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Preface

This book is written to provide continuity to the reader on how radar
systems work, how the signals captured by the radar receivers are processed,
parameterized and presented for tracking, and how tracking algorithms are
formulated. Continuity is needed because most radar systems books have
been written that concentrate on certain specialized topics assuming a prior
knowledge of the reader to background principles. In most cases extended
references are given to the understanding of the topics in question. This can
be frustrating to practitioners and students sorting through books to under-
stand a simple topic. Hence this book takes a thorough approach to ramp-
ing up the reader in the topical foundations. Advanced topics are certainly
not ignored. Throughout, concepts are developed mostly on an intuitive,
physical basis, with further insight provided through a combination of
applications and performance curves.

The book has been written with science and engineering in mind, so that
it should be more useful to science and communications professionals and
practising electrical and electronic engineers. It could also be used as a text-
book suitable for undergraduate and graduate courses. As a practitioner and
teacher, I am aware of the complexity involved in the presentation of many
technical issues associated with the topic areas. This is the main reason why
the book

e builds up gradually from a relatively low base for the reader to have a
good grasp of the mathematics, and the physical interpretation of the
mathematics wherever possible before the reader reaches the advanced
topics, which are certainly not ignored but necessary in the formulation of
tracking algorithms;

e gives sufficient real-life examples for the reader to appreciate the synergy
involved and have a feel for how physical abstractions are converted to
quantifiable, real events or systems;

e where real-life matters cannot be linked directly to physical derivations,
gives further insight through a combination of applications and perform-
ance curves. In most cases, those secking qualitative understanding
can skip the mathematics without any loss of continuity. Professionals
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in the field would greatly appreciate the background knowledge mathe-
matics, sufficient for them to follow the advanced sections with very little
difficulty;

e presents a number of new ideas which may deserve further investigation.

In general, readers of this book will gain an understanding of radar systems’
fundamental principles, underlying technologies, architectures, design
constraints and real-world applications. To be able to cover all relevant
grounds, the book contains 12 chapters, divided into four parts. Each part
represents topics of comparable relevance.

Part I contains five chapters. The chapters are structured in a way that
gives the reader a continuum in the understanding of radar systems. Each
chapter is somehow self-sufficient. However, where further knowledge can
be gained, applicable references are given.

Chapter 1 provides the essential functional relations, concepts, and
definitions that are relevant to radar systems’ development and analysis
and signal peak detection. This approach is taken to provide the basic
groundwork for other concepts that are developed in subsequent chapters.
The areas covered are sufficiently rich to provide a good understanding of
the subject matter for non-specialists in radar systems and associated signal
processing.

The next four chapters concentrate on radar systems. Discussions on
radar systems evolve from basic concept and gradually increase to a more
complex outlook. The author believes that mastering the fundamentals
permits moving on to more complex concepts without great difficulty. In
so doing, the reader would learn the following:

e The basic architecture of radar systems, receiver sensitivity analysis, and
data acquisition and/or compression issues as well as the applications of
radar in Chapter 2.

e Chapter 3 examines the physics of an antenna, which is a major item in
radar systems design. It starts from the perspective of a simple radiator,
the division of radiation field in front of an antenna into quantifiable
regions and further discusses the principle of pulse compression. Pulse
compression allows recognition of closely spaced targets as well as
enabling range measurements when transmitting with signal pulses and
a train of pulses.

e Chapter 4 shows how the extension of the simple radiator’s radiation
property to an array of radiators including slot antennas can achieve
a higher gain as well as the freedom to steer the array antenna in any
preferred direction.

e Chapter 5 explains how radar equations are developed recognizing the
effect of the environment on the conventional, laser and secondary radar
performance and the detection of targets of variable radar cross-sections
and mobility.
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Part II comprises two chapters: 6 and 7. When a wave traverses the regions
comprising the atmosphere it results in the degradation of signal-target
information due to spatial inhomogeneities that exist and vary continuously
with time in the atmosphere. The spatial variations produce statistical bias
errors, which are an important consideration when formulating and design-
ing a high frequency (HF) skywave radar system. Chapter 6 explains how
these errors are quantified including the polarization rotational effect on the
traversing wave. Chapter 7 explains the design consideration and perform-
ance of the skywave radar.

The issue of what the true nature of data is and what to do with data
acquired by radar becomes relevant after the data, which might have been
corrupted prior to being processed, has been processed. Data processing
involves the transformation of a set of coordinated physical measurements
into decision statistics for some hypotheses. These hypotheses, in the case of
radar, are whether targets with certain characteristics are present with
certain position, speed, and heading attributes. To test the trueness of the
hypotheses requires knowledge of probability and statistical and decision
theory together with those espoused in Chapter 1 — the reader will therefore
be in a better position to know the other processes involved in signal-peaks
detection. Hence, Part III is structured into three chapters: 8, 9 and 10.

Chapter 8 reviews some of the important properties and definitions of
probability theory and random processes that bear relevance to the succeed-
ing topics in Part I'V. By this approach, the author consciously attempts to
reduce complex processes involved in synthesizing radar system signals to
their fundamentals so that their basic principles by which they operate can
be easily identified. The basic principles are further built on in Chapter 12 to
solve more complex, technical tracking problems.

Chapter 9 investigates one type of optimization problem; that is, finding
the system that performs the best, within its certain class, of all possible sys-
tems. The signal-reception problem is decoupled into two distinct domains,
namely detection and estimation. Detection problem forms the central theme
of Chapter 10 while estimation is discussed in Part IV, Chapter 11. Detection
is a process of detecting the presence of a particular signal, among other
candidate signals, in a noisy or cluttered environment.

Part IV contains two chapters — 11 and 12 — covering parameter estima-
tion and radar tracking. Estimation is the second type of optimization
problem and exploits the several parallels with the decision theory of
Chapter 9. Three estimation procedures are considered, namely maximum
likelihood, a posteriori, and linear estimation.

Tracking is the central theme of Chapter 12 and it brings to the fore all the
concepts discussed in previous chapters. For example, target tracking now
turns the tentative decision statistics, discussed in Chapters 9 and 11, into
more highly refined decision statistics. The probability theory discussed in
Chapter 8 is expanded on to solve the problem of uncertainty in track
initiation and establishment as well as data association.
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I understand during my years of engineering practice and teaching that
many readers learn more by examples, which I have relied on in explaining
difficult concepts. For those readers wishing to test their level of under-
standing several problems are written at the end of each chapter.
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Notations

The symbols have been chosen as carefully as possible to prevent confusion.
In a few instances, the same symbol was used. When this occurs, a clear
distinction is made in their meaning and where used in the text is indicated.

Symbols
A

T
- IS)

=

Meaning

Current potential in Chapter 3, or fundamental matrix
in Chapter 12

Clutter illuminated surface area

Attenuation due to absorption by electromagnetic waves
Effective aperture area of the receiving antenna
Effective aperture area of the beacon antenna
Insertion loss

Searched area

Signal amplitude

Rain attenuation

Area to be searched

Target area

Proportionality constant, or acceleration in Chapter 12
Notation that relates to the radar and vehicle dynamics
Axial ratio of elliptical polarization

Fourier series coefficient

Receiver beamwidth, or Bayes risk in Chapter 9

Noise bandwidth

Available bandwidth for integration

Bandwidth of the radar signal

Proportionality constant

Fourier series coefficient

Continuous wave

Speed of light

Cost function

Pulse compression ratio

Level parameters of clutter model
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Cumulant of the kth order

Series spectral density

Weight modifier for beam shaping operation
Covariance matrix of [ ]

A layer of the ionosphere used for radio wave
propagation in Chapter 6, or aperture diameter

A body of data to be encoded

Laser lens diameter

Largest dimension of the antenna, or directive gain (also
called directivity)

Detectability factor

Dynamic range

Allowable spacing between array elements in Chapters 4
and 7, or statistical Euclidean distance in Chapter 12
Maximum spacing between array elements

Distance between radiators of log periodic antenna
Duty cycle

Maximum fraction of the interpulse interval available
for target reception or clear region duty cycle

Electric charge in Chapter 3, or a layer of the ionosphere
used for radio wave propagation in Chapter 6
Expectance (or p mean) of the variable x, sampled

at time ¢

Amplitude of the plane wave

Electric intensity in the ¢, 0, r direction

Charge of an electron

Receiver sensitivity

Error function of (x)

Ratio of the resultant field at the target in the presence of
surface reflection coefficient p in Chapter 5, or force
exerted in Chapters 3 and 6

F layers of the ionosphere subdivided into two: F1, F2
Field pattern of a single point source radiator

Array factor for the » radiators

Noise density factor

Stage noise factor

Noise density factor

Discrete form of Fourier series sampler

Noise figure

Figure of merit

Frequency

Pattern factor

Function of a signal at time ¢

Correlation frequency in Chapter 5, or critical frequency
in Chapters 6 and 7
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Doppler shift

Nyquist frequency or folding frequency (in Chapter 1),
cut-off frequency (in Chapter 2), or sampling frequency
Frequency of maximum response at E, F1, F2 layers
Plasma frequency

Joint density function of, or probability distribution
function of, a set of data xi, x2,...Xx,

Gain

Gain of the beacon antenna

Stage i gain or antenna gain of the interrogating radar
Antenna gain of receiving radar

Antenna gain of transmitting radar

Gravitational constant

Number of sunspot group

Gating threshold

Magnetic field vector

Entropy in Chapter 2, magnitude of the magnetic field
intensity at any point on the earth in Chapter 6, or
measurement transition matrix in Chapters 11 and 12
Scaled, or normalized height

Transfer function of an impulse 4,

Magnetic field intensity of the wave along z, y direction
Planck’s constant, or height of a reflecting layer

in the ionosphere in Chapter 6

Antenna height above datum

Height of the radar antenna above the clutter surface
Height of maximum ionization density

Impulse of the optimum linear filter

Height of the peak density of the F2 layer

Target height above datum

Virtual height

Alternating current

Intermediate frequency

Tonospheric index

Identify friendly or foe

Intercept point of the nth order

Modified Bessel function of first kind, zero order in
Chapters 1 and 5, or amplitude of the alternating
current in Chapter 3

Total current density

Convectional current density

Displacement current density

Jacobian function

Scale or correction factor K to effect the conversion to
the scale originated by Wolf for sunspot number
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FEETARR
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m out of n
m,

my,

N

N, amb

NmFZ
Ny
Ny
No

NI’

N, thermal
N,

N(u, 6?)

