. In this case, the terminal pairs or ports take on special sig-
nificance, and the voltage across the port and the current through the port
become the port variables in terms of which the electronic circuit behavior is
described.

In principle, an electronic circuit can have one or more ports, although in
practice it is common to define only a few ports to simplify matters. For exam-
ple, an amplifier may be described in terms of its input port, its output port,
and one or more ports for connection to power supplies. Even simple network
elements such as sources, resistors, capacitors, and inductors can be thought of
as one-port devices. Voltages are defined across the ports and currents through
the ports as illustrated in Figure 1.36. Observe that the assignment of refer-
ence directions related to v and 7 follows the associated variables convention
discussed in Section 1.5.2.

The notion of a port is much more general than its use in electronic cir-
cuit analysis would indicate. Many physical systems, such as mechanical, fluid,
or thermal systems can be characterized by their behavior at a few ports. Fur-
thermore, as depicted in Table 1.1 they have through and across parameters
analogous to currents and voltages. Circuit models for these systems would use
voltages and currents to model the corresponding through and across variables
in those systems.
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FIGURE 1.34 v—iplot for
current source.
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FIGURE 1.85 Power for the
current source.

FIGURE 1.36 Definition of the
voltage and current for a port.
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TABLE 1.1 Through and across
variables in physical and economic
systems.

FIGURE 1.37 One model for a
battery.
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THROUGH ACROSS

Current Voltage
Force Motion
Flow Pressure

Heat Flux Temperature
Consumption Wealth

1.7 MODELING PHYSICAL ELEMENTS

Thus far, we have invented four ideal, primitive elements and studied their
v—i characteristics. These ideal elements included the independent voltage
source, the independent current source, the linear resistor, and the perfect con-
ductor. Let us now return to building models for some of the physical elements
we have seen thus far in terms of the four ideal elements.

Indeed, Figure 1.27b is one example of a model. We have modeled a
physical device, namely, a length of copper wire, by a pair of ideal two-terminal
elements: a perfect conductor and a linear resistance. Obviously this model
is not exact. For example, if 1000 A of current flowed through a piece of
14-gauge copper wire (standard house wire designed to carry 15 A), the wire
would become hot, glow brightly, and probably melt, thereby converting itself
from a resistor with a very small resistance, for example, 0.001 €2, to an infinite
resistor. Our model, consisting of an ideal conductor in series with an ideal
0.001-2 resistor, shows no such behavior: With 1000 A flowing, a one-volt
drop would develop across the resistor, and one thousand watts of power
would be dissipated, presumably in heat, as long as the current flowed. No
smoke, no burnout.

In a similar way we can devise a model for a battery out of our ideal
elements. When a flashlight bulb is connected to a new nominally 6-V battery,
the voltage at the terminals of the battery (usually called the terminal voltage)
drops from 6.2 V to perhaps 6.1 V. This drop results from the internal resistance
of the battery. To represent this effect, we model the battery as an ideal voltage
source in series with some small resistor R as shown in Figure 1.37a. The drop in

R
AV o +

(a) (b)
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v, (%) Lightbulb

terminal voltage when the bulb is initially connected will be properly represented
in the circuit model of Figure 1.38 if the value of R is appropriately chosen.
However, the model is still not exact. For example, if a lightbulb is connected
to a battery for some time, the battery voltage will slowly drop as the energy
is drained from the battery. The model battery will not “run down,” but will
continue to light the bulb indefinitely.

A similar model might apply for a microphone. When an information
processing system such as an amplifier is connected to the microphone, its
output might drop from a 1-mV peak-to-peak signal to a 0.5-mV peak-to-peak
signal due to the internal resistance of the microphone. As with the battery, we
can model the microphone as a voltage source in series with a resistance Ry, as
depicted in Figure 1.39. Although the output voltage of the microphone will
not run down over time, its model is not exact for other reasons. For example,
the voltage drop in the signal might be related to the signal frequency.

Itis obvious that these “defects” in the models could be corrected by making
the models more complicated. But the considerable increase in complexity
might not be justified by the improvement in model accuracy. Unfortunately,
it is not always obvious in a given problem how to find a reasonable balance
between simplicity and accuracy. In this text we will always strive for simplicity
on the following basis: Computer solutions for any of the problems we discuss
are always available, and these can be structured to have great accuracy. So
it makes sense in modeling with circuit elements, as opposed to computer
modeling, to strive for insight rather than accuracy, for simplicity rather than
complexity.

CHAPTER ONE

FIGURE 1.38 Battery model
and lightbulb.

FIGURE 1.39 A microphone
model.
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FIGURE 1.40 /~vplot fora
resistor.
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_1
Slope = ®

It is appropriate at this point to check experimentally the validity of the
models developed here by plotting their v—i characteristics. The v—i character-
istics can be plotted using the setup shown in Figure 1.33. First, use a 100-Q
1/10-W resistor as the “unknown” two-terminal device. If the oscillator volt-
age is a few volts, a straight line passing through the origin with slope 1/R
will appear on the screen (see Figure 1.40), showing that Ohm’s law applies.
However, if the voltage is increased so that vp is 5 or 10 V, then the 1/10-W
resistor will heat up, and its value will change. If the oscillator is set to a very
low frequency, say 1 Hz, the resistor heats up and cools down in the source
of each cyde, so the trace is decidedly nonlinear. If the oscillator is in the mid-
audio range, say 500 Hz, thermal inertia prevents the resistor from changing
temperature rapidly, so some average temperature is reached. Thus the line will
remain straight, but its slope will change as a function of the amplitude of the
applied signal.

Resistor self-heating, with the associated change in value, is obviously
undesirable in most circuit applications. For this reason manufacturers pro-
vide power ratings for resistors, to indicate maximum power dissipation
(Pmax) Without significant value change or burnout. The power dissipated in a
resistor is

p = vi, (1.22)

which is the hyperbola in v~ space, as indicated in Figure 1.41. Our ideal-
resistor model — ohmic with constant value — matches the actual resistor
behavior only in the region between the hyperboli.

The plot on the oscilloscope face will also deviate from a straight line if the
osdillator frequency is made high enough. Under this condition, capacitive and
inductive effects in the circuit will generate an elliptical pattern. These will be
discussed in later chapters.
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FIGURE 1.41 Power constraint for a resistor in the / — v plane. FIGURE 1.42 /~v characteristic of a battery at low current

levels.

Now plot the i—v characteristic of a battery. At low current levels, the
curve appears as a vertical line in #~v space (see Figure 1.42). But if the oscillator
amplitude is increased so that substantial currents are flowing, and we make
an appropriate change in scope vertical sensitivity, the line remains straight,
but now has a definite tip, as suggested by Figure 1.43a, indicating a nonzero
series resistance. If the battery terminal voltage and current are defined as in

-
+
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A Slope = Ili —V Vi
y (b)
0 Vvt i
Open-circuit AA <
Short-circuit voltage R +
current—
Vi
(@) -

(©)

FIGURE 1.43 Battery character-
istic, larger current scale.
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Figure 1.43b, then from the model in Figure 1.43¢, an appropriate expression
for the terminal voltage is!”

v =V+iR (1.23)

Note that because of our choice of variables, in the first quadrant current
is flowing into the positive terminal, that is, the battery is being charged, hence
the terminal voltage is actually larger than the nominal voltage. The fact that
the plot is almost a straight line validates our assumption that the battery can
be modeled as a voltage source in series with a linear resistor. Note further that
graphs such as Figure 1.43a can be characterized by only two numbers, a slope
and an intercept. The slope is 1/R where R is the series resistance in the model.
The intercept can be specified either in terms of a voltage or a current. If we
choose a voltage, then because the intercept is by definition at zero current, it
is called the open-circuit voltage. If the intercept is specified in terms of current,
it is called the short-circuit current, because by definition the voltage is zero at
that point. These terms reappear in Chapter 3 from a very different perspective:
Thevenin’s Theorem.

This section described how we model physical elements such as batteries
and wires in terms of ideal two-terminal elements such as independent voltage
sources, resistors, and ideal wires. Our ideal circuit elements such as indepen-
dent voltage sources and resistors also serve as models for physical entities such
as water reservoirs and friction in water tubes, respectively. In the circuit model
for a physical system, water pressure is naturally represented using a voltage,
and water flow using a current. Water pressure and water flow, or the corre-
sponding voltage and current, are fundamental quantities. In such systems, we
will also be concerned with the amount of energy stored in the system, and the
rate at which energy is being dissipated.

1.8 SIGNAL REPRESENTATION

The previous sections discussed how lumped circuit elements could serve as
models for various physical systems or be used to process information. This
section draws the correspondence between variables in physical systems and
those in the electrical circuit model. It also discusses how electrical systems
represent information and energy.

As discussed earlier, one of the motivations for building electronic circuits is
to process information or energy. Processing includes communication, storage,
and computation. Stereo amplifiers, computers, and radios are examples of
commonplace electronic systems for processing information. Power supplies

17. For now, we simply state the equation, and postpone the derivation to Chapter 2 (see
the example related to Figure 2.61) after we have mastered a few basic circuit analysis techniques.
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and our familiar lightbulb circuit are examples of electronic circuits that process
energy.

In both cases, the physical quantity of interest, either the information or
the energy, is represented in the circuit by an electrical signal, namely a current
or a voltage, and circuit networks are used to process these signals. Thus, the
manner in which a circuit fulfills its purpose is effectively the manner in which
it treats the signals that are its terminal currents and voltages.

1.81 ANALOG SIGNALS

Signals in the physical world are most commonly analog, that is, spanning
a continuum of values. Sound pressure is such a signal. The electromagnetic
signal picked up by a mobile phone antenna is another example of an analog
signal. Not surprisingly, most circuits that interact with the physical world must
be able to process analog signals.

Figure 1.44 shows several examples of analog signals. Figure 1.44b shows
a DC current signal, while the remainder are various forms of voltage signals.

Figure 1.44a shows a sinusoidal signal with frequency 1 MHz and phase
offset (or phase shift) 7/4 rad. The same frequency can also be expressed as
10° Hz, or 27100 rad/s, and the phase offset as 45 degrees. The reciprocal of
the frequency gives the period of oscillation or the cycle time, which is 1 us
for our sinusoid. Our sinusoid has an average value of zero. This signal can be
described as a sinusoid with an amplitude (or magnitude, or maximum value)
of 10 V, or equivalently as a sinusoid with a peak-to-peak swing of 20 V.

Sinusoids are an important class of signals that we will encounter frequently
in this book. In general, a sinusoidal signal v can be expressed as

v = Asin(wt + ¢)

where A is the amplitude, w is the frequency in radians per second, #is the time,
and ¢ is the phase offset in radians.

Figures 1.44c¢ and d show square wave signals. The square wave in
Figure 1.44chas a peak-to-peak value of 10 V and an average value (or DC offset)
of 5 V, while the square wave signal in Figure 1.44d has the same peak-to-peak
value, but zero offset.

Information can be represented in one of many forms, for example, the
amplitude, phase, or frequency. Figure 1.44e shows a signal (for example, from
a microphone) that carries information in its amplitude, and Figure 1.44f shows
a signal that is carrying information in its frequency.

To complete this section, we briefly touch on the concept of root mean
square value to describe signals. Recall that our signal in Figure 1.44a was
described as a sinusoid with an amplitude of 10 V. The same signal can be
described as a sinusoid with rms (root mean square) value of 10/+/2. For a
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FIGURE 1.44 Several examples
of analog signals: (a) a 1-MHz
sinusoidal signal with amplitude
10 V and a phase offset of 7/4;
(b) a 5-A DC signal; (c) a 1-MHz
square wave signal with a 5-V
offset; (d) a -MHz square wave
signal with zero offset; (e) a signal
carrying information in its
amplitude; (f) a signal carrying
information in its frequency.
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sinusoidal signal, or for that matter, any periodic signal v with period T, the
rms is computed as follows:

1 t1+T

= ) v2(t)dt (1.24)

Urms =
where the integration is performed over one cycle.

The significance of the rms value of a periodic signal can be seen by com-
puting the average power P delivered to a resistance of value R by a periodic
voltage signal v(z) with period T. For periodic signals, the average power can
be obtained by integrating the power over one cycle and dividing by the cycle
time:

1 u+T ,,2 £
p=— v g (1.25)
TJy R
For a linear, time-invariant resistor, we can pull R out of the integral to
write
11t
b=~ v (t)dt (1.26)
RTJy
By defining the rms value of a periodic signal as in Equation 1.24 we can rewrite
Equation 1.26 as

p=—-v (1.27)

By the artful definition of Equation 1.24, we have managed to obtain an
expression for power resembling that due to a DC signal. In other words, the
rms value of a periodic signal is the value of a DC signal that would have resulted
in the same average power dissipation.'® In like manner, the rms value of a DC
signal is simply the constant value of the signal itself.

Thus, a sinusoidal voltage with rms value ;s applied across a resistor of
value R will result in an average power dissipation of v2,./R.

For example, 120-V 60-Hz wall outlets in the United States are rated by
their rms values. Thus, they supply a sinusoidal voltage with a peak amplitude
of 120 x V2 =170 V.

Native Signal Representation

Sometimes, circuit signals provide a native representation of physical quanti-
ties, as was the case with our lightbulb example in Figure 1.4. The circuit in
Figure 1.4b was a model of the physical circuit in Figure 1.4a, which comprised

18. This new voltage unit, called the rms, was originally defined by the pioneers of the electric
power industry to avoid (or possibly perpetuate) confusion between DC power and AC power.
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a battery, wires, and a lightbulb. The purpose of the original circuit was to
convert chemical energy stored in the battery into light. To do so, the battery
converted the chemical energy to electrical energy, the wires then guided the
electrical energy to the lightbulb, and the lightbulb converted at least some of
this electrical energy to light. Thus, the circuit in Figure 1.4 performed a very
primitive form of energy processing.

The circuit in Figure 1.4 was proposed to model the original circuit, and
to help determine such quantities as the current flowing through the lightbulb
and the power dissipated in it. In this case, the signal representations in the
lumped-parameter circuit were chosen naturally. The quantities of interest in
the physical circuit, namely its voltages and currents, were represented by the
same voltages and currents in the circuit model. This is an example of native
signal representation.

Non-Native Signal Representation

A more interesting occurrence is that of non-native signal representation. In
this case, electrical signals are used to represent non-electrical quantities, which
is common in electronic signal processing. For example, consider an electronic
sound amplifier. Such a system might begin with a front-end transducer, such as
a microphone, that converts sound into an electrical signal that represents the
sound. This electrical signal is then amplified, and possibly filtered, to produce
a signal representing the desired output sound. Finally, a back-end transducer,
such as a speaker, converts the processed electrical signal back into sound.
Because electrical signals can be transduced and processed with ease, electronic
drcuits provide an amazingly powerful means for information processing, and
have all but replaced native processing. For example, electronic amplifiers have
now replaced megaphones.

The choice of signal type, for example current or voltage, often depends on
the availability of convenient transducers (elements that convert from one form
of energy to another — for example, sound to electricity), power considera-
tions, and the availability of appropriate circuit elements. Voltage is a popular
representation and is used throughout this book. We will also see several situ-
ations later in which a voltage signal is converted to a current signal and vice
versa as it is being processed in an electronic system.

182 DIGITAL SIGNALS—VALUE DISCRETIZATION

In contrast to the continuous representation of analog signals, we can quan-
tize signals into discrete or lumped signal values. Value discretization forms
the basis of the digital abstraction, which yields a number of advantages
such as better noise immunity compared to an analog signal representation.
Although most physical signals are analog in nature, it is worth noting that
there are a few physical signals that are naturally quantized, and so would have
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discretization into two levels.

THE CIRCUIT ABSTRACTION

a naturally quantized signal representation. Wealth is an example of such a
signal since monetary currencies are not generally considered to be infinitely
divisible.!

To illustrate value discretization, consider the discretization of voltage as
shown in Figure 1.45. Here, we discretize voltage into a finite number of infor-
mation levels, for example, the two levels named “0” and “1.” Under this
quantization, if a voltage is observed to be below 2.5 V we interpret its value as
representing the information level “0.” If its value is above 2.5 V, we interpret
it as representing the information level “1.” Correspondingly, to produce the
information level “0,” we use any voltage less than 2.5 V. For example, we
might use 1.25 V. Correspondingly, to produce the information level “1,” we
might use the voltage 3.75 V.

As discussed in Chapter 5, discrete signals offer better noise immunity
than analog signals, but they do so at the expense of precision. If the noise that
corrupts a discrete signal does not move its physical value past a discretization
threshold, then the noise will be ignored. For example, suppose the information
level “0” in Figure 1.45 is represented by a 1.25-V signal, and the information
level “1” in Figure 1.45 is represented by a 3.75-V signal. Provided the volt-
age does not rise above 2.5 V for “0,” or does not fall below 2.5 V for a
“1,” it will be interpreted correctly. Thus, this discrete signal representation is
immune to 1.25-V noise. Notice, however, the loss in precision — our coarse
two-level representation is unable to distinguish between small changes in the
voltage.?’

In general, we can discretize values into any number of levels, for exam-
ple, four. Thus the representation discussed thus far is a special case of value
discretization called the binary representation where we discretize the voltage
(or current for that matter) into two information levels: “0” and “1.” Because
systems using more than two levels are difficult to build, most digital systems in
use today use the binary representation. Accordingly, the digital representation
has become synonymous with the binary representation.

19. Notice that before the advent of currencies, the barter system prevailed, and wealth was indeed
analog in nature, since a loaf of bread, or a plot of land for that matter, theoretically is infinitely
divisible!

20. For applications that care only about whether a signal is above or below some threshold, the
loss in precision is of no consequence, and a two-level representation is sufficient. However, for
other applications that care about small changes in a signal, the basic two-level representation of
a signal must be extended. We show in Chapter 5 that practical digital systems can offer both
arbitrary degrees of precision and noise immunity through a process of discretization and coding.
Briefly, to recover some precision while retaining noise immunity, digital systems quantize signals
into a large number of levels — for example, 256 — and code these levels into a few binary
digits — 8, in our example, where each binary digit can be represented as a two-level voltage on
a single wire. This method converts an analog signal on a single wire into a binary encoded signal
on several wires, where each wire carries a voltage that can vary between two levels.
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Native and Non-Native Signal Representation

As with analog signals, discrete signals can provided both native and non-native
signal representations. The discrete binary values of 0 and 1 are a native repre-
sentation for logic because they correspond naturally to the logical TRUE and
FALSE values. Non-native signal representations can be derived from discrete
signals by using sequences of digits having the value 0 or 1 to encode numbers
whose values correspond to signal values of interest. Chapter 5 covers this topic
in greater detail.

When designing a non-native information processing system, there are
many choices for signal representation. For example, the use of voltage versus
current, or analog versus discrete signals are two such choices. Each represen-
tation has its advantages and disadvantages, and facilitates a certain kind of
processing. For example, digital representations offer noise immunity at the
expense of precision. How these choices are made is usually application spe-
cific, and often depends on the availability of convenient transducers, power
and noise considerations, and the availability of appropriate elements. The use
of voltage to represent signals is probably most common, and is used routinely
here. However, we will also encounter situations in which the signal repre-
sentation switches from a voltage to a current and back again as the signal is
processed.
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1.9 SUMMARY

>

The discretization of matter into lumped elements such as batteries and
resistors that obey the lumped matter discipline and connecting them using
ideal wires is the essence of the lumped circuit abstraction.

The lumped matter discipline for lumped elements includes the following
constraints:

1. The boundaries of the discrete elements must be chosen so that

0dp _
a

0

through any closed path outside the element for all time.

2. The elements must not include any net time-varying charge for all time.
In other words,

0
M _y
ot

where ¢ is the total charge within the element.

3. We must operate in the regime in which timescales of interest are much
larger than the propagation delay of electromagnetic waves through the
elements.

The lumped matter discipline for lumped circuits includes the following
constraints:

1. The rate of change of magnetic flux linked with any portion of the
circuit must be zero for all time.

2. The rate of change of the charge at any node in the circuit must be zero
for all time.

3. The signal timescales must be much larger than the propagation delay
of electromagnetic waves through the circuit.

The associated variables convention defines current to flow i at the device
terminal assigned to be positive in voltage.

The instantaneous power consumed by a device is given by p(f) = v(2)i(1),
where v(f) and i(?) are defined using the associated variables discipline.
Similarly, the instantaneous power delivered by a device is given by
p(t) = —v(®)i(?). The unit of power is the watt.
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» The amount of energy w(t) consumed by a device over an interval of time
11 — b, is given by

w(t) = / # v(Di(t)dt
151

where v(2) and i(t) are defined using the associated variables discipline. The
unit of energy is the joule.

»  Ohm’s law states that resistors that obey Ohm’s law satisfy the equation v =
iR, where R is constant. The resistance of a piece of homogeneous material
is proportional to its length and inversely proportional to its cross-sectional
area.

>  The resistance of a planar piece of material with length L and width W is
given by VL(/ x Ro, where R is the resistance of a square piece of material.

» The four ideal circuit elements are the ideal conductor, the ideal linear
resistor, the voltage source, and the current source. The element law for
the ideal conductor is

v=0,
for the resistor with resistance R is
v=1R,
for the voltage source supplying a voltage V is
v=1V,
and for the current source supplying a current I is
i=1

» The representation of parameters in physical systems by their equivalent
electrical circuit parameters has been discussed.

»  The representation of information in terms of analog and digital electrical
signals has been discussed.

In the process of introducing the elements and their element laws, we
defined the symbols and units for various physical quantities. These definitions
are summarized in Table 1.2. The units can be further modified with engineering
multipliers. Several common multipliers and their corresponding prefix symbols
and values are given in Table 1.3.
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QUANTITY SYMBOL UNITS SYMBOL
Time t Second s
Frequency f Hertz Hz
TABLE 1.2 Electrical (Gt : Ampere A
engineering quantities, their units, Voltage v Volt \%
and symbols for both. Rava p Watt A4
Energy w Joule J
Resistance R Ohm Q
Conductance G Siemen S
MULTIPLIER PREFIX VALUE
peta P 1015
tera T 1012
giga G 10°
mega M 10°
TABLE 1.3 Common Kie k 103
engineering multipliers.
milli m 10-3
micro L 10-¢
nano n 10~
pico p 10~12
femto f 10~
EXERCISES EXERCISE 1.1 Quartz heaters are rated according to the average power drawn
from a 120-V AC 60-Hz voltage source. Estimate the resistance (when operating) a
1200-W quartz heater.

NOTE: The voltage waveform for a 120-V AC 60-Hz waveform is

() = v/2 120 cos(2w 60

The factor of /2 in the peak amplitude cancels when the average power is com-
puted. One result is that the peak amplitude of the voltage from a 120-volt wall outlet
is about 170 volts.
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EXERCISE I.2

a) The battery on your car has a rating stated in ampere-hours that permits you to
estimate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 A-hour 12-V
battery?

b) Assuming 100% efficient energy conversion, how much water stored behind a 30 m
high hydroelectric dam would be required to charge the battery?

EXERCISE T.3 In the circuit in Figure 1.46, R is a linear resistor and v = Vpc
a constant (DC) voltage. What is the power dissipated in the resistor, in terms of R
and Vpc?

EXERCISE 1.4 In the circuit of the previous exercise (see Figure 1.46), v =
Vac coswt, a sinusoidal (AC) voltage with peak amplitude V¢ and frequency w, in
radians/sec.

a) What is the average power dissipated in R?

b) What is the relationship between Vpc and Vac in Figure 1.46 when the average
power in R is the same for both waveforms?

PROBLEM 1.1 Determine the resistance of a cube with sides of length / cms and
resistivity 10 ©2-cm, when a pair of opposite surfaces are chosen as the terminals.

PROBLEM T.2 Sketch the v—i characteristic of a battery rated at 10 V with an
internal resistance of 10 Ohms.

PROBLEM 1.3 A battery rated at 7.2 V and 10000 J is connected across a light-
bulb. Assume that the internal resistance of the battery is zero. Further assume that the
resistance of the lightbulb is 100 €.

1. Draw the circuit containing the battery and the lightbulb and label the terminal
variables for the battery and the lightbulb according to the associated variables
discipline.

2. What is the power into the lightbulb?

3. Determine the power into the battery.

4. Show that the sum of the power into the battery and the power into the bulb
is zero.

5. How long will the battery last in the circuit?

CHAPTER ONE
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PROBLEM T.4 A sinusoidal voltage source
v=10V sin(wi)
is connected across a 1 k€2 resistor.

1. Make a sketch of p(#), the instantaneous power supplied by the source.
2. Determine the average power supplied by the source.

3. Now, suppose that a square wave generator is used as the source. If the square wave
signal has a peak-to-peak of 20 V and a zero average value, determine the average
power supplied by the source.

4. Next, if the square wave signal has a peak-to-peak of 20 V and a 10 V average value,
determine the average power supplied by the source.









RESISTIVE NETWORKS

A simple electrical network made from a voltage source and four resistors is
shown in Figure 2.1. This might be an abstract representation of some real
electrical network, or a model of some other physical system, for example, a
heat flow problem in a house. We wish to develop systematic general methods
for analyzing circuits such as this, so that circuits of arbitrary complexity can
be solved with dispatch. Solving or analyzing a circuit generally involves finding
the voltage across, and current through, each of the circuit elements. Systematic
general methods will also enable us to automate the solution techniques so that
computers can be used to analyze circuits. Later on in this chapter and in the
next, we will show how our problem formulation facilitates direct computer
analysis.

To make the problem specific, suppose that we wish to find the current
i4 in Figure 2.1, given the values of the voltage source and the resistors. In
general, we can resort to Maxwell’s Equations to solve the circuit. But this
approach is really impractical. Instead, when circuits obey the lumped matter
discipline, Maxwell’s Equations can be dramatically simplified into two algebraic
relationships stated as Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law
(KCL). This chapter introduces these algebraic relationships and then uses them
to develop a systematic approach to solving circuits, thereby finding the current
i4 in our specific example.

This chapter first reviews some terminology that will be useful in our discus-
sions. We will then introduce Kirchhoff’s laws and work out some examples
to develop our facility with these laws. We will then introduce a systematic
method for solving circuits based on Kirchhoff’s laws using a very simple,

FIGURE 2.1 Simple resistive
network.
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FIGURE 2.2 An arbitrary circuit.

RESISTIVE NETWORKS

illustrative circuit. We will then apply the same systematic method to solve
more complicated examples, including the one shown in Figure 2.1.

21 TERMINOLOGY

Lumped circuit elements are the fundamental building blocks of electronic cir-
cuits. Virtually all of our analyses will be conducted on circuits containing
two-terminal elements; multi-terminal elements will be modeled using combi-
nations of two-terminal elements. We have already seen several two-terminal
elements such as resistors, voltage sources, and current sources. Electronic
access to an element is made through its terminals.

An electronic circuit is constructed by connecting together a collection of
separate elements at their terminals, as shown in Figure 2.2. The junction points
at which the terminals of two or more elements are connected are referred to as
the nodes of a circuit. Similarly, the connections between the nodes are referred
to as the edges or branches of a circuit. Note that each element in Figure 2.2
forms a single branch. Thus an element and a branch are the same for circuits
comprising only two-terminal elements. Finally, circuit loops are defined to be
closed paths through a circuit along its branches.

Several nodes, branches, and loops are identified in Figure 2.2. In the circuit
in Figure 2.2, there are 10 branches (and thus, 10 elements) and 6 nodes.

As another example, a is a node in the circuit depicted in Figure 2.1 at
which three branches meet. Similarly, b is a node at which two branches meet.
ab and bc are examples of branches in the circuit. The circuit has five branches
and four nodes.

Since we assume that the interconnections between the elements in a circuit
are perfect (i.e., the wires are ideal), then it is not necessary for a set of elements
to be joined together at a single point in space for their interconnection to be
considered a single node. An example of this is shown in Figure 2.3. While
the four elements in the figure are connected together, their connection does
not occur at a single point in space. Rather, it is a distributed connection.

Elements
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Elements

m Distributed node
Ideal wires
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Nonetheless, because the interconnections are perfect, the connection can be
considered to be a single node, as indicated in the figure.

The primary signals within a circuit are its currents and voltages, which we
denote by the symbols 7 and v, respectively. We define a branch current as the
current along a branch of the circuit (see Figure 2.4), and a branch voltage as the
potential difference measured across a branch. Since elements and branches are
the same for circuits formed of two-terminal elements, the branch voltages and
currents are the same as the corresponding terminal variables for the elements
forming the branches. Recall, as defined in Chapter 1, the terminal variables for
an element are the voltage across and the current through the element.

As an example, 74 is a branch current that flows through branch bc in the
drcuit in Figure 2.1. Similarly, v4 is the branch voltage for the branch bc.

22 KIRCHHOFF'S LAWS

Kirchhoff’s current law and Kirchhoff’s voltage law describe how lumped-
parameter circuit elements couple at their terminals when they are assembled
into a circuit. KCL and KVL are themselves lumped-parameter simplifications
of Maxwell’s Equations. This section defines KCL and KVL and justifies that
they are reasonable using intuitive arguments.! These laws are employed in
circuit analysis throughout this book.

1. The interested reader can refer to Section A.2 in Appendix A for a derivation of Kirchhoff’s laws
from Maxwell’s Equations under the lumped matter discipline.
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FIGURE 2.3 Distributed
interconnections of four circuit
elements that nonetheless occur
at a single node.

FIGURE 2.4 Voltage and current
definitions illustrated on a branch in
a circuit.
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FIGURE 2.5 Currents into a node in the network.
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221 KCL
Let us start with Kirchhoff’s current law (KCL).

KCL The current flowing out of any node in a circuit must equal the current
flowing in. That is, the algebraic sum of all branch currents flowing into any
node must be zero.

Put another way, KCL states that the net current that flows into a node
through some of its branches must flow out from that node through its
remaining branches.

Referring to Figure 2.5, if the currents through the three branches #nto node
a are iy, i, and 7., then KCL states that

i+ iy + i = 0.

Similarly, the currents into node b must sum to zero. Accordingly, we
must have

—iy—is = 0.

KCL has a simple intuitive justification. Referring to the closed box-like
surface depicted in Figure 2.5, it is easy to see that the currents i,, 7, and i
must sum to zero, for otherwise, there would be a continuous charge buildup
at node a. Thus, KCL is simply a statement of the conservation of charge.

Let us now illustrate the different interpretations of KCL with the help
of Figure 2.6. Which interpretation you use depends upon convenience and
the specific drcuit you are trying to analyze. Figure 2.6 shows a node joining
N branches. Each of the branches contains some two-terminal element, the
specifics of which are not relevant to our discussion. Note that all branch cur-
rents are defined to be positive into the node. Since KCL states that no net

FIGURE 2.6 A node at which N branches join.
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current can flow into a node, it follows for the node in Figure 2.6 that

N
Z iy = 0. (2.1)
n=1

Next, by negating Equation 2.1, KCL becomes

Z(—in) =0. 2.2)

Since —iy, is a current defined to be positive out from the node in Figure 2.6,
this second form of KCL states that no net current can flow out from a node.
Finally, Equation 2.1 can be rearranged to take the form

M N
=Y (i), (2.3)
n=1 n=M+1

which demonstrates that the current flowing into a node through one set of
branches must flow out from the node through the remaining branches.

An important simplification of KCL focuses on the two series-connected
circuit elements shown in Figure 2.7. Taking KCL to state that no net current
can flow into a node, the application of KCL at the node between the two
elements yields

n1—5n=0 = i=1n. 2.4)

This result is important because it shows that the branch currents passing
through two series-connected elements must be the same. That is, there is
nowhere for the current #; to go as it enters the node connecting the two ele-
ments except to exit that node as 7. In fact, with multiple applications of KCL,
this observation is extendible to a longer string of series-connected elements.
Such an extension would show that a common branch current passes through
a string of series-connected elements.

EXAMPLE 2.1 A MORE GENERAL USE OF KCL To illustrate
the more general use of KCL consider the circuit in Figure 2.8, which has six branches
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FIGURE 2.7 Two series-
connected circuit elements.

FIGURE 2.8 Acircuit illustrating
a more general use of KCL.
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FIGURE 2.9 The circuitin
Figure 2.8 with two branch currents
numerically defined.

2A 12 A

6 A

FIGURE 2.10 Five branches
meeting at a node.

RESISTIVE NETWORKS

connecting four nodes. Again, taking KCL to state that no net current can flow into a
node, the application of KCL to the four nodes in the circuit yields

Node1l: 0= —ij —i —1i3 2.5)
Node2: 0=14] +i4—ig (2.6)
Node3: 0=1ip —iqg —is 2.7)
Node 4: 0 =143 + i5s + 4. (2.8)

Note that because each branch current flows into exactly one node and out from exactly
one node, each branch current appears exactly once in Equations 2.5 through 2.8 posi-
tively, and exactly once negatively. This would also be true if Equations 2.5 through 2.8
were all written to state that no net current can flow out from a node. Such patterns can
often be used to spot errors.

It is also because each branch current flows into exactly one node and out from exactly
one node that summing Equations 2.5 through 2.8 yields 0 = 0. This in turn shows
that the four KCL equations are dependent. In fact, a circuit with N nodes will have
only N — 1 independent statements of KCL. Therefore, when fully analyzing a circuit it
is both necessary and sufficient to apply KCL to all but one node.

If some of the branch currents in a circuit are known, then it is possible that KCL alone
can be used to find other branch currents in the circuit. For example, consider the circuit
in Figure 2.8 with ij = 1 A and 73 = 3 A, as shown in Figure 2.9. Using Equation 2.5,
namely KCL for Node 1, it can be seen that /) = —4 A. This is all that can be learned
from KCL alone given the information in Figure 2.9.

But, if we further know that is = —2 A, for example, we can learn from KCL applied
to the other nodes that iy = —2 A and ig = —1 A.

EXAMPLE 2.2 USING KCL TO DETERMINE AN UNKNOWN
BRANCH CURRENT Figure 2.10 shows five branches meeting at a node in
some circuit. As shown in the figure, four of the branch currents are given. Determine i.

By KCL, the sum of all the currents entering a node must equal the sum of all the currents
exiting the node. In other words,

2A+3A+6A=12A+i

Thus, i = —1A.
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i} = 3Acos(mr)
_>

Arbitrary
Circuit

i = 6Acos(or)

EXAMPLE 2.3 KCL APPLIED TO AN ARBITRARY NODE
IN A CIRCUIT Figure 2.11 shows an arbitrary circuit from which we have
grabbed a node x and pulled it out for display. The node is a junction point for three
wires with currents 7y, i, and #3. For the given values of 7| and 7, determine the value
of 73.

By KCL, the sum of all currents entering a node must be 0. Thus,
n+in—-53=0

Note that 73 is negated in this equation because it is defined to be positive for a current
exiting the node. Thus 73 is the sum of i and 7 and is given by

i3 =1 + i = 3 cos(w?) + 6 cos(wt) = 9 cos(wt)

EXAMPLE 2.4 EVEN MORE KCL Figure 2.12 shows a node connect-
ing three branches. Two of the branches have current sources that supply the currents
shown. Determine the value of i.

By KCL, the sum of all the currents entering a node must equal 0. Thus
2A+1A+i=0

andi= -3 A.

Finally, it is important to recognize that current sources can be used to
construct circuits in which KCL is violated. Several examples of circuits con-
structed from current sources in which KCL is violated at every node are shown
in Figure 2.13. We will not be concerned with such circuits here for two reasons.
First, if KCL does not hold at a node, then electric charge must accumulate at
that node. This is inconsistent with the constraint of the lumped matter disci-
pline that dg/dt be zero. Second, if a circuit were actually built to violate KCL,
something would ultimately give. For example, the current sources might cease
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FIGURE 2.11 Node xin a circuit
pulled out for display.

2A

1A

FIGURE 2.12 Node connecting
three branches.
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to function as ideal sources as they oppose one another. In any case, the behav-
ior of the real circuit would not be well modeled by the type of circuit shown
1A 2A in Figure 2.13, and so there is no reason to study the latter.

222 KVL

* Let us now turn our attention to Kirchhoff’s voltage law (KVL). KVL is applied
#} %> <$ to circuit loops, that is, to interconnections of branches that form closed paths
1A 2A 3A

through a dircuit. In a manner analogous to KCL, Kirchhoff’s voltage law can
be stated as:

KVL The algebraic sum of the branch voltages around any closed path in a
2A network must be zero.

Alternatively, it states that the voltage between two nodes is independent
of the path along which it is accumulated.
1A 3A In Figure 2.14, the loop starting at node a, proceeding through nodes b
and ¢, and returning to a, is a closed path. In other words, the closed loop
defined by the three circuit branches a — b, b — ¢, and ¢ — a in Figure 2.14
is a closed path.
According to KVL, the sum of the branch voltages around this loop is zero.
That is,

FIGURE 2.13 Circuits that
violate KCL.

Vap + Vpe + Vg =0
In other words,
vi+uvs+v3=0

where we have taken the positive sign for each voltage when going from the
positive terminal to the negative terminal. It is important that we are consistent
in how we assign polarities to voltages as we go around the loop.

A helpful mnemonic for writing KVL equations is to assign the polarity to a
given voltage in accordance with the first sign encountered when traversing that
voltage around the loop.

Like KCL, KVL has an intuitive justification as well. Recall that the def-
inition of the voltage between a pair of nodes in a circuit is the potential

d a +Vv -
Wy e b
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FIGURE 2.14 Voltagesin a +
closed loop in the network. ‘_/
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difference between the two nodes. The potential difference between two nodes
is the sum of the potential differences for the set of branches along any path
between the two nodes. For a loop, the start and end nodes are one and the
same, and there cannot be a potential difference between a node and itself.
Thus, since potential differences equate to voltages, the sum of branch volt-
ages along a loop must equal zero. By the same reasoning, since the voltage
between any pair of nodes must be unique, it must be independent of the
path along which branch voltages are added. Notice from the definition of a
voltage that KVL is simply an expression of the principle of conservation of
energy.

The different interpretations of KVL are illustrated with the help of
Figure 2.15, which shows a loop containing N branches. Consider first the
loop in Figure 2.15 in which all branch voltages decrease in the clockwise direc-
tion. Since KVL states that the sum of the branch voltages around a loop is
zero, it follows for the loop in Figure 2.15 that

N
Z v, =0. 2.9)
n=1

Note that in summing voltages along a loop we have adopted the con-
vention proposed earlier: A positive branch voltage is added to the sum if the
path enters the positive end of a branch. Otherwise a negative branch voltage is
added to the sum. Therefore, to arrive at Equation 2.9, we have traversed the
loop in the clockwise direction. Next, by negating Equation 2.9, KVL becomes

N

> (~vn) =0.

n=1

(2.10)

Since —v,, is a voltage defined to be positive in the opposite direction, this
second form of KVL shows that KVL holds whether it is applied along the
clockwise or counterclockwise path around the loop.
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FIGURE 2.15 Aloop containing
N branches.
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- Node M -
VM-1 Vi
+ +
FIGURE 2.16 A loop containing : \
N branches with some of the ' X
voltage definitions reversed.
v v
' YN\ Node I e

EXAMPLE 2.5 PATH INDEPENDENCE OF KVL Consider the
loop in Figure 2.16 in which some of the voltage definitions are reversed for convenience.
Applying KVL to this loop yields

M-1 N M-1 N
DA D () =0 = D v=) v, (2.11)
n=1 n=1

n=M n=M

The second equality in Equation 2.11 demonstrates that the voltage between two
nodes is independent of the path along which it accumulated. In this case, the second
equality shows that the voltage between Nodes 1 and M is the same whether accumu-
lated along the path up the left side of the loop or the path up the right side of the
loop.

. An important simplification of KVL focuses on the two parallel-connected
crcuit elements shown in Figure 2.17. Starting from the upper node and apply-

l ing KVL in the counterclockwise direction around the loop between the two
crcuit elements yields

n—-1n=0 = v=uv. (2.12)

Vi V2

This result is important because it shows that the voltages across two parallel-
[ connected elements must be the same. In fact, with multiple applications of

KVL, this observation is extendible to a longer string of parallel-connected
elements. Such an extension would show that a common voltage appears across
- all parallel-connected elements in the string.

FIGURE 2.17 Two parallel- EXAMPLE 2.6 A MORE GENERAL USE OF KVL To ilustrate
connected circuit elements. the more general use of KVL consider the circuit in Figure 2.18, which has six branches
connecting four nodes. Four paths along the loops through the circuit are also defined in
the figure; note that the external loop, Loop 4, is distinct from the other three. Applying
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KVL to the four loops yields

Loop1l: 0=—v1+vy+us (2.13)
Loop2: 0=—vp +v3—us 2.14)
Loop3: 0= —v4+vs —vg 2.15)
Loop4: O0=v1+vg—13 (2.16)

Note that the paths along the loops have been defined so that each branch voltage is

traversed positively around exactly one loop and negatively around exactly one loop.
It is for this reason that each branch voltage appears exactly once in Equations 2.13
through 2.16 positively, and exactly once negatively. As with the application of KCL,
such patterns can often be used to spot errors.

It is also because each branch voltage is traversed exactly once positively and once
negatively that summing Equations 2.13 through 2.16 yields 0 = 0. This in turn shows
that the four KVL equations are dependent. In general, a circuit with N nodes and B
branches will have B— N+ 1 loops around which independent applications of KVL can
be made. Therefore, while analyzing a circuit it is necessary to apply KVL only to these
loops, which will in total, traverse each branch at least once in the process.

If some of the branch voltages in a circuit are known, then it is possible that KVL
alone can be used to find other branch voltages in the circuit. For example, consider
the circuit in Figure 2.18 with v1 = 1 V and v3 = 3 V, as shown in Figure 2.19. Using
Equation 2.16, namely KVL for Loop 4, it can be seen that v5 = 2 V. This is all that
can be learned from KVL alone given the information in Figure 2.19. But, if we further
know that v, = 2V, for example, we can learn from KVL applied to the other loops
thatvy =—-1Vandvs =1V.

CHAPTER TWO

FIGURE 2.18 A circuit having
four nodes and six branches.
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FIGURE 2.19 The circuit in
Figure 2.18 with two branch
voltages numerically defined.
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FIGURE 2.20 Circuits that
violate KVL.

FIGURE 2.21 The series
connection of two 1.5-V batteries.
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Finally, it is important to recognize that voltage sources can be used to con-
struct circuits in which KVL is violated. Several examples of circuits constructed
from voltage sources in which KVL is violated around every loop are shown
in Figure 2.20. As with circuits that violate KCL, we will not be concerned
with drcuits that violate KVL, for two reasons. First, if KVL does not hold
around a loop, then magnetic flux linkage will accumulate through that loop.
This is inconsistent with the constraint of the lumped matter discipline that
d®p/dt = 0 outside the elements. Second, if a circuit were actually built to vio-
late KVL, something would ultimately give. For example, the voltage sources
might cease to function as ideal sources as they oppose one another. Alterna-
tively, the loop inductance might begin to accumulate flux linkage, leading to
high currents that would damage the voltage sources or their interconnections.
In any case, the behavior of the real circuit would not be well modeled by the
type of circuit shown in Figure 2.20, and so there is no reason to study the
latter.

EXAMPLE 2.7 VOLTAGE SOURCES IN SERIES Twol.5-Vvolt-
age sources are connected in series as shown in Figure 2.21. What is the voltage v at
their terminals?

To determine v, employ, for example, a counterclockwise application of KVL around
the circuit, treating the port formed by the two terminals as an element having voltage v.
In this case, 1.5 V + 1.5 V — v = 0, which has for its solution v = 3 V.

EXAMPLE 2.8 KVL The voltages across two of the elements in the circuit in
Figure 2.22 are measured as shown. What are the voltages, v1 and v», across the other
two elements?

Since element #1 is connected in parallel with element #4, the voltages across them
must be the same. Thus, v; = 5 V. Similarly, the voltage across the series connection of
elements #2 and #3 must also be 5 V, so v, = 3 V. This latter result can also be obtained
through the counterclockwise application of KVL around the loop including elements
#2, #3, and #4, for example. This yields, v» +2V — 5V = 0. Again, v, =3 V.

EXAMPLE 2.9 VERIFYING KVL FOR A CIRCUIT Verify that
the branch voltages shown in Figure 2.23 satisfy KVL.

Summing the voltages in the loop e, d, a, b, e, we get
—-3-1+3+1=0.
Similarly, summing the voltages in the loop ¢, f, ¢, b, e, we get

+1—(-2)-4+1=0.
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FIGURE 2.22 A circuit with two measured and two FIGURE 2.23 A circuit with element voltages as shown.

unmeasured voltages.
Finally, summing the voltages in the loop g, e, f, g, we get
—-2+14+1=0.

KVL is satisfied since the sum of the voltages around each of the three circuit loops

is zero.

EXAMPLE 2.10 SUMMING VOLTAGES ALONG DIFFERENT
PATHS Next, given the branch voltages shown in Figure 2.23, determine the volt-
age Vg between the nodes g and a by summing the branch voltages along the path g, e,
d, a. Then, show that vg, is the same if path g, £, ¢, b, a is chosen.

Summing the voltage increases along the path g, e, d, a, we get
Vga=—-2V-3V-1V=—6V.
Similarly, summing the voltage increases along the path g, f, ¢, b, a we get
Vga=—1V—(-2V) -4V -3V=—6V.

Clearly, both paths yield —6 V for vg,.

65

2V



66

CHAPTER TWO

RESISTIVE NETWORKS

Thus far, Chapters 1 and 2 have shown that the operation of a lumped
system is described by two types of equations: equations that describe the
behavior of its individual elements, or element laws (Chapter 1), and equations
that describe how its elements interact when they are connected to form the
system, or KCL and KVL (Chapter 2). For an electronic circuit, the element
laws relate the branch currents to the branch voltages of the elements. The
interactions between its elements are described by KCL and KVL, which are
also expressed in terms of branch currents and voltages. Thus, branch currents
and voltages become the fundamental signals within a lumped electronic circuit.

23 CIRCUIT ANALYSIS: BASIC METHOD

We are now ready to introduce a systematic method of solving circuits. It is
framed in the context of a simple class of circuits, namely circuits containing
only sources and linear resistors. Many of the important analysis issues can
be understood through the study of these circuits. Solving a circuit involves
determining all the branch currents and branch voltages in the circuit. In practice,
some currents or voltages may be more important than others, but we will not
make that distinction yet.

Before we return to the specific problem of analyzing the electrical network
shown in Figure 2.1, let us first develop the systematic method using a few
simpler circuits and build up our insight into the technique. We saw previously
that under the lumped matter discipline, Maxwell’s Equations reduce to the
basic element laws and the algebraic KVL and KCL. Accordingly, a systematic
solution of the network involves the assembly and subsequent joint solution
of two sets of equations. The first set of equations comprise the constituent
relations for the individual elements in the network. The second set of equations
results from the application of Kirchhoff’s current and voltage laws.

This basic method of circuit analysis, also called the KVL and KCL method or
the fundamental method, is outlined by the following steps:

1. Define each branch current and voltage in the circuit in a consistent
manner. The polarities of these definitions can be arbitrary from
one branch to the next. However, for any given branch, follow the
associated variables convention (see Section 1.5.3 in Chapter 1). In other
words, the branch current should be defined as positive into the positive
voltage terminal of the branch. By following the associated variables,
element laws can be applied consistently, and the solutions will follow
a much dearer pattern.

2. Assemble the element laws for the elements. These element laws will
specify either the branch current or branch voltage in the case of an
independent source, or specify the relation between the branch current
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and voltage in the case of a resistor. Examples of these element laws
were presented in Section 1.6.

Apply Kirchhoff’s current and voltage laws as discussed in Section 2.2.

4. Jointly solve the equations assembled in Steps 2 and 3 for the branch
variables defined in Step 1.

The remainder of this chapter is devoted to circuit analysis examples that
rigorously follow these steps.

Once the two sets of equations are assembled, which is a relatively easy
task, the analysis of a circuit essentially becomes a problem of mathematics, as
indicated by Step 4. That is, the equations assembled earlier must be combined
and used to solve for the branch currents and voltages of interest. However,
because there is more than one way to approach this problem, our study of
circuit analysis does not end with the direct approach outlined here. Consider-
able time can be saved, and considerable insight can be gained, by approaching
drcuit analyses in different ways. These gains are important subjects of this
and future chapters.

231 SINGLE-RESISTOR CIRCUITS

To illustrate our basic approach to circuit analysis, consider the simple circuit
shown in Figure 2.24. The circuit has one independent source and one resistor,
and so has two branches, each with a current and a voltage. The goal of our
crcuit analysis is to find these branch variables.

Step 1 in the analysis is to label the branch variables. We do so in Figure 2.25.
Since there are two branches, there are two sets of variables. Notice that the
branch variables for the current source branch and for the resistor branch each
follow the associated variables convention.

Now, we proceed with Steps 2 through 4: assemble the element laws,
apply KCL and KVL, and then simultaneously solve the two sets of equations
to complete the analysis.

The circuit has two elements. Following Step 2 we write the two element
laws for these elements as

i1 = —1, 2.17)
vy = Rip, (2.18)

respectively. Here, v1, i1, v, and #, are the branch variables. Note the dis-
tinction between the branch variable 71 and the source amplitude I. Here, the
independent source amplitude Iis assumed to be known.

Next, following Step 3, we apply KCL and KVL to the circuit. Since the
circuit has two nodes, it is appropriate to write KCL for one node, as discussed
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FIGURE 2.24 A circuit with only
one independent current source
and one resistor.

FIGURE 2.25 Assignment of
branch variables.
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FIGURE 2.26 A circuit with only
one independent voltage source
and one resistor.
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in Section 2.2.1. The application of KCL at either node yields
n+5=0. (2.19)

The circuit also has two branches that form one loop. So, following the discus-
sion in Section 2.2.2 it is appropriate to write KVL for one loop. Starting at the
upper node and traversing the loop in a clockwise manner, the application of
KVL yields
vy —v; = 0. (2.20)

Notice we have used our mnemonic discussed in Section 2.2.2 for writing KVL
equations. For example, in Equation 2.20, we have assigned a + polarity to v,
since we first encounter the + sign when traversing the branch with variable
vy. Similarly, we have assigned a — polarity to vy since we first encounter
the — sign when traversing the v; branch.

Finally, following Step 4, we combine Equations 2.17 through 2.20 and
solve jointly to determine all four branch variables in Figure 2.25. This yields

=h=1 (2.21)

and completes the analysis of the circuit in Figure 2.25.

EXAMPLE 2.IT SINGLE-RESISTOR CIRCUIT WITH ONE
INDEPENDENT VOLTAGE SOURCE Now consider another simple
circuit shown in Figure 2.26. This circuit can be analyzed in an identical manner. It
too has two elements, namely a voltage source and a resistor. Figure 2.26 already shows
the definitions of branch variables, and so accomplishes Step 1.

Next, following Step 2 we write the element laws for these elements as

n=V (2.23)
vy = Riy, (2.24)

respectively. Here, the independent source amplitude V is assumed to be known.

Next, following Step 3, we apply KCL and KVL to the circuit. Since the circuit has two
nodes, it is again appropriate to write KCL for one node. The application of KCL at
either node yields

it 4+ =0. (2.25)
The circuit also has two branches that form one loop, so it is again appropriate to write

KVL for one loop. The application of KVL around the one loop in either direction yields

v =), (2.26)
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Finally, following Step 4, we combine Equations 2.23 through 2.26 to determine all four
branch variables in Figure 2.26. This yields

) (2.27)

Ul = Uz = \/’ (2'28)

and completes the analysis of the circuit in Figure 2.26.

For the circuit in Figure 2.25, there are four equations to solve for four
unknown branch variables. In general, a circuit having B branches will have 2B
unknown branch variables: B branch currents and B branch voltages. To find
these variables, 2B independent equations are required, B of which will come
from element laws, and B of which will come from the application of KVL and
KCL. Moreover, if the circuit has N nodes, then N— 1 equations will come from
the application of KCL and B — N+ 1 equations will come from the application
of KVL.

While the two examples of circuit analysis presented here are admittedly
very simple, they nonetheless illustrate the basic steps of circuit analysis: label
the branch variables, assemble the element laws, apply KCL and KVL, and
solve the resulting equations for the branch variables of interest. While we will
not always follow these steps explicitly and in exactly the same order in future
chapters, it is important to know that we will nonetheless process exactly the
same information.

It is also important to realize that the physical results of the analysis of the
drcuit in Figure 2.25, and of any other circuit for that matter, cannot depend
on the polarities of the definitions of the branch variables. We will work an
example to illustrate this point.

EXAMPLE 2.12 POLARITIES OF BRANCH VARIABLES
Consider the analysis of the circuit in Figure 2.27, which is physically the same as the
dircuit in Figure 2.25. The only difference in the two figures is the reversal of the polari-
ties of i and v,. The circuit in Figure 2.27 circuit has the same two elements, and their
element laws are still

ip=—I (2.29)
vy = Rip. (2.30)
Note that the polarity reversal of i, and v, has not changed the element law for the
resistor from Equation 2.18 because the element law for a linear resistor is symmetric

when the terminal variables are defined according to the associated variables convention.
The circuit also has the same two nodes and the same loop. The application of KCL at
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FIGURE 2.27 A circuit similar to
the one shown in Figure 2.24.
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either node now yields
i —i =0, (2.31)
and the application of KVL around the loop now yields

v1+uvy =0. (2.32)

Note that Equations 2.31 and 2.32 differ from Equations 2.19 and 2.20 because of the
polarity reversal of i, and v;. Finally, combining Equations 2.29 through 2.32 yields

—ip=—ip =1 (2.33)
V) = —U) = RI’ (2.34)
which completes the analysis of the circuit in Figure 2.27.

Now compare Equations 2.33 and 2.34 to Equations 2.21 and 2.22. The important
observation here is that they are the same except for the polarity reversal of the solutions
for iy and v,. This must be the case because the circuits in Figures 2.25 and 2.27 are
physically the same, and so their branch variables must also be physically the same. Since
we have chosen to define two of these branch variables with different polarities in the
two figures, the signs of their values must differ accordingly so that they describe the
same physical branch current and voltage.

232 QUICK INTUITIVE ANALYSIS OF
SINGLE-RESISTOR CIRCUITS

Before moving on to more complex circuits, it is worthwhile to analyze the
circuit in Figure 2.25 in a more intuitive and efficient manner. Here, the element
law for the current source directly states that i1 = —I Next, the application
of KCL to either node reveals that /7 = —i; = L In other words, the current
from the source flows entirely through the resistor. Next, from the element law
for the resistor, it follows that 75 = Réip = RL Finally the application of KVL
to the one loop yields v1 = v» = RI to complete the analysis.

EXAMPLE 2.13 QUICK INTUITIVE ANALYSIS OF A
SINGLE-RESISTOR CIRCUIT This example considers the circuit in
Figure 2.26. Here, the element law for the voltage source directly states that vy = V.
Next, the application of KVL around the one loop reveals that v, = v1 = V. In other
words, the voltage from the source is applied directly across the resistor. Next, from the
element law for the resistor, it follows that #» = v»/R = V/R. Finally, the application of
KCL to either node yields iy = —iy = —V/R to complete the analysis. Notice that we
had made use of a similar intuitive analysis in solving our battery and lightbulb example
in Chapter 1.

The important message here is that it is not necessary to first assemble
all the circuit equations, and then solve them all at once. Rather, using a little
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intuition, it is likely to be much faster to approach the analysis in a different
manner. We will have more to say about this in Section 2.4 and in Chapter 3.

233 ENERGY CONSERVATION

Once the branch variables of a circuit have been determined, it is possible to
examine the flow of energy through the circuit. This is often a very important
part of circuit analysis. Among other things, such an examination should show
that energy is conserved in the circuit. This is the case for the circuits in Fig-
ures 2.25 and 2.26. Using Equations 2.21 and 2.22 we see that the power into
the current source in Figure 2.25 is

iy = —RP (2.35)
and that the power into the resistor is

vy = RE. 2.36)

The negative sign in Equation 2.35 indicates that the current source actually
supplies power.

Similarly, using Equations 2.27 and 2.28 we see that the power into the
voltage source in Figure 2.26 is

VZ
vy = —— 2.37
11 R (2.37)
and that the power into the resistor is
VZ
bty = —. 2.38
=4 (2.38)

In both cases, the power generated by the source is equal to the power dissipated
in the resistor. Thus, energy is conserved in both circuits.

Conservation of energy is itself an extremely powerful method for obtain-
ing many types of results in circuits. It is particularly useful in dealing with
complicated circuits that contain energy storage elements such as inductors
and capacitors that we will introduce in later chapters. Energy methods can
often allow us to obtain powerful results without a lot of mathematical grunge.
We will use two energy-based approaches in this book.

CHAPTER TWO
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+
2 mA V= 1kQ
FIGURE 2.28 Energy
conservation example.
i =3 mA?
+
V= 1kQ

FIGURE 2.29 Another energy
conservation example.
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1. One energy approach equates the energy supplied by a set of elements
in a circuit to the energy absorbed by the remaining set of elements in a
circuit. Usually, this method involves equating the power generated by
the devices in a circuit to the power dissipated in the circuit.

2. Another energy approach equates the total amount of energy in a system
at two different points in time (assuming that there are no dissipative
elements in the circuit).

We will illustrate the use of the first method using a few examples in this
section, and Section 9.5 in Chapter 9 will highlight examples using the second
method.

EXAMPLE 2.14 ENERGY CONSERVATION Determine the value
of v in the circuit in Figure 2.28 using the method of energy conservation.

We will show that the mathematical grunge of the basic method can be eliminated using
the energy method and some intuition. In Figure 2.28, the current source maintains a
current 7 = 0.002 A through the circuit. To determine v, we equate the power supplied
by the source to the power dissipated by the resistor. Since the current source and the
resistor share terminals, the voltage v appears across the current source as well. Thus,
the power into the source is given by

v x (=0.002) = —0.002v.

In other words, the power supplied by the source is 0.002v.

Next, the power into the resistor is given by

2 00012,
1kQ

Finally, equating the power supplied by the source to the power dissipated by the
resistor, we have

0.002v = 0.00142.

In other words, v = 0.5 V.

EXAMPLE 2.1§ USING AN ENERGY-BASED APPROACH TO
VERIFY A RESULT A student applies the basic method to the circuit in
Figure 2.29 and obtains i = 3 mA. Determine whether this answer is correct by using
the method of energy conservation.

By energy conservation, the power supplied by the source must be equal to the power
dissipated by the resistor. Using the value of the current obtained by the student, the
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energy dissipated by the resistor is given by
# x 1K =9 mW.
The energy into the voltage source is given by
3Vx3mA=9mW.
In other words, the energy supplied by the source is given by —9 mW. Clearly the
energy supplied by the source is not equal to the energy dissipated by the resistor, and

so i = 3 mA is incorrect. Notice that if we reverse the polarity of 7, energy will be
conserved. Thus, i = —3 mA is the correct answer.

234 VOLTAGE AND CURRENT DIVIDERS

We will now tackle several circuits called dividers that are slightly more complex
than the simplest single-loop, two-node, two-element circuits of the previous
section. These circuits will comprise a single loop and three or more elements,
or two nodes and three or more elements. Dividers produce fractions of input
currents or voltages and will be encountered often in subsequent chapters. For
the moment, however, they are good examples on which to practice circuit
analysis, and we can use them to gain important insight into circuit behavior.

Voltage Dividers

A voltage divider is an isolated loop that contains two or more resistors and a
voltage source in series. A physical voltage divider circuit is illustrated pictorially
in Figure 2.30a. We have connected two resistors in series, and connected the
pair by some wires to a battery. Such a circuit is useful if we wish to obtain some
arbitrary fraction, say 10%, of the battery voltage at the terminals marked 5.
To find the relation between v, and the battery voltage and resistor values, we
draw the circuit in schematic form, as shown in Figure 2.30b. We then follow
the basic four-step method outlined in Section 2.3 to solve the circuit.

1. The circuit has three elements, or branches, and hence it will have six
branch variables. Figure 2.31 shows one possible assignment of branch
variables.

To find these branch variables, we again assemble the element
laws and the appropriate applications of KCL and KVL, and then
simultaneously solve the resulting equations.

2. The three element laws are

vy =-V (2.39)
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FIGURE 2.30 Voltage-divider
circuit.

FIGURE 2.31 Assignment of
branch variables to the voltage
divider.
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v = Rlil (2.40)
v = Rob. (2.41)

3. Next, we apply KCL and KVL. The application of KCL to the two upper
nodes yields

o = iy (2.42)
i =i (2.43)

and the application of KVL to the one loop yields
vo+1v1 +uvy =0. (2.44)

4. Finally, Equations 2.39 through 2.44 can be solved for the six unknown
branch variables. This yields

h=1i1 =t = (2.45)
0 ! 2 Ri+Ry
and
vy=-V (2.46)
R
v = —1 (2.47)
Ri+R;
R
v = —2 (2.48)
Ri+Ry

This completes the analysis of the two-resistor voltage divider.

From the results of this analysis it should be apparent why the circuit in
Figure 2.31 is called a voltage divider. Notice that v; is some fraction (specifically,
Ry/(R1 4 Ry)) of the source voltage V, as desired. The fraction is the ratio of the
resistance about which the voltage is measured and the sum of the resistances.
By adjusting the relative values of Ry and R we can make this fraction adjust
anywhere from 0 to 1. If, for example, we wish v, to be one-tenth of V,
as suggested at the start of this example, then Ry should be nine times as
big as R;.

Notice also that vy + v» = V, and that the two resistors divide the voltage
V in proportion to their resistances since v1/v; = R1/R;. For example, if Ry is
twice R, then vy is twice v;.
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The voltage-divider relationship in terms of conductance can be found
from Equation 2.48 by substituting the conductances in place of the resistances:

ne_ Y02y (2.49)
1/G1 + 1/G,
G
=1 vy (2.50)
G+ G

Hence the voltage-divider relations expressed in terms of conductances involve
the conductance opposite the desired voltage, divided by the sum of the two
conductances.

The simple circuit topology of Figure 2.30 is so common that the voltage-
divider relation given by Equation 2.48 will become a primitive in our circuit
vocabulary. It is helpful to build up a set of such primitives, which are really
solved simple cases, to speed up circuit analysis, and to facilitate intuition.

A simple mnemonic: For the voltage v», take the resistance associated with v,
divided by the sum of the two resistances, multiplied by the voltage applied to
the pair.

EXAMPLE 2.T6 VOLTAGE DIVIDER A voltage divider circuit such as
that in Figure 2.30 has V= 10 V and R, = 1 k. Choose R; such that v, is 10% of V.

By the voltage divider relation of Equation 2.48, we have

Ry
U) =
Ri+Ry
For v to be 10% of V we must have
2 _g1=-—R_
\% Ri+Ry

For Ry = 1 k2, we must choose Ry such that

1kQ

0l=———
Ry +1kQ

or Ry =9 kQ.

EXAMPLE 2.7 TEMPERATURE VARIATION Consider the cir-
cuit in Figure 2.31 in which V=5V, R = 103 @, and Ry = 10° (1 + T/(500°C)) Q,
where T is the temperature of the second resistor. Over what range does v, vary if T
varies over the range —100°C < T < 100°C?

CHAPTER TWO
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FIGURE 2.32 Resistors in
series.
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Given the temperature range, R, varies over the range:
08x10°Q <Ry <12x10° Q.

Therefore, following Equation 2.48, 22 V < v, < 2.7 V, with the higher voltage
occurring at the higher temperature.

Having determined its branch variables we can now examine the flow
of energy through the two-resistor voltage divider. Using Equations 2.45
through 2.48 we see that the power into the source is

VZ
vy = — ———— (2.51)
Ri+Ry
and that the power into each resistor is
Ry V?
i = —r 2.52)
(Ry + Rp)?
R, V?
by = —> (2.53)
(R1 + Ry)?

Since the power into the voltage source is the opposite of the total power into
the two resistors, energy is conserved in the two-resistor voltage divider. That
is, the power generated by the voltage source is exactly dissipated in the two
resistors.

Resistors in Series

In electronic circuits one often finds resistors connected in series, as shown in
Figures 2.31 and 2.32. For example, in our lightbulb example of Chapter 1,
suppose the wire had a nonzero resistance, then the current through the wire
would be related to the value of several resistances — including those of
the wires and the bulb — in series. Our lumped circuit abstraction and the
resulting Kirchhoff’s laws allow us to calculate the equivalent resistance of such
combinations using simple algebra.

Specifically, the analysis of the voltage divider shows that two resistors in
series act as a single resistor having a resistance Rg equal to the sum of the two
individual resistances Ry and R;. In other words, series resistances add.

Rs=R{+R, (2.54)

To see this, observe that the voltage source in Figure 2.31 applies the volt-
age V to two series resistors Ry and Ry, and that from Equation 2.43 these
resistors respond with the common current iy = 7 through their branches.
Further, observe from Equation 2.45 that this common current, i = 7| = 7,
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is linearly proportional to the voltage from the source. Specifically, from
Equation 2.45, the common current is given by

1
i=——V. 2.59)
Ri+R;

By companng Equation 2.55 to Equation 1.4, we conclude that for two
resistors in series, the equivalent resistance of the pair when viewed from their
outer terminals is the sum of the individual resistance values. Specifically, if

Ry is the resistance of the series resistor pair, then, from Equation 2.55, we
find that

\%
Rs=—=R;+Ro. (2.56)
1

This is consistent with the physical derivation of resistance in Equation 1.6
since placing resistors in series essentially increases their combined length.

By substituting their conductances, we can also obtain the equivalent
conductance of a pair of conductances in series as

r_tr. 1 2.57)
Gs G G
Simplifying,
GG
Gg= —172 (2.58)
G+ G

As shown in the ensuing example, we can generalize our result for
two series resistors to N resistors in series as:

Rs=R{+R)+R3+---Rn. (2.59)

Remember this result as another common circuit primitive.

EXAMPLE 2.18 AN N-RESISTOR VOLTAGE DIVIDER Now
consider a more general voltage divider having N resistors, as shown in Figure 2.33.
It can be analyzed in the same manner as the two-resistor voltage divider. The only
difference is that there are now more unknowns to find, and hence more equations to
work with. To begin, suppose we assign the branch variables as shown in Figure 2.33.

The element laws are

w=—V (2.60)
Uy =Ruiy, 1 <n<N. (2.61)
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78 CHAPTER TWO

FIGURE 2.34 The equivalence
of series resistors.
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Next, the application of KCL to the N — 1 upper nodes yields

in=i, 1, 1<n<N (2.62)
and the application of KVL to the one loop yields

v+ +---on=0. (2.63)

Finally, Equations 2.60 through 2.63 can be solved to yield

z'F;v, 0<n<N 2.64)
Ri+Ry+ Ry
vy = -V (2.65)
R
i V, 1<n<N. (2.66)

vy=—>
Ri+Ry+---Rn

This completes the analysis.

As was the case for the two-resistor voltage divider, the preceding analysis shows that
series resistors divide voltage in proportion to their resistances. This follows from the
Ry, in the numerator of the right-hand side of Equation 2.66.

Additionally, the analysis again shows that series resistances add. To see this, let Rg be
the equivalent resistance of the N series resistors. Then, from Equation 2.64 we see that

\%
Rg=—=R;{+Ry+---Rn. (2.67)

n
This result is summarized in Figure 2.34.

Finally, the two voltage-divider examples illustrate an important point, namely that series
elements all carry the same branch current because the terminals from these elements
are connected end-to-end without connection to additional branches through which the
current can divert. This results in the KCL seen in Equations 2.42, 2.43, and 2.62, which
state the equivalence of the branch currents.

=
N
i

= Rg=R| +Ry+ - +Ry
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EXAMPLE 2.19 VOLTAGE-DIVIDER CIRCUIT Determine; and
vy for the voltage-divider circuit in Figure 2.35 with Ry = 10 €, Ry = 20 , and
v(t) = 3 V using (a) the basic method and (b) the results from voltage dividers.

(a) Let us first analyze the circuit using the basic method.

1. Assign variables as in Figure 2.36.

2. Write the constituent relations

vw=3V (2.68)
v1 = 107 (2.69)
vy = 204,. (2.70)

3. Write KCL
iip—i=0. 2.71)

4. Write KVL
—vg+uv+vy =0. (2.72)

Now eliminate i1 and i from Equations 2.69, 2.70, and 2.71, to obtain

73
v = —. 2.73
1= (2.73)

Substituting this result and vg = 3 V into Equation 2.72, we obtain

3V %2 Yoy =0. (2.74)

h 10Q
‘—. ANANN— 0o
i + - )
V1

Signal + &— |

generator

v(t)

[TT—e—I
+
@
S+
S+
AN\
[\
(=]
Q0

FIGURE 2.35 Voltage-divider circuit. FIGURE 2.36 Voltage divider with variables assigned.
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FIGURE 2.37 A current divider
with two resistors.

FIGURE 2.38 A current divider
with N resistors.
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Hence,
2
v = 53 V=2V 2.75)
and from Equation 2.73, v1 = 1 V.

(b) Using the voltage-divider relation, we can write by inspection the value v, as a
function of the source voltage as follows:

20

n=—-—3V=2V.
10420
Similarly,
v = 10 3v=1VW.
10 +20

Current Dividers

A current divider is a circuit with two nodes joining two or more parallel resistors
and a current source. Two current dividers are shown in Figures 2.37 and 2.38,
the first with two resistors and the second with N resistors. In these circuits,
the resistors share, or divide, the current from the source in proportion to their
conductances. It turns out that the equations for voltage dividers comprising
voltages and resistances, and those for current dividers comprising currents
and conductances, are very similar. Therefore, to highlight the duality between
these two types of circuits, we will attempt to mirror the steps from our voltage
divider discussion.

Consider the two-resistor current divider shown in Figure 2.37. It has
three elements, or branches, and hence six unknown branch variables. To find
these branch variables we again assemble the element laws and the appropriate
applications of KCL and KVL, and then simultaneously solve the resulting
equations. First, the three element laws are

io = —I (2.76)
V) = Rziz. (2.78)

Next, the application of KCL to either node yields
h+i+i=0 (2.79)
and the application of KVL to the two internal loops yields

v = ). (2.81)
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Finally, Equations 2.76 through 2.81 can be solved for the six unknown branch
variables. This yields

io = —I (2.82)
R
= —2 (2.83)
Ri+R
R
h=—1 (2.84)
Ri+R;
and
RiR
V=11 =1) = 12 (2.85)

Ri+Ry~

This completes the analysis of the two-resistor current divider.
The nature of the current division in Equations 2.83 and 2.84 is more

obvious if they are expressed in terms of the conductances G1 and G, where

G1 = 1/Rq and G, = 1/R;. With these definitions, #; and 7, in Equations 2.83

and 2.84 become

i = Gy (2.86)
G+ G

b 2 (2.87)
G1 + Gz

It is now apparent that 71 + i, = I, and that the two resistors divide the current
I'in proportion to their conductances since i1/i» = G1/G,. For example, if G
is twice G, then 71 is twice 7.

To summarize our current divider discussion:

The current 7, is equal to the input current I multiplied by a factor, this time
made up of the opposite resistor, R1, divided by the sum of the two resistors
(see Equation 2.84).

This relation will also become a useful primitive in our analysis vocabulary.

As we did with voltage dividers, we can now examine the flow of energy
through the two-resistor current divider. Using Equations 2.82 through 2.85
we see that the power into the source is

RiR,P
iovy = ———> (2.88)
Ri+R;
and that the power into each resistor is
R{R2P
o= ——2 (2.89)

(R1 + Ry)?
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FIGURE 2.39 Resistors in
parallel.

RESISTIVE NETWORKS

RIR,P

_ 2.90
(R1 + Ry)? 290

by =

Since the power into the current source is the opposite of the total power into
the two resistors, energy is conserved in the two-resistor current divider. That
is, the power generated by the current source is exactly dissipated in the two
resistors.

Resistors in Parallel

Resistors in parallel occur as commonly as resistors in series. Two resistors in
parallel are shown in Figures 2.37 and 2.39.

Our preceding analysis shows that the two resistors in parallel act as a
single resistor Rp having a conductance Gp (where Gp = 1/Rp) equal to the
sum of the two individual conductances. In other words, parallel conductances

add:

Gp=G1+ & (2.91)

To see this, observe that the current source in Figure 2.37 applies the
current [ to two parallel resistors, and that from Equation 2.85 these resistors
respond at their terminals with the common voltage v = v = v, that is linearly
proportional to the current from the source. Thus, the resistors behave together
as a single resistor when viewed from their common terminals.

Let Gp be the conductance of the parallel resistor pair. Then, from Equa-
tion 2.85, with the substitution of G| = 1/Ryand G, = 1/Ry, andv = v1 = vy,
we can write

y= SR 292)

Ri+R;

Or, in terms of conductances,
1

v=——1I (2.93)

G+ G

In other words,
1

Gp=-=G; + Gy (2.94)

v

Hence, the equivalent conductance of the two parallel resistors is the sum of
their individual conductances. This is consistent with the physical derivation of
resistance in Equation 1.6 since placing resistors in parallel essentially increases
their combined cross-sectional area.

In practice, it is more common to work with resistances than it is to work
with conductances, although conductances are sometimes more convenient.
For this reason, it is worthwhile to find the equivalent resistance of two parallel
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resistors in terms of the individual resistances. Let the equivalent resistance be
Rp. Then, from Equation 2.94 it follows that

1 1 1
RP P 1 2 Rl R2 ( )

from which it follows that the equivalent resistance of two resistances in

parallel is given by

Rk
Ri+R;

which is the product of the two resistor values divided by their sum. This

relation can also be observed in 2.92, which has a form analogous to Ohm’s

law (Equation 1.4).

Parallel resistors occur frequently enough to merit a shorthand notation:
the two resistor values separated by two parallel vertical lines

Rp (2.96)

RiRy

RilRy = ————.
Ri+Ry

(2.97)

As we show shortly, we can generalize this result to N resistors connected
in parallel. If the equivalent resistance for N resistors connected in parallel is
given by Rp, then the reciprocal of Rp is given in terms of Ry, Ry, R3,... Ry as

it .t 1.1 (2.98)

The equivalent resistance of N resistors in parallel is yet another example of a
useful primitive that is worth remembering.
The shorthand notation for N resistances in parallel is

Rp=R1||R2[IR3] - - - Rn. (2.99)

As an example, when N resistors, each with resistance R, are connected in
parallel, the effective resistance is simply

(2.100)

M EXAMPLE 2.20 AN N-RESISTOR CURRENT DIVIDER

CHAPTER TWO
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FIGURE 2.41 A VLSl resistor.
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FIGURE 2.42 A VLSl resistor
depicted as series connected
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FIGURE 2.43 A series-parallel
resistor combination.
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FIGURE 2.44 Equivalent
resistance of a series-parallel
resistor combination.

RESISTIVE NETWORKS

EXAMPLE 2.2T PLANAR RESISTOR Figure 2.41 depicts a planar
resistor fabricated on a VLSI chip. Suppose Ro = 10 ©, find the effective resistance
between terminals A and B.

Recalling that the resistance of any square piece of the given material is Rg, we can
view the planar resistor as being composed of three series connected squares, each with
resistance R as depicted in Figure 2.42.

Thus the effective resistance between A and B is simply 3Rg. In practice, however, the
resistance of such a piece of material is likely to be larger than 3Ry due to fringing effects.
Section 1.4 discusses several such effects that limit the accuracy of our lumped circuit
model.

EXAMPLE 2.22 EQUIVALENT RESISTANCE Compute the equiv-
alent resistance of the resistor combination shown in Figure 2.43.

Using the series-parallel simplification sequence shown in Figure 2.44, we find the
equivalent resistance to be 3 k<.

EXAMPLE 2.23 EQUIVALENT RESISTANCE COMBINATIONS
What equivalent resistors can be made by combining up to three 1000-2 resistors in
series and/or in parallel?

Figure 2.45 shows the possible resistor combinations that use up to three resistors.
To determine their equivalent resistance, use the parallel combination result from
BT Equation 2.109 and the series combination result from Equation 2.67. This yields
equivalent resistances of: (A) 1000 £, (B) 500 €, (C) 2000 €, (D) 333 @, (E) 667 2,
(F) 1500 €, and (G) 3000 .

235 A MORE COMPLEX CIRCUIT

We are now ready to tackle more complex circuits, such as the electrical network
shown in Figure 2.1. More specifically, let us suppose that the current 74 is of
particular interest to us. This circuit contains two loops and four nodes, and is
amenable to our four-step solution procedure.

As our first step, we choose to assign the branch variables as shown in
Figure 2.46. Recall that the assignment of voltage and current variables is still
arbitrary (other than the constraint of associated variables), and that the solution
is invariant under this choice.

As our second step, we write the element laws for each of the elements.
The constituent relations for the resistors in this circuit are of the form v = iR,
and the relation for the voltage source is s = V. In terms of the variables
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defined in Figure 2.46, the constituent relations are

v = iRy (2.110)
v = iRy (2.111)
v3 = i3R; (2.112)
vs = iRy (2.113)
vs = V. (2.114)

Our third step involves writing the KVL and KCL equations for the circuit.
For KVL, one possible choice of closed paths is shown in Figure 2.47. If we
assign the polarity to a voltage in accordance with the first sign encountered,
we see that for Loop 1, vs and v, are negative, vy is positive. The corresponding
KVL equations are

(2.115)
(2.116)

—vs+uvy—1y =0
+vy +v3+v4 =0.
A different choice of paths is shown in Figure 2.48. The KVL equations

for this choice are derivable from the set we already have; hence (1) they are
equally valid, and (2) they contain no new information. It follows that adding

R; 5.0
WV

+ V3

Vs G’) Vz_g R, v4+§ Ry
v

<
N<
AA%%
4A%%

Loop 1 Loop 2
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FIGURE 2.45 Various com-
binations of resistors involving
up to three resistors.

FIGURE 2.46 Assignment of
branch variables.

FIGURE 2.47 One choice of
closed paths.
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FIGURE 2.48 Alternative choice
of paths.
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¥ _
- Loop a

a third loop (loop b, Figure 2.48) to Figure 2.47 will not yield a KVL equation
independent of Equations 2.115 and 2.116.

We now write the KCL equations. From Figure 2.46, at Node 1, KCL
yields

—is—i =0 (2.117)

and at Node 2
41+ —53=0 (2.118)

and at Node 3
i3 —14 =0. (2.119)

As in the case of loops, it is possible to write KCL at Node 4, but the
equation is not independent of those we already have.

One might be tempted to write node equations for the junctions labeled
5 and 6, but this doesn’t make much sense. The branch between 4 and 6 is
a perfect conductor, hence it is really just part of the copper lead attached to
resistor Ry4. For this reason we did not bother defining a separate current variable
for this branch. A similar argument applies to branch 4-5.

Another way to emphasize that 5 and 6 are not true nodes is to redraw
the circuit as shown in Figure 2.49. Clearly the circuit topology is unchanged in
the sense that the interconnections among resistors and source are the same as
before, but the false nodes have disappeared. We conclude that a node should
be defined as a junction where two or more circuit elements, other than perfect
conductors, join together. Whenever a number of circuit elements connect to
one perfect conductor, (for example, 5, 4, 6 in Figure 2.46) only one node is
created.

2. A detailed treatment of the topological issues underlying these rules is contained in Guillemin
(Introductory Circuit Theory, Will, 1953) or Bose and Stevens (Introductory Network Theory,
Harper and Row, 1965).
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O

We now have ten independent equations (Equations 2.110 through 2.119)
and ten unknowns: five voltages and five currents. Thus the equations can
be solved for any variable by simple algebra. To find 4, for example, we can
first substitute the constituent relations, Equations 2.110 through 2.114 into
Equations 2.115 and 2.116:

—V+i#4Ri —HRy, =0 (2.120)
HRy +#3R3 + 14R4 = 0. (2.121)

Now eliminating # and #3 using Equations 2.118 and 2.119

—V+4R1+ (1 —i4)Rp =0 (2.122)
(=71 +14)Ry + 14R3 + i4R4 = 0. (2.123)

Rewriting to collect variables and place in the known voltages on the right-
hand side of each equation, we obtain

HR1+R) —i4Ry =V (2.124)
—i1Ry +i4 (R + R3 + Ry) =0, (2.125)

which can be expressed in matrix form as

[(Rl TR R } [“] - [V} (2.126)
—Ry (Ro+R3+Ry)||ia 0

The matrix equation is in the form
Ax=0b

where x is a column vector of the unknowns (i1 and #4) and b is the column
vector of drive voltages and currents (in this case, just V). This vector of
unknowns can be solved by using standard linear algebraic techniques.

CHAPTER TWO

FIGURE 2.49 Circuitin
Figure 2.46 redrawn.

87



88

CHAPTER TWO RESISTIVE NETWORKS

For example, i4 can be found by applying Cramer’s Rule’

VR,
(R1 + Ro)(Ry + R3 + R4) — R3
VR,

iy =

"~ RyRy + RiR3 + RiR4 + RoR3 + RaRy’

(2.127)

(2.128)

With some more effort, we can find the rest of the branch variables as given

below
; ; Ry+R;+R4
—I5 =1 =
Ri(Ry + R3 4+ R4) + Ro(R3 4+ Ry4)

- R3 + Ry
1 =— V

Ri(R2 + R3 + R4) + Ra(R3 + Ry4)
) . Ry
i3 =14 = \%

Ri(Ry + R3 + R4) + Ro(R3 4+ Ry4)
Vs = V
= R1(Ry + R3 + Ry4)
R1(R2 + R3 + R4) + Ro(R3 + Ry)

= R>(R3 + Ry)

Ri(Ry + R3 + R4) + Ry(R3 + Ry4)

RyR3
U3 = \%
Ri(Ry + R3 + R4) + Ro(R3 + R4)
RoRy

vy =

V.
R1(R> + R3 + R4) + Ro(R3 + Ry)

This completes our analysis.