Acceleration steady-state variance reduction ratio
Velocity steady-state variance reduction ratio
Position steady-state variance reduction ratio
Boltzmann’s constant

Index of an elliptically polarized antenna

Wind direction adjustment factor

Number of degrees of freedom describing a target
function

Grazing angle adjustment factor

Polarization adjustment factor

Sea state adjustment factor

Aperture illumination constant

Path length of the intervening rain in Chapter 5,

or likelihood function in Chapter 11

Steady-state apparent fluctuation loss

A category of norms in Chapter 1, or polarization loss
between an antenna elliptically and linearly polarized in
Chapter 5

Propagation losses in clutter patches

Pattern constant

System loss

Total losses

Separation distance between the electric charges

The ith length of the periodic antenna element
Moment of the dipole in Chapter 3, or complex index of
refraction in Chapter 6

m peaks selected out of n detections

Mass of an electron

kth moment

Iteration limit number

Number of ambiguities that can be folded, or mapped,
into a particular cell

Background interference

Number of parallel channels

Electron density

Laser radar noise power

F2-peak density

Number of densities of neutral particles

Number of densities of positive and negative ions
Total noise at the output of the receiver or maximum
electron density in Chapter 6

Number of samples coherently processed

Thermal noise or Johnson noise

Molecular nitrogen

Normal distribution of mean p and variance c°
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PRI
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P(x|y)
p(x)
p(xy)
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Index of refraction in Chapter 6, or iteration limit in
other chapters

Number of beams

Number of cells to be searched

Number of Doppler filters

Number of cells or number of independent pulses
integrated during N-pulse transmission

Refractive index of the ordinary wave in Chapter 6
Refractive index of the extraordinary wave in
Chapter 6

Number of photoelectron emissions

Molecular oxygen

Power radiated by a dipole in Chapter 3, or covariance
matrix in Chapters 11 and 12

Error covariance vector

Probability of variable x

Probabilistic data association

Power output of the beacon antenna

Clutter power

Probability of detection

Probability of error

Probability of false alarm

Gate probability

Probability that a target can be observed

Received signal power

Transmit power of the interrogating radar
Polarization of the ordinary ‘o’, and extraordinary
‘X’ wave

Pulse repetition interval

Probability of {}

Probability of x given y

Probability density function of x

Joint probability density function of two variables
xandy

Probability density function

Obliquity factor in Chapter 6, number of channels
occupied by signals greater than specified threshold in
Chapter 7, or noise covariance matrix in Chapters 11
and 12

Oscillating charge

Positive, negative point charge

Limit of field boundary

Measurement noise covariance vector

Generally range or noise covariance matrix in Chapters
11 and 12
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I'm

Sbmin
Si
Smin
S/N
S,
St

A

Si

So

T

Average range

Radio frequency

Direct radar range

Yearly smoothed relative sunspot number

Clutter range, being the distance from the radar

to the centre range gate

System equivalent impedance

Sunspots occurrence measurement

Radiation resistance

Unambiguous range

Cross-correlation of the signals x and y, autocorrelation
function of same signal x

Rate of change, or first derivative, of r (range)
Second, third derivative of r

Elliptical distance observed at a point not at the equator
Radius of the earth at the equator

Target position in the ith scan

Measured range

Predicted range

Rain rate

Sea state index in Chapter 5, received signal power in
Chapter 7, or residual covariance matrix in Chapters 11
and 12

Minimum detectable signal of the beacon receiver
Radar input signal

Minimum detectable signal of the radar receiver
Signal-to-noise ratio

Signal power at the output of the receiver

Target power

Number of observed individual sunspots

Matched filter input signal

Matched filter output response

Record length in Chapter 1, data interval (sampling period)
in Chapters 11 and 12, or temperature elsewhere
Duration of waveform

Temperature of electron ions

Frame time

Integration time

Temperature of neutral particle

Ideal standard temperature

Pulse repetition period

Dwell time

Track

Trace of {.}

Target correlation time
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Measurement interval time or time dwelled on target
Time required by the laser radar to search a field (also
called laser frame time)

Ultraviolet ray

Plant noise vector

Shape parameter of clutter model

Electric potential between two charges

Rain clutter volume

Proportion of clutter in validation volume

Propagation wave phase velocity

Propagation wave group velocity

Proportion of target peaks in validation volume
Volume of the validation region

Smoothed velocity

Measurement noise vector

Effective angular collision frequency in Chapter 6, or
velocity in Chapter 12

Collision frequencies of electrons with neutral particles,
electrons with ions, ions with neutral particles, and ions
with ions respectively

Orthogonal beams in ¢ domain

Clutter amplitude or threshold voltage

Weight vector

Weight factor

Window function

Complex weighting on the received data from pth
element of the array antenna that is beamformed

Test signal distribution across the receiver inputs,
response within the processor

Received data from pth element of the array antenna
that is beamformed in Chapter 7, or forecast (predicted)
position in Chapter 12

Day number starting on 1 January

Innovation or residual vector

Estimate of y

Measurement recorded on the k radar scans

Semi thickness associated with height of the peak density
of the F2 layer

Beam output

Impedance of the dipole

Impedance of the complementary slot

Observations on the k radar scans

Reference part of the propagation coefficient in Chapter
6, or position damping factor in Chapter 12

Apparent elevation angle
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X

Xp

xref

XS a)

Aglu
An

Signal modulation factor

Neuvy constant

Apparent ionospheric elevation angle or threshold value
in Chapter 9 for Neyman—Pearson rule

Electron density gradient

Two-point extrapolator filter

Three-point extrapolator filter

Phase angle or the quadrature component of the
propagation coefficient, or velocity damping factor

in Chapter 12

Event probability

Geometric spacing between adjacent elements of log
period antenna

Neuvy constant

Sea reflectivity

Angle between linear polarization and the ellipse’s major
axis

Reference reflectivity

Two-dimensional function in delay, t, and Doppler shift,

f4; called uncertainty function, correlation function, or

an ambiguity function

Chi-squared distribution

Delta function, or solar declination in Chapter 6
Kronecker symbol

Phase progression angle

Doppler shift

Proportionality constant of uniformly distributed
random disturbances

Refraction error angle

Measurement elevation-angle error, or refraction-angle
error

Angle between the ray path and the direct path at the
target location

Phase caused by path difference

The phase difference of direct and reflected fields
reaching the target of equal intensity

Filter spacing

Vertical extent of the beam in the rain or height of the
radar resolution cells (whichever is lesser)

Hour angle of the sun measured westward from
apparent noon

Geographic latitude

Geomagnetic latitude

Difference in the refractive index of two magneto-ionic
components
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Width of transmitter beam

Nominal range-rate resolution, nominal resolution in
acceleration

Time delay or range error

Path difference between direct and reflected waves
Difference between the required signal level and that of
undesired distortion

Steering time delay

Error introduced in the target Doppler velocity

Pulse width spacing

Range extent at a particular operating frequency
Width of the illuminated area

Characteristic function of a random variable

Error

Relative permittivity

Permittivity of free space

Solar zenith angle

Angle between the surface normal and incident radar
signal (for laser radar in Chapter 5), or total angular
excursion

Average noise floor

Gamma function, or functional form in Chapter 9
Input reflection coefficient of the antenna

Detector quantum (or optical) efficiency in Chapter 5, or
apex angle of log period antenna in Chapter 7
Characteristic impedance of free space

Rain reflectivity

Mean rain reflectivity for each cell

Proportionality constant in determining rain reflectivity
in Chapter 5, or weighting factor in Chapters 11 and 12
Wavelength

Radian length

Spatial density of false (clutter) measurement
Characteristic length or Debye length

Manoeuvre correlation coefficient

Spatial density of true target measurement
Approximate spatial density of false and target
measurements

Proportionality constant for sea and land reflectivity in
Chapter 5, propagation coefficient in Chapter 6, or
acceleration damping factor in Chapter 12

Decision threshold

Desired threshold or biased value for nominally
accepted probability of false alarm

Phase angle of the reflection coefficient
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Solar zenith angle in Chapter 7 or significance test level
in Chapter 9