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

Note that in Figure 2.46, resistors Ry and R, alone do not form a simple
voltage divider because of the presence of R3 and Ry. It is true, however, that
R3 and R4 form a voltage divider. Further, Ry and the net resistance of Ry, R3,

and R4 form a second voltage divider.

The analysis of the circuit in Figure 2.46 following the general approach
developed in this chapter is both straightforward and tedious, with emphasis on

3. Cramer’s Rule is a popular method for solving equations of the type Ax = b, where x and b are

column vectors, and A is a matrix. See Appendix D for more details.
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tedious. Fortunately, as we shall see in Chapter 3, there are much less tedious
approaches to this analysis. However, in advance of that we can still simplify the
analysis by employing results taken solely from earlier sections of this chapter.
Specifically, Section 2.4 shows that we can employ the equivalence of parallel
and series resistors, and the behavior of current and voltage dividers, to develop
an intuitive and simple approach to solving many types of circuits.

24 INTUITIVE METHOD OF CIRCUIT
ANALYSIS: SERIES AND
PARALLEL SIMPLIFICATION

To develop our intuition, let us first illustrate the method with the simple
voltage divider in Figure 2.50a. Suppose we were interested in determining the
voltage across resistor Ry. The figure shows a few important variables marked
on it. An intuitive way of analyzing the circuit is to replace the two resistors by
the series equivalent, as in Figure 2.50b, then find 71 using Ohm’s law. From
Equation 2.56, the equivalent series resistance is given by

Rs=Ri +R;

and from Equation 1.4
i1 = V/Rs.
Because 71 must be the same in the two circuits (in Figures 2.50a and 2.50b),

we can now find v, from Figure 2.50a

Uy = i1R2 (2.137)

— ( Ry )V. (2.138)
R1 +R2

We have now determined the value of v, in a few simple steps using results
from series resistances and Ohm’s law. In the future, we will actually write down
the result for the voltage divider in a single step by directly applying the voltage
divider relation in Equation 2.138.

1%
R2 2
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FIGURE 2.50 An intuitive way of
analyzing the voltage divider circuit.
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FIGURE 2.51 Collapsing the
circuit.
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Itis worth dwelling on a couple of the “key moves” of our intuitive method.
The basic approach is to first collapse, then expand. Notice that our first move
was to collapse a set of resistances into a single equivalent resistance. Then, we
found the current into the equivalent resistance. Finally, we took an expanded
view of the two resistances to determine the specific voltage of interest.

Let us now use our intuition to develop an alternative method of ana-
lyzing the circuit in Figure 2.46 (repeated in Figure 2.51a for convenience). It
will be obvious that the intuitive method is far less tedious than the rigorous
application of the basic method in Section 2.3.

Our alternative analysis of the circuit in Figure 2.51a follows the two basic
moves suggested earlier — first collapse, then expand. Accordingly, our anal-
ysis begins by collapsing the circuit using the equivalence of parallel and series
resistors. This process is illustrated in Figure 2.51. Note that all branch variables
that can be preserved during this collapse are shown in Figure 2.51. First, the
series resistors R3 and R4 are combined to yield the circuit in Figure 2.51b.
Next, Ry is combined in parallel with the series equivalent of R3 and R4 to
yield the circuit in Figure 2.51c. Finally, the two remaining series resistors are
combined in series to yield the circuit in Figure 2.51d.

We now analyze our collapsed circuit in Figure 2.51d. Trivially, we know
that

vy = \%
and
iy = —ij.

Now, following the results of Section 2.3.1, or equivalently by applying
Ohm’s law directly, we know that

Vv

Ry(R3+Ry) ) ’
(R1 * Ry+R3+Ry4

=

Thus, at this point, i, v, and 7 are known.

Our intuitive analysis concludes by expanding the circuit in Figure 2.51d
progressively. As we expand, we determine the values of as many of the variables
as we can in terms of previously computed variables. Following this process,
first, the circuit in Figure 2.51¢ can be viewed as a voltage divider of v. In other
words, 71 can be multiplied by each of its two resistances to determine v and
v>. Thus,

Rq

Ro(R3+R4)
(Rl + R2+R3+R4>

n=y
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and
Ry(R3+Ry)
\% Ry+R3+Ry

Ry(R3+Ry4) ) )
<R1*'RTHQ+R4

U) =

Next, since v, is now known, R and the series equivalent of R3 and R4 in
Figure 2.51b can each be divided into v, to determine #; and 3. In other words,

"Ry
Ry + R4

)
B3

Alternatively, 7 and 73 can be determined by viewing R; and the series equivalent
of R3 and Ry as a current divider of 7.

Finally, since 73 is now known, R3 and R4 in Figure 2.51a can be viewed
as a voltage divider of v, or they can be multiplied by #3 = is, to determine v3
and v4. Doing so yields

U3 = i3R3
and
Uy = i3R4.

This completes the intuitive analysis of the circuit in Figure 2.51a. The important
observation here is that the alternative approach to circuit analysis outlined in
Figure 2.51 is considerably simpler than the direct approach.

EXAMPLE 2.24 CIRCUIT ANALYSIS SIMPLIFICATION As
another example of circuit analysis simplification, consider the network of twelve resis-
tors shown in Figure 2.52. Each resistor in the network has resistance R, and together
the network outlines the shape of a cube. Additionally, the network has two terminals
marked A and B, which extend from opposite corners of the cube to form a port. We
wish to determine the equivalent resistance of the network as viewed through this port.

To determine the network resistance, we turn the network into a complete circuit by
connecting a hypothetical current source to its terminals as shown in Figure 2.53. Note
that the circuit in Figure 2.53 is now much the same as the circuit in Figure 2.25; the two
circuits differ only in the complexity of the resistive network across the current source.
Next, we compute the voltage across the port that appears in response to the application
of the current source. The ratio of this voltage to the source current is then the equivalent
resistance of the network as viewed through the port. Note that this procedure does
work as desired for the circuit in Figure 2.25 since the division of Equation 2.22 by I
yields v»/1 = R.
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FIGURE 2.53 Introducing a
current into the A-B terminal pair
of the cubic network.
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Turning now to the analysis of the circuit in Figure 2.53, we see that it involves the
determination of 26 branch variables, which seems like a painful task. Fortunately, this
analysis can be greatly simplified by taking advantage of the symmetry of the circuit, and
that is the primary observation to be made here. As a consequence of the symmetry of
the circuit, the three branch currents 71, 7, and 73 are identical, as are the three branch
currents i, is, and 7. Further, KCL applied to the two nodes at the port terminals
shows that the sum of each group of three branch currents is I, so all six branch currents
equal /3.

Next, again due to the symmetry of the circuit, the six branch currents #; through i1,
are all identical. Further, KCL applied to any interior node shows that these six branch
currents all equal I/6. Now, all branch currents in the circuit are known.

So, through their element laws, the branch voltages across all twelve resistors are known,
leaving the branch voltage across the current source as the only remaining unknown.
Finally through the application of KVL around any loop that passes through the current
source we see that its branch voltage is SRI/6. Dividing this voltage by I yields SR/6 as
the equivalent resistance of the cubic network of resistors.

While this solution yields an interesting result, the more important observation is the
importance of simplifying a circuit, in this case through symmetry, before attempting its
analysis.

EXAMPLE 2.2§ RESISTANCE OF A CUBIC NETWORK An
alternative method for determining the equivalent resistance of the cubic network in
Figure 2.52 that uses series-parallel simplifications is now shown. Also suppose that
each of the resistors in the network in Figure 2.52 has a resistance of 1 k2. Our goal
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is to find the equivalent resistance of this resistive network when looking into the A-B
terminal pair.

First, observe the symmetry property of this resistive network. From any of the eight
vertices, the network looks identical, and therefore, the resistance between any pair of
vertices connected by the solid diagonal (for example, (a)-(g), (b)-(h), (e)-(c), etc.) is the
same. Furthermore, looking into A, the set of paths from A to B starting along the
edge (a)-(d) are matched by a set of paths starting along the edge (a)-(b), or by a set of
paths starting along the edge (a)-(e). Therefore, when we apply a current I as shown in
Figure 2.53, it must split evenly into i1, #, and 3. Likewise, it draws current off the
network evenly, that is, is, is, and ig are the same. Since the same current and resistance
causes the same voltage drop across the resistors, we conclude that nodes (b), (d), and
(e) have the same voltage, and nodes (h), (c), and (f) also have the same voltage with
respect to any reference node.

Notice that if we connect nodes with identical voltages by an ideal wire it does not
draw any current and does not change the behavior of the circuit. Therefore, for the
purpose of computing the resistance, we can connect all nodes with identical voltages,
and simplify the network to the one shown in Figure 2.54.

We can now apply our series and parallel rules to determine the equivalent resistance as
1kQ|I1 k1 k2 + 1 k|1 k|1 k|1 k|1 k|1 k2 + 1 k|1 k|1 k2

which equals

1 N 1 n 1
1 1 1 1 1 1 1 1 1 1 1 1
e e e kel ket et e e

EXAMPLE 2.26 RESISTOR RATIOS Consider the more involved
voltage-divider circuit in Figure 2.55a. The voltage source represents a battery that

CHAPTER TWO

FIGURE 2.54 Simplified
network.
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is supplying power to the rest of the circuit. Further, assume that the voltage Vg is of
interest to us. Notice also that the two voltages Vs and V¢ share a common negative
reference node. A power supply voltage source and a common voltage reference will be
encountered so commonly in our circuit language that it is worth creating an idiomatic
representation for them.

Figure 2.55b introduces our shorthand notation. First, batteries that serve as power
supplies are often not shown explicitly and use the upwards pointing arrow notation
instead. Vg represents the power supply voltage. Often, we are also interested in mea-
suring voltages with respect to a common reference node, termed the ground node. This
node is represented with an upside-down “T” symbol as shown in the figure. The polar-
ity symbols corresponding to voltages that are referenced from this node are not shown
explicitly. Rather, the negative symbol is associated with the ground node and the plus
symbol is associated with the node adjacent to which the voltage variable appears.*

Now, referring to Figure 2.55b, suppose R; = Ry = R3 = 10 k2, how do we choose
Ry such that Vo < 1V?

The equivalent resistance of the three resistors in parallel is given by Equation 2.98.
Thus,

10
Reg = 10k 10K 10k = == ke
Using the voltage divider relationship, we require that

Req
VO =5——— < 1,
(RL + Req)

which implies that Ry, has to be at least four times as large as R.y. In other words

40

4. Chapter 3 will discuss the concepts of ground nodes as well as node voltages in more detail.
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25 MORE CIRCUIT EXAMPLES

Let us now return to applying the basic method to several other circuits. Con-
sider, for example, the circuit in Figure 2.56, which we will see again in
Chapter 3. What is new about this circuit is that it contains two sources. It
is not amenable to the intuitive method discussed in Section 2.4. Nonetheless,

it can be analyzed by the basic approach presented in Section 2.3.

The element laws for this circuit are

=V
N = Rlil
vy =Rap
i3 =—1

Next, the application of KCL to the two upper nodes yields
iy = —i1
n=1i+13
and the application of KVL to the two internal loops yields
vo=v1+1y

vy = U3.

Finally, Equations 2.139 through 2.146 can be solved to yield
R, 1

—g=1i] = — I+
Ri+R; Ri+R,
R 1
I = ! 1+
Ri+R; Ri+R
i3 =—1
=V
RiR R
v = — 172 I+ ! \%
Ri+R Ri+R;
RiRy R;
vy =13 = I

+ \%
Ri+ Ry Ri+ Ry

to complete the analysis.

(2.145)
(2.146)

(2.147)

(2.148)

(2.149)
(2.150)

(2.151)

(2.152)

What is most interesting about the results of this analysis is that each
branch variable in Equations 2.147 through 2.152 is a linear combination of
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FIGURE 2.56 A circuit with two
independent sources.
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FIGURE 2.57 Another circuit
with two independent sources.
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a term proportional to I and a term proportional to V. This suggests that we
could analyze the circuit first with V = 0 and second with I = 0, and then
combine the two analyses to obtain Equations 2.147 through 2.152. This is in
fact possible, and it leads to yet further analysis simplifications as we shall see
in Chapter 3.

Let us now practice the basic method on several other examples.

EXAMPLE 2.27 CIRCUIT WITH TWO INDEPENDENT
SOURCES Analyze the circuit in Figure 2.57 using the basic method. Further, show
that energy is conserved in the circuit.

The branch variable assignments are shown in the figure. The element laws for this
circuit are

vy=2V
v =37
) =2b
i3 =3A.

Applying KCL to the two upper nodes gives us
ip+i1+i=0
1= —i3.
Applying KVL to the two internal loops yields
vy =1
V) = —v3 +U].

Solving the preceding eight equations, we get vp = 2 V, v = -9 V, »p = 2V,
U3 =—11V,i()=2A,i1 =—3A,i2=1A,andi3 =3A.

To show that energy is conserved, we need to compare the power dissipated by the
resistors and the power generated by the sources. The power into the resistors is given by

(—9V)x (=3A)+Q2V)x (1A =29W.
The power into the sources is given by
RV)x2A)+(-11)x 3A)=-29W.

It is easy to see that the power dissipated by the resistors equals the power gener-
ated by the sources. Thus, energy is conserved.
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M EXAMPLE 2.28 BASIC CIRCUIT ANALYSIS METHOD

EXAMPLE 2.29 DETERMINING THE I—-V CHARACTER-
ISTICS OF A CIRCUIT Determine the i—v relationship for the two-terminal
device shown in Figure 2.61a. Make a sketch of the v relationship for R = 4 Q and
V =5 V. As shown in the figure, assume that the internals of the device can be modeled
as a voltage source in series with a resistor.

We will find the i—v relationship of the device by applying some form of excitation to the
device terminals and obtaining the relationship between the values of i and v. One of the
simplest inputs we can apply is a current source providing a current 7., as illustrated
in Figure 2.61b. The figure also shows the assignment of branch variables.

We will proceed by solving for the branch variables, vy, i1, 12, i, v3, and i3, and then
obtain the v relationship by expressing v and 7 in terms of the expressions for the
branch variables. Using the basic method, we first write the element laws

v = \%
) = izR
3= —iest-
Next, we apply KCL to the two upper nodes
iL=—b
h=i
and KVL to the loop

v —v3—vy) =0.

These six equations can be solved to yield

il = _i2 = _i3 = itest
Two-terminal device .
S
A AA% o
R +
%

(@) (b)
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FIGURE 2.61 Determining the
i — v characteristics: (a) a two-
terminal device; (b) assignment of
branch variables to the circuit con-
structed to determine the i — v
characteristics of the device.
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FIGURE 2.62 Aplotofthe/—v
characteristics for the device.

RESISTIVE NETWORKS

i (A)

1
Slope = + =
=R T 10

0 /v=5v v(V)

and

v =V, 1) = —ipeeR, and v3 = V+ iR
We can now write the expression for v as
v=1v3 = V+ieR
and substituting i = 7., we obtain the relationship between 7 and v as
v=V+iR.

In other words, the i—v relationship is given by

This relationship is plotted in Figure 2.62.

26 DEPENDENT SOURCES AND
THE CONTROL CONCEPT

Section 1.6 introduced the voltage source and the current source as ideal mod-
els for energy sources. We call these independent sources because their values
are independent of circuit operation. But many sources have values that are
dependent on, that is, controlled by some other parameters in the system. For
example, the accelerator pedal in an automobile controls the power delivered
by the engine; the handle on a sink faucet controls the flow of water; and
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room lights can be controlled by either a switch, a binary or two-state device,
or a dimmer, a continuous control device. Chapter 6 will introduce another
multi-terminal device called the MOSFET in which a control voltage between
one pair of terminals of the device determines the MOSFET’s behavior between
another pair of terminals. Thus, when the multi-terminal dependent source is
connected in a circuit, the behavior of the device can be controlled by a voltage
or current in some other part of the circuit.

In the examples cited here, only a very small amount of power is needed to
control large amounts of power at the output. In the car, for example, a trivial
expenditure of energy controls hundreds of horsepower. To idealize, we assume
that zero power is required to exercise control; we call this a dependent source
or controlled source. The electrical forms of dependent sources are obvious
extensions of the sources we have already seen: a dependent voltage source that
can be controlled by some voltage or current, and a dependent current source
which likewise has a value determined by some voltage or current. Dependent
sources are most commonly used to model elements having more than two
terminals.

Figure 2.63 shows an idealized voltage-controlled current source (VCCS).
The device in the figure has four terminals. A pair of terminals serve as the con-
trol port and another pair of terminals are the output port. In many situations,
the control port is also called the input port. Figure 2.63 shows a labeling of the
branch variables at the output port voyt and ioyT, and the branch variables
at the input port viN and 7. The value of the voltage vN across its control
input port determines the value of the current oyt through its output port. In
principle, such a dependent source can provide power, but for simplicity the
power terminals inherent to the source are not shown.

The diamond shape of the symbol indicates that the device is a dependent
source, and the arrow inside indicates that it is a current source. The direction
of the arrow indicates the direction of the sourced current and the label next
to the symbol indicates the value of the sourced current. In the example in the
figure, the sourced current is some function of the voltage vy

iout = flUN).
iN=0 lout
3_—»—0 —<—c_>'_
c | Output
ontro port
o e ot

5
eg. flvin) = VN

CHAPTER TWO

FIGURE 2.63 Voltage-
controlled current source.
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FIGURE 2.64 A circuit con-
taining a voltage-controlled
current source.

RESISTIVE NETWORKS

When the device is connected in a circuit, vy might be another branch
voltage in the circuit.

We often deal with linear dependent sources. A linear voltage-controlled
current source is characterized by the equation:

IOUT = gVIN (2.173)

where g is a constant coefficient. When the dependent source is a voltage-
controlled current source, the coefficient g is called the transconductance with
units of conductance. Notice that Equation 2.173 is the element law for our
dependent source expressed as usual in terms of the branch variables. We also
need to summarize the behavior of the input port to completely characterize
the dependent source. Since our idealized VCCS does not require any power
to be supplied at its input, the element law for the input port is simply

iN=0 (2.174)

which is simply the element law for an infinite resistance. For the ideal dependent
sources considered in this book, we will assume that the control ports are ideal,
that is, they draw zero power.

Figure 2.64 shows a circuit containing our dependent source. For clarity,
the dependent source device is shown within the dashed box. In the figure, an
independent voltage source (sourcing a voltage V) is connected to the control
port and a resistor is connected to the output port. For the connection shown,
because

N =V

the output current ioyt will be g times the input voltage V. We will complete
the full analysis of the circuit shortly, and show that the presence of a dependent
source does not alter the manner in which our approach to circuit analysis is
applied.

Figure 2.65 shows another circuit containing our dependent source. In this
drcuit, the control port is connected across a resistor with resistance Ry. Accord-
ingly, the voltage across Ry becomes the guiding voltage for the dependent
source.
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Figure 2.66 illustrates the four types of linear dependent sources.
Figure 2.66a depicts our now familiar voltage-controlled current source.
Figure 2.66b depicts another type of dependent current source whose guiding
variable is a branch current. This dependent source is called a current-controlled
current source (CCCS).

The element law for the CCCS in Figure 2.66b is

IOUT = QIN- (2.175)

The unitless coefficient « is referred to as a current transfer ratio. Further-
more, for a CCVS vy = 0.

Figures 2.66¢ and 2.66d depict the symbols for dependent voltage sources.
A dependent voltage source supplies a branch voltage that is a function of some
other signal within the circuit. Figure 2.66¢ shows a voltage-controlled voltage
source (VCVS) and Figure 2.66d shows a current-controlled voltage source
(CCVS). The guiding variable for a VCVS is a branch voltage, and that for a
CCVS is a branch current. The diamond shape of their symbols again indicates
that they are dependent sources, and the =+ inside indicates that they are voltage
sources. The polarity the + indicates the polarity of the sourced voltage and
the label next to the symbol indicates the value of the sourced voltage.

In the case of the VCVS in Figures 2.66¢, the sourced voltage is equal to
uuN, where vy is a voltage across another branch of the circuit and p is a
unitless coefficient. Thus, the element law for the VCVS in Figure 2.66 is

VOUT = MVIN. (2.176)

The coefficient u is referred to as a voltage transfer ratio. Furthermore, for a
VCVS iy = 0.

In the case of the CCVS in Figures 2.66d, the sourced voltage is equal to
riN, Where 71y is the current through another branch of the circuit and 7 is a
coefficient having the units of resistance. Thus, the element law for the CCVS
in the figure is

VOUT = 7IN- (2.177)

The coefficient 7 is referred to as a transresistance.
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FIGURE 2.65 Another circuit
containing a voltage-controlled
current source.

iN lour

o—P—
+ +
v .
IN Oipy  Vour
- _
(b)
iiN lour
o—p—o
+ +
v
IN HVIN Your
_ _
(©)
[ IN lour
o——
+
VIN
o |

(@

FIGURE 2.66 Four types of
dependent sources: (a) VCCS
(voltage-controlled current source);
(b) CCCS (current-controlled
current source); (c) VCVS
(voltage-controlled voltage source);
(d) CCVS (current-controlled
voltage source).
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FIGURE 2.67 Assignment of
branch variables.

RESISTIVE NETWORKS

Finally, for both the dependent current source and the dependent voltage
source it is once again important to distinguish between the symbols that define
them (e.g., g) and the branch variables that are defined (e.g., N, N, YouT, and
iouT) in order to express their element laws. In particular, the branch variable
definitions may be reversed for convenience, which will lead to a negation of
the corresponding element laws.

261 CIRCUITS WITH DEPENDENT SOURCES

Let us now return to the analysis of our circuit in Figure 2.64, which contains
a dependent voltage source. Nonetheless, the circuit can be analyzed by the
basic approach presented in this chapter.

Figure 2.67 shows an assignment of the branch variables. The branch
variables include vy, 7y, vIN, #IN, VOUT, (OUT, VR, and ig.

The element laws for this circuit are

v=V (2.178)
iN=0 (2.179)
UR = RLiR (2.180)
IOUT = SVIN- (2.181)
Next, the application of KCL to the two upper nodes yields
i = —iN (2.182)
ioUT = —IR (2.183)
and the application of KVL to the two loops yields
V) = UIN (2.184)
UR = VOUT- (2.185)
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Finally, Equations 2.178 through 2.185 can be solved for the branch
variables to yield

ip=iNn=0 (2.186)
vw=vNn=V (2.187)
iour = —ir = —gV (2.188)
vr = vout = —¢VRL (2.189)

to complete the analysis.

The presence of the dependent source in the circuit in Figure 2.67 does not
alter the manner in which our approach to circuit analysis is applied. While this
is an important observation, there is arguably a more important observation
concerning the analysis of the dependent-source circuit, namely that it can
proceed in stages. That is, it is possible to first analyze the operation of the
“input side” of the circuit, that is, the independent voltage source and the
input of the dependent source, and then separately analyze the operation of
the “output side,” that is, the dependent current source and the resistor R;.
We will term this approach the sequential approach to circuit analysis.

To see this, observe that the equations representing the input side of the
circuit, namely, Equations 2.178,2.179, 2.182, and 2.184 can be solved trivially
by themselves to yield the values of vy, i, N, and i (see Equations 2.186
and 2.187).

Then, with vy treated as a known signal, the equations representing the
output side of the circuit, namely Equations 2.180, 2.181, 2.183, and 2.185,
can be solved by themselves to yield the values of vour, iouT, VR, and ig (see
Equations 2.188 and 2.189) — a result that is identical to that obtained for the
circuit in Figure 2.25.

At this point you are probably wondering why it is that we were able to
adopt such a sequential approach to analyzing the circuit in Figure 2.67. The
same sequential approach does not work for the circuit in Figure 2.46. The
intuition behind this useful property is that our idealized dependent source has
decoupled the circuit into two parts — an input part and an output part. Because
our dependent source model has an open circuit at its terminals marked by the
branch voltage vy, the behavior of the input part is completely independent
of the output part of the circuit. In other words, in determining the behavior
of the input part, it is as if the output did not even exist. The output part,
however, does depend on one of the input variables, namely, v. However,
once the value of the control input v\ is determined through an analysis of
the input part, it fixes the value of the dependent source. Thus, the dependent
source can be treated as an independent source for the purpose of analyzing the
output part.

CHAPTER TWO
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FIGURE 2.68 The input port of
an idealized dependent source is
not shown explicitly.

FIGURE 2.69 Simplifying a
circuit with a dependent source
by not showing the control port
explicitly: (&) with control port
marked and branch variables
labeled explicitly; (b) with
simplification.

RESISTIVE NETWORKS

Such a sequential approach to circuit analysis is commonly applied to cir-
cuits involving dependent sources, when the circuit does not introduce any
external coupling between the control port and the output port of the dependent
sources. We will use this approach to advantage in future chapters.

The analysis of circuits with idealized dependent sources admits one other
simplification. In an idealized dependent source, the input port (or control port)
is an open circuit if the guiding variable is a voltage. Similarly, the input is a
short circuit if the guiding variable is a current. Thus, the presence of the input
port does not really affect the behavior of the input part of the circuit. The
idealized input port is simply present to sample the value of a branch current or
voltage without changing the value of the existing branch variable. Therefore,
we do not really need to show the input port of the dependent source explicitly,
thereby reducing the number of branch variables that we have to deal with.

For example, the input port of the dependent source marked with the
branch variables v and 7N in Figure 2.65 is an open dircuit. Accordingly,
in = 0 and vy = vy, the voltage across the resistor Ry. Therefore, we can
equivalently use the circuit in Figure 2.68, where the input port of the dependent
source is not shown explicitly, and the current sourced by the dependent source
is specified directly in terms of vy, the voltage across the resistor R;. We have
thus eliminated the branch variables vpy and 7 from our analysis.

As depicted in Figure 2.69, the same simplification can be made for a
dependent source in which the guiding branch variable is a current. Figure 2.69a
shows a circuit containing a current controlled current source with the control
port marked and all branch variables labeled explicitly. Figure 2.69b shows the




2.6 Dependent Sources and the Control Concept

same circuit after making the simplification, where the sourced current is now
specified in terms of 71. Notice that there is a lot less clutter in the latter figure.

EXAMPLE 2.30 CURRENT-CONTROLLED CURRENT SOURCE
Consider next the circuit shown in Figure 2.69b. This circuit contains a dependent

current source. Notice that we have applied a simplification suggested earlier by not

showing the control port of the dependent source explicitly. The current sourced by the

dependent source is guided by the current 7.

Let us now analyze this circuit. The branch variables are assigned as shown in

Figure 2.69b.

The element laws for this circuit are

=V

v = R1i1
Uy = Rziz
i3 = —ai.

Next, the application of KCL to the two upper nodes yields
ih+7 =0
ih+i3=0

and the application of KVL to the two loops yields

V) =11

V) = U3.

Finally, Equations 2.190 through 2.197 can be solved to yield

i—i—z
0_1_R1
b=h=2
3_2_R1
v=v1=V
v _aR)V
2 =UV3 = Rl

to complete the analysis.

(2.190)
(2.191)
(2.192)
(2.193)

(2.194)
(2.195)

(2.196)
(2.197)

(2.198)

(2.199)
(2.200)

(2.201)

CHAPTER TWO
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FIGURE 2.70 A circuit
containing a voltage-controlled
current source.

RESISTIVE NETWORKS

EXAMPLE 2.31 INTUITIVE SEQUENTIAL APPROACH FOR
THE CCCS Alternatively, we can solve the circuit in Figure 2.69b in a few lines if
we use the intuitive sequential approach. Assume that we are interested in finding out
the branch variables related to R;.

Using the sequential approach, first, let us tackle the input part of the circuit. Since the
voltage V appears across Ry, the current through Ry is

1%

= —,
Ry

Now let us tackle the output part of the circuit. The current through the current source

is in the same direction as 7, and so

h=owi] =0a—.
2 1 Rl
Applying Ohm’s law, we get
v VR2
=a—-".
2 R1
Not surprisingly, this result is the same as that in Equation 2.201.

EXAMPLE 2.32 BRANCH VARIABLES Analyze the circuit in Figure
2.70 and determine the values of all the branch variables. Further, show that energy
is conserved in the circuit.

We will analyze the circuit intuitively, applying element laws, KVL and KCL, using the
sequential approach. Looking at the input side, since the voltage source appears across
an open circuit, it is easy to see that both vy and vy are two volts. Similarly, both #y
and 7\ are zero. Thus, we have determined all the branch variables at the input side.

Next, let us analyze the output part of the circuit. Since we know the value of v\, the
current through the current source is determined as

0.001vpn = 0.002 A.
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Since the current source current is in the same direction as ioyT, and in the opposite
direction as 7g, we obtain from KCL

ioutr = 0.002 A

and
ir = —0.002 A.

Finally, applying the element law for a resistor, we obtain
R =3x10%k = -6V
and from KVL, we obtain
vouT = VR = —6 V.
This completes our analysis, since all output side branch variables are also known.

To verify that energy is conserved in the circuit, we must show that the power dissipated
by the elements is equal to the power supplied. Since the input side current is zero, there
is no power dissipated or supplied at the input side. At the output side, the power
dissipated in the 3-kS2 resistor is given by

3kQ x iy = 0.012 W.
The power into the dependent current source is given by
vouT X fouT = —6 x 0.002 = —0.012 W.

In other words, the power supplied by the current source is 0.012 W. Since the power
supplied is equal to the power dissipated, energy is conserved.

More examples containing dependent sources are given in Section 7.2.

BT EXAMPLE 2.33 VOLTAGE-CONTROLLED RESISTOR

I 2.7 A FORMULATION SUITABLE FOR A
COMPUTER SOLUTION *
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2.8 SUMMARY

>

KCL is a law stating that the algebraic sum of the currents flowing into any
node in a network must be zero.

KVL is a law stating that the algebraic sum of the voltages around any
closed path in a network must be zero.

A helpful mnemonic for writing KVL equations is to assign the polarity to a
given voltage in accordance with the first sign encountered when traversing
that voltage around the loop.

The following is the basic method (or fundamental method or KVL/KCL
method) of solving networks:

Define voltages and currents for each element.
Write KVL.

Write KCL.

Wirite constituent relations.

RAEPSEE i e

Solve.

The series-parallel simplification method is an intuitive method of solving
many types of circuits. This approach first collapses a set of resistances into
a single equivalent resistance. Then, it successively expands the collapsed
crcuit and determines the values of all possible branch variables at each
step.

The equivalent resistance for two resistors in series is Rs = Ry + R».

The equivalent resistance of resistors in parallel is Rp = Ry||Ry =
RiRy/(R1 + Ry).

Voltage divider relation means that when two resistors with values Ry and
Ry are connected in series across a voltage source with voltage V, the
voltage across R; is given by (Rz/ (R1 + Rz)) V.

Current divider relation means that when two resistors with values Ry and
R, are connected in parallel across a current source with current I, the
current through R, is given by (R1/ (R + Rz)) L

This chapter discussed four types of dependent sources: voltage-controlled
current sources (VCCS), current-controlled current sources (CCCS),
voltage-controlled voltage sources (VCVS), and current-controlled voltage
sources (CCVS).

The sequential method of circuit analysis is an intuitive approach that can
often be applied to circuits containing dependent sources when the control
port of the dependent source is ideal. This approach first analyzes the circuit
on the input side of the dependent source, and then separately analyzes the
operation of the output side of the dependent source.
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»  Conservation of energy is a powerful method for obtaining many types of
results in circuits. Energy methods are intuitive and can often allow us to
obtain powerful results without a lot of mathematical grunge. One energy
approach equates the energy supplied by a set of elements in a circuit to
the energy absorbed by the remaining set of elements in a circuit. Another
energy approach equates the total amount of energy in a system at two
different points in time (assuming that there are no dissipative elements in
the circuit).

EXERCISE 2.1 Find the equivalent resistance from the indicated terminal pair of EXERCISES
the networks in Figure 2.72.

. -—
L L R R R
éil Q 4;5» ZQ A n'A l'llAl'l l'l'A'l'l'A 'nvn'A'n'n
: : P = > =
340 £30 kg Rz Rz 2R FIGURE 2.72
-

(a) (b) (©

EXERCISE 2.2 Determine the voltages v4 and vp (in terms of vs) for the network

3v
. + 6v A
shown in Figure 2.73. |::| v Al
EXERCISE 2.3 Find the equivalent resistance between the indicated terminals (all 20
resistances in ohms) in Figure 2.74. . |:+:| A
5Q Va
£10Q 2100 £20 £3Q 36Q
] 1 ) 1 FIGURE 2.73
(a) (b)
® LS FIGURE 2.74
£40Q 220 £4Q 534 32Q
20 £ 220 E39)
(© (d) Difficult

EXERCISE 2.4 Determine the indicated branch voltage or branch current in each
network in Figure 2.75.

EXERCISE 2.5 Find the equivalent resistance at the indicated terminal pair for
each of the networks shown in Figure 2.76.
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+

6 V= £20 30 V! £20kQ
(b)
FIGURE 2.75
10kQ
o aww . <!
1 UA [ 2N ’ i -
u = " = -' P
£2MQ 30V 220kQE20kQ 1 pAl £7M0E2MO
(d (e) ()

£R;
FIGURE 2.76
i
'+ > EXERCISE 2.6 In the circuit in Figure 2.77, v, i, and Rq are known. Find R;.
v R E R, £ v=5V
- =40 pA
Ry =150 k2

FIGURE 2.77

MWW EXERCISE 2.7 Inthe drcuit in Figure 2.78, v, = 6 V,R; = 100 @, Ry =25 Q,

R, and R3 = 50 Q. Which of the resistors if any, are dissipating less than 1/4 watt?
Vo R, EE :E§ R, EXERCISE 2.8 Sketch the i — v characteristics for the networks in Figure 2.79.
T 7 Label intercepts and slopes.
EXERCISE 2.9

FIGURE 2.78 a) Assign branch voltages and branch current variables to each element in the network

in Figure 2.80. Use associated reference directions.




A
WW
—_
o
<

() (b)

<
W
(@)}
)

2.8 Summary CHAPTER TWO

5V 2V

()

FIGURE 2.79

FIGURE 2.80

b) How many linearly independent KVL equations can b
¢) How many linearly independent KCL equations can b
d) Formulate a set of KVL and KCL equations for the ne

e) Assign nonzero numbers to each branch current such
satisfied.

f) Assign nonzero numbers to each branch voltage such
satisfied.

e written for this network?
e written for this network?
twork.

that your KCL equations are

that your KVL equations are

g) As a check on your result, you can draw on the fact that power is conserved
in a network that obeys KVL and KCL. Therefore calculate the quantity Y vyi,.

It should be zero.

EXERCISE 2.10 A portion of a larger network is
that the algebraic sum of the currents into this portion of

PROBLEM 2.1 A pictorial diagram for a flashlight

shown in Figure 2.81. Show
the network must be zero.

is shown in Figure 2.82. The PROBLEMS

two batteries are identical, and each has an open-circuit voltage of 1.5 V. The lamp
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FIGURE 2.81
2 * /Switch
2
3
=
1T
> + ° Lamp
Q
g has a resistance of 5  when lit. With the switch dosed, 2.5 V is measured across the
- lamp. What is the internal resistance of each battery?
PROBLEM 2.2 Determine the current i in the circuit in Figure 2.83 by working
with resistors in series and parallel.

A
YWWir
—_

FIGURE 2.82

AMAMAL
VWW

04A 2Q

2 Q3

b
u
YW
[\
1O
Wt
=

FIGURE 2.83

PROBLEM 2.3 Find the resistance between nodes A and B in Figure 2.84. All

resistors equal 1 €.
PROBLEM 2.4 For the circuit in Figure 2.85, find values of Ry to satisfy each of

? the following conditions:
FIGURE 2.84 a v=3V
3 b)) v=0V
0 i=3A
2V o Ry d) The power dissipated in Ry is 12 W.

PROBLEM 2.5 Find the equivalent resistance Rt at the indicated terminals for

FIGURE 2.85 each of the networks in Figure 2.86.
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PROBLEM 2.6 In each network in Figure 2.87, find the numerical values
of the indicated variables (units are amperes, volts, and ohms).

VVVVV
=
)

R3
(@)
RE RE Ry 2
I;=5A h 1+
1Q v (b)
V3=5V i
Ry
FIGURE 2.87 AW
PROBLEM 2.7 For the circuit in Figure 2.88, determine the current i3 explicitly B =8
in terms of all circuit parameters.
AN MM (C)
YYVYYY AAMAS
R, Rs
+ =
2% _ ::E R2 13 Rl
AMAMA
VVVVY
R Z Ry
FIGURE 2.88
. . . T (d)
PROBLEM 2.8 Determine explicitly the voltage v3 in the circuit in Figure 2.89.
W
R2 - Ry R3
1 R 2Ry 3
Ry +
AMAA
YVVVVY RZ R4
FIGURE 2.89 (e)
PROBLEM 2.9 Calculate the power dissipated in the resistor R in Figure 2.90. FIGURE 2.86

PROBLEM 2.70 Design a resistor attenuator to make v, = v;/1000, using the
circuit configuration given in Figure 2.91, and resistor values available in your lab. This
problem is underconstrained so it has many answers.
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4Q
A
MW
W
2Q=R
FIGURE 2.90 ¥ ]
3 V() 210 £:20
o s
W W
+
FIGURE 2.91 v; R RyZE Vo
R PROBLEM 2.11  Consider the network in Figure 2.92 in which a non-ideal battery
VWA

drives a load resistor Ry . The battery is modeled as a voltage source Vy in series with a

vg z R, resistor Rg. The following are some proofs about power transfer:
a) Prove that for Rg variable and Ry, fixed, the power dissipated in Rj, is maximum
Source Load when Rg = 0.
network
b) Prove that for Rg fixed and R;, variable, the power dissipated in Ry, is maximum
when Rg = Ry, (“matched resistances”).

FIGURE 2.92 ¢) Prove that for Ry fixed and R; variable, the condition that maximizes the power
delivered to the load R, requires that an equal amount of power be dissipated in the
source resistance Rg.

i iy i
+ | | + 4Q
v 2830 v E40Q ADzA v 8V
FIGURE 293 ; ; .
+ a2 40 | + '-_ 1
v 3A v 23Q v £4Q £3Q
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PROBLEM 2.12  Sketch the v — i characteristics for the networks in Figure 2.93.
Label intercepts and slopes.

PROBLEM 2.13
a) Find i, 7, and 73 in the network in Figure 2.94. (Note that i3 does not obey the
standard convention for current direction.)

b) Show that energy is conserved in this network.

PROBLEM 2.74 Assume that you have an arbitrary network of passive two-
terminal resistive elements in which the 7 — v characteristic of each element does not
touch either the v-axis or the i-axis, except that each 7 — v characteristic passes through
the origin. Prove that all branch currents and branch voltages in the network are zero.

PROBLEM 2.15 Solve for the voltage across resistor R4 in the circuit in
Figure 2.95 by assigning voltage and current variables for each resistor.

PROBLEM 2.16 Find the potential difference between each of the lettered nodes
(A, B, C, and D) in Figure 2.96 and ground. All resistances are in ohms.

PROBLEM 2.77 Find the voltage between node C and the ground node in
Figure 2.97. All resistances are in ohms.
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31 INTRODUCTION

The basic network analysis method introduced in Chapter 2 is fundamental
but unfortunately often insufficient. The problem is that frequently we deal
with complicated circuits in which we are interested in relating only one output
variable to one input variable. For example, in analyzing a high-fidelity audio
amplifier, we might wish to find only the relationship between the voltage at
the output terminals and the voltage at the input terminals. The intermediate
voltage and current variables might be of no direct interest to us, yet by the
analysis method of Chapter 2, we are forced to define all such variables, and then
systematically eliminate them. Even worse, a circuit with N branches, each with
its own voltage and current, will in general have 2N unknown branch variables.
Thus, 2N equations must be solved simultaneously in order to complete the
analysis. Even for a simple circuit, 2N can be an unwieldy number.

Fortunately, there exist better approaches to the organization of circuit
analysis, and these approaches are the subject of this chapter. In this chap-
ter, we develop a number of network theorems, all based on the fundamental
methods of Chapter 2, which greatly simplify circuit analysis, and provide
substantial insight about how circuits behave. These theorems also provide
us with additional circuit vocabulary and a little more abstraction.

The first of these powerful techniques, called the node method, is funda-
mental and can be applied to any circuit, linear or nonlinear. The node method
works with a set of variables called the node voltages. So, before we present
the node method, let us discuss the concept of node voltages, and build up our
facility to work with them.

32 THE NODE VOLTAGE

In Chapters 1 and 2 we worked with branch voltages. A branch voltage is the
potential difference across the element in a branch. In like manner, we can define
a node voltage.

A node voltage is the potential difference between the given node and some
other node that has been chosen as a reference node. The reference node is
called the ground.

Current flows from the node with the higher potential to the node with
the lower potential.

119



120 CHAPTER THREE

a

vV

m
W
—
o)

MA

FIGURE 3.1 Ground node and
node voltages.

FIGURE 8.2 Determining the
node voltages from the branch
variables.

NETWORK THEOREMS

Although the choice of reference node is in fact arbitrary, it is most con-
venient to choose the node that has the maximum number of circuit elements
connected to it. The potential at this node is defined to be zero V, or ground-zero
potential. In electrical and electronic circuits, this node will usually correspond
to the “common ground” of the system, and is usually connected to the system
chassis. Assigning zero potential to the ground node is permissible because ele-
ments respond only to their branch voltages and not to their absolute terminal
voltages. Thus, an arbitrary constant potential may be uniformly added to all
terminal voltages across the circuit thereby permitting any node to be selected
as ground. A node will have a negative voltage if its potential is lower than that
of the ground node.

Figure 3.1a shows a circuit that we saw earlier in Chapter 2, and illustrates
some new notation. Node ¢ has been chosen as ground. The upside down “T”
symbol is the notation for the ground node. Nodes a and b are two other nodes
of this circuit. Their node voltages e, and e, are marked. Figure 3.1b illustrates
that the node voltages are measured with respect to the ground node.

Now, let us practice working with node voltages. Figure 3.2 shows our
drcuit from Figure 3.1 with a known set of branch voltages and currents. Let us
determine the node voltages ¢, and ¢;,. The node voltage ¢, is the potential dif-
ference between node a and node c¢. To find the potential difference, let us start
at node ¢ and work our way to node @ accumulating potential differences along
the path ¢ — a. Thus, starting at node ¢, we count an increase in potential of 2 V
as we traverse the voltage source and reach node a. Thus ¢, =2 V.

Similarly, ¢, is the potential difference between nodes b and c. Therefore,
starting at node ¢ and heading towards node b across the 1-Q2 resistor, we
notice a potential increase of 1.5 V. So ¢, = 1.5 V.

Notice that from KVL, a given node’s voltage should be the same irrespec-
tive of the path along which voltages are accumulated. Thus, let us confirm
that the value of ¢, that is obtained by taking the path ¢ - a — b is
the same as that obtained by taking the direct path ¢ — b. Starting at ,
we first accumulate the voltage of 2 V as we cross the voltage source and reach
node a. Then, proceeding towards node b, we notice a 0.5-V drop across the
1-Q resistor, resulting in a 1.5-V value for e, as seen earlier.

As we will see shortly, the node method will determine all the node voltages
in a circuit. Once node voltages are known, we can readily determine all the
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branch variables. As an example, Figure 3.3 shows our circuit from Figure 3.1
with a known set of node voltages. Let us determine the values of the branch
variables.

Let us first determine the value of v4. The branch voltage v; is the potential
difference between the nodes a and b. In other words,

NN=e—¢=2V-15V=05V.

We need to be careful with voltage polarities as we obtain branch voltages by
taking the difference of a pair of node voltages. As depicted in Figure 3.4, the
relationship between the branch voltage v, and node voltages v, and v, is
given by

Vg = Vg — Up (3.1)
Intuitively, if v, > v}, then v, is positive when its positive polarity coincides
with the node with voltage v,.

Similarly, noting that the potential of the ground node is taken as 0 V,
v=e —e=2V-0V=2V

and

mw=u35=¢—e=15V-0V=15V.

The branch currents are easily determined from the branch voltages and
element laws as:

=L —05A
10

=2 _15A
19

iy = —i; = —0.5 A
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FIGURE 3.3 Determining the
branch variable values from node
voltages.
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FIGURE 3.4 Branch and node
voltages for the element are
related as v, = va — v
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FIGURE 8.5 Circuit for
determining node voltages.
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and

i3=—1A.

EXAMPLE 3. NODE VOLTAGES Determine the node voltages corre-
sponding to nodes ¢ and b for the circuit in Figure 3.5. Assume that g is taken as the
ground node.

Let v, and v, denote the voltages at nodes ¢ and b, respectively. To find v, let us follow
the path g — f— c¢. Accordingly, there is a 1-V increase in potential from g to £, and a
further —2-V “increase” from f to ¢ resulting in an accumulated potential of —1 V at c.
Thus v, = -1 V.

Similarly, because the potential at node b is 4 V higher than that at node ¢, we get

vp,=4V+0y,=4V-1V=3V.

EXAMPLE 3.2 BRANCH VOLTAGES Determine all the branch volt-
ages for the circuit in Figure 3.6 when the node voltages are measured with respect
to node e.

We find each of the branch voltages by taking the difference of the appropriate node
voltages. Let us denote the voltage of node 7 as v;:
=y —y=-1V

m=vp,—0,=2V

n=v,—v.=—-1V
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FIGURE 3.6 Circuit for
determining branch voltages.

Va=U;—Up,=1V

vs=v4—U,=1V

vg=vg—v.=—-2V

V7 =V — V. =—-3V.
Once all the branch voltages are known, the branch currents can readily be found from
the branch voltages and the individual element laws. For example, if the element with

the branch voltage v is a resistor with resistance 1 k€2, then its branch current #; defined
according to associated variables is given by

U1

= = —1 mA.
1k

i

Thus far, in this section, we have shown that once the node voltages
for a circuit are known, we can readily determine all the branch voltages by
applying KVL, and then the branch currents from the branch voltages and
element laws. Since we can determine branch currents from node voltages and
element laws, we can also write KCL for each of the nodes in a network in
terms of node voltages and the element parameters. Although our doing so
appears unmotivated at this point, we will make use of this fact in node analysis
in Section 3.3.

For example, consider the subcircuit shown in Figure 3.7. Let us write
KCL for Node 0 directly in terms of the node voltages ey, €1, 2, €3, and eq,
(defined with respect to some ground).

Let us start by determining the current through the resistance Ry into
Node 0. The branch voltage across the resistance Rj is given by applying

FIGURE 3.7 Circuit for writing
KCL.
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KVL as
el =er—e
where the negative polarity of ej is defined to be at Node 0. Thus, the current

i1 through the resistance Ry into Node 0 is given by using the element law
for a resistor as

In terms of the node voltages,
. €1 — €
ih=—.
Ry

We can determine the currents into Node 0 through the other resistors
in a similar manner:

. € — €
= R,
. e —e
13 = R3
; _e4p—e
TR

We can now write KCL for Node 0 in terms of node voltages and element
values as

e1—e e —e e—e e4—e
+ + + =

0. 3.2)
Ry Ry R;3 R4

EXAMPLE 3.3 KCL Show that the node with voltage ¢ = 7 V in Figure 3.8
satisfies KCL.

For KCL to be satisfied at the node with node voltage e, the currents leaving the node
must be zero. In other words

(7—0)V+(7—O)V
1Q 7 Q

2A+ —10 A

must be 0. It is easy to see that this expression equals 0, and so KCL is satisfied.
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EXAMPLE 3.4 MORE KCL Figure 3.9 shows a portion of a circuit con-
taining three nodes: 1, 2, and 3. The node voltages with respect to some ground are
shown.

1.  Write KCL for Node 2 in Figure 3.9 in terms of the node voltages and element
values.

2. Determine the current I through the current source.

KCL for Node 2 in terms of node voltages and element values is given by:

3Vv-7V 3V-7V 3V-8V

I=0.
4 kQ * 1kQ * 1kQ *

Simplifying, we obtain I = 10 mA.

In summary, a voltage is always defined as the potential difference between
a pair of points — the two branch terminals for a branch voltage, and two nodes
for a node voltage. Accordingly, voltage measurement instruments have two
leads — one to connect to the node in question and one to the reference node
or ground. Thus, when we refer to a node voltage, we are also making implicit
reference to a common ground node.

Interestingly, the significance of potential differences between pairs of
nodes is easily illustrated with the example of a person hanging from a high
voltage line. Although we do not recommend that you try this, a person hang-
ing from a high voltage line is safe as long as no part of their body touches the
ground. However, a deadly current would flow if the person were to touch the
ground or another wire at a different potential.

Node voltages will be used in the next section as the variables in the node
method. The node method will solve for the node voltages, which as we saw
in this section, are sufficient to determine all the branch voltages and currents.

33 THE NODE METHOD

Perhaps the most powerful approach of circuit analysis is referred to as node
analysis. Node analysis is based on the combination of element laws, KCL, and
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FIGURE 3.9 Portion of a circuit
containing three nodes.
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FIGURE 3.10 A resistive circuit.
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KVL, just as was the basic approach presented in Chapter 2. Thus, it introduces
no new physics, and it processes exactly the same information. However, node
analysis organizes the analysis of a circuit in a manner that yields a relatively
manageable problem, and this is what makes it particularly powerful.!

Let us illustrate the method with an example. Suppose we wish to find
the voltage across and the current through resistor R; in the circuit shown
in Figure 3.10. Notice that the circuit in the figure is identical to the one we
analyzed in Figure 2.56 using the basic method, and therefore node analysis of
it must yield the results in Equations 2.151 and 2.147 for the branch voltage
and current corresponding to Ry. For node analysis, instead of defining voltage
and current variables for each element in the network, we will choose node
voltages as our variables.

As discussed in the previous section, since node voltages are defined with
respect to a common reference, we first need to choose our reference ground
node. While any node may be selected as the ground node, some nodes are
more useful as ground nodes than others. Such useful nodes include those
with the maximum number of circuit elements connected to it. Another useful
ground node is one that connects to the maximum number of voltage sources.
Sometimes the operation of a circuit may be more intuitively understood with
a particular selection of the ground node. Alternatively, voltage measurements
are often more easily or safely made with respect to a certain node and so that
node might naturally be selected as the ground node.

One choice of ground node and a corresponding set of node voltages is
defined in the figure. Node 3 is a good choice because it has three branches
and it connects directly to the voltage source. Since the independent voltage
source has a known voltage V, we can directly label the voltage of Node 1 as V
using the element law for an independent voltage source. Thus, we have one
unknown node voltage e. Because node voltages identically satisfy KVL, it is not
necessary to write KVL. To demonstrate this point, let us write KVL around
the loops. Doing so, we find

—V+{V—-e+e=0 3.3)
—e+e=0. (3.4)
Both of these equations are identically zero for all values of the node voltage

variables: As promised, this choice of voltage variables automatically satisfies
KVL. So to solve the circuit it is not necessary to write KVL. Instead, we

1. While node analysis is generally quite simple, it is complicated by the presence of floating
independent voltage sources and by the presence of dependent sources. Note that a floating inde-
pendent voltage source is a source that has neither terminal connected to ground, neither directly
nor through one or more other independent voltage sources. Consequently, we first introduce
node analysis without these complications, and then treat these complications in succession.
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will directly proceed with writing KCL equations. Furthermore, to save time
the KCL equations can be written directly in terms of the node voltages and
the resistors’ values. Since we have only one unknown, e, we need only one
equation. Hence, at Node 2,

eV, 10 (3.5)
Ry Ry

Notice that the preceding step is actually two substeps bundled into one:
(1) writing KCL in terms of currents and (2) substituting immediately node
voltages and element parameters for the currents by using KVL and element
laws. By doing these two substeps together, we have eliminated the need to
define branch currents.

Note that in one step we have one unknown and one equation, whereas by
the KVL and KCL method of Chapter 2 we would have written eight equations
in eight unknowns. Further, note that both the device law for every resistor and
all independent statements of KVL for the circuit have been used in writing
Equation 3.5.

The voltage e can now be determined easily as

. (i N i) e v (3.6)
Rl R R,

It is wise to check dimensions at this point: Each term in this exam-
ple should have the dimensions of current. Our equation can be somewhat
simplified by rewriting in terms of conductance rather than resistance:

e(G1 + Go) =14 VG 3.7)

where Gy = 1/Ry and G, = 1/R;. Simplifying further,

1 G
e= I+ —2 v (3.8)
Gi+G  Gi+G
In terms of resistances,
R{R R
12 g 2 (3.9)

e= + V.
Ri+R, Ri+R

Once we have determined the values of the node voltages, we can easily
obtain the branch currents and voltages from the node voltages by using KVL
and the constituent relations. For example, suppose we are interested only

CHAPTER THREE
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FIGURE 3.11 A resistive circuit.
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in vy, the voltage across Rq, and 71, the current through Ry, as illustrated in
Figure 3.11. Then

1 G
n=V-e=— I+ z_y (3.10)
GL+G G+ G
and
G GG
H=(V-0G = ——2 [+ 172 vy (3.11)

G+G G+G

In terms of resistances, v| and #; are given by

RiR R
n=—-—==2 gL vy
Ri+R; Ri+R;
and
. Ry 1
n =

- I+
Ri+R Ri+R;

For completeness, let us go ahead and determine the other branch voltages
and currents as well:

w=V (3.12)
1 G
h=13=e= I+ —1 vy (3.13)
Gi+G Gi+G
G G2
h=—ij=—2 | (G- —1L_)v (3.14)
G+ G G +G
G GG
i = eGy = EE S b I (3.15)

Gi+G  Gi+G
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i3 = —1 (3.16)

This completes the node analysis.

A comparison of the equations for the branch voltages and currents (Equa-

tions 3.10 through 3.16) with the corresponding Equations 2.147 through 2.152
in Chapter 2 shows that the node analysis has resulted in the same expressions
for the branch variables as did the direct analysis presented. However, the node
analysis obtained these results in a much simpler manner. The direct analysis
of Chapter 2 involved the solution of eight simultaneous equations, namely
Equations 2.139 through 2.146, while the node analysis involved the solution
of only one equation, namely Equation 3.5, and the explicit back substitution
of its solution.

In summary, the specific steps of the node method can be written as:

1.

Select a reference node, called ground, from which all other voltages will
be measured. Define its potential to be 0 V.

Label the potentials of the remaining nodes with respect to the ground
node. Any node connected to the ground node through either an
independent or a dependent voltage source should be labeled with the
voltage of that source. The voltages of the remaining nodes are the
primary unknowns and should be labeled accordingly. In this chapter we
will denote the unknown node voltages by the symbol e. Since there are
generally far fewer nodes than branches in a circuit, there will be far fewer
primary unknowns to determine in a node analysis.

Write KCL for each of the nodes that has an unknown node voltage (in
other words, the ground node and nodes with voltage sources connected
to ground are excluded), using KVL and element laws to obtain the
currents directly in terms of the node voltage differences and element
parameters. Thus, one equation is written for each unknown node
voltage.

Solve the equations resulting from Step 3 for the unknown node
voltages. This is the most difficult step in the analysis.

Back-solve for the branch voltages and currents. More specifically, use
node voltages and KVL to determine branch voltages as desired. Then,
use the branch voltages, the element laws, and KCL to determine the
branch currents, again as desired.

At this point, it is instructive to make some general comments about the

equations produced by the node method. Although the actual collection of con-
ductance terms in Equation 3.8 is not particularly educational in this somewhat
contrived example, the general form of the equation is useful. The right-hand
side has two terms, one for each source, and these source terms enter the
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FIGURE 3.12 A resistive circuit.
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equation as sums, and not products. Equations will always be of this form if the
circuit is made up of linear elements. In fact, we use this property to define a
linear network: A network is linear if the response to an input axy + bx; is the
same as a times the response to x| alone plus b times the response to xy alone.
That is, if f(x) is the response to some excitation x, then the system is linear if
and only if

flaxy + bxy) = af (x1) + bf(x2). (3.17)

331 NODE METHOD: A SECOND EXAMPLE

As a second, and slightly more complex, example of node analysis, consider
the circuit shown in Figure 3.12, which is the same as that shown in Figure 2.46
except for the addition of an independent current source. Specifically, suppose
we wish to find the voltage across and the current through resistor R3.

The first two steps in its node analysis, namely the selection of a ground
node and the labeling of its node voltages, are already complete. As shown in
Figure 3.12, Node 4 is selected as the ground node, Node 3 is labeled with the
known voltage V of the independent source, and Nodes 1 and 2 are labeled
with the unknown node voltages e¢; and e, respectively. Node 4 is a good
choice for the ground node because it joins the largest number of branches and
connects directly to the voltage source.

Next, following Step 3, we write KCL for Nodes 1 and 2 in terms of the
unknown node voltages. This yields

(V—q)+&2—Q)_fL:0 (3.18)
Rq R3 Ry

for Node 1, and

(1 —e) e

+1=0 (3.19)
R; R4

for Node 2.

Note that in one step we have generated two equations and two unknowns,
whereas by the KVL and KCL method of Chapter 2 we would have written
twelve equations in twelve unknowns. The voltages ¢; and e, can now be

3 Ry 1 Ry 2
T YW N+ W
e

VST ¢
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determined by standard algebraic methods. First, rewrite the equations with
the source terms on the left-hand side of the equations, and the dependent
variables on the right:

1% 1 1 1
—=el(—+—+—>—e—2 (3.20)
Ry Ri Ry R R3
11
Iz_ﬁ+@<_+_v- (3.21)
Rs Ry Ry

Rewriting in terms of conductance to simplify our calculations:

G1V=1e1(G1 + G+ G3) — aaG3 3.22)
I=—e1G3 + e2(G3 + Ga). (3.23)

Application of Cramer’s rule (see Appendix D), yields

VG1(Gs + Gy) + IG3

el = . (3.24)
(G1+ G2 + G3)(G3 + Gy) — Gy
_ V(IG1G; + G1Gy) + IG3 (3.25)
G1G; + G1Gs + GoG3 + GyGy + G3Gy .
Similarly, we can obtain e as
G1G3V+ (G G G3)I
o — 1G3V+(G1 + G2 + G3) (3.26)

(G1 + G+ G3)(G3 + G4) — G5

All node voltages are now known, and from these node voltages all branch
variables in the circuit can be explicitly determined by using KVL and the con-
stituent relations. For example, suppose the voltage across R3 is v3, and the
current through Rj is 73, as illustrated in Figure 3.13. Then

U3 =¢€1 —¢€
+ V3 -

R, 1 Ry 2
W

CHAPTER THREE

FIGURE 3.13 The resistive
circuit.
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and

. €1 —e
3= —o.
R;

Since the circuit in Figure 3.12, with I = 0, is the same as the circuit in
Figure 2.46, the analysis of the two circuits (with I = 0) using the basic and
the node methods should yield the same results. Accordingly, the reader might
want to compare the values for v3 and 73 obtained here, with those obtained in
Equations 2.135 and 2.131.

This example illustrates an important circuit property: The structure of a
node equation is closely related to the topology of the circuit. We will briefly
introduce this relationship here, and spend some more time on this topic in
Section 3.3.4. First, let us write our two node equations 3.22 and 3.23 in
matrix form:

G+G+G -G e G 0
1+ G2+ G3 3 1 _ & [V} . (3.27)
—-G3 Gi+Gsl|l|e 0o 1|1
The matrix equation is in the form
Ge=Ss (3.28)

where e is a column vector of unknown voltages and s is the column vector of
known source amplitudes. G is called the conductance matrix and S is called
the source matrix for reasons that will be apparent shortly. In Equation 3.22,
written at the e; node, we note from Figure 3.12 that the coefficient of the ¢;
term (the first term in the first row of the G matrix) is the sum of the conduc-
tances connected to the ey node. Similarly in Equation 3.23, the coefficient of
the e, term (the second term in the second row of the G matrix) is the sum
of the conductances connected to the e, node. (These terms are often called
the “self” conductances.) The off-diagonal coefficients represent conductances
connected between the corresponding nodes, the “mutual” conductances. In
Equation 3.22, for example, the coefficient of the e, term (the second term in
the first row of the G matrix) is the mutual conductance between the e¢; node
(because this is the e; equation) and e). For linear resistive circuits, the off-
diagonal terms are negative, assuming that the equations have been structured
to make the main-diagonal terms positive.

It is self-evident that with circuits made up of linear resistors, the mutual
conductance e; to e, must be the same as the mutual conductance from e; to
e1. Hence the two off-diagonal coefficients in the node equations are identical.
More generally, we expect node equation coefficients to exhibit mirror symme-
try about the main diagonal for linear resistive circuits, as is evident from the G
matrix. These helpful topological constraints are destroyed if we do not apply
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KCL at the nodes defined by the node voltages. Such a procedure is mathemat-
ically correct (the new equations are derivable by algebraic manipulation of the
original equations, Equations 3.22 and 3.23) but the symmetries are gone.

Interestingly, the SPICE software package uses the node method to solve
dircuits. The program takes as input a file containing a description of the circuit
topology and by systematically following the node method produces a matrix
equation such as that in Equation 3.27. It then solves for the vector of unknowns
e using standard linear algebraic techniques.

EXAMPLE 3.5 NODE METHOD Determine the current 7 through the
5-Q resistor in the circuit in Figure 3.14.

Let us use the node method to solve the circuit. As Step 1 of node analysis, we will
choose Node 1 as our ground node as depicted in Figure 3.14.

Step 2 labels the potentials of the remaining with respect to the ground node. Figure 3.14
shows such a labeling. Since Node 2 is connected to the ground node through an
independent voltage source, it is labeled with the voltage of the source, namely 1 V.
Node 3 is labeled with a node voltage e and Node 4 is labeled with a node voltage e,.

Next, following Step 3, we write KCL for Nodes 3 and 4. KCL for Node 3 is

e1—1 e el —e
1 _’_71_’_1 2
3 4

+2=0

and that for Node 4 is

29,2 120
5
Following Step 4 we solve these equations to determine the unknown node voltages.

This yields

2+

€1 =065V
and
e =475V.
2Q
1V 3Q ¢

2 3

—
<
~
e}
AN

vYy
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FIGURE 3.14 Determining the
unknown current /.
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We can now determine 7 as

i:?zOBSA.

EXAMPLE 36 NODE METHOD SOLUTION OF THE
VOLTAGE-DIVIDER CIRCUIT Lestyou think the node method is appli-
cable only to complex circuits with many nodes, let us apply the node method to the
simple voltage-divider circuit in Figure 3.15 to obtain the voltage vo.

The ground node is selected as shown in Figure 3.15. The circuit in Figure 3.15 has
one unknown node voltage, vo, also as marked in the figure. So, Steps 1 and 2 are
complete.

Following Step 3, we write KCL for the node with the unknown node voltage:

vo—9 vo
1kQ 2k

0.

Multiplying throughout by 2k we obtain
200 —184vo =0
which yields

vo=6V.

EXAMPLE 3.7 FIND NODE VOLTAGE USING THE NODE
METHOD Determine the node voltage vo in the circuit shown in Figure 3.16 using
the node method.

The circuit in Figure 3.16 has only one unknown node voltage, vo, as marked in the
figure. Figure 3.16 also shows a ground node, and so Steps 1 and 2 are complete.

Following Step 3, we write KCL for the node with the unknown node voltage:

vo—6

vo—35
1kQ 1kQ

Multiplying throughout by 1 k2 we obtain

vo—S5S4+vo—6=0
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which simplifies to
L _SV+6V
°T T
or
vo=55V.

The circuit in Figure 3.16 is called an adder circuit since vo is proportional to the sum
of the input voltages.

EXAMPLE 3.8 MORE ON THE NODE METHOD Determine the
node voltage v in the circuit in Figure 3.17 using the node method.

The ground node and unknown node variables are marked as shown in Figure 3.17.
Next, following Step 3, we write KCL for the node with the unknown voltage.

Then, we write KCL for the node with the unknown node voltage:.

v—2
3

=3V.

Thus,
v=11V.

Compare the node analysis shown here with the basic method applied to the same
circuit on page 190.

KM EXAMPLE 3.9 EVEN MORE ON THE NODE METHOD

332 FLOATING INDEPENDENT VOLTAGE SOURCES

Node analysis as described here does not work for circuits that contain floating
independent voltage sources such as the one shown in Figure 3.20. A floating
independent voltage source is a voltage source that has neither terminal con-
nected to ground, neither directly nor through one or more other independent
voltage sources. The reason node analysis does not work is that the element
law for an independent voltage source does not relate its branch current to its
branch voltage. Therefore, it is not possible to complete Step 3 of node analysis
if the circuit contains a floating independent voltage source. In this case, it is
necessary to modify the node analysis slightly.

To apply node analysis to a circuit containing a floating voltage source we
must realize that the node voltages at the terminals of the source are directly
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FIGURE 3.17 A circuit with two
independent sources.
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FIGURE 3.20 A floating
independent voltage source and
its treatment as a super node.
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Super node

related by the element law for that source. For example, the application of KVL
to the circuit in Figure 3.20 shows that

Because of this, the number of unknown node voltages in the circuit can be
immediately reduced by one since ¢; and e can be determined directly from
each other using Equation 3.32. Consequently, the number of independent
statements of KCL needed to determine the unknown node voltages can sim-
ilarly be reduced by one. Thus, Nodes 1 and 2 in Figure 3.20 must together
contribute one statement of KCL to the first part of Step 3 of the node analysis
(namely, writing KCL for each of the nodes that has an unknown node voltage).
Further, this single statement of KCL should not involve #s since is cannot be
determined from the element law of the voltage source in the second part of
Step 3 (namely, using KVL and element laws to obtain the currents directly in
terms of the node voltage differences and element parameters).

To derive the desired statement of KCL for Nodes 1 and 2, we draw a
surface around both nodes, enclosing what is referred to as a super node in
the process. Then, we write KCL for the super node. In the case of Figure 3.20,
KCL applied to the super node yields

h+n+i3+i4=0 (3.33)

for the first part of Step 3. Note that this statement of KCL is nothing more
than the sum of

n+on+is=0 (3.34)
i34 i4 —is =0, (3.35)
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which are the individual statements of KCL for Nodes 1 and 2. Following this,
in the second part of Step 3, the currents are eliminated by substituting node
voltages and element parameters in their place. In our example, i1 and 7, are
determined using e; and the parameters of the elements through which 7; and
iy flow. Similarly #3 and 74 are determined using e; + V and the parameters of
the elements through which i3 and i4 flow, with e; serving as the one unknown
node voltage.

Alternatively, i and 7 can be determined using e; — V, and 73 and i4 can be
determined using e;, with e, serving as the one unknown node voltage. Finally,
it should be recognized that a floating string of independent voltage sources is
handled in exactly the same manner as a floating isolated independent voltage
source.

Let us illustrate node analysis applied to a circuit with a floating independent
voltage source, and hence a super node, using the circuit shown in Figure 3.21.
The circuit is the same as that shown in Figure 3.10 except that Node 2 is
now selected as the ground node, and the node voltages for Nodes 1 and 3
are defined differently. The super node containing the floating voltage source
is also marked in the figure.

The primary unknown in the circuit, ¢, is now the voltage at Node 3. Note
also that the voltage at Node 1, the other node in the super node, is labeled
in terms of e. By defining the ground node and labeling the node voltages, we
have completed Steps 1 and 2 in the node analysis.

Next we perform Step 3 for the super node. This yields

e+V e
4+ —+1=0. 3.36
R R (3.36)

In Equation 3.36, (¢ + V)/R is the current (written in terms of node voltages
and element parameters) out of the super node through the branch containing

~ . —

Super node

CHAPTER THREE

FIGURE 3.21 A circuit with
a floating independent voltage
source.
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FIGURE 3.22 Another circuit
with a floating independent voltage
source.
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R;1. Similarly, e/R; is the current out of the super node through Ry, and Iis the
current through the third branch from the super node.
Following Step 4, the solution of Equation 3.36 is

RiRy R

S - V. (3.37)
Ri+R, Ri+R

Finally, to complete the node analysis, the solution for e could be used in Step 5
of node analysis to determine the branch voltages and then the branch currents
in the circuit. While we will not do this here, it is worthwhile to see that it will
yield the same results as in Equations 3.10 through 3.16, providing that the
branch currents and voltages are defined in the same manner. To see that this
will be the case, observe that e in Equation 3.37 is the same as in Equation 3.9
except for a minus sign, owing to the change in the sign of e as defined in
Figures 3.10 and 3.21.

EXAMPLE 3.10 FLOATING INDEPENDENT VOLTAGE
SOURCE As another example of node analysis applied to a circuit with a floating
independent voltage source, consider the circuit shown in Figure 3.22. In this circuit, the
voltage source having value V3 is the only floating independent voltage source. Because
the source having value V7 is connected to ground at Node § it is not a floating source,
hence Node 1 is labeled with the node voltage V7. Similarly, the source having value V,
is not a floating source because it is connected to ground through the known voltage
V1, hence Node 2 is labeled with the known node voltage Vi + V5. Thus, only the
voltages at Nodes 3 and 4 in the super node are unknown. In Figure 3.22, Node 3 is
labeled with the unknown node voltage ¢, and so Node 4 is labeled with the node voltage
e+ Vi.

Super node
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To continue the node analysis of the circuit in Figure 3.22, we perform Step 3 for the
super node. This yields

Gille+V3)—(Vi+ V)l + Gale— V1) + Gze=0. (3.38)

Here, conductances have been used for convenience. Following Step 4, the solution of
Equation 3.38 is

(G1+G)Vi+ GV — GV

(3.39)
Gi+G+ G

Finally, to complete the node analysis, the solution for e could be used in Step 5 to
determine the branch voltages and then the branch currents in the circuit. We will not
do this here.

333 DEPENDENT SOURCES AND THE NODE
METHOD

A dependent source will also complicate the node analysis previously described
when its element law does not easily relate its branch current to its branch
voltage. In this case, it will again not be possible to complete Step 3, and so it is
again necessary to modify the node analysis slightly. Since there are four types
of dependent sources, and the branch currents and voltages that control them
can appear through or across many different types of elements, it is impractical
to treat each case separately in its most efficient manner. As a compromise,
we present here a single method that treats all cases of dependent sources, and
illustrate how this method can be made more efficient in a few illustrative cases.
We will illustrate the method using the circuit in Figure 3.23, which contains a
dependent current source, whose current is some function of a branch variable
i as shown in the figure.

Our method of applying node analysis to a circuit containing dependent
sources begins by assuming that we know the value of each dependent source.
This assumption allows us to treat each dependent source as an independent
source, and carry out a node analysis of the circuit as described in the previ-
ous subsections. For example, in the case of a dependent current source (see
Figure 3.23), we replace the dependent source with an independent current
source with some assumed current, say I (see Figure 3.24), and carry out our
usual five-step node analysis. As part of this analysis we solve for the branch
variables that control the dependent sources in terms of the assumed source
values.

Of immediate interest are the expressions for the branch variables that
control dependent sources. In our example, this branch variable is 7. Next, we
substitute these expressions for the controlling variables into the element laws
for the dependent sources, and self-consistently solve for the actual values of the
dependent sources. Continuing with our dependent current source example of
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FIGURE 3.23 A circuit
containing a dependent current
source.

&

FIGURE 3.24 Replacing the
dependent current source with an
independent current source with
an assumed current /.
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Figure 3.23, suppose that the expression for 7 is some function of the assumed
current I and is of the form

i= gD, (3.40)

We substitute this expression for the branch variable into the element law
for the dependent current source as

1= f(i) = flgD) (3.41)

and solve for I. The solution for I will not contain the variable i. Note that if the
expression for 7 shown in Equation 3.40 does not contain , then no additional
work needs to be done to solve for I, since f(g(I)) is itself a solution for L.
Finally, we back-substitute the actual values of the dependent sources —
in other words, the solution for I — into the original node analysis, thereby
completing the analysis in total.
As a concrete example, suppose the dependence source function

f(i) = 10..

Further, suppose we obtain the following expression for i as a function of the
assumed current I:

1
i=gll)=~-+2A.
g 5

Then, according to Equation 3.41,
1
I=f(g) =10 [E —|—2A:|.

Solving, we get
I=-5A

As expected, the solution for I does not contain the variable .

This modification to the original node analysis is not always the most
efficient method of analysis, but it always works. However, when the element
laws for the dependent sources can be easily expressed in terms of the node
voltages, it is possible to take a more intuitive approach and apply the simple
node analysis described in Section 3.3 without modification. In our example of
Figure 3.23, suppose that the circuit on the left has the node voltages shown
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in Figure 3.25. In this case, it is easy to see that the element law for the current
source can be easily written in terms of the node voltages as

fi =(“22)

and our simple node analysis can be applied without modification. We will do
examples using both the modified and unmodified versions of the node method.

To illustrate our modified method of node analysis for a circuit containing
a dependent source, consider the analysis of the circuit shown in Figure 3.26.
This circuit has one dependent source, namely a CCCS. To analyze this circuit
using the node method, we first replace its CCCS with an independent current
source carrying a known current, say I, and analyze the resulting circuit. The
resulting circuit, however, is exactly that shown in Figure 3.10, which we have
already analyzed using the node method in Section 3.3. Note that the value I'in
Figure 3.10 replaces the value a7y in Figure 3.26. Thus, we are partially done
with the analysis of the circuit in Figure 3.26.

The results of our analysis of the circuit in Figure 3.10 appear in Equa-
tions 3.10 through 3.16. Let us copy them here for convenience after replacing
conductances with resistances.

v=V (3.42)
R
o= —2 - L (3.43)
Ri+Ry Ri+Ry
R{R R
Ry +Ry Ri+Ry
i = — Ry I+ L (3.45)
Ri+R Ri+R
R{R R
h=v3= —12 42y (3.46)
Ri+R; Ri+R
R 1
h=_——1 4 (3.47)
Ri+R; Ri+Ry
iy = —1I. (3.48)

Of particular interest from that analysis is the value of 7; because 7; controls
the CCCS in Figure 3.26. Using the result for 71 from Equation 3.45 we next
write

(3.49)

R 1

I+
Ri+R Ri+R
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FIGURE 3.26 A circuit with a
dependent source.
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The first equality in Equation 3.49 expresses the equality of the CCCS in
Figure 3.26 and its surrogate independent current source in Figure 3.10. The
second equality follows from the substitution for #; using Equation 3.45 from
the node analysis of the circuit in Figure 3.10. Since #; is determined in terms
of I during that analysis, Equation 3.49 becomes an implicit equation that must
be solved for I. This solution yields

o

|J=—— V. (3.50)
Ri+(1+a)Ry

The actual value of the CCCS is now known.
Finally, we back-substitute Equation 3.50, namely the actual value of I, into
Equations 3.42 through 3.48 to obtain

v=V (3.51)
1
h=—————V (3.52)
Ri+ 1+ )Ry
R
N=— 1 vy (3.53)
Ri+ {1+ a)Ry
1
j=— "V (3.54)
Ri+ 1+ a)Ry
=13 = M (3.55)
Ri+ 1+ a)R,
1
e T* (3.56)
Ri+0+a)R,
i —“ (3.57)

=— V.
Ri+ 1 +a)Ry

This completes the analysis of the circuit in Figure 3.26.

While the preceding analysis is not terribly difficult, it can nonetheless be
carried out more efficiently in many cases. As mentioned previously, commonly,
it is possible to apply the simple node analysis described in Section 3.3 without
modification because the element law for the CCCS can be easily expressed in
terms of the node voltage e. To see this, we begin by performing Step 3 of
node analysis to write

e—V e V—e
— —«

-0 (3.58)
Ri R, R

for the node at which e is defined. Note that in the third term in Equation 3.58,
(V — e)/Rq has been substituted for 7.
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Next, following Step 4, we solve Equation 3.58 for e to obtain

1+ a)Ry

e=— "= (3.59)
Ri+ {1 +a)Ry

This result is the same as expressed in Equation 3.55. The remainder of

the node analysis, namely Step 5, then proceeds to yield Equations 3.51

through 3.57 directly. It is important to note, however, that the node anal-

ysis of circuits containing dependent sources cannot always be easily simplified

in this manner.

EXAMPLE 3.11 DEPENDENT CURRENT SOURCE NOW, let us
analyze a slightly different circuit containing a dependent source as shown in Figure 3.27.
The node voltages vo and vy are marked. The dependent current source supplies a
current

io =fx)
where we will consider two cases:
1. In the first case, x is the voltage vy, and the current
i0 = -Gy
2. In the second case, x is the current 7, and
i0 = —pi.

Let us suppose that we are specifically interested in determining vo as a function of vy
in both cases.

Let us consider the first case in which

10 = =Gy
v, R Vo
AAMAA o
YVYYY
l{ R, IR
,'[ i() =fix)
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FIGURE 3.27 Another
dependent current source circuit.
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Notice that i( is directly expressed in terms of a node voltage, and so we can apply our
simple node analysis technique without any modification, remembering, however, to
substitute the element law for the dependent source current when writing KCL for the
nodes with unknown voltages.

Since the ground and node voltages have been defined as shown in Figure 3.27, Steps 1
and 2 of node analysis are complete.

For Step 3, we write KCL at the node with the unknown voltage vo by summing the
currents into the node as follows:

v —vo vo
— + (=Guv) = —. 3.60
R (=Gmvr) Ry (3.60)

Notice that we have used the element law for the dependent current source, namely,
io = -Gy

to substitute for the current into the node from the dependent current source.

By simplifying Equation 3.60, we obtain:

(1 —= GuRp)Rr ’

(3.61)
Rp+Rp

vo =

We have thus expressed v as a function of v when io = —Gy,vy.

Let us now consider the second case in which
10 = —BiL.

Although not directly expressed in terms of a node voltage, it easy to see that ig can be
expressed in terms of a node voltage by substituting 77 = v/R; as follows:

. vr
io=—B—.
© 'BRI

Thus, as in the first case, we can apply our simple node analysis technique without any
modification. Going to Step 3 of node analysis, we write KCL at the node with the
unknown voltage vo by summing the currents into the node as follows:

u—vo L giy_ Yo (3.62)
Rp Ry Rp

Notice that we have used the element law for the dependent current source, namely,

to substitute for the current into the node from the dependent current source.
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By simplifying Equation 3.62, we obtain:

_gke

_ (1 p RI) Rp

vo=~—2 . (3.63)
Rp+Rp

We have thus expressed v as a function of vy when ip = —Bi].

KM EXAMPLE 3.2 A MORE COMPLEX DEPENDENT-
CURRENT SOURCE PROBLEM

EIM 334 THE CONDUCTANCE AND
SOURCE MATRICES ~

o 34 LOOP METHOD *

I EXAMPLE 3.13 LOOP METHOD

35 SUPERPOSITION

Suppose we make the circuit in Figure 3.12 one step more complicated by
adding a third source, as shown in Figure 3.33. Straightforward node analysis
following the procedure outlined by the node method yields

(Vi—e1)G1+ (Vo —e)Ga 4+ (e2 —e1)G3 =0 3.97)
(e —er)G3 — Gy +1=0. (3.98)

Collecting the source terms on the left side:

ViGi + VoG =¢1(G1 + G + G3) —erGs (3.99)
I=—e1G3+ e(G3 + Gy). (3.100)
Rl 2] R3 ey
YW YW
R,

+ FIGURE 3.33 A network with
R 1
G/D 4§ (*) three sources.
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Let us again find e;:

(ViG1 + V2Go)(Gs + Ga) + IG3

(G1+ G+ G3)(G3 + Gy) — G}

_ V1G1(G3 + Ga) + V2 Go(Gs + Gy) + IG;
G1G3 + G1Gs 4+ G2G3 + GGy + G3Gy4

(3.101)

e =

(3.102)

Again note the structure of this expression:

»  All denominator terms are of the same sign. Thus the denominator
cannot be made zero for any nonzero values of conductances. (If the
denominator could be made zero, we could get infinite e; for finite
sources values, a violation of conservation of energy.)

» Each term on the right consists of one source term multiplied by a
resistive (or conductive) factor. There are no products of source terms.

We now wish to translate these mathematical constraints to circuit
constraints, to find simpler methods for analyzing multi-source networks.
Specifically, we wish to find the terms in Equation 3.102, by inspection, from
Figure 3.33. The mathematics says that, because of linearity, the first term
remains unchanged if the other two sources are set to zero. We must now inter-
pret this statement in circuit terms. Mathematically, we wish to set variable V»
to zero, so in circuit terms we must set voltage source V> to zero. By definition,
source Vo must now be zero regardless of what current flows through it, that
is, it must be a short circuit. So in general, setting a voltage source to zero is
equivalent in circuit terms to replacing that source by a short circuit. Similarly,
setting I to zero means that no current can flow through that branch of the
circuit regardless of the terminal voltage. Hence setting a current source to zero
is equivalent in circuit terms to replacing that source by an open circuit. These
are two additional important circuit primitives. Applying these two concepts
to Figure 3.33, we can find the first term in Equation 3.102, that is, the part
of ey arising from source Vi, by forming a subcircuit from Figure 3.33 with V;
and I set to zero as shown in Figure 3.34a. Thus, in Figure 3.34a, e14 is the
voltage component of e; due to source V7 acting alone. Now e14 can be found
by inspection using the voltage-divider primitive:

Ry|I(R R
es =V, 2R3 + Ry) (3.103)
R1 +Ro[I(R3 + Ry)

where the two vertical lines are shorthand notation for “in parallel with.” The
numerator, for example, is Ry in parallel with the sum of R3 and R4. The
calculation is somewhat simplified if we use conductance instead of resistance.
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Using the conductance form of the voltage-divider relation (Equation 2.50),
we find

G
eia =V, !

1 (3.104)
G1+ G2 + G3G4/(G3 + Gy)

where the two conductances in series, G3 and G4 are calculated using
Equation 2.58. Both of these expressions are the same as the first term in Equa-
tion 3.102, after some manipulation. Note that the form of Equation 3.104 is
much simpler and more insightful than the forms in Equations 3.101 and 3.102,
because the derivation in terms of the voltage-divider primitive reveals the basic
structure of the circuit. But the main point of this development is to show that
the effect of source V1 on the node voltage e; can be found very easily by
forming a subcircuit in which V, and I are set to zero.