Arithmetic mean

Target, clutter distribution function

Antenna elevation angle

First, second derivative of 0 (bearing)

Azimuth beamwidth, or antenna elevation angle

in Chapter 5

Beamwidth (laser radar)

Antenna elevation beamwidth

Horizontal beamwidth

Scanning or steering angle

Vertical beamwidth

Depression angle

Level parameters of clutter model

Target elevation angle

Target radar cross-section in Chapter 5, or conductivity
in Chapter 6

Land, or sea, clutter cross-section

Land, or sea, reflectivity

Standard deviation of signal/data x

Second-order moment, or variance, of signal/data x
Root-mean-square of wave height

Predicted measurement variance

Position measurement variance

Measurement noise variance in range

Measurement noise variance in bearing

Variance of target acceleration

Surface reflectivity or surface reflection coefficient
Pulse width, delay in range or time required for changes
at the dipole to travel a distance in Chapter 3, or
log-periodic antennas’ geometric ratio in Chapter 7
Average time between false target peaks

Log normal distribution-model constant, or likelihood
test in Chapter 9

Union

Total phase difference of the radiating fields from

the adjacent elements in Chapter 4, grazing angle

in Chapter 5, or orientation of the target velocity

in Chapter 6

Transitional angle beyond which an adjustment factor
is applied

Mean value of Rayleigh component of clutter
Measured, predicted bearing

Sample space
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Laser radar search solid angle
Critical region

Variable bearing

Variable bearing rate
Measured bearing

Predicted bearing

Cartesian coordinate of point of intersection
Event density function

Target speed

Gate size

Modifying function
Convolution
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Part |

Radar Systems

This part contains five chapters. The chapters are structured in a way that
provides continuity to the reader in the understanding of radar systems.
Each chapter is somehow self-sufficient. However, where further knowledge
can be gained, applicable references are given.

Chapter 1 provides the essential functional relations, concepts, and defin-
itions that are relevant to radar system’s development and analysis and signal
peak detection. This approach is taken to provide the basic groundwork for
other concepts that are developed in subsequent chapters. The areas covered
are sufficiently rich to provide a good understanding of the subject matter for
non-specialists in radar systems and associated signal processing.

The next four chapters concentrate on radar systems. Discussions on
radar systems evolve from a basic concept and gradually increase to a more
complex outlook. The author believes that mastering the basic fundamentals
permits moving on to more complex concepts without great difficulty. In
so doing, the reader would learn:

e the basic architecture of radar systems, receiver sensitivity analysis, and
data acquisition and/or compression issues as well as what radars are used
for in Chapter 2;

o the physics of an antenna, which is a major item in radar systems design,
from the perspective of a simple radiator, the division of radiation field in
front of an antenna into quantifiable regions, the principle of pulse com-
pression that allows recognition of closely spaced targets, as well as range
measurements for signal pulse and train pulses in Chapter 3;

o that by extending the simple radiator’s radiation property to an array of
radiators including slot antennas, a higher gain can be achieved, and the
array can be steered in any preferred direction in Chapter 4;

o how the radar equations are developed recognizing the effect of the environ-
ment on the conventional, laser and secondary radar performance and detec-
tion of targets of variable radar cross-sections and mobility in Chapter 5.

I understand during my years of engineering practice and teaching that
many readers learn more by examples, which I have relied on in explaining
difficult concepts. For those readers wishing to test their level of under-
standing several problems are written at the end of each chapter.






Essential relational functions

The chapter begins with the study of frequency analysis of signals with the
representation of continuous time periodic and aperiodic signals by means of
Fourier series and Fourier transform, respectively. The Fourier transform is
one of several mathematical tools that are useful in the design and analysis
of linear time-invariant systems. The properties of the Fourier transform are
discussed and a number of time-frequency dualities presented. An analogous
treatment of discrete-time periodic and aperiodic signals follows.

Other topics covered include convolution, correlation, window functions
and a generalized category of norms, L,-norm — used for scaling of data as
well as for noise and error estimation.

1.1 Fourier analysis

Fourier transform is a process whereby a given function f(¢) can be expressed
in terms of a trigonometric series. For instance, if a periodic or aperiodic
function can be expressed in the form

f(1) = f: ay cos(nt) + by, sin(nt) (L.1)

n=0

such a series is known as the Fourier series of the function f(¢) and the
constants a, and b, are the Fourier coefficients. Any trigonometric functions
can be scaled to possess a period of 2/, say. Thus for a function f(¢) = cos (®?),
its period is (2n/w). For the period 2/, ® =mn//, and the function
f(t) = cos(nt/l) is still of period 2/, and its Fourier series will assume the form

ft) = i a, COS (TcTnt) + b, sin (nTnl) (1.2)
=0

Equation (1.2) is the general definition of a Fourier series of the function f(¢)
of period 2/. In determining the Fourier series of a function, certain assump-
tions are made: the series exists; and the series uniformly converges within
the given interval. The convergence premise provides the options of integrat-
ing the series term by term so that the values of the coefficients a,, b, can be
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determined. The interval of the integration could be any of the following
(=1, 1) or (0, 2]), or (—m, m) or (0, 2rw). Where the particular interval is taken,
however, makes no difference when the function f(¢) is periodic. It is often
convenient to take the interval of integration from —T/2 to +T/2 in order to
recognize possible symmetry conditions.

To develop suitable expressions for a,, b,, begin by integrating (1.2) with
respect to ¢, term by term, over the interval (—/, [):

/f dt—/ Za,mos( )+b sm(n;”)dt

(1.3)
= / aodt + Z/ a, cos + b, sin (nm)dt
-1 = /
It follows therefore that when n = 0,
1 /
aozfl[/f(t)dt (1.4)

which is the mean value (MV) of f(¢) over a period ( — /, l) By definition, the
MYV of a function, say, f(¢), is given as MV =1/b — af f(x)dx.

For the other cases of n > 1, the Fourier coefficients a, and b, are
obtained by multiplying both sides of (1.2) by cos(nnt/l) and sin (nmt/l)
respectively and then integrating the result term by term. By Aboaba
(1975), the trigonometric functions cos(nnt/l) and sin(nmt/l) are used
because they have important properties:

o that enable a minimum mean square error between the signal and the
approximate value derived from the Fourier technique; and

e that are orthogonal enabling the coefficients to be determined independ-
ently of one another.

Thus, by multiplying (1.2) by cos (nnt//):

/f cos dl Z/ ancos +b cos( /) sin (nm)dt (1.5a)

with the sine terms of this equation vanishing and leaving only the a, terms;
that is,

/f cos dl n=1,23... (1.5b)
which corresponds to 2MV of f(¢) cos (nnt/l).

Similarly, multiplying (1.2) by sin (nnt//) leaves only the b, terms because
the cosine terms vanish. So

%/Zf(t)sin(nTm)dt n=1,2.3,... (1.6)
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which corresponds to 2MYV of £(¢) sin (nnt/l). Combining (1.4), (1.5b) and (1.6)
together, the resulting series is called the Fourier series of /() and the coeffi-
cients so defined are the Fourier coefficients. In order to express the coeffi-
cients uniformly as being 2MYV of the respective function, the Fourier series of
a periodic function f(¢) over the interval (—/, /) is sometimes written as

fl) =3+ 2 a, cos("Tm) + by sin (”TT") (1.7)

where, in this instance, @y = 2MV of f(¢) over a period (—/, [). The sum,
represented by (1.7), of the Fourier series does not necessarily equal to the
function from which it is derived and the conditions under which the Fourier
series converge because (1.7) depends very much on the form of the parti-
cular function chosen.

The expression in (1.7) may be represented in terms of exponential terms
as

f(t)= iSne*m (1.8)

where

noting that S_, = S} where the asterisk denotes a complex conjugate.
The quantum leap to this generalization is left to the reader to verify given
that

cos(u) = cos(—u)

sin(—u) = — sin(u)

1 . .
cos(u) = 3 (e +e™")

sin(u) = 2% (M — &) (1.9)

00 ) —00 )

—jnmt jnmt
E a,e T = E ape’ 1
n=1

n=-—1

oo —0o0

L oim .
E jbye T = — g jbyeT
n=1

n=—1

Equation (1.8) is commonly quoted in the literature as the complex Fourier
series. From the preceding Fourier series discussion, another important term
can be introduced, namely Fourier transform which is discussed next.
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1.1.1 Fourier transform

The Fourier transform of signal s(¢) is defined as

S(f) = Fls()] = [ " sy (1.10)

as the period T tends to infinity. The symbol F[ ] denotes Fourier transform
of [ ]. Physically, the Fourier transform S(f) represents the distribution of
signal strength with frequency; that is, it is a density function. Fourier
transform has inversion property.

1.1.2 Inverse Fourier transform

The Inverse Fourier transform of signal s(¢) is defined as

1

() = F S =5 [ S(erar (1.1m)

By comparing (1.10) with (1.11) it could be seen that a transform pair exists:
s(1) < S(f)

where < denotes a Fourier transform pair. Other Fourier transform pairs

can be developed as summarized in Table 1.1.