By the same argument, the effect of V> and I on e; can be calculated
using the subcircuits shown in Figure 3.34b and 3.34c, respectively. For V>,
sources V1 and [ are set to zero, as shown in Figure 3.34b. Clearly circuits 3.34a
and 3.34b are identical in topology, so the effect of V> on ¢; can be written from
Equation 3.103 by interchanging Ry and Ry, or Gy and G in Equation 3.104.
This will give us e;p, the component of e; due to voltage source V5.

To find the effect of , it is necessary to set both V; and V; to zero, that
is, replace each by a short circuit, as shown in Figure 3.34c. Now e can be
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FIGURE 3.34 Subcircuits.
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found by noting that the total conductance of the path to the left of the source
is, from Equations 2.94 and 2.58,

(G + G)Gs

_ T )t (3.105)
G+ G+ G

Hence, from the current divider relation, the current through R3 is

GI
iRy = . (3.106)
G+ Gy
Now e ¢ can be found from the relation
IR,
elc= —>— (3.107)
e GL+G
- G (3.108)

(G + G4)(G1 + G2)
which, on substitution of Equation 3.105 and simplification, reduces to

1G5
(G1 4+ G2)G3 + G4(G + Go) + G3Gy

elc = (3.109)

This is equivalent to the third term in Equation 3.102.

This example illustrates both the use of superposition to solve a network
with several sources, and also shows how primitives (elementary procedures)
can be used to solve circuits by inspection. Generalizing, we note that any messy
linear network — the one in Figure 3.35, for example — must somehow yield
to straightforward network analysis and lead to a set of equations of the form

ViGu+ VoG +---+h+--=eGi1 +Gp+ - - (3.110)
ViGy,+--- =161+ Gy + - -
ViGsg+ -+ coo=e1G31+ - -

These have been written in the standard form, with source terms on the
left in each equation. All of the unknown variables appear on the right side, each
multiplied by conductances: the sum of the appropriate “self” conductances
for terms along the main diagonal, and the sum of the appropriate “mutual”
conductances elsewhere.

Further, the solution of such a set of linear simultaneous equations will
always result in an expression of the general form of Equation 3.102, in which
the voltage or current we are trying to evaluate will be equal to a sum of terms
each involving only one source.
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The superposition theorem thus states that in a linear network with a num-
ber of independent sources, the response can be found by summing the responses
to each independent source acting alone, with all other independent sources set to
zero. These individual responses can be found very readily by forming subcircuits
in which all independent sources except one are set to zero.

Accordingly, the superposition method for linear networks can be stated
as follows:

The Superposition Method

1. For each independent source, form a subcircuit with all other
independent sources set to zero. Setting a voltage source to zero implies
replacing the voltage source with a short circuit, and setting a current
source to zero implies replacing the current source with an open circuit.

2. From each subcircuit corresponding to a given independent source, find
the response to that independent source acting alone. This step results
in a set of individual responses.

3. Obtain the total response by summing together each of the individual
responses.

EXAMPLE 3.14 SUPERPOSITION ANALYSIS OF AVERAG-
ING CIRCUIT Show that the node voltage vy in the circuit shown in Figure 3.36
is the average of the two input voltages using the method of superposition.

By the method of superposition, the voltage vy can be determined by summing the
responses of each of the sources acting alone. We will first obtain vs, the response
of the 5-V source acting alone. The subcircuit corresponding to the 5-V source acting
alone is shown in Figure 3.37. Notice we have shorted the 6 V source.

By the voltage divider action, we can write

1k S

vy — ——— —
BT Tke + 1k 2
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FIGURE 3.35 A resistive
network.

Yo

1 kQ

FIGURE 3.36 Circuit for
performing superposition analysis.
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FIGURE 3.87 Circuit with 5-V
source acting alone.
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FIGURE 3.38 Circuit with 6-V
source acting alone.

FIGURE 3.39 Circuit with two
independent sources.
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Next, we obtain vyg, the response of the 6-V source acting alone. The subcircuit corre-
sponding to the 6-V source acting alone is shown in Figure 3.38. In this case, we have
shorted the 5-V source.

Again, by the voltage divider action, we can write

1kQ 6

U = - =
% T TkQ + 1 ke 2

We now sum the two partial responses to obtain
546

UQ:I/05+U06=T=5.5V.

It is easy to see that vy is the average of the two input voltages.

EXAMPLE 3.1§ APPLYING THE METHOD OF SUPER-
POSITION Figure 3.39 shows a circuit containing an independent voltage source
and an independent current source. Determine the current .

We will use the method of superposition to solve this circuit in two different ways. First,
we will obtain the node voltage e using superposition, and then, using the value of e,
obtain the current I. Our second approach will directly determine I using the method of
superposition.

First Method

Let us first determine the value of e using superposition. By the method of superposi-
tion, the voltage e can be determined by summing the responses of each of the sources
acting alone. We will first obtain ¢,, the response of the voltage source acting alone.
The subcircuit corresponding to the voltage source acting alone is shown in Figure 3.40.
Notice we have turned the current source off by open-circuiting it.
By the voltage divider action, we can write
2
eg=1—=—
242 2

2Q e 2Q
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Next, we obtain ¢;, the response of the current source acting alone. The subcircuit
corresponding to the current source acting alone is shown in Figure 3.41. In this case,
we have shorted the voltage source.

We first simplify the subcircuit by replacing the pair of 2- resistors in parallel with an
equivalent 1-€ resistor as depicted in Figure 3.41. Then, since the 1-A current flows
through each of the resistors, the voltage across the 1- resistor is equal to ¢;. In other
words,

e=1Ax1Q=1V.

We now sum the two partial responses to obtain the total response e. That is,
1
e=¢,+e = iV—i—lV:l.SV.

We can now determine I as

I=-% —075A.
2Q

Second Method

Next, we will directly determine I using superposition. Superposition says that I can be
determined by summing the currents generated by each of the sources acting alone. We
will first obtain I,, the current due to the voltage source acting alone. The subcircuit
corresponding to the voltage source acting alone is shown in Figure 3.42.
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FIGURE 3.40 Subcircuit
corresponding to the voltage
source acting alone.

FIGURE 3.41 Subcircuit
corresponding to the current
source acting alone.

FIGURE 3.42 Subcircuit
corresponding to the voltage
source acting alone.
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The current in the subcircuit is given by the voltage divided by the sum of the resistors.
In other words,

1V

y = — =025 A.
2Q+2Q

Next, we obtain I;, the response of the current source acting alone. The subcircuit
corresponding to the current source acting alone is shown in Figure 3.43.

By the current divider relation, it is easy to see that I; = 0.5 A, since the 1-A current
supplied by the current source divides equally into the two branches of the subcircuit in
Figure 3.43.

We now sum the two partial responses to obtain the total response I That is,

I=1,+1;=025A4+05A=075A.

EXAMPLE 3.16 RESISTIVE ADDER CIRCUIT An elementary
resistive adding circuit is shown in Figure 3.44a. This circuit might be used to add
together a number of microphone signals before sending them to one amplifier. (Notice
that this circuit is a generalization of the circuit in Figure 3.36.) We shall discover better
ways of building such a circuit in later chapters, but the present form serves as a good
illustration of the principle of superposition.

From the preceding discussion, the effect on the output voltage V,, of the source V;
acting alone can be found by forming a subcircuit in which all other independent sources
are set to zero, which in this case means replacing V,, V3, and V4 by short circuits, as
shown in Figure 3.44b. Now V,,, the response to V7 alone, can be found by inspection

R
° 2_ W 2
R R R R
@ @ v, RS RZ RZ Voo
o . o
(a) (b)

FIGURE 3.44 Resistive adding
circuit.
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using the voltage-divider relation

R/3

=—V. (3.111)
R+R/3

Voa

The complete response is the sum of four such terms, which in this special case all have
the same coefficient

Vo (Vi+ Vo4 V34 Vy). (3.112)

1
4
Note that there is no restriction on the nature of the sources (other than frequency
limits, etc., as discussed in Chapter 1). The sources could be DC, sine waves or square
waves, speech, or a mixture of these. Equation 3.112 states that the output will be the
sum of these individual signals, each multiplied by a constant, a “scaling factor.” If the
inputs were four sine waves, each at a different frequency, then the output voltage would
be the sum of these four sinusoids, appropriately scaled. No other frequencies would be
present in the output signal. Thus a further consequence of linearity is that, whatever
frequencies are present at the input or inputs of a linear system, these and only these
frequencies will appear at the output.

I EXAMPLE 3.17 SUPERPOSITION APPLIED TO A
BEEHIVE NETWORK

351 SUPERPOSITION RULES FOR DEPENDENT
SOURCES

When the dependencies are linear, dependent sources are amenable to the set of
analyses discussed earlier in Chapters 2 and 3. Care must be taken, however, in
applying the superposition principle. Recall that the principle of superposition
allows linear multisource networks to be solved for one source at a time by
setting all other independent sources to zero. Setting a voltage source to zero
means replacing it with a short circuit; a current source set to zero is an open
circuit. The complete response is the sum of the responses to each individual
source.

What do we do about dependent sources? A practical way is to leave all the
dependent sources in the circuit. The network can then be solved for one
independent source at a time by setting all other independent sources to zero,
and summing the individual responses.

Alternatively, the dependent sources could be treated as independent
sources, and in a final step of the analysis, their dependencies must be back-
substituted in terms of other network parameters. However, this method tends
to be impractical.

CHAPTER THREE
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EXAMPLE 318 A SINGLE DEPENDENT SOURCE AND
SUPERPOSITION Consider the circuit in Figure 3.49. It contains two indepen-
dent sources and one dependent source. Using the superposition method, let us derive
the output voltage vo.

We will solve the circuit by leaving the dependent current source in the circuit
and summing the responses of each of the independent sources acting alone.

1-V Source Acting Alone

Figure 3.50 shows the circuit corresponding to the 1-V source acting alone, where v
is the corresponding response. Notice that the dependent current source has been left
in the circuit, and the 2-V source has been shorted out.

By the voltage divider relation, we know that
v = 0.5 V.

Thus,

1
vor= —uv1 x1kQ=5V.
01 0%

2-V Source Acting Alone

Figure 3.51 shows the circuit corresponding to the 2-V source acting alone, where vop
is the corresponding response. By the voltage-divider relation, we know that

Uz:lv.

Thus,

1
vop = —uv) x 1kQ =10V.
02 10022

Vo vy Yol
] > 3

1, 1kQ ke 2 oy

100€2 1kQS 1kQ =

FIGURE 3.49 Circuit containing two independent
sources and one dependent source. the 1-V source acting alone.

FIGURE 3.50 Subcircuit corresponding to
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12} Vo2
= 1
tkez T2 Lo FIGURE 351 Subcircuit
® 1kQ=s corresponding to the 2-V source
2V acting alone.
p
Summing the two responses, we get the total response as
vo=vo1 +vop =15 V.
EXAMPLE 3.19 MULTIPLE DEPENDENT SOURCES AND
SUPERPOSITION As a more complicated example, consider the circuit in
Figure 3.52. Using the superposition method, let us derive the output voltage v, as
a function of v;.
This circuit has two dependent current sources and two independent voltage sources
(v1 and v,). We will solve this problem by leaving both the dependent current sources in
the circuit and summing the responses of each of the independent sources acting alone.
We also define two intermediate variables, the node voltages v, and v,
v1 Acting Alone
We will first obtain the response with v acting alone. Figure 3.53 shows the circuit
corresponding to vy acting alone. v, is the corresponding response. Notice that the
R, Ry Ry
b I b v
° Vb al + V01 _ bl
ih=g¢ I = &V =0
2= 8m"2 m
c
vy =V 1= Vi R=
RE =R, R/=E v, =0
FIGURE 3.52 Circuit with multiple dependent FIGURE 3.563 Subcircuit corresponding to v acting

sources. alone.



156 CHAPTER THREE NETWORK THEOREMS

dependent current sources have been left in the circuit, and v, has been shorted out.
Since v = 0, we find that i = 0 (in other words, the dependent current source behaves
like an open circuit).

We will first determine v and v, the node voltages at the nodes a and b due to v;
acting alone. We will then determine v, as their difference.

Since i = 0, there is no voltage drop across the resistor R; connected to node b.
So, node b will be at ground potential. In other words,

vy = 0.
We can obtain v, by using KVL as
Ui =0 — 1Ry = —gnv1 R = —gmViR]..
Therefore

Vol = Ugl — Vp1 = —gmViRL.

vy Acting Alone

Figure 3.54 shows the circuit corresponding to v acting alone. v, is the correspond-
ing response. In this circuit, since v; = 0, we find that 7; = 0.

Since i1 = 0, there is no voltage drop across the resistor Ry connected to node 4, and
s0, this time around, node a will be at ground potential. In other words,

Up = 0.
RL RL
a b
v v
& . b2
il =0 i2 =8m"2
FIGURE 3.54 Subcircuit C
corresponding to v, acting alone.
R= Vo =V
v =0 =R, R=
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We can obtain vy, by using KVL as
vpp =0 — Ry = —gmaRp = —gm(—viRL = gmViRy..
Therefore
Vo2 = Va2 — Vpp = —ZmViRL.

We can now obtain the total response by summing the responses to each of the
independent sources acting alone. In other words,

Vo = Upl + Vo2 = —28mViR[.

36 THEVENIN'S THEOREM AND
NORTON'S THEOREM

361 THE THEVENIN EQUIVALENT NETWORK

A simple extension of the concept of superposition yields two additional net-
work theorems of great power, which allow us to suppress a lot of detail in
circuit analysis and focus attention only on that part of a network we are really
interested in. Consider, for example, a battery, or a high-fidelity power ampli-
fier, or a wall outlet for 110-V AC power, or a power supply for a computer.
What is the simplest way to describe the electrical properties of each of these
systems at its output terminals? Is one parameter needed, or ten, or fifty? Clearly
the voltage measured with a high-quality meter that draws negligible current
is one important parameter (the open-circuit voltage mentioned in Section 1.7).
Likewise we would want to know the frequency: zero frequency for the battery,
60 hertz (or 50 or even 25 in some countries) for the power line, etc. But we
have already observed another effect that is important. When current is drawn
from any of these systems, the voltage at the terminals drops. Depending on
the quality of the wiring in a dormitory, the lights may dim noticeably when a
toaster is plugged into the same circuit. Or the voltage of the flashlight battery
will drop when a bulb is connected and current flows, as noted in Section 1.7.
How can this effect be characterized? For the battery, is it necessary to make
measurements at 100 current levels, and plot a curve of the characteristic?

If the system is linear, then the answer to this question is very simple. We
will show that any collection of voltage sources, current sources, and resistors
can be represented at any one pair of terminals by one voltage source and one
resistor, or by one current source and one resistor. The graphical construction
of Figure 1.43 already hinted at this fact, but we present here a more formal
proof. We start with a general linear network containing sources and resistors,
shown as an amorphous box in Figure 3.55a. We presume that the only two
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FIGURE 3.55 Derivation of the
Thévenin network.
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(b)

terminals we are interested in are shown emerging on the right. We wish to
find the relationship between v and 7 at these terminals.

To find v in terms of 4, we need to apply some form of excitation, and
measure the response. The derivation is simplest if we use either a voltage
source or a current source, rather than a complicated excitation network. In
Figure 3.55b, we have chosen to apply a fest current source to the terminals. To
calculate the response v, by superposition, first set all the internal independent
sources to zero, as in Figure 3.55¢, and calculate the voltage v,. As discussed
in Section 3.5.1, dependent sources are left as is. Then set i to zero, as in
Figure 3.55d, and calculate vj,. The desired value of v, is the sum v, + v,. From
Figure 3.55¢,

Vg = itesth (3.113)

where R, is the net resistance measured between the two terminals when all
internal independent sources are set to zero. Resistance R, is called the Thévenin
Equivalent Resistance. From Figure 3.55d, v, is obviously just the voltage
appearing at the terminals of the original network when no current is flowing;
we call this the open-circuit voltage. That is,

Up = Vg (3.114)
Now by superposition,

Uy = Ug + Up = Upe + frest R (3.115)
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This simple relation between voltage and current at a pair of terminals
applies regardless of the complexity of the network, provided only that the
network is linear. Thus, returning to the questions posed eatlier, if we specify
the open-circuit voltage and the Thévenin equivalent resistance of the battery, or
the computer power supply, or the wall outlet, then to the extent that such
systems can be considered to be linear, we have completely characterized the
system as it appears at its terminals.

Equation 3.115 should be familiar from Section 1.7. It is the same as Equa-
tion 1.23, the volt-ampere relation for a voltage source in series with a resistor.
In graphical terms it is the equation of a straight line in the v~ plane with
slope 1/R; and voltage axis intercept vo.. So the preceding calculation can be
interpreted in terms of a circuit called the Thévenin equivalent circuit shown in
Figure 3.56. If v, and R, are calculated using the subcircuits in Figure 3.55¢
and 3.55d, then this circuit and the one in Figure 3.55a are equivalent, in the
sense that any measurement at the indicated terminals are equivalent. In other
words, any measurement at the indicated terminals of the two circuits will yield
identical results.

Two independent measurements on a circuit are required to determine the
parameters for the Thévenin model. One appropriate pair of measurements is
as follows. The source parameter v, is the voltage measured or calculated at
the desired terminal pair when no current is flowing at these terminals:

Voe = Us |itest=0 . (3.116)

R, is the resistance measured or calculated at the desired terminal pair when
all internal independent sources are set to zero:

R = 2L . (3.117)

Itest linternal source=0

Summarizing, the Thévenin method allows us to abstract the behavior of
a linear network at a given pair of terminals as a voltage source in series with
a resistor. The voltage source in series with a resistor is called the Thévenin

CHAPTER THREE

FIGURE 3.566 Thévenin
equivalent.
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FIGURE 3.57 Example circuit to
illustrate the Thévenin method:

(a) a network; (b) its Thévenin
equivalent network.
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FIGURE 3.58 Network with the
voltage source replaced with a
short.
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equivalent circuit of the network. The Thévenin equivalent circuit can be used to
model the effect of the given network on other circuits external to the network.

A Method for Determining the Thévenin Equivalent Circuit The Thévenin

equivalent circuit for any linear network at a given pair of terminals consists

of a voltage source vy in series with a resistor R7py. The voltage v and

resistance Ry can be obtained as follows:

1. w7y can be found by calculating or measuring the open-circuit voltage at
the designated terminal pair on the original network.

2. Ry can be found by calculating or measuring the resistance of the
open-circuit network seen from the designated terminal pair with all
independent sources internal to the network set to zero. That is,
with independent voltage sources replaced with short circuits, and
independent current sources replaced with open circuits. (Dependent
sources must be left intact, however.)

EXAMPLE 3.20 THEVENIN METHOD Let us now illustrate the
method using a simple example. Figure 3.57a shows a network and Figure 3.57b shows
its Thévenin equivalent network viewed from the network’s aa’ port. Determine the
values of UTH and RTH~

By the first step of the Thévenin method, the voltage vy is given by the open-circuit
voltage of the network at the ad’ port. The open-circuit voltage is the voltage at the
ad’ network port when there is no external circuit element connected across the port.
(Note that the 2-S resistor is internal to the network and should not be disconnected.)
Figure 3.57a shows this situation. The open-circuit voltage that would be measured at
the ad’ port is given by the voltage-divider relation as

By the second step of the Thévenin method, the resistance Rty is found by measuring
the resistance of the open-circuit network seen from the aa’ port with the independent
voltage source set to zero; that is, with the voltage source replaced with a short circuit.
The network with the voltage source replaced with a short is shown in Figure 3.58.

The resistance viewed from the ad’ port is given by
2
Rrg=1|2= g Q.

The resulting Thévenin equivalent circuit is drawn in Figure 3.59.

EXAMPLE 3.2 MORE ON THE THEVENIN METHOD Letus
now work out a couple of related examples to illustrate the power of the Thévenin
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FIGURE 3.59 The
resulting Thévenin
equivalent circuit.

FIGURE 8.60 Circuit to illustrate the
power of the Thévenin method.

method. First, suppose we are asked to determine the current Ij through the voltage
source in the circuit in Figure 3.60.

Let us use the Thévenin method to obtain the desired current. To apply the Thévenin
method, we will replace the network to the left of the voltage source (that is, to the left of
the aa’ terminal pair, and depicted in Figure 3.61a) with its Thévenin equivalent network
(depicted in Figure 3.61b). Once this replacement is made, as illustrated in Figure 3.62,
then, the current I can be written by inspection as

vtg— 1V

I = (3.118)

Ry
vty and Ry are the Thévenin equivalent parameters. The first step of the Thévenin

method is to measure vy, As shown in Figure 3.63, vy is the open-circuit voltage
measured at the aa’ port.

20

AN
Yy
[\ ]
0
3
s

2 Al

FIGURE 3.62 Circuit with network
to the left of the aa’ terminal pair
replaced with its Thévenin equivalent.

FIGURE 3.63 Open-circuit
voltage.
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FIGURE 3.61 Thévenin
equivalent network.
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FIGURE 3.64 Measuring R7x.
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Since the 2-A current flows through both the 2-Q resistors in Figure 3.63, vy can be
written by inspection as

vTH=2AXx2Q=4V.

By the second step of the Thévenin method, the resistance Rty is found by measuring
the resistance of the open-circuit network seen from the aa’ port with the independent
current source set to zero; that is, with the current source replaced with an open circuit
as illustrated in Figure 3.64. It is easy to see that

Rty =2 Q.

Having determined the Thévenin equivalent parameters vy and Rpp, we can
now obtain I} from Equation 3.118 as

4V -1
=V IV_3,
2Q 2

Notice that in this example the Thévenin method has allowed us to tackle a given
problem (the circuit in Figure 3.60) by splitting it into three trivial subproblems, namely,
the circuits in Figures 3.63, 3.64, and 3.62.

To further illustrate the power of the Thévenin method, suppose that the 1-V source in
Figure 3.60 is replaced by a 10-2 resistor as illustrated in Figure 3.65, and we are asked
to find the current I, through the 10-Q resistor.

We first notice that the network to the left of the terminal pair a4’ in Figure 3.65
is unchanged from that in Figure 3.60. Thus, from the viewpoint of determining a
parameter relating to the network on the right side of the a4’ terminal pair, we can
replace that network on the left with its Thévenin equivalent determined previously as
illustrated in Figure 3.66.

2Q Ry
W A 4 I W .
a 12 a 12
2A 220 10Q  Vpy 10Q
a’ a’

FIGURE 8.65 Circuit to further illustrate FIGURE 8.66 Circuit with network to the
the power of the Thévenin method. left of the aa’ terminal pair replaced with its
Thévenin equivalent.
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The current I; can be quickly determined from the network in Figure 3.66 as

I UTH
Hh = ————.
Ry +10 Q

We know that v7y =4 Vand Rty =2 Q,andso b, = 1/3 A.

EXAMPLE 3.22 BRIDGE CIRCUIT Determine the current I in the
branch ab in the circuit in Figure 3.67.

There are many approaches that we can take to obtain the current I. For example, we
could apply the node method and determine the node voltages at nodes @ and b and
thereby determine the current I. However, since we are interested only in the current I,
a full blown node analysis is not necessary; rather we will find the Thévenin equivalent
network for the subcircuit to the left of the ad’ terminal pair (Network A) and for
the subcircuit to the right of the bb’ terminal pair (Network B), and then using these
subcircuits solve for the current L.

Let us first find the Thévenin equivalent for Network A. This network is shown in
Figure 3.68a. Let v7p4 and Rpa be the Thévenin parameters for this network.

We can find v7ry4 by measuring the open-circuit voltage at the aa’ port in the network
in Figure 3.68b. We find by inspection that

vrHA =1V

Notice that the 1-A current flows through each of the 1-Q resistors in the loop containing
the current source, and so v; is 1 V. Since there is no current in the resistor connected
to the @’ terminal, the voltage v, across that resistor is 0. Thus vpa = v1 +v2 =1 V.

We find R7py4 by measuring the resistance looking into the aa’ port in the network in
Figure 3.68c. The current source has been turned into an open circuit for the purpose

— - - - — ~ ~— - — - — ~
( 1A | ( 1A |
I I I I
I | I |

° MA ° A FIGURE 8.67 Determining the

1 Q A VYV 4 @ VVV
I 1Q al 7’ I b =] QI current in the branch ab.
I AlAAQ a,I I b/ I
L YVvV A l L v ‘

B U — / i — /

Network A Network B
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FIGURE 3.68 Finding the
Thévenin equivalent for Network A.
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FIGURE 3.69 Finding the 1Q 10 e
Thévenin equivalent for Network B. )
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of measuring R7pj4. By inspection, we find that
Rrpa =2 Q.
Let us now find the Thévenin equivalent for Network B shown in Figure 3.69a. Let

v1ye and Rryp be the Thévenin parameters for this network.

vThp is the open-circuit voltage at the bb' port in the network in Figure 3.69b. Using
reasoning similar to that for vz we find

vty = —1 V.
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Network A Network B

Rryp is the resistance looking into the bb’ port in the network in Figure 3.69¢. By
inspection,

Rty =2 Q.

Replacing Network A and Network B with their Thévenin equivalents, we obtain the
equivalent circuit in Figure 3.70.

The current I is easily determined as

_V-(1v) 2

2Q+41Q42Q S
Notice in this example we were able to solve a relatively complicated problem by com-
posing the results of five subproblems (namely, the circuits in Figures 3.68b, 3.68¢,
3.69b, 3.69¢, and 3.70), each of which was solvable by inspection.

EXAMPLE 3.23 THEVENIN ANALYSIS OF A CIRCUIT
WITH A DEPENDENT SOURCE Find the Thévenin equivalent circuit for
the network to the left of the a4’ terminal pair in Figure 3.71. Notice that this circuit
contains a dependent source.

The network whose Thévenin equivalent is desired is shown in Figure 3.72. Let vy
and Ry be the Thévenin parameters for this network.

Vi
’ 2
8y,
1 ko000 2kQE 10kQ =
2 cos(wt)
a/
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FIGURE 3.70 Networks A and
B replaced by their Thévenin
equivalents.

FIGURE 3.71 Thévenin analysis
of a circuit with a dependent
source.
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FIGURE 3.72 Network to be
replaced by its Thévenin equivalent.

FIGURE 3.73 Determining R4

NETWORK THEOREMS

vy VTH
o 4+
a
8 12
—V
1 kQ 10022 2kQ=s VI
2 cos(wt
a/
* o

Determining vy

We first find vy by computing the open-circuit voltage at the aa’ port of the circuit in
Figure 3.72. We will find this voltage by applying the node method. Since the current
of the dependent source is expressible directly in terms of a node voltage, we can apply
the node method without modification.

Figure 3.72 shows the ground node, and the two other nodes labeled with the
node voltages vy and vry. Notice that vy is already known to be

v = 2 cos(wi).

This completes Steps 1 and 2 of the node method.
Following Step 3 of the node method, we write KCL for Node a.

UTH 8

vy =0.
2k 100 S

Next, applying Step 4, we simplify the preceding equation to get
vty = —160v; = —320 cos(w?).

Since we were interested only in the node voltage vy, we do not have to complete
Step 5 of node analysis.
Determining Ry

We now find Ry by computing the resistance looking into the aa’ port in the network
in Figure 3.73. The independent voltage source has been turned into a short circuit for

v;=0
p—O
a
[ ] = =
1kQ = 2 kQ = - RTH
® -§—-—v1= 0
1002 a
+ o
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the purpose of computing R7ry. The dependent source, however, is left in the circuit.
Since vj = 0, the current through the dependent current source is 0, and therefore, the
dependent source behaves like an open circuit. Thus,

Ry =2 kQ.

The resulting Thévenin circuit is shown in Figure 3.74.

362 THE NORTON EQUIVALENT NETWORK

An analogous derivation to that in Section 3.6.1 gives rise to the Norton equiv-
alent network. Recall that our goal is to find the v~ relation for the network in
Figure 3.75a so that we can replace the network with a simple equivalent circuit
that yields the same v~ relation as the original network. To find the v~ relation-
ship, this time we apply a test voltage v to the circuit, as in Figure 3.75b, and
find the resultant current 7,. Using superposition, the two subcircuits needed
to find #, are shown in Figure 3.75¢ and 3.75d. In 3.75¢, vy is set to zero
and we measure 7,. In 3.75d, all independent sources are set to zero and we
measure . Then,

it = ig + lb.

From Figure 3.75c¢,

Ig = —ig (3.119)

CHAPTER THREE
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FIGURE 3.74 Resulting
Thévenin circuit.

FIGURE 3.75 Derivation of

Norton network.
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FIGURE 3.76 The Norton
equivalent network.
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where i, is the current that flows in the short circuit across the network ter-
minals in response to the internal sources, and thus is the short circuit current.
From Figure 3.75d,

. Utest
i = 3.120
b R, ( )

where R is the net resistance measured between the terminals when all internal
independent sources are set to zero. Because this calculation and the one in
Figure 3.55¢ are identical (except for a change in excitation) the parameter R;
is obviously the same in both calculations.

To complete the derivation, we find by superposition

= iy iy = —ig 4 DS (3.121)
R,

As in the Thévenin derivation, this equation can be interpreted in terms
of a dircuit. It states that the terminal current is the sum of two components:
a current source 75 and a resistor current v./R;. Hence the Norton equiv-
alent network, Figure 3.76, has a current source in parallel with a resistor.
Examination of either the two equations, Equations 3.121 and 3.115, or the
two figures, Figures 3.56 and 3.76 show that there is a simple relation between
Vo and ig.. Working from the figures, we can calculate the open-circuit voltage
of each circuit to find

Uoe = iR, (3.122)

Thus it is a simple matter to change from one of these equivalent
networks to the other.

To determine the Norton parameters for some circuit, again two indepen-
dent measurements are required. The source parameter i could be found by
applying a short to the circuit terminals and measuring the resultant current.
The resistance parameter is measured as before in Equation 3.117. Note that
the source parameters s, vy are related by Equation 3.122, so measuring or
calculating any two of v, is. and R, is sufficient to characterize both the Norton
and the Thévenin model. In particular, it is often convenient to find R; from
two simple terminal measurements on the circuit

R, = 2. (3.123)

Isc

In summary, the Norton method allows us to abstract the behavior of a
linear network at a given pair of terminals as a current source in parallel with
a resistor. The current source in parallel with the resistor is called the Norton
equivalent circuit of the network. Like the Thévenin equivalent, the Norton
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equivalent circuit can also be used to model the effect of the given network
on other circuits external to the network.

A Method for Determining the Norton Equivalent Circuit The Norton equiv-

alent circuit for any linear network at a given pair of terminals consists of a

current source 7y in parallel with a resistor Ry. The current in and resistance

Ry can be obtained as follows:

1. iy can be found by applying a short at the designated terminal pair on
the original network and calculating or measuring the current through
the short circuit.

2. Ry can be found in the same manner as Ry, that is, by calculating or
measuring the resistance of the open-circuit network seen from the
designated terminal pair with all independent sources internal to the
network set to zeroj; that is, with voltage sources replaced with short
circuits, and current sources replaced with open circuits.

EXAMPLE 3.24 NORTON EQUIVALENT Figure 3.77a shows a net-
work and Figure 3.77b shows its Norton equivalent network viewed from the
network’s aa’ port. Determine the values of iy and Ry;.

By the first step of the Norton method, the current iy is given by applying a short at
the ad’ terminal pair and calculating the current through the short circuit. Figure 3.78
shows the network with a short at the ad’ terminal pair.

The current through the short at the a4’ terminal pair in Figure 3.78 is given by

3V

=—=3A
1Q

IN

By the second step of the Norton method, the resistance Ry is found by measuring
the resistance of the open-circuit network seen from the ad’ port with the independent
voltage source set to zero. The network with the voltage source replaced with a short
is shown in Figure 3.79.

The resistance viewed from the aa’ port is given by
2
Ry=1Q22=7Q

The resulting Norton equivalent circuit is drawn in Figure 3.80.

EXAMPLE 3.25 MORE ON THE NORTON METHOD Deter-
mine the current I; through the voltage source in the circuit in Figure 3.81 using the
Norton method.

To apply the Norton method, we will replace the network to the left of the aa’ terminal
pair with its Norton equivalent network comprising a current source with current 7y in
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FIGURE 3.77 Norton equivalent
network: (a) a network; (b) its
Norton equivalent network.
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FIGURE 3.78 Determining /.

1Q

AMA
VW ®

FIGURE 3.79 Determining Ry.
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FIGURE 3.80 Resulting Norton
equivalent circuit.
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FIGURE 3.83 Determining Ry.
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FIGURE 3.84 Resulting Norton
equivalent circuit.
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FIGURE 3.85 Connecting back
the Norton equivalent circuit to
determine /.
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FIGURE 3.81 Circuit for applying the Norton method.

parallel with a resistance of value Ry. The first step of the Norton method is to measure
in, which is the short-circuit current measured at a short circuit applied at the aa’ port
as shown in Figure 3.82. Since all of the 2-A current flows through the short,

in=2A.

By the second step of the Norton method, the resistance Ry is found by measuring the
resistance of the open-circuit network seen from the aa’ port with the current source
replaced with an open circuit as illustrated in Figure 3.83. It is easy to see that

Rny=2Q.
The resulting Norton equivalent circuit is depicted in Figure 3.84.

Having determined the Norton equivalent circuit, we can now obtain I by connecting
this equivalent circuit to the source on the right-hand side of the aa’ terminal pair as
shown in Figure 3.85.

Since the voltage across the 2- resistor is 1 V, the current through the 2-Q resistor is
0.5 A. By applying KCL at Node a, we get

—2A+05A+L =0.

Or,I; = 1.5 A.

EXAMPLE 3.26 NORTON EQUIVALENT NETWORK Let us
revisit the example in Figure 3.71 and this time around determine the Norton equivalent
circuit for the network to the left of the aa’ terminal pair. Let Iy and Ry be the Norton
parameters for this network.

Determining In

We first find Iy by computing the short-circuit current through the short placed at the
ad’ terminal pair as depicted in Figure 3.86. Iy can be determined by inspection as
8

4
IN = ———v = —— cos(wi).
N= 100" T T g5 sl
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V[
3 a
8
21002 (D 2k = Iy FIGURE 3.86 Determining |
2 cos(®r) 1kQ= = 3.86 Determining iy.
a/
v;=0
o
a
! lkazg -« 2kQE  -— Ry, FIGURE 3.87 Determining Ry.
< 100Q "/
a/
<+ o
Determining Ry a'
4
We now find Ry by computing the resistance looking into the aa’ port in the network 25 cos(er)
in Figure 3.87. As computed in the Thévenin version of this example, =2kQ
Ry =2 ke. a
—o

The resulting Norton circuit is shown in Figure 3.88.

FIGURE 3.88 Resulting Norton
equivalent circuit.

363 MORE EXAMPLES

Norton and Thévenin equivalents are particularly useful because often the two
parameters are easy to find, as a consequence of the strong circuit constraints
imposed as shown in Figures 3.55 and 3.75. This is best illustrated by an
example. Suppose we are given the network in Figure 3.89a, and are asked to
find the voltage across R3 for a number of different values of R3. We could just
solve the whole network for each value of R3, but a simpler approach is to find
the Thévenin equivalent of the network driving R3, that is, the network to the
left of the points x—x. For clarity in this first example, we abstract this portion
of the network in Figure 3.89b.

As we have noted, there are several ways to make the calculations, so it
pays to examine the possibilities and choose the easiest route. The open-circuit
voltage appears directly in the abstracted circuit, Figure 3.89b. The short-circuit
current can be found from Figure 3.89¢, and R, from 3.89d. By inspection from
Figure 3.89d,

R; = Rq|IR,. (3.124)
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FIGURE 3.89 Example in which
we are to find voltage across R3 for
several different values of Rs.

In Figure 3.89¢, the short-circuit constraint makes the calculation of i for
this particular topology easy. Because of the short circuit, Ry can have no voltage
across it, hence has no current flowing through it. Now by superposition,

ie = I+ V/R. (3.125)
The calculation of v, from Figure 3.89b is straightforward, but a step more

complicated than the preceding ones, so normally it would not be attempted.
But for completeness, superposition of the two sources gives

Ry IR{Ry)
Ri+Ry Ri+Ry

Voc =0V

(3.126)

It is clearly easier to find v, from Equations 3.122, 3.124, and 3.125:

Voc = [+ V/R1)R,. (3.127)
Hence the complete circuit with the left half replaced by its Thévenin equiv-
alent is as shown in Figure 3.89¢e. Now the voltage across R3 for the various
values of Rz can be found by inspection. It should be noted that the Norton
equivalent would have been just as effective in this problem. Also note that the
circuit constraints imposed by the definitions of R, i, and v, often make the
calculations of these parameters very easy, even in complicated networks.
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EXAMPLE 3.27 BRIDGE CIRCUIT Another example is shown in
Figure 3.90a. This is a bridge circuit, often used in the laboratory to measure values
of unknown resistors by comparing against known standard resistors. We want to find
the voltage across Rs, and then find the condition on the other resistor values that will
make this voltage zero. Direct application of nodal analysis is quite messy, so we will
seek an alternative method.

To solve, find the Thévenin equivalent of the circuit facing Rs, that is, the circuit shown
in Figure 3.90b. The circuit now consists of two independent voltage dividers connected
across a common voltage source V. The layout of the dividers is not quite as straight-
forward as in Figure 2.36 but, topologically, they are the same. Hence we can calculate
the two voltage-dividers’ voltages v, and v, by inspection; then subtract to find v.

CHAPTER THREE

R
voczva—vb=V< 3 R ) (3.128)
Ri+R; Ry+R4
Ry Ry
(a) 14 C-D (b) + + _
- \% (_) Va oc v
Ry R,
Rl R2
Ry Ry
(© (d
R + R R3 Ry
3 R, 4
Rl
YW

FIGURE 3.90 Example: A bridge circuit.
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FIGURE 3.91 Two simple
networks: (a) Network [;
(b) Network I

FIGURE 3.92 Equivalent
resistance of the network.

NETWORK THEOREMS
Now find the Thévenin equivalent resistance with V set to zero, that is, for the circuit
shown in Figure 3.90c. This is identical to the circuit in 3.90d,

R, = (R11IR3) + (R2[|R4). (3.129)

The complete circuit can now be drawn as in Figure 3.90e. It is clear that the voltage
across Rs will be zero if v, is zero, that is, if

R
3 _ R (3.130)
Ri+R; Ry+Ry
or equivalently
R
Rs _ R4 (3.131)
Ri R

Thus if Rs is replaced by a voltmeter, the circuit can be used to find an unknown
resistor, say R3, in terms of three known resistors. Make one of the resistors, say Ry,
a decade box with known resistance values and adjust until the voltmeter reads zero.
The value of R3 is then given by Equation 3.131.

Two closing comments: First, note that the identity of all voltages and currents inside
the network that is replaced by the Thévenin or Norton circuit in general lose their
identity; only the terminal voltage and current are preserved. Thus, for example, the
current through R3 in Figure 3.90a does not appear as any identifiable current flowing
in the Thévenin circuit in Figure 3.90e. Second, if one wishes to measure the Thévenin
or Norton parameters of a system in the laboratory, two independent measurements
are required in order to specify the two parameters in the model. In addition, certain
practical issues must be faced. For example, it is unwise, in fact dangerous, to apply a
short circuit to a large battery such as an automobile storage battery in an attempt to
measure the short-circuit current as suggested in Figure 3.75b. A better procedure is to
first measure the open-circuit voltage, then measure the terminal voltage when some
known resistor is connected to the battery. These two measurements can then be used
to find R,.

EXAMPLE 3 .28 NORTON AND THEVENIN E QUIVALENTS
As another simple example, let us find the Norton and Thévenin equivalent networks
and their v—i characteristics for the two circuits shown in Figure 3.91.

Let us start with Network A. First, let us find the Thévenin equivalent circuit. Shorting
the voltage source results in the circuit shown in Figure 3.92. Therefore, Ry = Ry =
R1||R2 = R1Ry/(R1 + Ry), where Ry and Ry are the Thévenin and Norton equivalent
resistors, respectively. From the voltage-divider relationship, open circuit voltage v,
is VR2/(R1 + Ry). This yields the Thévenin equivalent circuit on the left-hand side of
Figure 3.93.
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FIGURE 3.93 Equivalent networks.
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FIGURE 3.94 Short circuit current.

Now, let us find the Norton equivalent circuit for Network A. Referring to Figure 3.94,
the short-circuit current 4 is V/R;. Therefore, the Norton equivalent network is as
shown on the right-hand side of Figure 3.93.

The v—i curve of the circuit must pass through points (o, 0) and (0, —is), as
shown in Figure 3.95.

Let us now analyze Network B. Turning off the current source results in the circuit
shown in Figure 3.92, which yields R1R,/(R1 + Ry) as the equivalent resistance for both
the Thévenin and Norton equivalent networks. The open-circuit voltage is IR1||R;.
Thus, v = R1R2I/(R1 4+ Ry). As illustrated in Figure 3.96, all of the current will flow
through the branch with zero resistance, that is 7. = L.

The equivalent networks are shown in Figure 3.97, and the v—i characteristics are
shown in Figure 3.98.

—_— MW——— e
S+
R, "R, i
(R, +R,)

R,-Ry-1 v
(R +R,)

" WWW
1]
(e

FIGURE 3.96 Short-circuit current. FIGURE 3.97 Equivalent networks.

FIGURE 3.95 The /—v characteristics of the network.
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slope = (R{+R,)/R|R, R, R,

> v \
/I'R \RA(R,+R,) Wi
I Ry

FIGURE 3.98 The v—i characteristics of the network. FIGURE 3.99 Resistive circuit.

EXAMPLE 3.29 A DIFFERENT APPROACH USING THE
THEVENIN METHOD The network shown in Figure 3.99 was solved earlier
using the Thévenin method (see Figure 3.90). In this example, we will solve the same
circuit using the Thévenin method, but with a slightly different approach.

Making the observation that the voltages at points x and y are the same, we can
transform the circuit into the equivalent circuit shown in Figure 3.100. We can then
transform the circuits in Figures 3.100a and 3.100b into their Thévenin equivalent net-
works. Figure 3.100a will have a source voltage of VRy/(R1 + Ry) and an equivalent
resistance of Ry||R,. Figure 3.100b will have a source voltage of VRs/(R4 + Rs) and
an equivalent resistance of R4||Rs.

The new circuit is shown in Figure 3.101. Notice that the new circuit is much easier
to analyze. We leave the rest of the analysis as an exercise for you.

AAAA

R|IR, RJIRs

Ry

VR/(R,+R,) VRS/(R,+Rs)

FIGURE 3.100 Equivalent circuit with two voltage sources. FIGURE 3.101 Equivalent Thévenin circuit.
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>

In the node method one node is designated as a reference or ground node,
and all other node voltages are measured with respect to that node. Only
the KCL equations and the constituent relations need be written.

In the loop method currents are defined to flow in loops. Loop currents are
defined until all branches are traversed by at least one current. Only KVL
equations need be written.

Superposition means that if the circuit is linear, multisource networks can
be solved for one source at a time by setting all other independent sources to
zero. Setting a voltage source to zero means replacing it with a short circuit;
a current source set to zero is an open circuit. The complete response is
the sum of the responses to each individual source.

For circuits with dependent sources, a practical solution is to leave all the
dependent sources in the circuit. The network can then be solved for one
independent source at a time by setting all other independent sources to
zero, and summing the individual responses.

The Thévenin equivalent circuit for any linear network at a given pair of ter-
minals consists of a voltage source in series with a resistor. The element
value for the Thévenin equivalent voltage source can be found by calculat-
ing or measuring at the designated terminal pair on the original network the
open-circuit voltage. The equivalent resistance can be calculated or mea-
sured as the resistance of the network seen from the designated terminal
pair with all independent sources internal to the network set to zero.

The Norton equivalent circuit contains a current source in parallel with a
resistor. The element value for the Norton equivalent current source can
be found by calculating or measuring at the designated terminal pair on the
original network the short circuit current. As with the Thévenin equivalent
resistance, the Norton equivalent resistance can be calculated or measured
as the resistance of the network seen from the designated terminal pair with
all independent sources internal to the network set to zero. Note that the
value of the equivalent resistance is the same for the Thévenin and Norton
equivalent circuits, that is, Ry = RN

Since the Thévenin equivalent voltage vy, the Norton equivalent current
in, and the equivalent resistance Ry = Ry are related as

vTH = iNRTH,

the element values for these equivalents can be found by calculating or
measuring any two of the open-circuit voltage, the short-circuit current, or
the resistance.

CHAPTER THREE
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»  Circuit analysis is often simplified by applying superposition or finding
Thévenin or Norton equivalents, because complicated circuits are reduced
to simpler circuits, for which the solution may already be known.

EXERCISES EXERCISE 3.1 Write node equations for the network in Figure 3.102. Solve for
the node voltages, and use these voltages to find the branch current i. To minimize
errors and facilitate answer-checking, it is helpful to obtain literal expressions before
substituting numerical values for the parameters:

V=2V R3=3Q R =2Q R4=2Q Ry=4Q R;=1¢

=
AMMA
VYVVVy
AMAMA
VYVVYy
=
w

AMAA
VVWW

=
S5}
AAA
AMAMA
YVYWWy
=
i

YVYVYY

R, R, FIGURE 3.102
+
v, 8 * v

EXERCISE 3.2 Find the Norton equivalent at the indicated terminals for each
- network in Figure 3.103.

EXERCISE 3.3 Find the Thévenin equivalent for each network in Figure 3.104.
FIGURE 3.103

R e
""" o4
Ry I, IR, ERy v
FIGURE 3.104
(b) EXERCISE 3.4 Find vy in Figures 3.105a and 3.105b by superposition.

EXERCISE 3.5 Use superposition to find the voltage v in the network in

FIGURE 3.105 .
Figure 3.106.
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1Q 10
103 2Q I
+o—] 208 (M)1a E1Q(y)1A
v E1Q ] 1V

EXERCISE 3.6 Determine (and label carefully) the Thévenin equivalent for the

network in Figure 3.107:
Ri=2kQ Ry=1kQ iy=3mA cos(wi)

EXERCISE 3.7 Determine and label carefully the Norton equivalent for the
network in Figure 3.108.

EXERCISE 3.8 Find the Thévenin equivalent for the circuit at the terminals AA’
in Figure 3.109.

EXERCISE 3.9 The resistive network shown in Figure 3.110 is excited by two
voltage sources v1(f) and v; ().

a) Express the current #(#) through the 1-§ resistor as a function of v () and v;(%).

b) Determine the total energy dissipated in the 1-€ resistor due to both v (¢) and v, ()
from time T to time T>.

¢) Derive the constraint between v1(f) and v;(¢) such that the value for (b) can be
computed by adding the energies dissipated when each source acts alone (that is, by
superposition).

EXERCISE 3.1I0
circuit in Figure 3.111.

Find the Norton equivalent at the terminals marked x—x in the

AMAA MM
YWY YWW

A
W

AMMAA
A
[N
®)

I, =3 Al 1Q V,o=5V

FIGURE 3.111

EXERCISE 3.1I
the terminals AA’.

Find the Thévenin equivalent for the circuit in Figure 3.112 at

CHAPTER THREE 179

FIGURE 3.106

......
-----

S

FIGURE 3.108

2kQ 1 kQ

FIGURE 3.109

20

2Q
i(t)
VI(Z)

FIGURE 3.110

e vy(1)




180 CHAPTER THREE NETWORK THEOREMS
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FIGURE 3.112

EXERCISE 3.12 In the network in Figure 3.113, find an expression for v;.

. V3
(yeten R R,
+

+Vy -

o A’
Ry i s
+ FIGURE 3.113
vr v
- EXERCISE 3.13 The networks in Figure 3.114 are equivalent (that is, have the
A same v~ relation) at terminals A—A’. Find v and R.
FIGURE 3114 EXERCISE 3.14 For each of the circuits in Figure 3.115 give the number of
' independent node variables needed for a solution of the problem by the node method.
I EXERCISE 3.15 For the circuit shown in Figure 3.116, write a complete set of
R, @ . node equations for the voltages v,, v, and v.. Use conductance instead of resistance.
A Y Simplify the equations by collecting terms and arranging them in the “standard” form
R, R for n linear equations in n unknowns. (Do not solve the equations.)
Ry ‘D I 3
R, R,
)
+
v v
v() “N'Ry; " R, /C
Ol
Rs Re
1
FIGURE 3.115 FIGURE 3.116

EXERCISE 3.16 For the circuit shown in Figure 3.117, use superposition to find
v in terms of the R’s and source amplitudes.
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EXERCISE 3.17 Find the Thévenin equivalent of the circuit in Figure 3.118 at
the terminals indicated.

+

FIGURE 3.118

EXERCISE 3.18 In the circuit shown in Figure 3.119 there are five nodes, only
three of which are independent. Take node E as a reference node, and treat nodes A, B,
and D as the independent nodes.

a) Write an expression for vc, the voltage on node C, in terms of v, v, vp,
and v;.

b) Write a complete set of node equations that can be solved to find the unknown
voltages in the circuit. (Do not solve the set of equations but do group them neatly.)

EXERCISE 3.19 Consider the circuit in Figure 3.120.

35V
MMWM—(F - A’
VYWY O__<_.+
osa(d)  Zioo 00 v
o A’

FIGURE 3.120

a) Find a Norton equivalent circuit for this circuit at terminals A—A'.

b) Find the Thévenin equivalent circuit corresponding to your answer in (a).

EXERCISE 3.20 Measurements made on terminals B—B' of a linear circuit in
Figure 3.121a, which is known to be made up only of independent voltage sources
and current sources, and resistors, yield the current-voltage characteristics shown in
Figure 3.121b.
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a) Find the Thévenin equivalent of this circuit.

b) Over what portions, if any, of the v—i characteristics does this circuit absorb
power?

EXERCISE 3.21
a) Write in standard form the minimum number of node equations needed to analyze

the circuit in Figure 3.122.

AAAAA AMAMAA
VVVYY YYYVV

R, Rs

AAAAA

1O
FIGURE 3.122 -

L
3
=R
<
>

[y yyyy)
LR AAAAL
=
I
G
\_/
~

Ry

AMAMA
VVVVVY

b) Determine explicitly the current is.

EXERCISE 3.22
a) Find the Thévenin equivalent of the circuit in Figure 3.123.

I
R R
3 A @ AVAVAVAVAVA l A
= /5y 2 z |
FIGURE 3.123 Rz L ERy 2R |
AVAYAVAVAVA AVAVAVAVAVA ‘YAVAVAVAVA ! A,
R, Rs Ry

b) Find the Norton equivalent of the circuit in Figure 3.124.

YYVVY

R;

R, R

AMAA AMAAA l
VWWWY \AAAAL 1

|

® O

FIGURE 3.124 - =™
AN |1

|

EXERCISE 3.23
a) Find the Norton equivalent of the circuit in Figure 3.125.
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1
6 I
@ AVAVAVAVAVA AVAVAVAVAVA i 1
rRE BT RE (D RE |
AW | 1
R, !
b) Find the Thévenin equivalent of the circuit in Figure 3.126.
/—I\ Ry |
O WWW\, A
+ s s s |
v R 2 Rz R3Z2 |
.
!

EXERCISE 3.24 Find the Thévenin equivalent circuit as seen from the terminals
a—b in Figure 3.127.

10 mAG) 10 kQ3

YWW
(3]
<

()

N

EXERCISE 3.25 Find the node potential E in Figure 3.128.

8 kQ L
AVAVAVAVAVA E C-_\
/
+ = =
5 V() 8kQZ 04kQE Q 25 mA

EXERCISE 3.26 For the circuit in Figure 3.129, write the node equations. Do

not solve, but write in matrix form: source terms on the left, unknown variables on the
right.

CHAPTER THREE
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FIGURE 3.128
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FIGURE 3.129
EXERCISE 3.27 Find v; by superposition for the circuit in Figure 3.130.
Vi, R
R,
AD +
FIGURE 3.130 I( )V
Rs
PROBLEMS PROBLEM 3.T A fuse is a wire with a positive temperature coefficient of resis-
tance (in other words, its resistance increases with temperature). When a current is
passed through the fuse, power is dissipated in the fuse, which raises its temperature.
1
FIGURE 3.131 0 < Fuse

Use the following data to determine the current Iy at which the fuse (in Figure 3.131)
will blow (that is, its temperature goes up without limit).

Fuse Resistance:

R=1+aTQ

a=0.001 Q/°C

T = Temperature rise above ambient

Temperature rise:

T= 8P

B = (1/225)°C/W

P = power dissipated in fuse
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PROBLEM 3.2

a) Prove, if possible, each of the following statements. If a proof is not possible, illustrate
the failure with a counter-example and restate the theorem with a suitable restriction
so it can be proved.

i) In a network containing only linear resistors, every branch voltage and branch
current must be zero.

ii) The equivalent of a one-port network containing only linear resistors is a linear
resistor.

b) To demonstrate that you understand superposition, construct an example that shows
explicitly that a network containing a nonlinear resistor will not obey superposition.
You may select any nonlinear element (provided you show that it is not linear) and
any simple network containing that element.

PROBLEM 3.3 Find Vy in Figure 3.132. Solve by (1) node method,
(2) superposition. All resistances are in ohms.

MM AL
VWW WWW

6 A 6Q= FIGURE 3.132

MM
VWW/

AMMAL
YYVY
=

3V 4Q

PROBLEM 3.4 Consider Figure 3.132. Find the Norton equivalent of the
network as seen at the terminals on the right.

PROBLEM 3.5
a) Find Ry, the equivalent resistance “looking into” the terminals on the right of the
circuit in Figure 3.133.

R R R

A,
YWWy

AMA M
YWy YWWW

VW

<—Req=?

VW

2RE 2 R

A
VW

2 RE

FIGURE 3.133

b) Find the Thévenin equivalent, looking into the terminals on the right of the circuit
in Figure 3.134.
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FIGURE 3.134

FIGURE 3.135

(b)

FIGURE 3.136

FIGURE 3.137

NETWORK THEOREMS

1Q 1Q 1Q
W :ﬁﬁﬁh W

1A 102 20Q% 20 205 ¢

AMMA
WYW

PROBLEM 3.6 FindvjforI=3A, V=2V inFigure 3.135. Strategy: To avoid
numerical errors, derive expressions in literal form first, then check dimensions.

AMAA
VYVYV\

AMA
W

3Q

° (D~

A
VWY

A\l
gl

2Q

AMA
VWWy

ViZ2Q

PROBLEM 3.7 For the circuits in Figures 3.136a and 3.136b:

a) Find v, for R = R.
b) Find v, for Ry # R.

¢) Find the Thévenin equivalent for the network to the right of points AB, assuming
R; =R

PROBLEM 3.8

a) Determine the equation relating i to v in Figure 3.137.

T 4
i
v £20 2A £30

b) Plot the v—i characteristics of the network.
¢) Draw the Thévenin equivalent circuit.

d) Draw the Norton equivalent circuit.
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PROBLEM 3.9 In Figure 3.138, find v, via (a) superposition, (b) the node
method.

Y 60 8 A 408 FIGURE 3.138

PROBLEM 3.10 Use the following three different methods to find 7 in
Figure 3.139:

1) Node method

3V
D MWy
'y
60 6QF 303 QD 2A FIGURE 3.139
2)  Superposition
3)  Alternate Thévenin/Norton transformations Resistive
network

PROBLEM 3.1T A student is given an unknown resistive network as illus-
trated in Figure 3.140. She wishes to determine whether the network is linear, and
if it is, what its Thévenin equivalent is.

Unknown
The only equipment available to the student is a voltmeter (assumed ideal), 100-kQ2 and network
1-M2 test resistors that can be placed across the terminals during a measurement (see
Figure 3.141). FIGURE 3.140
e — — — — 4
. +
Resistive Voltmet
network v R oltmeter
e — I FIGURE 3.141

Test resistor
Unknown

network
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The following data were recorded:

Test Resistor ~ Voltmeter Reading

Absent 1.5V
100 k2 025V
1 MQ 1.0V

What should the student conclude about the network from these results? Support your
conclusion with plots of the network v—i characteristics.

PROBLEM 3.12

a) Devise an electrical circuit of voltage sources and resistors that will “calculate” the
balance point (center of mass) of the massless bar shown in Figure 3.142, for three
arbitrary masses hung at three arbitrary places along the bar. We want the circuit to
generate a voltage that is proportional to the position of the balance point. Write
the equation for your network, and show that it performs the required calculation.
(Work with conductances and superposition for a simple solution.)

| |
FIGURE 3.142 * + +

Mass A Mass B Mass C

b) Extend your result in part (a) to two dimensions; that is, devise a new network (which
will have more voltage sources and more resistors than above) that can find the center
of mass of a triangle with arbitrary weights handing from its three corners. The
network will now have to give you two voltages, one representing the x-coordinate
and the other the y-coordinate of the center of mass. This system is a barycentric
coordinate calculator, and can be used as the input for video games, or to simulate
trichromatic color vision in the human eye.

PROBLEM 3.13
a) Find the Thévenin equivalent for the network in Figure 3.143 at the terminals CB.
The current source is a controlled source. The current flowing through the current

FIGURE 3.143 Bl GV 100 kQZ
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source is 11, where B is some constant. (We will discuss controlled sources in more
detail in the later chapters.) ¢

VWWy

b) Now suppose you connect a load resistor across the output of your equivalent circuit v,

AMAA
V
=

=

as shown in Figure 3.144. Find the value of R; which will provide the maximum

power transfer to the load.

PROBLEM 3.14 You have been hired by the MITDAC Corporation to write a FIGURE 8.144
product description for a new 4-bit digital-to-analog-converter resistance ladder. Because

of mask tolerances in VLSI chips, each resistor shown in Figure 3.1435 is guaranteed to

be only within 3% of its nominal value. That is, if Ry is the nominal design resis-

tance, then each resistance labeled R can have a resistance anywhere in the range

(1 £ .03)Ry and each resistance labeled 2R can have a resistance anywhere in the

range (2 + .06)Ry.

R R

R
AVAVAVAVAVA ‘VAYAYAVAYA ‘VAYAYAVAYA
+
2R 2R 2R 2R L
2RE v, FIGURE 3.145
V1 V2 V4l v8 R

You are to write an honest description of the accuracy of this product. Remember that

2R

MAMA
YWYWy
A

\AAAAL

if you overstate the accuracy, your company will have many returns from dissatisfied
customers, whereas if you understate the accuracy, your company won’t have any
customers.

Note: Part of this problem is to describe what the problem is. How should accuracy be
specified? Is there an error level that is clearly unacceptable? Does your product avoid
that error level? Is there an obvious “worst case” that can be easily analyzed? Have fun.
And remember, common sense is an important ingredient of sound engineering.

PROBLEM 3.I5 Youhavea 6-volt battery (assumed ideal) and a 1.5-volt flashlight
bulb, which is known to draw 0.5 A when the bulb voltage is 1.5 V (in Figure 3.146).
Design a network of resistors to go between the battery and the bulb to give vs = 1.5V
when the bulb is connected, yet ensures that vs does not rise above 2 V when the bulb
is disconnected.

I ;

6 V— ? v @’) FIGURE 3.146

T ;













ANALYSIS OF NONLINEAR
CIRCUITS

Thus far we have discussed a variety of circuits containing linear devices such
as resistors and voltage sources. We have also discussed methods of analyz-
ing linear circuits built out of these elements. In this chapter, we extend our
repertoire of network elements and corresponding analysis techniques by intro-
ducing a nonlinear two-terminal device called a nonlinear resistor. Recall, from
Section 1.5.2, a nonlinear resistor is an element that has a nonlinear, alge-
braic relation between its instantaneous terminal current and its instantaneous
terminal voltage. A diode is an example of a device that behaves like a non-
linear resistor. In this chapter, we will introduce methods of analyzing general
circuits containing nonlinear elements, trying whenever possible to use analysis
methods already introduced in the preceding chapters. Chapter 7 will develop
further the basic ideas on nonlinear analysis and Chapter 8 will expand on
the concept of incremental analysis introduced in this chapter. Chapter 16 will
elaborate on diodes.

41 INTRODUCTION TO NONLINEAR
ELEMENTS

Before we begin our analysis of nonlinear resistors, we will describe as examples
several nonlinear resistive devices, by their v—i characteristics, just as we did for
the resistor, the battery, etc. The first of the nonlinear devices that we discuss is
the diode. Figure 4.1 shows the symbol for a diode. The diode is a two-terminal,
nonlinear resistor whose current is exponentially related to the voltage across
its terminals.

An analytical expression for the nonlinear relation between the voltage v and
the current ip for the diode is the following:

ip = I(e?’V1H — 1), 4.1)

For silicon diodes the constant I is typically 10~1% A and the constant Vryy is
typically 0.025 V. This function is plotted in Figure 4.2.

An analytical expression for the relationship between voltage vy and cur-
rent 7 for another hypothetical nonlinear device is shown in Equation 4.2. In
the equation, Ix is a constant. The relationship is plotted in Figure 4.3.

iy = Ixvp, (4.2)

Ip |
+ VD -

FIGURE 4.1 The symbol for a
diode.

Aip

>

FIGURE 4.2 v—icharacteristics
of a silicon diode.

fH

vy

FIGURE 4.8 Another nonlinear
v—i characteristics.
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1 -
0 I g
v
Vi DS

FIGURE 4.4 The v—icharacter-
istics for a square law device.

ANALYSIS OF NONLINEAR CIRCUITS

The v—i relationship for yet another two-terminal nonlinear device is
shown in Equation 4.3. Figure 8.11 in Chapter 8 introduces such a nonlinear
device. For this device the current is related to the square of the terminal voltage.
In this equation, K and VT are constants. The variables ipg and vpg are the
terminal variables for the device. The relationship is plotted in Figure 4.4.

K(vps — V1)?
—= >V

ips = 2 OF vDs = VT (4.3)
0 for vpg < Vr

EXAMPLE 4.T SQUARE LAW DEVICE For the nonlinear resistor
device following the square law in Figure 4.4, determine the value of ipg for vpg = 2 V.
We are given that V7 =1V and K =4 mA/ V2.

For the parameters that we have been given (vpg = 2 Vand V1 = 1 V), it is easy to
see that
vps = V.

From Equation 4.3, the expression for ipg when vpg > V1 is

K(vps — V1)

ips =
2

Substituting the known numerical values,

4x10732-1?%

ips = =2 mA.
DS 2

How does ipg change if vpg is doubled?

If vpg is doubled to 4 V,

K(wps — Vp)? _4x 10734 — 1)2
2

ipg = =18 mA

In other words, ipg increases to 18 mA when vpg is doubled.
What is the value of ipg if vpg is changed to 0.5 V?
Forvpg=05Vand V=1V,
vps < V.
From Equation 4.3, we get
ips = 0.

When operating within some circuit, the current through our square law device
is measured to be 4 mA. What must be the voltage across the device?
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We are given that ipg = 4 mA. Since there is a current through the device, the equation
that applies is

ips = K(ps — Vr)*
o 2 .
Substituting known values,
4 % 103 (upg — 1)?
g x 10-3 = 2> 107 wps = 7
2
Solving for vpg, we get
vps =3 V.

EXAMPLE 4.2 DIODE EXAMPLE For the diode shown in Figure 4.1,
determine the value of ip for vp = 0.5 V, 0.6 V, and 0.7 V. We are given that Vpy =
0.025 Vand I, = 1 pA.

From the device law for a diode given in Equation 4.1, the expression for ip is

ip = L’V — 1)

Substituting the known numerical values for vp = 0.5 V, we get
ip=1x10712("5/0025 _ 1) — 0.49 mA.

Similarly, for vp = 0.6 V, ip = 26 mA, and for vp = 0.7 V, ip = 1450 mA. Notice the
dramatic increase in current as vp increases beyond 0.6 V.

What is the value of ip if vp is —0.2 V?
ip = L@’V — 1) = 1 x 10712(¢ 020025 _ 1) = _0.9997 x 10~ 12A.

The negative sign for ip simply reflects the fact that when vp is negative, so is the
current.

When operating within some circuit, the current through the diode is measured to be
8 mA. What must be the voltage across the diode?

We are given that ip = 8 mA. Using the diode equation, we get
8 x 1072 = eV — 1) = 1 x 107 12(e*/00% _1q),

Simplifying, we get

/0925 — 8 5 10° + 1.
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FIGURE 4.5 A nonlinear device.

FIGURE 4.6 A circuit containing
the nonlinear device.

Arbitrary
circuit

FIGURE 4.7 The nonlinear
device connected to an arbitrary
circuit.

FIGURE 4.8 Nonlinear devices
connected in parallel.

ANALYSIS OF NONLINEAR CIRCUITS

Taking logs on both sides, and solving for vp, we get

vp = 0.0251n(8 x 10° + 1) = 0.57 V.

EXAMPLE 4.3 ANOTHER SQUARE LAW DEVICE PROBLEM
The nonlinear device shown in Figure 4.5 is characterized by this device equation:

ip =01v} for vp >0, 4.4)

ip is given to be 0 for vp < 0.
Given that V = 2V, determine 7p for the circuit in Figure 4.6.

Using the device equation for vp > 0,
ip=01v3 =01x22=04A 4.5)

The nonlinear device is connected to some arbitrary circuit as shown in Figure 4.7.
Following the associated variables discipline, the branch variables vp and ig for the
device are defined as shown in the same figure. Suppose that a measurement reveals
that 75 = —1 mA. What must be the value of vg?

Notice that the polarity of the branch variables has been reversed in Figure 4.7 from
those in Figure 4.5. With this definition of the branch variables, the device equation
becomes

—ip = 0.1v} for vp <O0. (4.6)
Furthermore, 73 is O for vg > 0.

Given that 73 = —1 mA, Equation 4.6 yields
—(=1x1073) = 0.1vf where v < 0.

In other words, vg = —0.1 V.
Given that V = 2V, determine i for the circuit in Figure 4.8.

Since the voltage across each of the nonlinear devices connected in parallel is vp = 2V,
the current through each nonlinear device is the same as that calculated in Equation 4.5.
In other words,

it =i = 0.4 A.

Therefore, i = iy +i, = 0.8 A.




4.2 Analytical Solutions

Given the analytical expression for the characteristic of a nonlinear device,
such as that for the diode in Equation 4.1, how can we calculate the voltages
and currents in a simple circuit such as Figure 4.9? In the following sections we
will discuss four methods for solving such nonlinear circuits:

1. Analytical solutions

2. Graphical analysis

3. Piecewise linear analysis
4

Incremental or small signal analysis

42 ANALYTICAL SOLUTIONS

We first try to solve the simple nonlinear resistor circuit in Figure 4.9 by ana-
lytical methods. Assume that the hypothetical nonlinear resistor in the figure is
characterized by the following v—i relationship:

KU% for vp > 0 47)

D= 0 for vp < 0.
The constant K is positive.

This circuit is amenable to a straightforward application of the node
method. Recall that the node method and its foundational Kirchhoff’s voltage
and current laws are derived from Maxwell’s Equations with no assumptions
about linearity. (Note, however, that the superposition method, the Thévenin
method, and the Norton method do require a linearity assumption.)

To apply the node method, we first choose a ground node and label the
node voltages as illustrated in Figure 4.10. vp is our only unknown node voltage.

Next, following the node method, we write KCL for the node that has an
unknown node voltage. As prescribed by the node method, we will use KVL
and the device relation (ip = Kvlz)) to obtain the currents directly in terms of the
node voltage differences and element parameters. For the node with voltage vp,

vp—E

CHAPTER FOUR 197

AMMA
VYW

R ip

Nonlinear resistor
p
i =K% forv,>0
ip =K D7
VD in=0 otherwise

FIGURE 4.9 A simple circuit
with a nonlinear resistor.

FIGURE 4.10 The nonlinear
circuit with the ground node
chosen and node voltages labeled.



198 CHAPTER FOUR

FIGURE 4.11 Solutions to
equations Equations 4.10 and 4.9.

ANALYSIS OF NONLINEAR CIRCUITS

Note that this is not quite our node equation, because of the presence of the ip
term. To get the node equation we need to substitute for 7p in terms of node
voltages. Recall that the nonlinear device v~ relation is

ip = Kvj. (4.9)

Note that this device equation applies for positive vp. We are given that ip = 0
when vp < 0.

Substituting the nonlinear device v~ relationship for ip in Equation 4.8,
we get the required node equation in terms of the node voltages:

—E
P K =0, (4.10)

For our device, note that Equation 4.9 holds only for vp > 0. For vp < 0,
" lsSOiJ‘nplifying Equation 4.10, we obtain the following quadratic equation.
RKv3 +vp — E=0.
Solving for vp and choosing the positive solution

_ —1+ T+4RKE
N 2RK '

Up (4.11)

The corresponding expression for ip can be obtained by substituting the
previous expression for vp into Equation 4.9 as follows:

2
0 :K[—1+«/1+4RKE} . @12

2RK

It is worth discussing why we ignored the negative solution. As shown in
Figure 4.11, two mathematical solutions are possible when we solve Equa-
tions 4.10 and 4.9. However, the dotted curve in Figure 4.11 is part of

A
I
ip=Kv}
Physical
\ solution
Non-physical\ E/R |
undesired in = —~(vh—E
solution N ‘D R(VD )
~ -
EI?\ VD
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Equation 4.9 but not the physical device. Because, recall, Equation 4.9 applies
only for positive vp. When E is negative, ip will be equal to 0 and vp will be
equal to E.

EXAMPLE 4.4 ONE NONLINEAR DEVICE, SEVERAL
SOURCES, AND RESISTORS Shown in Figure 4.12 is a circuit of no obvi-
ous value, which we use to illustrate how to solve nonlinear circuits with more than one
source present, using the nonlinear analysis method just discussed. Let us assume that
we wish to calculate the nonlinear device current 7p.

Assume that the nonlinear device is characterized by the following v—i relationship:

Kvl% for vp > 0

ip = (4.13)

0 for vp < 0.

The terminal variables for the nonlinear device are defined as shown in Figure 4.9, and
the constant K is positive.

Linear analysis techniques such as superposition cannot be applied to the whole circuit
because of the nonlinear element. But because there is only one nonlinear device, it is
permissible to find the Thévenin (or Norton) equivalent circuit faced by the nonlinear
device (see Figures 4.13a and b), because this part of the circuit is linear. Then we
can compute easily the terminal voltage and current for the nonlinear device using the
circuit in Figure 4.13b from Equations 4.11 and 4.12.

First, to find the open-circuit voltage, we draw the linear circuit as seen from the nonlin-
ear device terminals in Figure 4.13¢. Superposition or any other linear analysis method
can now be used to calculate the open-circuit voltage:

Ry
Vig=V———— — DR;. (4.14)
Ri+ Ry

The Thévenin equivalent resistance, Rpp, the resistance seen at the terminals in
Figure 4.13d, with the sources set to zero is

Ry = (R1]|R2) + R3. (4.15)

CHAPTER FOUR

FIGURE 4.12 Circuit with
several sources and resistors.
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4.2 Analytical Solutions

When we reconnect the nonlinear device to this Thévenin circuit, as in Figure 4.13e,
we are back to a familiar example: one nonlinear device, one source, and one resistor.
The desired device current 7p can be found by a nonlinear analysis method, such as that
used to solve the circuit in Figure 4.9.

One further comment: If in the problem statement we had been asked to find one of the
resistor currents, say 73, rather than ip, then the Thévenin circuit, Figure 4.13¢, would
not give this current directly, because the identity of currents internal to the Thévenin
network are in general lost, as noted in Chapter 3. Nonetheless, the Thévenin approach
is probably the best, as it is a simple matter to work back through the linear part of
the network to relate 73 to ip. In this case, once we have computed ip, we can easily
determine #3 from Figure 4.13a using KCL,

13 =ip+ Iy (4.16)

KM EXAMPLE 4.5 NODE METHOD

EXAMPLE 46 ANOTHER SIMPLE NONLINEAR CIRCUIT
Let us try to solve the nonlinear circuit containing a diode in Figure 4.16 by analytical
methods. Following the node method, we first choose the ground node and label the
node voltages as illustrated in Figure 4.17.

Next, we write KCL for the node with the unknown node voltage, and substitute for
the diode current using the diode equation

vwp—E .
D= =0 (4.18)
ip = Ife*V — 1), (4.19)
v 1%
AyAyAyAlyiyA - E AVAVAVAVAVA D
R ip R D
+ +
; Lo®
- Vp T /_VD
T
FIGURE 4.16 A simple non-linear FIGURE 4.17 The circuit with the

circuit containing a diode. ground node and the node voltages

marked.

CHAPTER FOUR
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FIGURE 4.18 Series connected
diodes.

ANALYSIS OF NONLINEAR CIRCUITS

If ip is eliminated by substituting Equation 4.19 into Equation 4.18, the following
transcendental equation results:

—E
UD + IS(eUD/VTH _ 1) = 0.

This equation must be solved by trial and error. Easy via computer, but not very
insightful.

EXAMPLE 4.7 SERIES-CONNECTED DIODES Referring to the
series-connected diodes in Figure 4.18, determine vy, v, v3, and v4, given that I = 2 A.
The parameters in the diode relation are given to be I, = 10712 A, iy = 0.025 V.

We will first use the node method to solve this problem. Figure 4.18 shows the ground
node and the node voltages. There are four unknown node voltages. Next, we write
KCL for each of the nodes. As prescribed by the node method, we will use KVL and the
diode relation (Equation 4.1) to obtain the currents directly in terms of the node voltage
differences and element parameters. For the node with voltage vy,

10712(67,/1/0.025 _ 1) — 10712(8(1/277./1)/0.025 _ 1) (420)

The term on the left-hand side is the current through the lowermost device expressed
in terms of node voltages. Similarly, the term on the right-hand side is the current
through the device that is second from the bottom.

Similarly, we can write the node equations for the nodes with voltages v, v3, and v4 as
follows:

10—12(6(1/2—1/1)/0‘025 —1) = 10—12(6(1/3—122)/0025 -1) 4.21)
10—12(6(1/3—1/2)/0.025 _ 1) — 10—12(6(1/4—U3)/0.025 _ 1) (4.22)
10712(e(v47v3)/0.025 —-1)=1 (4.23)

Simplifying, and taking the log on both sides of Equations 4.20 through 4.23, we get

v =1 — U1 (4.24)
V) =V =U3 =12 4.25)
V3 —1) =Us4 — 13 (4.26)

v4 — v3 = 0.025 In(10121 + 1). 4.27)



4.3 Graphical Analysis CHAPTER FOUR

Given that I = 2 A, we can solve for v1, 12, v3, and v4, to get

v = 0.025 (10121 + 1) = 0.025 (10 x 2+ 1) = 0.71V
»n =20 =142V
U3 = 31/1 =213V
VU4 = 41/1 =2.84V.
Notice that we could have also solved the circuit intuitively by observing that the same

2-A current flows through each of the four identical diodes. Thus, the same voltage
must drop across each of the diodes. In other words,

= 10_12(€U1/O'025 -1

or,
v1 = 0.025In(10"21 4 1).
ForI=2A,
v1 =0.025In(10" x 2A+ 1) = 0.71 V.

Once the value of v; is known, we can easily compute the rest of the node voltages from

UVl =1V) — V] =UVU3 —UVU) =U4 —U3.

KM EXAMPLE 4.8 MAKING SIMPLIFYING ASSUMPTIONS

I EXAMPLE 4.9 VOLTAGE-CONTROLLED NONLINEAR
RESISTOR

43 GRAPHICAL ANALYSIS

Unfortunately, the preceding examples are a rather special case. There are
many nonlinear circuits that cannot be solved analytically. The simple circuit
in Figure 4.16 is one such example. Usually we must resort to trial-and-error
solutions on a computer. Such solutions provide answers, but usually give
little insight about circuit performance and design. Graphical solutions, on the
other hand, provide insight at the expense of accuracy. So let us re-examine
the circuit in Figure 4.16 with a graphical solution in mind. For concreteness,
we will assume that E = 3 V and R = 500 Q, and that we are required to
determine vp, ip, and vR.
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We have already found the two simultaneous equations, Equations 4.18
and 4.19, that describe the circuit. For convenience, let us rewrite these
equations here after moving a few terms around:

vp — E
R
ip = I(e?’V1H — 1), (4.32)

in=— (4.31)

To solve these expressions graphically, we plot both on the same coor-
dinates and find the point of intersection. Because we are assuming that we
have a graph of the nonlinear function, in this case Figure 4.2, the simplest
course of action is to plot the linear expression, Equation 4.31, on this graph,
as shown in Figure 4.20. The linear constraint of Equation 4.31 is usually called
a “load line” for historical reasons arising from amplifier design (as we will see
in Chapter 7).

Equation 4.31 plots as a straight line of slope —1/R intersecting the vp
axis, (ip = 0) at vyp = E. (The negative sign may be a bit distressing, but
does not represent a negative resistance, just the fact that ip and vp are not
associated variables for the resistors.) For the particular values in this circuit, the
graph indicates that 7p must be about § mA, and vp, about 0.6 V. Once we
know that 7p is 5 mA, it immediately follows that

vrR =ipR =5 x 1073 x 500 = 2.5 V.

It is easy to see from the construction that if E were made three times
as large, the voltage across the diode would increase by only a small amount,
perhaps to about 0.65 V. This illustrates the kind of insight available from
graphical analysis.

The graphical method described here is really more general than it might
at first appear. For circuits containing many resistors and sources, but only one
nonlinear element, the rest of the circuit, exclusive of the one nonlinear element,
is by definition linear. Hence, as described previously in Example 4.4, regardless
of circuit complexity we can reduce the circuit to the form in Figure 4.16 by

FIGURE 4.20 Graphical solution
for diode circuit. The graph
assumes that E =3V and

R = 500 .

{ Slope =-1/R




4.3 Graphical Analysis

the application of Thévenin’s Theorem to the linear circuit facing the nonlinear
element.

For circuits with two nonlinear elements, the method is less useful, as it
involves sketching one nonlinear characteristic on another. Nonetheless, crude
sketches can still provide much insight.

EXAMPLE 4.T0 HALF-WAVE RECTIFIER Let us carry the diode-
resistor example of Figure 4.16 and Figure 4.20 a step further, and allow the driving
voltage to be a sinusoid rather than DC. That is, let v = E, cos(w?). Also, for reasons
that will become evident, let us calculate the voltage across the resistor rather than the
diode voltage. The graphical solution is no different than before, except that now we
must solve for the voltage assuming a succession of values of v, and visualize how the
resultant time waveform should appear.

The circuit now looks like Figure 4.21a. The diode characteristic with a number of
different plots of Equation 4.31 (or load lines), corresponding to a representative set of
values of vy, is shown in Figure 4.21b. In Figures 4.21c and 4.21d we show the input
sinusoid v;(#), and the corresponding succession of values of vo(#) derived from the
graphical analysis in Figure 4.21b. Note from Figure 4.21a (or Equation 4.31) that

Vo =U[—Up (4.33)

~

\ o
~
~
~
~
~ ~
~ ~
~ ~
P ~ ~
- ~ -~
~ ~ ~
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vy = E, cos(wt)

()

>
(© / \/ \ (d) / ' \, Vi

FIGURE 4.21 Half-wave rectifier.
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FIGURE 4.22 v—/characteristics
of a silicon diode plotted using
different scales.

ANALYSIS OF NONLINEAR CIRCUITS

and thus in the graph v is the horizontal distance from the load line intersection on
the vp axis to vj.

A number of interesting conclusions can be drawn from this simple example. First, we
really do not have to repeat the load line construction fifty times to visualize the output
wave. It is clear from the graph that whenever the input voltage is negative, the diode
current is so small that v is almost zero. Also, for large positive values of vy, the diode
voltage stays relatively constant at about 0.6 volts (due to the nature of the exponential),
so the voltage across the resistor will be approximately vy — 0.6 V. This kind of insight
is the principal value of the graphical method.

Second, in contrast to all previous examples, the output waveform in this circuit is
a gross distortion of the input waveform. Note in particular that the input voltage
waveform has no average value, (no DC value), whereas the output has a significant DC
component, roughly 0.3 E,. The DC motors in most toys, for example, will run nicely
if connected across the resistor in the circuit of Figure 4.21a, whereas they will not run
if driven directly by the sinusoid v;(#). This circuit is called a half-wave rectifier, because it
reproduces only half of the input wave. Rectifiers are present in power supplies of most
electronic equipment to generate DC from the 60-Hz “sinusoidal” wave from 110-V
AC power line.

44 PIECEWISE LINEAR ANALYSIS

In the third of the four major methods of analysis for networks containing
nonlinear elements, we represent the nonlinear v—i characteristics of each
nonlinear element by a succession of straight-line segments, then make cal-
culations within each straight-line segment using the linear analysis tools
already developed. This is called piecewise linear analysis. We will first illus-
trate piecewise linear analysis by using as an example a very simple piecewise
linear model for the diode called the ideal diode model.

First, let us develop a simple piecewise linear model for the diode, and then
use the piecewise linear method to analyze the circuit in Figure 4.16.

As can be seen from Figure 4.22a, the essential property of a diode is that for
an applied positive voltage vp in excess of 0.6 volts, large amounts of current

Aip Aip
10pA T 10 mA—

v
(a) 05V (b) 5V
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flow, whereas for negative voltages very small currents flow. Figure 4.22b ip A
draws the v—i curve using a larger scale and highlights this dichotomy. The
crudest approximation that preserves this dichotomy is the characteristic shown
in Figure 4.23a: two linear segments intersecting at the origin, one of zero slope, ’/\/
indicating the behavior of an open circuit, the other infinite, indicating a short VD
drcuit. The abstraction is of sufficient use that we give it a special symbol, as >
shown in Figure 4.23b. This is yet another primitive in our vocabulary, called /‘/(
an ideal diode. Open
The behavior of this piecewise linear model can be summarized in two circuit
statements, one for each of the segments:

Short
circuit

Diode ON (short circuit): vp = 0 for all positive ip. (4.34) (a)
Diode OFF (open circuit): ip = 0 for all negative vp. 4.35)

We now use the diode model comprising two straight-line segments to
illustrate the piecewise linear analysis method applied to the circuit in Figure 4.16
(also shown in Figure 4.24a). In particular, we will determine the voltage vg +
across the resistor and the current 7p through the resistor for two values of the
input voltage, E = 3 V and E = —5 V, and given that R = 500 Q.

The piecewise linear analysis technique proceeds by focusing on one ——
straight-line segment at a time, and using our previously developed linear anal-

. . . . PR VAR, 1%
ysis tools to make calculations within each segment. Notice that we are able b
to apply our linear analysis tools because the nonlinear device characteristics
are approximated as linear within each segment. To facilitate our calculations,
let us first draw the circuit that results for each of the straight-line segments
comprising the ideal diode model. -

® e
VR - + "R - FIGURE 4.23 A piecewise
AAAAAA AAAA . . . .
YWY ) YYVVY . linear approximation for the diode:
R v'? R v'? the ideal diode model.

+ + + L +

E E

- VD - VD

- b -
(@) (b) Short circuit segment FIGURE 4.24 Piecewise linear
v . . . . .
R analysis of a simple diode circuit.
YYYYY
R p

® »
I -

(c) Open circuit segment
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Short circuit segment: Figure 4.24b shows the resulting circuit when the diode
is operating as a short circuit. When ip and vp are in this straight-line segment
of the characteristic, trivial calculations show that

D= — 436
D R ( )

and
. E
v =ipR = R=F. (4.37)

Open circuit segment: Figure 4.24c¢ shows the corresponding circuit when
the diode is operating as an open circuit. When ip and vp are in this part
of the characteristic, it is clear that

in=0 (4.38)

and
vg = 0. (4.39)

Combining the results: All that remains now is to determine which of the two
segments of operations apply when E = 3 Vand when E = —5 V. A little bit of
intuition tells us that when E = 3V, the short circuit segment applies. Notice
that both the resistor and the diode (a nonlinear resistor) do not produce power,
and so the direction of the current must be such that the voltage source delivers
power. In other words, when E is positive, so must ip. From Equation 4.34,
when ip is positive, the diode is ON. In this segment, from Equations 4.36
and 4.37

E 3
D= — = — = 6mA 4.40
P=R 7500 "™ (4.40)
and
vr=3V.

Compared with the numbers obtained earlier in Section 4.3 using graphical
analysis for E = 3 V, we see that piecewise linear analysis using an approximate
model for the diode has yielded reasonably accurate results (6 mA versus 5 mA
for ip, and 3 V versus 2.5 V for vR).

Intuition also tells us that when E = —5 V, the open circuit segment
applies. For the negative input voltage, vp is negative. From Equation 4.35,
when vp is negative, the diode is OFF. In this segment, from Equations 4.38
and 4.39, both ip and vy are 0.

Notice that the piecewise linear analysis method enabled us to break down
a nonlinear analysis problem into multiple linear problems, each of which was
very simple. However, an interesting aspect of the method is figuring out the
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segment of operation associated with each of the nonlinear devices. This was
not too hard with a single nonlinear device such as an ideal diode, but can be
challenging when there are a number of nonlinear devices. It turns out that
the approach that we discussed in this example generalizes to the method of
assumed states, which will be discussed in more detail in Chapter 16.

EXAMPLE 4.11 PIECEWISE LINEAR ANALYSIS OF A
HYPOTHETICAL NONLINEAR DEVICE Figure 4.25a shows a circuit
containing some hypothetical nonlinear device whose v—i characteristics are approxi-
mated using the piecewise-linear graph shown in Figure 4.25b. The nonlinear device
with its terminal voltage and current defined as shown in Figure 4.26a might have an
actual v—i curve as illustrated in Figure 4.26b. Figure 4.26¢ shows the correspondence
between the device’s actual v—i curve and the piecewise linear model.

The behavior of the piecewise linear model for our nonlinear device can be summarized
in two statements, one for each of the straight-line segments:

Resistance Rj for all positive ip (4.41)
Resistance R; for all negative ip (4.42)
R '
(ip>0)
ip
0 ! slope = /R,
(ip<0) o
@ slope = 1/R,
()
R R
n Y ip(ip=0) " Y ip(ip<0)
vD EE Rl v[) EE RZ
(© (d)
iph / ipd
in + /
VD /
_ P -
I ) “Vp 7
(2) - (ip, < 0) slope = 1/R,
R,=10kQ

(b) (©
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FIGURE 4.25 Acircuit
containing a nonlinear device
whose characteristics are modeled
using a piecewise linear approxi-
mation. In (b), Ry = 100 Q and

Ry =10 kQ.

FIGURE 4.26 A hypothetical
nonlinear device whose character-
istics are modeled using a piece-
wise linear approximation.
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Let us apply the piecewise linear analysis method to the circuit in Figure 4.25(a). Specifi-
cally, let us determine the voltage vp across the nonlinear device for various values of
the current I sourced by the independent current source. Specifically, we will deter-
mine vp for I = 1 mA, I = —1 mA, and when [ is a sinusoidal current of the form
0.002 A cos (a)t).

Following the piecewise linear analysis technique, let us focus on one straight-line
segment at a time. Accordingly, we draw the circuit that results for each of the segments.

Rj segment: Figure 4.25¢ shows the resulting circuit when the nonlinear device is
operating in its Ry segment. This segment applies when 7p is positive.
Since ip = I, the Ry segment applies when [ is positive. A simple
application of Ohm’s Law for the R resistor yields

Up = IR1. (4.43)

R, segment: Figure 4.25d shows the circuit when the nonlinear device is operating
in its Ry segment. This segment applies when ip is negative; in other
words, when Iis negative. In this segment, we obtain

vp = IR. (4.44)

Summarizing,
When I>0: vp=1IRq (4.45)
When [ <0: vp=IR;. (4.46)

Thus, for I = 1 mA, Equation 4.45 applies. Therefore

vp = IRy = 0.001 x 100 = 0.1 V.

Similarly, for I = —1 mA, Equation 4.46 applies. Therefore
vp = IRy = —0.001 x 10000 = —10 V.

Let us now determine vp for the cosine current input depicted in Figure 4.27a. When
1>0,
vp =1Ry =1x 100

as shown in Figure 4.27b. Similarly, when I < 0,
vp = IRy = I x 10000

as shown in Figure 4.27c. Piecing together the two results for I > 0 and I < 0, we
obtain the complete waveform for the output vp as shown in Figure 4.27d.
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EXAMPLE 4.12 SUPERPOSITION APPLIED IN LINEAR
SEGMENTS Although the previous examples illustrated the piecewise linear analy-
sis method, they did not do full justice to the power of the technique, since the equivalent
circuits within each of the linear segments were very simple (for example, the circuits in
Figures 4.24b and 4.24c, or the circuits in Figures 4.25¢ and 4.25d, and did not require
any of our powerful analysis techniques such as superposition that rely on linearity. We
will now work a slightly more complicated example to illustrate the full power of the
piecewise linear analysis method.

Consider the circuit in Figure 4.28 containing the hypothetical nonlinear device from
Example 4.11 (shown in Figure 4.26a) and two independent sources. Suppose we are
asked to determine the value of vg. The presence of the nonlinear device does not
allow the application of superposition, since superposition relies on the assumption of
linearity.

Let us use the piecewise linear analysis method to solve this problem. The piecewise linear
model for the device characteristics is shown in Figure 4.26¢. Recall, the nonlinear device

CHAPTER FOUR

FIGURE 4.27 Cosine input.
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FIGURE 4.28 A circuit contain-
ing a nonlinear device and multiple
sources.

FIGURE 4.29 Equivalent circuit
in the linear segment with
slope 1/R;.
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5kQg

hd
1kQ  3kQ
+ 2kQ
SKQz vy 2R, =100Q
1 mA R
hd

behaves like a resistor of value Ry when ip > 0, and like a resistor of value R, when
ip < 0.

For the polarities of the current source and the voltage source shown in Figure 4.28, the
current i through the nonlinear device will be positive.! Accordingly, the Ry segment
of device operation applies and the equivalent circuit is as shown in Figure 4.29. In
Figure 4.29, we have replaced the nonlinear device with a resistor of value R;.

The circuit in Figure 4.29 is linear, so any of our linear techniques can be used. We will
use superposition to solve this circuit. According to the first step of the superposition
method, for each independent source, we must form a subcircuit with all other indepen-
dent sources set to zero. Setting a voltage source to zero implies replacing the voltage
source with a short circuit, and setting a current source to zero implies replacing the
current source with an open circuit. Figure 4.30a shows the subcircuit with the voltage
source set to zero, and Figure 4.30b shows the subcircuit with the current source set
to zero.

Now, according to the second step of the superposition method, we must find the
response of each independent source acting alone from the corresponding subcircuit.
Let us denote the response of the current source acting alone as v, and the response
of the voltage source acting alone as vgy.

1. In general, we can determine the polarity of ip by applying a Thévenin reduction on the circuit
facing the nonlinear device. ip will be positive if the Thévenin voltage driving the device is also
positive.
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1kQ  3kQ 1kQy  3kQ
L+ 2kQ = |+ 2kQ
5kQ 2 v ‘ TR =100Q SKQZ vy =R, =100Q
1mA _ I v
hd hd
(@) (b)

We will analyze the circuit in Figure 4.30a using the intuitive approach of
series-parallel reductions discussed in Section 2.4 to obtain vp;. In this approach,
we will first collapse all the resistances into an equivalent resistance R4 seen by
the current source and multiply that resistance by 1 mA. The equivalent
resistance seen by the current source is given by

Reg = (B kQ + 100 Q)12 k) + 1 kQ)||5 ke.

Simplifying, we get
Reg = 1.535 k.

Multiplying R, by the current source current we get

vpr=1535k x1 mA=1.535V.

We now analyze the circuit in Figure 4.30b to obtain vgy. We will again use the
intuitive approach suggested in Section 2.4 involving first collapsing, then
expanding the circuit. Suppose we knew the voltage v at node x, then we can
easily obtain vgy by the voltage divider relation. We can obtain v, by first
collapsing the circuit in Figure 4.30b into the equivalent circuit in Figure 4.31
and applying the voltage divider relation. Ry in the circuit in Figure 4.31 is
found by collapsing the 1-k€2, 5-k2, 3-k€2, and the 100-2 resistances into an
equivalent resistance as follows:

Ry = (1 kQ + 5 k|3 kS + 100 Q) = 2.05 ke

By the voltage divider relation

Ry v 2.05 k@

\Y = =0.51V.
2k + Ry 2kQ +2.05 k2

Ux

We now obtain vgy by expanding the circuit in Figure 4.31 to the original
circuit in Figure 4.30b and using the voltage divider relation as follows:

5kQ 5k

Uvy——— = 0. — = 0425 V.
1kQ+ 5 kQ 1kQ + 5 k2

VBV =

FIGURE 4.30 Circuits with each
of the sources acting alone.

2kQ

1V

FIGURE 4.31 Collapsed circuit.
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As the final step of the superposition method, we obtain the total response by summing
together each of the individual responses:

vg=uvpr+uvgy = 1.535V+0.425V =196 V.

Thus, we have our desired answer. Notice that we were able to apply the powerful
superposition method by focusing on a straight line segment of the nonlinear device.

DM EXAMPLE 4.13 HALF-WAVE RECTIFIER RE-EXAM-
INED

I 441 IMPROVED PIECEWISE LINEAR MODELS
FOR NONLINEAR ELEMENTS *

I EXAMPLE 4.14 ANOTHER EXAMPLE USING PIECE-
WISE LINEAR MODELING

I EXAMPLE 4.15 THE DIODE RESISTANCE

EIM EXAMPLE 4.16 A MORE COMPLICATED PIECEWISE
LINEAR MODEL

45 INCREMENTAL ANALYSIS

There are many applications in electronic circuits where nonlinear devices are
operated only over a very restricted range of voltage or current, as in many sen-
sor applications and most audio amplifiers, for example. In such cases, it makes
sense to find a piecewise linear device model in a way that ensures maximum
accuracy of fit over that narrow operating range. This process of linearizing
device models over a very narrow operating range is called incremental analysis
or small-signal analysis. The benefit of incremental analysis is that the incre-
mental variables satisfy KVL and KCL, as well as linear v~ relations over the
narrow operating range.

We note, however, that this almost linear mode of operation of nonlinear
devices over a narrow operating range is more common with MOSFET circuits
(discussed in Chapter 8) than with nonlinear resistors. However, because of the
simplicity of nonlinear resistor circuits, we introduce the concept of incremental
analysis here, recognizing that the principal application will come later.
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v,=o.7v

We will discuss incremental analysis using the diode as an example.
Suppose we wish to determine the value of the diode current ip in the cir-
cuit in Figure 4.37. Here we have a diode and a pair of voltage sources as in
many previous examples, but in this case one source, V7, is fixed at a value of,
say, 0.7 V, and the other, Avy, is a 1-mV sinusoid. Inputs of this form — a DC
value plus a small time-varying component — occur frequently in practice, and
so it is important to find a simple way to solve for the circuit response for this
type of input. We could, of course, take the obvious analytical approach and
write

in =1, ( 0.7 V-+0.001 Vsin(wf))/Vrr _ 1) (4.53)

but it leaves us with a complicated expression from which the form of the
output is not readily apparent.

We will abandon the straightforward approach, and instead, cast off in a
slightly different direction. Clearly, with the given values of the drive, this is
a case where the diode is being operated only over a very restricted region of
its nonlinear v—# characteristics: the diode will always have a large positive DC
offset voltage across it (given by V), and the diode current will vary only by a
small amount around I, (as depicted in the graphical sketch in Figure 4.37) due
to the small signal Avy superimposed on the DC input voltage. Thus a sensible
approach is to model the diode characteristic accurately in the vicinity of I (as
depicted by the small straight line segment tangent to the curve at the Vi, Ip
point, as shown in Figure 4.37) and disregard the rest of the curve. The Taylor
Series expansion is the appropriate tool to employ for this task:

(= X+ (454)
Xo

2
Iy 24T

y =1l =foX)+ 5| S

This is an expansion of the y versus x relation about the point f(X), Xo.
For our device ip versus vp relation,

ip = f(vp)

we need to develop the corresponding expansion about f(Vp), Vp, where
Ip = {(Vp).
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FIGURE 4.37 Incremental
analysis.
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For our example, the source voltages Vyand Ay are applied directly across
the diode, so the corresponding diode voltages are given by Vp = Vj and
Avp = Avy.

Thus, in terms of diode parameters, the corresponding Taylor Series
expansion of ip = f(vp) about f(Vp), Vp is:

P df _ 1d TR
ip = flvp) = f(Vp) + don VD(UD VD)+2! il VD(UD Vp)~ +

(4.55)

For our diode example, mathematically we wish to expand the diode
equation

ip =1, <e(VD+A”D>/ Vi _ 1) (4.56)

about the operating point Vp, Ip. In circuit terms we are calculating the response
ip when a voltage vp = Vp + Auvp, is applied to a diode, as in Figure 4.37.
The current ip will be of the form

ip = Ip + Aip. 4.57)

The Taylor series expansion of Equation 4.56 is

ip = I, (eVD/VTH - 1) n VL (ISeVD/VTH) Avp
TH

- — D/ VTH Y.
+ < > (Ise ) (Avp)” + (4.58)

Simplifying,

1 1/ 1\
ip=1I; ("' —1) 4 (Le "/ Vr1) |:V_AUD+E (V—> (Avp)?+-- } :
TH TH

(4.59)

Now if we are assured that the excursions away from the DC operating
point Vp, Ip are small, so that Avp is very small compared to Vg (as in this
case, since Vg is typically 0.025 V and we are given that Avp = 0.001 V) we
can ignore the second and higher order terms in the expansion:

ip =1 (eVD/VTH - 1) + <IseVD/VTH> [VL AUDj| . (4.60)
TH
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We know that the output current is composed of a DC component I and
a small perturbation Aip. Thus, we can write

1
Ip+ Aip =1, (eVD/ Vi _ 1) + (IseVD/ VTH) [V—AUD} . (4.61)
TH

Equating corresponding DC terms and corresponding incremental terms:

Ip=1I (eVD/ Vi _ 1) (4.62)
1
Aip = (Le"P/VTH) — Aup. (4.63)
(5 ) Vg

Note that Ip is simply the DC bias current related to the DC input voltage
Vp. Accordingly, the DC terms relating Ip to Vp can be equated as in Equa-
tion 4.62 because the operating point values Ip, Vp satisfy Equation 4.1, which
is the diode equation. When the DC terms are eliminated from both sides of
Equation 4.61, the incremental relation shown in Equation 4.63 results.

Thus the response current to an applied voltage Vp + Avp contains two
terms: a large DC current Ip and a small current proportional to Avp, if we
keep Avp small enough.

A graphical interpretation of this result is often helpful. As shown in
Figure 4.37, Equation 4.61 is the straight line passing through the DC operating
point Vp, Ip and tangent to the curve at that point. The higher order terms in
Equation 4.58 that we neglected would add quadratic, cubic, etc., terms to the
model, thereby improving the fit over a wider region.

For the particular case of incremental analysis with the diode equation, we
commonly make the following approximation to Equation 4.63:

1
i Vo/Vn _
Aip = I (6 1) Vo Avp (4.64)

where the —1 term is artificially included because it is small in comparison to
V'V, With the inclusion of the —1 term, we can simplify further and write
an approximate expression for the incremental diode current:

1
Aip = Ip——Avp. (4.65)
Vru

Figure 4.38 provides further insight into the result in Equations 4.62 and
4.63 (or its simplified form in Equation 4.65). Equation 4.62 establishes the
Vb, Ip operating point or the bias point of the diode. In/Vy is the slope of
the v—i curve at the point Vp, Ip. The product of the slope of the v—i curve at
Vb, Ip (given by Ip/V1y) and the small perturbation in applied diode voltage

CHAPTER FOUR
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FIGURE 4.38 Graphical
interpretation of operating point
and incremental signals.
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A Slope of the
i-v curve at
the operating

. i f pOint VD, ]D
At ' given by

I
VTH

(given by Avp) yields an approximation Aip = Ip/VryAvp to the resulting
perturbation in the diode current.

It is a simple matter to estimate the quality of fit. Taking the ratio of the
third term to the second term on Equation 4.58, we obtain

third term 11

= - Avp. (4.66)
second term 2 Vg

At room temperature, Vyy is roughly 25 mV. Thus, if we want the third
term to be no more than 10% of the second, Avp must be restricted to be less
than § mV.

We do not have to go through the mechanics of a Taylor series expan-
sion each time that we wish to find the relationship between the incremental
parameters Aip and Avp. Rather, we can find the relationship between the
incremental parameters directly from the ip = f(vp) relationship using

Avp (4.67)
Vb

rip= &
UD

The relationship in Equation 4.67 is itself derived from the Taylor series
expansion as follows. Recalling Equation 4.55,

wp—Vp)+ ——

) — af
lD—f(vD)—f(VD)-l-d " 2

UD




4.5 Incremental Analysis

and replacing ip by its DC value plus an increment (ip = Ip + Aip), the
difference (vp — Vp) by Avp, and

Ip = f(Vp) (4.69)
we rewrite Equation 4.68 as
d 1 &
ID+AiD=ID+—f AUD—i-——f Al/lz)—i--" (4.70)
dUD Vb 2! dlllz) Vi

Now, deleting Ip on both sides of the equation, and assuming Avp is small
enough that we can ignore second order terms in Avp we get

Avp. 4.71)
Vb

Aip = i
UD

In words, the incremental change in the current is equal to df/dvp evaluated
at vp = Vp, multiplied by the incremental change in the voltage.
You can verify that applying Equation 4.71 to the diode equation

ip = flup) = L&V — 1)

yields the same expression for Aip as that in Equation 4.63.

The same result can be developed graphically from Figure 4.38. The incre-
mental current Aip is simply the product of Avp and the slope of the ip versus
vp curve at the point Ip, Vp. The slope of the ip versus vp curve at the point
Ip, Vp is given by:

df(vp)

Slope of the ip versus vp curve = .
dvp v,

To wrap up our example of Figure 4.37, let us obtain the numerical value
of ip for the given form of vp. We are given that the input is of the form

vi = Vi+ Avp= 0.7 V4 0.001 V sin(w?).

Since the input is applied directly across the diode, the corresponding relation
in terms of diode voltages is

vp = Vp+ Avp = 0.7 V + 0.001 V sin(w?).
When Avp is small enough, ip can be written in the form

ip = Ip + Aip.

CHAPTER FOUR
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From Equation 4.69,
Ip = f(Vp) = I (7Y - 1)
and, from Equation 4.71,

1
Avp = L27VH_——0.001 sin wt.

Aip = —
v Vry

Substituting Iy = 1 pA and Vg = 0.025 V (at room temperature), the diode
parameters, we find that Ip = 1.45 A and Aip = 0.058 A sin(w?).

The values of Ip and Aip immediately confirm that 7p is the sum of a DC
term and a small time-varying sinusoidal term. Observe further the ease with
which we obtained the form of ip, and contrast with the uninsightful expression
in Equation 4.53 that resulted from the brute-force analytical approach.

Although this process yielded fairly quickly the form of ip, a bit of insight
will simplify the process even further by enabling the use of linear circuit tech-
niques to solve the problem as promised in the introduction of this section.
We proceed by drawing attention to Equation 4.61. Equation 4.61 is certainly
nonlinear. But an important interpretation central to all incremental arguments
allows us to solve the problem by linear circuit methods. Note from Equa-
tion 4.62 that the first term in Equation 4.61, the DC current Ip, is independent
of Avp. It depends only on the circuit parameters and the DC voltage Vp
which is the same as the DC source voltage V;. Thus Ip can be found with
Auvp, set to zero. On this basis, the second term in Equation 4.61 is linear in
Auvp, because we have shown that there is no hidden Avp dependence in Ip.
Hence the second term, the change in the current i is linearly proportional to the
change in v, can be found from a linear circuit.

But what is the form of this linear circuit that can facilitate the computation
of Aip? Observe that the constant of proportionality relating Aip and Avp is

Aip 1
2D gy=—1p (4.72)
Avp Vru

or more generally, from Equation 4.71,
Aip

_ 9
Avp 8= dvp VD’

(4.73)
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which can be interpreted as a linear conductance (the slope of the v—i
characteristic at Vp, Ip), or a linear resistance of value

1%
ry= —1 (4.74)
Ip

for a diode.

In general, the incremental behavior of a nonlinear device is that of a linear
resistor, whose value 7, is given by

1
= ——— (4.75)

dvp vp=Vp

For a diode, because Vg is about 25 mV at room temperature, for Ip =
1 mA, the incremental resistance r; = 25 Q. Similarly, for Ip = 1.45 A, r; =
0.017 Q. Note: The incremental resistance in general is not the same as the resis-
tor Ry used in the piecewise linear model of XM Figure 4.33¢. There we were
trying for a fit over a large range of current, and hence would compromise on a
different resistance value. The difference between R and 7,4 can be clearly under-
stood by comparing the two graphical interpretations, EEII Figures 4.33d
and 4.37.

In circuit terms, Equation 4.73 can be interpreted as depicted in Figure 4.39.
Aip can now be found trivially from the linear circuit in Figure 4.39, where
rg = 1/gy. For Ip = 1.45 A, r;is 0.017 © at room temperature, and

A
Aip =22 — 0059 A sin(w?).
rd

In summary, we began our analysis with the goal of determining the current
(ip) through the diode when an input voltage in the form of a DC value (Vp)
plus a small time-varying component (Avp) is applied across it. Equation 4.61
shows that the resulting diode current is made up of two terms, a DC term,
Ip, which depends only on the DC voltage applied Vp, and a small-signal or
incremental term Aip, which depends on the small-signal voltage and also on
the DC voltage Vp. But for fixed Vp, the incremental current Aip is linearly
related to Avp. The constant of proportionality is a conductance gy given by
Equation 4.73. Because the incremental circuit model of Figure 4.39 correctly
represents the relationship between Aip and Avp, this linear circuit can be used
to solve for Aip. In many situations, only the incremental change in the output

 Aip

Av; = 0.001 V sin(or) r, = E}L‘
vy,

D VD
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FIGURE 4.39 Linear circuit for
determining the value of Aip.
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FIGURE 4.40 Notation for
operating point, small signal, and
total variables.
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is of interest, and our analysis will end here. If the total value of the output (ip)
is desired, then it can be obtained by summing Aip and the DC component Ip.

Thus, based on the preceding discussion, a systematic procedure for find-
ing incremental voltages and currents for a circuit with a nonlinear device
characterized by the v—i relation ip = f(vp) is as follows:

1. Find the DC operating variables, Ip and Vp, using the subcircuit derived
from the original circuit by setting all small-signal sources to zero. Any of
the methods of analyzing nonlinear circuits discussed in the preceding
sections — analytical, graphical, or piecewise linear — is appropriate.

2. Find the incremental output voltage and incremental nonlinear device
current (the change away from the DC variables calculated in Step 1)
by forming an incremental subcircuit in which the nonlinear device is
replaced by a resistor of value 7, (computed as shown in Equation 4.75),
and all DC sources are set to zero. (That is, voltage sources are replaced
by short circuits, and current sources by open circuits.) The incremental
subdircuit is linear, so incremental voltages and currents can be calculated
by any of the linear analysis techniques developed in Chapter 3, including
superposition, Thévenin, etc.

One final note on notation before we work a few examples to illustrate the
small signal approach. For convenience, we will introduce the following nota-
tion to distinguish between total variables, their DC operating or bias values,
and their incremental excursions about the operating points. As illustrated in
Figure 4.40, we will denote total variables with small letters and capital sub-
scripts, DC operating point variables using all capitals, and incremental values
using all small letters. Thus, vp denotes the total voltage across the device, Vp
the DC operating point, and vy = Avp the incremental component. Since the
total variable is the sum of the two components, we have

vp=Vp+ vg.
iD
A
id I R :
in| 1, o
. ; > v
B
vy Vg
Vp \
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Large signal Small signal
+ +
iD iz[ v
e L _Vm
"D Ya % 14T d(fny) "

Vp vp= VD

Similarly, for the current
ip=1Ip+ id.

Figure 4.41 summarizes the large and small signal models for the diode in
terms of our new notation.

EXAMPLE 4.7 INCREMENTAL MODEL FOR SQUARE LAW
DEVICE Derive an incremental model for the square law device shown in
Figure 4.42a. Assume that the device is characterized by the following v—i relationship:

ip = KUI% for vp >0
=0 for vp <0

where K = 1 mA/V?2, and that the operating point values for Vp and I are 1 V and
1 mA respectively.

We know from Equation 4.75 that the incremental model for a nonlinear device is a linear
resistor of value r; as depicted in Figure 4.42. The value of the resistance is given by

1
rd:dfi

dvp lyp=Vy,
Substituting, f(vp) = KUIZD’ we obtain
1

r=— 500 Q.
2Kvplyp=vp=1 v

EXAMPLE 418 INCREMENTAL MODEL FOR A RESISTOR
We will show that the incremental model for a linear resistor of value R is also a resistor
of value R. Intuitively, since the v—i relation for a linear resistor is a straight line, the
slope (given by 1/R) is the same for all values of the resistor voltage and current. Further,
since the incremental resistance 7 is the reciprocal of the slope, it follows that » = R.
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FIGURE 4.41 Large signal and
small signal diode models.

+
)
in=Kvp

forv,>0

VD

(a)
+
la
Ta vy

(b)

FIGURE 4.42 Asquare law
device and its incremental model.
(a) a square law device, (b)
incremental model.
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+
I+
. oV D
Vil mV AC ip i .
\%
vo vy 1V DC o VflmVAC
1 ~ Ta v,
‘ 1V DC
v, ov .
) (b) DC subcircuit for operating
(a) point analysis (c) Incremental subcircuit

We can also show the same result mathematically as follows. The v—i relation for the
FIGURE 4.43 Incremental

‘ _ _ resistor is given by
analysis of nonlinear resistor. Parts

v
(b) and (c) show the DC and the 1= —.
incremental subcircuits, R
respectively. We obtain the incremental resistance 7 for resistor voltage and current (V,I) using
Equation 4.75:
1
r=wm] R
dv |y=v

EXAMPLE 4.19 INCREMENTAL ANALYSIS OF SQUARE
LAW DEVICE Suppose we are interested in finding the current ip through the
square law device in Figure 4.43. The device is driven by a DC voltage in series
with a small AC voltage. The square law device is characterized by the following v—i
relationship:

ip = Kz/(z) for vo > 0. 4.76)
The current ipy is 0 for v < 0. Assume K = 1 mA/ V2.
Since the input to the nonlinear device is the sum of a DC component and a rela-

tively small AC component, incremental analysis is the appropriate tool for our task.
Incremental analysis comprises the following steps:

1. Find the DC operating variables Ip and V by setting all small-signal sources to
zero.

2. Find the incremental device current iy by forming an incremental subcircuit in
which the nonlinear device is replaced by a linear resistor of value 7; (from
Equation 4.75), and all DC sources are set to zero.

Following the first step of incremental analysis, we draw the DC subcircuit Figure 4.43b
and mark the operating-point variables Ip, Vo. The AC source is set to zero. By
inspection from Figure 4.43b

Vo=V,=1V.
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and

Ip = KV% =1mA.

Next, following the second step of incremental analysis we draw the incremental sub-
circuit in Figure 4.43b. Here, we set the DC source to zero, and replace the nonlinear
device with a linear resistor of value 74, where

1 1

= TaK) T 2KV

dvo vo=Vo

Substituting Vo = 1 V, we obtain
74 = 500 €.

Now that we know the value of 7, we can obtain the small-signal component iy from
the small signal circuit. Accordingly,

=2
Td
Substituting numerical values, we find that iy is a 2-uA AC current. Thus, the total

current ip is the sum of a 1-mA DC current and a 2-uA AC current. This completes
our analysis.

EXAMPLE 4.20 VOLTAGE REGULATOR BASED ON A
NONLINEAR RESISTOR To illustrate the use of incremental analysis, we
examine the nonlinear device circuit shown in Figure 4.44a, a crude form of voltage
regulator based on the hypothetical nonlinear resistor discussed earlier. Assume R = 1k
and that the nonlinear device is characterized by the following v—i relationship:

ip = KU(Z) for vo > 0. 4.77)

The current ip is 0 for vo < 0. Assume K = 1 mA/ V2.

We assume that the supposedly DC source () supplying the circuit in reality has 5 volts
of DC (V}) with 50 mV of AC (v;, also called a ripple) superimposed. The regulator
is designed to reduce this unwanted AC component relative to the DC. Our task is
to determine the magnitude of the ripple in the output, and the extent to which our
regulator has been able to reduce the ripple amplitude relative to the DC voltage.

To understand how the circuit operates, we will perform an incremental analysis on
the circuit by following these two steps:

1. Find the DC operating variables Ip and V by setting all small-signal sources to
zero. This will require a nonlinear analysis using one of the nonlinear approaches
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FIGURE 4.44 Nonlinear resistor
voltage regulator. Parts (b) and (c)
show the DC and the incrementall
subcircuits, respectively. The sub-
circuits are derived according to
the discussion preceding this
example. For more discussion of
DC and incremental subcircuits,
see Section 8.2.1in Chapter 8.

R
R
0 V ID + AYAVAVAVAVA
v Yi *+
v 5V DC 0 v; 50 mV AC .
1 B EE Tq Vo
oV B
(b) DC subcircuit for operating
point analysis (c) Incremental AC subcircuit

previously discussed, for example, analytical (using the node method), graphical or
piecewise linear.

2. Find the incremental output voltage v, and incremental nonlinear device current 75
by forming an incremental subcircuit in which the nonlinear device is replaced by a
linear resistor of value 7, (from Equation 4.75), and all DC sources are set to zero.
The incremental circuit will be linear, so any of our linear techniques will apply, for
example, superposition, Thévenin.

Following the first step of incremental analysis, we draw the DC subcircuit Figure 4.44b
and mark the operating-point variables Ip, V. Notice that we have set the small-signal
source to zero.

We will now use the analytical analysis method to determine Ip and V(. By inspection
from Figure 4.44b,

—Vi+IpR+Vp =0 4.78)

Ip = KV, (4.79)

Eliminating Ip, we get
RKVZ, + Vo — Vi = 0.

Solving for V), we get:

1+ JTT4ViRK

%
© 2RK

(4.80)

Substituting K = 1 mA/V2, R = 1k, and V; = 5 V, we obtain the operating
point values:

Vo=18V
Ip = 3.24 mA.

Vo is the DC component of the output. This completes the first step of incremental
analysis.
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Next, following the second step of incremental analysis we draw the incremental sub-
dircuit in Figure 4.44c. This time around, we set the DC source to zero, and replace the
nonlinear resistor with a linear resistor of value 7.

We can now find the incremental values iy, v, from Figure 4.44c¢ if we know the value of
r4. Accordingly, we first determine the value of ;. We know from Equation 4.71 that

. d(Kz/é) y
d= —5 0
dvo vo=Yo
)
1
4= i) :
dvo vo=Vo
Simplifying,
1
ry= .
17 2KVo

Substituting the numerical values, 7; = 1/2 x 1 x 1073 x 1.8) = 278 Q.

Now that we know the value of 74, we can obtain the small-signal component of the
output v, from the small signal AC circuit in Figure 4.44c. Notice that the circuit in
Figure 4.44c is a voltage divider. Thus, the small signal AC output

Td
S 481
o =vig™ o (4.81)
2
=50 x 10—3i =109 mV.
1000 + 278
and
0.0109
ig=2 = 227 0,039 mA.
14 278

This completes our analysis.”

Although both the DC and the AC components of the output voltage are smaller than
the corresponding input components, the important parameter is the fractional ripple,
the ratio of the ripple to the DC. At the input,

1 -3
fractional ripple = w — 1072 (4.82)

2. As an interesting aside, we can alternatively obtain v, mathematically by starting from the

equation relating vo to vy:
=14+ /1+4yRK

U,
© 2RK
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and at the output,

10.9 x 1073
fractional ripple = ;78 ~0.6 x 1072, (4.83)

so the ripple has been reduced relative to the DC by a factor of about 1.7. This level
of reduction is not particularly exciting. As can be seen from Equation 4.81, we can
improve the level of reduction by reducing the value of ;. One way to do so is to
replace the nonlinear resistor of this example with one whose v—i curve has a steeper
slope as seen in the next example.

It is important to understand that the mathematical basis for incremental analysis and
for the formation of the two subcircuits, as in Figure 4.44, is not superposition, but a
particular interpretation of a Taylor series expansion. Even though we keep only the
first two terms of the series, as in Equation 4.61, the relationship is still nonlinear, and
hence superposition cannot apply.

I EXAMPLE 4.2 DIODE REGULATOR

KM EXAMPLE 4.22 SMALL SIGNAL ANALYSIS USING A
PIECEWISE LINEAR DIODE MODEL

Observing that the incremental change in v is given by the product of the incremental change in
vy and the slope of the v versus vy curve evaluated at V}, we can write

4 ~1+/TFAuRK
2RK
vo= — — — > vi.

dur
u=V;
Simplifying,
1
Vo = 7T4V]RKW
=109 mV

which is the same as the value obtained by analyzing the small-signal circuit.
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46 SUMMARY

>

This chapter introduced nonlinear circuits and their analyses. Nonlinear
circuits include one or more nonlinear devices, which display a nonlinear
v~i relationship. Nonlinear circuits obey KVL and KCL and can be solved
using the basic KVL/KCL method or the node method. Note that the
KVL/KCL method or the node method do not make any assumptions
about linearity.

We discussed four methods for solving nonlinear circuits including the
analytical method, the graphical method, the piecewise linear method, and
the small signal method (also known as the incremental method).

The analytical method uses KVL/KCL or the node method to write
the circuit equations and solves them directly. The graphical method uses
a graph of the v—i relation of the nonlinear device and the graph capturing
the circuit constraint to solve for the operating point. The piecewise lin-
ear method represents the v—i characteristics of a nonlinear element by a
succession of straight-line segments, then makes calculations within each
straight-line segment using linear analysis tools.

The small signal method applies to circuits in which nonlinear devices
are operated only over a very small range of voltage or current values.
For small perturbations of voltages or currents about a nominal operating
point, nonlinear device behavior can be approximated using a piecewise
linear model that provides a good fit in the narrow operating range. Thus,
incremental variables not only satisfy KVL and KCL, but also linear v—i
relations over the narrow operating range.

We introduced the following notation to distinguish between total vari-
ables, DC operating values, and small signal variables:

» We denote total variables with small letters and capital subscripts,
€.8., UD,

» DC operating point variables using all capitals, e.g., Vp,

» and incremental values using all small letters, e.g., ;.

A systematic procedure for finding incremental voltages and currents for
a circuit with a nonlinear device characterized by the v—i relation:

ip = f(vp)

is the following:

1. Find the DC operating variables Ip and Vp using the subcircuit derived
from the original circuit by setting all small-signal sources to zero. Any of
the methods discussed in the preceding sections — analytical, graphical,
or piecewise linear — is appropriate.
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2. Find the incremental output voltage and incremental nonlinear device
current by forming an incremental subcircuit in which the nonlinear
device is replaced by a resistor of value 7, where

"= ) >

dvp lyp=Vp

other linear resistances are retained as is, and all DC sources are set to
zero. The incremental subcircuit is linear, so incremental voltages and
currents can be calculated by any of the linear analysis techniques.

EXERCISE 4.1 Consideratwo-terminal nonlinear device (see Figure 4.47) whose
v—i characteristic is given by:

ia = f(va) (4.92)

Show that the incremental change in the current (Aig = i,) for an incremental change
in the voltage (Avq = v,) at the DC operating point V,, I4 is given by:

df(va)

i, = v,
dva ly,=v,

(Hint: Substitute iy = I + i, and v4 = V4 + v, in Equation 4.92, expand using Taylor
series, ignore second order and higher terms in v,, and equate corresponding DC and
small signal terms.)

EXERCISE 4.2 Suppose the two-terminal nonlinear device from the previous
exercise (see Figure 4.47) has the following v—i characteristic:

ig=flva) = cxvi + cyvs + ¢z for vq > 0, and f(v4) = O otherwise.

a) Find the operating point current I4 for an operating point voltage V4, where V4 > 0.

b) Find the incremental change in the current i, for an incremental change in the voltage
v, at the operating point V4, I4.

¢) By what fraction does 4, change for a y percent change in v,?

d) Suppose the nonlinear device is biased at V; instead of V4, where V, is v percent
greater than V. Find the incremental change in the current (7,) for an incremental
change in the voltage (v,) at this new bias point. By what fraction is Z, different from
the i, calculated in part (b).
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e) Find the incremental change in the current 7, for an incremental change in the
parameter c¢x (given by Acx = ¢) from its nominal value of Cy, assuming the
operating point v—i values are Vg, I4.

Hint: Observe that if 74 depends on the parameters x4 and yg, in other words,
ia = f(xa, yB)
then the incremental change in i4 for an incremental change in yp is given by

i b= ‘Sf(xA:yB) V
ﬂy yB =Yg

EXERCISE 4.3 The nonlinear device (NLD) in the circuit in Figure 4.48 has the
v—i characteristics shown. Find the operating point ip and vp for R = 910 Q.

10V= ' FIGURE 4.48

EXERCISE 4.4

a) Plot the i4 vs. vy characteristics for the nonlinear network shown in Figure 4.49.
Assume the diode is ideal.

1 - - - __ - 7 7 = <
P e N
N
| 1kQ
va | 1kQE ——y !
I T [ FIGURE 4.49
- e [
L _ _ _ _ _ _ _ .
NLD

b) The nonlinear network from part (a) is connected as shown in Figure 4.50. Draw the
load line on your v—i characteristics from part (a), and find #7.
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IYYYYY}
VWW!

1kQ 'r
FIGURE 4.50 35V NLDYvy
'|>I EXERCISE 4.5 Consider two identical semiconductor diodes, each of which has
Pa— e e

~ an v—i relation:

L1

@ ip = I (e“D/ Vi _ 1) . (4.93)

[: [: a) Find the relation of i to v for the pair connected in parallel as shown in
(b) Figure 4.51a.
FIGURE 451 b) Find the relation of i to v for the pair connected in series as shown in Figure 4.51b.
EXERCISE 4.6 Forthe circuit in Figure 4.52, find the input characteristic, i versus
v, and the transfer characteristic i, versus v. I'is fixed and positive. Express your results
in graphs, labeling all slopes, intercepts, and coordinates of any break points.
o
FIGURE 4.52 v ES S
EXERCISE 4.7 Forthe circuit in Figure 4.53 and the values shown below, sketch
the waveform of i(#). On your sketch, show when the ideal diode is on and when
it is off.
vi=10sin(t) Vo=5V R=1Q.
O—ib—M
+
\VA
V.
FIGURE 453 !




PROBLEM 4.I
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Consider the circuit containing a nonlinear element N as shown

in Figure 4.54. The v—i relation for N is given by:

PROBLEM 4.2

iA = czvi +cava+c¢ for v4 >0, and iy =0 otherwise.

AMAAA
YWWY
R

¥ +
v
1 . N

=1

Solve for 74 and v4 using the analytical method.

Find the operating point values of the nonlinear element’s voltage and current for
vy = V, where Vjis positive.

Find the incremental change in i4 (given by ;) for an incremental change in 7 (given
by vj).

Determine the incremental change in the voltage across the resistor R for
an incremental change in the input vy (given by v;).

Find the incremental change in i4 for a 2% increase in the value of R.

Find the incremental change in 74 for an incremental change in v4 at the bias point
Va, I4.

Suppose we replace the source vy with a DC voltage Vj in series with a small
time-varying voltage v; = v, cos(wt). Determine the time varying component of i4.

Suppose we now replace vy = Vi + v;, where Vi=10 Vandv; = 1 V.

i) Find the bias point DC current I4 corresponding to V; = 10 V.

) Find the value of i, corresponding to v; = 1 V using small signal analysis.
) Find the value of i4 using small signal analysis. (Use i4 = I4 + i,.)
)
)
)

—_
=

E

Find the value of i4 using the analytical method for vy = Vi +v; = 11 V.
Now, find the exact value of the 7, using i, = iq — I.
i) What is the error in the value of i, computed using the small signal method?

—

\%
v,

<

The circuit shown in Figure 4.55 contains two nonlinear devices

and a current source. The characteristics of the two devices are given. Determine the
voltage, v, for (@) is =1 A, (b) is = 10 A, () is = 1 cos (D).

PROBLEM 4.3

A plot (hypothetical) of the v—i characteristics, (terminal voltage

as a function of the current drawn out, and not its associated variables) for a battery is
shown in Figure 4.56(a).
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a) Ifa2-Q resistor is connected across the battery terminals, find the terminal voltage
of the battery and the current through the resistor.

b) A lightbulb is a nonlinear resistance because of self-heating effects. A hypothetical
v—i plot is shown in Figure 4.56(b). Find the bulb current and bulb voltage if the
lamp is connected to the battery.

¢) Devise a piecewise-linear model for the battery which is reasonably accurate over
the current range 0-2 A.

d)  Use this piecewise-linear battery model to find the battery voltage and bulb current
if the bulb and 2- resistor are connected in series to the battery.

PROBLEM 4.4

a) Assuming the diode can be modeled as an ideal diode, and Ry = Ry, plot the
waveform v, (#) for the circuit in Figure 4.57, assuming a triangle wave input. Write
an expression for v, (?) in terms of v, Ry, and R;.

b) If the triangle wave has a peak amplitude of only 2 volts, and Ry = Ry, a more
accurate diode model must be used. Plot and write an expression for v, assuming
that the diode is modeled using an ideal diode in series with a 0.6-volt source. Draw
the transfer curve v, versus v;.

PROBLEM 4.5 Figure 4.58 is an illustration of a crude Zener-diode regulator

circuit.
* A
iy iz
(mA) Ry =1kQ
Vz WY .
8 +
AL Av SOmVAC_I
oA 2 vz (V) N e
1 —t > 10 V DC
b v(®
4 -
8T
FIGURE 4.58

a) Using incremental analysis, estimate from the graph an analytical expression for v,
in terms of Vand Auv.

b)  Calculate the amount of DC and the amount of AC in the output voltage using the
Zener-diode characteristic to find model values. (Numbers, please.)
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¢) What is the Thévenin output resistance of the power supply, that is, the Thévenin
resistance seen looking in at the v, terminals?

PROBLEM 4.6 The terminal voltage-current characteristic of a single solar cell is
shown in Figure 4.59a. Note that this is a sketch of the terminal voltage as a function of
current drawn out (i.e., not the associated variable convention). An array is made by con-
necting a total of 100 such cells as follows: Ten solar cells are connected in series. Ten sets
of these are made. These ten series strips are then connected in parallel (see Figure 4.59b).

linear region

'non-linear region

i -linear region 1%% % % %

t T t 1
0.1 A 02A025A03A
current drawn out

(a) (b)

terminal voltage
of single cell

F 025V - -

FIGURE 4.59

If a 3-Q resistor is connected across this new two-terminal element (the 100-cell array),
determine the terminal voltage across and the current through the resistor.

PROBLEM 4.7 The junction field-effect transistor (JFET) with the specific con-
nection shown in Figure 4.60a (gate and source shorted together) behaves as a two-
terminal device. The vp—ip characteristics of the resulting two-terminal device shown
in Figure 4.60b saturates at current Ipgs for vp greater than a voltage Vp, called the
pinch-off voltage. In the two-terminal configuration shown, the JFET characteristic is

ip = Ipss [Z(UD/ Vp) — (vp/ VP)Z] for vp < Vp

and

iD = IDSS for Up > Vp.

As illustrated in Figure 4.60c, this two-terminal device can be used to make a
well-behaved DC current source, even starting with a ripple-containing power supply
(depicted as vg), as would be obtained from ordinary rectifier circuits. Suppose the voltage
source vg has an average value Vg and a 60-Hz “ripple component,” v, = a cos(wt) as
shown in Figure 4.60d.

a)  First assume that there is no ripple (@ = 0). Find the current i through the resistor
R as a function of Vg for a value of R = 1 k. At what value of Vg does the
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FIGURE 4.61

FIGURE 4.62
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current stabilize at Ipgs? How would this value change if R were doubled in value?
Explain.

b) Now assume a = 0.1 V and R = 1 k2. Make reasonable approximations to find
the current waveform when Vg = 5V, Vg = 10 V, and Vg = 15 V. Determine in
each case the average value of the current 7 and the magnitude and frequency of the
largest sinusoidal component of the current.

PROBLEM 4.8 The current-voltage characteristic of a photovoltaic energy con-
verter (solar cell) shown in Figure 4.61 can be approximated by

where the first term characterizes the diode in the dark and L is a term that
depends on light intensity.

Assume I} = 10~Y and assume light exposure such that , = 1073 A.

a) Plot the v—i characteristic of the solar cell. Be sure to note the values of open-circuit
voltage and short-circuit current. (Note, however, that the characteristic is clearly
nonlinear. Therefore, Thévenin or Norton equivalents do not apply.)

b) If it is desired to maximize the power that the solar cell can deliver to a resistive
load, determine the optimum value of the resistor. How much power can this cell
deliver?

PROBLEM 4.9

a) A nonlinear device has v—i characteristics shown in Figure 4.62. Assuming that §
is an ideal voltage source, which connection, (a), (b), or (c) consumes most power?
What if S is an ideal current source?

VA:KiA2 fori, =20
iy vy =0 fori, <0
+yig where K = 1.0 V/A?

o
1

.
e BEE -

())nA’sinseries (i) n A’sin parallel ~ (iii) n B’s in parallel, each
B isn A’sin series
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b)  Another crazy device, C, with v—i characteristics as shown in Figure 4.63, is intro-
duced. If device A and device C are connected in series across an ideal voltage source
of 6 volts, what is the current flow in the circuit? (You can solve it either analytically
or graphically.)

PROBLEM 4.10 In the circuit in Figure 4.64, assume v; = 0.5 V and

vy = Aj cos(wt), where Ay = 0.001 V. Assume further that Vrzy = 25 mV.

+ . VTH
n(@® V. ’:Il[e 1]

- —10°
() I =10°A

FIGURE 4.64

Find the current 7 if only the v; source is connected (i.e., with the v, source shorted

out).

Find the current 7 if only the v source is connected.

Find the current 7 if both sources are connected as shown. Is superposition obeyed?
Explain.

Based on your answer in (c) discuss the dependence of the amplitude of the sinusoidal
component of the current on the amplitude A,. How big can A; be before significant
generation of harmonics will occur? (HINT: Taylor’s theorem is relevant to this

problem.)

PROBLEM 4.11 This problem concerns the circuit illustrated in Figure 4.65:

Ri=10kQ R, =10kQ R;=05kQ R4;=1kQ

AAAAA AAAAA
AAAAAAL VYYYYY

R, R, in

+ > >
v <) = Ry DN/ v, ERy4

AMAMAL
AMAMAL

FIGURE 4.65

For Dy : ip = Ig(e?' Vi — 1) with [g = 1 x 10~ A and Vg = 25 mV.

a)

Find the Thévenin equivalent circuit for the circuit connected to the diode.
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b) Assume that for bias point determination the diode can be modeled by an ideal
diode and a 0.6-volt battery. What are vp and ip when v; = 4 V?

¢ Find a linear equivalent model for this diode valid for small signal incremental
operation about the bias point determined from part b.

d)  Use your model of part ¢ to find v4(#) if vy =4 V + 0.004 V cos(w?) V.

PROBLEM 4.72 Consider the circuit in Figure 4.66. The voltage source and the
current source are the sum of a DC-level and an AC-perturbation:

v=V+ Av
i=1+ Al

such that V=30V (DC), I =10 A (DC), Av = 100 mV (AC), Ai = 50 mA (AC).

FIGURE 4.66

The resistors have the following values: R| = Ry, = 1/2 Q. The nonlinear element Z
has the characteristic:

i():l/o-i-l/(%.

Find, by incremental analysis, the DC and AC components of the output
voltage vp. (Remark: You can assume in your analysis that the nonlinear element is
behaving as a passive element, i.e., is consuming power.)

PROBLEM 4.13 The circuit shown in Figure 4.67 contains a nonlinear element
with the following properties:

iN= 10_4121%1 when vy > 0

iN=0 when vn <0

where iy is in A and vy is in V.

The output voltage, voyT, may be written approximately as the sum of the two terms:

vouT == VouT + Your (4.94)



4.6 Summary CHAPTER FOUR

+ Vv -

FIGURE 4.67

where Vour is a DC voltage produced by Vp and v, is the incremental voltage
produced by the incremental voltage source v;.

Assuming that v; = 1073 sin(w?) V and V3 is such that the nonlinear element operates
with Viy = 10 volts, determine the incremental output voltage vy

PROBLEM 4.174 Consider the diode network shown in Figure 4.68.

For purposes of this problem, the ip — vp characteristics of all of the diodes can be
accurately represented as

ip = Ise?25 ™V \where I = 1 mA/e>.

Do not use a piecewise-linear model.

¥

4\ | LL V,+Av,y
AC) AGD Vi+Av, 9-

:

AiGDl

FIGURE 4.68

a) First, assume that Ai = 0. (Thus Av; = Av, = 0.) What are the operating-point
values of voltages Vi and V,?

b) Now assume that Aiis nonzero, but small enough so that incremental analysis can
be used to determine Avy and Av,. What is the ratio Avy/Av; ?
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THE DIGITAL ABSTRACTION

Value discretization forms the basis of the digital abstraction. The idea is to lump
signal values that fall within some interval into a single value. We saw an example
of value discretization earlier in Figure 1.45 (repeated here for convenience
as Figure 5.1) where a voltage signal was discretized into two levels. In this
example, an observed voltage value between 0 volts and 2.5 volts is treated as
a “0,” and a value between 2.5 volts and 5 volts as a “1.” Correspondingly, to
transmit the logical value “0” over a wire, we place the nominal voltage level
of 1.25 on the wire. Similarly, to transmit the logical “1,” we place the nominal
voltage level of 3.75 volts on the wire.! The discrete signal shown in Figure 5.1
comprises the sequence of values “0,” “1,” “0,” “1,” “0.”

Although the digital approach seems wasteful of signal dynamic range, it
has a significant advantage over analog transmission in the presence of noise.
Notice, this representation is immune to symmetric noise with a peak to peak
value less than 2.5 V. To illustrate, consider the situation depicted in Figure 5.2
in which a sender desires to transmit a value A to a receiver. The figure illustrates
both an analog case and a digital case. In the analog case, let us suppose that
the value A is 2.4 V. The sender transmits A by representing it as a voltage
level of 2.4 V on a wire. Noise during transmission (represented as a 0.2-V
noise voltage source in the figure) changes this voltage to 2.6 V at the receiver,
resulting in the receiver interpreting the value incorrectly as 2.6.

In the digital case, suppose that the value A is a logical “0.” The sender
transmits this value of A by representing it as a voltage level of 1.25 V on
the wire, which is received as a voltage level of 1.45 by the receiver because
of the series noise source. In this situation, since the received voltage falls
below the 2.5-V threshold, the receiver interprets it correctly as a logical “0.”
Thus, the sender and receiver were able to communicate without error in the
digital case.

To illustrate further, consider the waveforms in Figure 5.3. Figure 5.3a
shows a discretized signal waveform produced by a sender corresponding to

1. It turns out that the mapping of voltage ranges to logical values has a significant impact on the
robustness of digital circuits, and a methodical way of selecting the mapping will be presented in
Section 5.1. But for now, let us proceed with this rather arbitrarily chosen mapping, and continue
to build our intuition.

Continuous

Wl | ]

Discrete
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VAY;

“1”

O

“0”
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FIGURE 5.1 Value discretization

into two levels.
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FIGURE 5.2 Signal transmission
in the presence of noise. The noise
is represented as a series voltage
source.

) “p»
(\2)
2.5

“0”

FIGURE 5.3 Noise immunity for
discretized signals: (a) a digital
signal produced by a sender; (b)
the signal received by a receiver
following transmission through a
noisy environment.
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a“0,” “1,” “0,” “1,” “0” sequence. Figure 5.3b shows the same signal with the
superposition of some amount of noise, possibly during transmission through
a noisy environment. The receiver will be able to receive the sequence correctly
provided the noise levels in Figure 5.3b are small enough that the voltages
for a logical 0 signal do not exceed 2.5 V, and the voltages for a logical 1 signal
do not fall below 2.5 V. Specifically, notice that the binary mapping we have
chosen is immune to symmetric noise with a peak-to-peak value less than 2.5 V.

Of course, the discrete representation does not come for free. Considering
our example in Figure 5.1, in the analog case, a single wire could carry any
value, for example, 1.1, 2.9, or 0.9999999 V. However, in the digital case,
a wire is restricted to one of only two values: “0” and “1,” thereby losing
precision significantly.

Two levels of signal precision are sufficient for many applications. As
one example, logic computations involve signals that commonly take on one
of two values: TRUE or FALSE. Indeed, most of this chapter (specifically,
Sections 5.2, 5.3, and 5.5) deals exclusively with signals that can take on one
of two values. Each of these two-level signals is communicated over a single
wire. However, there are other applications that require more levels of preci-
sion. For example, a speech signal processing application might involve speech
signals with 256 or more levels of precision. One approach to achieving more
precision is to use coding to create multi-digit numbers. When each digit takes
on one of two values, the digit is called a binary digit, or bit. Much as the
familiar decimal system uses multiple digits to represent numbers other than
0 through 9, the binary system uses multiple bits to represent numbers other
than 0 or 1. Multi-bit signals are commonly transmitted by allocating multiple
wires — one for each bit, or occasionally, by time multiplexing multiple bits
on a single wire. This approach of representing numbers in the binary system
is discussed further in Section 5.6. For now, we return to our discussion of the
two-level representation.

The two-level representation is commonly known as the binary representa-
tion. Virtually all digital circuits use the binary representation because two-level
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drcuits are much easier to build than multilevel circuits. The two levels in the
binary representation are variously called (a) TRUE or FALSE, (b) ON or OFF,
(c) 1 or 0, (d) HIGH or LOW.

Digital signals are commonly implemented using voltage levels, for exam-
ple, 0 V to represent FALSE, and 5 V to represent TRUE. We observe, however,
that our choice of representing logical values with specific physical values (for
example, representing a logical TRUE with 5§ V and a logical FALSE with 0 V)
is rather arbitrary. We can equivalently choose to represent a logical TRUE with
0V and a logical FALSE with 5 V. Unless specifically mentioned otherwise, this
book adopts the convention that TRUE and high correspond to the logical 1,
and conversely, FALSE and low correspond to the logical 0. Table 5.1 depicts
these and several other physical realizations of the binary signals, TRUE and
FALSE.

51 VOLTAGE LEVELS AND THE
STATIC DISCIPLINE

The previous section illustrated several ways to represent binary values. The
representations differed not only in the signal type (for example, current versus
voltage), but also in the signal values (for example, 5 V versus 4 V to represent a
logical 1). Because we require that digital devices built by various manufacturers
talk to each other, the devices must adhere to a common representation. The
representation must allow for large enough design margins so that devices can
be built out of a wide range of technologies. Furthermore, the representation
should be such that the devices operate correctly even in the presence of some
amount of noise.

The static discipline is a specification for digital devices. The static disci-
pline requires devices to adhere to a common representation, and to guarantee
that they interpret correctly inputs that are valid logical signals according to the
common representation, and to produce outputs that are valid logical signals
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TABLE 5.1 Binary signal
representation. v represents the
value of some parameter.
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FIGURE 5.4 Senders and
receivers use an agreed-upon
mapping between voltage levels
and logical signals so that they can
communicate with each other.
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provided they receive valid logical inputs. By adhering to a common repre-
sentation, digital devices based on different technologies or built by different
manufacturers can communicate with each other.

We will begin with a simple representation, and then successively improve
it until we have a representation that can serve as the basis for a static discipline.
One of the representations we saw earlier divided a voltage range into two
intervals and associated a logic value with each, namely,

Logic0:00V<V<2S5V. (5.1)
Logic1:2.5V<V<50V. (5.2)

This simple representation is illustrated in Figure 5.4. According to this repre-
sentation, if a receiver saw 2 V on a wire it would interpret it as a 0. Similarly,
a receiver would interpret 4 V on a wire as a 1. Assume, for now, that values
outside this range are invalid.

What voltage level should a sender place on a wire? According to our
representation, any value between 0 V and 2.5 V would suffice for a logical 0,
and any value between 2.5 V and 5 V would work for a logical 1.

Devices that obey this representation would be able to communicate with
each other successfully. In other words, as depicted in Figure 5.4, a sending
device connected to a receiving device is allowed to output any value between
0 Vand 2.5V (for example, 0.5 V) for a logical 0, and any value between 2.5 V
and 5 V (for example, 4 V) for a logical 1. Correspondingly, the receiving device
must interpret all values between 0 V and 2.5 V as a logical 0, and all values
between 2.5 V and 5 V as a logical 1. Thus, our simple representation allows
a fair bit of flexibility because valid logical 1 signals and logical 0 signals can
occupy a range of values.
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There is one problem, however. What does the receiver do if it sees a
voltage level of 2.5 V on the wire? Does it interpret this signal value as a logical
0 oras alogical 1? To eliminate such confusion, we further prescribe a forbidden
region that separates the two valid regions. We further allow the behavior of
the receiving device to be undefined if it sees a voltage in the forbidden region.
Thus, the correspondence between voltage levels and logic signals from the
viewpoint of a receiver might look like:

Sender Receiver with forbidden regions showing the

Logic0:0V<V<2V, (5.3)
Logic1:3V<V<S§V. (5.4)

This representation using a forbidden region is illustrated in Figure 5.5. In this
representation, a receiver interprets signals above 3 V as a logical 1 and voltages
below 2 V as a logical 0. Signal voltages between 2 V and 3 V are invalid.

As marked in Figure 5.5, the largest voltage that a receiver will interpret
as a valid logical 0 is termed the low voltage threshold, Vi, and the smallest
voltage that a receiver will interpret as a valid logical 1 is termed the high
voltage threshold, V.

In our representation with the forbidden region, a sender can output any
voltage value between Vp and 5 V for a logical 1, and any value between 0 V
and Vi for a logical 0. A sender must never output a value in the forbidden
region. Correspondingly, as illustrated in Figure 5.5, a receiver must interpret
any voltage value between Vi and 5 V as a logical 1, and any value between
0V and V1 as alogical 0. The behavior of the receiver can be undefined if it sees
a voltage value between Vi and Vi because these values are in the forbidden
region.
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FIGURE 5.6 For many practical
devices, a sender can output any
voltage value above V for a
logical 1, and any voltage value
below V; for a logical o.
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It often turns out that practical circuits are able to correctly interpret values
outside the extremum points (below 0 volts for a logical 0 and above 5 V
for a logical 1), within certain limits, of course. When devices can make this
interpretation, our representation with the forbidden region allows senders to
output any voltage value above Vi for a logical 1. Similarly, senders can output
any value below V[ for a logical 0. We will assume throughout this book that
devices can make this interpretation safely. Figure 5.6 illustrates a simple and
practical representation that uses this assumption.

There is one other problem with our representations illustrated in
Figures 5.6 and 5.5: They do not offer any immunity to noise. To illustrate,
consider our representation in Figure 5.5 with a high and low voltage thresh-
old bounding a forbidden region. In that representation, recall that senders can
output voltages above Viyand below 5 V for logical 1’s and voltages below Vi
and above 0 V for logical 0’s. Receivers must correspondingly interpret output
voltages above Vi as logical 1’s and voltages below V7 as logical 0’s.

A sender wishing to place a logical 0 on a wire can therefore output the
voltage V1, which falls within the valid range for a logical 0. Receivers observing
the value Vi transmitted on the wire will correctly interpret it as a logical 0.
However, the presence of even the smallest amount of (positive) noise will force
the voltage signal on the wire into the forbidden region, thereby causing the
signal to become invalid. Thus, we say that the representation of Figure 5.5
offers no margin for noise.

Clearly we would like a representation that offers the maximum amount of
noise immunity during transmission between the sender and the receiver. One
way of achieving this is to place tighter restrictions on the values that senders
can send. As an example, suppose that a receiver can interpret voltages that fall
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below 2 V as a logical 0. Further, suppose that senders are restricted to sending
voltages lower than 0.5 V for alogical 0. Then, it takes at least 1.5 V of (positive)
noise to force the sender’s voltage signal on the wire into the forbidden region.
We say that such a choice of voltage levels offers a noise immunity of 1.5 V for
a logical 0.2

As an illustration of the notion of noise margins, consider the two sit-
uations in Figure 5.7.% In the first instance, the sender sends a 0 by placing
vout = 0.5 V (corresponding to the highest legal output voltage for a logic 0)
on the wire. The receiver is able to interpret the value as a 0 because the
received value is within the low input voltage threshold of 2 V.

In the second situation, however, the receiver is unable to interpret the
signal correctly because the noise level of 1.6 V is higher than the noise margin
of 1.5 V.

As another example concerning logical 1’s, suppose that a receiver can
interpret voltages that are above 3 V as a logical 1. Further, suppose that
senders are restricted to sending voltages higher than 4.5 V for a logical 1.
Then, it takes at least 1.5 V of noise to force the sender’s voltage signal on the
wire into the forbidden region. We say that such a choice of voltage levels offers
a noise immunity of 1.5 volts for a logical 1.

2. As mentioned earlier, because most practical receiver circuits are able to correctly interpret values
outside the extremum points (below 0 volts for a logical 0 and above 5 volts for a logical 1), we
concern ourselves with providing for a noise margin only between the output value range and the
forbidden region, and ignore the effect of noise that tends to push a value outside the extremum
bounds.

3. Notice that the signal voltages in the figure are taken with respect to a ground node that is
common to both the sender and the receiver. This ground node that is common to senders and
receivers is often not shown explicitly, but it is always present! Many a novice designer has forgotten
to connect together a common ground between subsystems and has found that the system does
not work. Remember, currents flow in loops and the ground connection provides a return path for
the current.
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The tighter bounds on the voltage values for a sender compared to those
for a receiver result in an asymmetry in input and output voltage thresholds.
This asymmetry is reflected in Figure 5.8, which shows the correspondence
between valid voltage levels and logic signals that is in common use in digital
circuits.

To send a logical 0, the sender must produce an output voltage value that
is less than Vop. Correspondingly, the receiver must interpret #put voltages
below Vi, as a logical 0.

To allow for a reasonable noise margin, Vi must be greater than V.

Similarly, to send a logical 1, the sender must produce an output voltage value
that is greater than Vopy. Further, the receiver must interpret voltages above
Vi as a logical 1.

To allow for a reasonable noise margin, Vop must greater than Vy.* We
can define both a noise margin for transmitting logical 1’s and for transmitting
logical 0’s.

Noise Margin: The absolute value of the difference between the prescribed
output voltage for a given logical value and the corresponding forbidden region
voltage threshold for the receiver is called the noise margin for that logical
value.

4. The simple representation in Figure 5.5 can be viewed as one in which Vo = Vi = Vi and
Vor, = Vi = V.. Notice that the simple representation of Figure 5.5 offers zero noise margins.
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As the name suggests, the noise margin allows the receiver to interpret a
value correctly even if some amount of noise is imposed on a sender’s signal.
Figure 5.9a illustrates a scenario in which a sender outputs a 01010 sequence
by producing the appropriate output voltage levels (between Vg and 5V for
a logical 1, and between 0 V' and V. for a logical 0). Provided that the noise
does not exceed the noise margins (voltages for a logical 0 do not exceed Vi,
and voltages for a logical 1 do not fall below Vjpy), a receiver is able to correctly
interpret the signal as illustrated in Figure 5.9b.

As illustrated in Figure 5.8, the noise margin for a logical 0 is given by

NMy = Vi — Vor (5.5)
and the noise margin for a logical 1 is given by
NM; = Vo — V. (5.6)

The region between Vi and Vi is the forbidden region.

Devices that adhere to this discipline will be able to communicate with
each other and be immune to noise levels that fall within the noise margins.
When NM; and NMj are equal, we say that the noise margins are symmetric.

Relating the threshold voltage parameters to the numbers used in our
example, Vop corresponds to 4.5 V, Vo corresponds to 0.5 V, Vi corre-
sponds to 3 V, and V. corresponds to 2 V. This mapping is illustrated in
Figure 5.10. For our example, the noise margin for a logical 0, NMy, is 1.5 V
(2 V — 0.5 V), which is the difference between Vjr, the maximum input voltage
recognized by a receiver as a logic 0, and Vo, the highest legal output voltage
for a logic 0. Similarly, the noise margin for a 1, NMy, is also 1.5V (4.5 V —
3 V), which is the difference between Vg, the minimum legal output voltage
for a logic 1, and Vypy, the minimum input voltage recognized by a receiver as
alogic 1.
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FIGURE 5.9 Senders must
output voltages between Vo
and 5 V to send a logical 1, and
between 0V and V; fora
logical 0. Correspondingly,
receivers can interpret values
greater than Vjy as alogical high,
and values lower than V), as a
logical low. The hashed regions are
the valid ranges for senders and
receivers.

FIGURE 5.10 An example of a
mapping between voltage levels
and logical values.
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FIGURE 5.11 The mapping
between voltage levels and logic
values in the static discipline used

by Disco Systems.
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Static discipline The static discipline is a specification for digital devices. The
static discipline requires devices to interpret correctly voltages that fall within
the input thresholds (Vj. and V). As long as valid inputs are provided to the
devices, the discipline also requires the devices to produce valid output voltages
that satisfy the output thresholds (Vor, and Vop).

When designing logic devices, we are often interested in maximizing the
noise margins to achieve maximum noise immunity. Referring to Figure 5.8,
the 0 noise margin, NMy = Vi — Vor, can be maximized by maximizing
Vi, and minimizing Vor. Similarly, the 1 noise margin, NMy = Vop — Vi,
can be maximized by maximizing Vo and minimizing Viy. As we will see in
Chapter 6, the maximum noise margins for devices are limited by the device
characteristics or by considerations of symmetry between the low and high
noise margins.

EXAMPLE §.I OBSERVING A STATIC DISCIPLINE Thedevice
company Yehaa Microelectronics, Inc. has developed a new process technology that is
able to produce large quantities of a certain type of digital device known as an adder at
a very low cost. For a logical 0, their adders produce a voltage level of 0.5 V at their
outputs. Similarly, when outputting a logical 1, their adders produce the voltage level of
4.5 V. Furthermore, the Yehaa adders are able to interpret all signals between 0 V and
2V at their inputs as a logical 0, and all signals between 3 V and 5 V as a logical 1.

Yehaa’s sales team discovers that networking equipment company Disco Systems Inc.
buys huge quantities of adder devices from a competitor Yikes Devices, Inc. Upon further
research, the Yehaa sales team finds that the hardware systems in one of Disco’s product
lines operate under a static discipline with the following voltage thresholds:

V=2V, Vig=35V, VoL =15Vand Vog=4V.

In other words, the mapping between voltage ranges and logical values in Disco’s static
discipline is as summarized in Figure 5.11.
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Yehaa’s sales team wishes to sell their adders to Disco at a lower cost than those from
Yikes, but first, Yehaa must determine whether their adders can safely replace the adders
from Yikes. The sales team asks their development engineers to determine whether
Yehaa’s adders satisfy the static discipline under which Disco’s system operates.

The development team first looks at the output level for a logical 1 required by Disco’s
static discipline. The static discipline used by Disco requires devices to produce voltages
between 4 V (Vo) and 5 V for a logical 1. As illustrated in Figure 5.12, Yehaa’s devices
produce a voltage level of 4.5 V for a logical 1, which falls within the required range,
and so they satisfy the Vo requirement.

Next, they look at the output voltage level for a logical 0. As depicted in Figure 5.12,
Yehaa’s devices produce a voltage level of 0.5 V for a logical 0, which falls within the
0 Vto 1.5 V (Vor) range required for logical 0’s by Disco’s static discipline. Thus,
Yehaa’s devices satisfy the Vo, requirement.

The engineers now turn their attention to the input voltage levels required by Disco’s
static discipline. Yehaa’s devices are able to interpret voltages as high as 2 V as a logical 0,
so they can interpret any voltage between 0 Vand 2 V (Vyr ) as a logical 0, just as required
by Disco’s static discipline. Thus, the Yehaa devices satisfy the Vj; requirement.

Similarly, Yehaa’s devices are able to interpret voltages between 3.5 V (Vi) and 5 V as
alogical 1, which again satisfies the Vjpy requirement of Disco’s static discipline. The fact
that the Yehaa devices interpret certain voltages in Disco’s forbidden region (specifically,
those between 3 V and 3.5 V) as a logical 1 is irrelevant since devices are allowed arbitrary
behavior for values in the forbidden region.

Thus, the development engineers are able to tell their sales team that Yehaa’s adders
satisfy Disco’s static discipline and so they can be used as replacements for Disco’s
existing adders.

CHAPTER FIVE
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EXAMPLE §.2 VIOLATING A STATIC DISCIPLINE Yikesdis-
covers that Disco is considering switching to Yehaa adders because Yehaa’s devices are
cheaper than Yikes devices. The Yikes sales team goes over their own product list and
notices that they do carry a new adder that they can sell to Disco at an even lower cost
than the Yehaa adders. Overjoyed, the sales team asks their own development engineers
to check whether these new adders satisfy Disco’s static discipline.

The new adders of Yikes have the following properties: For a logical 0, the new adders
produce a voltage level of 1.7 V at their outputs. Similarly, when outputting a logical 1,
their adders produce the voltage level of 4.5 V. The new Yikes adders interpret all
signals between 0 V and 1.5 V at their inputs as a logical 0, and all signals between 4 V
and 5 V as a logical 1. Their behavior for input signals in the 1.5 V to 4 V range is
undefined.

Furthermore, recall that Disco’s systems operate under a static discipline with the
following voltage thresholds: Vi =2V, Vip =35V, VoL = 1.5 V,and Vog =4 V.

The Yikes development team first looks at the output voltage levels required by Disco’s
static discipline. They observe that the 4.5-V output produced by their new adders falls
within Disco’s legitimate range for a logical 1 (between Vog = 4 V and 5 V), thus
satisfying the Vop requirement.

Next, they turn their attention to the output voltage level required for a logical 0. To
their disappointment, they discover that the 1.7-V output produced by their new adders
for a logical 0 output is greater than the maximum value of Vor, = 1.5 V allowed by
Disco. Thus their new adders violate the Vo requirement. At this point, the Yikes
development team reluctantly concludes that their new adders cannot be sold to Disco.

As an exerdise in futility, the development engineers further investigate the input voltage
levels. Disco’s static discipline requires that devices interpret any voltage between 0 V
and 2 V (Vy1) as a logical 0. The new adders from Yikes fail this test because they are
unable to interpret signals above 1.5 V as a logical 0.

Next, the engineers investigate the input high voltage level, but quickly discover that the
situation is even worse. Disco’s systems require that all devices interpret voltages in the
range 3.5 V (V) to 5 V as a logical 1. Unfortunately, their new adders can guarantee
to interpret voltages only in the range 4 V to 5 V as a logical 1. Their behavior for input
voltages in the range 3.5 V to 4 V is undefined. Since Disco’s devices can legitimately
produce voltages in this range for a logical 1, the new Yikes adders cannot co-exist with
the existing Disco devices.

EXAMPLE 5.3 NOISE MARGINS Recall that the hardware systems in
one of Disco’s product lines operate under a static discipline with the following voltage
thresholds: Vip =2V, Vig = 3.5V, Vor, = 1.5V, and Vo = 4 V. Compute the
noise margins.



5.1 Voltage Levels and the Static Discipline CHAPTER FIVE 255

From Equation 5.5, the noise margin for a logical 0 is given by

NMy = Vi —Vor =2V -15V=05V.

Similarly, from Equation 5.6, the noise margin for a logical 1 is given by

NM; =Vog—ViH=4V-35V=05V.

EXAMPLE §.4 A STATIC DISCIPLINE WITH IMPROVED
NOISE MARGINS Disco Systems Inc. has been having intermittent faults in its
systems. Their system architects figure out that because the static discipline they have
adopted does not provide a sufficient noise margin, their systems are susceptible to
noise. To improve the noise immunity of their systems, they decide to upgrade their
systems to a new static discipline in which the output high voltage threshold is increased
by 0.5 V, and the output low voltage threshold is decreased by 0.5 V. Both the input
voltage thresholds remain unchanged. In other words, the improved static discipline has
the following voltage thresholds:

Vi =2V, Vig=35V, VoL =1V, and Vo = 4.5 V.

This choice affords their system a symmetric noise margin of 1 V. In other words, the
noise margins for a logical 0 and a logical 1 are equal and are given by

NMy=2V-1V=1V

and
NM;=45V-35V=1V

On hearing the upgrade announcement from Disco, the sales team of Yehaa claims that
the adders they have sold Disco can be used under the upgraded static discipline. Let us
determine whether this claim is true.

Recall, that Yehaa’s adders behave as follows: For a logical 0, Yehaa’s adders produce
a voltage level of 0.5 V at their outputs. Similarly, when outputting a logical 1, their
adders produce the voltage level of 4.5 V. Yehaa adders are able to interpret all signals
between 0 V and 2 V at their inputs as a logical 0, and all signals between 3 Vand 5 V
as a logical 1.

To operate under Disco’s upgraded static discipline, we know that the adders must
operate correctly with the tighter bounds on the output thresholds:

»  When outputting a logical 1, the voltage their outputs produce must be at least
Von = 4.5 V. Since the Yehaa adders produce a 4.5 V output for a logical 1, they
barely satisfy this condition.
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»  When outputting a logical 0, the voltage their outputs produce must be no greater
than Vor = 1 V. Since the Yehaa adders produce a 0.5-V output for a logical 0,
they satisfy this condition easily.

Thus, we have shown that the claim made by the Yehaa sales team is true.

EXAMPLE 5.5 COMPARING NOISE MARGINS Which of the two
static disciplines shown below offers better noise margins?

Static discipline A has the voltage thresholds given by:
V=13V, Vig=35V, Vor =1V, and Vog=4V.
Static discipline B has the voltage thresholds given by:
Vi =15V, Vig=35V, Vor =05V, and Voy = 4.5 V.

For static discipline A:
NMy=15V-1V=05V
and

NM; =4V -35V=05V.

For static discipline B:
NMy=15V-05V=1V
and

NM; =45V-35V=1V.

Thus, the voltage thresholds of static discipline B offer a better noise margin.

52 BOOLEAN LOGIC

The binary representation has a natural correspondence to logic, and therefore
digital circuits are commonly used to implement logic procedures. For example,
consider the logical “if” statement:

If XisTRUE AND Yis TRUE then Zis TRUE else Z is FALSE.

We can represent this statement using a boolean equation as:
Z=X AND Y.

In the previous equation, Z is true only when both X and Y are TRUE
and FALSE otherwise. For brevity we often represent the AND function using
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the “-” symbol as:
Z=X-Y.

Just as we represent the algebraic expression x x y as xy, we often drop
the AND symbol and write:

Z=X-Y=XY.

The boolean equation for the statement:

If (Ais TRUE) OR (Bis NOT TRUE) then (Cis TRUE) else (C is FALSE)
s
C=A+B.

The preceding equation contains two other useful functions. The OR func-
tion is represented using “+” and the NOT function using the bar symbol as in
“X” or the ~ symbol as in ~ X. For example, we represent the condition “B
is FALSE” as B or ~ B. We call B the complement of B. The logic operators
that we have seen thus far are summarized in Table 5.2. For convenience, we

will use 1, TRUE, and high interchangeably. Similarly, we will use 0, FALSE,
and low interchangeably.

EXAMPLE 5.6 MOTION DETECTOR LOGIC Let us write the
boolean expression for a motion detector that operates as follows: The circuit must
produce a signal L to turn on a set of lights when the signal M from a motion sensor is
high, provided it is not daytime. Assume that a light sensor produces a signal D that is
high during daytime.’

Notice that L is nominally low. It must become high when M is high and D is low.
Therefore, we can write

L =MD.

Truth table We often find it convenient to use a #ruth table representa-
tion of boolean functions. A truth table enumerates all possible input value
combinations and the corresponding output values.

For example, the truth table representation for Z = X - Y is shown in
Table 5.3, that for Z = X + Y'is shown in Table 5.4, that for Z = Xis shown
in Table 5.5, and that for C = A + B is shown in Table 5.6. As discussed

5. Assume, of course, that the light sensor does not respond to the lights that are turned on by the
motion detector.
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TABLE 5.2 Some logic
operations and their symbols.
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TABLE 5.6 Truth table for
C=A+B.



258 CHAPTER FIVE

TABLE 5.7 Truth Table for
AB+ C+D.

FIGURE 5.13 The AND gate.
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in Section 5.4, we can also go from a truth table representation to a logic
expression.

EXAMPLE §.7 TRUTH TABLE The truth table for the following logic
expression is shown in Table 5.7.

Output = AB+ C+ D.

53 COMBINATIONAL GATES

Yet another representation of boolean functions makes use of the combinational
gate abstraction. We will see how gates are built out of primitive lumped circuit
elements in Chapter 6. For now, let us focus on the gate-level abstraction. The
digital gate notation for the boolean equation Z = X AND Y is shown in
Figure 5.13.

The output of combinational gates is purely a function of their inputs.
Therefore, combinational functions can always be enumerated using truth
tables. Combinational gates follow the static discipline. Provided they are given
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inputs that fall within valid input levels, they will produce outputs that satisfy
valid output thresholds.

Combinational gate abstraction A combinational gate is an abstract represen-
tation of a circuit that satisfies two properties:
1. Its outputs are a function of its inputs alone.

2. Tt satisfies the static discipline.

Figure 5.14 shows several useful gate symbols. We have already seen the
gate-level representation of the AND function. The OR gate performs the
OR function of its inputs. The NOT gate takes the complement of its input.
For convenience, we often denote the NOT function in logic circuits using
the “o” symbol. The buffer gate or identity gate simply copies the input value
to its output, that is, A = A. Its use will become apparent in Section 6.9.2.
The NAND function is equivalent to the AND operation followed by the NOT
operation. For example, A = B NAND Ciis equivalent to A = B AND C. It is
also equivalent to the statement: A is FALSE only if both B and C are TRUE.
Similarly, the NOR operation is equivalent to the OR operation followed by
the NOT operation.

A truth table illustrating several of these functions is shown in Table 5.8.
Each output column in the truth table corresponds to the given boolean
function.

Gates can have multiple inputs. For example, we can have a four-input AND
gate that implements the function E = A - B- C- D as shown in Figure 5.15.

As shown in Figure 5.16, we can combine digital gates using wires
to implement digital circuits, thereby creating more complicated boolean
functions.

Figure 5.17 shows a graphical view of the inputs and output for the digital
drcuit in Figure 5.16. Notice that the output continues to be valid even when
the input signal is noisy.

As we might expect, gates are themselves implemented using lumped cir-
cuit elements, such as resistors and current sources. In other words, a gate
representing the function F is simply an abstraction for a circuit that performs
the function F. The circuit for an AND gate produces S V at its output when

INPUTS AND OR NAND NOR
B C B-C B+C B-C B+C
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0
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FIGURE 5.14 Gate symbols.

TABLE 5.8 Truth table for
several two-input functions.
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both its inputs are at 5 V, and produces 0 V otherwise. We will defer the actual
implementation of digital gates to later chapters, and for now, use the con-
venient gate abstraction to build more complicated digital systems to process
information.

Four-Input AND

EXAMPLE 5.8 GATE-LEVEL IMPLEMENTATION Let us imple-

FIGURE 5.15 A four-input AND ment the logic expression Output = AB + C + D using gates. Notice that we have a

te. . . .
gate choice in implementing this expression. We can use one two-input AND gate, a three-
input OR gate, and an inverter as shown in Figure 5.18. We can also replace the OR
A gate-inverter pair with a NOR gate. Alternatively, by rewriting the expression as
C Output = ((AB) + (C + D))
B

we can implement the same circuit using an AND gate, an OR gate, and a NOR gate.
We can also check each of the circuits against the truth table, and convince ourselves

FIGURE 5.16 The gate-level that they do work as desired.
digital circuit for C=A + B.