Table 1.1 Fourier transform pairs

(i)  Basic pair S\ < F(u)

(i) Complex argument ) < F*(u)

(iii) Negative argument f(=X) < F(—u)

(iv) Scaling by A SN < 1/|AIF(%)

(v) Multiplication by constant k Kf(A) — «F(u)

(vi) Additive S1V) + (A < Fi(u) + F>(u)

(vii) Shift { S o Flu — )
SOo=21) = e F(u)

(viii) Integration Jf)dL — F(u)/ju

(ix) Commutative convolution ffooofl MM AN — Fi(u)Fr(u)

(x)  Autocorrelation ffoxf(kl)f*(h + Mdhy < F(u)F*(up)

(xi) Parseval theorem S 2dh — 1)2m (% [F(u)Pdu

(xii) Dirac delta at pulse time t =0 and ¢ = 1, 5 (15(7[)5‘0) - e,/;nm

(xiii) Gaussian pulse e o o’
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1.1.3 Orthogonal relations

The following so-called orthogonal relations satisfy both the Fourier’s
circular and complex exponential functions:

1 /™ 0 m#£n
2—/ cos(mx) cos(nx)dx = ¢ 1 m=n>0 (1.12a)
T Jn 1 m=n=0
n 0 m#n
> sin(mx) sin(nx)dx = {% m=n>0 (1.12b)
) n 0 m=n=0
1 T
%/ cos(mx) sin(nx)dx =0 for all n and m (1.12¢)
1 T L 1 T 0
— Jix p=jnx gy Jlm=n)x g m#n
o ﬂe e/ dx 211/,,:6 dx {1 e (1.124d)

In these relations, m and n are integers and the intervals {—n, ©} may be

replaced by any other interval of length 2m.
The next two examples give the reader some feeling for the general

properties that might be expected.
Example 1.1 Obtain the Fourier series of f(x) defined by
0 —1<x<0

flx) = { sin(%X) 0<x<1 (1.13)

The function is shown in Figure 1.1.

f(x)

I I
~t 0 t

Figure 1.1 Graph of f(x)
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Solution
In view of (1.7), and using the function defined above, the Fourier series
coefficients may be expressed as follows:

a0 :%/(jsin(?)dx:% (1.14)
o= [ 907 (e
= [ o) e (e
=%H (N e (T,

1 cos(n—1)m  cos(n+ I)m
2Tt n+1 -1 n—1 n+1

(1.15a)

It is difficult to extract the coefficient a, when n = 1, from this solution
because of the divide-by-zero term occurring. So, the case of » = 1 can be
solved directly by putting n = 1 at the first integral of (1.15a); that is,

an _%/tsin(n:) cos( )dx_O (1.15b)
0

using the orthogonal relation of (1.12c). For other cases when n > 1, the
corresponding a, terms are obtained, using the resulting expression of
(1.15a), as

0 n = odd
= { _% (1132—1) n =c¢ven (1150)

And consequently for the b, terms using the orthogonal relation of (1.12b):

b, = ;/Otsm(mtm) sin(me>dx :% (1.154d)

Collating all the coefficients, the Fourier series of f(x) described by (1.13), or
Figure 1.1, is concisely written as

I 1. /mxy 2 1 2nxr
¥) = = 4+ —gin (™= > .
F(x) n—&—zmn(t) TCerlcos( p )} r>1 (1.16)

The plots of the Fourier series at different sample times, i.e. t = 2, 5, 10s, are
shown in Figure 1.2. It is observed in Figure 1.2(a, b, c) that as the function
period ¢ increases, the main lobe width widens and the side lobes, which are
prominent at short sampling periods, vanish.
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F(x) 12 /f=1
0.8 1 ]

0.4 A

0.0 T S T T . ,
0[0 2.0v 4.0 6.0v 8.0 10.0

F(x) 1.2-

0.8+

0.4 -

0.0 T T T T "
0.0 2.0 4.0 6.0 8.0 10.0

(C) — X

Figure 1.2 (a) The Fourier series of f(x) when sampled at period t = 25s; (b) the Fourier series
of f(x) when sampled at period t = 5s; (c) the Fourier series of f(x) when sampled at period
t=10s
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Example 1.2 Consider a transmitting signal represented by
 focos() ~f<i<d
s(t) = {0 > 1 (1.17a)

within the interval —7/2 to T'/2, where o and A correspond to the amplitude
of the signal and a scaling factor. Obtain the Fourier transform of the signal
if it is truly periodic.

Solution
Using the Fourier transform definition (1.10) and substituting (1.17a) in it,
the signal’s Fourier transform is written as

_ oT sin{nT(%)} +sin[nT(%ﬂ (1.17b)
2 TcT(f%Al) nT(%)

()] el (Y]}

As T tends to infinity, the signal s(7) becomes a truly periodic signal; periodic
for all time, while its Fourier transform S(f) tends to

S(f)z%{S(f‘;l)—i—S(le)} (1.17¢)

It can be concluded that the Fourier transform of a truly periodic (infinite
extent) cosine wave consists of a delta function of area o/2 centred at
frequency f = £1/A. It will be beneficial to clarify the concept of delta
function.

1.1.4 Delta function

A delta function (also called Dirac or impulse function) is a pulse of acutely
short period and unit area. The area is the product of the pulse’s period and
mean height, which is unity regardless of whether its precise shape is defined
or not. The Dirac function occurring at period ¢ = 0 is expressed as

G(f) = [w d(t)e ™idr = 1 (1.18)

where 8(7) represents the Dirac pulse occurring at 1 = 0, see Figure 1.3.

An application of the so-called ‘shifting property’ — to be discussed in
1.3.1 and which produces item (xii) in Table 1.1 — to the above equation
shows that the spectrum G(f) of 8(¢) at ¢t = 0 is simply the value of e 7>V at
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0.8

0.6

0.4

0.2

D

-10 -8 -6 -4 -2 0 2 4 6 8 10
Figure 1.3 Delta function

t = 0; which is unity. The result implies that all frequencies are equally
represented by cosine components. Suffice it to say that for a large number
of cosines of equivalent amplitude but of different frequencies when added
together tend to cancel each other out everywhere except at ¢ = 0 where they
all reinforce. In short, as higher and higher frequencies are included, the
resultant becomes an extremely narrow pulse centred on ¢ = 0.

The preceding discussion has focused on Fourier transforms with continuous
time series signals. Fourier transforms can also be expressed in discrete form.

1.2 Discrete Fourier transform

Digital systems may accept discrete signals in the form of a train of pulses
introduced by a sampler operation, or generate a sequence of numbers
representing the system output. The sampler may digitize the continuous
input signal f, at equal intervals of r seconds. This type of sampler is called
a periodic or uniform-rate sampler. If a total of N data points is required
within the finite period #, then the sampler’s Fourier coefficients can be
expressed in discrete form as

=1 i
Fk:N;ﬁe v k=0,1,2,...,N—1 (1.19)

where k and r correspond to n and ¢ of the continuous case. The expression
in (1.19) gives the Fourier coefficients in the discrete case, appropri-
ately called the discrete Fourier transform (DFT). In general, the sampling
scheme may be non-uniform aperiodic or a cyclic-variable sampling rate. An
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extension of the solution of (1.19) to non-uniform aperiodic, or cyclic-
variable, sampling rate is possible if the problem is carefully posed while
taking cognizance of the input waveform.

If for notational simplicity, the weighting kernel is defined as

j2n

Wy =ew (1.20)
then one can represent (1.19) by
1 Nl
_ﬁz_f,.W,;k" k=0,1,2,...,N—1 (1.21)
r=0

It is possible to recover the original sequence from its DFT by the operation
1 « .
:NZ:F;(W}’; r=0,1,2,...,N—1 (1.22)

This operation is called the inverse discrete Fourier transform (IDFT) and is
valid for real terms. Since the conjugate of a product is the product of the
conjugate, the complex DFT can be expressed as

N—
ZFW&V r=0,1,2,...,N—1 (1.23)
k7

|
=~
Alternatively,

1 [y ) *
= SN FEWE|l r=012,...,N~-1 (1.24)
r=0
which shows that the inverse DFT can be computed by forward trans-
formation.

By substituting k=n+ N, or r=n+ N, both the DFT and IDFT
expressions become

lN_l —(n r
FniN:NZf,.WN( N = 0,1,2,...,N— 1 (1.25)
r=0
1N71
f&N=NZFkW}v”iN)" n=0,1,2,....N—1 (1.26)
r=0

Equations (1.25) and (1.26) can be computed by a fast Fourier transform
(FFT) if N is suitably factorizable. An FFT method of computation is
addressed in section 1.3. The magnitude of the term Wi in (1.25), or
WENE in (1.26), is always unity for all values of r (or k) showing that
F,+y, or f,+y, is periodic; that is, repeating itself outside the 0: N — 1 limit.
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This periodicity invokes the concept of aliasing, which one frequently
encounters in radar signal processing and estimation.

1.2.1 Aliasing

The phenomenon of an aliasing arises in a number of practical contexts, for
example the wheels of a stagecoach, movie films, stroboscope and tracking.
Let us discuss how this phenomenon works in the case of the wheels of a
stagecoach. The wheels start accelerating from zero appear to rotate in the
correct direction with increasing speed, then they appear to be rotating in the
opposite direction with decreasing speed until they stop, then begin to rotate
with increasing speed in the forward direction, and so on. They appear to
fold over to the next speed after a particular instant or frequency. This
concept can be discussed further by formalization.