EXAMPLE 5.9 MORE GATE-LEVEL IMPLEMENTATIONS
Now, let us design a circuit for the expression: (A + B)CD. We can rewrite the
expression as

(A+ B)CD = ((A+ B)(CD)).

The corresponding gate-level implementation is shown in Figure 5.19.
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FIGURE 5.17 A noisy signal B +Vi
input to a digital circuit. a4 o e +VoL
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EXAMPLE §.10 YET ANOTHER GATE-LEVEL IMPLEMEN-
TATION A circuit for the expression A+ BB+ Cis shown in Figure 5.20. It requires
three gates.

54 STANDARD SUM-OF-PRODUCTS
REPRESENTATION

The previous two sections showed that logic expressions can be represented as
truth tables or gate-level circuits. In this section, we will show the equivalence
of the representations by discussing how we can derive automatically a logic
expression from a truth table. Before we do so, it is useful to introduce a standard
or canonic form of writing logic expressions called the sum-of-products form.

Sum-of-products As the name implies, logic expressions in the sum-of-
products form are represented using two levels of operations as a set of product
(AND) terms, each comprising one or more variables in their true forms (for

example, A) or complement forms (e.g., A), combined using the OR function.

For example, the logic expression AD + ABC + ABC is in a sum-of-
products representation containing the sum of three product terms. The first
term contains two variables, while the latter two terms contain three variables
each. The expression AB+C+D+Bis also in a sum-of-products representation.

The expression AB + C, however, is not in a sum of products representa-
tion, and neither is the expression (A + B)(B+ C). (Section 5.5 will discuss how
we can convert such expressions to a sum-of-products representation.)

We can write a sum-of-products expression from a truth table representation
by first writing a product term for each row in the truth table with a 1 in its
output column, and then summing these product terms. Each product term
comprises an AND function of all the input variables. A variable will appear in
its true or complement form in a product term corresponding to a given row
in the truth table depending on whether it appears as a 1 or a 0 in that row.

Thus, for example, a logic expression for the truth table in Figure 5.4 is
Z=XY+XY+XY. (5.7)

By construction, this expression is in a sum-of-products form. It has three
product terms corresponding to the three 1’s in the output column of the truth
table. Since X and Y appear as a 0 and a 1, respectively, in the first row with a 1
output, they contribute the product term X Y to the overall expression for Z.
Similarly, the remaining two product terms come from the third and fourth
rows of the truth table, respectively.
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Notice, however, the expression for Z in Equation 5.7 is quite a bit differ-
ent from the expression for Z (namely, X + Y) shown in Table 5.4. The two
expressions are in fact equivalent. This should be self-evident since both expres-
sions represent the same truth table, but this fact will become obvious after
Section 5.5 (and specifically, Example 5.13) shows how such logic expressions
can be simplified.

EXAMPLE §.I1 LOGIC EXPRESSION FROM A TRUTH
TABLE Write a logic expression corresponding to the truth table in Table 5.7.

There are three 1’s in the output column of the truth table in Table 5.7, and so we
expect to see three product terms. The product term corresponding to the 1 in the first
row is A B C D. Similarly, the next two products terms are A B C D, and A B C D.
These three terms are combined with the OR function to yield the logic expression
corresponding to the truth table as

Output=ABCD+ABCD+ABCD. (5.8)

Example 5.14 will show that this sum-of-products expression is equivalent to the logic
expression shown in the caption of Table 5.7.

5.5 SIMPLIFYING LOGIC EXPRESSIONS

We are often interested in simplifying logic expressions to minimize their
implementation cost. For example, although the expression A + BB + C
appears to require three gates,® 51mphf1catlon of the logic expression will result
in a single gate. Notice that the expression BB always results in the answer 0
(a variable and its complement can never be TRUE at the same time). Further-
more, observe that A+ 0 is always A. From these observations, we can simplify
the expression as

A+BB+C=A+0+C=A+C.

The reader can also verify that the expressions A + BB+ C and A + C
are equivalent by developing the corresponding truth tables as illustrated in
Table 5.9.

The following primitive rules come in handy for simplifying logic expressions:
A-A=0 (5.9)
A-A=A (5.10)

6. Assuming that A, B, B, and C are available as inputs.
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A-0=0 (5.11)
A1=A (5.12)
A+A=1 (5.13)
A+A=A (5.14)
A+0=A (5.15)
A+1=1 (5.16)
A+AB=A+B (5.17)
AB+ C) = AB+ AC (5.18)
AB = BA (5.19)
A+B=B+A (5.20)
(AB)C = A(BC) (5.21)
(A+B)+C=A+(B+C (5.22)

You can verify these rules by comparing their truth tables. For example,
the truth table comparing A + AB and A + B is shown in Table 5.10.

The following are another set of useful equalities called De Morgan’s laws:

A-B=A+B (5.23)

A+

o}
Il
N

-B. (5.24)

b

A+BB+C A+C

TABLE 5.9 Truth table for
comparing the two expressions
A+ BB+ Cand A+ C.

e e = =l e R )
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TABLE 5.10 Truth table for
comparing the two expressions
A4 ABand A + B. Notice that for
convenience we have added an
extra column for the intermediate
expression AB.

TABLE 5.11 Truth table for
verifying De Morgan'’s laws.

FIGURE 5.21 Gate
equivalences implied by De
Morgan’s laws.
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De Morgan’s laws can also be verified by developing truth tables as illus-
trated in Table 5.11. Notice that the columns for A - B and A + B are identical.
Similarly, observe that the columns for A + B and A - B are identical, thereby
verifying De Morgan’s laws.

0 0 1 1 0 0 1 1 1 1
0 1 1 0 0 1 0 0 1
1 0 0 1 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 0

De Morgan’s laws can be expressed in terms of the gate notation as
depicted in Figure 5.21. Consequently, the symbols on the right-hand side
of the figure are often used in place of the corresponding NAND gate or the
NOR gate.

These rules can be used to simplify logic expressions to reduce the number
of gates required to implement them. For example, a direct implementation of
the logic expression ABB 4+ BC + C appears to take five 2-input gates as seen
from Figure 5.22. The implementation used in Figure 5.22 assumes that both
TRUE and complement forms of each variable are available as inputs. In other
words, for each variable X, we assume that both X and X are available as inputs.
Otherwise, we would need two additional inverters.

To reduce the number of gates required for its implementation, we can
simplify the expression ABB + BC + C as follows: We first collect terms as

A A
e
A A
5—) »—C= 3] >—c
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aw > =W
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shown below by applying the rule suggested by Equation 5.21:
ABB +BC+ C = A(BB) + BC+ C.
Then, we apply the simplification suggested by Equation 5.9 and obtain
A(BB) + BC+ C= A0+ BC+C.
Applying Equation 5.11 we get
A0+BC+C=0+BC+C.
Grouping terms as suggested by Equation 5.22 we get
0+BC+C=(0+BO+C.
Applying Equations 5.20 and 5.15 we get
(04+BC)+ C=BC+C.

Finally, applying Equation 5.17 after recognizing that both the AND and the
OR operators are commutative (from Equations 5.19 and 5.20) we obtain the
final simplified form

BC+C=B+C.

The implementation of B + C takes just one gate and is shown in Figure 5.23.
You might wish to work through some input values and verify that the circuits
in Figures 5.22 and 5.23 are equivalent.

The preceding rules can also be used to simplify logic expressions into a
standard or canonic form. A standard form of representation makes it easy
to compare the costs of competing implementations. One canonic form that
we have seen previously in Section 5.4 is the sum-of-products form. Recall that
logic expressions in this form are represented using two levels of operations as a
set of product (AND) terms combined using the OR function. For example, the
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FIGURE 5.22 Direct implemen-
tation of ABB + BC + C.

) —

FIGURE 5.23 Implementation
of B+ C, which results from
simplifying ABB + BC + C.
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expression AB+ C+ D is in a sum-of-products representation. The expression
AB + C+ D, however, is not. We can convert the latter expression into the
sum-of-products form A CD + B C D using the equivalence rules as follows:

AB+C+D=(AB) +(C+D) (5.25)
= (AB) (C+ D) (5.26)
=(A+B(CD) (5.27)
= (A)(C D)+ (B)(C D) (5.28)
=ACD + BCD. (5.29)

We can also use the equalities to simplify expressions into their respective
minimal forms. A commonly used form is called the minimum sum-of-products
form. For example, A+ A+ AC + D is a valid sum-of-products representation.
Since A+ A = A, and A + AC = A + C, its minimum sum-of-products form
is simply A + C+ D.

It turns out that the expression in our previous example ACD + B CD
is also the minimum sum-of-products representation.

EXAMPLE §.12 MINIMUM SUM-OF-PRODUCTS FORM Find
the minimum sum-of-products representation for the boolean function A + AC + B.

We first write the sum-of-products representation:

A+AC+B=A+(A+C)+B
=A+(A+C)+B
=A+A+C+B
=A+C+B.

Here, A + A + C + B is in a sum-of-products form. The minimum sum-of-products
form, however, is A + C + B.

EXAMPLE §.13 SIMPLIFYING A LOGIC EXPRESSION Find
the minimum sum-of-products representation for the boolean expression in Equa-
tion 5.7, namely

Z=XY + XY + XY.
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The following sequence of simplifications show that this expression for Z is equivalent
to X+ Y:

Z=XY+XY+XY
=XY+X(Y+Y)
=XY+X-1
=XY+X
=Y+ X

BT EXAMPLE 5.14 SIMPLIFYING ANOTHER LOGIC
EXPRESSION

EXAMPLE §5.15 IMPLEMENTATION USING NORS It tums out
that certain types of gates take up less room or are easier to build in certain technologies
than other types of gates. We can make use of the equivalence rules to convert a circuit
from one form to another. Let us derive an implementation of the AND function based
on two-input NOR gates. In other words, we wish to transform the expression Z =
A - B into one that uses only NOR operators. The following steps show how we can
transform the AND expression into one that uses three NOR operations:

A-B=(A+A)-(B+B) (5.32)
=(A+A)-(B+B) (5.33)
=(A+A)+ (B+B). (5.34)

KM EXAMPLE 5.16 YET ANOTHER IMPLEMENTATION
USING NORS

56 NUMBER REPRESENTATION

As discussed earlier, the binary representation restricts a signal to either a
high or low value. These two values can be used to represent two numbers:
for example, 0 and 1. How do we represent other numbers? We briefly
overview one alternative.” Just as a single decimal digit can represent one of ten

7. Number representation is a lengthy topic in itself, and the interested reader is referred to
Computation Structures, by Ward and Halstead.
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FIGURE 5.26 Number
representation.

V,=5V
Ve=0V
Vs=0V
Vy=5V
V=0V
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values (0, 1, 2, ..., 9), a single binary digit (termed a bit) represents one of two
values (0, 1).

Bigger numbers are constructed by concatenating multiple digits. The
multiple-digit decimal number 7k formed by concatenating the decimal digits
i, j, and k, has the value

ix 102 +7x 10" + k x 10°,

Similarly, the multiple-digit binary number /71 formed by concatenating the
binary digits /, 72, and #, has the value

Ix 2% +mx 2" +nx2

In general, the value of the binary number A,A,,_1 ... A2A1Ay is given by
i=n '
> A2 (5.38)
=0

Thus the binary number 10 corresponds to the decimal number 2, the
binary number 11 corresponds to the decimal number 3, and the binary number
101 corresponds to the decimal number 5. To distinguish the binary number
10 from the decimal number 10, we denote the binary number as 0b10 when
there is a possibility of confusion.

EXAMPLE §.I7 BINARY NUMBER REPRESENTATION What
is the value of the binary number 1110?

The value of the binary number 1110 is given by Equation 5.38 as
1x22 +1x22+1x2M+0x2°

which is 14 (decimal).

How do we represent negative numbers? One simple alternative is to inter-
pret the leading bit as a sign bit: a 0 denotes a positive number and a 1 denotes
a negative number. Therefore, the number 110 represents —2, and the number
010 represents 2. When the interpretation of the leading bit (sign bit or value
bit) is not clear from the context, to avoid confusion, it is important to indicate
the numbering system being assumed when specifying a binary number.

EXAMPLE 5I8 NEGATIVE BINARY NUMBER REPRESEN-
TATION Consider a bundle of 8 wires named Wy through W~ as shown in
Figure 5.26. Let the value of the voltage on the wire W; be termed V;. Let us use
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a voltage level of 0 V to denote a logical 0 and a voltage level of 5 V to denote a logical
1. Also, let us use the leading bit (value on W) to represent the sign of the number.
What is the decimal representation of the number encoded in the wires?

Let the logic value on wire W; be A;. Then, A7 is the sign bit, and AgAsA4A3A2A1A¢
is the binary number. The decimal value of the number is given by the
formula:

i=6
(1A Y A2
=0

We are given, V7 =5V, Vg =0V, Vs =0V, V4 =5V, V3 =0V, V, =0V,
Vi=0V,and Vy = 5 V. Therefore, A =1, Ag =0, A;s =0,A3 =1, A3 =0,
Ay = 0, Ay = 0, and Agp = 1. In other words, the sign bit is 1, and the binary
number is AgAsA3A3A2A1A9 = 0010001. Thus, the corresponding decimal number
is —17.

Operations on binary numbers can be performed in a manner analogous to
operations on decimal numbers. To illustrate the correspondence, Figure 5.27a
shows the addition of a pair of decimal numbers 26 and 87, and Figure 5.27b
depicts the addition of a pair of positive binary numbers 11 and 11. In both
the decimal and binary case, observe that the addition of the digits in a column
generates a sum digit and a carry digit into the next higher digit column.®
Observe further that adding a pair of two-digit numbers can sometimes result
in a three-digit sum.

EXAMPLE §.19 ADDING A PAIR OF TWO-BIT POSITIVE
INTEGERS Suppose we wish to add a pair of two-bit positive numbers A : A1 Ay
and B : By By. We will implement a two-bit adder using two techniques. The first method
will write the truth table for the entire operation and implement it directly. The second
method will first implement a one-bit adder using the truth table method, and then
use the one-bit adder circuit to compose a two-bit adder. Let us denote the answer as
S: Sle S().

First method We first write the truth table for the two-bit adder as shown in
Table 5.12. From the truth table, we obtain the sum-of-products representation for

8. Although a binary digit is called a biz, we use the term digit here since we are referring to both
the decimal digit and the binary digit.
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Decimal addition

1 Carry digit
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Sum digit
113
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Binary addition

1 Carry bit
11
11\
Sum bit
110

(b)

FIGURE 5.27 Addition of a pair
of two-digit numbers.
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Aq A By By $ S1 So

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

TABLE 5.12 Truth table for the 0 1 1 0 0 1 1
two-bit adder. 0 1 1 1 1 0 0
1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

each of Sy, 1, and S, as follows:

So = A]AOBlBO + AleBlBo

+ A1ApB1By + A1AoB1 By

+ A1AgB1 By + A1AgB1 By

+ A1AgBBy + A1AyB1 By (5.39)
= AoBy + AgBy (5.40)

Sy = A1AgB1By + A1 AyB1Boy
+ A1AoB1By + A1AgB1 By
+ A1AoB1By + A1AoB1 By

+ AleélB() + A1ApB1By (5.41)



5.6 Number Representation

= A1AoB By + A1B1By
+ A1AoBy + A{B1By
+ A1 AoB1By + A1AgBy (5.42)

S = A1AoB1By + A1AoB1 By

+ A1AoB1By + A1AoB1 By
+ A1A()B1B() + A1A9B1 By (5.43)
= A1By + A1AgBy + ApB1By (5.44)

Figure 5.28 displays a gate-level implementation.

Second method This implementation develops a two-bit adder circuit by composing
two one-bit adders, and illustrates an important engineering technique called divide-and-
conquer. The one-bit adders are called full adders. As illustrated in Figure 5.29, a full
adder takes three inputs — two one-bit numbers to be added (A; and B;), and one carry
bit C; from a lower digit. The full adder produces two outputs: a sum bit S; and a carry
bit C;y1 to a higher digit.

-
. -
=D
B
" =S
>
= s,
-

FIGURE 5.28 Direct implementation of two-bit adder.
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One-bit
full adder
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FIGURE 5.29 Straightforward
two-bit adder implementation.
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A;:
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
TABLE 5.13 Truth table for the
one-bit full adder. v L 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Al }
L/
S;
—o0
. }
FIGURE 5.30 One-bit full adder J
implementation. B;
\ % C
J d/ i+1

The truth table for the one-bit full adder is depicted in Table 5.13.

From the table, we derive the logic expression for the sum bit S; and the carry bit C;1q
as follows:

Si = AiBiC; + A;B;C;
+ A;B,C; + A;B;C; (5.45)

Cit1 = AiBiC; + AiB;C;
+ A;B;C; + A;B;C,. (5.46)
Figure 5.30 shows a gate-level full adder circuit based on the logic expressions for S;
and CiJrl.

We can create a two bit adder out of a pair of one-bit full adders by feeding the carry-out
bit (C;+1) of one adder to the carry-in bit (C;) of another adder. The carry-in bit of the
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low-digit adder is set to 0. The two bit-adder is shown in Figure 5.31. Because the carry
bit ripples through the adders, this type of adder circuit is called a ripple-carry adder.
Similarly, we can use 7 one-bit full adders to construct an -bit adder.”

EXAMPLE §.20 BUILDING AN EIGHT-BIT ADDER Let us
now build an adder that can add two eight-bit integers using the two-bit adder circuits
from Figure 5.31 as the building blocks. First, for convenience, let us abstract the cir-
cuit from Figure 5.31 into an adder block for a pair of two-bit integers as shown in
Figure 5.32.

Much as we ganged together the one-bit adder blocks, we can cascade together the
two-bit adder blocks to form the eight-bit adder as shown in Figure 5.33.

9. As an exercise, you are encouraged to construct a one-bit full adder using two half adders. A half
adder takes two bits A; and B; as inputs and produces as its output a sum bit S; and a carry-out
bit Ci+1~
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FIGURE 5.31 A two-bit
ripple-carry adder using two
one-bit full adders.

FIGURE 5.32 A two-bit adder
block.

FIGURE 5.33 An eight-bit adder
circuit.
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57 SUMMARY

>

This chapter introduced the digital abstraction, which is based on the notion
of lumping signal values into two levels — high and low. Digital circuits
are designed to be more immune to noise than their analog counterparts.
The degree of noise immunity of a digital circuit is governed by the voltage
thresholds of the static discipline to which the circuit adheres.

The static discipline requires digital devices to adhere to a common rep-
resentation for their input and output voltages, and to guarantee that
they interpret correctly inputs that are valid logical signals according to
the common representation, and to produce outputs that are valid logical
signals provided they receive valid logical inputs. By adhering to a common
representation, digital devices based on different technologies or built by
different manufacturers can communicate with each other. The common
representation is specified in terms of four voltage thresholds:

Vou The lowest output voltage value that a digital device can produce
when it outputs a logical 1.

Vor The highest output voltage value that a digital device can produce
when it outputs a logical 0.

Viz  The lowest input voltage value that a digital device must recognize
as a logical 1.

Vi The highest input voltage value that a digital device must
recognize as a logical 0.

The voltage thresholds associated with a static discipline determine the
noise margins. The 0 noise margin is given by

NMo = Vi — Vor
and the 1 noise margin is given by

NM; = Vop — V.
We also discussed several representations of digital logic including truth
tables, which are a tabular representation; boolean expressions, which

are akin to algebraic expressions; and combinational gates, which are a
graphical circuit representation.

EXERCISE 5.1 Write a boolean expression for the following statement: “Z is
TRUE if either X or Y is FALSE, otherwise Z is FALSE.” Write a truth table for this
expression.
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EXERCISE 5.2 Write a boolean expression for the following statement: “Z is
FALSE if either X or Y is FALSE, otherwise Z is TRUE.” Write a truth table for this
expression.

EXERCISE 5.3 Write a boolean expression for the following statement: “Z is
TRUE if no more than two of W, X, and Y are TRUE, otherwise Z is FALSE.”

EXERCISE 5.4 Consider the statement: “Z is TRUE if at least two of W, X, and
Y are TRUE, otherwise Z is FALSE.”

a) Write a boolean expression for this statement.
b) Write a truth table for the function Z.

¢) Implement Z using only AND, OR, and NOT gates. The inputs W, X, and
Y are available. Each gate may have an arbitrary number of inputs. (Hint:
A sum-of-products representation of the boolean expression will facilitate this
implementation.)

d) Implement Z using only AND, OR, and NOT gates. Each gate may have no more
than two inputs. As before, the inputs W, X, and Y are available.

e) Implement Z using only NAND and NOR gates. (Hint: a NAND gate or a NOR
gate with its inputs tied together behaves like an inverter.)

f) Implement Z using only NAND gates. (Hint: Use De Morgan’s laws.)

g) Implement Z using only NOR gates. (Hint: Use De Morgan’s laws.)

h) Repeat part (d) and attempt to minimize the number of gates used.

i) Repeat part (d) and attempt to minimize the number of gates used, assuming that
the inputs are available both in their true and complement forms. In other words,
assume that in addition to W, X, and Y, the inputs W, X, and Y, are also available.

EXERCISE 5.5 Represent the decimal number 4 as an unsigned, three-bit binary

number and as an unsigned, four-bit binary number. Unsigned numbers do not include

a sign bit. For example, 11110 is the unsigned, binary representation of the decimal
number 30.

EXERCISE 5.6 Consider the functions FA, B, C) and G(A, B, C) specified in the
truth table given in Table 5.14.

a) Write a logic expression corresponding to the functions F(A, B, C) and G(A, B, C).

b) Implement F(A, B, C) with logic gates.
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0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

¢) Implement F(A, B, C) using only two-input gates.

d) Implement F(A, B, C) using only two-input NAND gates. (Hint: Use De Morgan’s
laws.)

e) Repeat parts (b) through (d) for the function G(A, B, C).

EXERCISE 5.7 Consider the following four logic expressions:
(A+B(A-B+C)+C-D
(A-C+B-D(D+B+A

A+B-D+A-C-D

(A+C)+B+D)+A-C-D

a) Give an implementation using gates for each of the four logic expressions.
b) Write the truth table for each of the four expressions.
¢) Suppose you know that A = 0. Simplify the four expressions under this constraint.

d) Simplify the four expressions assuming that A and B are related as A = B.

EXERCISE 5.8 A logic gate obeys a static discipline with the following voltage
levels: Vig = 3.5V, Vog = 43V, Vi = 1.5 V,and Vo = 0.9 V. (a) What
range of voltages will be treated as invalid under this discipline? (b) What are its noise
margins?
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EXERCISE 5.9 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: Vi, = 1.5 V, Vo = 0.5V,
Vig=3.5V,and Vog =44 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

¢) What is the highest voltage that can be output by an inverter for a logical 0
output?

d) What is the lowest voltage that can be output by an inverter for a logical 1
output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?
f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise? If so, determine
the noise margins.

EXERCISE §5.10 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: Vi = Vo, = 0.5 V and Vi =
Vog=44V.

a) Graph an input-output voltage transfer function of a buffer satisfying the two voltage

thresholds.

b) Graph an input-output voltage transfer function of an inverter satisfying the two
voltage thresholds.

¢) What is the highest voltage that can be output by an inverter for a logical 0
output?

d) What is the lowest voltage that can be output by an inverter for a logical 1
output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?
f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise?
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PROBLEM 5.1 Derive a truth table and a boolean expression that describes the
operation of each digital circuit shown in Figure 5.34.

PROBLEM §.2 Draw an output voltage waveform for the circuit in Figure 5.34c
in response to the input voltage waveforms shown in Figure 5.35. Assume that the gates
in the circuit obey the static discipline with Voir =4V, Vi =3V, Vor, = 1V, and
Vip=2V.

SVf--------- '

4V

3V

2V

1V

FIGURE 5.35

PROBLEM 5.3 The truth table for a “ones count” circuit is given in Table 5.15.
This circuit has four inputs: A, B, C, and D, and three outputs OUT,, OUT}, and OUT>.
Together, the signals OUTy, OUTy, and OUT) represent a three-bit positive integer
OUT, OUT; OUTy. The output integer OUT, OUT; OUT reflects the number of ones
in the input. Using only NAND, NOR, and NOT gates, design an implementation for
the circuit. Each gate may have an arbitrary number of inputs.

PROBLEM §.4 A four-input multiplexer module is shown in Figure 5.36. The
multiplexer has two select signals S1 and Sp. The value on the select signals determines
which of the inputs A, B, C, and D appears at the output. As illustrated in the figure,
A is selected if §18¢ is 00, B if $15y is 01, C if S18p is 10, and D if $;5 is 11. Write a
boolean expression for Z in terms of S1Sp, A, B, C, and D. Implement the multiplexer
using only NAND gates.

PROBLEM 5.5 A four-input demultiplexer module is shown in Figure 5.37. The
demultiplexer has two select signals, S and Sp. The select signals determine on which
of the outputs (OUTO0, OUT1, OUT2, or OUT3) the input IN appears. As illustrated in
the figure, IN appears at output OUTO if 1.5y is 00, at OUTT if $1Sp is 01, at OUT2 if
S18p is 10, and at OUT3 if §1 Sy is 11. An output is O if it is not selected. Write a boolean
expression for each of the outputs in terms of S1.59 and IN. Implement the demultiplexer
using only NAND gates.

PROBLEM 5.6 Implement the “greater-than” circuit depicted in Figure 5.38
using NAND gates. A and B represent one-bit positive integers. The output Z is 1
if A is greater than B, otherwise Z is 0.
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0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0

PROBLEM 5.7 Implement the four-input “odd” or “odd parity” circuit depicted
in Figure 5.39 using NOR gates. In this circuit, the output Z is high if an odd number of
the inputs are high, otherwise the output Z is low. How would you use the four-input
“odd” circuit module shown in Figure 5.39 to implement a three-input “odd” circuit?
If this cannot be done, discuss why not.

PROBLEM 5.8 Figure 5.40 depicts a four-input majority circuit module. The
output Z of this circuit module is high if a majority of the inputs are high. Write a
boolean expression for Z in terms of A0, A1, A2, and A3. How would you use the
four-input majority circuit module shown in Figure 5.40 to implement a three-input
majority circuit and a two-input majority circuit? If either of these cannot be done,
discuss why not.

PROBLEM 5.9 Figure 5.41 illustrates a two-bit grey code converter. Its outputs
OUTO, and OUTT1, are equal to the inputs when the INO, IN1 are 00 or 01. However,
when the inputs INO, IN1 are 10 and 11, the outputs OUTO and OUT1 are 11 and 10,
respectively. Implement the grey code converter using two-input NAND gates.

PROBLEM §.10 Figure 5.42 illustrates input-output voltage transfer functions
for several one-input one-output devices. For the voltage thresholds Vor, Vi, Vog,
and Vjg as shown, which of the devices can serve as valid inverters?
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TABLE 5.15 Truth table for a
“ones count” circuit.
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FIGURE 5.36 A four-input
multiplexer module. The “2” beside
the wire corresponding to the
select signals is a short-hand
notation indicating there are two
wires present.
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PROBLEM §.11 Suppose we wish to build a two-bit adder circuit (see
> Figure 5.43) that takes as input a pair of two-bit positive integers A1Ag and B1By and
B z produces a two-bit sum output 515y and a carry-out bit C;. Write a truth table and a
boolean expression for the carry-out bit in terms of the inputs.

FIGURE 538 Now, suppose we wish to build a two-bit adder circuit (see Figure 5.44) that takes as
input a pair of two-bit positive integers A1Ap and By By, and a carry-in bit Cp, and
A0——] produces a two-bit sum output 515y and a carry-out bit C;. Write a truth table and a
Al —— oDD boolean expression for the carry-out bit in terms of the inputs.
A2 z PROBLEM §5.12 Suppose we have two logic families named NTL and YTL. The
A3— NTL family of logic gates operates under the static discipline with the following voltage
CIGURE 550 thresholds: Vi = 1.5V, Vo, = 1.0 V, Vir = 3.5 V, and Vo = 4 V. The YTL
’ family, on the other hand, is characterized by the voltage thresholds: Vip = 0.8 V,
VoL =03V, Vi =3.0V,and Vog = 4.5 V. Will a YTL inverter driving the input of
A0—
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an NTL inverter operate correctly? Explain. Will an NTL inverter driving the input of
an YTL inverter operate correctly? Explain.

PROBLEM 5.13 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: Vor = 05 V, V = 1.6V,
Vor = 44V, and Vigy = 3.2 V.

a)  Graphan input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b)  Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

¢) What is the highest voltage that can be output by an inverter for a logical 0 output?
d)  What is the lowest voltage that can be output by an inverter for a logical 1 output?
e) What is the highest voltage that must be interpreted by a receiver as a logical 0?
f)  What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) When transmitting information over a noisy wire, buffers can be used to minimize
transmission errors by restoring signal values. Consider the transmission of data
over a noisy wire that picks up a maximum of 80 mV symmetric peak-to-peak noise
per centimeter. How many buffers are needed to transmit a signal over a distance
of 2 meters in this noisy environment?

h) How large are the 0 and 1 noise margins for a buffer in this logic family? Now
consider three buffers connected in series and behaving as a single buffer. What are
the noise margins for this new buffer?

PROBLEM §.14 Many manufacturing flaws in digital circuits can be modeled as
stuck-at faults. The output of a gate is said to suffer from a stuck-at-1 fault if the output
is a 1 irrespective of its input values. Similarly, a stuck-at-0 fault at an output causes the
output to produce a 0 at all times.

a)  Consider the circuits shown in Figure 5.45 with one or more faults. Write an expres-
sion for each of the outputs in terms of the input variables for the given faults. (Hint:
As an example, the output of the faulty circuit in Figure 5.45a will be independent
of the input variable C).

(b)
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b)

Suppose we are given the faulty circuit in Figure 5.46a where the output of NAND
gate N2 is known to have a stuck-at fault. However, we do not know whether it is a
stuck-at-1 fault or a stuck-at-0 fault. Further, as illustrated in Figure 5.46b, suppose
that we have access only to the inputs A, B, and C, and the output Z. In other
words, we are unable to directly observe the output X of the faulty NAND gate
N2. How would you go about determining whether N2 suffers from a stuck-at-1
fault or a stuck-at-0 fault?
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THE MOSFET SWITCH

This chapter introduces the switch circuit element and demonstrates how
digital logic gates can be constructed using switches and other primitive circuit
elements we have seen previously. This chapter also discusses a common imple-
mentation of the switch in VLSI technology using a device called a MOSFET
(Metal Oxide Semiconductor Field-Effect Transistor).

61 THE SWITCH

Recall the electrical system and its lumped circuit model shown in Figure 1.4.
As is commonly done in household electrical circuits, let us add a switch in the
current path to turn the bulb on and off, as shown in Figure 6.1a. Figure 6.1b
shows the corresponding lumped circuit model.

The switch is normally off and behaves like an open circuit. When pressure
is applied to the switch, it closes and behaves like a wire and conducts current.
Accordingly, the switch can be modeled as the three-terminal device shown in
Figure 6.2. The three terminals include a control terminal, an input terminal,
and an output terminal. The input and output terminals of a switch commonly
exhibit symmetric properties. When the control terminal has a TRUE or a
logical 1 signal on it, the input is connected to the output through a short
circuit, and the switch is said to be in its ON state. Otherwise, there is an open

Switch S * -

| hd

—_— ] —>/

14 Lightbulb<

(@) (b)
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I ‘ |
1
' =+
<
=
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FIGURE 6.1 (a) The lightbulb
circuit with a switch; (b) the lumped

circuit representation.
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crcuit between the input and the output, and the switch is said to be in its OFF

In
P state.!
The v~i curve for a switch is shown in Figure 6.3. Thus far, we drew the v—i
v curves for two-terminal devices by plotting the relationship between the voltage
Control —»| . . : . .
and current for the two terminals. Likewise, for our three-terminal switch, we
can draw the v—i characteristics at the input-output terminal pair. The effect of
) the control terminal can be taken into account by drawing a different v—i curve
Out for each value at the control terminal. Thus, as illustrated in Figure 6.3, when
the control input is a logical 0, the v—i curve for the input-output terminal pair
indicates that the current through the switch is 0, irrespective of the voltage
applied. Conversely, the switch behaves like a short circuit between its input
i and output terminals when the control input is a logical 1. When behaving like
v a short circuit, the voltage across the input and output terminals is zero, and the
current is unconstrained by the switch (rather, it is determined by constraints
that are external to the switch).

In +

Control = “1” ———p»

Out The v—i characteristics of a switch can also be expressed in algebraic form as:
ON state
for Control = “0,” i=0
I
no and
i i for Control = “1,” v = 0. (6.1)
Control = “0” —» Y
[ ,
B Control = “1”
Out

OFF state AJ

FIGURE 6.2 Three-terminal e
Control = “0

switch model. y 3

v

FIGURE 6.3 v-icharacteristics of a switch. v is the voltage across the input and the output
terminals of the switch and /is the current through the same pair of terminals.

1. To build intuition, our switch example uses mechanical force to apply a logical 1 at its control
input. However, there are other types of switches that work with electrical signals at their control
terminals, and offer the same properties at their input and output terminals. We shall see an example
of such a switch in Section 6.3.
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(a) Switch in the OFF state (b) Switch in the ON state

Although the switch is a nonlinear device, circuits containing a switch
and other linear devices can be analyzed by considering two linear subcir-
cuits: one when the switch is in its ON state and one for the switch in its
OFF state. Thus, standard linear techniques can be applied to each subcir-
cuit. Figure 6.4 illustrates the two subcircuits for our lightbulb circuit example.
Analyzing Figure 6.4a, it is easy to see that the current Iis zero when the switch
is OFF. Similarly, analyzing Figure 6.4b, the current is given by I = V/R when
the switch is in the ON state.

EXAMPLE 6.I CIRCUIT CONTAINING A SWITCH Determine
the current through resistor Ry in the circuit shown in Figure 6.5a.

The circuit in Figure 6.5a is nonlinear because it contains a switch. Since the only
nonlinear element in the circuit is the switch, we can analyze this circuit by considering
the two linear subcircuits formed for each of the two states of the switch.

Figure 6.5b shows the linear subcircuit formed when the switch is in the ON state. We
can obtain the desired current 71, for the ON-state circuit by using the current divider
relation from Equation 2.84. The current divider relation states that when two resistors
are connected in parallel, the current through one of the resistors is equal to the total
current through the two resistors multiplied by a factor, which is made up of the opposite
resistance divided by the sum of the two resistances. Accordingly, (when the switch is
in the ON state):

Ry
Ry +Ry

=1

Figure 6.5¢ shows the linear subcircuit formed when the switch is in the OFF state. In
this case, the entire current from the current source flows through the resistor Ry. Thus,
(when the switch is in the OFF state):

i = i.
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FIGURE 6.4 (a) Linear sub-
circuit formed when the switch is in
the OFF state; (b) linear subcircuit
formed when the switch is in the
ON state.
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FIGURE 6.5 (a) Circuit
containing a current source, two
resistors, and a switch; (b) linear
subcircuit formed when the switch
is in the ON state; (c) linear sub-
circuit formed when the switch is
in the OFF state.
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FIGURE 6.6 (a) The lightbulb
circuit with switch in an AND
configuration; (b) the lightbulb
circuit with switches in an OR
configuration.
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62 LOGIC FUNCTIONS USING SWITCHES

Next, consider the lightbulb circuit with a pair of switches connected in series
as depicted in Figure 6.6a. The lightbulb can be turned on only by closing
both the switches A and B. Similarly, Figure 6.6b shows a circuit with a pair
of switches connected in an OR configuration. In the latter configuration, the
bulb can be turned on by dlosing either switch A or switch B.

These dircuits provide us with the insight into implementing logic func-
tions using switches: Series connected switches implement the AND function
and parallel connected switches implement the OR function. Switches can be
combined in AND-OR configurations to implement more complicated func-
tions. As shown previously, the switches implement a form of digital logic
called steering logic. In this form, switches steer values (for example, a high
voltage) along various paths. As we continue our discussion, we shall also see
how switches can be used to build our familiar combinational logic gates.

One of the unappealing features of the mechanical switches in Figure 6.1
was that they responded only to mechanical pressure at their control terminal.
The need for mechanical pressure would make it unacceptably hard to build
logic circuits because the voltage at the output of a given switch would have to
somehow be converted to a mechanical pressure to influence another switch.
Preferably, a three-terminal switch device that responded to voltages would
enable the construction of switching circuits using voltages alone. The MOSFET
is one such device that can be implemented cheaply in VLSI technology.

63 THE MOSFET DEVICE AND ITS S MODEL

The MOSFET belongs to a class of devices called transistors. The MOSFET is a
three-terminal device with a control terminal, an input terminal, and an output
terminal (see Figure 6.7). We will discuss its physical structure in Section 6.7.



6.3 The MOSFET Device and Its S Model

Its circuit symbol is shown in Figure 6.8. As shown in Figure 6.8, the control
terminal of the MOSFET is called its gate G, the input terminal its drain D, and
the output terminal its source S. For our purposes, we can treat the source and
drain in a symmetric fashion. The name assignment is related to the direction of
current flow. The terminals are labeled such that current flows from the drain
to the source.” Equivalently, the channel terminal with the higher voltage is
labeled as the drain.

As depicted in Figure 6.9, let the voltage across the gate and source of
the MOSFET be vgs, and the voltage across the drain and the source be vpg.
The current through G terminal is called i and that through the D terminal is
termed 7pg.

A simple circuit model for a specific type of MOSFET device called the
n-channel MOSFET is depicted in Figure 6.10.> This model based on the
simple switch is called the MOSFET’s Switch Model, or S Model for short.*
The device is in the ON state when vgs crosses a threshold voltage Vr,
otherwise it is off. A typical value for Vr for n-channel MOSFETs is 0.7 volts,
but it can be varied by the manufacturing process.® In the ON state, the S model
approximates the connection between the drain and the source as a short circuit.
In practice, there is some nonzero resistance between the drain and the source,

2. You are is probably wondering why the nomenclature of the drain and the source seems reversed
from the more logical choice relating the source to the input and the drain to the output. It turns
out that the names stem from the internal conduction properties of the MOSFET. Electrons are
the majority carriers in the 7#-channel MOSFET shown. § is the source of electrons and D is the
drain of electrons.

3. We will see a complementary MOS transistor called the p-channel transistor later.

4. We will examine increasingly sophisticated models for the MOSFET device in the following
chapters. These models will reflect aspects of the MOSFET’s behavior that are not adequately
captured by our simple switch model.

5. To simplify the math in our quantatitive examples on MOSFETs, this book commonly uses
1-volt thresholds.
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FIGURE 6.7 Discrete MOSFETs.
The rightmost device with three
leads contains a single MOSFET,
while the middle package contains
multiple MOSFETs. (Photograph
Courtesy of Maxim Integrated
Products.)
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FIGURE 6.8 The MOSFET
circuit symbol.

FIGURE 6.9 Definitions of vgg,
vps, and ips.
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but we ignore this resistance in the S model. Section 6.6 will discuss the switch-
resistor model (or the SR model), which attempts to account for this resistance.
In the OFF state, an open circuit exists between the drain and the source. As
illustrated in Figure 6.10, an open circuit exists between the gate and the source,
and between the gate and the drain at all times. Thus, i = 0 always.

Much as we did for the switch, we can plot the v~i characteristics between
the D and S terminals of the MOSFET for various gate-to-source voltages using
the S model. Figure 6.11 shows this graph. Notice that the curves are shown
only for the top-right quadrant. Because we define the drain to be the terminal
with the higher voltage, by definition, vpg can never be negative.® Therefore, the
left quadrants are irrelevant. Similarly, the bottom-right quadrant is not shown
because ipg is positive when vpyg is positive. Unlike the MOSFET, devices for
which this is not true (for example, batteries) are capable of providing power.
Like the switch with a zero on its control input, the connection between the
D and S terminals looks like an open circuit (ipg = 0) when vgs < Vr. In
contrast, the connection between D and S looks like a short circuit (vpg = 0)
when vgg > V.

We can summarize the S model for the MOSFET in algebraic form by stating
its v~ characteristics as follows:

for vgs < V1, ips=0

and

for vgs > Vr, vps =0 (6.2)

Our discussion thus far treated a MOSFET as a three-terminal device.
Notice, however, that the MOSFET is controlled by the voltage across a pair of
terminals, namely, G and S. Similarly, we were interested in the voltage across,
and current through, the D and S terminal pair. As discussed in Section 1.5,
this natural pairing of terminals suggests an alternate MOSFET representation
using ports. As shown in Figure 6.12, we can treat the G and S terminal pair as
the input port or the control port and the D and S terminal pair as the output
port of the MOSFET.

6. When fabricated on a VLSI chip, the physical MOSFET itself is symmetric with respect to
the drain and source. (Note, however, discrete MOSFET devices suitable for use on a bread-
board are not symmetric.) So its drain and source labels can be interchanged without changing the
device. Accordingly, if the drain and source nomenclature was unrelated to the potential difference
between the two terminals, the MOSFET characteristic would look like as in the adjacent figure.
As depicted, there is an open circuit between D and S when vgg < V7, and a short circuit when
vGs > V1. When the open circuit exists, vpg can take on any value (positive or negative) as deter-
mined by external circuit constraints. Similarly, when the short circuit exists, 7pyg is unconstrained.
Interestingly, notice here that the model we choose for an element depends on the way we use the
element as much as on the physical construction of the element!
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Notice further that we if choose our digital representation such that the ips
logical 1 is represented with a value greater than 1 volt, then the MOSFET Vs Vr
operates as a switch that turns on when its gate-to-source port has a logical 1 Vps=
signal on it. Figure 6.13 shows the lightbulb circuit using MOSFET to imple-
ment the AND switching function. In this circuit, the bulb turns on only when
both A and B are 1.

ips=0 Vs <Vr

VDS

64 MOSFET SWITCH IMPLEMENTATION
OF LOGIC GATES FIGURE 6.11 MOSFET

. . . . .. . h terist ith the S model.
Let us now build logic gates using MOSFETs. Consider the circuit shown in <0 oo ores Wie = moge

Figure 6.14, which comprises a MOSFET and a load resistor powered by a
supply voltage V. The input to the circuit is connected to the gate of the
MOSFET, the source is tied to ground, and drain is tied to Vs in series with a
load resister Ry. The same circuit is redrawn on the right-hand side using the
shorthand notation for the power and ground terminals.

FIGURE 6.12 Port represen-
tation of a MOSFET.

A B
i R
>/
+ FIGURE 6.13 The lightbulb
4 R = circuit using MOSFETs.
A v,
+
——oO0 G_V Vs ——-o0 FIGURE 6.14 (a) The MOSFET
i i Vout inverter; (b) the same inverter
IN Your IN R ,
circuit using the shorthand notation
VIN T VIN for power and ground.
o 1

(@ (b)
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FIGURE 6.15 The inverter
abstraction and its internal circuit.
IN and OUT are the logical values
represented by vy and voyT.

IN ouT

Vs
IN 4|>07 OUT

FIGURE 6.16 The inverter
shown with explicit and implicit
power connections.
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IN OUT

Figure 6.15 shows the relationship between the terminals of the MOSFET-
based inverter circuit and the abstract inverter gate.

The left-hand side of Figure 6.16 shows the corresponding abstract
inverter with the power connections, and the right-hand side shows the inverter
abstraction as we know it with implicit power connections. Notice that the
inverter abstraction hides the internal circuit details and provides a simple usage
model to the user of the inverter logic gate. The internal details are irrelevant
to the gate-level logic designer.”

Let us analyze the behavior of the circuit by replacing the MOSFET with
its equivalent S model. Figure 6.17 displays the equivalent model for the circuit
shown in Figure 6.14. Let us assume that a logical high is represented using 5§ V
and a logical low using 0 V.

As shown in Figure 6.17, when the input vy is high, the MOSFET is in
the ON state (assuming that the high voltage level is above the threshold V),
thereby pulling the output voltage to a low value.® In contrast, when the input
is low, the MOSFET is off, and the output is raised to a high value by Ry . Here
we see the purpose of the load resistor” R — it provides a logical 1 output
when the MOSFET is off. Furthermore, Ry is usually chosen to be large so
that the current is limited when the MOSFET is on.!? Because the resistance

7. What if sophisticated logic designers want to optimize their design for certain parameters — such
as speed or area — that are not captured by the gate-level abstraction? Later chapters will discuss
how the gate-level abstraction is augmented with additional parameters — such as gate delay and
size — derived from the internal circuit so that the logic designer can optimize their gate-level
circuit without being forced to delve into the internal details of the gate.

8. Because the MOSFET in Figure 6.14 serves to pull the output voltage to a low value when it is
its ON state, the MOSFET is sometimes referred to as the pulldown MOSFET.

9. Because it pulls the output to a high value, the load resistor is sometimes referred to as the pullup
resistor.

10. We will see additional design constraints on Ry, as we progress to more accurate MOSFET
models.
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between the gate-to-source and the drain-to-source ports of the MOSFET is
infinity in the S model, the current 7y is O.

We can write the input-output relationships in a truth table as shown
in Table 6.1. As is apparent from the table, the logical values IN and OUT
represented by vy and voyT exhibit the behavior of an inverter.

Figure 6.18 shows a sample input waveform and the corresponding output
waveform for our circuit. We can also plot the vy versus vouT voltage transfer
curve for the inverter circuit as shown in Figure 6.19. The input-output transfer
curve for the inverter — also called the inverter characteristic — allows us to
determine whether the inverter satisfies a given static discipline. We will discuss
the inverter characteristic and how it relates to the static discipline in Section 6.5.

We can also construct other gates in like manner. Figure 6.20 shows a
NAND gate circuit and Figure 6.21 shows its equivalent S circuit model. It is

51 I 5
4 o 1 — |— _ “;OH
- —_— —] — |— _ IH
VIN T Vi
T - Vv
0 - I N OOL
t—
5 - - _ 5
- _ RS RS _ — “;OH
Vout — I — — | — Vif
0o+ — —_— _ —_— L (‘)/OL
FIGURE 6.18 Sample input-output waveforms for the inverter.
vour (V) A
5V Ideal inverter characteristic
-’
ov >
ov Vvp S5V (V)
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FIGURE 6.17 The S circuit
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model of the n-channel MOSFET

inverter.

ouT

TABLE 6.1 Truth table for the

MOSFET circuit.

FIGURE 6.19 The transfer
characteristic of the inverter.
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B O——

FIGURE 6.20 The circuit for a
NAND gate.

FIGURE 6.22 Multiple-input
NOR and NAND gates.
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easy to see that the output is a 0 only when both inputs are high. The output
is high otherwise.!!

Using intuition from the two-input NAND circuit, we can build multiple-
input NAND and NOR circuits. Figure 6.22a shows an n-input NOR gate
and 6.22b shows an n-input NAND gate. In the multiple-input NOR gate, the
output is pulled to ground when any of the inputs is high. Correspondingly, in
the NAND gate, the output remains high if even one input is low.

VS VS
RL RL
c=1 c=0
4=0 4= 0 1 o_}, Ml

B;i()oI\MZ ——] M2

I

FIGURE 6.21 The S circuit model for a NAND gate.
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EXAMPLE 6.2 COMBINATIONAL LOGIC USING MOSFETS
Recall the two combinational logic expressions whose gate-level implementa-
tions we had seen earlier:

AB+C+D

(A+B)CD

11. Notice that if both switches are off, the voltage at the node connecting M1 and M2 appears to
be undefined. Therefore vg for M1 also appears to be undefined. In practice, however, MOSFET
switches are not perfect open circuits, rather they have a very high resistance between their drain
and source in the off state. Thus, the voltage between M1 and M2 will be given by a voltage divider
relationship. In any case, vgg for M1 will not impact the output voltage of the gate.
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In our earlier example, we had implemented these expressions using several abstract
logic gate elements. Now that we understand how gates are constructed using MOSFET's
and resistors, we can actually construct a single compound combinational logic gate
using MOSFETs and resistors that implements each of these functions.!2

Let us consider the first expression: AB + C + D. Using the intuition that switches in
series implement the AND property and switches in parallel implement the OR property,
we can implement the first expression as shown in Figure 6.23. By checking the circuit
against its truth table, we can convince ourselves that the circuit does work as desired.

Figure 6.24 shows the circuit for the second expression: (A + B)CD.

EXAMPLE 63 MORE COMBINATIONAL LOGIC USING
MOSFETS Letusnow construct the logic expression (A + B)CD using MOSFETs.
Since (A + B)CD is simply the complement of (A + B)CD, we can obtain (A + B)CD
by inverting the output from Figure 6.24, as illustrated in Figure 6.25.

It is important to point out two key properties of the MOSFET that make
it an ideal component for building gates:

1. First, notice that we could compose multiple gate components into more
complicated circuits without worrying about the internal circuit of

12. Direct transistor implementation potentially can yield savings in the number of transistors and
resistors used. However, should you consider discarding the gate-level abstraction in favor of
building logic functions directly out of transistors, remember that transistor-level implementation
of complex logic functions can be a much more arduous task than a gate-level implementation.
The difficulty will become apparent as we move to the more realistic switch-resistor MOSFET
model discussed in Section 6.6. As a general guideline, the designer should use the highest level of
abstraction with which to accomplish a design.
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FIGURE 6.23 Transistor-level
implementation of AB+ C + D.

FIGURE 6.24 Transistor-level
implementation of (A + B)CD.
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FIGURE 6.25 Transistor-level
o

implementation of (A + B)CD.
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the gates. The reason we are able to do so is that the output of the
MOSFET has no effect on its inputs. In other words, although the input
voltage at G impacts the behavior of the MOSFET at its D and S
terminals, the voltages or currents at its D and S terminals have no impact

on G.

2. Second, the infinite resistance seen at the gate (G terminal) of a MOSFET
makes it have no effect on the output of another gate driving its input.
This feature of the MOSFET allows us to build systems containing many
gates without worrying about how each gate affects the logical properties
of other gates to which it is connected. This property of a gate is called
composability. Imagine if the MOSFET input had zero resistance. In that
case, we would not be able to connect the output of one inverter to the
input of another and expect the first inverter to satisfy the static discipline.

We shall see later in Section 6.9.1 that the ability to build amplification into
devices containing MOSFETs further facilitates composability.

6.5 STATIC ANALYSIS USING THE S MODEL

The input-output transfer curve for the inverter shown in Figure 6.19, or
the inverter characteristic, contains all the information necessary to determine
whether the inverter satisfies a given static discipline.

Recall that the static discipline for a logic gate guarantees that the outputs
of the gate will meet the output constraints specified by the discipline, provided
its inputs meet the input constraints. Recall, further, that a static discipline
with its associated voltage thresholds is necessary to establish a standardized
representation so that the logic devices from several vendors can operate with
each other correctly. Similarly, a user who wants to build a system can select
the best devices from several vendors provided they meet the voltage thresholds
established by the static discipline adopted by the user.



6.5 Static Analysis Using the S Model

Input Output
>V oV Valid 1
4V 1 | Vvalid1 VL v,
3VL vy, GATE 3V
2V V,L+__IN ouT|— 2V
1V| | Valido 1v_| Vor
oV 0VL_|valid0o

Output voltage levels are generally stricter than input voltage levels (higher
than the corresponding input high and lower than the corresponding input low)
to provide for noise margins. Figure 6.26 illustrates the asymmetry between
inputs and outputs. At the input of the gate, any voltage level lower than Vi
is recognized as a valid low, and any voltage higher than Vi is a valid high. At
its output, the gate guarantees to produce a voltage level higher than Vo for
a valid high, and a voltage level lower than Vo for a valid low.

Voltage levels between Vi, and Vypy are invalid at the input, and levels
between Vor and Vg are invalid at the output. Because the output levels
are stricter than the input thresholds, the static discipline provides for noise
margins.

Based on the inverter characteristic (repeated here in Figure 6.27 for conve-
nience), we can determine whether the inverter satisfies a given static discipline.
As an example, let us determine whether the inverter satisfies a static discipline
with the following voltage thresholds:

Vou =45V, Vor =05V, Vg =4V, and Vi =09 V.

vour V) A
5V . Ideal inverter characteristic

ov

ov v, 5V vy (V)
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FIGURE 6.26 Input and output
voltage thresholds for a logic gate.

FIGURE 6.27 The transfer
characteristic of the inverter.
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5V
Vog=45V—
FIGURE 6.28 A mapping
between logic values and voltage
levels corresponding to a static
discipline appropriate for the >
inverter. ?
Vor =05 V—e— S~

V, = 0.9 V—
V=4V

Figure 6.28 shows the voltage thresholds for the given static discipline

superimposed on the inverter transfer function. Let us check each of the output
and input thresholds.

Vom: The inverter produces an output high of 5 V. Clearly, this output

voltage level for a logical 1 is greater than the 4.5-V output-high
threshold required by the static discipline.'?

Vor: The inverter produces an output low of 0 V. This output voltage is

lower than the output-low threshold of 0.5 V required by the static
discipline.!#

Vig:  For our static discipline, Viy = 4 V. To obey the static discipline the
inverter must interpret any voltage above 4 V as a logical 1. This is
certainly true for our inverter. Our inverter turns on when the input
voltage is greater than V1 = 1 V and pulls the output to a valid low
voltage. Thus it interprets any voltage above 1 V as a logical 1.1

13. It turns out that our inverter can satisfy a static discipline with a Vopy as high as 5~ V. The
notation 5~ V implies a voltage that is slightly below 5 V.

14. Notice that our inverter can satisfy a static discipline with a Vo as low as 01 V. The notation
0% V implies a voltage that is slightly above 0 V.

15. In fact, our inverter can satisfy a static discipline with a Vj as low as 17 V, because the inverter
produces a valid low output voltage for inputs greater than Vo =1 V.
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Vir.:  For our static discipline, V7 = 0.9 V. This means that to obey the
static discipline the inverter must interpret any voltage below 0.9 V as
a logical 0. This is true for our inverter. The inverter is off when its
input voltage is below V1 =1V, and its output is at 5 V. Since the
inverter produces a valid (output) high output voltage for input

voltages below 0.9 V, it satisfies the static discipline.'®

EXAMPLE 6.4 STATIC DISCIPLINE For fun, let us check to see
whether our inverter satisfies a static discipline used by Disco Systems Inc. Assume

that some of Disco’s systems adhere to a static discipline with the following voltage
thresholds:

Vou=4V, VoL =1V, Vy=35V,and V =1.5V.

To operate under this static discipline, we know that our inverters must operate as
follows:

»  When outputting a logical 1, the voltage their outputs produce must be at least
Von = 4 V. Since our inverters produce a 5-V output for a logical 1, they satisfy
this condition.

»  When outputting a logical 0, the voltage their outputs produce must be no greater
than Vo, = 1 V. Since our inverters produce a 0-V output for a logical 0, they
satisfy this condition easily.

» At their inputs, the inverters must recognize voltages greater than Vg = 3.5 V as
a logical 1. Since our inverters recognize voltages above 1 V as a logical 1, they
satisfy this condition as well.

»  Finally, at their inputs, the inverters must recognize voltages less than Vip = 1.5V
as a logical 0 if they are to satisfy Disco’s static discipline. Unfortunately, our
inverters can recognize voltages only below 1 V as a 0, and thus do not satisfy this
condition.

Thus, our inverters cannot be used in Disco’s systems.

We can also conduct a static analysis of other digital MOSFET circuits,
such as those Section 6.4. When the S model for the MOSFET is used, the
input and output voltage thresholds for the NAND and other digital circuits
come out to be identical to those for the inverter. Thus, the results of static

16. In fact, our inverter can satisfy a static discipline with a V as high as 1~ V, because the inverter
produces a valid high output voltage for inputs less than V=1 V.

CHAPTER SIX
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FIGURE 6.29 The switch-
resistor model of the n-channel
MOSFET.

FIGURE 6.30 Setup for
observing MOSFET characteristics.
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analysis for these circuits are identical to those for the inverter. For example,
like the inverter, the NAND circuit satisfies a static discipline with the following
voltage thresholds: Vo =4.5V, Vor =05V, Vig=4V,and Vy =09 V.
Similarly, the NAND is not able to satisfy the static discipline with these voltage
thresholds: VOH =4 V, VOL =1 V, V]H =35 V, and V]L =15V.

6.6 THE SR MODEL OF THE MOSFET

The S model for the MOSFET discussed thus far is actually a gross simplifica-
tion of the actual properties of the MOSFET. In particular, a practical MOSFET
displays a non-zero resistance between its D and S terminals when it is on.!”
Accordingly, a slightly more accurate model for the MOSFET uses a resistance
Ron in place of the short between D and S when the MOSFET is on. Figure 6.29
shows the Switch-Resistor model (or SR model) of the n-channel MOSFET.

When the MOSFET is off, there is no connection between the drain and
the source. If the voltage vgs between the gate and source terminals is above
V1, the MOSFET turns on and displays a resistance Ron between its D and
S terminals. As before, there is an open circuit between the gate and source
terminals and the gate and drain terminals of the MOSFET, so i = 0.

The SR model is a better approximation of MOSFET behavior than the
S model. In fact, it is easy to see that the SR model reduces to the S model if
Ron is zero. However, the SR model still is a gross simplification of MOSFET
behavior. In particular, although the MOSFET displays resistive behavior when
vps <K vgs — V, the resistance Roy is not fixed. Rather, it is a function of
vGs. Furthermore, when vpg is comparable to, or greater than, vgs — VT, the
drain-to-source behavior is not resistive at all, rather it is that of a current source.
However, the fixed resistance model is much simpler and suffices for analyzing
some aspects of digital circuits because the gate voltage is bimodal — low or
high. When the voltage is low, the MOSFET turns off, and when the voltage
is high, the drain-source connection offers a resistance Roy related to the gate
voltage. Since there is only one value for the gate voltage when the input is high
(for example V), and accordingly, one value for the resistance Ron, we can
use this value for Ron in our model. In summary, the SR model is valid only
when vpg < vgs — VT, and when there is only one value for the gate voltage
when the input is high (for example vgs = Vs). Chapter 7 will discuss more
comprehensive models for the MOSFET that are valid across a wider range of
values for vgg and vpg.

The characteristics of the MOSFET according to the SR model are graphi-
cally displayed in Figure 6.31. These curves can be plotted by measuring the
various voltages and currents from the setup in Figure 6.30.

17. And in fact, all practical switches display a nonzero resistance between their input and output
terminals in the ON state.
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The SR model for the MOSFET can also be expressed in algebraic form as:

ﬂ for vgs > VT
ips = Ron . (6.3)
0 for vgs < Vr

The presence of the resistance Ron makes our analysis more realistic but
complicates the design of logic gates somewhat. We shall discuss this further
in Section 6.8.

67 PHYSICAL STRUCTURE OF THE MOSFET

The on-resistance of the MOSFET depends on several factors related to the
physical properties of the MOSFET, such as its geometry. Typical values for
the resistance range from a few milliohms for discrete MOSFET components
to several kQ for MOSFETs in VLSI technology. Let us take a quick look at
the physical structure of MOSFETS to obtain some insight into the relationship
between their on resistance and their geometry.

MOSFETs are constructed through several fabrication steps on the surface
of a planar piece of single-crystal silicon called a wafer. Figure 6.32 shows the
top view of several rectangular MOSFET fabricated on a planar silicon surface.
A wafer can be tens of centimeters in diameter, and typical MOSFET's might
occupy an area that is less than a square micrometer. One micrometer is 10~°
meters. A micrometer (um) is also referred to as a micron (u). The fabrica-
tion steps result in the construction of several planar layers sandwiched on the
wafer surface. The layers might constitute insulating layers made up of sili-
con dioxide (SiO;,) created by oxidizing parts of the wafer surface, conducting
layers comprising deposits of metals such as aluminum or copper, or poly-
crystalline silicon (poly), and semiconducting layers comprising silicon doped
with materials with a high concentration of free electrons or holes. (A hole is
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FIGURE 6.31 Characteristics of
the MOSFET according to the SR
model. The top-left, bottom-left,
and the bottom-right quadrants are
not shown for the reasons given in
Section 6.3. As discussed in more
detail in Chapter 7, the region in
which the MOSFET displays
resistive behavior is within the
triode region of MOSFET operation.
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FIGURE 6.32 Top view of
several n-channel MOSFETs
fabricated on a chip. The square
MOSFETs in the center of the
photograph have a width and
length of 100 «m. (Photograph
Courtesy of Maxim Integrated
Products.)

FIGURE 6.33 A simplified
cross-sectional view of an
n-channel MOSFET.
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a positively charged element, and comprises an atom with a missing electron.)
Doping is accomplished by diffusion or by ion implantation. The conducting
layers are separated by the insulating layers. Connections between layers sepa-
rated by insulating material are created by etching contact holes in the insulating
material and “pouring” metal through the contact holes.

Silicon doped with a material rich in electrons is called an n-type semicon-
ductor. Similarly, silicon doped with a material rich in holes is called a p-type
semiconductor. As the word “semiconductor” implies, silicon doped with either
n-type or p-type material is a fairly good conductor of electricity. We use the
notation 7 or p™ to refer to silicon that is heavily doped with n-type or p-type
material, respectively. #1 or pT type semiconductors are even better conduc-
tors. We commonly refer to n-type or p-type doped silicon areas as diffusion
regions.

Figures 6.33 and 6.34 show sketches of two views of the physical structure
of an n-channel MOSFET. An n-channel MOSFET is constructed on the surface
of p-type silicon called the substrate. Two 7" doped regions separated by a
small distance (for example, 0.07 u in digital devices, and quite a bit larger in
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analog applications) constitute the source and the drain. The region separating
the source and the drain is called the channel region. The channel region is
overlayed with a thin insulating layer (for example, 0.01 um thick) made out
of silicon dioxide (commonly called gate oxide). The gate oxide layer is in
turn sandwiched between a layer of conducting polysilicon on top and the
p-type substrate. The polysilicon layer top of the gate oxide forms the gate of
the MOSFET.

Although the precise mechanics of how a MOSFET works is beyond the
scope of this discussion, the following provides some intuition on its operation.
First, recall that 7" -type silicon conducts through the motion of its free elec-
trons. Let us consider the case where the gate and the source of the MOSFET
are connected to ground, as illustrated in Figure 6.35. In this situation, vgs = 0.
Because the #* doped source and drain are separated by a p-type layer, they
will not conduct any current when a voltage is applied across them (vpg > 0).

However, when a positive voltage is applied at the gate of the device
(vgs > 0), negative charges are attracted to the surface from the nearby negative-
charge-rich source region (as shown in Figure 6.36) and positive charges are
repelled from the surface. Of course, no current flows between the gate and
the substrate because of the insulating gate oxide layer. As the gate voltage
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FIGURE 6.34 A three-
dimensional view of an
n-channel MOSFET.

FIGURE 6.35 MOSFET
operation when the gate is
connected to ground.
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FIGURE 6.36 MOSFET
operation when a positive gate
voltage is applied.

FIGURE 6.37 Connecting to a
MOSFET.
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increases, more negative charges are attracted to the surface until they form
an n-type conducting channel that connects the source and the drain. The
conducting channel forms when the gate voltage crosses a threshold voltage
V (in other words, vgs > V7). A current begins to flow between the drain and
the source when a positive voltage is applied across the drain and the source
(vps > 0). The MOSFET in our example is called an n-channel device because
of the n-type channel that is formed.

It is easy to see that the MOSFET operates like a switch connected to the
source and the drain that turns on when the gate voltage exceeds a threshold.
Figure 6.37 shows how metal connections are made to the MOSFET terminals
G, S, and D so the MOSFET can be coupled to other devices. As shown in
the figure, the layers of metal are separated by layers of oxide (thickness is
not to scale), so the metal does not inadvertently come in contact with other
parts of the device.'® Contact holes are etched between pairs of layers between

18. A metal-semiconductor connection behaves like a circuit element called a diode if the
semiconductor is lightly doped, and like a short circuit if the semiconductor layer is heavily doped.
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which connections are desired (much like a staple) and metal is allowed to flow
through.

The conducting n-channel that is formed in the MOSFET discussed here
is not an ideal conductor and has some resistance Ron. Also notice that the
resistance of the gate is related to the geometry of the channel. Let the channel
length be L and the channel width be W. Then, the resistance is proportional
to L/W.If R, is resistance per square of the n-channel MOSFET in its on state,
then the resistance of the channel is given by

L
Ron =R, W (6.4)

In any VLSI technology, there is a minimum fabricatable value for the MOSFET
channel length. Clearly, smaller dimensions mean that a VLSI chip of a given
size can hold more logic. As we shall see later, smaller dimensions also result in
higher speeds of operation. VLSI technologies are characterized by this mini-
mum channel length. For example, a 0.2-um process yields gate lengths in the
vicinity of L = 0.2 um. Historically, technologists have been able to decrease
gate lengths by about a factor of two every four years over the past two decades.
See Table 6.2 for the scaling factors observed by the authors in projects in which
they were involved, and Figure 6.38 for a cross-sectional view of Intel’s 0.13 m

YEAR DESIGN MIN L
1981 Analog echo canceler 8 um
1984 Telecom bus controller 4 um
1987 RISC microprocessor 2 pm
1994 Multiprocessor communications 0.5 pm

controller
2002 Raw microprocessor 0.18 um

Gate

i
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TABLE 6.2 Historical gate-
length scaling observations.

FIGURE 6.38 A cross-sectional
TEM (transmission electron
microscope) picture of Intel's
0.13-um generation logic transistor.
(Photograph Courtesy of Intel
Corporation.)
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FIGURE 6.39 Circuit model of
the n-channel MOSFET inverter
using the SR MOSFET model.

FIGURE 6.40 Inverter transfer
characteristics using the SR model.
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generation logic transistor. This torrid pace of technological development shows
no signs of slowing down at the time of this writing.

68 STATIC ANALYSIS USING THE SR MODEL

The presence of the on resistance Ron complicates the design of logic gates
slightly, but adds more realism to the model. Let us analyze our familiar inverter
circuit shown in Figure 6.14 using the SR model of the MOSFET. In particular,
let us derive its input-output transfer characteristic. Figure 6.39 shows the circuit
model of the inverter using the SR model of the MOSFET.

As shown in Figure 6.39, when the input is low, the MOSFET is off, and
the output is raised to a high value.

However, when the input vy is high (and above the threshold V7), the
MOSEFET is on and displays a resistance Ron between its D and S terminals,
thereby pulling the output voltage lower. However, the output voltage is not
0V as predicted by the simpler S model of the MOSFET. Instead, the value of
the output voltage is given by the voltage-divider relationship:

Ron

_ (6.5)
Ron + Ry,

vout = Vs

The resulting inverter transfer characteristics, assuming Vg = 5V, V1 =
1V, Ron = 1k, and R}, = 14 k€, are shown in Figure 6.40. Notice that the
lowest output voltage of the inverter is no longer 0 V, rather it is

Ron

Vg =033 V.
Ron +Rp
Yout A
5V
VR
SON _p33v
Ron+ Ry
ov > SV vy



6.8 Static Analysis Using the SR Model

Before embarking on a detailed static analysis of our inverter, let us con-
duct a simple electrical switching analysis to build intuition. In particular, we
will analyze the relationship between V7, Vs, Ry, and Ron;, and the switching
behavior of the inverter. As a minimum, when a sending inverter drives a receiv-
ing inverter, the sender must be able to switch the MOSFET in the receiving
inverter into its ON state when the sender produces a high voltage. Similarly,
the sender must be able to switch the MOSFET in the receiving inverter into
its OFF state when the sender produces a low voltage.

Our inverter produces a high output of Vs, so it is easy to see that the high
output can turn the MOSFET in a receiving inverter into its ON state (provided,
of course, that Vg > V7). Because the inverter produces a nonzero low output,
more care needs to be taken in the choice of resistance values and the MOSFET
parameters. Specifically, for our inverter design, the voltage output for a logical
0 must be low enough that the MOSFET in the receiver stays OFF. Because
the MOSFET turns ON for an input voltage greater than Vr, the following
condition must be met for the low output of one inverter to be able to drive
the MOSFET in another inverter into its OFF state:

Vg RNy (6.6)
Ron + Rp
Equation 6.6 specifies a key relation between the inverter device parameters
for it to be usable as a switching device. Note that we do not distinguish between
the MOSFET or resistance value parameters for the sender and the receiver,
since the device must be able to serve as both a sender and a receiver.

EXAMPLE 65 SWITCHING ANALYSIS OF AN INVERTER
Assume the following values for the inverter circuit parameters: Vs =5V, Vr =1V,
and Rp, = 10 k. Assume, further, that R,, = 5 k2 for the MOSFET. Determine a W/L
sizing for the MOSFET so that the inverter gate output for a logical 0 is able to switch
OFF the MOSFET of another inverter.

Equation 6.6 shows the condition that our inverter must satisfy for its logical 0 output
to be able to turn off a MOSFET. From Equation 6.4, we know that the ON state
resistance of the MOSFET is given by

L
Ron =R, W

Substituting this relation into Equation 6.6, we get the following constraint on the W/L
ratio of the inverter MOSFET:
Ry

—W V.
m%+&
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Simplifying, we obtain the following constraint on W/L:

W _ RulVs— V1)
L VTRy, .

Substituting, R, = S kQ, Vs =5V, Vr =1V, and R}, = 10 k2, we obtain

w
— > 2.
L

For the parameter values that we have been given, this result indicates that our inverter
MOSFET must be sized such that its W/L ratio is greater than 2.

Commonly, it is not enough for the inverter to meet the preceding switch-
ing criteria. In real systems, however, it must also provide for adequate noise
margins by satisfying a static discipline. The inverter characteristic shown in
Figure 6.40 provides us with adequate information to determine whether the
inverter satisfies a given static discipline. As an example, let us determine
whether the inverter satisfies a static discipline with the following voltage

thresholds:
Vou=45V, Vor =05V, Vig=4V, and V =09 V.

Figure 6.41 shows the voltage thresholds for the given static discipline
superimposed on the inverter transfer function. Let us check each of the output
and input thresholds.

Vomr: The inverter produces an output high of 5 V. Clearly, this output
voltage level for a logical 1 is greater than the 4.5-V output-high
threshold required by the static discipline.'?

Vor: The inverter produces an output low of 0.33 V. This output voltage is
lower than the output-low threshold of 0.5 V required by the static
discipline.2?

Ve For our static discipline, Viy = 4 V. To obey the static discipline the
inverter must interpret any voltage above 4 V as a logical 1. This is
certainly true for our inverter.

Vi:  For our static discipline, Vi; = 0.9 V. This means that to obey the
static discipline the inverter must interpret any voltage below 0.9 V as
a logical 0. This is also true for our inverter.?

19. In fact, our inverter can satisfy a static discipline with a Vopy as high as 5~ V.
20. Notice that our inverter can satisfy a static discipline with a Vor as low as 0.33% V.
21. In fact, our inverter can satisfy a static discipline with a Vg as low as VJTr V.

22. In fact, our inverter can satisfy a static discipline with a Vyr, as high as Vo, V.
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Your A
5V
Vo =45V—1
FIGURE 6.41 A mapping
between logic values and voltage
> levels corresponding to a static
I discipline appropriate for the
_ an & inverter analyzed using the SR
Vor =05V model.
033Vl — _| I
| >
ov > > 5V
=N <
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] =
= =
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Thus our inverter satisfies the static discipline with the voltage thresholds:
Vou=45V, VoL =05V, Vipy=4V,and Vi = 0.9V, even when the SR
model is used when Ry = 14 kQ and Ron = 1 k<.

EXAMPLE 6.6 DESIGNING AN INVERTER TO MEET THE
CONSTRAINTS OF A GIVEN STATIC DISCIPLINE Supposewe
are given a static discipline with the following voltage thresholds: Vo = 4.5V,
Vor =02V, Vig =4V, and Vi = 0.9 V. Let us determine whether our inverter
satisfies the constraints of this static discipline, and if it does not, let us redesign the
inverter so that it does.

Let us begin by comparing the transfer characteristics of our inverter against the voltage
thresholds of the given static discipline. As shown in Figure 6.40, recall that our inverter
produces a high output of 5 V, and a low output of 0.33 V. It can interpret voltages
below V1 =1V as alogical 0 and voltages above VT =1V as a logical 1.

1. When outputting a logical 1, the voltage produced by our inverter must be greater
than Vop = 4.5 V. Since our inverters produce a 5-V output for a logical 1, they
satisfy this condition.

2. When outputting a logical 0, the voltage must be no greater than Vo, = 0.2 V.
Since our inverters produce a 0.33-V output for a logical 0, they violate this
condition.

3. At their inputs, they must recognize voltages greater than Vi = 4 V as a logical
1. Since our inverters recognize voltages above 1 V as a logical 1, they satisfy this
condition as well.
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4.  Finally, at their inputs, the inverters must recognize voltages less than Vi; =09 V
as a logical 0 if they are to satisfy the static discipline. Our inverters satisfy this
condition as well.

Since the output low voltage produced by our inverters is 0.33 V, which is higher than
the required Vor = 0.2 V, our inverters do not meet the constraints of the given static
discipline.

How might we redesign our inverter to meet the given static discipline? Notice that
according to Equation 6.5 the output voltage of the inverter for a high input is given by

Ron

vouT = VSi
Ron + Rp.

The output voyr is 0.33 V for Vg =5 V, Ron = 1 kQ and Ry, = 14 kQ.

We need our inverter to produce an output lower than 0.2 V for a high input. In other
words,

Ron

02V > Vg——ON
Ron + Ry,

(6.7)

We have three choices to reduce the output voltage: reduce Vg, reduce Ron;, or increase
R;. Reducing Vg will also reduce the output high voltage, so that is not such a good
strategy. Instead, we will look to working with the resistances.

First, let us try to increase Ry . Rearranging Equation 6.7, we get:
Ron
Ry > Vg—— — RoN-
S 02 ON

For Vg =5 V and Ron = 1 k2, we have
Ry > 24 kQ.

In other words, we can choose Ry, > 24 k2, which will result in a output voltage for a
logical O that is lower than 0.2 V. However, it turns out that large values of resistance
are hard to achieve in VLSI technology. Section 6.11 shows how another MOSFET can
be used in place of the pullup resistor.

Alternatively, we can try to reduce Ron by increasing the W/L ratio of the MOSFET.
Let us determine the minimum W/L ratio.

From Equation 6.7, we can find the constraint on Royn that allows the output low
voltage to be less than 0.2 V as
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For Vg = 5 Vand R; = 14 k2, we have
Ron < 0.58 k.

Since RoN = an%, (see Equation 6.4), and assuming R,, = 5 k2 for our MOSFET,
we get

N kQ£ < 0.58 k2.
W

In other words, choosing a MOSFET with W/L > 8.62 will result in an output voltage
for a logical 0 that is lower than 0.2 V.

681 STATIC ANALYSIS OF THE NAND
GATE USING THE SR MODEL

We can also analyze other gates in like manner. Figure 6.42 shows the equivalent
circuit for the NAND gate shown in Figure 6.20 based on the SR MOSFET
model.

In this case, the output voltage when both inputs are high is given by

2Ron

vour = Vs——.
2Ron + R

Let us determine whether our NAND gate with V¢ =5V, R, = 14 k<,
and MOSFET properties Ron = 1 k2 and V1 = 1V, satisfies a static discipline
with the following voltage thresholds:

Vo =45V, VoL =05V, Vig=4V,and Vi =09 V.

Recall that our inverter with characteristics shown in Figure 6.40 satis-
fied this static discipline. Now let’s check out our NAND gate. Figure 6.43
shows the voltage thresholds for the given static discipline superimposed on the
inverter transfer function. As before, let us check each of the output and input
thresholds.

Like the inverter, the NAND gate produces an output high of 5 V, and
therefore satisfies the output-high voltage threshold of 4.5 V. Similarly, the
NAND gate satisfies both the Vi = 4 V and the Vi = 0.9 V thresholds since
it interprets voltages above 4 V at its input as a logical 1 and voltages below
0.9 V at its inputs as a logical 0.

Let us now look at Vpor. When outputting a logical 0, the NAND gate
produces a voltage

v 2RoN
vouT = VS—— -
2RoN + Ry,
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ouT

FIGURE 6.42 SR circuit model
for NAND gate.
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FIGURE 6.43 The voltage levels
corresponding to a static discipline
superimposed on the NAND gate’s
transfer characteristics.
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For Vg = 5V, Ry, = 14k, and Ron = 1k, we get voyT = 0.625 V, which
is nearly twice that produced by the inverter for a logical 0 output. This is not
surprising since there are two MOSFETs in series in the pulldown network.
Since this output voltage is greater than Vor = 0.5 V, we conclude that our
NAND does not satisfy the static discipline.

How might we redesign our NAND gate such that it satisfies the static
discipline? One approach is to increase Ry, such that

2RoN

05V>Vg——-—.
2RoN + R,
In other words,

2Ron
0.5

Ry > Vg — 2RoN.

For Vg = 5 Vand Ron = 1 k2, we have
Ry > 18 kQ.

This means that we can choose Ry > 18 k2 for the NAND gate, which will
result in a output voltage for a logical O that is lower than 0.5 V, thereby
satisfying the static discipline.
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EXAMPLE 67 SWITCHING ANALYSIS OF A NAND GATE
Consider the NAND gate in Figure 6.42. Assume the following values for the circuit
parameters: Vg =5V, V=1V, and R}, = 10 kQ. Assume, further, that R,, = 5 kQ
for each of the MOSFETs. Determine a W/L sizing for the MOSFETSs so that the
NAND gate output is able to switch ON or OFF the MOSFET of another gate such as
an inverter.

Since the NAND gate produces a high output of 5V, its output applied to the gate of
another MOSFET (with a V1 = 1 V) can dearly drive the MOSFET into its ON state.

We now have to determine whether its low output can turn a MOSFET OFF. Recall
that the NAND gate produces the following output voltage for a logical 0:

2RoN

vouT = Vo————.
2RoN + Ry,

For a MOSFET driven by the output to remain OFF, we must have

2R
vout = Vi o

———— < V1.
2RoN + Ry,

From Equation 6.4, we know that the ON state resistance of the MOSFETs is given by
L
Ron =Ry W

Thus, we can write the following constraint on the W/L ratio of the two NAND gate
MOSEFETs:

2R, v%

Vg———F— <
2R, & + Ry
Simplifying, we obtain the following constraint on W/L:

L VTR},

W 2Ru(Vs — V)
> .

Substituting, R,, = 5 k2, Vg =5V, VT =1V, and R}, = 10 k2, we obtain

Y>4.
L

In other words, the two MOSFETs must be sized such that each of their W/L ratios is
greater than 4. Notice that as the number of MOSFETS connected in series increases,

so must their sizes to ensure they produce a low enough output voltage that is able to
switch OFF a MOSFET connected to the output.

313
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FIGURE 6.44 Noise margins
and signal transmission.
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69 SIGNAL RESTORATION, GAIN,
AND NONLINEARITY

We saw in an earlier chapter (Figure 5.7) that the provision of noise margins
enables error-free communication in the presence of noise. We will revisit the
example in Figure 5.7 to demonstrate that logic devices must incorporate both
gain and nonlinearity to provide nonzero noise margins.>

69.1 SIGNAL RESTORATION AND GAIN

Figure 6.44 shows a situation similar to that in Figure 5.7, but for concreteness,
replaces the first logic gate with an inverter I and the second with a buffer B.
Like the inverter, the buffer has a single input and a single output. It performs
the identity function, that is it simply copies the input value to its output. This
time around, we will focus on the conditions at the buffer. Assume that both
our logic gates adhere to a static discipline with the following voltage levels:

Vi =2V
Vig=3V
Vor=1V
Vo =4 V.

In our example, the inverter sends a 0 by placing voyt = 1 V (correspond-
ing to Vor) on the wire. Figure 6.44 shows 0.6 V of noise being added to
the signal by the transmission channel. However, the buffer is able to correctly
interpret the received value as a 0 because the received value of 1.6 V is within
the low input voltage threshold of Vi = 2 V. The buffer, in turn, performs the
identity logical operation on the signal and produces a logical 0 at its output.
According to the static discipline, the voltage level at the buffer’s output is 1 V
corresponding to Vor.

Figure 6.45 shows the same situation replacing the actual voltage levels
with the respective parameters for transmitting a logical 0 and a logical 1.

23. We will see the concept of gain showing up again in the context of analog design in Chapter 7.
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In Figure 6.44, notice that to obey the static discipline, the buffer must
convert the 1.6-V signal at its input to a 1-V value at its output. In fact, the
buffer must restore any voltage up to 2 V at its input to voltage of 1 V or lower
at its output. Similarly, corresponding to a logical high, it must restore any
voltage above 3 V at its input to 4 V or higher at its output. This restoration
property is key to our being able to compose multiple logic devices together.
Because each level of logic restores or cleans up signals, we can decouple the
noise introduced between each pair of levels. This noise decoupling benefit of
restoring logic enables us to build complicated multistage logic systems.

As Figure 6.46 depicts, logic devices must restore input signals that lie in
the range 0 V < vy < Vg for logical 0’s and Vi < v7 < 5V for logical 1’s to
output signals that are restricted to the range 0 V < v < Vo for logical 0’s
and Vog < vo < 5V for logical 1’s, respectively.

Observe further that the restrictions in Figure 6.46 imply that a non-
inverting device such as a buffer or an AND gate must convert an input low to
high transition of the form Vi — Vi to an output low to high transition of
the form Vo, (or lower) — Vo (or higher). This scenario is depicted by the
arrows in Figure 6.46. The same situation is described using input and output
waveforms in Figure 6.47. It is clear from the figures that a static discipline
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FIGURE 6.45 Low and high
thresholds for the input and output.

FIGURE 6.46 Signal restoration
and amplification.
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FIGURE 6.47 Input waveform
and restored output waveform.
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that provides for nonzero noise margins requires logic devices that provide a
minimum gain.
Algebraically, nonzero noise margins require that

ViL > Vor. (6.8)

and
VQH > V]H. (69)
The magnitude of the change in the voltage for an input transition from
Vi — Vi is given by

Avp= Vg — V.

The corresponding magnitude of the (minimum) change at the output is
given by

Avo = Vo — Vor.

Therefore, the gain of a device that can convert a Vj;, — Vjpy transition at
its input to a Vor, — Vo transition at its output is given by

Gai Avo  Vou— Vor
am = = .
Ayy ViH— Vi

From the noise-margin inequalities in Equations 6.8 and 6.9, we have

Voug— VoL > Vig— V.
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Therefore, the magnitude of the gain for an input transition Vi — Vjy must
be greater than 1. In other words,

Vog — V.
Gain = 2= OL 4
Vig— Vi

Similarly, inverting devices such as inverters or NAND gates must convert
input low to high transitions of the form Vi — Vi to output high to low
transitions of the form Vo — Vo1 . Like the non-inverting case, the conditions
on the magnitude of the gain for transitions from Vi — Vjyremain unchanged.

Returning to our buffer example, the gain for the Vi — Vi transition is
given by

(6.10)

Vou—V
Gain — Yor = VoL

Vin— Vi
_4V-1V
- 3V-2v
=3.

Since the buffer and the inverter follow the same voltage thresholds, the
magnitude of the gain for the Vi — Vg transition at the input of the inverter
is also 3. Clearly, the greater the noise margins, the greater the required gain
for the Vi, — Vjy transition.

69.2 SIGNAL RESTORATION AND NONLINEARITY

You might have realized that although logic devices must demonstrate a gain
greater than unity when they transition from Vi, to Vi, they must also atten-
uate the signal at other times. For example, Figure 6.48 shows the signal
from Figure 6.47 with some noise superimposed on it. It should be clear from
Figure 6.48 that to obey the static discipline the buffer has reduced the 0-V to
2-V noise excursions at the input to 0-V to 1-V noise excursions at its output.

We can also verify this fact using the basic noise-margin inequalities in
Equations 6.8 and 6.9. Equations 6.8 implies that any voltage between 0 and
Vi, at the input must be attenuated to a voltage between 0 and Vo at the output
(see Figure 6.49). Since Vi > Vo according to Equation 6.8, it follows that
voltage transfer ratio must be less than unity. In other words,

VorL—-0 VoL

= < 1.
Vi -0 Vi
The same reasoning applies to valid high voltages. Because Viiy < Vop,

5—Von
— <
S—Vig

1.
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FIGURE 6.48 Input waveform
and restored output waveform in
the presence of noise.

FIGURE 6.49 Signal restoration
and attenuation.
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The amplification requirement for low to high transitions of the form
Vi, — Vi, and the attenuation requirement in other regions, mandates the
use of nonlinear devices in logic gates.>*

693 BUFFER TRANSFER CHARACTERISTICS AND
THE STATIC DISCIPLINE

The presence of gain and nonlinearity in the buffer become abundantly clear if
we look at its transfer characteristic. Figure 6.50 graphically plots the transfer
characteristic of a logic device that can serve as a valid buffer. The shaded
region depicts the valid region for the buffer transfer curve. The x-axis shows
input voltages and the y-axis output voltages. We can make several interesting
observations from this graph. Notice that valid input voltages result in valid
output voltages. For example, input voltages less than Vj produce output
voltages less than Vo, and input voltages greater than Vyy produce output
voltages greater than Vop. Also notice that the amplification occurs when the

24. As an exercise in futility, you might want to attempt building a simple logic gate, such as a
buffer, with nonzero noise margins, using resistors alone.
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Slope < 1

Slope < 1 Slope > 1
‘\/

Vin Vi

curve is in the forbidden region. In other words, the slope of the transfer curve
in the forbidden region is greater than one.

As discussed earlier, recall that it is not sufficient for a valid logic
device to have gain in the forbidden region. The transfer characteristic for input
values between 0 V and Vj; must have an overall gain of less than unity. Accord-
ingly, notice that the transfer curve shown in Figure 6.50 attenuates voltages
that lie in the valid input low or valid input high intervals.

Observe further that the transfer curve for the buffer passes through the
forbidden region. Doesn’t this violate our initial premise that voltages in the
forbidden region were disallowed? Recall that the static discipline requires
the logic gate to guarantee valid outputs only for valid inputs. That the outputs
are in the forbidden region when the inputs are invalid is of no consequence.

694 INVERTER TRANSFER CHARACTERISTICS AND
THE STATIC DISCIPLINE

Let us now briefly examine a transfer curve for the hypothetical, but valid,
inverter shown in Figure 6.51. Referring to Figure 6.51, provided the input volt-
age is lower than Vg, an inverter satisfies the static discipline if it guarantees to
provide an output voltage level greater than Vop. Similarly, for an input voltage
higher than Vi, the inverter guarantees to provide an output that is below V..

As discussed for the non-inverting buffer, the magnitude of the slope of
the transfer curve in the forbidden region is greater than unity. Similarly, the
magnitude of the slope of each of the curve segments in the valid regions is less
than unity.

For maximum noise immunity, the separation between Vor and Vop
should be as high as possible at output, and that between Vi and Vi to be
as low as possible. This is equivalent to maximizing the area of the grey boxes

CHAPTER SIX

FIGURE 6.50 The buffer
characteristic.
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FIGURE 6.51 The inverter
characteristic.
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FIGURE 6.52 Power
consumption in logic gates.

FIGURE 6.53 A logic circuit
comprising MOSFET switches and
resistors.
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shown in Figure 6.51. An ideal inverter characteristic will look like the thick line
shown in the figure.

610 POWER CONSUMPTION IN LOGIC GATES

We can use the SR model to calculate the maximum power consumed by logic
gates. We consider a simple case here, and postpone more discussion to Chap-
ter 11. Referring to Figure 6.52, the power consumed by a logic gate is given by

2
VS

—— (6.11)
Rp + Rpy

Power = VI =

The power consumed depends on the load resistance and the resis-
tance of the pulldown network R,;. For the inverter, the power consumed
is zero when the input is low. The maximum power is consumed when the
input is high and R,y = Ron:.

EXAMPLE 6.8 POWER IN LOGIC GATES Write a boolean equa-
tion for OUT in terms of the inputs for the circuit in Figure 6.53.

OUT = ABB + C).
Determine the power consumed by the circuit when A = 1, B =1, and C = 1. Assume
that the on-state resistance of the MOSFETSs is Ron.

When all the inputs are high, the relevant equivalent circuit is shown in Figure 6.54. The
power is given by

1 1
P=%( + )
2Ron+ R Ron + Ry
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o 6.11 ACTIVE PULLUPS

EEM EXAMPLE 6.9 SIZING PULLUP DEVICES

I EXAMPLE 6.10 COMBINATIONAL LOGIC
MOSFET SWITCHES
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FIGURE 6.54 Equivalent circuit
when all inputs are high.
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612 SUMMARY

>  This chapter introduced our first three-terminal device, namely a switch. A
common way of using three-terminal devices is to pair their terminals into
a pair of ports called the control port and the output port.

» We also introduced the MOSFET device, which is a three-terminal circuit
element. Although, as we will see in Chapter 7, the MOSFET has a very
rich behavior, it can be grossly characterized as a switch. We developed the
S and the SR models for the MOSFET, which capture its basic switch-like
behavior.

> This chapter also showed how digital gates could be built using MOSFETs
and resistors. We discussed how the digital circuits had to be designed so
they met the Vi, Vop, Vi, and Vo voltage thresholds specified by a
given static discipline. We also estimated the power dissipation of logic
gates using their circuit models.

EXERCISE 6.1 Give a resistor-MOSFET implementation of the following logic
functions. Use the S model of the MOSFET for this exercise (in other words, you may
assume that the on-state resistance of the MOSFETS is 0).

(A+B)-(C+ D)
.B-C-D

2|

Y- W(X-W)(X-Y- W)

—

EXERCISE 6.2 Write a boolean expression that describes the function of each
of the circuits in Figure 6.59.

EXERCISE 6.3 Figure 6.60 shows an inverter circuit using a MOSFET and a
resistor. The MOSFET has a threshold voltage V1 = 2 V. Assume that Vg = 5 V and
R; = 10 k. For this exercise, model the MOSFET using its switch model. In other
words, assume that the on-state resistance of the MOSFET is 0.

a) Draw the input versus output voltage transfer curve for the inverter.

b) Does the inverter satisfy the static discipline for the voltage thresholds Vor = 1
V, Vi =15V, Vog = 4 Vand Vig = 3 V? Explain. (Hint: To satisfy the
static discipline, the inverter must interpret correctly input values that are valid logic
signals. Furthermore, given valid logic inputs, the inverter must also output valid
logic signals. Valid logic 0 input signals are represented by voltages less than Vyp,
valid logic 1 input signals are represented by voltages greater than Vi, valid logic 0
output signals are represented by voltages less than Vo, and valid logic 1 output
signals are represented by voltages greater than Vopy.)



6.12 Summary

¢) Does the inverter satisfy the static discipline if the Vi specification was changed to
Vi = 2.5 V? Explain.

d) What is the maximum value of V; for which the inverter will satisfy the static
discipline?

e) What is the minimum value of Vi for which the inverter will satisfy the static
discipline?

EXERCISE 6.4 Consider, again, the inverter circuit shown in Figure 6.60. The
MOSFET has a threshold voltage V7 = 2 V. Assume that Vg = 5 V and R}, = 10k.
For this exercise, model the MOSFET using its switch-resistor model. Assume that the
on-state resistance of the MOSFET is Ron = 8 k2.

a) Does the inverter satisfy the static discipline, which has voltage thresholds given by
VOL = V[L =1Vand VOH = V]H =4V? Explain.

b) Does the inverter satisfy the static discipline for the voltage thresholds Vor = Vi =
2.5 Vand Voy = Vi = 3 V? Explain.

¢) Draw the input versus output voltage transfer curve for the inverter.

d) Is there any value of Vi for which the inverter will satisfy the static discipline?
Explain.

e) Now assume that Ron = 1k and repeat parts (a), (b), and (c).

EXERCISE 6.5 Compute the worst-case power consumed by the inverter shown
in Figure 6.60. The MOSFET has a threshold voltage V1 = 2 V. Assume that Vg =5V
and Ry = 10 kQ. Model the MOSFET using its switch-resistor model, and assume that
the on-state resistance of the MOSFET is Ron = 1 k<.

EXERCISE 6.6 Consider again the circuits in Figure 6.59. Using the switch-
resistor model of the MOSFET, choose minimum values for the various resistors in
Figure 6.59 so each circuit satisfies the static discipline with voltage thresholds given by
Vi = Vor, = V§/10 and Vi = Vo = 4Vi/5. Assume the on-state resistance of the
MOSFET is Roy and that its turn-on threshold voltage V1 = Vi/9.

EXERCISE 6.7 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: Vor = 0.5V, Vi, = 1.6 V, Vo =
44V,and Viy =32 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the four voltage
thresholds.

b) What is the highest voltage that can be output by an inverter for a logical 0
output?
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¢) What is the lowest voltage that can be output by an inverter for a logical 1
output?

d) What is the highest voltage that must be interpreted by a receiver as a
logical 0?

e) What is the lowest voltage that must be interpreted by a receiver as a
logical 1?

f) What is the 0 noise margin provided by this logic family?
g) What is the 1 noise margin provided by this logic family?

h) What is the minimum voltage gain the buffer must provide in the forbidden
region?

PROBLEM 6.1

a) Write a truth table and a boolean equation relating the output Z to A, A, B, and C,
when these are input to the circuit shown in Figure 6.61.

b) Suppose the circuit in Figure 6.61 suffers a manufacturing error that results in a short
between the pair of wires depicted in Figure 6.62. Write a truth table and a boolean
equation relating the output Z to A, A, B, and C, for the resulting circuit.

Vs

FIGURE 6.62

PROBLEM 6.2 A specific type of MOSFET has V7 = —1 V. The MOSFET is
in the ON state (a short exists between its drain and source) when vgg > Vr. The
MOSFET is in the OFF state (an open circuit exists between its drain and source) when
vgs < V1.

(a) Graph the ipg versus vg characteristics of this MOSFET.

(b) Graph the ipg versus vpg characteristics this of the MOSFET for vgs > Vr and
vgs < V1.



6.12 Summary CHAPTER SIX

PROBLEM 6.3 Consider a family of logic gates that operate under the static dis-
cipline with the following voltage thresholds: Vo, =1V, Vi =13V, Vog =4V,
and Vjy = 3 V. Consider the N-input NAND gate design shown in Figure 6.63. In the
design R = 100k and Rop for the MOSFETs is given to be 1k. V1 for the MOSFETs
is 1.5 V. What is the maximum value of N for which the NAND gate will satisfy the
static discipline? What is the maximum power dissipated by the NAND gate for this
value of N?

A A, A . 4,

FIGURE 6.63
V4

PROBLEM 6.4 Consider the N-input NOR gate shown in Figure 6.64. Assume
that the on-state resistance of each of the MOSFETSs is Ropn. For what set of inputs does
this gate consume the maximum amount of power? Compute this worst-case power.

Vs

AT |

PROBLEM 6.5 Consider the circuit shown in Figure 6.65. We wish to design the
circuit so it operates under a static discipline with voltage thresholds Vor, Vi, Vop, and

VS
R
¢ 7z
All —I A21 _| Aml _|
Ap AL 4y, A FIGURE 6.65
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V. Assume that the on-state resistance of each of the MOSFETSs is Ron and that the
MOSEFET threshold voltage is V7. Assume that the given values satisfy the constraints
Vs > Vop and Vi < V7. For what values of 7 and 1 does this gate operate under the
static discipline? What is the worst case power consumed by this circuit?

PROBLEM 6.6 Consider a family of logic gates that operate under the static dis-
cipline with the following voltage thresholds: Vor =05V, Vi =1V, Vog=4.5V,
and V[H =4.0V.

a) Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the four voltage thresholds using an n-channel MOSFET and a resistor.
The MOSFET has R,, = 1k and V1 = 1.8 V. Recall, Ron = R, (L/W). Assume
Vg = 5V and R for a resistor is 500 Q. Further assume that the area of the inverter
is given by the sum of the areas of the MOSFET and the resistor. Assume that the
area of a device is L x W. The inverter should take as little area as possible with
minimum size for L or W being 0.5 um. Graph the input-output transfer function
of the inverter. What is the total area of the inverter? What is its maximum static
power dissipation?

PROBLEM 6.7 Consider a family of logic gates that operates under the static dis-
dpline with the following voltage thresholds: Vor = 0.5V, Vi =09V, Voy = 4.5
V, and Viiy = 4 V. Using the switch-resistor MOSFET model, design a 2-input NAND
gate satisfying the static discipline for the four voltage thresholds using three n-channel
MOSFETs as illustrated in Figure 6.66 (the MOSFET with its gate connected to a volt-
age V4 and drain connected to the power supply Vg serves as the pullup). Vy4 is chosen
such that V4 > Vg + V1. The MOSFETSs have R, = 1kQ and V1 = 1.8 V. Recall,
RoN = Ry (L/W). Assume Vg = 5 V. Further assume that the area of the NAND gate is
given by the sum of the areas of the three MOSFETs. Assume that the area of a device
is L x W. The NAND gate should take as little area as possible with minimum size for
L or W being 0.5 pm. What is the total area of the NAND gate?

PROBLEM 6.8 Remember that a NAND gate can be implemented as a circuit
with two n-channel MOSFETs and a pullup resistor Ry . Let us call it the NAND cir-
cuit shown in Figure 6.67. These NAND circuits are used by Penny-Wise Computer
Corporation in their computer boards. In one ill-fated shipment of computer boards,
the outputs of a pair of NAND circuits get shorted accidentally resulting in the effective
Circuit X shown in Figure 6.67.

a) What logic function does Circuit X implement? Construct its truth table.

b) If we connect 7 identical NAND circuits together in parallel forming Circuit Y as
shown in Figure 6.68, what is the general form of the logic function it implements?



<)

f)

6.12 Summary

If for each MOSFET, Ry = 50022, Ry, = 100k2, and V1 = 1.8 V, how many
NAND circuits can we connect in parallel and still satisfy the static discipline for the
voltage thresholds given by: Vi; = Vor, = 0.5 Vand Vi = Vo = 4.5 V?

We now connect identical NAND circuits together and have the resulting Circuit Y
satisfy the static discipline for the voltage thresholds in part (c) with Ry, = 500 Q.
Give specifications on the dimensions of the MOSFETSs such that total MOSFET
area is minimized. As before, assume that the area of a device is L x W. Assume that
R, = 1k and no resistor dimension or MOSFET gate dimension should be smaller
than 0.5 wm. For what inputs does Circuit Y dissipate maximum static power, and
what is that power?

Now, choose a static discipline with voltage thresholds given by: Vor, = 0.5V,
Vi =16V, Vog = 44V, and Vi = 3.2 V. As before, each MOSFET has
Ron = 5009, R; = 100 k2, and Vr = 1.8 V. How many NAND circuits can
we connect in parallel and still satisfy this static discipline?

Repeat part (d) assuming the voltage thresholds given in part (e).

PROBLEM 6.9 Consider a family of logic gates that operates under the static
discipline with the following voltage thresholds: Vor, = 0.5V, Vi = 1.6 V, Vo =
44V, and Vi =32 V.

a)

Graph an input-output voltage transfer function of an inverter satisfying the four
voltage thresholds.

Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the four voltage thresholds using an n-channel MOSFET with

R, =1k and V1 = 1.8 V. Recall, Ry, = R,,(L/W). Assume Vg = 5V and R
for a resistor is 500 €. Further assume that the area of the inverter is given by

the sum of the areas of the MOSFET and the resistor. Assume that the area of a
device is L x W. The inverter should take as little area as possible with minimum
size for L or W being 0.5 pum. Graph the input-output transfer function of the
inverter. What is the total area of the inverter? What is its static power dissipation?
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71 SIGNAL AMPLIFICATION

This chapter introduces the notion of amplification. Amplification, or gain, is
key to both analog and digital processing of signals. Section 6.9.2 discussed
how gain is employed in digital systems to achieve immunity to noise. This
chapter will focus on the analog domain.

Amplifiers abound in the devices we use in our day to day life, such as
stereos, loud speakers, and cell phones. Amplifiers can be represented as shown
in Figure 7.1 as three-ported devices with a control input port, an output port,
and a power port. Each port comprises two terminals. An input signal rep-
resented as a time-varying voltage or current is applied across or through the
input terminals. An amplified version of the signal (either a voltage or a current)
appears at the output. Depending on its internal structure, an amplifier can
amplify the input current, the input voltage, or both. When the V x I product
of the output exceeds that of the input, a power gain results. The power supply
provides the necessary power for the resulting power amplification. The power
supply also provides for the internal power consumption within the amplifier
as well. A device must provide power gain to be called an amplifier.!

Power supply
o

WY In Amp Out

o— | ——o

o]

- Power supply

In practical amplifier designs, the input and the output signals commonly
share a reference ground connection (see Figure 7.2). Correspondingly, one

1. We will see later a device called a transformer, which can provide a voltage gain but no power
gain.

FIGURE 7.1 Signal
amplification.
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FIGURE 7.2 Reference ground
and implicit power connections.

FIGURE 7.3 Signal transmission
in the presence of noise.

FIGURE 7.4 Amplification
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of the terminals of each of the ports is commonly tied to a reference ground.
Furthermore, the power port is commonly not shown explicitly.

Besides their use in communication to overcome the dissipative effects of
the communication medium (for example, in loud speakers or in wireless net-
working systems), amplifiers are useful for signal transmission in the presence of
noise. Figures 7.3 and 7.4 show two signal transmission scenarios. In Figure 7.3,
the signal transmitted in its native form is overwhelmed by noise at the receiver.
In Figure 7.4, however, the amplified signal is seen to be much more tolerant to
noise. (Contrast this with the application of amplification for noise immunity
in digital systems as discussed in Section 6.9.2.)

A less obvious but equally important application of amplifiers is buffering.
As the name implies, a buffer isolates one part of a system from another. Buffers
allow us to compose complicated systems from smaller components by isolat-
ing the behavior of the individual components from each other. Many sensors,
for example, produce a voltage signal, but cannot supply a large amount of
current. (For instance, they might have a high Thévenin resistance.) However,
later processing stages might require that the device supply a given amount of
current. If this high current is drawn, a large voltage drop across the internal
resistance of the sensor seriously attenuates the output voltage. In such situa-
tions, we might employ a buffer device that replicates the sensor’s voltage signal
at its output but can also provide a large amount of current. In such buffering
applications, we shall often see amplifiers with less than unity voltage gain, but
greater than unit current and power gain.

72 REVIEW OF DEPENDENT SOURCES

Before we get into the design and analysis of amplifiers, let us take a moment
to review dependent sources. Because amplifiers are naturally modeled using

Signal overwhelmed

Transmission channel by noise
|:|:35 - JUVVUV / o
ender  Useful Receiver
signal Noise JWWWJ‘
Amplified signal
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VAVAVAYAY,
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dependent sources, analysis of circuits with dependent sources will come in
handy in their design.

Dependent sources serve to model control of energy or information flow.
Recall that control of energy or information flow was one of five basic processes
identified in Section 1.6 in Chapter 1. Figure 7.5 shows the familiar voltage
controlled current source that we saw in Chapter 2. As we shall illustrate shortly,
small amounts of energy at the control port of such dependent sources can
control or steer huge amounts of energy at the output port.

EXAMPLE 7.1 VOLTAGE-CONTROLLED CURRENT SOURCE
CIRCUIT Consider the circuit shown in Figure 7.6. Let v; be the voltage sourced
by an independent voltage source. The current io = f(x) produced by the dependent
current source is a function of other values in the circuit. Let us first analyze the circuit
when the output of the current source depends on a voltage:

io = flv) = —gmvr

vo versus v) Let us attempt to determine v as a function of vy. Figure 7.6 shows
our selection of a ground node and the labeling of nodes with their node voltage vari-
ables. vg is the only unknown node voltage. Writing the corresponding node equation,
we get

VO

R 0 = f(v).

Vi

0

VYVYv
=
<

<ZZEEZE>
AMAMA
WWy
=
W

ig=f(x)
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FIGURE 7.5 Voltage-controlled
current source.

FIGURE 7.6 Acircuit using a
Voltage-controlled current source.
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Since f(v) = —gmv1, we get our node equation
vo
— = —guUL (71
Ry EmVI )

Equation 7.1 shows the desired relationship between vo and vy and completes
our solution. The voltage gain is given by

vo

— = —gmRL.

U
Notice that we obtain a voltage gain greater than unity if g,,R; > 1. Thus, the circuit in
Figure 7.6 behaves as an amplifier for properly chosen values of Ry . In other words, the
drcuit produces an amplified version of vy at its output v. Section 7.4 will introduce
a physical device that behaves as a voltage-controlled current source and develops an
amplifier based on that device.

10 versus if Next, let us determine 7o versus 7. Substituting v; = iRy and vo = ioR,
in Equation 7.1, we can write

ioRy = —gmRLiRy,

which simplifies to

io = —gmRyiL. (7.2)
Thus, the current gain is given by
io
— = —gnRr.
i

Notice that the dependent source provides a current gain greater than unity if g,R; > 1.

Po versus P; Let us now determine the input power Pj versus the output power Po.
By multiplying the left-hand sides and the right-hand sides of Equations 7.1 and 7.2, we
can write

voio = g5RLRwil. (7.3)
In other words,
Po = gZR.RiP:.

The power gain is given by

Po )
— = g“ R R].
P SN
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Thus, the dependent source provides a power gain greater than unity when
2RI Ry > 1.

EXAMPLE 7.2 CURRENT-CONTROLLED CURRENT SOURCE
Let us rework the circuit of Figure 7.6 and obtain its v versus vy relation assuming that
the output of the current source depends on a current:

io=fli) = —Bi

where B is a constant. As before, let us attempt to determine v as a function of vy.
Writing the node equation,

vo

R, O 1)
o,
vo .
20 _ ¢4
Ry 1)
Substituting f(77) = —Bij, we get our desired node equation
vo .
— = —Bi.
R, Bir
Since i = v/Ry, we get
Ry,
vo=—-B—1L 7.4
0 B R, T (7.4)

Equation 7.4 gives the relationship between v and vy and completes our solution.

73 ACTUAL MOSFET CHARACTERISTICS

Chapter 6 introduced the MOSFET and developed simple digital logic circuits
using the device. That chapter also used the simplistic S model and the SR
model of the MOSFET to analyze digital logic circuits. The SR model uses a
fixed Ron between the D and S terminals of the MOSFET when vgg > V.
This model is a reasonable representation of MOSFET behavior only when the
drain voltage is smaller than the gate voltage minus one threshold drop. In other
words, when

vps < vGgs — V. (7.5)

Accordingly, the SR model is useful to design and analyze digital circuit
gates because a common mode of operation for the MOSFET within digital
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FIGURE 7.7 Setup for
observing MOSFET characteristics.

FIGURE 7.8 The MOSFET
characteristics match the SR
model for a fixed value of vgg,
when vgg > V7 and vpg is small
(specifically, when

vps < vas — V7).
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gates is one in which the gate voltage is high and the drain voltage is relatively
low. For example, we might have Vo = 4 V applied as a logical-high input
to the gate of a MOSFET in an inverter (assume V7 for the MOSFET is given
to be 1 V), which might produce as the output a corresponding logical-low
drain voltage Vor = 1 V. With these values, vps = 1 V, vgs = 4 V. Since
V1 =1V, the constraint in Equation 7.5 is satisfied.

However, there are other situations demanding higher drain voltages in
which we wish to use the MOSFET in an ON state. The SR model of the
MOSEFET is inappropriate in this region. This section will first show why the SR
model is inadequate when vpg > vGs— V1. We will then take alook at the actual
MOSFET characteristics and then explore the possibility of creating a simple
piecewise-linear model for the MOSFET in the region where vpg > vgs — V.

We will use the setup shown in Figure 7.7 to observe the actual MOSFET
characteristics. Let us start by applying a fixed, high gate-to-source voltage
such that

vGs > Vr

and observing the value of ipg as the drain-to-source voltage vpg is increased.
As illustrated in Figure 7.8, we observe that ipg increases more or less linearly
as vpg is increased from 0 V. The approximately linear relationship between
ips and vpg exists for small values of vpg, and

@—RON

DS

The linear relationship between ipg and vpg reflects resistive behavior for small
vps, and is nicely captured by our SR model of the MOSFET.

Now, keeping the value of vgg at the same fixed value, we increase vpg
further, and plot our observations in Figure 7.9. Notice that as vpg approaches
the value of vgs — V7, the curve bends and begins to flatten out. In other
words, the current ipg saturates as vpg begins to exceed vgs — Vr. In fact,
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FIGURE 7.9 The current ipg begins to saturate as

vps approaches the value of vgg — V1. operation.

as illustrated in Figure 7.10, for a given value of vgg, the ipg curve becomes
virtually flat for large values of vpg. Accordingly, the region where vpg >
vgs — Vr is called the saturation region of MOSFET operation. In contrast,
the region where vps < vgs — Vr is called the triode region. Not surprisingly,
the SR model applies with a fair degree of accuracy only in the triode region
of MOSFET operation. In the saturation region, because ipg does not change
as vpy increases, the MOSFET behaves like a current source. (Recall, from
Figure 1.34, the v~i curve for a current source is a horizontal line.)

The ipg curve in Figure 7.10 was measured keeping vs constant at some
value greater than V. It turns out that the ipg curves saturate at a different
value for different values of vgs. Thus, as illustrated in Figure 7.11, we get a
different ipg versus vpg curve for each setting of vgs (for example, vgst, vGs2,
and so on), resulting in a family of ipg versus vpg curves. This family of curves
represents the actual MOSFET characteristics. Notice that the slope of each of
the curves in the triode region also varies somewhat with vgs.

The actual MOSFET characteristics with the triode, saturation, and cutoff
regions marked are shown in Figure 7.12. The dashed line represents the locus
of the points for which

vps = vGs — V.
The MOSFET is in cutoff for
vgs < V.

The MOSFET operates in its triode region for points to the left of the dashed
line, where

Ups < UGS — VT and UGS = VT.

> Vps

FIGURE 7.10 The saturation region of MOSFET
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A
VGs6 Saturation region
YGse
VGss
VGss
VGs4 >
Ves2 Vr v
Gs4 - vgs= Vr
VGs3
VGs3
v
G52 VGs2
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FIGURE 7.11 Actual characteristics of the MOSFET. Each FIGURE 7.12 Actual characteristics of the MOSFET
setting of vgg results in a separate ipg versus vpg curve. showing the triode, saturation, and cutoff regions.

The MOSFET operates in its saturation region for points to the right of
the dashed line, where the following two conditions are met

vps = vgs— VT and vgs > V.

Saturation Region Operation of the MOSFET A MOSFET operates in the
saturation region when the following two conditions are met:

vGs = Vr (7.6)

and

vps > vGs — V. (7.7)

Given the more or less straight-line behavior of the ipg versus vpg curves
to the left and to the right of the dashed line in Figure 7.12, it is natural
to seek a piecewise-linear model for the MOSFET. Recall from Section 4.4,
piecewise-linear modeling represents nonlinear v—i characteristics by a succes-
sion of straight-line segments, and makes calculations within each straight-line
segment using linear analysis tools. Figure 7.13 shows our choice of straight-line
segments that model the actual MOSFET characteristics.

To the right of the vpg = vGs — V1 boundary (represented by the dashed
line in Figure 7.13) we have the saturation region, in which we use a set of
horizontal straight-line segments (one for each value of vgs) to represent the
actual MOSFET characteristics. The straight-line segments representing the
model are shown as thick grey lines. The circuit interpretation of each of
the horizontal straight-line segments is a current source. Furthermore, because
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the value of the current depends on the value of vgs, the behavior is that of a
voltage-controlled current source. This behavior, captured by the switch current
source (SCS) model of the MOSFET, applies only in the saturation region of the
MOSFET. We will have a lot more to say about this saturation region model
of the MOSFET in Section 7.4.

To the left of the vps = vgs — Vr boundary, we have the triode region,
in which one possible modeling choice uses a single straight-line segment to
approximate the 7ipg versus vpg curve for a given value of vgs. Such a straight-
line segment approximating the ipg versus vpg curve for a given vgg is shown as
the thick grey line to the left of the vpg = vGs — VT boundary. You will notice
that this choice of a single straight-line segment with a given slope 1/Ron for
a fixed value of vggs is our familiar SR model from Section 6.6. Intuitively, the
single straight-line segment model suggests that the MOSFET behaves like a
resistor with a fixed value Roy for a given value of vgg, provided that vgs > Vr
and vps < vgs — V.

When the MOSFET curves are drawn using a compressed scale on the
x-axis as in Figure 7.14, we see even the S model is not unreasonable in the
triode region since it captures the gross characteristics of the MOSFET.

Of course, it is also possible to model the complete operation of the
MOSFET (for any value of vgs) using a more sophisticated nonlinear model.
This results in the Switch Unified (SU) model, which is discussed further in
Section 7.8. Although the SU model captures the complete characteristics of
the MOSFET, for simplicity, we will focus on the SR and the SCS models.
Accordingly, unless specifically mentioned otherwise, we will use the SR model
for the triode region of the MOSFET when analyzing digital systems (since we
work with a fixed high value of vgs, where vgs > Vr and vps < vgs — V1),
and the SCS model in the saturation region (vgs > V1 and vps > vgs — Vr)
for analog systems.



340 CHAPTER SEVEN

FIGURE 7.14 Sand SCS
models.

THE MOSFET AMPLIFIER

", (SCS Model)
'S Saturation region

S-.
[}

< VGs6
ks,
3
p= VGss
%)
z b as 2Vr
g GS4
"B
V,
) GS3
3 VGs2
2 sty <V
=i &GS T=
0 VDS

As one final observation on the various models, notice in Figure 7.13 the
discontinuity in the ipg versus vps curve according to the SR model in the
triode region, and the SCS model in the saturation region. In other words, if a
MOSFET operates in a circuit such that vpg = vgs — VT, the two models will
give very different results. We can live with this discontinuity provided we do not
attempt to reconcile the results from the two models in the same analysis.” You
must choose between the two models depending on the particular situation.
Specifically, use the SR model when operating with a fixed vgs in the triode
region, and use the SCS model when operating in the saturation region. The
SR model is appropriate for use in our digital circuits because of the inverting
property of the type of digital circuits discussed here (for example, our familiar
inverter). Since the drain voltage in our digital circuits is low when the gate
voltage is high, the triode region of MOSFET operation applies, and therefore,
the SR model is appropriate. Conversely, in the design of amplifiers, we will
establish the saturation discipline, which will constrain amplifier designs to
operate MOSFET exclusively in their saturation region, thereby allowing the
use of the SCS model.

74 THE SWITCH-CURRENT SOURCE (SCS)
MOSFET MODEL

We saw in the previous section that when the gate voltage of the MOSFET
is greater than the threshold voltage, and the drain voltage is greater than the
gate voltage minus one threshold drop (vps > vgs — V1), a voltage-controlled
current source model is appropriate for the MOSFET. The switch-current source

2. As discussed in Section 7.8, the SU model eliminates the discontinuity.
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model (or SCS model) of the MOSFET captures this behavior and is depicted
in Figure 7.15.

As depicted in Figure 7.15b, when vgs < VT, the MOSFET is OFF and an
open circuit exists between the drain and the source. For the SCS model, the
current i into the gate terminal is zero.

When vgs > V1, and vps > (vgs — V1), the amount of current provided
by the source is given by

. Kwes — V)2
s = (sz ) 7.8)

where K is a constant having units of A/ V2. The value of K is related to the
physical properties of the MOSFET.3

As in the OFF state, the current i into the gate terminal is zero, reflecting
an open circuit both between the gate and the source, and the gate and the
drain.

As mentioned eatlier, the region of operation in which vpg > (vgs — V1)
is called the saturation region. The region in which vps < (vgs — V1) is
called the triode region. The characteristics of the MOSFET in the saturation
region according to the SCS model are summarized graphically in Figure 7.16.
Compare these characteristics with those for the SR model in the triode region
displayed earlier in Figure 6.31.

The constraint curve separating the triode and saturation regions in
Figure 7.16 given by

vps = vGs — Vr (7.10)

3. The parameter K is related to the physical structure of the MOSFET as follows:
K= Ky—. 7.9)

In Equation 7.9, W is the MOSFET gate width and L is the gate length. K;, is a constant related to
other MOSFET properties such as the thickness of its gate oxide.
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FIGURE 7.15 The switch-
current source model of the
MOSFET.
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can also be rewritten in terms of ipg and vpg by substituting vps = (vGs — V1)
in Equation 7.8 as follows:

_ K
ips = zv,gs. (7.11)

The following is a summary of the SCS model of the MOSFET in algebraic
form. The model applies only in the saturation region of MOSFET operation,
that is, when vpg > vgs — V.

Klwgs — Vr)*

iDs = —= - for vgs > Vr and vps > vgs — VT (7.12)

0 for vgs < V.

EXAMPLE 7.3 A MOSFET CIRCUIT Determine the current ipg for
the circuit in Figure 7.17. For the MOSFET, assume that K = 1 mA /V? and V7 = 1 V.

It is easy to see that the MOSFET in Figure 7.17 is operating in its saturation region,
since the drain-to-source voltage (5 V) is greater than vgs — Vr 2 V-1V =1V).
Therefore, we can directly calculate the desired current using the MOSFET equation for
saturation region operation
A Kwgs — Vr)*
DS = f

Substituting vgs =2 V, K=1mA/ V2 and Vr =1V, we obtain ipg = 0.5 mA.

FIGURE 7.17 A simple G 69
MOSFET circuit. s
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EXAMPLE 7.4 SATURATION REGION OPERATION Keeping
the gate-to-source voltage for the MOSFET in the circuit shown in Figure 7.17 at 2 V,
what is the minimum value of the drain-to-source voltage vpg for which the MOSFET
will operate in saturation?

The MOSFET operates in saturation under the following constraints
vGs > Vr
and
vps = vGs — VT
Since vgg is given to be 2V and Vs 1V, the first constraint is satisfied. Substituting
for vgs and V7 in the second constraint, we obtain the following constraint on vpg for
saturation region operation

vps > 1V.

Thus the minimum value for vpgis 1 V.

EXAMPLE 7.§ SATURATION REGION OPERATION  Next,
keeping the drain-to-source voltage for the MOSFET in the circuit shown in Figure 7.17
at 5V, what is the range of values for vgg for which the MOSFET will operate in
saturation?

The lowest value for vgg is 1V, since below that the MOSFET enters cutoff.

The highest value for vgs is determined by the constraint
vps = ves — V.

For vps = 5 V and V7 = 1V, the highest value for vgg is 6 V. If vgg is increased
beyond 6 V, the MOSFET enters the triode region.

EXAMPLE 76 A CIRCUIT CONTAINING TWO MOSFETS
Determine the voltage vo for the MOSFET circuit shown in Figure 7.18. You are given
that both MOSFETS operate in the saturation region. The MOSFETS are identical and
are characterized by these parameter values: K = 4 mA/V? and V=1 V.

Since we are told that both MOSFETSs operate in the saturation region, and since ipg
for both MOSFETS is the same, their respective gate-to-source voltages must also be
equal. Recall that the drain-to-source current according to the SCS model is independent
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FIGURE 7.18 A circuit con-
taining two MOSFETs. We are told
that both MOSFETSs operate in the
saturation region.
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FIGURE 7.19 The MOSFET
amplifier. The up-arrow labeled Vg
represents a connection through a
power supply voltage source to
ground.

VIN

FIGURE 7.20 SCS circuit model
of the MOSFET amplifier. ip is the
MOSFET drain-to-source current.
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of vps, provided the MOSFET is in saturation. Thus, equating the gate-to-source
voltages for MOSFETs M1 and M2 we have

S—vo=2.
In other words, vo = 3 V. Itis easy to verify that vo = 3 V implies that both MOSFET's
are indeed in saturation.

Observe further that the drain-to-source voltages across the two MOSFETSs operating
as voltage-controlled voltage sources are not equal, even though the currents through
the two devices are identical.

75 THE MOSFET AMPLIFIER

A MOSFET amplifier circuit is shown in Figure 7.19. Remarkably, this circuit
is identical to the inverter circuit we saw earlier! Unlike the inverter circuit,
however, the input and output voltages of the MOSFET amplifier must be
carefully chosen so that the MOSFET operates in its saturation region. In the
saturation region of operation, the SCS model can be used to analyze the
MOSFET amplifier. Constraining the inputs so that the MOSFET is always
in saturation results in the desired amplifier behavior, and furthermore, it sig-
nificantly simplifies our analysis. This constraint on how we use a MOSFET
amplifier is yet another example of a discipline to which we adhere in circuit
design and analysis. This discipline is called the saturation discipline and is
discussed further in Section 7.5.2.

Let us examine the amplifier circuit in Figure 7.19. We will do so by replac-
ing the MOSFET in Figure 7.19 with its SCS circuit model from Figure 7.15 as
illustrated in Figure 7.20. As our first step, let us determine the conditions on
the circuit such that the MOSFET is in saturation. When the MOSFET is con-
nected in a circuit as shown, the following relationships between the MOSFET
voltages and the circuit voltages apply:

UGS = UIN

Ups = VO
and

ins = ip.

Accordingly, the MOSFET is in saturation when the following constraints
are met:

uN > Vr
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and
vo > uvN — VT

In saturation, recall that the drain-to-source current of the MOSFET is given
by Equation 7.12 in terms of the MOSFET parameters as

. K(ves — V1)?
Ips = f

In terms of the amplifier circuit parameters, this equation becomes

K — Vr)?

3 (7.13)

ip =

Next, we will attempt to answer the following question: What is the rela-
tionship between the amplifier output v and its input vn? This relationship
will describe the gain of the amplifier. Notice here an advantage of the satura-
tion discipline — our constraint that the circuit inputs will be chosen so that
the MOSFET is always in saturation allows us to focus on the saturation region
of operation of the MOSFET and ignore its triode and cutoff region operation.

We will begin by formulating the output voltage v as a function of the
input voltage viN. Any of the methods described in Chapters 2 and 3 can be
used to analyze this circuit. We will use the node method here. The ground
node is marked in the circuit in Figure 7.20, and so are the node voltages vo,
vIN, and Vg. Since the current into the MOSFET gate is zero, the node with
voltage v( is the only interesting node in the circuit. Writing the node equation,
we get

. Vs—vo

ip=———.

D R,

Multiplying throughout by Ry, and rearranging terms, we get
vo = Vs —ipRy.

In other words, vo is equal to the power supply voltage minus the voltage drop

across R;.. When vy > V7 and vp > vy — V1, we know that the MOSFET

is in saturation and the SCS model for the MOSFET applies. Substituting for

ip from Equation 7.13, we get the transfer function of the amplifier given by
(v — V)

vo = Vg — KTRL. (7.14)

CHAPTER SEVEN
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FIGURE 7.21 vp versus v
curve for the amplifier.

FIGURE 7.22 In certain parts,
the magnitude of the slope of the
VO Versus vj curve is greater
than one.
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The transfer function relates the value of the output voltage to that of the
input voltage. Accordingly, the gain of the amplifier is given by

2
VS _ K(UIN—VT> RL
Yo _ 2 . (7.15)
VIN VIN

Figure 7.21 plots vo versus v for the MOSFET amplifier. This decidedly
nonlinear relationship is called the transfer function of the amplifier. When
N < V1, the MOSFET is off and the output voltage is V. In other words,
ip = 0 when vy < V7. As vy increases beyond the threshold voltage Vr,
so does the current sustained by the MOSFET. Therefore vo rapidly decreases
as v\ increases. The MOSFET operates in the saturation region until the out-
put voltage vo falls one threshold below the gate voltage, at which point the
MOSFET enters the triode region (shown as a dashed line in Figure 7.21), and
the saturation model and Equation 7.14 are no longer valid.

As shown in Figure 7.22, notice that the magnitude of the slope of certain
regions of the curve is greater than one, thereby amplifying input signals that
fall within this region. Shortly, we will take a more careful look at how we can
connect an input signal to the amplifier so that it is amplified by leveraging the

Yo

Magnitude of
the slope is
greater than one

Y

’\l<______

IN
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amplifier transfer function. But before we do so, let us examine the transfer
function using numerical quantities to build up our insight.

We will examine the relationship between vy and voyT for the amplifier
shown in Figure 7.20 for the following parameters:

Vs=10V
K=1mA/V?
R; =10k
Vr=1V.

Substituting in Equation 7.14, we get

R

vo = Vi — KMRL (7.16)
1\

=10 — (1073) <y> 10 x 103 (7.17)

=10 — SN — 12 (7.18)

For example, substituting vy = 2 Vin Equation 7.18, we obtainvg = 5 V.
We can tabulate the input-output voltage relationship for a larger number of
quantities as shown in Table 7.1.

VIN vOouT
1 10
1.4 9.2
1.5 8.8
1.8 6.8 TABLE 7.1 v versus voyr for
1.9 6 the MOSFET amplifier. All values
are in volts. Observe that the
2 3 MOSFET amplifier goes into the
21 4.0 triode region for vy > 2.3 V and
the SCS model for the MOSFET
2.2 2.8 does not apply.
23 1.6
2.32 1.3
235 0.9

24 ~0
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K = 0.5 mA/V2
Vp=08V

FIGURE 7.23 AMOSFET
amplifier example.
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We can make a number of observations from Table 7.1. First, the amplifier
clearly demonstrates voltage gain (change in the output voltage divided by the
change in the input voltage) because the input ranging from 1 V to 2.4 V causes
the output to change from 10 Vto 0 V.

Second, the gain is nonlinear. From Table 7.1, when the input changes
from 2 V to 2.1 V, the output changes from 5 V to 4 V, exhibiting a local
voltage gain of 10. However, when the input changes from 1.4 Vto 1.5 V, the
output changes by merely 0.4 V, exhibiting a local voltage gain of 4. This fact is
evident from the different slopes at various points in the transfer curve shown
in Figure 7.22.

Third, the saturation discipline is met only for vy values between 1 V and
approximately 2.3 V. When the input vqy is less than 1 V, the MOSFET is
in cutoff. Similarly, when vy is greater than approximately 2.3 V, the output
falls more than one threshold drop below the input. For instance, notice that
when v\ is 2.32 V, the output is 1.3 V, which is more than one threshold drop
below the input voltage.

EXAMPLE 7.7 A MOSFET AMPLIFIER Consider the MOSFET
amplifier shown in Figure 7.23. Assume that the MOSFET operates in the saturation
region. For the parameters shown in the figure, determine the output voltage v given
that the input voltage vy = 2.5 V. From the value of vp verify that the MOSFET is
indeed in saturation.

From Equation 7.14 we know that the relationship between the input and output
voltages for a MOSFET amplifier under the saturation discipline is given by

— V)2
Vo = VS_KMRL_

Substituting for K, Vi, V1, Rr, and v, we obtain directly the value of vo:

5.5 -0.8)

vo=5-0.5x10" 1x 103

=428 V.
For the MOSFET to be in saturation, two conditions must be met:
vgs = Vr
and

vps > vGgs — VT
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Since vgs = vy = 2.5 V, and V1 = 0.8 V, the first condition is met. Similarly, since
vps = vo = 4.28 V, and vgs — V1 = 1.7 V, the second condition is also met. Thus
the MOSFET is indeed in saturation.

EXAMPLE 78 A MOSFET SOURCE-FOLLOWER CIRCUIT
Another useful MOSFET circuit is the source follower shown in Figure 7.24. For rea-
sons that will be clear in our discussion of the source follower in Chapter 8, the source
follower is also called a buffer circuit. Assuming that the MOSFET operates in the sat-
uration region, determine the output voltage voyT and the current ip given that the
input voltage vy = 2V, for the parameters indicated in the Figure 7.24.

We determine voyT by writing the node equation for the output node:

vouT
- . 7.19
EAREINETE 7.19)

Substituting for ip using the SCS model for the MOSFET we get

@V—-1V—wvour)* _ wvour

2x 1073 = )
2 1 x 103

Simplifying we get
vdur — 3vour +1=0.

The two roots of the equation are 2.6 and 0.4. We pick the smaller of the two roots,
since, for saturation operation, the solution must satisfy

VN — vout = VT
In other words,
25V —vour =1 V.
Thus, voyT = 0.4 V. Substituting into Equation 7.19

ip = 0.4 mA.

751 BIASING THE MOSFET AMPLIFIER

Figure 7.21 showed that the MOSFET is in saturation only within a certain
region of the amplifier transfer curve. The MOSFET circuit works as a reason-
able amplifier only within this region, which, as shown in Table 7.1, ranges
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FIGURE 7.25 Boosting the
input signal of interest with a
suitable DC offset so that the
MOSFET operates in its saturation
region for the entire range of input
signal excursions.

FIGURE 7.26 Circuit for
boosting the input signal of interest
(v4) with a suitable DC offset (V)
so that the MOSFET operates in its
saturation region for the entire
range of input signal excursions.
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A

Vo

Vy

vo=Vy+vp

from an input of 1 volt to about 2.32 volts. In order to ensure that the amplifier
operates within this region of the curve, we must transform the input voltage
appropriately. As illustrated in Figure 7.25, one way of doing so is to boost the
signal that we want to amplify (for example, v4) with a DC offset (say, Vx) so
that the amplifier operates in its saturation region even for negative excursions
of the input signal. Figure 7.26 shows the corresponding circuit that adds an
offset to the input signal by connecting a DC voltage source (V) in series with
the input signal source (v4). In other words, we have

vN = Vx+va

where v4 is the desired input signal.

Notice in Figure 7.25 that the corresponding output voltage vo also con-
tains a DC offset Vy added to the time varying output signal vp. vp is an
amplified version of the input signal v4.
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FIGURE 7.27 A sinusoidal input
| N signal with zero offset results in a
[ ~— highly distorted output signal.
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Contrast the amplifier behavior for the input signal source with a suitable
DC offset voltage shown in Figure 7.25 with that for the input signal source
applied directly Figure 7.27. When the input signal is applied to the amplifier
without a DC offset, the MOSFET operates in its cutoff region for most of
the input signal, and the output is highly distorted, bearing little resemblance
to the input. The form of distortion suffered by the signal in the example in
Figure 7.27 is called clipping.

The use of the amplifier with an input DC offset (and a resulting output
offset) is important enough to merit some new terminology. The DC offset (for
example, V) applied to the input of the amplifier is also called a DC bias. The
use of the DC offset voltage at the input establishes an operating point for the
amplifier. The operating point is sometimes referred to as the bias point. As an
example, the operating point values of the input and output voltages for the
amplifier in Figure 7.26 are Vx and Vy, respectively. We can select different
operating points for the amplifier by applying different values of the input DC
offset voltage. Section 7.7 discusses various methods of choosing an operating
point.

We make one final observation about our amplifier. Although vp is an
amplified version of the input signal v4 when the input signal is boosted with
a DC offset, vp is not linearly related to v4. Notice from Equation 7.14
that our amplifier is nonlinear even when the MOSFET operates in the
saturation region. Fortunately, the MOSFET amplifier behaves as an approxi-
mately linear amplifier for small signals; in other words, when the desired input
signal v, is very small. However, we will postpone a more detailed analysis of
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FIGURE 7.28 The MOSFET
amplifier abstraction.
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the amplifier’s small signal behavior to Chapter 8. Accordingly, for now, and
in the rest of this chapter, we will #ot assume that the input is a small signal.
Rather, we will assume that the input vqy that is fed into the amplifier comprises
both the signal component of interest to this user (which may be a large valued
signal), and a DC offset (or DC bias). For simplicity, all calculations will be
performed on this boosted signal.

752 THE AMPLIFIER ABSTRACTION AND
THE SATURATION DISCIPLINE

We would like the user of a MOSFET amplifier to be able to treat it as
the abstract entity depicted in Figure 7.28, ignoring the internal details of the
drcuit. This abstract amplifier has vy and 7N at its input port and v and io
at its output port, and provides power gain. Details such as the power supply
and the like are hidden from the user. The amplifier shown in Figure 7.28 uses
ground as an implicit second terminal for both the input port and the output
port. This form of amplifier is also called the single-ended amplifier.

Much like the gate abstraction went hand in hand with the static
discipline—which dictated the valid range for applied inputs and expected
outputs—the amplifier abstraction is associated with the saturation discipline,
which prescribes constraints on the valid set of applied input signals and
expected output signals. The saturation discipline simply says that the ampli-
fier be operated in the saturation region of the MOSFET. As we shall see shortly,
we choose this definition of the saturation discipline, because the amplifier pro-
vides a good amount of power gain in the saturation region, thereby operating
well as an amplifier.

Specification of the saturation discipline serves two purposes: First, it pre-
scribes constraints on how the device can be used; and second, it establishes a
set of design criteria for the device. The amplifier abstraction and its associated
usage discipline can be likened to procedural abstractions in software systems.
Software procedures are an abstraction for the internal function they imple-
ment. Procedures are also associated with a usage discipline often articulated
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as comments at the head of the procedure. Section 7.6 will be concerned with
identifying valid usage ranges under the saturation discipline.

76 LARGE-SIGNAL ANALYSIS OF
THE MOSFET AMPLIFIER

Two forms of analysis come in handy for amplifiers: a large signal analysis and a
small signal analysis. Large signal analysis deals with how the amplifier behaves
for large changes in the input voltage, in other words, changes that are of
the same magnitude as the operating parameters of the amplifier. Large signal
analysis also determines the range of inputs for which the amplifier operates
under the saturation discipline for the reasons discussed in Section 7.5.1. This
section deals with large signal analysis. The next chapter deals with small signal
analysis.

Large signal analysis attempts to answer the following specific questions related
to the design of the amplifier:

1. What is the relationship between the amplifier output v and its input vy
in the saturation region? Equation 7.14, developed using the analytical
method, summarized the answer to this question. For variety, this section
will use the graphical method to determine the same relationship.

2. What is the range of valid input values for the amplifier under the
saturation discipline? What is the corresponding range of output values?

Figure 7.29 shows the MOSFET amplifier, and Figure 7.30 replaces
the MOSFET with its equivalent circuit model. In this section, we will
use the graphical method of analyzing nonlinear circuits (introduced earlier
in Section 4.3) to determine the answers to our questions.

Specifically, Section 7.6.1 will discuss the answer to the first question, and
Section 7.6.2 will address the second question.

761 vw VERSUS vour IN THE SATURATION REGION

Writing the node equation for the output node gives us the following
relationship between ipg and vpg:

ups = Vs — ipsRy. (7.20)

Recall that for our circuit vy is the same as vgs, vo is the same as vpg, and
ips is the same as ip, where v\, v0, and ip are the amplifier circuit variables,
and vgs, vps, and ipg are the MOSFET variables.

Previously, using the analytical approach to solving our nonlinear amplifier
problem, we substituted for ipg from Equation 7.12 into Equation 7.20 and
obtained the input versus output voltage relationship shown in Equation 7.14.
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FIGURE 7.29 MOSFET
amplifier circuit. For the parameters
shown here, v\ is the same as vgg
and v is the same as vpg.
Similarly, ipg is the same as ip.

FIGURE 7.30 MOSFET
amplifier — large signal model.
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This time around, we will use the graphical method to obtain the
same relationship. We begin by rewriting Equation 7.20 as

%
ipg = -5 _ VDS (7.21)
Rp  Rp

As Equation 7.21 demonstrates, the load resistor Ry, forces an affine rela-
tionship between ipg and vpg. Figure 7.31 plots this affine relationship. The line
representing the affine relationship between the output current and the voltage
forced by the load resistor is called the load line. The slope of the line is inversely
proportional to the load resistance.

Also, recall that the MOSFET SCS model forces the relationship captured
by Equation 7.8, namely,

ips = Klwes — Vi)*
2

and graphed in Figure 7.16 between the input voltage vgs and the MOSFET
current ipg. The output current and voltage must thus satisfy both the load-line
constraint and the MOSFET vpg versus ipg relationships. We can graphically
solve for the behavior of the output voltage by overlaying the load-line rela-
tionship on the ipg versus vpg characteristics of the MOSFET in the saturation
region as depicted in Figure 7.32.

IT; \i - VGs6

GS5
/ \
lDS I

iDS
/ VGs4
/ \ ;
GS3
/ N\
/ VGs2
- %
> N\ G
Vps Vs VDs Vs
FIGURE 7.31 The load line for the MOSFET amplifier. FIGURE 7.32 Load line super-imposed on the characteristic

curves of the MOSFET.
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Figure 7.33 illustrates how the amplifier transfer curve (that is, its vy versus
vo curve) can be determined. For some specific value of the input voltage, say
UIN = vUGsi, we can determine the output voltage vo = vps; by finding the
intersection between the load line for Ry and the output current ipg; for the
given input voltage vGs;. We can then plot these values to obtain the transfer
function shown in Figure 7.21.

Figures 7.34 and 7.35 further show how an input sinusoid with a peak-
to-peak voltage of 0.2 V with an offset of 1.5 V is amplified to an output
peak-to-peak voltage of 1 V centered around 3.75 V for the following set

32V375V42V VS

VDs
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FIGURE 7.33 Determining the
transfer curve of the amplifier
graphically.

FIGURE 7.34 Determining
signal amplification graphically.
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FIGURE 7.35 Signal
amplification.
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Ay

of parameters:
Ry, =10k (7.22)
K=1mA/V? (7.23)
Ve=5V (7.24)
Vr=1V. (7.25)

We note that the output will not be a perfect sinusoid like the input because
the amplifier is non-linear.

This concludes our discussion of the first part of large signal analysis for
a MOSFET based amplifier, namely, determining the relationship between the
input and output voltage. Before we move on to the second part of large
signal analysis, it is worth spending a few moments comparing the graphical
method and the analytical method. To be sure, either method can be used in
most situations. The analytical method is useful when simple expressions cap-
ture the behavior of the devices, as was the case for our MOSFET amplifier.
The graphical method discussed in this section, however, is often more accu-
rate when device characteristics measured from a physical device are available.
The discrete devices you will come across in the laboratory, for example, will
often come with data sheets containing their v—i characteristics.

762 VALID INPUT AND OUTPUT VOLTAGE RANGES

Let us now answer the second question of large signal analysis, namely, what
are valid input and output voltage ranges for the amplifier under the saturation
discipline? These ranges will provide the outer voltage limits to input signals
such as those in Figure 7.35. The limits will also provide insights into the
nominal voltage about which the input signal should be centered, or, in other
words, how to choose the operating point of the amplifier.
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Valid voltage range The range of input voltages (and the resulting range of
output voltages) for which the MOSFET (or MOSFETS) in the circuit operate
in the saturation region.

The amplifier will amplify input signals when it is operating in this range
without clipping the signal or introducing significant amounts of distortion.
(Signal clipping occurs when the amplifier output cannot go beyond a certain
voltage or current level.)

Let us begin by making some general observations about the current and
voltage limits to build up our intuition. Observe that ipg can range only from
0 — Vg/Ry. The output voltage is Vs when ipg is zero. ipg is zero for input
voltages less than V. Similarly, the output voltage is 0 when the current is
Vs/Rp, and the input voltage is at some high value greater than V1. The limits
of saturation region operation lie somewhere within the ipg current limits of 0
and Vs/ R]_.

The valid range of input voltages has a lower limit and an upper
limit. The lower limit on input voltages is easy to determine.

Lowest Valid Input Voltage

Notice from Figure 7.36 that the input voltage must be greater than V1 for the
MOSEFET to exit its cut off region. When the input voltage is V1, the MOSFET
exits its cutoff region and the output voltage of the amplifier is V5. When the
input voltage is equal to V1, any positive value of vpg will cause the MOSFET
to operate in its saturation region. Because we design the amplifier with Vg > 0,
and since vps = Vi, the MOSFET will be in its saturation region. Since Vr is
the lowest voltage for which the MOSFET is in saturation, we get

lowest valid input voltage = V. (7.26)

The corresponding value of the output voltage is Vs. The point labeled (x)
corresponding to the point (V, Vs) on the amplifier vy versus v transfer curve
in Figure 7.36 denotes the low end of the valid input voltage range.

MOSFET is in
saturation within
this region (v, > vy — Vi and vy = Vp)

vo=vin—Vr

vo<viy— Vpand vz Vy
Triode region

—

N
|

Vr VIN
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FIGURE 7.36 The lowest valid
input voltage under the saturation
discipline is marked by the point
(x), and the highest valid input
voltage under the saturation dis-
cipline is marked by the point (y).
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Highest Valid Input Voltage

Next, we will determine the highest value of the input voltage for which the
MOSEET satisfies the saturation discipline. Notice that the MOSFET goes into
the triode region when the output voltage v falls one threshold drop below
the input voltage vN. In other words, when

vo =vN — Vr.

Thus, the valid high input voltage is that value of vy beyond which the
MOSEFET enters the triode region.

To build intuition, we first determine graphically the input voltage for
which the output crosses into the triode region as follows. Referring to
Figure 7.36, the straight line drawn at 45° to the v axis and intersecting
it at V reflects the set of points in the vy versus vo plane for which

vo=vN— Vr

assuming, of course, that vy and vo use the same scale. Thus, the point (y) at
which this 45° line intersects the vy versus vo transfer curve marks the upper
limit of the valid input range.

We can also determine analytically the value of this upper limit by solving
for the intersection of the straight line in Figure 7.36 represented by

vo=vN — VT (7.27)

and the transfer curve determined by Equation 7.14, which we rewrite here for
convenience:

— V)2
vo = Vg — KMRL. (7.28)

The intersection of these two curves is marked by the point (y) in Figure 7.36.
Substituting the expression for vp from Equation 7.27 into Equation 7.28
we get

— V)2
o — Vi = Vg — KN VTS : R, (7.29)
Rearranging terms, we have
K 2
RLE(U[N - Vr)© 4w — V) — Vs =0. (7.30)

The value of v\ that solves Equation 7.30 is the highest value of vy for which
the MOSFET operates in saturation.
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Solving for vy — VT, we get

-1+ 1+ 2VgR K
—Vr= . 7.31
vN = VT RiK (7.31)
In other words,
-1+ 14+ 2VgRr K
U = L2 v (7.32)

R K

This value of vy is the highest input voltage that satisfies the saturation
discipline and corresponds to the point marked (y) in Figure 7.36.
Summarizing, the maximum valid input voltage range is

-1+ 1+2VsR K
R +vI+2VsRy 4V
Ri K

Vr

and the maximum valid output voltage range is

-1+ 14+2VsR K
— .

%
s R K

As illustrated in Figure 7.37, the MOSFET enters its cutoff region for input
voltages lower than V1, and goes into the triode region for input voltages
greater than ((—1+ +/T+2VsR K)/RrK) + V1. The corresponding drain
current range is

K
0— Sl = V)

where we substitute ((—1 + 1+ 2VgR; K) /RLK) + Vr.
This completes the second step of large signal analysis.

ACutoff' Saturation | Triode
region| region J region

Vo

FIGURE 7.37 Cutoff, saturation,
and triode regions of operation of
the MOSFET amplifier.
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EXAMPLE 7.9 VALID INPUT AND OUTPUT RANGES FOR
AMPLIFIER Let us now determine the valid input voltage range and the
corresponding output voltage range for the amplifier given the following circuit

parameters:
Ry =10k (7.33)
K=1mA/V? (7.34)
V=35V (7.35)
Vr=1V. (7.36)

From Equation 7.26, we know that Vr = 1 V is at the low end of the valid input
range. The corresponding value of v is Vs = 5 V and the current ip is 0.

Next, to obtain the highest value of the input voltage for saturation region operation of
the MOSFET amplifier we substitute the values of these parameters in Equation 7.32.

. o —1+VT+2VsR; K
Highest valid input voltage = Vr + TV VSR
R; K
i —14+V1+2x5x10x 103 x 103
N 10 x 103 x 10-3
~ 19 V.

In other words, 1.9 V is the highest value of the input voltage that ensures satura-
tion region operation of the amplifier. We can also solve for the corresponding values
of vp and ip from Equations 7.27 and 7.8 as follows:

vo=uN—Vr=19-1=09V

K
ip = E(UIN — V7)? = 0.41 mA.

In summary, the maximum valid range for the input voltage is
1V—>19V

and the maximum valid range for the output voltage is
5V—->09V.

The corresponding drain current range is

0 mA — 0.41 mA
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ipsh 0.9V, 0.41 mA)
0.5 mA
\ vos = 1.9V
(5V, 0mA)
ves=1V
0 SV Vs

These values are plotted on a graph of the amplifier load line and the MOSFET device
characteristics in Figure 7.38.

EXAMPLE 7.10 VALID RANGES FOR THE SOURCE
FOLLOWER CIRCUIT Letus derive the valid operating ranges for the source
follower circuit shown earlier in Figure 7.24, and repeated here in Figure 7.39 for
convenience. Assume that Vg = 10 V.

Recall that the valid input voltage range is defined as the range of input voltages for
which the MOSFET operates under the saturation discipline. Two conditions must be
met for the MOSFET to remain in saturation:
vGs = Vr (7.37)
and
vps > vGs — V. (7.38)
The first condition requires that vy — voyT > VT3 or,

VN = vout + VT

Since the minimum value of voyT is 0 V, the minimum value of vy for saturation
region MOSFET operation is given by

in=Vr=1V.
The second condition requires that

vps > vGgs — Vr,
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FIGURE 7.38 Valid input and
output voltage ranges.

1 Equivalent
1 SCS model
! (saturation)

+
YouT

FIGURE 7.39 Source-follower
circuit.
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which implies that
Vs —vout = uN — vout — VT
Rearranging terms and simplifying, we obtain
N < Vs+ Vr.
In other words, the maximum value of v\ is given by
w=10V+1V=11V.

Summarizing, the valid input range is given by

1V—->uyn—11V.
The corresponding output voltage range is easily determined. At the low end of the
valid range, we know that voyT = 0 for vy = 1 V. At the high end of the valid range,
vourt is determined by writing the node equation for the output node and substituting
yw=11V:

in = vouT
1x 103

Substituting for ip using the SCS model for the MOSFET we get

(11V—-1V—wvour)* _ vour
2 T 1x 103"

2x 1073

Simplifying, we get
Yot — 2lvout + 100 = 0.

The two roots of the equation are 13.7 and 7.3. We pick the smaller of the two roots,

since, for saturation operation, voyT must be at least one VT below the input voltage.
Thus,

vour =73 V.
The valid output voltage range is given by

0V — vour — 73 V.
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The corresponding valid current range is given by dividing the output voltage extremes
by the resistance 1 kQ2:

0/10° — ip — 7.3/103
or

0 mA — ip — 7.3 mA.

763 ALTERNATIVE METHOD FOR VALID INPUT AND
OUTPUT VOLTAGE RANGES

Section 7.6.2 showed that we could determine the valid range of amplifier
operation under the saturation discipline using the transfer curve of the amplifier.
Alternatively, we can solve for the same limits graphically from the load-line
and the MOSFET device characteristics as illustrated in Figure 7.40.

Notice that under the saturation discipline the lowest valid value of the
output voltage vo is identified by the point of intersection of the constraint
curve separating the triode and saturation regions given by

) K
ips = —vhg (7.39)
2
and the load line given by
Vs v
ips = —> — 22, (7.40)
R Rp
©n
S
M|
ips | lL Saturation region
Vs A Triode | 8 N
R, region GS6

0" \ o
f VGsa

/ VGs3
\ vGs2

P / N\ vGs1
N\ Gs S Vr

v
0 Vs‘\, o DS
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FIGURE 7.40 Determining valid
input and output voltage ranges
from a graph of the amplifier load
line and the MOSFET device
characteristics.



364

CHAPTER SEVEN

THE MOSFET AMPLIFIER

The intersection point is marked (y) in Figure 7.40. Recall that the current ipg
and the output voltage vo (which, in our amplifier circuit, is the same as vpg)
is constrained to the load line by KVL. Substituting for ipg from Equation 7.39
into 7.40, rearranging terms, and multiplying out by Ry, we get

K
RLEUI%S +vps — Vs = 0. (7.41)

Observe that Equation 7.41 is the same as Equation 7.30 with vpg in place of
vN — V. The two equations are consistent because

at the point where the load line intersects the boundary of the saturation region.
The positive solution to Equation 7.41 gives us the value of vpg at the
point of intersection:

-1+ V1+2VsR K

(7.43)
R K

UDps =

This value of vpg is the desired lowest value of v for saturation region
operation of the MOSFET amplifier. The corresponding value of the high-
est valid input voltage can be obtained from Equation 7.42, and is given
by uw = vo + V1. In other words, at the point (y) in Figure 7.40,
UN is given by ((—1 + m)/RLK) + V1, and vp is given by
(-1++1+2VsRK) /RiK.

Next, we will determine the lowest value of the valid input voltage denoted
by the point marked (x) in Figure 7.40. This point is the intersection of the load
line and the ipg versus vpg line for which vgs = V. At this point, vo = vps =
Vg and vy = vgs = VT

This completes our discussion of large signal analysis for the
MOSFET amplifier. Large signal analysis determines the input-output trans-
fer curve of the amplifier and the limits on the input voltage for which the
amplifier operated under the saturation discipline. Specifically, the large signal
analysis of an amplifier entails the following steps:

1. Derive the relationship between vN and vo under the saturation
discipline. Note that in general this might be a linear or fully nonlinear
analysis.

2. Find the valid input voltage range and the valid output voltage range for
saturation operation. The limits of the valid ranges occur when the
MOSEET enters into a cutoff region or a triode region. In complicated
circuits, this step may require numerical analysis.
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Among other things, the limits determined in large signal analysis come in
handy in determining a reasonable operating point for the amplifier. This will
be the next topic of discussion.

77 OPERATING POINT SELECTION

We are often interested in amplifying time-varying signals. Because the amplifier
turns off for input voltages less than V', it is important to add an appropriate
DC offset voltage to the time-varying input signal so that the amplifier remains
in the saturation region for the entire range of input voltage variation. This
input DC offset voltage defines the operating point of the amplifier. The DC
offset must be chosen carefully, for if it is too large, the amplifier will be pushed
into the triode region, and if it is too low, the amplifier will slide into the cutoff
region. How do we choose this operating point?

Time-varying signals such as those in Figure 7.35 are characterized by their
peak-to-peak voltage and their DC offset. For example, the sinusoidal signal
vN in Figure 7.35 has a peak-to-peak value of 0.2 V and a DC offset of 1.5 V.
Since the MOS amplifier is nonlinear, we define the output offset as the value
of vo when the DC input offset voltage is the only signal applied at the input.
Although the time-varying portion of the signal is of interest to us, as discussed
in Section 7.5.1, the DC offset is provided simply to keep the amplifier operating
In its saturation region.

The input offset voltage is also called the input bias voltage or the input
operating voltage. The corresponding output voltage and the output current
define the output operating point of the amplifier. Together, the input bias
voltage, and the corresponding output voltage and the output current, define
the operating point of the amplifier. We denote the operating point values of
UIN, Y0, and ip as VN, Vo, and Ip, respectively. As illustrated in Figure 7.41,

VGs6

» / Valid range for
/ operating point
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FIGURE 7.41 Valid range for
operating point under the
saturation discipline.
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the operating point can be legally situated anywhere along the load line in the
valid range between the points (x) and (y).

There are several factors that can govern our choice of the operating point.
For example, the operating point dictates the maximum dynamic range of the
input signal for both positive and negative excursions for which the MOSFET
operates in saturation. As can be seen from Equation 7.15, the operating point
value of the input voltage also governs the signal gain of the amplifier. This
section will focus on selecting an operating point based on maximizing the
useful input signal range. We will have more to say about the relationship
between the gain of the amplifier and its operating point in Section 8.2.3 in
Chapter 8.

Let us assume that the input signal has symmetric peak-to-peak swings
about the DC offset. In other words, we will assume an equal magnitude for
both the positive and negative excursions of the time-varying signal from the
DC offset, as is the case for the input signal vy in Figure 7.35 (but not for the
output signal vp). To obtain maximum useful input signal range, we might
choose the input bias voltage Vi to be at the center of the valid range of input
voltages for the amplifier, as illustrated in Figure 7.42.

Accordingly, for the amplifier parameters that we have been using thus far,

R; =10k (7.44)

K=1mA/V? (7.45)
Vg=5V (7.46)
Vr=1V (7.47)

because our amplifier operates under the saturation discipline for input voltages
in the range 1 V — 1.9 V, we might choose an input operating point voltage
at the center of this range, namely VN = 1.45 V. This choice is illustrated in

vl @)

Valid
output
range

Valid input
range
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ips A
0.5 mA ’
041 mA | Vs =19V
} . . FIGURE 7.43 Operating point
/: Operating point: (4 V, 0.1 mA) and valid input and output voltage
! ranges.
01mAl|_ /. Vs = 145V °
0 mA - \ vgs = v
0.9V 4V 5V s
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A
(X)|
5V A
4V (145V, 4V)
Vo = Vin—Vr FIGURE 7.44 Input operating
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point.
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Figure 7.43, which is an ipg versus vpg graph, and in Figure 7.44, which shows
the corresponding vy versus voyT graph. As we expect, the output will vary
between 0.9 V and 5 V as the input varies between 1 V and 1.9 V.

Let us take a closer look at the behavior of the amplifier for the given input
bias voltage by determining the corresponding output operating point. For a
given input operating point voltage VN, we can determine the operating point
output voltage Vo from Equation 7.14, and the operating point output current
Ip from the MOSFET SCS model given in Equation 7.8. Substituting for the
circuit parameters in Equation 7.14 we get

Vi — Vp)?
Vo=V5—K¥RL

(145 — 1)

=5-10" 10*

=4V.
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From Equation 7.8 we get Ip as

K(Viy — V7
Ip=—"-—-
2
_1073(1.45 — 1)
B 2
=0.1 mA.

Thus the operating point for the amplifier is defined by

VN = 145V
Vo=4V
Ip = 0.1 mA.

This operating point maximizes the peak-to-peak input voltage swing for which
the amplifier operates under the saturation discipline.

The operating point for our amplifier, along with the valid input and output
voltage ranges, is shown in Figure 7.43. For this choice of the operating point,
the maximum input voltage swing for positive excursions is 1.45 V — 1.9 V|
and the maximum input voltage swing for negative excursionsis 1.45 V— 1 V.
The corresponding output voltage swings are 4 V.— 0.9 Vand4V — 5 V.

Although we chose the input operating point to be at the center of the
valid input range, notice the asymmetry of the output voltage range about
the output operating voltage. The asymmetry arises from the nonlinearity of
the gain of the MOSFET amplifier. The next chapter will discuss an approach
by which we can treat MOSFET amplifiers as linear amplifiers. Depending on
our desired input and output voltage swings, and also amplifier gain, we can
also choose other operating points for the amplifier. Other criteria for choosing
the operating point might include concerns of stability and power dissipation,
but these are beyond the scope of our discussion.

EXAMPLE 7.1II OPERATING POINT FOR THE MOSFET
SOURCE FOLLOWER CIRCUIT Modify the source follower circuit from

Figure 7.24 to include an input bias voltage that maximizes input voltage swing. Assume
that V¢ =10 V.

Figure 7.45 shows the biased circuit, where Vp is the bias voltage and v4 is the input
signal. The total signal, v, is the sum of the offset voltage and the actual input. Recall
that the input offset voltage (Vp) is applied to boost the input signal (v4) in a way that
the MOSFET remains in saturation for the maximum positive and negative excursions
of the input signal.
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From Example 7.10, we know that the valid range for the total input vy is given by
1Vouyny—11V.

We can obtain the maximum input swing under saturation operation by biasing the
input at the midpoint of the input valid range. In other words, we choose

Vp=6V.

This choice of input offset voltage allows a peak-to-peak swing of 10 V for the input
signal v4.

EXAMPLE 7.12 LARGE SIGNAL ANALYSIS OF ANOTHER
MOSFET AMPLIFIER The drcuit shown in Figure 7.46 is a MOSFET ampli-
fier. We wish to determine the large-signal input-output behavior of this amplifier. We
also wish to determine the range of vy over which the MOSFET operation remains in
the saturation region. In this example, we will assume that the MOSFET is characterized
by Vr=1Vand K=1mA/V2.

Resistors Ry and R, form a voltage divider from Vy that establishes the constant bias
voltage Vp at the gate of the MOSFET. That bias voltage is Vg = 1.6 V.
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FIGURE 7.45 Source-follower
circuit with input bias.

FIGURE 7.46 Another MOSFET
amplifier with the input connected
to the source, and biasing provided
by a voltage divider formed by
resistors Ry and Ry.
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Next, applying KVL yields vgs = Vg — v|N. From this it follows that

R3K
vout = Vs — %(VB — N — V),

which evaluates to

vout = 10 — 10 x (0.6 — vN)%.

Thus, for example, for vy = 0V, the output voyt = 6.4 V.

We now determine the range of vy over which the MOSFET operation remains in the
saturation region. To do so, the MOSFET voltages must satisfy vps > vgs — V1 > 0.
For the amplifier shown in Figure 7.46, this is equivalent to

vourT —UN = Vp—uN — V7 = 0.
By violating the first inequality, the MOSFET operation enters its triode region, and
by violating the second inequality, the MOSFET operation enters its cutoff region.
Numerically, this evaluates to
—03695V<yn=<06V,
which corresponds to

0.6 V<wvoyur <10V.

Thus, note that the MOSFET operation can remain saturated for both positive and
negative values of vy.

EXAMPLE 7.13 BIPOLAR JUNCTION TRANSISTOR (BJT)
Figure 7.47a depicts another three-terminal device, called the bipolar junction transistor
(BJT), that is in common use in VLSI circuits. A BJT has three terminals called the base
(B), the collector (C), and the emitter (E). Figure 7.47b marks the device with its relevant
voltage and current parameters.

In this example, we will compare the actual characteristics of the BJ T with those predicted
by a simple piecewise linear model. The actual characteristics of a BJT (i versus v, for
various values of 7p) are shown in Figure 7.48. The horizontal nature of the ic versus vcg
curves indicates that the device operates like a dependent current source when the base
current ip > 0 and the collector-to-emitter voltage (vcg) is greater than approximately
0.2 V. The current supplied by the current source is typically about 100 times the base
current. Although these curves are qualitatively similar to those of a MOSFET, there
are also some differences. First, notice that we have chosen the BJT’s base current i
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as our control parameter (the control parameter was the gate-to-source voltage for the
MOSFET, and the gate current was zero). Second, the collector current is linearly related
to the base current (when the MOSFET operated as a current source, its drain current
was quadratically related to the gate-to-source voltage).

The BJT characteristics show three regions of operation:

1. Whenig > 0 and vcg > 0.2 V, the BJT is said to be in the active region of
operation. In this region, the horizontal collector current curves display a current-
source-like behavior. As we shall see momentarily, the active region will be the
predominant region of interest for analog circuit designs.

2. When ig = 0, the BJT is said to be in the cutoff region.

3. Finally, when ig > 0 and vcp < 0.2V, (that is, the region to the left of the vertical
dashed line in Figure 7.48), the collector current drops sharply, and the BJT is said
to be in the saturation region.*

Figure 7.49b shows a model for the BJT containing a current-controlled current source
and a pair of diodes (a base-emitter diode and a base-collector diode). The current
supplied by the dependent source is B times ig. The parameter 8 is a constant with

4. The saturation region in BJ T is completely unrelated to the saturation region in MOSFETS, and
in fact, normal operation of BJTs attempts to avoid this region. This duplication of terms — one
representing the favored region of operation in MOSFETS, and the other representing an avoided
region of operation in BJTs — can be the source of confusion, but, unfortunately, has become the
norm in circuit parlance.
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FIGURE 7.48 Actual character-
istic curves for a bipolar junction
transistor.
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FIGURE 7.49 (a) A bipolar
junction transistor; (b) a model for
the BJT; (c) a piecewise-linear
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a typical value of around 100. (We show shortly that the base current ig = ip in the
region of BJT operation that is of interest to us.)

Although we can analyze circuits directly with the model in Figure 7.49b, our analysis
can be significantly simplified by using simple piecewise-linear models for the diodes.
Figure 7.49¢ depicts such a piecewise-linear model for the BJT, in which we have replaced
the diodes with simple piecewise-linear diode models comprising an ideal diode in series
with a voltage source (from Figure 4.33a). In the model in Figure 7.49¢, the dependent
current source models the horizontal active region curves of the BJT.

The states of the two diodes (both ON, both OFF, and one OFF and one ON) result in
distinct piecewise linear regions of BJT operation. Both diodes (in Figure 7.49¢) in their
OFF state model cutoff: when the base current ip is zero, both the diodes are OFF, and
so is the current source. Figure 7.50a depicts the corresponding BJT model in the cutoff
region. Observe that in the cutoff region

ip=1ip

because the base-to-collector diode is off.

When ig > 0 and
UCE > UBE — 04V (7.48)

the emitter diode is ON and the collector diode is OFF, and the active region results.
In this region of operation, as illustrated in the active region BJT model in Figure 7.50b,
the ideal diode between the base and emitter turns ON and appears as a short circuit.
The 0.6-V source models the corresponding 0.6-V diode drop. Observe further that

ip=ip

in the active region because the base-to-collector diode is off. In the active region, BJTs
display a more-or-less constant voltage drop of about 0.6 V between their base and
emitter terminals when the base current ig > 0 (a fact not evident from the characteristic
curves in Figure 7.48).

The condition vcg > vpg — 0.4 V ensures that the base-collector diode stays OFF. The
condition states that the collector voltage must not fall below the base voltage by more
than 0.4 V, because if it did, the base-collector diode would turn ON.® In the active

5. Although the constraint for active-region operation
vcg > vgg — 04 V.
is equivalent to the simpler constraints

vpc <04V or vcg>02V.
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region, the dependent current source amplifies the current supplied by the base by a

factor B, so that the collector current becomes *
ic = pip
. .. . . . . VcE
(recall, 75 = 7p in the active region), and the emitter current is
s
i, = ig(B + 1). ViE - 06V
- lE
E
In the active region, the piecewise-linear model for the BJT can be summarized (@) Cutoff region
in words as =0

Big for ig > 0 and vcg > vgg — 04V
ic = (7.49)
0  otherwise.

The base-to-collector diode in Figure 7.49¢ helps model the onset of saturation. Speci-
fically, saturation results when the both the base-to-collector and the base-to-emitter
diodes are ON. When ig > 0, and the condition implied by Equation 7.48 is violated,
that is, if

vcg = vgg — 0.4V

or equivalently, if (b) Active region
’ ig>0
vpe =04V or vep =02V Veg> Vg — 0.4 (or, vep > 0.2)
then the base-to-collector diode also turns ON, and the BJT saturation region results. c
The saturation region model for the BJT is shown in Figure 7.50c. In the BJT’s saturation 04 Y ) +
region, the BJT model stops looking like a current source, and instead displays a pair of ._..‘}_f lc
very low resistance paths from the base into the collector and emitter (due to the pair of
forward-biased diodes). Because of their low resistance, the path currents are determined B ip | ip ;
by external circuit constraints. By summing voltages along the path E, B, C, we see that + c*
the collector-to-emitter voltage is pinned at 0.2 V, irrespective of the current ic. +
) 0.6V
. . . . . . BE .
Our model is not yet complete. There is one additional state in which the emitter _f iy
diode is OFF and the collector diode is ON, as can happen when the base-to-collector ) E
(c) Saturation region
ip>0

=v,,— 0.4 (or, =0.2
as can be seen by applying the voltage difference form of KVL to the model in Figure 7.49¢, we use Vce= VBE or. veg )

the former because, by a quirk of chance, it is reminiscent of our MOSFET drain-to-gate voltage
constraint (namely, FIGURE 7.50 Bipolar junction
vps > vgs — VT transistor models in various regions

for saturation operation of the MOSFET.) of operation.
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FIGURE 7.51 Characteristic
curves for a bipolar junction
transistor as predicted by the
piecewise linear model.
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voltage is 0.4 V, and the base-to-emitter voltage is less than 0.6 V. This region of
operation is called the reverse injection region. In this region, the behavior of the BJT is
that of a forward biased diode between the base and the collector, and an open circuit
at the emitter.