It is noted in (1.19) that the DFT of the series {x,}, where
r=0,1,..., N —1, is defined by

1 N-1 —j2nkr
Xi==)>» xev k=0,1,....N—1 (1.27)
r=0

Let us attempt to calculate values for X for all cases when k is greater than
N — 1. Putting k = N + L and upon substitution in (1.27):

—j2n(N+L)r
N

| M=l
Xy = N Z xe &
r=0

1 N-] prlr _ine
= — E xe v e’
N
r=0

which, since the magnitude of e7>™ is always equal to unity whatever the
value of r, the resulting waveform repeats itself periodically. So,

Xnir = X1 (1.29)

(1.28)

Furthermore, it is easy to see from (1.27) that if the terms in series {x, } are real,
then

X =X: (1.30)

which is in agreement with the Fourier transform of x; demonstrated by (1.8).
Hence

[ X_r| = [XL] (1.31)

indicating that the response of X; will be symmetrical about the zero
frequency position. For sampling time interval ‘d’ seconds, the unique part
of this response occupies the frequency range |o| < 2n/d (rad/s). Beyond
this, several spurious Fourier coefficients occur would appear as repetitions
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of the original which apply at frequencies below 2n/d. Suffice to say there-
fore that the Xj coefficients calculated by the DFT are only correct for
Fourier coefficients up to
2nk N
o < Nd k_O,l,...72
If there are frequencies above 2m/d present in the original spectrum, the
high-frequency components will introduce a distortion called aliasing. In
essence, the high-frequency components contribute to the series {x,} and
regrettably falsely distort the Fourier coefficients calculated by the DFT for
frequencies below 2m/d.
If @p is the fundamental and maximum frequency component present in
the series {x,}, then aliasing can be avoided by guaranteeing that the
sampling interval d is small enough such that

(1.32)

fo < Oy ] (Hz) (1.33)
JOS"or S2q W '

This frequency is called the Nyquist frequency (or sometimes called the
folding frequency), which is the maximum frequency that can be uniquely
identified from data sampled at time spacing d.

Example 1.3 An FFT processor is employed to spectrally analyse a ran-
domly generated real signal. The following requirements are given:

Desired resolution between frequencies <2.5 Hz
Maximum frequency in signal <1.75kHz

If the points permitted by the processor are an integer power of two,
determine (a) the minimum record length, (b) maximum allowable time
between signals and (¢) the minimum number of sampling points in a record.

Solution
(a) The minimum record length is equivalent to the desired resolution, so

11
dmin > 7 > 5= 045
Ji

(b) From (1.33), the maximum time between sampling must be confined to

1
d < <0.28571
max S0 S 3175 = ms

(¢c) From (1.32), the minimum number of sampling points in a record N can
be estimated when k = 1:

N > - > 700

maxfk

In conclusion, the phenomenon of aliasing is most important when analysing
real-time data. The sampling frequency f; must be high enough to cover the
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full bandwidth of the continuous time series. Otherwise the spectrum from
equally spaced samples will differ from the true spectrum primarily due to
aliasing. In certain instances, the only way of avoiding aliasing is to inten-
tionally filter out the higher-frequency components of the time series before
the analysis begins.

1.3 Other useful functions

This section briefly discusses the concept of convolution, correlation and
translation of signal from one domain description to another. For examples,
a space formed by [o, F(w)] is called the frequency domain while the space
formed by [¢, f(¢)] is called the temporal or time domain if the independent
variable ¢ represents time. The time domain can also be called the spatial
domain if t represents a spatial variable. The subsequent properties will
enhance the understanding of some of the Fourier transform pairs listed in
Table 1.1.

1.3.1 Shifting in time and frequency domain

The shifting theorem states that if the function f(¢) has a Fourier transform
given by F(w), then:

The Fourier transform of the function f(¢ & #,) is given by F(w)e™*% and
The function g(¢) = f(t)e*® has a Fourier transform given by F(w — )

Proof
(i) Following (1.10), the Fourier transform of f(¢) is

FU0) = [ rwe
which follows that
F{f(t£1)}= /oof(ti to)e ®dt (1.34)

By letting ¢t = 1 & #; and substituting it in (1.34), and changing the variable
of integration,

FU@h = [ e
—o0 (1.35)

:e]”‘”’“/ f(r)e 7 dr

The integral component of (1.35) is by definition F{t}. Hence
F{f(1)} = 7" F{1} (1.36)
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This expression shows that if a signal whose function is delayed in time by 7y, the
magnitude spectral density of the signal remains unchanged but an additional
term Fot, is added to the phase spectral in each of its frequency components.
(i1) Following (1.10),

Fle) = [ foememia

/ F(r)e T gy (1.37)
= F(o £ o)
This implies that a signal multiplied by a time function e’ causes its

spectral density to be translated in frequency by +wy.

1.3.2 Convolution

The convolution theorem states that if three time functions A(z), f1(¢) and g(r)
have Fourier transforms H(®), Fj(®) and G(o) respectively, and if

G(o) = Ho) - Fi (o)

then the multiplication of these two frequency functions H(w) and Fi(o) is
equivalent to the convolution of their corresponding time functions. That is,

8() = h(t) @ /1 (1)

where ‘®’ denotes convolution.

Example 1.4 The question devised for this example is an abridged version
of Stanley (1975). Consider two three-port aperiodic functions x(n) and g(n),
represented by

x(n) =2[8(n) +3(n—1) + 8(n — 2)]
g(n) =08(n) +28(n—1)+38(n—2)

Plot the convolution y(n) of the functions.

Solution
The convolution of the functions can be written as

n

y(n) = x(n) @ g(n) = > x(k)g(n — k)

k=0

With the expression, Figure 1.4 is drawn by letting n = 1.

Our understanding of signal-analysis procedure is enhanced by the appli-
cation of the convolution theorem. An illustration of such benefit is that of
windowing in signal data processing, particularly in spectral estimation,
when a reduction in sidelobes of such data is desired or gating in tracking
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Figure 1.4 The convolution plot of functions x(n) and g(n)

specifically in range filtering when using Doppler filters and still preserving
range information. For clarity, these new terms — gating and windowing —
are defined as follows.

A gate is simply a switch that opens and closes at preset times. Gating is a
term also used in radar tracking as a screening technique used in cutting
down the number of unlikely tracks postulated for a target. For instance, if a
range gate is set to pass echoes from all targets between x; and x; kilometres
away, the gate will open, say for 7, microseconds after the transmitted pulse
t,(=kx,, assuming kp sec/km) and will close #,[= k(x, — x;)] microseconds
later. More is said of tracking in Chapter 12.

Windowing involves multiplying a desired impulse response by a finite dur-
ation window. It reduces abrupt changes at the beginning and end of acquired
data. For example, if one assumes that a finite duration 7 function, represented
by fr(t) = f()wr(¢) is Fourier transformable, then in view of (1.10):

Fr{fr()} = F{/()wr(0)}

T 1 /oo ) )
= — F(a)ef“’doc] e ldt
)=t

| T (1.38)
— j(o—o)t

) F(a) [/0 e dt} do

T [ forsin(o — o) £
= %/700 F(oc)e 2 Wdoc
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This expression can be written concisely as

1
F(o) =—F(0) - wr(o) (1.39)
21
where
—jot i (D_T
wr(w) = Tez s1£)1T2
v

(1.40)
— Te ™ sinc (D—T
B 2

which translates to the Fourier transform of a step function window repre-
sentable by F{wr ()} = F{u(t) — u(t — T)}.

From (1.39) it is clear that the function, f7(f), is the convolution of the
true function, f(¢z), and the window function, wy(f). Suffice to say that
windowing of function f(f) reduces the function to a signal of finite duration,
which has the potential effect of spreading out the estimate F(w) with the
Fourier transform of the window function. It can be seen in (1.40) that the
window function has an infinite range of frequencies. As such, one will
always obtain signal spectrum illustrations that are not band limited when
windowing a continuous signal of a finite length.

Windowing can be performed in either the time or frequency domain.
Either function has its limitations. Windowing in the frequency domain
introduces leakages (or distortions) in the time domain in the same way
that windowing in the time domain causes spreading or leakage of the
spectrum into adjacent frequencies and sidelobes in the frequency domain.
This happens because multiplication in the frequency domain is similar to
convolution in the time domain.

The benefit of windowing is that it reduces leakage in spectrum analysis:
considerable reduction in the function’s sidelobes and as well as reduction in
the filter’s sidelobes. In the light of this benefit, to improve the frequency
response of a truncated time series, therefore, one can use a number of
window functions, which will readily modify the impulse response in a
prescribed way.

1.3.3 Window functions

A brief discussion of some of the commonly used window functions in
practice is given in this subsection and their ability to pick out peaks
(resolvability), using a similar input s(f) whose Fourier transform consists
of three delta functions centred at fy, f; and f> (see Figure 1.5).

In Figures 1.6, 1.7 and 1.8, the frequency spacing (f> — f1) was chosen to
be 1/T. By this selection, the length of each window and each window’s
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s(1) S(f)

0 f, f f
(a) (b)

Figure 1.5 Input signal s(f) and its amplitude spectrum: (a) input signal (delta function);
(b) Fourier transform of input signal centred at fo, f; and f,

ability to pick out peaks can be investigated. More is said about target
resolvability in Chapter 3.

1.3.3.1 Rectangular window

Equation (1.40) typifies the spectral window of the data window function
defined by (1.41a) and Figure 1.6(a). Equation (1.41b) and Figure 1.6(b) can
define another data window shape, also rectangular.

1 ] <L

wi (1) = { T2 (1.41a)
0 1| > %
1 H<T

‘w0)={0 {J;Y, (1.41b)

Figure 1.6(a) shows that with a rectangular data window of length T, it
is impossible to distinguish the two peaks at f] and f;. But with a rectangular
data window of length 27, as in Figure 1.6(b), the peaks are easily distin-
guishable. It can thus be deduced that, for the rectangular data window, to
separate two peaks at frequencies f| and f; it is necessary to use a record
length T of order

2 (1.42)

Wk(t) Wk(t)

-T2 0 T/2 -T 0 T
(a) (b)

Figure 1.6 Rectangular windows
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Figure 1.7 A triangular window

For non-rectangular windows — for example, triangular and Hamming,
Hanning and Blackman shapes in sections 1.3.3.2 and 1.3.3.3 — to separ-
ate two peaks at frequencies f; and f, will require a record length T of
the order

2
fr=hi

The reader can verify these assertions by (a) finding the Fourier transform of
each window function and (b) plotting each of the window’s amplitude
spectra (Fourier transforms) at these frequency centres fy, fi and f> and
observe the plots at frequencies /1 and f;.

T >

(1.43)

1.3.3.2 Triangular or Bartlett window
Following Parsen (1962), a triangular window (also called the Bartlett
window), depicted in Figure 1.7, is defined by the function

{% 0 <k <A
Wi = -

N
2o Sl<k<n - (14

1.3.3.3 Hamming, Hanning and Blackman window
Following Jones (1962), the generalized Hamming window function is given
by

e = {a0+(la0)cos("—1\’,‘) k| <N (1.45)

0 |k| > N

where 0 < ap < 1, see Figure 1.8. According to Blackman and Tukey (1958),
if ap = 0.54, the window is called a Hamming window. The Hamming
window attempts to give a good stopband performance, with sidelobe levels
considerably less than one percentage of the mainlobe at the expense of
slightly worse initial cut-off slope (Lynn 1982). However, by Rabiner ez al.
(1974), if ap = 0.5, the window is called Hanning. The Hanning window,
sometimes called a ‘raised cosine bell’ function, strikes a balance between
passband and stopband performance.
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Figure 1.8 Hamming and Hanning windows

The Blackman window can be thought of as being an extension of the
generalized Hamming window, defined as follows

NJ2
Wi = n;o(_l)mﬁm COS(MTM) il < N (1.46)
0 [kl > N

for N = 4, the constants become f, = 0.42, ; = 0.50, and 3, = 0.08.

Harris further expands the Blackman window function, hence the term
Blackman—Harris window. Harris used a gradient search method to find the
third and fourth terms of (1.46) that either minimized the maximum sidelobe
level for fixed mainlobe width, or that swapped mainlobe width with max-
imum sidelobe level. Typical values are shown in Table 1.2.

In summary, the generalized Hamming window functions have decaying
sidelobes and are easy to generate. Often these window functions are utilized
in beamforming (Hamming), sidelobes cancellation (Blackman) and range
forming (Hanning) operations. Briefly, the terms beamforming and range
forming are defined as follows. Beamforming is the ability of the receiving
device (e.g. radar) to resolve received data in azimuth. The concept of
beamforming is discussed in Chapter 7, section 7.3. It should be noted that

Table 1.2 Parameter values for the Blackman—Harris window function

Values of B parameters

Number of Peak sidelobes

terms, N level (dB) Bo By By B3

6 —70.83 0.4232 0.4975 0.0792 —

6 —62.05 0.4496 0.4936 0.0568 —

8 -92.00 0.3588 0.4883 0.1413 0.0117
8 —74.39 0.4022 0.4970 0.0989 0.0019
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sidelobe leakages could occur in the generalized Hamming windowing func-
tions but their relative impact on measurement error will be reduced.

1.3.3.4 Kaiser window
The Kaiser window function is basically a Bessel function window.
Specifically,

Io(x) T
i = {m = (1.47)
0 otherwise

where I, is the modified Bessel function of first kind, zero order. The values of
Iy are easily obtainable in several scientific libraries, including Abramowitz
and Stegun (1968). However, it is defined as

2n

Ih(x) = % /0 e300 (1.48a)
T2

X:A* 7—[2 (148b)
T

S=M5 (1.48c¢)

Ax = modifying parameter, typically in the range

8 18

T<A*< T (1.48d)
which corresponds to a range of sidelobe peak heights of 3.1 per cent down
to 0.04 per cent. Lynn (1982) demonstrated that the Kaiser window function
offers excellent sidelobe suppression, at the expense of a slightly inferior
initial cut-off slope. Reduction in Kaiser window’s sidelobes depends on the
choice of the modifying parameter.

1.3.3.5 Summary of window functions

The windows described above display a symmetrical tapering away from the
centre, except for the rectangular window. Windowing technique can be
applied for sidelobe reduction. An increase in the 3dB filter bandwidth
and associated decrease in the signal-to-noise ratio gain accompany the
downside of the reduction. The window function quintessentially became
very popular with the discovery of FFT. Hamming and Hanning windows
can easily be formed after an unweighted FFT (Rabiner and Gold 1975)
because a cosine in the time domain corresponds to pulses in the frequency
domain. Childers and Durling (1981) and Oppenheim and Schafer (1975)
describe other design discussions of windowing and effects on sampling,
which lie outside the scope of this book. See also Helms and Rabiner
(1972) for detailed discussion on Dolph—Chebyshev window functions.
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1.3.4 Correlation functions

Correlation is a mechanism for signal comparison. It is a process of deter-
mining the mutual relationships that exist between several functions or
signals. Correlation functions are measurements of the statistical depend-
ence of one random signal upon another, or upon itself. A measure of the
average self that exists within a signal is called the autocorrelation function
while that which exists between signals is called cross-correlation function.
Signal features such as periodicity and correlation times can be obtained
through the autocorrelation operation. Cross-correlation has great utility in
the study of linear systems particularly in radar applications. For example,
range information is contained in the time delay between the transmission
and reception of a pulse.

The cross-correlation coefficient R, of two functions x(¢) and y(f) may be
defined as

Ry (1) :% /T x(O)y(t + 1)dr (1.49)

as T — oo, where 7 is called the delay operator. Alternatively

S x()y(r)dt _ cov[xy]
(0t [ 2 (e VarCvar()

(1.50)

where ‘cov’ and ‘var’ correspond to covariance and variance of the functions
x(¢) and y(f). The expression in (1.50) is also called the normalized correl-
ation coefficient or normalized cross-correlation coefficient. Often in signal
processing, the unnormalized correlation coefficient is used. The cross-cor-
relation coefficient can be interpreted as a measure of the average values of
x(¢) with y(¢) displaced 7 seconds. If R,, is zero, the two functions x(¢) and
¥(¢) are said to be uncorrelated. If R, is 1, the functions x(#) and y(¢) have
perfect positive or negative relationship. The immediate value gives partial
relationships.

The autocorrelation function R, of signal x(7) is a measure of the signal
with its delayed or shifted version. It is a special case of the unnormalized
cross-correlation function. It applies only to one time series. The auto-
correlation function of x(7) may be written as

Ruu(t) :% /T (0)x(t + T)dt (1.51)

as T — oo. The frequency-domain characteristics of autocorrelation can be
obtained through the application of the Fourier operator. Assume that the
time series x(¢) has a Fourier coefficient ¢, and can be expressed as

() =Y e (1.52)
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then in view of (1.51) and (1.52), the autocorrelation function of series x(¢)
can be written as

1 j2mmt j2mn(1—1)
Ry (1) = ?/ Z Cme/ T Z cne/ T dt
r n

m

1 —j2nnt j2m(m+n)t
Z—chezTZcm/euT‘Hdt (1.53)
T n m T
1 —j2mnt .
:TZn:cne 7 Zcmsmc[%(m—&—n)}

m

where
. [m sin[% (m + n)] 0 m#—n
iad =T 1.54
s {T (m + n)} F(m+n) { T otherwise (1.54)

Using the principle of superposition' and the Fourier coefficients relation-
ship of (1.8), the autocorrelation function

R (7) = Z c,,c_,,eﬂ;m = Z |c,1|2e7/;m (1.55)
n

n

Noting that by the Parseval theorem, the sum of the energy in one period is

z

>l =7 [ It (1.56)

n=—0o0

The series \cn\z is the power spectral density of x(r).