For simplicity, our introductory treatment will choose not to study both the reverse
injection and the saturation regions. Accordingly, our BJT circuits will all be designed to
avoid completely these regions of behavior.

In the rest of this example, we will discuss the piecewise-linear model for the BJT pre-
sented in Figure 7.49¢ and compare its predictions with the measured characteristics
(ic versus vcg for various values of ip) shown in Figure 7.48. We will plot the
characteristics predicted by the piecewise-linear model assuming 8 = 100.

To plot the characteristics, we identify BJT behavior in the two piecewise-linear regions
of operation that are of interest to us, and shown in Figure 7.50: cutoff and active.
We first observe that ic is zero when the BJT is in cutoff, that is, when i = 0 (see
Figure 7.50a). The curve labeled “Cutoff region” in Figure 7.51 depicts this situation.

Next, when ig > 0 and vcg > vpg — 0.4 V (or, equivalently, vcg > 0.2 V), the collector
current is a constant at 8 times the base current (Figure 7.50b). In the ic versus vcg plot
in Figure 7.51, these constant current curves appear as horizontal lines. Because 8 is a
constant, the ic versus ip relationship is linear, and so the lines are equally spaced for
equal increments in 7p.

Finally, when i > 0 and vcg = vgg — 0.4 V (or, equivalently, when vcg = 0.2 V), the
saturation region model applies (Figure 7.50c¢). vcE is correctly shown as being pinned at
0.2 V. The vertical line at vcg = 0.2 V corresponding to i indicates a short-circuit-like
behavior in which the collector current is limited only by external circuit constraints.

The similarity of the curves in Figures 7.48 and 7.51 show that our simple piecewise-linear
model is quite a good match for the behavior of the BJT.
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As a final thought, although our piecewise linear model for the BJT seems a bit com-
plicated at first glance, analog circuits are commonly designed such that BJT always
operates in its active region, and the base-to-collector diode is always OFF.® We can
achieve the desired effect by ensuring that the base-to-collector voltage never exceeds
0.4 V during normal operation (that is, vpc < 0.4 V, or equivalently, vcr > vpr—0.4 V).
This assumption will be made in all the BJT circuits in this book, so the collector diode
can be safely ignored. The resulting, simplified BJT model is depicted in Figure 7.52.

EXAMPLE 7.14 BJT CIRCUIT PARAMETERS Figure 7.53 shows
measured values of ig and vpg for a BJT within a circuit. Find the corresponding values
of vgg, ic, and ig using the BJT model containing two ideal diodes and a voltage source
(Figure 7.49¢).

Since ig > 0 and vcg > 0.2 V, it immediately follows that the BJT operates in its active
region. In other words, the emitter diode in Figure 7.49¢ must be ON, and the collector
diode must be OFF (see the active region BJT model in Figure 7.50b). Since the emitter
diode is ON, it appears as a short circuit, and so

vpE = 0.6 V.
Based on the active region model in Figure 7.50b, since ig = 0.01 mA,
ic = Big =1 mA.

Summing the currents into the base and collector terminals, we get

ip = ig + ic = 1.01 mA.

6. This design choice is not unlike the one we made with MOSFETSs, where circuit parameters
were chosen so that the MOSFET always operated in saturation.
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FIGURE 7.52 Asimpler BJT
model suitable for the cutoff and
active regions.

FIGURE 7.53 A bipolar junction
transistor in a circuit.
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EXAMPLE 7.15 A BJT AMPLIFIER Figure7.54 shows an amplifier cir-
cuit based on a BJT. This BJT amplifier configuration is called a commion emitter amplifier
since the emitter terminal of the BJT is common across the input and output ports.
Using the piecewise-linear model for the BJT, determine the relationship between v
and v, assuming that the BJ T device is operating in its active region. Using this relation,
determine the values of vp for vy = 1V, 1.1 V, and 1.2 V, given that Ry = 100 k€,

VIN R; =10k, B =100, and Vg =10 V.

Figure 7.55 shows the equivalent circuit for the amplifier in which the BJT has been
replaced with its piecewise-linear model. Notice we can safely ignore the collector diode
and use the simple BJT model in Figure 7.52 since we are told that the BJT is operating in
its active region. Figure 7.56 further shows the active region subcircuit for the amplifier.

FIGURE 7.54 A BJT amplifier.

The relationship between v and vy can be determined in a few short steps from the
active region subcircuit. The current through R; is simply the voltage difference across
the resistor divided by the resistance:

—0.6
ip = LTR . (7.50)
1

Once 7p is known, we can immediately determine the output voltage by writing the
node equation for the node with voltage v as follows:

Vs —vo

1.
R, Bip

Substituting for ig from Equation 7.50 and simplifying, we obtain the following relation
between v and v :

vo=Vy— ——BR;. (7.51)

3 R,
— Vo s— Vo
¥ic Sic

R i v Bis s g, PP s

B B
VIN %T% % VIN —f0.6V

1E 1 1e 1

FIGURE 7.55 Equivalent circuit for the BJT amplifier. FIGURE 7.56 Active region subcircuit for the BJT amplifier.
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Next, substituting Ry = 100 k2, Ry, = 10 k2, B = 100, and Vg = 10 V, we obtain
vo = 16 — 10yN.

Forvwy=1V,1.1 Vand 1.2 V,vp is 6 V, 5 V and 4 V, respectively.

As a further exercise, we will go ahead and confirm that the BJT is indeed in its active
region for the highest input voltage applied. (Remember that the higher the base voltage
the more likely it is that the collector diode in Figure 7.49¢ is turned ON. Thus, we need
check only for the highest input voltage.)

The highest input voltage considered in this example is 1.2 V. For 1.2 V, the collec-
tor voltage vo = 4 V. Since, in our circuit, vo = vcg = 4V, the base-to-collector
voltage is

UBC = VUBE — VUCE = 0.6—-4=-34V.

Since the voltage vpc across the collector diode in Figure 7.49¢ is —3.4 V, which is less
than 0.4 V, the collector diode is going to be OFF. (Equivalently, since vcg > 0.2 V, we
can directly say that that the collector diode is OFF.) We have thus confirmed that the
BJT is in its active region.

EXAMPLE 7T6 LARGE SIGNAL ANALYSIS OF THE BJT
AMPLIFIER Perform a large signal analysis of the BJT amplifier shown in
Figure 7.54. Assume that R; = 100 k2, Ry, = 10 k2, 8 = 100, and Vg = 10 V.

For BJT circuits with input vpy and output vo, large signal analysis attempts to answer
the following questions:

1. What is the relationship between v and vy in the active region?

2. What is the range of valid input values for active region operation of the BJT?
What is the corresponding range of output values?

From Equation 7.51 in Example 7.15, we know that the relation between vo and vN
for the BJT amplifier is

(vy — 0.6
vo = Vg — UINT)ﬂRL,
I

thereby completing the first step of large signal analysis.

Next, let us determine the range of input values for which the BJT operates in its active
region. To do so, we will first draw a graph of v versus vy to obtain insight into the
behavior of the amplifier for various values of the input voltage. When vpy = 0, we see
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R, Vo A . .
BJT is in its cutoff region

BJT is in its
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Vep>vpp— 04V
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BJT is in saturation
) B Vep=vpe— 04V
N —I_T 0.6V 02VL — _
1 1 -
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FIGURE 7.57 Cutoff region subcircuit for the BJT amplifier. FIGURE 7.58 vg versus vy for the BJT amplifier.

that ig = 0, and so the BJT is in cutoff. The cutoff region subcircuit for the BJT amplifier
is shown in Figure 7.57. In cutoff, both the diode and current sources are replaced by
open dircuits. It is easy to see from the circuit in Figure 7.57 that

vo = Vs.

Inspection of the amplifier equivalent circuit in Figure 7.55 indicates that the input cur-
rent ig will be zero (and the ideal diode will remain OFF ) as long as vy < 0.6. Thus
the output vo will remain at Vg for vy < 0.6. This fact is graphed in Figure 7.58 as the
horizontal straight line at voltage Vg for vy < 0.6.

When vpy exceeds 0.6 V by a small amount,” the ideal diode turns ON, and current
begins to flow through the resistor R;. In this situation, the active region equivalent
circuit in Figure 7.56 results. In the active region, vp is given by

06
vo = Vg — % BR;. (7.52)

This relationship appears as a straight line with slope —BRy/R; in the vp versus v
graph and is plotted as such in Figure 7.58. Thus,

vN =0.6V

7. If v exceeds 0.6 V by a large amount, the BJT might enter saturation. We will determine this
saturation region boundary momentarily.
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and
ig=0

are the input parameters at the lower boundary of the active region.

The vo versus v\ relationship in the active region shows that v decreases linearly
as v increases. The linear relationship applies as long as the BJT remains in its active
region of operation. The upper boundary (with respect to the input voltage) of the
active region is reached when vy becomes large, and vo becomes small enough that
the condition

vcg > vgg — 04V

is no longer met. Since vcg = vo and vpE is pinned at 0.6 V (from the active region
amplifier subcircuit in Figure 7.56), vo reaches the boundary point of the active region
when

vo=0.6—04=02V.

The corresponding value of i is given by

ic= M =980 uA.
L

The input voltage corresponding to this output voltage can be found by solving for v
from Equation 7.52 as follows

—06V
02=10-"N""°Y100 x 10 k.

100k

Solving, we get
uN =158 V.

This upper boundary of the active region (with respect to vN) is marked in Figure 7.58.
The corresponding value of i can be found from

. uN—06

B =98 ,bLA.

Ry

Once the BJT exits the active region and enters the BJT saturation region (for vy >
1.58 V), the saturation model for the BJT in Figure 7.50c applies and the equivalent
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FIGURE 7.59 Saturation region
subcircuit for the BJT amplifier.

FIGURE 7.60 BJT amplifier
showing the input bias voltage
explicitly.
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subcircuit in Figure 7.59 best models the saturation region operation of the amplifier.
By a straightforward application of KVL, we find that v is given by

vo=0.6—-04=02V.
In other words, v is pinned at 0.2 V by the BJT in its saturation region when the input

voltage vy exceeds 1.58 V. This fact is plotted as a horizontal line at vo = 0.2 V in
Figure 7.58.

To summarize, the limits on the inputs for active region operation are given by
0.6V <y <158V
and
0 <ig < 9.8 uA.
The corresponding limits on the outputs are given by
10V>vp>02V
and using ic = Bip,

980 uA > ic > 0 A.

EXAMPLE 7.17 SELECTING AN OPERATING POINT FOR
THE BJT AMPLIFIER Choose an operating point for the amplifier analyzed
in Example 7.16 to maximize the input voltage swing. What is the corresponding output
operating point and the output voltage swing? Is the output swing symmetric about the
output operating point?

The BJT amplifier circuit in Figure 7.54 is redrawn in Figure 7.60 to show explicitly that
the input voltage vpy is the sum of a bias voltage Vg and the signal v4. Our first task
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is to find the input operating point (Vp,Ip). We do so by reviewing the results from
Example 7.16.

From Example 7.16, we know that the valid range for the total input voltage vy to
ensure active region operation is given by

0.6V < un < 1.58 V.

The corresponding range for the input current is

0 < ip < 9.8 tA.

We can obtain the maximum input swing for active region operation by biasing the
input at the midpoint of the input valid range. In other words, we choose

V=109V
and
Iy = 4.9 uA.

The corresponding value for the output operating point voltage Vo can be obtained
from Equation 7.52 as

Vo = Vg — %_Rﬂﬂh =51V.
1

Similarly, the value of the output operating point current I¢ is given by
Ic = BIg = 490 uA.

We know from Example 7.16, that the output voltage swing for active region operation
is given by

10V>vo>02V

Our output operating point of 5.1 V falls in the center of this range, and so the output
swing is symmetric about the 5.1 V operating point. The symmetry results directly from
the linearity of the BJT in its active region. Contrast this result with that for the MOSFET
(Section 7.7), in which the output swing was asymmetric due to the MOSFET’s nonlinear
behavior in its saturation region.

I EXAMPLE 7.18 BETTER BJT MODELS

381



382 CHAPTER SEVEN

FIGURE 7.62 A differential
amplifier.
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EXAMPLE 7.19 LARGE SIGNAL ANALYSIS OF A DIFFER-
ENTIAL AMPLIFIER Thisexample studies the differential amplifier shown in
Figure 7.62. Differential amplifiers are widely used in analog signal processing, and are
the heart of operational amplifiers. The applications of differential amplifiers are best
discussed in the context of small signal analysis, and so we defer a detailed discussion of
the applications until Chapter 8. Furthermore, a complete operational amplifier circuit
will be studied in detail in Example 7.21, and operational amplifier applications will be
discussed in Chapter 15. So for the present purposes, we will simply treat the amplifier
in Figure 7.62 as yet another example of a MOSFET amplifier.

The amplifier in Figure 7.62 has two input voltages, viN1 and vNp; and one output
voltage, voyT. The goal of this exercise is therefore to determine voyr as a function of
vt and vpno. The Vi and I sources serve only to bias the amplifier, and are assumed
to be constant.

To begin the analysis, we assume that both MOSFETSs are identical, and that
both MOSFETS operate in their saturation regions. Therefore,

ip1 = = (wes1 — V) (7.53)

SIS

im = =(ess — V)2 (7.54)

Further, from KCL applied to the node at which the two MOSFETs and the
current source join,

ip1 +ipp =1Is, (7.55)

and from KVL applied to the loop around the two MOSFETs through ground,

VN1 — UGSt +vGs2 — N2 = 0. (7.56)

VINI
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Finally, at the output of the amplifier,
vout = Vs — Ripy, (7.57)

where it has been assumed that igyT = 0. Equations 7.53 through 7.57 may now be
solved to determine voyTt as a function of vN; and vpNp. We will do so in two steps.
First, Equations 7.53 through 7.56 will be solved to determine ipy; as a function of vN1
and vNp. Then, Equation 7.57 will be used to determine voyt from ipy;.

To determine ipy, first substitute Equation 7.53 into Equation 7.55 to eliminate ipq,
then substitute Equation 7.56 into the result to eliminate vGgy, and finally substitute
Equation 7.54 into the result to eliminate vggy. This yields

2
. K 2
IS:lDZ'f'E VINl—UIN2+,/% . (7.58)

Equation 7.58 is a quadratic equation in /2ip,/K and can be rewritten as

2

2ipn 2ipp 5, 2
222+ 20ma - ome)y| 22+ o — - 7.59
K (1 — viN2) e (N1 — VIN2) I (7.59)

From Equations 7.58 and 7.59 it is apparent that ip; depends only on the difference
voltage vt — vN2 when both MOSFETS operate in their saturation regions. That is
why the amplifier is referred to as a differential amplifier.

The solution to Equation 7.59 is

2

. K 4
=\ 5~ Nt —vN2)2 — ot o |- (7.60)

Note that the positive sign in the solution to Equation 7.59 is chosen in Equation
7.60 because /2ip/K must be positive. Finally, Equation 7.60 can be substituted into
Equation 7.57 to yield

2
RK 41
vout = Vs — < ?S — (N1 —vmN2)? — ot o |- (7.61)
From symmetry, ip; may also determined to be
2
. K 4l
ipr=~< /= — N2 —uN1)? — oo o |- (7.62)

8 K
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From Equations 7.60 and 7.62 it is apparent that the amplifier functions such that the
difference voltage vNy1 — vN2 steers the total current I towards either ipy or ipp,
depending on its sign.

Equations 7.60 through 7.62 are valid only as long as both MOSFETSs remain in their
saturation region of operation. One requirement for saturation operation is that v —
vN2 | must not be so large that either MOSFET is cut off. Thus, +/2ip;/K, and similarly
v/2ip1/K, must be positive. From Equations 7.53 and 7.54, this is equivalent to vgs; >
Vr and vgsy > V7. From Equations 7.60 and 7.62, cutoff is therefore avoided as
long as

215

x> (N1 — o)™
Additionally, neither MOSFET may be driven into its triode region. This may be avoided
by using a sufficiently large value of Vg, or alternatively by further limiting the allowable

range of vN1 and vpNp.-

(7.63)

EXAMPLE 7.20 MORE ON THE DIFFERENTIAL AMPLIFIER
Next, we discuss a numerical example related to the differential amplifier of
Example 7.19. For this amplifier, let Vs = 10 V, Is = 0.5 mA, K = 1 mA/ V2,
Vr=1V,and R = 10 kQ.

Given these parameters, from Equation 7.61,

2
vour =10V —1.25§ V1 (\/2 V2 — (N1 — vme)? — vt + U[Nz) . (7.64)

Note that when v = viNg, ip1 = ip2 = Is/2 = 0.25 mA, and so voyr = 7.5 V.
Further, from Equation 7.63,

g —umN2| <1V (7.65)

to avoid cutoff. Correspondingly, vouT will range from 10 V when MOSFET M2 is cut
off by the application of ying — N2 = 1V, to 5 V when MOSFET M1 is cut off by the
application of yng — Ny = 1 V.

EXAMPLE 7.2 LARGE SIGNAL ANALYSIS OF AN OPERA-
TIONAL AMPLIFIER CIRCUIT As will be clear in Chapter 15, the dif-
ferential amplifier shown in Figure 7.62 does not quite fit our notion of an operational
amplifier because voyT is not zero for v = viN2. This can be remedied with the addi-
tion of a common-source stage built with a p-channel MOSFET, as shown in Figure 7.63.
The common-source stage shifts the level of the output so that voyT can be zero for
vN1 = viN2- It also provides additional voltage gain. Thus the circuit in Figure 7.63
serves as a simple operational amplifier.
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The behavior of a p-channel MOSFET essentially mirrors that of the n-channel MOSFET.
Correspondingly, vGs, vps, and ip are all negative in the saturation region. Further, the
threshold voltage V7 is typically negative. Only the parameter K is positive. Thus, for
a p-channel MOSFET,

. K
ip = =5 (vGs = Vr)? (7.66)

vps <vgs — Vr <0 (7.67)

in the saturation region. Often, it is convenient to work with positive numbers.
In this case, Equations 7.66 and 7.67 can be rewritten as

K
—(—ip) = E(USG + Vp)? (7.68)

vsp = vsg + V1 = 0. (7.69)

In Equations 7.68 and 7.69, vsg, vsp, —ip, and K are all positive. Only V7 is negative.
We will use the latter formulation here.

To determine voyT in the operational amplifier as a function of vN1 and v, we again
assume that the two n-channel MOSFETSs are identical, and that all three MOSFET's
operate in the saturation region. To distinguish the n-channel MOSFETs from the
p-channel MOSFET, denote the n-channel MOSFET parameters by K, and V7, and
the p-channel MOSFET parameters by K, and V. Again, all parameters are positive
except for V.

The differential stage of the operation amplifier has already been analyzed in Example
7.19. In particular, from Equation 7.60 in Example 7.19 it was determined that

2

vsG3 = Ryipp =

RiKy [ [4ls
Ky

— — (uN1 — vm2)? — vt + V[NZ) . (7.70)
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FIGURE 7.63 An operational
amplifier built using a differential
amplifier and a p-channel MOSFET
amplifier.
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The common-source stage built with the p-channel MOSFET behaves according to

. RyK
vout = —Vs + Ra(—ip3) = = Vs + —L(usGs + V). (7.71)
Combining Equations 7.70 and 7.71,
RyK,, [ R{K 41 2
2 s
VOUTZTP ( 18 ; < ?_(ml_mz)z—ml +v1Nz) +VTp) -Vs. (7.72)
n

Finally, in order to meet the requirement that voyt = 0 when viN1 = VN, it must be

the case that
RoK, (Rl 2
Vs = % <%S + VTP) . (7.73)

In general, it is also necessary to derive the conditions under which all MOSFETs remain
in their saturation region of operation. For brevity, we will not do that here.

EXAMPLE 7.22 NUMERICAL ANALYSIS OF OP AMP
CIRCUIT Letusnow conduct a numerical analysis of the operational amplifier of
Example 7.21. Following Example 7.20, let Vs = 10 V, Iy = 0.5 mA, K, = 1 mA/V?,
V1, =1V, and Ry = 10 k. Further, let K, = 1 mA/V? and Vip=-15V.

Then, from Equation 7.73, R, must be 20 k2 in order for voyt to be biased at 0 V
when v = viN2. Given this design, Equation 7.72 yields

2
vour =10 V™! (1.25 vt (\/2 V2 — (1 = vne) — v + mm)

2
- 1.5 V) —-10V (7.74)

as the unloaded input-output relation of the operational amplifier, assuming that all
MOSFETS remain in their saturation region of operation. This is a complicated nonlinear
equation, but as shown in the following chapter, it simplifies significantly and becomes
linear for small signals.

7.8 SWITCH UNIFIED (SU) MOSFET MODEL

This section presents a more elaborate model of the MOSFET and can be
skipped without loss of continuity.

The actual characteristics of the MOSFET shown in Figure 7.12 indicate
that the MOSFET has very interesting behavior in the triode region. For a fixed
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vGs, we approximated the behavior as a linear resistor using the SR model.
Clearly, the SR model does not capture MOSFET behavior if we vary vgs.
Worse yet, even for a given value of vgg, the SR model becomes inaccurate as
the value of vpg approaches vgs — V1. For more accuracy, we can develop a
more elaborate model for the triode region operation of the MOSFET. Aban-
doning the piecewise-linear method, this more elaborate model characterizes
the behavior of the MOSFET in the triode region as a nonlinear resistor, whose
characteristics depend on vgs. When combined with the SCS model for the
saturation region, the nonlinear resistor model in the triode region results in
a continuous set of MOSFET curves. The resulting combined model for the
triode and saturation regions is called the switch unified model or the SU model
of the MOSFET.

The SU model can be summarized as follows:

K [(UGS — Vups — %} for vgs > Vrand vps < vgs — Vr

IDS = | Kwgs—V1)
2

0 for vgy < Vr.

for vgs > Vrand vps > vgs — Vr

(7.75)

The characteristics of the MOSFET according to the SU model are plotted
in Figure 7.64. As promised, notice that the curves in the triode and the satu-
ration regions are continuous and provide a good match with actual MOSFET
characteristics shown in Figure 7.11.

Saturation region

'Ds VGS6

VGS5

VGs4 v,..2V

VGS3

VGs2

VGs1 )
A Gs< Vr Cut0=ff region
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FIGURE 7.64 Characteristics of
the MOSFET device according to
the SU model.
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10V,

FIGURE 7.65 A circuit
containing two MOSFETs. We are
told that M1 operates in the
saturation region and that M2
operates in the triode region.
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EXAMPLE 7.23 ANALYSIS USING THE SU MODEL Determine
the voltage vp for the MOSFET circuit shown in Figure 7.65. You are given that
MOSFET M1 operates in its saturation region, and that MOSFET M2 operates in the
triode region. The MOSFET parameters are indicated in Figure 7.65.

For the MOSFET circuit shown in Figure 7.63, ips for both MOSFETs is the same.
Accordingly, we will write expressions for ipg for both MOSFETS, and equate them to
obtain the voltage vo. We are told that MOSFET M1 operates in its saturation region,
and so the saturation region equation applies. Thus for MOSFET M1

. (vGs — V)2
ip=K—.
P 2
Substituting vGs = 5 — vo, V=1V, and K = 2 mA/V?, we get
ip=10"34 — vo)*. (7.76)

Next, since we are given that M2 operates in the triode region, we can write

Uz%s
ip = K| (vgs — V1)vps — > |

Substituting vgs = 2V -1V, Vr = 1V, vpg = vo, and K = 64 mA/V2, and
simplifying, we get

2
ip =64 %1073 [UO - "20} . 7.77)

Equating the right-hand sides of Equations 7.76 and 7.77, and simplifying, we get the
following equation for vo:

33vd — 7200 + 16 = 0,
which yields
vo =025 V.

When v is 0.25 V it is easy to see that M1 is indeed in saturation and M2 is in the
triode region.
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The last two chapters have discussed a set of progressively more elabo-
rate models for the MOSFET. This section summarizes the models and
discusses when it is appropriate to use each of the models.

The simplest model for the MOSFET is the S model. This switch model
models the on-off behavior of the MOSFET. Accordingly, the S model is
appropriate when the designer cares only about the logical behavior of a
circuit containing MOSFETs; in other words, where the voltage values of
interest are only highs and lows. Thus, the S model is commonly used
to arrive at the topology of a digital circuit to perform some given logical
function. The S model is also useful in certain analog situations where the
specific properties of the MOSFET beyond its on-off behavior have no
effect on circuit behavior. Certain power circuits that use the MOSFET as a
switch fall under this category.

The SR model of the MOSFET characterizes the behavior of the MOSFET
as a resistor when the MOSFET is in its ON state, and vgg is fixed. The SR
model is appropriate for most types of simple analyses involving digital cir-
cuits, such as static discipline computations of voltage levels, simple power
calculations, and, as will be discussed in later chapters, delay calculations.
Although technically the SR model is valid only in the MOSFET’s triode
region (that is, when vps < (vGgs — V7)), for simplicity, we ignore this
limitation and apply it in digital circuit applications irrespective of the value
of the drain voltage, since the model is such a gross simplification of the
MOSFET’s behavior in the first place.

The SCS model characterizes the behavior of the MOSFET in its saturation
region. By designing analog circuits to adhere to the saturation discipline,
the SCS model is appropriate for most of our analog applications such as
amplifiers and analog filters.

The SU model provides accurate models of the MOSFET in both the triode
and the saturation regions, but is more complicated. In its saturation region,
it behaves as the SCS model. So, for analog circuits that are designed to
adhere to the saturation discipline its use is no different than the use of
the SCS model. Thus the SU model is useful when the designer wishes
to conduct very accurate analyses of digital or analog circuits in which
the MOSFETs are allowed to operate in both their triode and saturation
regions. To analyze a circuit containing MOSFETs, the designer first makes
an educated guess as to the region — triode, saturated, or cutoff — in
which each of the MOSFET's operates. Then, the designer writes node
equations for the circuit, selecting appropriate device equations for each of
the MOSFETs. After solving the set of equations for the node voltages and
edge currents, the designer must confirm that their initial guess as to the
state of the MOSFET is consistent with the final node voltages. We leave a
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detailed treatment of the SU model for more advanced courses on circuits.
In the rest of this book, we will focus on the S, the SR, and the SCS models.

» This chapter also introduced the MOSFET amplifier. The amplifier is an
example of a nonlinear circuit. We chose to operate the amplifier under the
saturation discipline so that it provided a voltage gain for an input signal
and so that the MOSFET operated solely in its saturation region, where
the SCS model applied. We also discussed the application of a DC offset
voltage at the input of the amplifier to boost the signal of interest sufficiently
so that the amplifier operated in saturation for the entire dynamic range
of input signal variation. The application of a DC offset established a DC
operating point for the amplifier.

» We introduced large signal analysis for the amplifier. Large signal analysis
summarizes how the amplifier behaves for large swings in the input signal
and involves answering the following questions:

1. What is the relationship between the amplifier output vo and its input
vN in the saturation region?

2. What is the range of valid input values for the amplifier under the
saturation discipline? What is the corresponding range of valid output
values?

»  The next chapter will discuss a small signal analysis of the amplifier. Small
signal analysis is appropriate when the input signal perturbations about the
operating point are very small.

EXERCISES EXERCISE 7.T Determine the voltage vp across the voltage-dependent current
source shown in the circuit in Figure 7.66 when
. K
s’ i=fl)=—.
REV v?
+ T -
Vs C—) EXERCISE 7.2 Consider the circuit containing the dependent current source
shown in Figure 7.67.
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FIGURE 7.66

FIGURE 7.67
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a) Determine v in terms of vy if ip = Kjvg. What are the units of K;?

b) Determine vg in terms of vy if ip = Kyig. What are the units of K, ? Ry
AAAA
YYVYY
. . . . +
¢) Determine v( in terms of vj if ip = K3v§. What are the units of K3? e
= K Vg

d) Determine vg in terms of v; if ip = K4i§. What are the units of Ky? Vg C+> -

EXERCISE 7.3 The resistance R in the circuit shown in Figure 7.68 depends on
the voltage across resistor Rp. Determine vp if

FIGURE 7.68

K
R=—.
UB
EXERCISE 7.4 AMOSFET is characterized by the following equation:
. K
ips = —(ves — V1)
2
in its saturation region. A MOSFET operates in the saturation region for

vps = vgs — Vr and vgs = V.

Express the vpg > vGs — V7 constraint in terms of ipg and vpg.

EXERCISE 7.5 The MOSFET in Figure 7.69 is characterized by the equation:
: K
ips = E(UGS - Vr?

in its saturation region according to the SCS model. The MOSFET operates in the
saturation region for

vps > vgs — V1 and vgs > V. FIGURE 7.69

The MOSFET operates in its triode region for

vps < vGs — Vr and vgs = V7.

Suppose the MOSFET is characterized by the SR model in its triode region. In other
words,
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in the triode region. Assume that Roy is a constant with respect to ipg and vpg, but its
value is some function of vg. Further suppose that ipg = 0 when vgs < V7

a) Foruvgg = 5V, what value of Ron makes the MOSFET ipg versus vpg characteristic
continuous between its triode and saturation regions of operation?

b) Plot vg versus vp for the circuit shown in Figure 7.69. This circuit is useful in
plotting the MOSFET characteristics. Assume that K = 1 mA/V? and V7 = 1 V.
Use the value of Ry calculated in (a). Use a volt scale for Vp and a millivolt scale
for vg.

EXERCISE 7.6 Consider the MOSFET amplifier shown in Figure 7.70. Assume

that the amplifier is operated under the saturation discipline. In its saturation region, the
MOSEFET is characterized by the equation:

. K
ips = E(vcs - Vp)?

where ipg is the drain-to-source current when a voltage vy is applied across its gate-
to-source terminals.

a) Draw the equivalent circuit for the amplifier based on the SCS model of the MOSFET.

FIGURE 7.70 . . . .
b) Write an expression relating vo to ipg.

¢) Write an expression relating ipg to vy
d) Write an expression relating vg to vy

e) Suppose that an input voltage V7 results in an output voltage V. By what factor
must V7 be increased (or decreased) so that the output voltage is doubled?

f) Suppose, again, that an input voltage Vj results in an output voltage V. Suppose,
further, that we desire an output voltage that is 2V. Assuming that both the
input voltage and the MOSFET do not change, what are all the possible ways of
accomplishing the desired doubling of the output voltage?

g) The power consumed by the MOSFET amplifier in Figure 7.70 is given by Vsipg,
assuming that no current is draw out of the v terminal. Which of the alternatives
for doubling V¢ from parts (e) and (f) will result in the lowest power consumption?

EXERCISE 7.7 Consider, again, the MOSFET amplifier shown in Figure 7.70.
Assume that the amplifier is operated under the saturation discipline. The MOSFET
in doctored so its threshold voltage is 0. In other words, the saturation region of the
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MOSFET is now characterized by the equation:
. K,
ips = —v
DS 5GS

where ipg is the drain-to-source current when a voltage vgg is applied across its gate-
to-source terminals. The following questions relate to the large-signal analysis of the
amplifier:

a) Derive the relationship between the output voltage vo and the input voltage v.

b) Derive the range of valid input voltages. Under the saturation discipline, valid
input voltages are those that result in saturation region operation of the ampli-
fier. Determine the corresponding range of output voltages (vo) and output currents
(ips).

¢) Suppose we wish to amplify an AC input signal v;. Assume that v; has a zero DC
offset. Draw a circuit showing how a separate DC input voltage V; can be used to
bias the amplifier in a region where saturation region operation is achieved for both
positive and negative excursions of v;. Assuming the v; has symmetric positive and
negative swings, how would you choose the input operating point for the amplifier
that allows a maximum peak-to-peak voltage range for v;> What is the corresponding
output operating point (vo and ipg)?

EXERCISE 7.8 Thethree terminal device shown in Figure 7.71ais called a bipolar
junction transistor (BJT). Figure 7.71b shows a piecewise-linear model for the device, in
which the parameter 8 is a constant. When

ig>0
and

UCE > UBE — 0.4 V,

the emitter diode behaves like a short circuit, the collector diode like an open circuit,
and the collector current is given by:

ic = Bip.

Under the given constraints, the BJT is said to operate in its active region. For the rest
of this exercise, assume that 8 = 100:

a) Determine the collector current i¢ for a base current i3 = 1 uA and vcg = 2 V
using the model in Figure 7.71b.
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FIGURE 7.71 (a) A bipolar
junction transistor. B stands for
base, E for emitter, and C for
collector; (b) a piecewise-linear
model for the BJT.
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b) Sketch a graph of i versus vcg for ip = 1 pA. Using the model in Figure 7.71b.
In drawing this graph, assume that the current source turns off for

vcg <vpg — 04 V.

EXERCISE 7.9 Consider the bipolar junction transistor (BJT) amplifier shown in
Figure 7.72. Assume that the BJT is characterized by the large signal model from Exercise
7.8, and that the BJT operates in its active region. Assume further that Vg = 5V,
Rp, =10k, Ry = 500 kL, and g = 100.

a) Draw the equivalent circuit for the BJT amplifier based on the large signal BJT model
from Exercise 7.8.

b) Write an expression relating v to ic.
¢) Write an expression relating 7c to v].
d) Write an expression relating 7x to ip.
e) Write an expression relating vo to vy.

f) What is the value of v for an input voltage vy = 0.7 V? What are the correspond-
ing values of 7p, ic, and ig?

EXERCISE 7.10 In this exercise you will perform a large signal analysis of
the BJT amplifier shown in Figure 7.72. Assume that the BJT is characterized by the
large signal model from Exercise 7.8. Assume further that Vg = 5 V, Rp = 10 k€,
R; =500 k2, and 8 = 100.

a) Write an expression relating vo to vy.

b) What is the lowest value of the input voltage vj for which the BJT operates in its
active region? What are the corresponding values of i, ic, and vo?

¢) What is the highest value of the input voltage vj for which the BJT operates in its
active region? What are the corresponding values of 7p, ic, and vp?

d) Sketch a graph of vp versus vy for the four parameter values given.

PROBLEM 7.1 Consider the MOSFET voltage divider circuit shown in
Figure 7.73. Assume that both MOSFETSs operate in the saturation region. Determine
the output voltage Vo as a function of the supply voltage Vs, the gate voltages V4
and Vp, and the MOSFET geometries L1, Wy, and L,, W. Assume that the MOSFET
threshold voltage is V7, and remember, K = K,, W/L.
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PROBLEM 7.2 An inverting MOSFET amplifier is shown in Figure 7.74, Vg
together with an ips—vpg characteristic for the MOSFET. This characteristic is simpler *
than the SCS model presented in this chapter. The characteristic is simply the standard
MOSEET characteristic with the triode region compressed onto the y-axis. |: Ly
Alternatively, this characteristic can be viewed as describing ideal switch behavior that is A ? "
extended to exhibit a saturating drain-source current. In other words, for vgs < Vr, the

MOSFET behaves like an open switch with ipg = 0. For vgs > V1, the MOSFET
behaves like a closed switch with vpg = 0 provided that ips < K/2(vgs — V)2, |: )
However, once ips reaches K/2(vgs — V)2, which is the maximum current the Vg e
MOSFET can carry for a given vgs, MOSFET operation enters a saturation region

in which the MOSFET behaves as a current source of value K/2(vgs — V7)*. Saturated
operation is as described by the saturation model given in Figure 7.74.

FIGURE 7.73

a) Determine voyT as a function of v\ for 0 < .
b) What is the lowest value of vy for which voyT = 0?

o) Assume that Vg = 15 V, R = 15k, Vr = 1V, and K = 2 mA/ V2. Graph vour
versus yN for 0V <y <3 V.

d) On the input-output graph, identify the regions over which the MOSFET behaves
as an open dircuit, behaves as a short circuit, and exhibits saturated behavior.

. n-channel MOSFET n-channel MOSFET model
IDS  characteristic for the saturation region

D + Closed switch Saturation region \
behavior on the veszVr

ipg axis /
VDS
vgs < Vr

Open switch behavior
on the vpg axis

v,
VIN S ouT

FIGURE 7.74

PROBLEM 7.3 A two-stage amplifier is shown in Figure 7.75. It is constructed
by cascading two one-stage amplifiers of the type seen in Problem 7.2. In analyzing
this amplifier, use the MOSFET model described in Problem 7.2 and illustrated in
Figure 7.74.




396

FIGURE 7.75
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VIN

a) The fact that a second amplifier stage is connected to the first amplifier stage does
not change the operation of the first stage. That is, the relation between u\p and
vN here is the same as the relation between vouT and vy in Problem 7.2. Why?
What terminal characteristic of the second MOSFET must change in order for this
not to be true?

b) Derive the relation between v\p and v for 0 < vy, and the relation between
vout and uvmp for 0 < vyvp < Vs. (Hint: see Problem 7.2.)

¢) Derive the relation between voyT and v for 0 < yN.

d) Determine the range of input voltages for which both MOSFETSs operate under the
saturation discipline. What are the corresponding ranges for vypp and voyT?

e) Using the numerical parameters given in Problem 7.2, graph vout versus v\ for
v for 0 V < vy < 3 V. Compare this graph to the input-output graph found in
Problem 7.2, and explain the differences.

PROBLEM 7.4 Consider again the two-stage amplifier shown in Figure 7.75.
Suppose that the MOSFETs are characterized by the following equation in their
saturation region:

K

: 2
DS = ~Vgg-
5 VGs

In other words, the threshold voltage V1 = 0. Furthermore, the MOSFETSs operate in
their saturation region when

vps = vgs and wvgs > 0.

Show that there is only one input voltage for which both stages simultaneously operate
under the saturation discipline. What is that input voltage?

PROBLEM 7.5 Consider the “source-follower” or “buffer” circuit shown in
Figure 7.76. Use the SCS MOSFET model (with parameters V1 and K) to perform
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a large-signal analysis of this circuit according to the following steps:

a) Assuming that the MOSFET operates in its saturation region, show that voyr is
related to vpN according to

B [\/ (2/RK) + 4l — V) — \/Z/RKT
_ : .

b) Determine the range of vy over which the assumption of saturated MOSFET
operation holds. What is the corresponding range for voyt?

AVs TVS

‘; Equivalent

D |
G[ ' ¢ ip 1 SCSmodel
S .Y ___ J (saturation)
+ +
YN R §§ YouTt VN R §§ vour
FIGURE 7.76

PROBLEM 7.6 This problem studies the use of a mythical MOSFET-like device
called a ZFET to construct an amplifier as shown in Figure 7.77. The ZFET operates
in its saturation region when vgs > 0 and vpg > 0. In this region, the drain-source
terminal relation is ipg = Kl/és, where K is a constant having units of A/V3. When
vps = 0, the ZFET exhibits a short circuit between its drain and source terminals, and is
said to operate outside its saturation region. Similarly, the ZFET exhibits an open circuit
for vgs < 0 as it again operates outside its saturation region. Finally, the gate terminal
always exhibits an open circuit. These characteristics are summarized in Figure 7.77,
beneath the symbol for the ZFET.

a) Assuming saturated operation of the ZFET, determine voyr as a function of vyy.
b) Over what range of vy will the ZFET operate in its saturation region?

o) Assume that Vg = 10 V, R, = 1k, and K = 0.001 A/ V3. Sketch and clearly label
vouT as a function of v for =1V <oy <3 V.

d) Given the parameters of part (c), can the amplifier be used as an inverter that provides
a valid output high voltage threshold of Vi = 7 V? Why or why not? Assume that
Vp=2V.

e) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of Vi = 7 V? Why or why not? This
time around, assume that Vi =1 V.
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ZFET Symbol

l ips

VDS
G +

VGs

S _ 3
ips = Kvgg

For v.¢>0
Vps>0

ZFET Amplifier

[
|

A
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=

=

*—vour
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FIGURE 7.77
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FIGURE 7.78
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FIGURE 7.79
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PROBLEM 7.7 Consider the difference amplifier circuit shown in Figure 7.78.
Notice that the difference amplifier is powered by +Vs and —Vg power supplies.
Assume that all MOSFET's operate under the saturation discipline, and, unless indicated
otherwise, are characterized by the parameters K and V7.

a)

b)

Determine vo and vg for the connection shown in Figure 7.78a. In this figure, the
gates of the MOSFETS are connected to ground.

Consider the difference amplifier version shown in Figure 7.78b. In this figure, a
MOSFET implementation of a current source replaces the abstract current source
from Figure 7.78a. Determine values for Vg and W/L such that the circuit in (b) is
equivalent to that in (a).

The difference amplifier in Figure 7.78¢ is driven by two input voltages vj4 and vp as
shown. Assume that the input voltages satisfy the following constraint vj4 = —v
at all times. Determine vo4, v0oB, and vo as a function of vj4.

PROBLEM 7.8 Consider the amplifier circuit shown in Figure 7.79. The ampli-
fier is powered by a + Vg and a — Vg power supply.

a)

Determine v and ip as a function of vj under the saturation discipline. Assume that
the MOSFET parameters K and VT are given.

Determine the range of valid input voltages for saturation region operation.
Determine the corresponding valid range for v and ip.

Determine the output voltage when the input is grounded; in other words, for
v = 0.

Determine the value of vy for which v; = v in terms of Vi, Ry, and the MOSFET
parameters.
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PROBLEM 7.9 Consider the current mirror circuit in Figure 7.80.

Vs

I I
1y $Re
W, W, 7 FIGURE 7.80
L L

(a)

a) Referring to Figure 7.80a, determine I}, as a function of I assuming both MOSFET's
operate under the saturation discipline. Both MOSFETs have the same values for
K, and V. Does I change if Vi changes? What are the conditions under which
I =12

b) Now consider Figure 7.80b. The current I can be increased either by increasing Vs or
decreasing Rc. Assuming that either Vg or R may be changed, and that W/, =
W>/Ly = W/L, determine the range of values of I for which both MOSFETSs operate
under the saturation discipline. Assume both MOSFETs have the same values for
K, and V7.

PROBLEM 7.10 Consider the circuit shown in Figure 7.81. Assume that the
MOSFET operates under the saturation discipline.

s p Ip
Yo

Ry G Rp

l+Vs— +VS"1

FIGURE 7.81

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine vp and ip in terms of Rp, Rg, Vs, and the MOSFET parameters K
and V.

PROBLEM 7.11 Consider the “common-gate amplifier” circuit shown in
Figure 7.82. Assume that the MOSFET operates under the saturation discipline.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.
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s p Ip
Vo

vV G RD

l+VS» +VS"1

FIGURE 7.82

b) Determine vp and ip in terms of vy, Rp, Vs, and the MOSFET parameters K
and V.

¢) Determine the range of values of vj for which the MOSFET operates under the
saturation discipline. What is the corresponding range of vp?
FIGURE 7.83
Vg PROBLEM 7.12 Consider the MOSFET circuit shown in Figure 7.83. Determine
A the value of vo in terms of the other circuit parameters. Assume the MOSFET is in
saturation and is characterized by the parameters K and V.

§ R PROBLEM 7.13 Consider the MOSFET circuit shown in Figure 7.84. Determine
=t the value of v in terms of the other circuit parameters. Assume the MOSFET is in

saturation and is characterized by the parameters K and V.

PROBLEM 7.14 Figure 7.85 shows a MOSFET amplifier driving a load resistor
RE. The MOSFET operates in saturation and is characterized by parameters K and V.
I: Determine voyT versus v for the circuit shown.

Rg PROBLEM 7.15 Determine voyt versus v for the circuit shown in Figure 7.86.

t Assume that the MOSFET operates in saturation and is characterized by the parameters
— K and V1. What is the value of voyT when vy = 0?

PROBLEM 7.16 Determine vp versus vy for the circuit shown in Figure 7.87.
Assume that the MOSFET operates in saturation and is characterized by the parameters
K and V7. What is the value of v when vy = 0?

FIGURE 7.84

PROBLEM 7.17 Determine v versus v for the circuit shown in Figure 7.88.
Assume that the MOSFET operates in saturation and is characterized by the parameters
Kand V7.

PROBLEM 7.18 Consider the BJT circuit called the “common-collector
amplifier” shown in Figure 7.89. This BJT amplifier configuration is also called the source
follower circuit. For this problem, use the piecewise-linear BJT model from Exercise 7.8.

VI Assume that the BJT operates in its active region.

a) Draw the active-region equivalent circuit of the BJT source follower by replacing the
FIGURE 7.85 BJT by its piecewise-linear model.
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FIGURE 7.86 FIGURE 7.87

vy |:

FIGURE 7.88 FIGURE 7.89

b) Assuming active region operation, determine v in terms of vy, Ry, Rg, and the BJT
parameter .

¢) What is the value of v when BRE >> Rp?

d) Compute the value of v given that vy = 3 V, R; = 10 k2, Rg = 100 k2, 8 = 100,
and Vg =10 V.

e) Determine the range of values of vy for which the BJT operates in its active region

for the parameter values given in (d). What is the corresponding range of vo?

PROBLEM 7.19 Consider the compound three-terminal device formed by con- FIGURE 7.90
necting two BJTs in the configuration shown in Figure 7.90. The three terminals are




402

CHAPTER SEVEN

THE MOSFET AMPLIFIER

labeled C', B, and E'. The two BJTs are identical, each with 8 = 100. Assume that
each of the BJTs operates in the active region.

a) Draw the active-region equivalent circuit of the compound BJT by replacing each of
the BJTs by the piecewise-linear model shown in Exercise 7.8. Clearly label the C/,
B’, and E’ terminals.

b) In the configuration shown, the compound device behaves like a BJT. Determine the
value of the current gain 8’ for this compound BJT.

¢) When the base current ip > 0, determine the voltage between the B’ and E’
terminals.









THE SMALL-SIGNAL MODEL

81 OVERVIEW OF THE NONLINEAR
MOSFET AMPLIFIER

An unfortunate feature of the MOSFET amplifier discussed in Chapter 7 was
its nonlinear input-output relationship. Shown in Figure 8.1, the MOSFET
amplifier has the following input-output relationship:

vo = Vs —ipR. (8.1)

Substituting for the current 7p in terms of the MOSFET input voltage under
the saturation discipline, we get the following nonlinear relationship between
vy and vo:

— V)2
vo = Vs — K%RL. (8.2)

The nonlinear relationship between the input and the output voltage is
plotted in Figure 8.2. The nonlinear relationship makes it difficult for us to
analyze and to build circuits using the amplifier.

82 THE SMALL-SIGNAL MODEL

Many circuit applications, such as audio amplifiers, demand a linear amplifier
of the form depicted in Figure 8.3. The amplifier shown in the figure has a
constant gain A that is independent of the input voltage. Does that mean we
cannot use the MOSFET amplifier in these linear applications? It turns out
that total variables representing signals such as those input to an audio ampli-
fier commonly consist of two components: a DC offset (or an average value),
plus a time-varying component with a zero average. We will show that if the
time-varying component is small, then the incremental amplification provided
by the MOSFET amplifier to the time-varying component about the operating
point defined by the input DC offset will be approximately linear. As we saw in
Section 4.5, this observation actually generalizes to arbitrary nonlinear circuits:
The response of a circuit to small perturbations about an operating point will
be linear. Thus, if the signals of interest to us can be represented as small per-
turbations about an operating point, then the response of arbitrary nonlinear

Vo
Vi
Vs
Ry
Yo

2
_ K(v-Vy)
vy D= T

FIGURE 8.1 The MOSFET
amplifier and its SCS circuit model.

405



406

CHAPTER EIGHT

THE SMALL-SIGNAL MODEL

Operating Point: (V,, V)

> lp
o0—— Am .
+ P — Oy
_ > vy In Out v,
v - Ti A ﬂ -
Vo =Av;
FIGURE 8.2 v versus v curve for the amplifier. FIGURE 8.3 A linear amplifier abstraction with a constant gain A.

circuits to the small perturbations will be linear. As seen in Section 4.5, restrict-
ing signals to small perturbations about an operating point so the response of
circuits to the perturbations is linear is a constrained way of using circuits that
we call the small-signal discipline.

When the total variable comprises a DC operating value plus a small pertur-
bation around the operating point, our models for the response of circuits to the
perturbations will be linear and hence very simple. However, our incremental
or small-signal models will apply only over a small range around the operating
point. In contrast, our models of the previous chapter captured the behavior
of the amplifier over a wide range of operation, but the models were complex.
Separate models over different regions had to be spliced together to obtain the
overall characteristics. Furthermore, the models were nonlinear. Such a tradeoff
between complexity of the model and the range over which it is valid is not
uncommon in modeling systems. In engineering practice, both extremes of
models are useful: complex accurate models and simple approximate models.
This chapter discusses small-signal models, which are simple models whose
range of applicability is limited. Despite their limitations, the simple models
are surprisingly useful engineering tools even when applied outside their strict
range of validity.

Section 4.5 introduced the following notation to distinguish between total
variables, their average DC values, and their incremental excursions about the
average values. We will denote total variables with small letters and capital
subscripts, average DC values using all capitals, and incremental values using
all small letters. Thus, v; denotes the total input voltage, V; the DC offset, and
v; the incremental component. Since the total variable is the sum of the two
components, we have

vi=Vi+u.
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Vo=AV,+v;)

KV + vl = Vp)?
=

Let us revisit the transfer curve of the amplifier shown in Figure 8.2. Con-
sider a very small region of the transfer curve in the vicinity of the operating
point (V, Vo). The slope of the curve segment is depicted in the figure. As
illustrated in Figure 8.4, if we focus our attention on the small curve segment
shown, it looks more or less linear. We will use this intuition to develop an
abstraction for amplifiers that appears linear for very small variations in the
input voltage.

The basic idea is that the amplifier transfer function appears linear for small
perturbations in the input voltage about a given bias point. We can arrive at the
same result analytically. Suppose that the amplifier is biased at some bias point:
(VI, Vo). Now suppose that we superimpose a small signal Av; = v; on Vj as
depicted in Figure 8.5. An example of a DC signal with a small superimposed
time-varying signal is shown in Figure 8.6.

We know from the SCS model of the MOSFET (see Equation 7.8) that the
current through the MOSFET is related to its gate voltage as:

. Kvgs — Vr)?
ing = % (8.3)
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FIGURE 8.4 A small segment of
the v versus v, curve.

FIGURE 8.5 Superimposing a
small (possibly time-varying) signal
on the DC bias voltage at the input
of the MOSFET amplifier, and the
corresponding SCS circuit model
for the combined input signal.
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FIGURE 8.6 A small time-
varying signal combined with
a DC offset voltage.

FIGURE 8.7 Output current for
the MOSFET for the combined
input voltage.
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Vi

For the combined input signal shown in Figure 8.5, the response current
ip through the MOSFET is the sum of two components: a bias current I, and
a change i; due to the incremental input signal v;. As depicted in Figure 8.7,
this combined current can be obtained by substituting for vgs as

K(Vi+vi] — V)
5 .

ip=fVi+v)=Ip+is= (8.4)

Since we know that v; is small compared to Vi, we can adopt the following
linearization technique to obtain the combined response: Model the MOSFET
characteristic curve accurately only in the vicinity of the bias point Vi and dis-
regard the rest of the curve. The Taylor series expansion is the natural tool for
this task.

The Taylor series expansion for the function y = f(x) in the vicinity of
x = X, is given by:

df 1 &*f
a X))+ — =1L
+ dx | x, (x )+ 2! dx?

(0= Xo)? o+

Xo

y =[x =f(Xo)
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Our goal is to use the Taylor series method to expand the MOSFET SCS
equation for the combined input voltage given in Equation 8.4 about the bias
voltage V. For our Taylor expansion, V; corresponds to X,, x corresponds
to Vi + v;, or x — X, corresponds to v;, and y corresponds to ip = Ip + .
Applying the Taylor expansion to Equation 8.4 about Vi we get

N 2
ip = (Vi 4+ ) = VI E ’;’) V1l 8.5)

K(V; — Vp)? K
zii711+mw—wm+zﬁ. (8.6)

If the incremental signal v; is small enough to permit us to ignore the second
order term (and higher terms, when they exist) in the Taylor series expansion,
the following simplification results:

. K(Vy— Vp)?
szJTJi+mw—wm. 8.7)

We know that the output current is composed of a DC component I and
a small perturbation iy. Thus, we can write

K(V; — Vp)?
%] T)+

3 K(Vi — V. (8.8)

Ip+ig=

Equating DC terms and corresponding incremental terms:

KV = Vp)?
Ip = % (8.9)

id = K(V[ — VT)U,‘. (810)

Note that Iy is simply the DC bias current related to the DC input voltage V7.
Accordingly, the DC terms relating I to Vj can be equated as in Equation 8.9
because the operating point values Ip, V; satisfy Equation 8.3, which is the
MOSFET equation. When the DC terms are eliminated from both sides of
Equation 8.8, the incremental relation shown in Equation 8.10 results.

Notice that the change in the output current i, is linearly related to the
change in the input voltage v; provided that v; is small compared to V). We
note that Equation 8.9 is exact because the small-signal model goes through the
exact model at the operating point. However, Equation 8.10 is approximate
because of the linearization.

A graphical interpretation of this result provides additional intuition. As
shown in Figure 8.8, Equation 8.8 is a straight line passing through the DC
operating point Vy, Ip and tangent to the curve at that point. Using the tangent
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FIGURE 8.8 Incremental
change in the output current for
the MOSFET for a small change in
the input voltage.

THE SMALL-SIGNAL MODEL

to compute the incremental change in the signal about the operating point is
tantamount to replacing the actual curve with the tangent. Clearly, the tangent
approximation is valid only for points that are close to the operating point. The
higher-order term in Equation 8.6 that we neglected would add a quadratic
term to the model, thereby making the fit exact for our model.

Let us return to the relationship between the incremental output current
and the incremental input voltage for the MOSFET:

ig = K(Vi— Vpu;. (8.11)

The K(V; — V1) term in Equation 8.11 relates the input voltage to the
current through the MOSFET. Notice that for a given DC bias, the K(V; — V)
term is a constant. Since the form of Equation 8.11 is similar to that for a
conductance, the K(V; — V1) term is called the incremental transconductance g,
of the MOSFET. Accordingly, we can write

id = gmvi (8.12)

where
gn = K(Vgs — V7). (8.13)

In our example, Vs = V.
Returning to our amplifier, we can express the total output voltage vo as
the sum of the output operating voltage Vo and the incremental change v, as

vo = Vo + v.
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From Equation 8.1 we know that
vo = Vs — ipRy. (8.14)

Replacing vo and ip with their corresponding DC and incremental
components,

Vo +vo = Vs —(Ip+iyRL (8.15)
= Vs — IpRy, — isRy. (8.16)
Therefore,

Vo = Vs —IpRy, (8.17)
UO = —ldRL (8.18)
= —gnViRy. (8.19)

In other words,
Small signal gain = Lo —gmRp = A. (8.20)

Vi

Notice from Equation 8.20 that the small signal gain is a constant —g,,R; ..
Note, however, that g, and therefore the gain, depends on the choice of bias
point for the amplifier. Equation 8.19 demonstrates that for small excursions
from a DC operating point, a linear amplifier results! This result forms the basis
of the small-signal model.

We can directly arrive at the small signal response — be it voltage or
current — using basic calculus for circuit responses that are differentiable, which
basically includes all physically realizable analog circuits. Recall that the deriva-
tive of a function y = f(x) at the point x, is the slope of the function at that
point, or f'(x,). As depicted in Figure 8.9, given a small change Ax from the

y=fo fixg + Av)
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point x,, we can compute the response to the change as the product of the
slope at that point and Ax. In other words,

floxo + Ax) = f(xo) + Lif)

Ax.

Xo

Thus the incremental change in the output is given by

_ b
o

In particular, we can obtain the incremental voltage gain directly from
the voltage transfer function, without first determining the incremental output
current. The input-output voltage relationship for the MOSFET amplifier is
given by

Ay Ax. (8.21)

Xo

vo = flvp)

— V)2
ZVS_KQRL_

As before, let v; = Avy denote a small change in the input voltage, and let
Vo = Avp denote the corresponding change in the output voltage. Then,

df ()
Vo = Vi
dvr ly=v,
= —Kr— VoRe |, _y, vi

= —K(Vi = V1)Rrv;

= —gmRpvi.

Not surprisingly, this result is the same as the one we obtained earlier.

To summarize, the small-signal model is a statement of a particular type
of linearized analysis of our circuits, which applies when the desired circuit
responds to signals that can be represented as an incremental perturbation over
a DC operating value. Put another way, it is a statement of a particular type of
constraint on our use of circuits called the small-signal discipline that allows us
to obtain linear behavior from nonlinear circuits over small ranges of operation.

Small signal model The responses of circuits to incremental changes from a
known DC operating point will be linear to a good approximation.
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A systematic procedure for finding incremental signal responses based on
the preceding discussion involves two steps:

1. Find the DC operating point of the circuit using DC values and the
complete characteristics of the devices. Determine the corresponding
large-signal response (possibly nonlinear) to the desired input.

2. Apply the Taylor expansion method to the large-signal response to derive
the small-signal response. Alternatively, as discussed in Section 8.2.1,
replace the large-signal circuit with its equivalent small-signal model
based on the Taylor expansion and obtain the small-signal response.

Small-signal analysis is an extremely useful technique that applies to all
physical systems with differentiable characteristics. In essence, it says that if we
operate within a small-signal discipline, the response of any physical system
to small perturbation will be linear! In turn, the effectively linear system is
amenable to linear analysis techniques, such as superposition.

For example, consider a two-terminal sensor S that behaves like a
temperature-dependent voltage source with the following nonlinear relation-
ship between its terminal voltage vs and its temperature Zs:

Vs = Bté

where B is some constant. If the ambient temperature is Ts and the correspond-
ing voltage is Vs, we can relate the incremental change in the terminal voltage v
to an incremental change in the temperature Z; using Equation 8.21 as follows:

ve = 3B t3 t.
s S (=T s

In other words,
vs = 3BT}t

When operating at a given ambient temperature, 3BT§ is a constant. Therefore,
the voltage response of the sensor to small changes in the temperature around
an ambient will be linear.

821 SMALL-SIGNAL CIRCUIT REPRESENTATION

A model that involves only the small-signal variables of a circuit, and hence
describes purely the small-signal behavior of that circuit, would greatly facilitate
small-signal analysis. Fortunately, such a small-signal model is relatively straight
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forward to develop by executing the following procedure:

1. Set each source to its operating-point value, and determine the operating-
point branch voltages and currents for each component in the circuit.
This is most likely the longest step in the procedure.

2. Linearize the behavior of each circuit component about its operating
point. That is, determine the linearized small-signal behavior of each
component, and select a linear component to represent this behavior.
The parameters of the small-signal components will commonly depend
on the operating point voltages or currents.

3. Replace each original component in the circuit with its linearized
equivalent and re-label the circuit with the small-signal branch variables.
The resulting circuit is the desired small-signal model.

The circuit that is generated by this procedure is the desired small-signal
circuit model, and is analogous to equating the small signal terms on both
sides of Equation 8.8 yielding the equalities in Equation 8.10. Further, it is a
linear circuit, and hence the analysis tools developed for linear circuits, such as
superposition and the Thévenin equivalent model, may be applied to its analysis.

At this point, it is worth discussing why the procedure works. To begin,
recognize that the operation of a circuit is described in total by two sets of
equations: the circuit connection laws of KVL and KCL, and the constitutive
laws that describe the behavior of the individual circuit components. With this
recognition, the small-signal analysis of a circuit may also be described by the
following more direct mathematical procedure:

1. Set each source to its operating-point value, and combine the equations
to determine the operating point of the circuit. This is essentially the
same step as in the previous procedure.

2. Return to the original set of equations. For each variable in every
equation, substitute for the total variable the sum of its operating-point
value and its small-signal value. Then, linearize the equations around the
operating point assuming that the small-signal terms are small.

3. Cancel the operating-point variables from the linearized equations to yield
a set of linear equations that relate the small signals to themselves. This
cancellation must always be possible since the linearization is defined to
pass through the operating-point. This cancellation is akin to separately
equating the operating point variables and the incremental variables as we
did in Equation 8.10.!

1.In other words, we start with a set of equalities defining the operating point using operating-point
variables, for example,

Vo = AVy.
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4. Complete the small-signal analysis by combining the linearized equations
to determine the desired small-signal variables in terms of the small-signal
inputs at the sources.

Now, let us examine the last procedure more closely. Notice that in Step 2
it is actually necessary to linearize only the constitutive laws that describe the
behavior of the individual circuit components because KVL and KCL are already
linear equations. It is for this reason that the first procedure called for the
linearization of only the constitutive laws. Further, because KVL and KCL con-
stitute a linear set of equations, they are unchanged by the linearization step.
This is important to recognize because KVL and KCL contain the informa-
tion concerning the topology of the original circuit. That is, they state which
branches are connected to which nodes, and which branches connect to form
which loops. Since KVL and KCL are unaffected by the linearization step,
the topological information is preserved during linearization. It is for this rea-
son that the small-signal circuit model has the same topology as the original
drcuit. Thus, the linearized set of equations describing the behavior of the
small-signal circuit variables that is generated by the more formal mathemati-
cal procedure comprises the original KVL and KCL equations, and linearized
component constitutive laws. Thus, to develop a small-signal circuit model
it is necessary to determine only equivalent linearized circuit components and
substitute them into the circuit in place of their corresponding original circuit
components.

Small-signal circuit models for various devices are summarized in
Figure 8.10.

» The small-signal equivalent model for an independent DC voltage source
is a short circuit because its output voltage does not change for any
perturbation of the current through it. In particular, the power supply
connection labeled Vi in most of our circuits gets shorted to ground in
the incremental circuit.

» The small-signal model for an independent DC current source is an open
circuit.

We then linearize, and obtain a new set of equalities in operating-point variables and
incremental variables, for example,

Vo +vo =AVy+ Auv,.

The equalities that defined the operating point in the first place (namely, Vo = AVj in our
example) may always be cancelled out of the linearized equations since they are only additively
connected to the small-signal variables. For our example, we thus obtain

vo = Avj.
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FIGURE 8.10 Small-signal
equivalent models.
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A resistor behaves identically for a large signal or a small-signal. Therefore
its small-signal and large-signal models are the same.

For a MOSFET, the derivation resulting in Equation 8.11 shows how to
relate the incremental drain to source current iy to the incremental gate
to source voltage vgs.

By definition, an input signal vy has an incremental component v; and
a DC component V7.

In general, if a device variable xg depends on some other variable x4 as
xp = f(xa),
then the incremental change in xp due to an small change in x4 is given by

x, = o) X, (8.22)

dxA xA:XA

where X}y is the operating point value of x4.
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EXAMPLE 8.1 A MOSFET WITH ITS GATE AND DRAIN
TIED TOGETHER Letusderive the incremental model for a MOSFET that has
its gate and drain terminal tied together as shown in Figure 8.11. When the G and D
terminals of the MOSFET are tied together, we get an effective two-terminal device.
Let us denote the two terminals as D and S, respectively. Because the gate-to-source
voltage of the device is the same as the drain-to-source voltage, the current ipg through
the device is related to the voltage vpg across the device as

Since the gate and drain are connected, vGs = vps. Therefore,

BT
ips = K(UDs . Vr) '

The large-signal model for the mosfet is shown in Figure 8.12.

We can derive the change in ipg for a small change in vpg as follows. Let the DC value
of vps be Vpg and let the change be denoted vy Let the corresponding DC value of
ips be Ipg and let its change be denoted iy. Then,

dvps |y,

Vds

= Klwps = V1)|y,, Vs

= K(Vps — V1)vys.
In other words,

ids

Vg = —————.
K(Vps — V)

Notice that because 1/K(Vgs — V7) is a constant, vy, is directly proportional to iz,
which is a resistor relationship. Remarkably, a MOSFET with its gate and drain terminals
connected behaves like a resistor with resistance 1/K(Vgs — V1) to small signals.

The small-signal equivalent circuit for the preceding element is shown in Figure 8.13.
Because of its resistive behavior for small signals, and because MOSFETs with a high
resistance are easier to fabricate than resistors, MOSFETs are commonly used as the
load resistor in amplifiers.
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. VDS
Ips

FIGURE 8.11 MOSFET with its
G and D terminals connected
together.

YDs
. K 2
ips = E(VDS -Vr)

FIGURE 8.12 Large-signal
model for a MOSFET with its G and
D terminals connected together.

D
+ o
Vds B 1
"= KVps -V
- O
N

FIGURE 8.13 Small-signal
model for a MOSFET with its G and
D terminals connected together.
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FIGURE 8.14 The MOSFET
amplifier.

FIGURE 8.15 Computing the
operating point of the MOSFET
amplifier based on the large-signal
SCS model.
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822 SMALL-SIGNAL CIRCUIT FOR THE
MOSFET AMPLIFIER

Let us now develop the small-signal equivalent circuit for the MOS amplifier
shown in Figure 8.14. Recall that developing the small-signal model involves
the following steps:

1. Set each source to its operating-point value, and determine the operating-
point branch voltages and currents for each component in the circuit.

2. Determine the linearized small-signal behavior of each component, and

select a linear component to represent this behavior.

3. Replace each original component in the circuit with its linearized
equivalent and re-label the circuit with the small-signal branch variables.
The resulting circuit is the desired small-signal model.

As the first step, let us determine the operating point of the MOSFET
amplifier for its bias voltages using the large-signal SCS circuit model depicted
in Figure 8.15. Assuming that the input bias voltage is V}, we can determine the
output operating current I and the output operating voltage Vo. We explicitly
show the power supply voltage source V to facilitate deriving the small-signal
model.
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The output operating current I is directly calculated from the MOSFET
characteristic equation as:

K
Ip= (V- V).

The output operating voltage is obtained by applying KVL for the loop
comprising the power supply, the MOSFET, and Ry, as follows:

Vo =Vs—IpRy, (8.23)

K
=Vs— E(vI — V)?R;. (8.24)

As the second step, we determine the linearized small-signal models for
each component. Referring to Figure 8.10, we see that the small-signal model
for the DC power supply is a short. The small-signal model for the resistor is the
same as its large-signal model. Finally, the linearized small-signal model for the
MOSFET in saturation is a voltage-dependent current source whose small-signal
current is linearly related to the small-signal gate-to-source voltage as:

igs = K(VGs — VT)Ugs~

Notice that the biasing of the large-signal circuit determines the parameters of
the small-signal circuit (for example, the small-signal current source parameter
K(Vi — V1) depends on the input bias voltage, V).

As the third step, we replace each original component in the circuit with
its linearized equivalent and re-label the circuit with the small-signal branch
variables v, v, and i, as depicted in Figure 8.16.

The small-signal circuit model can be analyzed to determine the circuit
response to small signals. For example, we can use Figure 8.16 to determine
the small-signal gain of the MOSFET amplifier. Applying KVL at the output,
we get

Vo = —i4Ry, (8.25)
= —K(Vi — V1viRL (8.26)
oV,
R,
v; ig=K(V;= V),
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FIGURE 8.16 The small-signal
SCS circuit model for the MOSFET
amplifier.
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Thus, the small-signal gain is given by

Vo

= —K(V; — VPR, (8.27)
i
= —guRy (8.28)
where
gn=KVgs—Vr) (8.29)

is the transconductance of the MOSFET.
As an example, let us compute the small-signal gain for the following
amplifier parameters:

Vs=10V
K=1mA/V?
R; =10kQ
Vr=1V.

Also, suppose the input bias voltage is chosen to be V; = 2 V. As
determined earlier in Equation 8.24,

Vo= Vs (Vi — VP)*R..

K

2
Substituting, the given parameters, we get Vo =5 V.

We can now calculate the magnitude of the voltage gain as

Yo — K(V; - VDR,
vj

=1073(v; — 1)10*
=10.

823 SELECTING AN OPERATING POINT

Small-signal operation requires that the total input signal appear as a small
perturbation about a DC offset. The input DC offset establishes an operating
point for the amplifier. Section 7.7 discussed the issue of operating points in the
context of large signals, and proposed a method for selecting the operating point
based on maximizing the dynamic input signal range. Specifically, Section 7.7
suggested that the operating point be chosen as the midpoint of the valid input
voltage range of amplifier operation under the saturation discipline. This made
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|Gainl A
20

sense, since the input signals were large and maximizing the input dynamic
range enabled the amplifier to deal with the largest possible input signals.

When dealing with small signals, other criteria are often more important in
selecting the operating point than just obtaining maximum dynamic range. One
criterion is the small-signal gain of the amplifier. As evident from Equation 8.28,
the small-signal gain of the amplifier is dependent on the input operating point
voltage V}. The magnitude of the small-signal gain is given by

Vo

Vi

= K(Vi — V7)R;.. (8.30)

Figure 8.17 plots the magnitude of the gain for various values of V}. The graph
indicates that the amplifier gain increases with increasing V7.
As an example, assuming these parameters for our amplifier,

Vg=10V
K=1mA/V?
Rp =10k
V=1V

let us determine a value for the input operating-point voltage V; that will result
in a gain of 12.
Substituting the required gain into Equation 8.30, we have

12=1x 1073(V; — 1)10 x 103,

Solving, we obtain V; = 2.2 V. This means that an input DC offset of 2.2 V
will result in a small-signal gain magnitude of 12.

CHAPTER EIGHT 421

FIGURE 8.17 Magnitude of the
small-signal gain of the amplifier
for various values of the input
operating point voltage V.
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FIGURE 8.18 A two-stage
amplifier.
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Now, assuming that the input signal is a small-signal sinusoid superimposed
on the DC offset of 2.2 V, let us determine the maximum valid peak-to-peak
swing for the sinusoid. We refer back to Section 7.6.2 to answer this question.
From Section 7.6.2, we know that under the saturation discipline, the maximum
valid range for the input voltage is Vr — —1 + /1 + 2VsR K/R; K+ V7.

For the given parameters, the valid range for input voltages is 1 V. —
2.32 V. In other words, as discussed in Section 7.6.2, input voltages under 1 V
will result in cutoff region operation of the MOSFET, while those over 2.32 V
will result in triode region operation. Operation in either the cutoff region or
the triode region will result in severe signal distortion.

Since the input offset is 2.2 V, and the maximum valid input voltage is
2.32 V, the maximum positive swing for saturation region operation of the
MOSEFET is given by 2.32 V — 2.2 V = 0.12 V. Thus, the maximum peak-
to-peak swing for the input sinusoid is 2 x 0.12 V = 0.24 V. Notice the clear
tradeoff we have made between gain and dynamic range. To increase the gain,
we had to bias the amplifier with a high input bias voltage, which was close
to the high end of the valid input signal range. However, the high input bias
voltage limited the positive signal swing.

Another criterion that is often important is the output operating-point
voltage. This is important when the amplifier must drive another circuit stage
and the output operating-point voltage of the amplifier determines the input
operating-point voltage of the next stage.

For example, consider the two-stage amplifier shown in Figure 8.18. In
this circuit, V4 provides the DC bias for the first stage. Its output, in turn, Vou
provides the DC bias for the second stage. Thus, Voa = V.

Assuming the following parameters for our amplifier,

Vs=10V
K=1mA/V?
R=10kQ

Vi=1V
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suppose the first stage is biased at Vi4 = 2.2 V to achieve a small-signal gain
magnitude of 12. Let us determine whether the output operating-point voltage
of the first stage can provide a valid input bias voltage for the second stage.

When the first stage is biased at V74 = 2.2V, the first stage operating-point
output voltage Vo4 is given by Equation 8.24. Substituting the parameters for
our circuit, we have

K
Voa = Vs — E(VIA — V)’R

1x 103
— 10— XT(Z.Z —1)210 x 10°

From Section 7.6.2, we know that under the saturation discipline, the max-
imum valid range for the input voltage of the second stage is Vr — —1 +
/1 +2VsRK/RK + Vr. Substituting the circuit parameters, the valid input
range for the second stage comes out to be 1 V — 2.32 V. Since Vpu exceeds
the upper bound (2.8 V > 2.32 V), we conclude that the first stage cannot pro-
vide a valid input bias voltage for the second stage when the first stage input bias
is set at 2.2 V. We can correct this situation by increasing V}4, or by increasing
R for the first stage.

824 INPUT AND OUTPUT RESISTANCE,
CURRENT AND POWER GAIN

The small-signal equivalent circuit also allows us to determine other important
circuit parameters, such as the small-signal input resistance, output resistance,
current gain, and power gain. Since the amplifier behaves as a linear network
for small signals, it can be characterized by a Thévenin equivalent when viewed
from any given port. The input and output resistance come in handy in this
Thévenin characterization. Let us determine these values for the MOSFET
amplifier using its small-signal circuit in Figure 8.16. Since these parameters are
externally observed quantities, they are defined with respect to the external ports
of the amplifier abstraction. Thus, it is important that we define precisely what
constitutes the input and output ports of the small-signal amplifier. Figure 8.19
shows the relationship between the external ports of the amplifier circuit and the
small-signal model. Notice that we have internalized the input bias voltage into
the small-signal amplifier abstraction so the user of the amplifier does not have to
provide the appropriate input bias voltage. Instead, the user can simply provide
a small input signal and observe the resulting signal output superimposed on
the DC output offset.
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Small-Signal
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FIGURE 8.19 Amplifier input
and output ports: (a) amplifier
circuit; (b) small-signal model. As
shown in the amplifier circuit, we
have internalized the input bias . .
voltage into the small-signal in the nput VOltage'

amplifier abstraction.

Input Resistance 7;

Incremental input resistance The change in the input current for a small change

Accordingly, as depicted in Figure 8.20 we compute it by applying a small test

voltage vy at the input and measuring the corresponding current iy All other
independent small-signal voltages or DC voltage sources are shorted. Similarly,
all other independent small-signal or DC current sources are turned into open

circuits.
The input resistance for the MOSFET amplifier is given by

Vtest _ Vtest
1’1' = = =

Ttest O

itest
FIGURE 8.20 Input resistance —o

measurement. i;=K(V;=Vpv
Viest

A

Wh
=

=

test

(8.31)
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Lest
-

iR, Viest

v;=0 ig=KV,= Vv,
=0

T L RS

For the SCS MOSFET model, the gate does not draw any current (j.sy = 0),
so the input resistance is infinite.

Output Resistance 7y,

Incremental output resistance The change in the output current for a small
change in the output voltage.

We must assume, of course, that the circuit is biased properly. As depicted in
Figure 8.21, we compute the output resistance by applying a small test voltage
Viest at the output and measuring the corresponding current 7. As before,
all other independent small-signal voltages or DC voltage sources are shorted.
Thus the small-signal input voltage v; is set to 0. Similarly, all other independent
small-signal or DC current sources are turned into open circuits.

The output resistance is given by

Tout = 25 = Ry (8.32)

Ttest

Because the input small-signal voltage is set to zero, the current through
the MOSFET is 0. In other words, the MOSFET behaves like an open circuit.
Thus the output resistance for small signals is Ry ..

Current Gain

Analogous to the voltage gain, we can define a current gain for an amplifier
that supplies an external current.

Incremental current gain The change in the output current divided by the
change in the input current, for a given external load resistance.

As depicted in Figure 8.22, we can compute the current gain by applying a
small test voltage at the input and measuring both the input current 7., and
the output current 7,. The ratio io/i; is the current gain. Note that the output
current is not the current that flows through the dependent current source,
rather it is the current that is drawn by an external load resister Rp. Because
it is dependent on the value of the load resistor, the current gain is defined
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FIGURE 8.21 Output resistance
measurement.
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FIGURE 8.22 Current gain
measurement. As an exercise, we
place a resistance R; between the
input terminal and ground. For a
MOSFET, R; = oo.
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for a given load resistance. The introduction of an external load resistance also
reduces the voltage gain of the amplifier because it appears in parallel with the
internal load resistor Rj..
The current gain with an external load resistance Ro is given by
) i
Current gain = —. (8.33)

Test

Let us go through the exercise of determining the value of 7, assuming
there is some finite input resistance R; as shown in Figure 8.22. Substituting for
i and iy in terms of the respective voltages,

Yo
Current gain = % (8.34)

R;

vy R;

. (8.35)
Vtest RO

Equation 8.35 says that the current gain is proportional to the product of the
voltage gain and the ratio of the input resistance and the output resistance.

We can determine the voltage gain v,/v.q by substituting for v, in terms
of the current iy and the parallel resistance pair Ry and Rg as

Vo K(Vi = V1)tiest(RLIR )

Utest Vtest
In other words,
v,
— = —K(Vi — VI)(RLIIRO). (8.36)
Vtest

Notice that the voltage gain of the amplifier with an external load is lower than
an unloaded amplifier. Substituting the expression for the voltage gain into
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Equation 8.35, we get an expression for the current gain:

R4
Current gain = —K(Vj — VT)(RLHRO)R—’. (8.37)
O

Since R; = oo for the MOSFET, the corresponding current gain is also
infinite.

Power Gain

Incremental power gain The ratio of the power supplied by the amplifier to an
external load to that supplied to the amplifier by the input source.

Referring to Figure 8.22, we can compute the power gain as follows: We apply

a small test voltage at the input and measure the input current 7. We also

measure the corresponding output voltage v, and output current i, supplied to

the external load resistor. We compute the power supplied by the input source

as Vgestlest- Similarly, we compute the power supplied to the external load as

Voio. As we did for the current gain, let us assume that the amplifier has an
input resistance R;. The power gain is given by

. Volo Vo o
Power gain = ——— = — —.
Vtesthtest  Vtest Ytest

(8.38)

We know both the voltage gain and the current gain from Equations 8.36
and 8.37, respectively. Substituting in the above equation we get,

Yo to (8.39)

Power gain -
Vtest test

R;
= [-K(Vi = VT)(RLIRO)] [—K(VI - VT)(RL”RO)%} (8.40)

R.
= [K(Vi = VD)RLIRO)> . (8.41)
Ro
Since R; = oo for the MOSFET amplifier, the power gain is also infinite.

In practical circuits, however, there is always some input resistance, so the
power gain s finite.

EXAMPLE 8.2 VOLTAGE-CONTROLLED CURRENT SOURCE
Let us perform a small-signal analysis of the voltage-controlled current source circuit
shown in Figure 8.23. Referring to Figure 8.23, the current io depends on voltage
source vy according to

CHAPTER EIGHT
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FIGURE 8.23 Dependent
current source circuit.

FIGURE 8.24 Small-signal
circuit model for the dependent
current source.

THE SMALL-SIGNAL MODEL

Vi
v i =1
1 o7 L~ 1)
for v;>1
T

where vy > 1 and L is some constant. What is the change in vp for an incremental
change in v}, when the operating-point values of vj and v are Vjand Vo, respectively?

To find the incremental change in vj, we follow the three-step process outlined in
Section 8.2.1. We begin by writing the large-signal relationship between v and vy:

vo = ioRy, (8.42)

1

Substituting in the operating-point values, we get:

1
Vo=Rj——. 8.44
fe) LL(VI— D (8.44)

Next, we linearize the devices. The input voltage source with total voltage vy is
replaced by its small-signal voltage v;. The resistor remains unchanged. The small-signal
equivalent of the dependent current source is derived using:

. dip
o= — v

dl/] Vi

1
e ——
L(Vj—12 '

In the third step, we substitute in the small-signal models in place of the large-signal
models for each of the devices. The corresponding small-signal circuit is shown in
Figure 8.24.
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We can now derive the change in the output voltage for a small change in the input
voltage from the small-signal circuit by writing KVL for the output loop:

1

——ViR;.
L(V]—l)z (2

Vo = iRy, = —

We can also derive the change in the output voltage for a small change in the input
voltage directly from the v versus vy relationship given by Equation 8.43.

dv 1
Vo = o vi =————VUiR].

duy Iy, LV — 12

EXAMPLE 83 SMALL-SIGNAL ANALYSIS OF A DIFFER-
ENCE AMPLIFIER The difference amplifier is a building block for high-quality
amplification and is useful for processing small signals. When a signal is noisy, straight-
forward use of an amplifier would amplify both the signal and the noise. However,
under certain conditions that we will see shortly, a difference amplifier (also called a
differential amplifier) can be used to amplify the signal by a much larger gain relative
to the noise. Difference amplifiers are also used in building operational amplifiers, and
suitable difference amplifier circuits are discussed in Examples 7.19 and 8.10.

Suppose the signal is available in differential form. In other words, suppose the signal
is available as the relative voltage output (v4 — vp) on a pair of terminals A and B. For
example, as the output of the tape-head in a tape-recorder, the output of an instrumen-
tation device or a sensor. Such a sensor often resembles one of our primitive elements —
for example, a variable resistor. The element might produce a voltage signal across its
terminals related to some externally sensed parameter such as temperature, gas con-
centration, or magnetic field strength. Often, a pair of wires carrying the signal might
travel through a noisy environment resulting in the coupling of more or less the same
amount of noise (;) on each of the two wires, as depicted in Figure 8.25.2 In other
situations, the two wires might both carry a common DC bias. In such situations, a
difference amplifier can help amplify just the differential signal component and discard
the common noise component.

The difference amplifier abstraction is shown in Figure 8.26. It is a two-port device with
one differential input port and one single-ended output port. The input port has two
input terminals. The + input is called the non-inverting input and the — input is called
the inverting input. It has an output port across which v appears.

2. In fact, the wires are often twisted together to ensure that when there is noise, the same amount
of noise infects both wires.



430 CHAPTER EIGHT

FIGURE 8.25 A differential
signal.

FIGURE 8.26 Difference
amplifier black box representation.

FIGURE 8.27 Single-ended
difference amplifier structure.
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n Vat v,

Sensor | Vp ,,
o8 VgtV
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Va1 *  Differential
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L Ground
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Vg o Source- A

coupled
Vg o amplifier|

Subtracter o
Y A-B % o
B

<

Single-ended difference amplifier

We can also build a single-ended difference amplifier from a differential output difference
amplifier as shown Figure 8.27.