Autocorrelation function is widely used in signal analysis. It is especially
useful for the detection or recognition of signals that are masked by
additive noise because white noise has infinite extent in the frequency
domain, and therefore its autocorrelation function has negligible extent
in the time domain. This observation is important in the recognition of
white noise, particularly in radar receivers, in the sense that any waveforms
at the input of the receivers that are subject to white noise can alternatively
be considered as being subject to independent but identical noise prob-

! The output waveform from a simple linear time-invariant system is the convolution of the
input waveform and the impulse-response of the system. Suppose a linear system with an input
v(#), having an integral or sum of impulsive elements at time t and of strength v(t), can be
expressed in the form

Wt) = 1 m W(1)3(t — 1)dr

If each of the system’s impulsive elements d(t) can be replaced by the response it provokes, say
u(t), then the output waveform of the system becomes

h(t) = / v(u(t —t)dt=vxu

0

which is the convolution of v and u, already discussed in section 1.3.2.
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ability distributions at each distinguishable point in the time domain.
Suffice to say that, although noise whiteness leads to the independence
property, it does not guarantee that individual temporal noise distribution
will be identical. In practical cases it is reasonable to make this assumption
occasionally.

1.4 Fast Fourier transform

The fast Fourier transform (FFT) is an efficient algorithm for the numerical
computation of the discrete Fourier transform (DFT) with a minimum
computation time. An algorithm is a systematic technique of performing a
series of computations in sequence. The FFT algorithm developed below is
due to Cooley-Tukey (1965) and Weaver (1983).

Suppose there is an N-point sequence denoted by f(k), and N is an integer
divisible by 2. Our interest is finding the DFT of f(k). Since the N-point is
divisible by two, two new albeit disjointed sequences — f1(k) and f>(k) with
periodicity p — can be formed, and defined as

233 _Qggﬂ) k=0,1,2,...,p wherep:% (1.57)
Following (1.21), an N-point sequence DFT can be expressed as
Py o
F(r):Nk;f(k)WN r=0,1,2,...,N (1.58)
This expression can be described in terms of two formed sequences:
F(r) = 5 if (k)W 2k 4 1 pif (2k + 1)yw; Gk (1.59)
Ni= 1 ! Ni= ’ :
A closer examination of (1.59) reveals that
12 wi &L
F(r) =5 Y _filk)w, " + =53 falk)w,
k=0 k=0 (1.60)

| _
= SIF) + Wy Fa(0)]
Using the definition in (1.20) and noting that the translation of kernels in
N to p, for example, the following equations can be written:

S =k (1.61a)

—2kr __
H}N =e »

—j2r(2k)r  —j2nr
1 N

—(2k+1 —2m(2k+1)r ( —j2nr —kr. —r
WN( F—eTE = v e = wpk’wN' (1.61b)

It is evident in (1.60) that the FFT technique lies in the relationship
between DFT of split sequences with the DFT of a full sequence. Also, the
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computation of the sequence DFT requires operations involving complex
multiplication, additions and subtractions.

Following the repeated sequence demonstrated above an algorithm can
be developed for 8-point sequence. Thus

F(r) 1 Fi(r) + wy Fa(r) + wi? Fs(r) + wi" Fa(r)
2 PR ) 450 R

1 V=
E )Wy N

The preceding discussion has so far treated the case of an N-point sequence
divisible by 2, and by deduction 4, 8, etc. Instead, suppose there is an
N-point sequence divisible by 3. Three new sequences with periodicity p
are formed as

fi(k) = f1(3k)
Hk)=fBk+1) k=0,1,2,....p whereng (1.63)
f3(k) = f3(3k +2)

Splitting (1.58) into three sequences gives

(1.62)

l\) |

) 3/»; +— Zf2 3k + 1 3k+1)

1
F(r)==> fi(3k
N/c:O
1
— 3k+2)W <zk+2) 1.64
D S+ 2 (1.64)
Following the weighting kernels expansion similar to (1.61), expression
(1.64) can be reconstituted as

—2r p—1

Zfl —kl WN Zfz —k) WN Zﬂ

= % [Fi(r) + wy'Fa(r) + wy Fa(r)] r=0,1,....p
The preceding FFT algorithms can be programmed for use on the computers.
Examples of FFT programs can be found in Childers and Durling (1981) and
Fraser (1979). The Fraser’s program is reproduced in Appendix 1A with
permission. Although the program is not optimum, it, however, provides the
reader with an avenue to follow step by step as to how the program works as
well as optimizing the program. The number of operations necessary to form
a spectrum of N sequences or channels in an FFT is N/2log, N complex
multiplication, additions and subtractions (Bergland 1969). More application
of FFT to radar measurement is covered in Chapter 2, section 2.1.3.

(1.65)
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Example 1.5 Determine (a) closed form expression for the DFT of
x(n) =1, for 0 <n < N —1, (b) the energy contained in the time signal,

and (c) verify Parseval’s theorem for this function.

Solution
(a) the DFT of x(n) is

X(m) = x(mwy' = (Hwy" (1.66)

which constitutes a finite geometric series expressable as

1-— w’;\’,N | — e /2mm

X(m) = 0<m<N-1 (1.67)

+(2mm

I —wi TP

This expression is zero for all integer values within this limit except at m = 0.
Upon an application of L’Hospital’s rule to (1.67) as m = 0; that is,

lim <€_> _N (1.68)

x—0\ eN
The solution to (1.67) at m = 0 is
X(0)=N (1.69)

(b) The energy contained in the time series can be expressed as

N-1 N-1
sz(n):Z(l):N (1.70)
n=0 n=0
(¢c) By Parseval’s theorem, from (1.56),
N—1 2 2
2 _|X(O)I° _N
n = =—= 1.71
n;) |cn(m)] v =N (1.71)

It is observed that (1.70) and (1.71) are the same indirectly proving the
Parseval’s theorem as a measure of power spectral density.

1.5 Norm of a function

One category of norms that is regularly used is the set called L,-norms. The
L,-norm, denoted by ||x(?)| ,» of a continuous function x(7) defined over an
interval [0, 1], can be written as

L,=

sl = [ [ |x<z>”dr]'l’ (1.72)
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Three values of p are of special interest:

@p=t: L=l = [ W (1.73)

t 5
) p=2 L=l = | [ ol (174)

which is the expression for the energy of the function x().
(©) p=oi Lao = x(0)], = max (o) (1.75)

This expression is called the Chebyshev’s norm.

Example 1.6 If f/(x) = 1//x exists in the Lebesgue sense (that is, integrable)
within (0, 1), find the norm of the function f(x).

Solution
From (1.74),

1
1)l = Alﬂﬂﬁu=¢§ (1.76)

A good discussion on the overall design problem and the design of optimum
filters that approximate a given frequency response in the L., sense can be
found in Rabiner et al. (1974). In real life, norms are employed to measure
approximately the discrepancy between a function f(x) and the function F(x)
being approximated. For example, if the norm is L,, the least square method
would be a convenient approximation and in Chebyshev’s sense if the norm
is L. By introducing a real positive weighting function of w(x), the differ-
ence between functions f(x) and F(x) can be generalized, in the L, sense, as

1

1F(x) = F()ll, = [/0 /() = FoPwix)dx| (1.77)

Some obvious applications of these expressions include calculating filter
coefficients, scaling internal data in memories, noise estimation, and opti-
mum error estimation between design and desired response in an ordered
one-dimensional case.

1.6 Summary

This chapter has covered some of the basic principles necessary for under-
standing radar signal processing and the subsequent chapters.

Time series signals have been expressed in terms of Fourier series. The
continuous and discrete signals have been Fourier analysed. It is often useful to
establish the essential relational functions of Fourier transform pairs, examples
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are convolution and correlation, which were also discussed. A direct result of
these properties is that the Fourier transform reduces convolution operations
to simple multiplication. Furthermore, an efficient algorithm for the numerical
computation of the discrete Fourier transform (DFT) called the fast Fourier
transform (FFT) was introduced. The essence of the FFT technique lies in the
relationship between the DFT of split sequences and the DFT of a full sequence.

The concept of windowing as a tool in spectral estimation was discussed as
well as some commonly used window functions. Windows attempt to reduce
spectral sidelobes due to abrupt truncation of randomly processed data, which
causes spectral distortion. Finally, one category of norms, L,-norm, which is
frequently employed in radar signal processing and tracking, was also discussed.

Appendix 1A A fast Fourier transform computer program

This program has been reproduced by permission of Associate Professor
D. Fraser (1979), School of Electrical Engineering, Australian Defence
Force Academy, Canberra, Australia.

This appendix lists five Fortran subroutines designed to perform some of the
operations most frequently used in spectral analysis. In writing, the subroutines
are kept simple at the expense of efficiency in order that the reader can understand
them easily. As long as they are used for problems within the limits prescribed,
there is no excessive wastage of time and storage. For those who wish to start
experimenting with spectral analysis techniques the subroutines should make
things very convenient. Once the reader gets into serious data analysis he/she
would want to write his/her own, more efficient, and more specialized computer
programs. Even then, the availability of these subroutines should facilitate the
reader’s programming effort. No detailed explanation of these subroutines will be
given here as each has its own comments. A short list is given below:

1. FFT: for both forward and inverse transform of complex vectors.

2. FFTR: for the forward transform of a real vector or its recovery from its
DFT. (X;fori=0,1,...,1/2N only.)

3. PERIOD: computes the periodogram of a real vector at half integer
frequencies, i/2,i=0,1,..., N — 1.

4. AUTCOR: computes the autocorrelation estimate of N given values up
to time delay M.

5. COTRAN: computes the Fourier transform of a real, even vector, also
known as a cosine transform. It returns the power spectrum if given the
autocorrelation function.