The behavior of the difference amplifier is best explained by considering its effect on the
following signals related to the two components, v4 and vp:

1. A difference-mode component signal,

UpD =UVA —UB (845)

2. And a common-mode component signal,

_vA+up

5 (8.46)

vc

The output of the difference amplifier is a function of these two components of the
input,

vo = Apvp + Acve (8.47)
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where Ap is called the difference-mode gain and Ac is called the common-mode gain.
The key in using a difference amplifier is to encode the useful signal in the difference-
mode component and the noise in the common-mode component. Then if we make
Ap large and A small, we achieve our goal of noise reduction. Usually we use the
common-mode rejection ratio (CMRR) to describe the ability of the amplifier to reject
the common-mode noise:

CMRR = —. (8.48)

MOSFET Implementation of the Difference Amplifier

Let us study a MOSFET version of the difference amplifier. The amplifier employs a pair
of matching transistors called the source-coupled pair. The source-coupled amplifier is
shown in Figure 8.28. v4 and vp are the inputs, and vx and vy are the outputs. Assume
v and vp are the input voltages measured with respect to ground. Also assume that
vy and vy, are small variations in the inputs, and that vy and vy are the corresponding
small-signal variations in the output. The source-coupled pair is connected in series with
a DC current source with a high internal resistance R;. (We can implement the current
source using a MOSFET biased to operate in its saturation region, but we do not show it
here. For simplicity, we use an abstract non-ideal current source instead. In other words,
the current source has a finite resistance, R;.) Let the current provided by the DC current
source be I

Let us examine the difference amplifier using its small-signal model shown in Figure 8.29.
Notice that an ideal current source acts like an open circuit, but a current source with an
internal Norton equivalent resistance R; behaves like a resistor to incremental changes
in its terminal variables. The MOSFETs are replaced by their small equivalent current
sources. The voltages vg and vgg are the small-signal voltages between the gate and
source of the two input MOSFETs resulting from a small change in the input voltages
v4 and vp.

The gain parameters g, and g,» for the MOSFETs depend on the operating-point
values of the currents through them. Assuming that the current through R; is negligible,
by symmetry, we find that the current I divides equally between the two MOSFETs.
Thus each has an operating-point current equal to I/2. From the SCS model for the
MOSFETS, given Vr and K, we can thus find the bias input voltages Vg1 and Vs in
terms of I In turn, the respective gains g,,;1 and g,,,» can be determined in terms of Vg1
and Vs, which are themselves functions of 1.

Recall that
» the difference-mode component:

Up =UVA —UB
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FIGURE 8.28 Source-coupled
difference amplifier. All voltages
are measured with respect to
ground.

FIGURE 8.29 Source-coupled
difference amplifier — small-signal
model.
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» and the common-mode component

_vA+uB

4
¢ 2

Therefore, we can decompose the inputs into their difference- and common-mode
component as follows:

UD
vpa=vc+ —
‘A C 2
UD
vp=vc— —
We will discuss each mode separately, and then summarize the behavior of the entire

amplifier.
Difference-Mode Model

We first examine the circuit with the difference-mode part of the input only. Refer to
Figure 8.30 for the circuit and its small-signal model. Assume that the two MOSFET’s
have identical characteristics, g1 = g2 = gmn- An application of KCL at the source
node of the two MOSFETs (in other words, the node with the small-signal voltage vs)
yields

8mVgs1 + 8mlg2 = vs/R;. (8.49)

From Figure 8.30 we can also write

vd

E — Ugsl = Us
—uy
T — Ugsz = Us.
Vy
FIGURE 8.30 Difference-mode
model. All voltages are measured vp
with respect to ground. A

(a) Differential mode input only (b) Small-signal model
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? > e o Ry R,
P ¢ t o f +
Rz .y _2my . Z —8nR1Va &RV
o Lx 2V ERpv, oy m2 mz—v.v
. 4 s o - J
FIGURE 8.31 Difference-mode simplified FIGURE 8.32 Difference-mode
model. Thévenin equivalent circuit.

Substituting v4 and v in terms of v into Equation 8.49, we obtain

v4 2 Us

- - + —_— = = — 8.50

8m ( 2 Us) 8m ( 2 Us) R, ( )
[Z

2gmvs = é. (8.51)

Since g, and R; are independent of each other, vs = 0. This result greatly simplifies our
circuit to the one in Figure 8.31. Converting it to the Thévenin equivalent model, we
obtain the circuit shown in Figure 8.32.

We see that
Riv
vy = _gm 2L 'd
and
R
vy = EmiLYd Lud.
2

Thus, the small-signal output voltage across the output terminal pair is given by
Vo = Ux — Uy = —gmRrvy.

This yields a difference-mode small-signal gain

v,
Ad =2= _ngL-

Vd

Common-Mode Model

We will now examine the behavior of the circuit for the common-mode input. The
crcuit and small-signal model is shown in Figure 8.33. The small-signal change in the

CHAPTER EIGHT
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FIGURE 8.33 Common-mode
model.

THE SMALL-SIGNAL MODEL

gmlvg,sl ng"gsZ
Vs
o+ - +
vgsl Rivgxz
(a) Common-mode input only (b) Small-signal model
v
o > - < o
+ R +

1

A
YWYWy

L 1 1 4
v, Riz Q.Rl_"’c R Ve ERV
1

(o, - O
FIGURE 8.34 Common-mode Norton FIGURE 8.35 Common-mode Thévenin
equivalent circuit. equivalent circuit.

common-mode input is denoted v.. Observe that Vg = Vg0 = Vg, and vgs = v — vs.
Application of KCL at vs again yields

1%
Snlegs + Gmlgs = = (8.52)
R;
gy = (8.53)
R;
1
(8.54)

Vogg = —Ug.
® T 2gRi+1 ¢

Assuming R; is large, so that 2g,,R; >> 1, we can simplify Equation 8.54 to

1
Vgs X —— .

2gmRi
Therefore, the two dependent current sources will have value

1
—U.
2R, ©

The simplified circuit is shown in Figure 8.34. Transforming the circuit into its Thévenin
equivalent circuit gives the circuit shown in Figure 8.35.
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From the Thévenin equivalent circuit, notice that

R Ve
2R;

Uy =Uy =

Remarkably,
vo=vx—vy=0

effectively yielding a common-mode small-signal gain of 0.

Overall Behavior

Putting it all together, we combine the small-signal difference-mode circuit from
Figures 8.32 with the small-signal common-mode circuit in 8.35 and obtain the cir-
cuit shown in Figure 8.36. Notice that we are able to do such a superposition because of
the linearity property of our small-signal circuits. The output of the difference amplifier
is the difference between vy and vy, which gives a difference-mode gain of —g,,Ry, and
common-mode gain of 0.

Input and Output Resistances

Computing the input and output resistances for the difference amplifier is fairly easy.
When we apply the small input signals v, and v, there will not be any current flowing
into the MOSFETs, so, we have infinite input resistance.

To compute the small-signal output resistance looking in from one of the terminals of
the output port, we turn off all independent sources by setting v, = 0 and v}, = 0,
in effect, turning off v, and v;. We introduce a test voltage at the desired output and
short the other output to ground. Therefore, the overall circuit is transformed to the
one shown in Figure 8.37. Thus the output resistance looking into ports vy or v, and
ground will be R;.

R L

AW 0

+
8 mRLVd _ Rch v

2 2R,
T °

R L R L Liest
A'A'A'A'A'A 7o)
+ +
Ve Viest

CHAPTER EIGHT

FIGURE 8.36 Difference
amplifier Thévenin equivalent
circuit.

FIGURE 8.37 Difference
amplifier output resistance.
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FIGURE 8.38 Source-follower
circuit.

FIGURE 8.39 Source-follower
small-signal model. g, the
transconductance of the MOSFET,
is given by K(Vgs — V7), where
Vgs is the operating-point value of
the gate-to-source voltage for the
MOSFET. (See Example 7.8 or
Problem 7.5 in Chapter 7 to see
how the operating-point param-
eters of the source follower can be
calculated.)

THE SMALL-SIGNAL MODEL

EXAMPLE 8.4 SOURCE FOLLOWER A useful circuit we have seen
before3 is the source follower shown in Figure 8.38. The source follower in the figure
is shown driving an external load resistor Ry. Assume that the total input voltage vy
includes the appropriate DC bias voltage to meet the saturation discipline. The small-
signal equivalent circuit for the source follower is shown in Figure 8.39. Let us analyze
this circuit by computing its small-signal gain.

The small-signal output v, can be expressed in terms of the circuit parameters as
Vo = gng5<RL||RS)

where vg is the voltage between the gate and the source of the MOSFET. Using KVL,
observe that vgs = v; — v,. Therefore, we can write

Vo = gm<7/i — 5)(RL|IRs) (8.55)
1
vo| ——— + = gV 8.56
o <RL||RS gm> Emli ( )
vp= — SaRsgm (8.57)
Ry, + Rs+ Ry Rsgm
Vo RpRsgm (8.58)

vi  Rp+Rs+RiRsgm

Thus the gain is slightly less than 1. An important special case of Equation 8.59 is when
Ry is very large. Thus, when R; — oo,

v, Rg
Yo SS&m (8.59)
vj 1+ Rg n
+ -
—0 V, 0 ° 4
@ gmvg.v %g RS §§ RL Vg
- °-

3. See Example 7.8 and Problem 7.5 in Chapter 7.



8.2 The Small-Signal Model

+ o a ltest
O Vs O ¢
i =gV S S Vies
lds = 8mVgs l:z RS l:; RL test
Lg I

When g, is large, irrespective of the values of R; and Rg, Equation 8.58 can be
rewritten as

Vo

— =~ 1.

Vi

To find out why such a circuit is useful, let us compute the input and output resistances
of the source-follower device.

Small-Signal Input and Output Resistances

The input resistance 7; is easily calculated. Since no current flows into the MOSFET, the
input resistance is infinity.

Computing the output resistance needs more work. As depicted in Figure 8.40, let us
turn off the independent sources, apply a small test voltage v at the output terminal
and measure the corresponding current 7. The output resistance will be given by
Tout = Vtest/frest-

In order to compute 7, we apply KCL at node a shown in Figure 8.40. The dependent
source current 7;; depends on vgs, and vgs equals —eq. Therefore, we have

Igs + frest = Is + 1) (8.60)
. Vtes
—8mlrest T rest = ﬁﬁ;s. 8.61)

Rearranging the terms and simplifying the expression, we obtain

1 .
Vtest <gm + m) = ltest
This leads to

Vtest — RI.RS
hese  &mRLRs+Rp + Rg

Tout =

When g,;, Rp, and Rg are large, Ry, + Rg becomes insignificant compared to g, R Rg.
Therefore, we can simplify,

Tout ¥ —
m
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FIGURE 8.40 Source-follower
output resistance.
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FIGURE 8.41 Small-signal
model of the MOSFET amplifier in
Figure 7.46.
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K(Vgs— Vv, = 0.6 mVA Ves

&)[|&,

13.4kQ Ry=20kQZ i

out

L

Since g;;; can be made very large, the output resistance can be made low. The low output
resistance makes the source follower useful as a buffer device, which can provide a large
amount of current gain.

EXAMPLE 85 SMALL-SIGNAL ANALYSIS OF ANOTHER
MOSFET AMPLIFIER In this example, we examine the small-signal behavior
of the MOSFET amplifier shown in Figure 7.46 and studied in Example 7.12. This
amplifier works well for both positive and negative values of v, and so we will choose
the input bias voltage to be Viy = 0 V for the small-signal analysis. Therefore

vIN = VIN + Vin = Vin.
To determine the remaining bias voltages in the amplifier, we set vi, = 0 V, which

results in vy = 0 V. From the results of Example 7.12, we can then determine the bias
voltages VoyT = 6.4 Vand Vg = 1.6 V.

Next, following the method of Section 8.2, we construct the small-signal circuit model
shown in Figure 8.41. Analyzing the small-signal circuit model, we obtain

Vour = R3K(Vgs — V)vin = 12 vip.

Therefore, the small-signal gain is 12 at the bias voltage Vi = 0. The same result can
be obtained by evaluating

dvout/dviNlux_,

using the results of Example 7.12.

EXAMPLE 8.6 SMALL-SIGNAL MODEL FOR THE BJT In
this example, we will develop the small-signal model for the BJT by linearizing the
piecewise linear BJT model studied earlier in Figure 7.49¢ in Example 7.13. Figure 8.42b
depicts the large-signal model (from Figure 7.49¢) for the BJT under the constraint that
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the BJT operates in its active region. When operating in the active region, the base-to- c 4
collector diode shown in Figure 7.49¢ behaves like an open circuit, and so it can be safely ic
ignored in our analysis. B ip

> Vee
Figure 8.42¢ depicts the small-signal model of the BJT based on the piecewise-linear ;
model in Figure 8.42b. In the active region, the ideal diode in Figure 8.42b behaves 'BE g .
like a short circuit. Furthermore, the 0.6-V voltage source appears as a short circuit for

(a) BJT symbol

incremental changes. Finally, since the active region relationship between i and ic is
linear, and given by

ic = Bip,

the relationship between the incremental signals 7. and 7, is also the same:

1c = Bip.

Alternatively, we can derive the incremental change in the collector current for a small

change in the base current mathematically from Equation 8.22 as follows: (b) BJT large-signal model
assuming BJT is in active region

. dic .

= dig ip=1Ip K C.
_ dpip ; B
 dip iy, ’ P Biy,
— Biy.

Next, we will use the small-signal model for the BJT in a few examples. i,

E

(c) BJT small-signal model
EXAMPLE 8.7 SMALL-SIGNAL ANALYSIS OF THE BJT

AMPLIFIER In this example, we will study the small-signal behavior of the com-
mon emitter BJT amplifier shown in Figure 7.54, which is redrawn here in Figure 8.43
to show that the total input v\ is the sum of a DC offset voltage VN and a small-signal

FIGURE 8.42 Small-signal
model for the BJT.

voltage vin. In keeping with our usual small-signal notation, the total, operating point,
and small-signal voltages at the output are given by v, Vo, and v, respectively. We will
compute the small-signal gain of the amplifier assuming that the amplifier operates in its
active region, and given that Ry = 100 k2, Ry, = 10 k2, and Vg = 10 V. Assume that
the current gain parameter 8 for the BJT is 100, and that the input operating voltage is
chosen to be Viy =1 V.

We now begin the small-signal analysis of our BJT amplifier. The first step of small-signal
analysis is to determine the operating-point variables in the circuit. Although not strictly
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iR,
cg "%
Yi.
* ﬁib
Ry i
B
Vin
__E ——
FIGURE 8.43 Our BJT amplifier showing FIGURE 8.44 Small-signal circuit model
the small-signal and bias input voltages. for the BJT amplifier.

necessary,* we will go ahead with the operating-point analysis to verify that the BJT is
indeed operating in its active region for the given parameters. From the transfer function
relation in Equation 7.51, we know that

(Vin — 0.6)
Vo=Vs— N8R,
Ry

Substituting our specific parameter values, we obtain
Vo=6V.

Since, Vcg = Vo = 6 Vand Vg = Viy = 1V, it is easy to see that the BJT constraint
for active region operation given by

Vg > Vge — 04V

is satisfied.

As the second step, we must determine linearized small-signal models for each of the
circuit components. This step is trivial for our example, since all the elements are linear
(including the BJT, since we are given that it always operates in its active region). The
small-signal equivalents for the DC sources are short circuits, and those for the linear
resistors are the resistors themselves. Finally, we will use the small-signal model for the
BJT operating in its active region (developed in Example 8.6) illustrated in Figure 8.42c.

Proceeding with the third step of small-signal analysis, Figure 8.44 shows the small-signal
drcuit for the amplifier in which the components have been replaced by their respective

4. This step is not strictly necessary in our example because all the elements are linear (including the
BJT, since we are given that it always operates in its active region). For linear elements, the small-
signal model relationships are independent of their operating points. Compare, for example, the
small-signal relations for the BJT and the MOSFET shown in Equations 8.62 and 8.10, respectively.
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linearized equivalents, and in which small-signal branch variables have replaced the total
variables.

The small-signal gain can now be determined by writing the node equation for the output
node

Vo

— = —Bip.

R, Bip
Substituting i, = vin/R}, we get

Yo _ gt

R, "R/

Simplifying, we obtain the small-signal gain of the BJT amplifier

Small-signal gain = Yo _ —-B—. (8.62)
Vin Ry

Notice here that the gain of the BJT amplifier is independent of the operating point,
provided the BJT operates in the active region. For a given BJT device (that is, a fixed
value for B) the gain can be increased by increasing Ry or decreasing R;.

Finally, substituting Ry = 100 k2, R, = 10 k2, 8 = 100, we obtain
Small-signal gain = —10.

This concludes our analysis.

EXAMPLE 8.8 SMALL-SIGNAL INPUT AND OUTPUT
RESISTANCE OF THE BJT AMPLIFIER Let us first compute the
small-signal input and output resistances of the common emitter BJT amplifier. The
general approach to doing so is to turn off all independent sources and to apply a
test voltage (or current) at the input or output port as appropriate and to measure the
resulting current (or voltage). The ratio of the voltage to the current gives the resistance.

The input resistance 7; is easily calculated. For an applied test voltage v, (see Figure 8.45),
the resulting current into the input B terminal i, is given by

_ Vrest

=X
Thus the input resistance 7; is simply R;.

As illustrated in Figure 8.46, we compute the output resistance by turning off all inde-
pendent sources, and applying a small test voltage vy at the output port and measuring
the corresponding current 7,. The output resistance will be given by 74, = Viest/io-
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FIGURE 8.45 Applying a
small-signal test voltage to the
input port of the BJT amplifier to
compute the small-signal input
resistance.

FIGURE 8.46 Applying a
small-signal test voltage to the
output port of the BJT amplifier to
compute the small-signal output
resistance.
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Lest Rl

Veest

FIGURE 8.47 Incremental
circuit for the BJT amplifier
including an external load resistor
to facilitate current gain and power
gain calculations.
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In order to compute 7y, we apply KCL at the node labeled C shown in Figure 8.46.
Summing all the currents going into node C, we get

. 2 .
z(,—ﬂ—ﬁz,;o.
R

Since 7, = 0 (the voltage across Ry is zero), we get

1%
test
Tout = =R;.
o

EXAMPLE 89 SMALL-SIGNAL CURRENT GAIN AND

POWER GAIN OF THE BJT AMPLIFIER In this example, let us
compute the incremental current and power gain for the common emitter BJ T amplifier.
Both the current gain and the power gain are defined as the current or power supplied
to an external load divided by the current or power supplied by an input source. Accord-
ingly, as illustrated in Figure 8.47, let us add an external load resistance RoyT to our
circuit to facilitate current and power gain measurements.

The incremental current gain is defined as the change in the output current (7, divided
by the change in the input current (fi,), for a given external load resistance. We begin
by writing the node equation for the node labeled C

out e + %‘; =0. (8.63)

We will obtain the desired relation between ., and i if we can replace i, and v, in
terms of i From the BJT relation, we know that

ic = Bip = Bigeg- (8.64)

To determine v, in terms of 7., observe that v, is the voltage drop across the parallel
resistor pair comprising Ry and Royt. In other words,

vo = —i(RrI[RouT)-
Substituting for 7., we get the desired relation between v, and Feq;:
Vo = —PBliest(RLIRoUT)- (8.65)

Substituting for i; and v, from Equations 8.64 and 8.65 into 8.63 we obtain

. . . (RLIIRouT)
lout + Bitest — Blrest————— = 0.
RL
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Dividing throughout by 7. and simplifying, we obtain the current gain as

. i R
Current gain = 22 = L

B (8.66)
Trest Rr +Rour

Intuitively, we can also obtain the same current gain result in two short steps as follows:
First, notice that the current 4. is simply 4., amplified by a factor 8. Second, the fraction
of the amplified current Bi,., that flows into Royr is given by the current-divider relation
from Equation 2.84 as the ratio of the opposite resistor Ry, divided by the sum of the
two resistors (R, + Rour)-

Next, the incremental power gain is defined as the ratio of the power supplied into the
output resistor (Upioy,) and the power supplied by the input source (Ugegtfiest), for a given
external load resistance. As suggested by Equation 8.38, the power gain is equivalent to
the product of the current gain and the voltage gain for the BJT amplifier.

For the BJT amplifier that includes an output load resistance, the current gain is given
by Equation 8.66. For reasons that will be obvious momentarily, we will rewrite the
current gain in terms of the parallel combination of Ry and Royr as

four __ g ReIRou) (8.67)

lrest Rout

We can determine the voltage gain by including the effect of the output load resistance
Rout on the voltage gain equation of the BJT given by Equation 8.62. We do so by
replacing the resistance Ry in Equation 8.62 with the equivalent resistance of the parallel
resistor pair Ry, and Royr as

Vo —B Ry lIRout ) (8.68)

Vtest RI

Taking the product of the current gain (Equation 8.67) and the voltage gain (Equa-
tion 8.68) and simplifying, we obtain

(RLIRouT)?

Power gain = 7
RoutR;

EXAMPLE 810 SMALL SIGNAL OF THE OPERATIONAL
AMPLIFIER CIRCUIT This example develops a small-signal model of the
operational amplifier circuit shown in Figure 7.63 and previously discussed in Exam-
ple 7.21. It then uses that model to determine the small-signal gain of the amplifier.
The small-signal model and gain are determined for the bias conditions established by
Vint = Ving = 0. Under these balanced bias conditions, Iy = Iy = I/2.
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82 Vg 52

FIGURE 8.48 A small-signal
model of the operational amplifier
circuit.

<
Vg.\ 1 v gs2
81V4s1 + + _
51Vgs
R 1 Vgx3
Vini in2 +

Figure 8.48 shows a small-signal model of the operational amplifier shown in Figure 7.63.
The three MOSFET transconductances g1, g, and g3 in Figure 8.48 are not yet
determined.

Following the results summarized in Figure 8.10, the small-signal transconductances of
the n-channel MOSFET are given by

(8.69)
(8.70)

g1 =Ku(Vgs1 — V1)

& =K.(Vgs — V7).

However, remember that we have chosen to bias the operational amplifier such that

I Ky 5

Ip1 = — = —(V, -V 8.71

p1=3 == (Vest T) (8.71)
1 K,

I =5 = f(vcsz - Vo (8.72)

Equations 8.71 and 8.72 can be substituted into Equations 8.69 and 8.70, respectively,
to yield

g1 =9 =vKil (8.73)
A similar small-signal model of the p-channel MOSFET can also be determined following

the approach developed in Section 8.2. Specifically, taking the slope of Equation 8.67 at
its bias point yields

— — 13~ K(Vsg + Vug (8.74)
and so the transconductance from v to —i; is in general given by
g=K(VsG + V1) = v2K(-Ip) (8.75)



8.2 The Small-Signal Model

where the large-signal bias condition for the p-channel MOSFET has been used to derive
the last equality. Applying this to the operational amplifier shown in Figure 8.48 yields

8 = /2Kp(=Ip3). (8.76)

The small-signal model can now be used to determine the small-signal gain of the oper-
ational amplifier. Consider first the portion of the small-signal model that corresponds
to the differential amplifier alone. KCL applied to the node between the two n-channel
MOSFETs yields

igt +ig = 81Vgs1 + Vg2 = 0. (8.77)
Thus, an increase in one drain current in the differential amplifier is matched by an equal

decrease in the other drain current since both drain currents must sum to I Next, the
application of KVL to the loop around the two MOSFETSs through ground yields

Vinl — Vin2 = Ugsl — Vgs2. (8.78)

Finally, combining Equations 8.73, 8.77, and 8.78 with the observation from Figure 8.48
that vg3 = R0, yields

Vg3 = — (Vin1 — Vin2) (8.79)

Ry,
2

as the small-signal gain of the differential amplifier.

Consider next the portion of the small-signal circuit that corresponds to the common-
source stage built with the p-channel MOSFET. For this stage, the small-signal model

shows that
Vout = RZ\/ ZKP(_ID3)USg3 (880)

where Equation 8.76 has been used to rewrite g3. Note that the gain of this stage is
positive because that gain is from g3 to vy,

Finally, Equations 8.79 and 8.80 can be combined to yield

R1R»\/2K, Kpl(—Ip3) (

Vout = 2 Vin2 = Vin1) (8.81)

as the small-signal gain of the unloaded operational amplifier.

In operational amplifier parlance (see Chapter 15), from Equation 8.81 we see that v\
and v\ play the roles of v— and v, respectively.
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445



446

CHAPTER EIGHT

THE SMALL-SIGNAL MODEL

EXAMPLE 8.1I MORE ON THE SMALL-SIGNAL MODEL
OF THE OPERATIONAL AMPLIFIER We will now work a numerical

example related to the operational amplifier design described in Example 8. 10, assuming
that —Ip3 = 0.5 mA.

Substitution of this value of —Ip3 and the parameters from Example 8. 10, into Equation
8.81 yields

Vout = SOV2(Uin2 — tin1)- (8.82)

Thus, the small-signal gain of the operational amplifier is approximately 71.
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83 SUMMARY

» This chapter expanded on our treatment of small-signal models, focusing
on the model for three-terminal devices and amplifiers. As first introduced
in Section 4.5, small-signal analysis applies when devices and circuits that
are possibly nonlinear are operated over a very narrow range. Small-signal
analysis finds a piecewise linear model that ensures maximum accuracy of
fit over that narrow operating range. The principal benefit of small-signal
models is that the small-signal variables display linear v—i relations over the
narrow operating range, thereby enabling the use of all of our linear analysis
techniques such as superposition, Thévenin, and Norton.

> This chapter also introduced the small-signal circuit model. The small-
signal circuit facilitates small-signal analysis by creating a circuit that is
representative of the original large-signal circuit and involves only its small-
signal variables. The small-signal circuit can be derived from the original
drcuit by executing the following procedure:

1. Set each source to its operating-point value, and determine the
operating-point branch voltages and currents for each component in
the circuit. This step involves a large-signal analysis that is possibly
nonlinear.

2. Determine the linearized small-signal behavior of each component
about its operating point, and select a linear component to represent
this behavior.

3. Replace each original component in the circuit with its linearized equiva-
lent (also called the small-signal equivalent model) and re-label the circuit
with the small-signal branch variables. The resulting circuit is the desired
small-signal model.

>  The small-signal equivalent model for an independent DC voltage source is
a short circuit, while that for an independent DC current source is an open
drcuit. The small-signal equivalent model for a resistor is the resistor itself.
The small-signal model for a MOSFET is shown in Figure 8.10.

EXERCISE 8.1 Consider the amplifier shown in Figure 8.49. The MOSFET oper- EXERCISES
ates in its saturation region and is characterized by the parameters V1 and K. The

input voltage vy comprises the sum of a DC bias voltage Vj and a sinusoid of the form

v; = Asin(wt). Assume that A is very small compared to V}. Let the output voltage vo

comprise a DC bias term Vo and a small-signal response term v,.

a) Determine the output operating point voltage V(o for the input bias of V;.

b) Determine the small-signal gain of the amplifier.
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¢) Draw the form of the input and output voltages as a function of time, clearly showing
the DC and time-varying small-signal components.

EXERCISE 8.2 Develop the small-signal model for a two-terminal device formed
by a MOSFET with its gate tied to its drain, operating under the saturation discipline,
with parameters V and K.

EXERCISE 8.3 Develop the small-signal model for a two-terminal device formed
between the drain and source terminals of a MOSFET with a 2 volt DC source connected
between its gate and source terminals (Vgs = 2 V). Assume the MOSFET operates
under the saturation discipline. Assume further that V7 = 1 volt for the MOSFET.

EXERCISE 8.4 Consider the MOSFET amplifier shown in Figure 8.50. Assume
FIGURE 8.49 that the amplifier is operated under the saturation discipline. In its saturation region, the
MOSFET is characterized by the equation

K
: 2
ips=— (vgs =V
Vg DS = 7 (vGs T)
where ipg is the drain-to-source current when a voltage vg is applied across its gate-
Ry to-source terminals.
Vo a) Write an expression relating vo to v;. What is its operating-point output voltage Vo,

D given an input operating-point voltage of v;? What is the corresponding operating-

oG . point current Ipg?
ps

v b) Assuming an operating-point input voltage of Vj, derive the expression relating
- S . . . . .
_T_ the small-signal output voltage v, to the small-signal input v; from the relationship
between v and v;. Whatis the small-signal gain of the amplifier at the input operating
point of V2
FIGURE 8.50

¢) Draw the small-signal equivalent circuit for the amplifier based on the SCS model of
the MOSFET assuming the operating-point input voltage is V7.

d) Derive an expression for the small-signal gain of the amplifier from the small-signal
equivalent circuit. Verify that the gain computed from the small-signal equivalent
circuit is identical to the gain computed in part (b).

e) By what factor must R;, change to double the small-signal gain of the amplifier?
What is the corresponding change in the output bias voltage?

f) By what factor must V; change to double the small-signal gain of the amplifier? What
is the corresponding change in the output bias voltage?

EXERCISE 8.5 Consider again the MOSFET amplifier shown in Figure 8.50.
Assume as before that the MOSFET is operated under the saturation discipline, and that
its parameters are V1 and K.

a) What is the range of valid input voltages for the amplifier? What is the corresponding
range of valid output voltages?
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b) Assuming we desire to use voltages of the form A sin(wt) as AC inputs to the amplifier,
determine the input bias point Vj for the amplifier that will allow maximum input
swing under the saturation discipline. What is the corresponding output bias point
voltage Vo?

¢) What is the largest value of A that will allow saturation region operation for the bias
point determined in (b)?

d) What is the small-signal gain of the amplifier for the bias point determined in (b)?

e) Suppose A is small compared to V. Write an expression for the small-signal output
voltage v, for the bias point determined in (b).

EXERCISE 8.6 Consider once more the MOSFET amplifier shown in
Figure 8.50. Assume as before that the amplifier is operated under the saturation

FIGURE 8.51

discipline, and that its parameters are V7 and K.

a) Using the small-signal circuit model of the amplifier, and assuming an input bias
voltage V}, determine the small-signal output resistance of the amplifier. That is, c o+
determine the equivalent resistance of the amplifier at the output port of its small- ic

signal model with v; = 0. B i
VCE

b) Develop a Thévenin equivalent model for the small-signal amplifier as observed at
its output port.

¢) What is its input resistance? That is, determine the equivalent resistance of the (a) BJT
amplifier at the input port of its small-signal model.

EXERCISE 8.7 Consider the common emitter BJT amplifier shown in

Figure 8.51. The input voltage vy comprises the sum of a DC bias voltage V; = 0.7 V

and a sinusoid of the form v; = Asin(w?), where A = 0.001 V. For the values shown,

you may assume that A is very small compared to V. You may further assume that the B
BJT always operates in its active region. Figure 8.52 shows a small-signal model for the

BJT operating in its active region. Let the output voltage v, comprise a DC bias term

Vo and a small-signal response term v,,.

le

E

a) Determine the output operating-point voltage V for the input bias of Vi = 0.7 V.
b) Draw the small-signal equivalent circuit for the amplifier. (b) BJT small-signal model
¢) Determine the small-signal gain of the amplifier. FIGURE 852

d) What is the value of v, the small-signal component of the output, given the small-
signal input shown in Figure 8.51?

e) Determine the small-signal input and output resistances of the amplifier.
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f) Determine the small-signal current and power gain of the amplifier, assuming that
the amplifier drives a load Rp = 50 k<2 that is connected between the output node
and ground.

PROBLEM 8.1 This problem studies the small-signal analysis of the MOSFET
amplifier discussed in Problem 7.3 (Figure 7.75).

a) First, consider biasing the amplifier. Determine Vi, the bias component of vy,
so that voyr is biased to Voyur where 0 < Vour < Vs. Find Vyp, the bias
component of vyp in the process.

b) Next, let vy = VIN + vin where v, is considered to be a small perturbation of vy
around V. Make the substitution for vy and linearize the resulting expression
for vout. Your answer should take the form vouTr = Vour + Vour, Where vy
takes the form v, = Guip. Note that vy, is the small-signal output and G is the
small-signal gain. Derive an expression for G.

¢) For what value of VN is vout biased to Vour = Vs/2? For this value of Vi,
evaluate Gy, using the numerical parameters given in Problem 7.2. You should find
that this gain is the slope of the input-output graph from Problem 7.3 evaluated at
the bias point.

PROBLEM 8.2 Consider again the buffer described in Problem 7.5 (Figure 7.76).
Perform a small-signal analysis of this circuit according to the following steps. Assume
that the MOSFET operates in its saturation region and continue to use the SCS MOSFET
model with parameters V1 and K.

a) Draw the small-signal circuit model of the buffer.

b)  Show that the small-signal transconductance g, of the MOSFET is given by
&n = K(Vin — Vour — V1)

where VN and Vour are the bias, or operating-point, input and output voltages,
respectively.

¢) Determine the small-signal gain of the buffer. That is, determine the ratio v /vin.

d) Determine the small-signal output resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the output port of its small-signal model with
vin = 0.

¢) Assume that V= 1V, K =2 mA/V2 R =1k, and Vg = 10 V. Under this
assumption, design the input bias voltage to satisfy the following two objectives:
First, MOSFET operation must remain within the saturation region for || <
0.25 V. Second, the output resistance of the small-signal model must be minimized.
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f) Again assume that VT = 1V, K = 2 mA/V2, R = 1k, and Vg = 10 V. For
VIN = 3V, compute the small-signal gain and output resistance.

g) Determine the small-signal input resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the input port of its small-signal model.

PROBLEM 8.3 Thisproblem studies the small-signal analysis of the ZFET ampli-
fier from Problem 7.6 (Figure 7.77). Assume that the amplifier is biased at an input
voltage ViN such that the ZFET exhibits saturated operation; the corresponding bias
output voltage is VouT. For this case, derive the small-signal voltage gain v,,,/vin of the
amplifier.

PROBLEM 8.4 The circuit shown in Figure 8.4 delivers a nearly constant current
to its load despite the fact that the power supply is noisy. The noise is modeled by
the small signal vs superimposed on the constant-supply voltage V. Thus, Vg and
vs are the large-signal and small-signal components of the total power supply voltage
vs, respectively. Iy and 7 are the large-signal and small-signal components of the load

s <> [ i=1 +i
Current source T Dl L=l

& load Vs G

s CDNonlinear D

resistor
i i
—<—0
+
Nonlinear 1
Slope = -
resistor D v - Ry
L o v

current ir , respectively. The noise vs in the power supply voltage satisfies vs < Vs, and
is responsible for the presence of 7 in iy..

The current source contains a MOSFET which operates in its saturation region such
that ipg = %(UGS — V2. The current source also contains a nonlinear resistor whose

terminal characteristics are described graphically next. Assume that Vg > Vy > V.

a)  Assume v; = 0. Determine Vg, the large-signal component of vgg, in terms of Rg,
RN, VN, and Vs.

CHAPTER EIGHT
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b)  Following the result of part (a), determine I; in terms of Rp, Ry, VN, Vs, K, and V.

C
B ¢) Now assume that v5 # 0. Draw a small-signal circuit model for the combined circuit
comprising the power supply, current source and load, with which 7 can be found
E from ;. Clearly label the value of each component in the circuit model.

d)  Using the small-signal model from part (c), determine the ratio i;/vs.

PROBLEM 8.5 Figure 8.54 depicts a bipolar junction transistor (BJT). Recall that
a BJT has three terminals called the base (B), the collector (C), and the emitter (E).

Bi, Figure 8.54 also shows an alternative small-signal model for the BJT operating in its
active region. This model is slightly different from the small-signal BJT model discussed
in this chapter in that it includes a base resistance Rp. In the model shown in the figure,
B is a constant.

a) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.55.

FIGURE 8.54 Use the small-signal equivalent circuit to derive the small-signal gain of the amplifier.

b) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.56.
Notice that the resistor divider provides the necessary bias voltage. Use the small-
signal equivalent circuit to derive the small-signal gain of the amplifier.

PROBLEM 8.6 Consider the MOSFET-based amplifier circuit discussed in
Problem 7.8 (Figure 7.79). Assuming an input bias point voltage Vj, draw the small-
signal circuit equivalent of the amplifier. Determine the small-signal gain of the amplifier.
Assume throughout that the MOSFET operates in its saturation region.

PROBLEM 8.7 Consider again the amplifier circuit discussed in Problem 7.8
(Figure 7.79). Suppose that the amplifier is biased such that v; = v at the bias point.
Draw the small-signal circuit equivalent of the amplifier assuming this bias point. Deter-
mine the small-signal gain of the amplifier at this bias point. Assume that the MOSFET
operates in its saturation region.

FIGURE 8.55

PROBLEM 8.8 Consider the common gate amplifier circuit shown in Figure 7.82,
and analyzed earlier in Problem 7.11. Assume that the MOSFET operates in its saturation
region, and is characterized by the parameters V1 and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage VouT and operating-point current
Ip in terms of an input operating-point voltage V.

¢) Assuming an input bias point voltage VN, draw the small-signal model of the
amplifier.

FIGURE 856 d) Determine the small-signal gain v,,/viy of the amplifier.
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e) Determine the small-signal output resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the output port of its small-signal model
with v; = 0. Is the small-signal output resistance greater than, less than, or equal to
that of the “common source” amplifier shown in Figure 8.50?

f)  Determine the small-signal input resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the input port of its small-signal model.
Is the small-signal input resistance greater than, less than, or equal to that of the
“common source” amplifier shown in Figure 8.50?

PROBLEM 8.9 Consider the circuit illustrated in Figure 7.86 and analyzed in
Problem 7.15. Assume that the MOSFET operates in its saturation region, and is
characterized by the parameters V and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage Vo and operating-point current I
in terms of an input operating-point voltage V7.

¢) Assuming an input bias point voltage V}, draw the small-signal model.

d) Determine the small-signal gain v,/v;.

e) Determine the small-signal output resistance.

f)  Determine the small-signal input resistance.

PROBLEM 8.10 Consider the circuit illustrated in Figure 7.87 and analyzed in

Problem 7.16. Assume that the MOSFET operates in its saturation region, and is
characterized by the parameters V and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating-point voltage Vo and operating-point current Ip
in terms of an input operating-point voltage V7.

¢)  Assuming an input bias point voltage V}, draw the small-signal model.
d) Determine the small-signal gain v,/v;.

e) Determine the small-signal output resistance.

f)  Determine the small-signal input resistance.

PROBLEM 8.11 This problem studies the small-signal analysis of the amplifier
analyzed in Problem 7.14 (see Figure 7.85). Assume that the MOSFET operates in its
saturation region, and is characterized by the parameters Vr and K.

a) Draw the small-signal equivalent circuit of the amplifier driving the load resistor R,
assuming an input bias voltage V7.

b) Determine the small-signal gain of the amplifier when it is driving the load RE.
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PROBLEM 8.12 This problem studies the small-signal analysis of the circuit ana-
lyzed in Problem 7.17 (see Figure 7.88). Assume that the MOSFET operates in its
saturation region, and is characterized by the parameters V1 and K.

a) Draw the small-signal equivalent circuit assuming an input bias voltage V;. What is
the value of g, for the MOSFET under the given biasing conditions?

b) Determine the small-signal voltage gain v,/v;. What does the v,/v; expression
simplify to when each of g,,,R1, g»R2, and g,,Ry is much greater than 1?

PROBLEM 8.13 This problem studies the small-signal analysis of the source
follower (or common collector) BJT circuit analyzed in Problem 7.18 (see Figure 7.89).
Assume that the BJT operates in its active region throughout this problem.

a) Determine the output operating-point voltage Vo and operating-point current I
in terms of an input operating-point voltage V.

b)  Assuming an input bias point voltage Vj, draw the small-signal model of the source-
follower amplifier.

¢) Determine the small-signal gain v,/v; of the amplifier.

d) Determine the small-signal output resistance of the source follower amplifier. Is this
resistance greater than, less than, or equal to that of the “common emitter” amplifier
analyzed in Exercise 8.7 and shown in Figure 8.51?

e) Determine the small-signal input resistance of the amplifier. Is the input resistance
greater than, less than, or equal to that of the “common emitter” amplifier shown
in Figure 8.51?

f)  Determine the small-signal current and power gain of the source follower amplifier.
Assume for this part that the amplifier is driving an output load of Rp connected
between the output node and ground.

PROBLEM 8.14 Consider again the compound three-terminal device formed by
connecting two BJTs in the configuration shown in Figure 7.90 (Problem 7.19). This
problem relates to the small-signal analysis of this device. Assume that the two BJTs are
identical, each with 8 = 100, and that each of the BJTs operates in the active region.

a) Draw the active-region equivalent circuit of the compound BJT by replacing each of
the BJTs by the piecewise linear (large signal) model shown in Exercise 7.8. Clearly
label the C', B, and E’ terminals.

b) Develop a small-signal model containing a single dependent current source for the
compound device by linearizing the circuit model in (a) and simplifying suitably.









ENERGY STORAGE ELEMENTS

To this point in our study of electronic circuits, time has not been important.
The analyses and designs we have performed so far have been static, and all
circuit responses at a given time have depended only on the circuit inputs at
that time. An important consequence of this is that our circuits have so far
responded to input changes infinitely fast. This of course does not happen in
reality. Circuits do take time to respond to their inputs, and this delay is often
of significant importance.

As an example of circuit delays, and the importance of time in describing the
response of a circuit, consider the two cascaded inverters shown in Figure 9.1.
The ideal response of the first inverter, based on our analysis of electronic circuits
to this point, is shown in Figure 9.2. A square-wave input yields an inverted
square-wave output. However, in reality, the output shown in Figure 9.3 is
more likely to occur, which is a much more complex function of time. This
example is discussed in detail in Section 10.4, where we will show that the
complex time behavior shown in Figure 9.3 directly relates to the speed at
which circuits can operate. In this chapter, we will lay the foundation for that
discussion.

In order to explain the temporal behavior of circuit responses such as that
shown in Figure 9.3, we must introduce two new elements, namely capacitors
and inductors. For example, we shall see that it is a capacitance internal to
the MOSFET that is responsible for the non-ideal inverter response shown in
Figure 9.3. For simplicity, we did not model that characteristic of the MOSFET
in earlier chapters, but we will begin to do so now in Section 9.3.1.

There are other ways in which a capacitance or an inductance can inad-
vertently slow down a circuit. One way is shown in Figure 9.4. This figure

(O iy

FIGURE 9.1 Two cascaded
inverters.
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FIGURE 9.2 Ideal response of the first inverter to a FIGURE 9.3 Observed response of the first inverter to a

square-wave input.

FIGURE 9.4 The behavior of
a real interconnect between two
inverters.

square-wave input.

shows two inverters communicating over a long interconnect. As we discussed
in Chapter 1, within our lumped-circuit abstraction, the interconnect is perfect.
Specifically, by the definition of the lumped circuit abstraction (see Section 1.2),
the wires interconnecting the elements have no resistance. Furthermore, by the
lumped matter discipline which underlies the lumped circuit abstraction, the
wires and other circuit elements store no electric charge and link no magnetic
flux outside the elements. Reality, however, is different, and in some cases this
difference is important. As Figure 9.4 shows, any interconnect having a potential
difference with its surroundings actually stores an electric charge g that sources
an electric field E between that charge and its image. Furthermore, in order to
supply the charge, a current i must flow around the interconnect loop. This
current in turn generates a magnetic flux density B that is linked by the loop.
So, real interconnects do store electric charge and do link external magnetic
flux, thereby appearing to violate the lumped matter discipline. They will also
exhibit a nonzero resistance. These factors can all contribute to a reduction in
the speed of the circuit as a whole, and at times it is important to study these
effects.



Reality now presents us with a dilemma. On the one hand, we wish to work
within the framework of the lumped circuit abstraction so that the circuits we
study all fit within this easily-managed framework. On the other hand, we
should not be forced to ignore circuit effects, in this case parasitic resistance,
capacitance, and inductance, that significantly affect circuit performance. The
resolution of this dilemma is the modeling compromise mentioned in Chapter 1.
Figure 1.27 in Chapter 1 used an ideal wire in series with a lumped resistance to
model a physical wire with some parasitic resistance. Similarly, we will introduce
lumped capacitors and lumped inductors to model the effect of the charge and
the flux. As illustrated in Figure 9.5, a capacitor comprising a pair of parallel
plates collects the positive and negative charge on its plates and effectively
models the distributed charge. Notice that because the capacitor contains equal
positive and negative charges the net charge within the capacitor element is
zero, thereby satisfying the lumped matter discipline. Thus, the capacitor can
be viewed as a lumped element. In like manner, we will introduce a lumped
inductor to model the effect of the flux linked with the wires as illustrated in
Figure 9.6. The lumped matter discipline is satisfied because the flux is entirely
contained inside the lumped inductor, and there is no net flux outside the
element.

By using lumped resistors, capacitors, and inductors to model the effect
of the resistance, charge, and flux associated with the physical wiring of the
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FIGURE 9.5 The capacitor
models the effect of the distributed
charge.

FIGURE 9.6 The inductor
models the effect of the flux.
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FIGURE 9.7 Capturing the parasitic effects (b)

of resistance, charge, and flux through the use

of resistors, capacitors, and inductors, FIGURE 9.8 Two different lumped models for
respectively. Capacitors and inductors are an interconnect that account for interconnect
formally introduced in Section g.1. resistance, capacitance, and inductance.

circuit, as shown in Figure 9.7, the wiring within the augmented circuit model
remains perfect in keeping with the lumped circuit abstraction. In the figure, the
interconnect resistance, capacitance, and inductance are Ry, Cj, and Ly in total,
respectively.

Figure 9.7 represents one of the simplest models used to model real inter-
connects. For more accuracy, since we can use as many additional lumped
elements as we wish, we can arbitrarily approach the distributed modeling
limit, although in general this is not necessary. For example, the two models
shown in Figure 9.8 do a better job of modeling reality. The interconnect model
in Figure 9.8a is a “I1” model in which the resistance and inductance is placed
between the split capacitance. The interconnect model in Figure 9.8b is a “T”
model in which the capacitance is placed between the split resistance and induc-
tance. As discussed in Section 9.3.1, we will adopt a similar lumped modeling
approach to the capacitances at work within the MOSFET.

From the preceding discussion it might appear that capacitors and inductors
appear only as parasitics in circuits, causing undesirable delays. This is far from
the truth. While they can and do act in that role, they are also often purposefully
introduced into circuits, both as discrete devices on breadboards and printed-
circuit boards, and as integrated-circuit components on a chip (see Figures 9.9
and 9.10 for examples of capacitors and inductors, respectively). For example,
they are the cornerstones of memories, filters, samplers, and energy processing
circuits. We shall see many examples of these in future chapters as well. Thus,
we have many reasons to study capacitors and inductors.
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In this section, we formally introduce the capacitor and inductor in the abstract,
and develop the constitutive laws that relate their branch variables. Capacitors
and inductors, which are the electric and magnetic duals of each other, dif-
fer from resistors in several significant ways. Most importantly, their branch
variables do not depend algebraically upon each other. Rather, their relations
involve temporal derivatives and integrals. Thus, the analysis of circuits contain-
ing capacitors and inductors involve differential equations in time. To emphasize
this, we will explicitly show the time dependence of all variables in this chapter.

911 CAPACITORS

To understand the behavior of a capacitor, and to illustrate the manner in
which a lumped model can be developed for it, consider the idealized two-
terminal linear capacitor shown in Figure 9.11. In this capacitor each terminal is
connected to a conducting plate. The two plates are parallel and are separated
by a gap of length . Their area of overlap is A. Note that these dimensions will
be functions of time if the geometry of the capacitor varies. The gap is filled
with an insulating linear dielectric having permittivity €.

CHAPTER NINE 461

FIGURE 9.9 Examples of
discrete capacitors (left) and
integrated-circuit capacitors (right).
The image on the right shows a
small region of the Maxim
MAX1062 analog-to-digital
converter chip and depicts an array
of polysilicon-to-polysilicon
capacitors, each measuring

15.9 um by 15.9 pm. (Photograph
Courtesy of Maxim Integrated
Products.)

FIGURE 9.10 Examples of
discrete inductors. (Photograph
Courtesy of Maxim Integrated
Products.)
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FIGURE 9.11 Anidealized
parallel-plate capacitor.
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As current enters the positive terminal of the capacitor, it transports the
electric charge g onto the corresponding plate; the unit of charge is the Coulomb
[C]. Simultaneously, an identical current exits the negative terminal and trans-
ports an equal charge off the other plate. Thus, although charge is separated
within the capacitor, no net charge accumulates within it, as is required for
lumped circuit elements by the lumped matter discipline discussed in Chapter 1.

The charge g on the positive plate and its image charge —g on the negative
plate produce an electric field within the dielectric. It follows from Maxwell’s
Equations and the properties of linear dielectrics that the strength E of this
field is

y= A0 9.1)

eA(t)

and its direction points from the positive plate to the negative plate. The electric
field can then be integrated across the dielectric from the positive plate to the
negative plate to yield

u(t) = 5 E®). 9.2)

Combining Equations 9.1 and 9.2 then results in

€AW
qt) = 10 v(2). 9.3)
We define
€A
Cl) = 0 9.4)

where Cis the capacitance of the capacitor having the units of Coulombs/ Volt,
or Farads [F]. Substituting for the capacitance in Equation 9.3, we get

q(t) = C)v(p). 9.5)
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In contrast to the resistor, which exhibits an algebraic relation between its
branch current and voltage, the capacitor does not. Rather, it exhibits an alge-
braic relation between its branch voltage and its stored charge. Had the dielectric
not been linear, this relation would have been nonlinear. While some capacitors
exhibit such nonlinear behavior, we will focus only on linear capacitors.

The rate at which charge is transported onto the positive plate of the
capacitor is

dalt) = i(?). (9.6)
dt
From Equation 9.6 we see that the Ampere is equivalent to a Coulomb/second.
Equation 9.6 can be combined with Equation 9.5 to yield

i(t) = —— 9.7)

which is the element law for an ideal linear capacitor. Unless stated otherwise,
we will assume in this text that capacitors are both linear and time-invariant.
For linear, time-invariant capacitors, Equations 9.5 and 9.7 reduce to

q(t) = Cu(y) 9.8)
it) = C@, 9.9)
dt
respectively, with the latter being the element law for a linear time-invariant

capacitor.!

The symbol for an ideal linear capacitor is shown in Figure 9.12. It is chosen
to represent the parallel-plate capacitor shown in Figure 9.11. Also shown in
Figure 9.12 is a graph of the relation between the branch voltage and stored
charge of the capacitor.

One of the important properties of a capacitor is its memory property. In
fact, it is this property that allows the capacitor to be the primary memory

1. Although we will focus primarily on linear, time-invariant capacitors in this text, we note that
some interesting transducers such as electric microphones and speakers, and other electric sensors
and actuators, are appropriately modeled with time-varying capacitors. Similarly, most capacitors
used in electronic equipment (paper, mica, ceramic, etc.) are linear, but often vary a small amount
with temperature (a part of 10 per degree centigrade). But many are nonlinear. The charge
associated with a reverse-biased semiconductor diode, for example, varies as the 2/3 power of
voltage, because the distance d, the effective width of the space-charge layer, is a function of
voltage

q=K (wi/"’ — Wo — 1) 3) (9.10)

when 10, the contact potential, is a few tenths of a volt. From the above we can determine that
the capacitance of the reverse-biased diode varies as v~ 1/3
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FIGURE 9.12 The symbol and
voltage-charge relation for the
ideal linear capacitor. The element
law for the capacitor is i = Cadv/dt.
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element in all integrated circuits. To see this property, we integrate Equation
9.6 to produce

t
q@)z‘/ (D) dt (9.11)
or, with the substitution of Equation 9.8, to produce
1 t
)= — (2)dt. 9.12
o= [ it 9.12)

Equation 9.12 shows that the branch voltage of a capacitor depends on the
entire past history of its branch current, which is the essence of memory. This
is in marked contrast to a resistor (either linear or nonlinear), which exhibits no
such memory property.

At first glance, it might appear that it is necessary to know the entire history
of the current i in detail in order to carry out the integrals in Equations 9.11 and

9.12. This is actually not the case. For example, consider rewriting Equation
9.11 as

b5
¢m=/zmm

—00

15 151
= i(2)d i(t)d
Az@t+KMMt

15}
:/ iOdt + qty). (9.13)
5]

The latter equality shows that g(#) perfectly summarizes, or memorizes, the
entire accumulated history of i(#) for ¢ < #. Thus, if g(#;) is known, it is
necessary and sufficient to know i only over the interval #1 < ¢ < #, in order
to determine g(t;). For this reason, g is referred to as the state of the capacitor.
For linear time-invariant capacitors, v can also easily serve as a state because
v is proportionally related to g through the constant C. Accordingly, we can
rewrite Equation 9.12 as

1 (2
Wﬂ:almmm

t t
:%Auwwéf;Mﬁ

5]
:é/i@%ﬁ@. 9.14)
51
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Thus, we see that v(#1) also memorizes the entire accumulated history of i(?)
for ¢ < # and can serve as the state of the capacitor.

Associated with the ability to exhibit memory is the property of energy
storage, which is often exploited by circuits that process energy. To determine
the electric energy wg stored in a capacitor, we recognize that the power i is
the rate at which energy is delivered to the capacitor through its port. Thus,

dwg(t)

T i(Hv2). 9.15)

Next, substitute for i using Equation 9.6, cancel the time differentials, and omit
the parametric time dependence to obtain

dwg = vdg. 9.16)

Equation 9.16 is a statement of incremental energy storage within the capacitor.
It states that the transport of the incremental charge dq from the negative plate
of the capacitor to the top plate across the electric potential difference v stores
the incremental energy dwg within the capacitor. To obtain the total stored
electric energy, we must integrate Equation 9.16 with v treated as a function

of g. This yields
q
WE = / v(x)dx (9.17)
0

where x is a dummy variable of integration. Finally, substitution of Equation
9.8 and integration yields

T _ Colt?
2C 2

as the electric energy stored in a capacitor. The units of energy is the Joule [ ], or
Watt-second. Unlike a resistor, a capacitor stores energy rather than dissipates it.

Capacitors come in an enormous range of values. For example, two pieces
of insulated wire about an inch long, when twisted together, will have a capaci-
tance of about 1 picofarad (1012 farads). A low-voltage power supply capacitor
an inch in diameter and a few inches long could have a capacitance of 100,000
microfarads (0.1 farad; 1 microfarad, abbreviated as uF, is 10~° F).

A real capacitor can exhibit richer behavior than that described here. For
example, leakage current can flow through its dielectric. The practical signifi-
cance of dielectric leakage is that eventually the charge stored on a capacitor
can leak off. Thus, eventually a real capacitor will lose its memory. Fortu-
nately, capacitors can be made with very low leakage (in other words, with very
high resistance) in which case they are excellent long-term memory devices.
However, if the dielectric leakage is large enough to be significant, then it can
be modeled with a resistor in parallel with the capacitor.

Stored energy = wg(f) = (9.18)
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FIGURE 9.13 Anidealized
toroidal inductor.

ENERGY STORAGE ELEMENTS

Other non-idealities include the distributed series resistance, and even series
inductance, that arises in foil-wound capacitors in particular. These character-
istics limit the power-handling capability of a real capacitor, and the frequency
range over which a real capacitor behaves like an ideal capacitor. They can often
be explicitly modeled with a single series resistor and inductor, respectively.

EXAMPLE 9.1 PARALLEL PLATE CAPACITOR Suppose the
parallel-plate capacitor in Figure 9.11 is 1 m square, has a gap separation of 1 um,
and is filled with a dielectric having permittivity of 2¢,, where €, &~ 8.854 x 10712 F/m
is the permittivity of free space. What is its capacitance? How much charge and energy
does it store if its terminal voltage is 100 V?

The capacitance is determined from Equation 9.4 with ¢ = 1.8 x 10~ F/m, A = 1 m?
and] = 107¢ m. Itis 18 wF. The charge is determined from Equation 9.8 withv = 100 V.,
It is 1.8 mC. Finally, the stored energy is determined from Equation 9.18. It is 90 m].

9.12 INDUCTORS

As we saw in Section 9.1.1, from the perspective of modeling electrical systems,
the capacitor is a circuit element to model the effect of electric fields. Corre-
spondingly, the inductor models the effect of magnetic fields. To understand
the behavior of an inductor, and to illustrate the manner in which a lumped
model can be developed for it, consider the idealized two-terminal linear induc-
tor shown in Figure 9.13. In this inductor a coil with a terminal on each end
is wound with N turns around a toroidal core made from an insulator having
magnetic permeability 1. The length around the core is / and its cross-sectional
area is A. Note that these dimensions will be functions of time if the geometry
of the inductor varies.

The current in the coil produces a magnetic flux in the inductor. Ideally, this
magnetic flux does not stray significantly from the core, so that the flux outside
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the element is negligible. Thus the inductor can be treated as a lumped circuit
element that satisfies the lumped matter discipline discussed in Chapter 1. From
Maxwell’s Equations and the properties of permeable materials, the density B
of the flux is

_ pNi()

B() 10

) (9.19)

and its direction is around the core. The magnetic flux density can be integrated
across the core to yield

D(t) = A(t)B(1) (9.20)

where @ is the total flux passing through the core, and hence through one turn
of the coil. Since the flux @ is linked N times by the N-turn coil, the total flux
2 linked by the coil is

Alt) = NO() = NA@BB(®). (9.21)

The units of flux linkage is the Weber [Wb]. Combining Equations 9.19 and
9.21 results in

 uNPAQ)

At) 10

i(0). 9.22)

We define L, the inductance of the inductor, as

N2A(t
Lo = “NAG (9.23)
1)
L has the units of Webers/Ampere, or Henrys [H]. That is, inductance is the
number of flux linkages per ampere. Substituting for L in Equation 9.22 we
obtain the following relation for the total flux linked by the inductor

Alt) = L(0)i(2). (9.24)

In contrast to the resistor, which exhibits an algebraic relation between its
branch current and voltage, the inductor does not. Rather, like the capacitor, it
exhibits an algebraic relation between its branch current and its flux linkage. Had
the core not been magnetically linear, this relation would have been nonlinear.
While most inductors exhibit such nonlinear behavior for sufficiently high B,
we will focus only on linear inductors.

Again from Maxwell’s Equations, the rate at which flux linkage builds up
in the inductor is

di(1)
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FIGURE 9.14 The symbol and
current-flux-linkage relation for an
ideal linear inductor. The element
law for an inductor is v = Ldi/dlt.
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From Equation 9.25 we see that the Volt is equivalent to a Weber/second.
Equation 9.25 can be combined with Equation 9.24 to yield

u(t) = —., (9.26)

which is the element law for an ideal linear inductor. For time-invariant
inductors, Equations 9.24 and 9.26 reduce to

M) = Li(?) 9.27)
u(t) = L@, (9.28)
dt

respectively, with the latter being the element law for a linear time-invariant
inductor. This text will focus primarily on linear time-invariant inductors.
Nonetheless, many interesting transducers such as motors, generators, and
other magnetic sensors and actuators, are appropriately modeled with time-
varying inductors.

The symbol for an ideal linear inductor is shown in Figure 9.14. It is chosen
to represent the coil that winds the inductor shown in Figure 9.13. Also shown
in Figure 9.14 is a graph of the relation between the branch current and flux
linkage of the inductor.

One of the important properties of an inductor is its memory property.
To see this property, we integrate Equation 9.25 to produce

Al) = / t v(t)dt (9.29)

i) = — / t v(t)dt. (9.30)

Equation 9.30 shows that the branch current of an inductor depends on the
entire past history of its branch voltage, which is the essence of memory. As
for the capacitor, this is in marked contrast to an ideal resistor, which exhibits
no such memory property.

At first glance, it might appear that it is necessary to know the entire history
of the voltage v in detail in order to carry out the integrals in Equations 9.29
and 9.30. Again as for the capacitor, this is actually not the case. For example,
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consider rewriting Equation 9.29 as

An) = / ? v(t)dt

—00

%) 51
= d d
'/t.l u(t) t+[mv(t) t

12}
_ / Wddt + A1), 9.31)

5]

The latter equality shows that A(#;) perfectly summarizes, or memorizes, the
entire accumulated history of v(t) for ¢t < #;. Thus, if A(#;) is known, it is
necessary and sufficient to know v only over the interval 1 < ¢ < #; in order to
determine A (). For this reason, A, the total flux linked by the coil, is referred to
as the state of the inductor. For linear time-invariant inductors, i can also easily
serve as a state because 7 is proportionally related to A through the constant L.
Accordingly, we can rewrite Equation 9.30 as

. 1 (2
i(h) = I /_ N v(B)dt

LT Y L

—0o0

15}
_ % / Vidt + ilty). 9.32)
5]

Equation 9.32 shows that 7 can also serve as the state of an inductor.

As with the capacitor, associated with the ability to exhibit memory is the
property of energy storage, which is often exploited by circuits that process
energy. To determine the magnetic energy w\ stored in an inductor, we rec-
ognize that the power #v is the rate at which energy is delivered to the inductor
through its port. Thus,

dwm(t)
dt

Next, substitute for v using Equation 9.25, cancel the time differentials, and
omit the parametric time dependence to obtain

= {(tu(t). (9.33)

dwy = idh. (9.34)

Equation 9.34 is a statement of incremental energy storage within the inductor.
To obtain the total stored magnetic energy, we must integrate Equation 9.34
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with 7 treated as a function of A. This yields

s
wM=/0 i(x)dx (9.35)

where x is a dummy variable of integration. Finally, substitution of Equation
9.27 and integration yields
2 (2
Stored energy = w\(f) = )u_(t) = ﬂ (9.36)
2L 2
as the magnetic energy stored in an inductor. Unlike a resistor, but like a
capaditor, an inductor stores energy rather than dissipates it.

A real inductor exhibits richer behavior than that described here. For exam-
ple, it can exhibit a significant coil resistance. The practical significance of this
resistance is that it eventually dissipates any energy stored in the inductor.
Unfortunately, this resistance is usually significant so that inductors make poor
memory devices. When it is necessary to model this energy loss, the coil
resistance can be modeled as a resistor in series with the ideal inductor.

Other non-idealities include core loss and inter-turn capacitance. These
characteristics limit the power-handling efficiency of a real inductor, and the
frequency range over which a real inductor behaves like an ideal inductor. They
can often be modeled with a parallel resistor and capacitor, respectively.

EXAMPLE 9.2 TOROIDAL INDUCTOR Suppose the toroidal induc-
tor in Figure 9.13 has a cross-sectional area of 1 cm?, has a length around its toroid
of 10 c¢m, has a coil with 100 turns, and is filled with free space having permeability
o = 4m x 1077 H/m. What is its inductance? How much flux does its coil link, and
what energy does it store if its terminal current is 0.1 A?

The inductance is determined from Equation 9.23 with u = 47 x 10~/ H/m, A =
10 m2, I = 0.1 m and N = 100. It is 13 «H. The flux linkage is determined from
Equation 9.24 with i = 0.1 A. It is 1.3 wWb. Finally, the stored energy is determined
from Equation 9.36. It is 0.063 pJ.

92 SERIES AND PARALLEL CONNECTIONS

In Section 2.3.4, we saw that the resistances of resistors in series add, and that
the conductances of resistors in parallel add. Thus, series and parallel resistors
could be represented as a single resistor with an appropriate resistance. These
addition rules later became useful as a means of simplifying circuits and their
analyses. As we shall see in this section, similar rules may be derived for both
capacitors and inductors, and these rules are equally useful.



9.2 Series and Parallel Connections

921 CAPACITORS

Consider first the series combination of two capacitors as shown in Figure 9.15;
we will assume here that the two capacitors were uncharged at the time of their
connection. Since the two capacitors share a common current, it follows from
Equation 9.11 that they store a common charge g, as shown in Figure 9.15.
Thus, following Equation 9.8,

q(®) = Civ1(t) = Gua(o). 9.37)

Next, using KVL we observe that
u(t) = v1(®) + v2(2). (9.38)

Finally, since the effective capacitance C of the two series capacitors is
q/v, it follows that

L_dy_ 1, 1
C qt G G
or,
CC
A 9.39)
CG+QG

where the second equality results from the substitution of Equation 9.38 and
then Equation 9.37. Thus, we see that the reciprocal capacitances of capacitors
in series add. This is consistent with the physical derivation of capacitance
in Equation 9.4 since placing capacitors in series essentially increases their
combined gap length.

Now consider the parallel combination of two capacitors as shown in
Figure 9.16. Since the two capacitors share a common voltage v, it follows
from 9.8 that

oy = 19 _ 20 (9.40)

Gt G
Next, using KCL and Equation 9.11 we observe that

qt) = q1(t) + (0. (9.41)

Finally, since the effective capacitance C of the two parallel capacitors is g/v, it
follows that

C= @ =C+ G 9.42)
VI

)

where the second equality results from the substitution of Equation 9.41
and then Equation 9.40. Thus, we see that the capacitances of capacitors
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involving up to three capacitors.
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in parallel add. This is consistent with the physical derivation of capacitance
in Equation 9.4 since placing capacitors in parallel essentially increases their
combined cross-sectional area.

EXAMPLE 9.3 CAPACITOR COMBINATIONS What equivalent
capacitors can be made by combining up to three 1-uF capacitors in series and/or in
parallel?

Figure 9.17 shows the possible capacitor combinations that use up to three capacitors. To
determine their equivalent capacitances, use the series combination result from Equation
9.39 and/or the parallel combination result from Equation 9.42. This yields the equivalent
capacitances of: (A) 1 uF, B) 2 uF, (C) 0.5 uF, (D) 3 uF, (E) 1.5 uF, (F) 0.667 uF, and
(G) 0.333 uF.

922 INDUCTORS

Consider the series combination of two inductors as shown in Figure 9.18;
we will assume here that neither inductor carried a current at the time of their
connection. Since the two inductors share a common current i, it follows from
Equation 9.27 that

M@ a0

it = T = I (9.43)

Next, using KVL and Equation 9.29 we observe that
AD = A1) + A2(0). (9.44)

Finally, since the effective inductance L of the two series inductors is A/7, it
follows that

L= M =Li+L, (9.45)

()

where the second equality results from the substitution of Equation 9.44 and
then Equation 9.43. Thus, we see that the inductances of inductors in series add.
This is consistent with the physical derivation of inductance in Equation 9.23
since placing inductors in series essentially increases the total length of core
around which the parallel turns are wound.

Now consider the parallel combination of two inductors as shown in
Figure 9.19. Since the two inductors share a common voltage, it follows from
Equation 9.29 that they share a common flux linkage 2, as shown in Figure 9.19.
Thus, following Equation 9.27,

M) = L1i1(8) = Lair (9). (9.46)
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Next, using KCL we observe that
i(t) = i1 () + 2 (). (9.47)

Finally, since the effective inductance L of the two parallel inductors is A/7, it
follows that

1 i) 1 1
L My Ly Ly
or,
L
_ 2 (9.48)
Li+ 1,

where the second equality results from the substitution of Equation 9.47 and
then Equation 9.46. Thus, we see that the reciprocal inductances of inductors
in parallel add. This is consistent with the physical derivation of inductance
in Equation 9.23 since placing inductors in parallel essentially increases the
cross-sectional area of the core around which the turns are wound.

EXAMPLE 9.4 INDUCTOR COMBINATIONS What equivalent
inductors can be made by combining up to three 1-uH inductors in series and/or in
parallel?

Figure 9.20 shows the possible inductor combinations that use up to three induc-
tors. To determine their equivalent inductances, use the series combination result
from Equation 9.45 and/or the parallel combination result from Equation 9.48. This
yields the equivalent inductances of: (A) 1 uH, (B) 0.5 uH, (C) 2 uH, (D) 0.333 uH,
(E) 0.667 uH, (F) 1.5 uH, and (G) 3 nH.

93 SPECIAL EXAMPLES

In this section, we examine several parasitic capacitances and inductances that
are commonly encountered inside integrated circuits, and in external wiring
connections to them and other circuit elements. There is again the danger that
this discussion implies that capacitors and inductors appear most commonly
as parasitics in circuits. This is certainly not the case. Rather, we examine
the parasitics here primarily for interest sake, and because they will provide
interesting and important circuit examples in future chapters.

931 MOSFET GATE CAPACITANCE

Let us now take a closer look at the structure and operation of the MOSFET
in order to better understand its dynamic behavior. Figure 9.21 reviews the
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FIGURE 9.22 MOSFET with a positive
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FIGURE 9.23 Electric charge and field within
the MOSFET with a positive voltage applied at the
gate relative to the source and substrate.

structure of the n-channel MOSFET. The figure identifies its n*-type source
and drain, its p-type substrate, its channel region, its gate conductor, and the
silicon dioxide dielectric that separates its gate and channel.

Figure 9.22 shows the same n-channel MOSFET with its source and sub-
strate grounded, and positive voltages applied to its gate and drain. As the
positive gate voltage is applied, electrons flow from the source into the channel
and accumulate beneath the gate. When the gate voltage exceeds the threshold
voltage of the MOSFET, the electron density beneath the gate becomes suffi-
ciently high to invert the channel from p-type silicon to n-type silicon. Thus, a
continuous n-type channel forms between the source and drain, thereby allow-
ing electrons to flow from the source to the drain, and hence current to flow
from the drain to the source, in the response to the positive drain voltage.

The important observation here from Figure 9.22 is that in the process
of inverting its channel, and turing itself on, the MOSFET actually forms a
parallel-plate capacitor between its gate and channel. This is emphasized in
Figure 9.23, which shows the electric field E in the silicon dioxide emanating
from the positive charge on the gate and terminating on the negative charge in
the channel. Comparing this figure to Figure 9.11 leads to the realization (from
Equation 9.4) that the gate-to-channel capacitance is approximately

eoxLW
d

where eox ~ 3.9¢, is the permittivity of the silicon dioxide, d is the thickness
of the silicon dioxide, L is the channel length, and W is the channel width. The
product LW is the gate area.

Since the electrons that fill the channel originate from the source, and since
their image charges reside on the gate, the gate-to-channel capacitance that
we identified in Figures 9.22 and 9.23 appears between the gate and source
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of the MOSFET when viewed from the MOSFET terminals. For this reason
the capacitance is usually referred to as the gate-to-source capacitance of the
MOSFET, or Cgg. In other words,

LW
Cas = 2, (9.49)
d
Often, the ratio eox/d is referred to as Cpox, the gate-to-channel

capacitance per unit area of the MOSFET gate. In other words,

€0X
Cox = 22X
OX 4

This realization also leads to the augmented switch-resistor-capacitor (SRC)
model of the MOSFET shown in Figure 9.24. Here, a lumped capacitor is added
to the SR model to account for the charge that must be supplied to the gate
conductor and channel in order to turn on the MOSFET. Thus, we develop
a model that describes the behavior of the MOSFET vyet satisfies the lumped
matter discipline.

Because the SRC model contains a capacitor between the gate and source
terminals of the MOSFET, a current will flow into the gate terminal and out
from the source terminal of that model as the gate-to-source voltage of the
MOSEET varies. This current transports the charge that accumulates within
the MOSFET as seen in Figures 9.22 and 9.23. Following Equation 9.9, the
current is given by

dvgs
dt

ic = Cgs (9.50)

where
Cgs = CoxLW. (9.51)

From Equation 9.50 we can now begin to see the reason for the inverter behavior
observed in Figure 9.3. It will take time for the gate current to transport charge
onto the gate, and hence it will take time for the gate voltage to rise. Thus, it
will take time for the inverter to pass a signal from its input to its output. We
will have more to say about this in Section 10.4.

Finally, it is important realize that the dynamic behavior of a real MOSFET
is actually much more complex than described here. In reality a MOSFET
actually has many internal capacitances of importance, including capacitances
between its gate and drain, its gate and source, its gate and substrate, its drain
and source, its drain and substrate, and its source and substrate. Further, most
of these capacitances are actually functions of vgs and vps. For our purposes,
we will work primarily with Cgg and assume that it is a constant capacitance.
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FIGURE 9.25 MOSFET gates
with different dimensions; all
dimensions in the figure are in wm.

—>| | ¢2A

FIGURE 9.26 A wiring loop.
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EXAMPLE 9.5 GATE CAPACITANCES OF MOSFETS Figure 9.25
shows the top view of several rectangular MOSFET gates fabricated within an
integrated circuit. Let us assume that the silicon-dioxide dielectric is characterized by
Cox ~ 4 fF/um?, and find the gate capacitances Cgg for each MOSFET.

To do so, we use Equation 9.51. To begin, notice that MOSFETs M3, M4, and M5
must have the same capacitance because they have the same area of 12 um?. Their
capacitance is therefore 48 fF. MOSFET MS5 has the biggest area of 36 umZ, and so
it has the biggest capacitance of 144 fF, while MOSFET M2 has the smallest area of
9 um?, and so it has the smallest capacitance of 36 fF. MOSFETs M1 and M7 have
capacitances 64 fF and 108 fF, respectively.

932 WIRING LOOP INDUCTANCE

The most common parasitic inductance is the inductance associated with a
wiring loop. In the lumped circuit abstraction, this inductance is ignored unless
it is explicitly modeled in a circuit using an additional lumped inductor. To
estimate the inductance of a wiring loop, consider the circular loop of wire in
free space shown in Figure 9.26. The loop has a loop radius R and a wire radius
A. Its inductance L is given approximately by?

8R
L =pu.R (ln (X) — 2) . (9.52)

This expression can also be used to successfully approximate the inductance of
many nondircular wiring loops.

2. See Ramo, Whinnery, and Van Duzer, Fields and Waves in Communication Electronics, P. 311,
John Wiley, 1965.
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EXAMPLE 9.6 INDUCTANCE OF A WIRING LOOP Suppose
a wiring loop in free space has a 5-mm diameter and is made from 200-pm-thick wire.
What is its inductance?

Using Equation 9.52 with R = 2.5 x 103 m, A = 10~* m, and 1, = 47 x 10~7 H/m,
the inductance is found to be 10 nH.

933 IC WIRING CAPACITANCE AND INDUCTANCE

Let us now return to Figure 9.4, and develop a model for the capacitance and
inductance of the conductors inside an integrated circuit (IC) that are implied
by the figure. Many conductors inside integrated circuits can be modeled as
a flat conductor above a conducting substrate, or ground plane, as shown in
Figure 9.27.

The conductor in the figure has a width W, and it is located the distance
G above the ground plane. Such conductors are typically surrounded by an
insulating dielectric having a permittivity of € > €, and a permeability of 1.
Under the assumption that W > G, we can ignore the fringing electric and
magnetic fields at the edges of the conductor. In this case, the capacitance Cand
inductance L of the conductor per unit length along its length is approximately

C= ew (9.53)
G

o kG (9.54)
W

In other cases, however, the width of the conductor is not large compared to
its elevation above the ground plane. An example of this is a narrow printed
circuit board trace. In such cases the conductor might alternatively be modeled
as a cylindrical conductor above a ground plane as shown in Figure 9.28.

Conductor
w
Ground
plane
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FIGURE 9.28 A cylindrical conductor above a conducting

FIGURE 9.27 A flat conductor above a conducting ground plane. ground plane.
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The conductor in Figure 9.28 has a radius R and is centered the distance
H above the ground plane. It has a capacitance C and inductance L per unit
length of approximately

(9.55)

L="Ih|—+,— -1 (9.56)

along its length. Together, the conductors shown in Figures 9.27 and 9.28 can
be used to model a wide variety of interconnects.
Finally, notice that for both interconnects,

CL = epo.
It follows from Maxwell’s Equations that this will always be the case for

any two-wire interconnect having constant cross section along its length. Thus,
any effort to reduce either C or L will result in an increase of the other.

EXAMPLE 9.7 CAPACITANCE OF INTEGRATED-CIRCUIT
INTERCONNECT Consider an integrated-circuit interconnect, such as the
one shown in Figure 9.27, with W = 2 um, G = 0.1 um, and € = 3.9¢,. What
is its capacitance and inductance per unit length?

Using Equations 9.53 and 9.54, C = 690 pF/m = 0.69 fF/um, and L = 63 nH/m =
63 fH/um.

EXAMPLE 9.8 PRINTED-CIRCUIT-BOARD TRACE Consider
modeling a printed-circuit-board trace as a cylindrical conductor above a ground plane,
as shown in Figure 9.28. Let R = 0.5 mm, H = 2 mm, and € = ¢,. What is its
capacitance and inductance per unit length?

Using Equations 9.55 and 9.56, C =27 pF/m, and L = 410 nH/m.

934 TRANSFORMERS

A transformer is a two-port device made by winding a second coil around the
inductor, for example, that shown in Figure 9.13. Let the first (or primary) coil
have Nj turns and the second (or secondary) coil have N, turns. The symbol for
an ideal transformer having this construction is shown in Figure 9.29. The two
dots indicate the ends of the two coils that are wound in the same direction.
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FIGURE 9.29 The symbol for an ideal transformer. FIGURE 9.30 A useful model for an ideal transformer.

In an ideal transformer, the coils are wound so tightly against each
other that each of their turns links the same flux ®(#). It then follows from
Equations 9.25 and 9.21 that

v = le 9.57)
dt

V) = Nzw (958)
dt

so that

uo_nt) -

Ni N
In an ideal transformer, the core is also infinitely permeable, that is, u = oco. For
a single-coil inductor carrying a finite flux ®(z) = A()/N, Equation 9.22 shows
that the total ampere-turns Ni() flowing around the core through the coil must
vanish as p becomes infinite. In an ideal transformer, the total ampere turns
must similarly vanish, and so

Ny (2) + Noio(t) = 0 (9.60)

or
N1 (D) = —Noir (2). 9.61)

Equations 9.59 and 9.61 are the constitutive equations for an ideal transformer.
By combining Equations 9.59 and 9.61, it can be observed that

(@i ([) = =2 i (0. (9.62)

Thus, the power flowing into one port of an ideal transformer must instanta-
neously flow out from the second port. Said differently, an ideal transformer
cannot store energy. This is consistent with having an infinitely permeable core.

A very useful model for an ideal transformer is shown in Figure 9.30.
This model uses two dependent sources to enforce Equations 9.59 and 9.61.
The voltage-dependent voltage source enforces Equation 9.59 and the current-
dependent current source enforces Equation 9.61.
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I(t) cC —/— v(t)

FIGURE 9.31 A current source
driving a capacitor.

V(t)

FIGURE 9.32 A voltage source
driving a capacitor.

i(1)
V()

FIGURE 9.33 A voltage source
driving an inductor.

1(r)

FIGURE 9.34 A current source
driving an inductor.
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EXAMPLE 9.9 A TRANSFORMER A transformer can be used to trans-
form the 120-Volt rms utility voltage to a voltage that can power a 5-V DC load.
To do so, what must be the approximate turns ratio of the transformer?

If the primary of the transformer is connected to the utility, then
vy = 12082 sin27 60 ),

where the frequency of the utility voltage is 60 Hz (or 60 cycles per second), or 2 60
radians per second. Thus, the primary has a peak voltage of 170 V. At the secondary, it
is desired that v, have a peak of 5 V, and so the turns ratio should be approximately

Ni/N, = 34.
A real transformer designed for this application would actually have a slightly smaller

turns ratio so that v, would ideally be somewhat larger than 5 volts. This allows for
voltage drops across coil resistances and leakage inductances found in practical devices.

94 SIMPLE CIRCUIT EXAMPLES

To complete our introduction to capacitors and inductors, let us now examine
their behavior in the simple circuits shown in Figures 9.31 through 9.34. These
circuits are the same as those shown in Figures 2.25 and 2.26, except for the
replacement of the resistor in the latter figures by the capacitor or inductor in the
former figures. Because the two sets of circuits are so similar, we could analyze
the circuits shown in Figures 9.31 through 9.34 using the same approach applied
in Chapter 2 to the circuits shown in Figures 2.25 and 2.26. Alternatively, we
could carry out a node analysis as developed in Section 3.3. However, since the
circuits here are simple, we will follow the more intuitive approach outlined at
the end of Section 2.4, and save the formalities for the analysis of more complex
drcuits in future chapters.

Consider first the circuit shown in Figure 9.31. In this circuit, the current [
from the source must circulate through the capacitor. Thus, the current through
both elements is known. Next, following Equation 9.12, the voltage v across
the capacitor, and hence across the current source, is given by

1 t
u(t) = c /_ N I(Hdt. (9.63)

All branch variables are now known.
Consider next the circuit shown in Figure 9.32. In this circuit, the voltage V
from the source must also appear across the capacitor. Thus, the voltage across
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both elements is known. Next, following Equation 9.9, the current 7 circulating
through both the capacitor and the voltage source is given by

av(y)

Again, all branch variables are now known.

Now consider the circuit shown in Figure 9.33. In this circuit, the voltage
V from the source must also appear across the inductor, just as it appeared
across the capacitor in Figure 9.32. Thus, following Equation 9.30, the current
drculating through both the inductor and the voltage source is given by

. 1 [t
i(t) = I [ N V)dt. 9.65)

All branch variables are now known.

Finally, consider the circuit shown in Figure 9.34. In this circuit, the
current [ from the source must circulate through the inductor, just as it did
through the capacitor shown in Figure 9.31. Thus, following Equation 9.28,
the voltage v appearing across both the inductor and the current source is
given by

ut) = L@. (9.66)
dt
Once again, all branch variables are now known.

In the following subsections, we will consider specific examples of the
source current I and source voltage V. However, before doing so, it is worth
noting the similarity between the analyses of the four circuits we have just
studied. Because capacitors and inductors are duals of each other, we find
that the circuits are as well. For example, the circuits shown in Figures 9.31
and 9.33 are duals. Capacitance interchanges with inductance, and current
interchanges with voltage, as can be seen by comparing Equations 9.63 and
9.65. Similarly, the circuits shown in Figures 9.32 and 9.34 are duals. Again,
capacitance interchanges with inductance and current interchanges with voltage,
as can be seen by comparing Equations 9.64 and 9.66.

It is also interesting to note that the circuits shown in Figures 9.31 through
9.34 perform either integration or differentiation of the sour