Subroutine FFT (A,M,IS)
C FFT of complex array A, of 2" elements, IS =+1 or -1 sign
of CEXP
C (Note that initial data in array A is replaced by its
Fourier transform)
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C First part is bit-reversed permutation using recursive
algorithm, which increments a
C reversed index when needed for each bit position final
part, from label 7, is base-2 FFT
C computation, which requires minimum different W, gener-
ated recursively
COMPLEX A (I),TEMP,W,D
INTEGER IRA(I6),NR(16),5PAN,STEP
DATA PI1/3.141592653589793/
N=2**M
DO 1 J-1,M
IRA(J)=0
1 NR(J)=2**(J-1)
C Reversed index sets (for each bit position) initialized
IFr=1
2 IR=1RA (M)+1
IF(IR.LE.IF)GO TO 3
C Prevents nullifying double swap

TEMP=A(IF)
A(IF)=A(IR)
A(IR)=TEMP

C Reversed index pair swapped
3 IF=IF+1
C Increment forward index IF
IF(IF.GT.N)GO TO 7
J=N
4 IF(IRA(J).LT.NR (J))GO TO 5
C Alternate increment of IRA(J), must go back one bit
J=J-1
GO TO 4
5 IRA(J)=IRA(J)+NR(J)
C Ssimple, alternate increment of reversed index
IF(J.EQ.M)GO TO 2
IRA(J+1)=IRA(J)
C Work forward through reversed index bit set
J=J+1
GO TO 6
CArrayisnowinbit-reversedorder, Mcomputingpasses follow
7 DO 9 J1=1,M
SPAN=2**(J1-1)
STEP=2*SPAN
C Span between elements inpair, step tonext pairwith same W
w=(1.,0.)
D=CEXP(CMPLX(0.,PI/SPAN))
IF(IS.LT.0)D=CONJG(D)
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Starting phase adjuster W, modifier D
DO 9 J2=1,SPAN
DO 8 J=J2,N, STEP
K=J+SPAN
TEMP=A(K)*W
A(K)=A(J)-TEMP
A(J)=A(J)+TEMP
Inner loop arithmetic — two point transforms
W=W*D
Recursive modification of phase adjuster W
RETURN
END

Subroutine FFTR (A,M,IS)
Real-to-Complex (or vice versa half-length FFT of array
A. (Note that initial data in array
A 1s replaced by its Fourier transform). Real data
assumed packed alternately as real and
imaginary values, most easily achieved by equivalencing
real and complex array names
2**M real elements (42 dummies), or 2** (m-1)4+1 complex
elements IS=+4+1 or -1 sign
of CEXP and direction (+l=real-to-complex, -1 reverse).
Uses scramble/unscramble
algorithmand call to half-length complex FFT

COMPLEX A(1),TA,TB,W,D

DATA PI/3.141592653589793/

MH=M-1

N=2**MH

INCNT=N/2+41

w=(1.,0.)

D=CEXP (CMPLX (0.,PI/N))
Starting phase adjuster W, modifier D for scramble/
unscramble

IF(IS.LT.0)GO TO 2

CReal-to-complex FFT follows, half-length complex FFT first

CALL FFT (A ,MH,IS)

A(N+1)=A(1)

DO 1 J=1, INCNT

K=N+2-J

TA=(A (J)+CONJIG (A (K))*0.5

TB=CONJG (A (J))+A (K)

TB=CMPLX (AIMAG (TB),REAL(TB)) *W*0.5
A(J)=TA+TB

A(K)=CONJG (TA-TB)
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1 W=W*D
C Elements unscrambled, W recursively modified
RETURN

C Complex-to-real FFT follows
2 D=CONJG (D)
DO 3 J=1,INCNT
K=N+42-J
TA=A (J)+CONJIG(A(K))
TB= (A (J)-CONJG(A (K)))*W
TB=CMPLX (AIMAG(TB), REAL(TB))
A(J)=TA-CONJG(TB)
A(K)=CONJG (TA)+TB
3 W=W*D
C Elements scrambled, Wrecursively modified
CALL FFT(A,MH,IS)
CHalf-length complex FFT finishes complex-to-real FFT
RETURN
END

SUBROUTINE PERIOD (N,DATA,PDGRAM)

C This subroutine accepts N input values and returns their

periodogram.

C Nmust not exceed 512. The method is bad for large N.
DIMENSION DATA(N),PDGRAM (N),FIXCOS (513),FIXSIN(513)
DATA NSAVE/Q/

NN=N+1
N2=N*2
NN2=NN*2
REC=1./FLOAT (N)
C The loop below stores values of sine and cosine between 0
and T.

C IF NSAVE=N, then the subroutine has been called earlier

with the same N and so must

C already contain correct FIXCOS and FIXSIN.
IF(NSAVE.EQ.N)GO TO 10
REC2=REC*4.*ATAN(1.)

C This is m/N.

DO 5 1=1,NN
ARG=FLOAT (I-1)*REC2
FIXCOS(I)=COS(ARG)
FIXSIN(I)=SIN(ARG)

5 CONTINUE

10 CONTINUE
REC=REC*REC
DO 20 I=1,N
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C TEMP1 and TEMP2 will be the real and imaginary parts of the
DFT of data
TEMP1=DATA(1l)
TEMP2=TEMP1
II=I-1
CKisthevalueof I*Jafter subtractionofmultiples of 2N.
K=1
DO 15 J=2,N
K=K+IT
IF(K.GT.N2 )K=K-N2
IF(K.GT.NN)GO TO 12
C Argument of sine and cosine not over m.
A=FIXCOS(K)
B=FIXSIN(K)
GO TO 13
C Argument of sine and cosine more than m=. Use
SIN(ARG)=-SIN(2*PI-ARG),
C COS(ARG)=COS(2*PI-ARG)
12 KK=NN2-K
A=FIXCOS(KK)
B=-FIXSIN(KK)
13 D=DATA(J)
TEMP1=TEMP1+D*A
TEMP2=TEMP2-+D*B
15 CONTINUE
C Square real and imaginary parts and add to give power.
PDGRAM (I)=(TEMP1*TEMP1+4+TEMP2*TEMP2)*REC
20 CONTINUE
NSAVE=N
RETURN
END

SUBROUTINE AUTCOR(N,M,DATA,COR)
CN=the number of input data, M=the number of autocorrela-
tions needed.
CMshouldnot bemore than 256. Themethod is bad for large M.
DIMENSION DATA(N),COR(M)
REC=1./FLOAT(N)
DO 10 I=1,M
TEMP=0.
DO 5 J=1,N
JJI=J-I+1
TEMP=TEMP-+DATA(J)*DATA (JJ)
5 CONTINUE
COR(I)=TEMP*REC
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10 CONTINUE
RETURN
END

SUBROUTINE COTRAN (M,COR,SPECTR)
C This subroutine accepts m autocorrelation values and
returns the real parts of their
C Fourier Transform, i.e., unwindowed spectrum. Windowing
may be applied either by
C multiplication before calling this subroutine, or by
averaging neighbouring terms after
Creturn. Mmust not exceed 128. Themethod isbad for largeM.
DIMENSION COR(M),SPECTR(M),FIXCOS(129)
DATA MSAVE/Q/
REC=1./FLOAT (M)
MM=M+1
M2=M*2
MM2=MM* 2
CThe loopbelow stores thevalues of cosinebetween O andmn. If
MSAVE=0, the
C subroutine has not been called before. If MSAVE =M, then
FIXCOS already contain
C correct values.
IF(NSAVE.EQ.M)GO TO 10
REC2=REC*4.*ATAN(1.)
DO 5 I=1,MM
ARG=FLOAT(I-1)*REC2
FIXCOS(I)=COS(ARG)
5 CONTINUE
10 HALF=COR(1)*0.5
REC=REC*2.
DO 20 I=1,M
TEMP=HALF
II=I-1
CKis thevalue of I*J reduced by multiples of 2M
K=1
DO 15 J=2,M
K=K+IT
IF (K.GT.M2)K=K-M2
KK=K
C Kgreater than M+1 means argument of cosine ismore thanmw.
C Use COS(ARG)=COS(2*PI-ARG) .
IF (KK.GT.MM) KK=MM2 -KK
TEMP=TEMP+COR(J)*FIXCOS (KK)
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15 CONTINUE
SPECTR(I)=TEMP*REC
20 CONTINUE
MSAVE=M
RETURN
END

Problems

1. In the interval —n < x <, the function f(x) = |x| is defined. Obtain the
Fourier series for the function. Deduce from your result an expression for
n%/8 in a series form.

2. A trapezoidal wave has a period 7, height +/, and a rise time from zero to
h of m seconds. Select a time axis that will give a Fourier expansion with
sine terms only and analyse the wave.

3. Consider the two causal finite-length sequences shown in Figure 1.9.

(a) Form the sequence x, = a, X b,.

(b) Determine the finite Fourier transforms 4, and By of the sequences
a, and b, fork=0,1, ..., 4.

(c) Using the Fourier transform, one can find the convolution of two
sequences ay, b, by forming the product A(w)B(w) of their corre-
sponding Fourier transforms and then taking the inverse Fourier
transforms of this product. Does this convolutional procedure work
if you use finite Fourier transforms instead of Fourier transforms?
Explain clearly your reasoning.

4. If two signals, of frequency components 0.9 kHz and 1.0 kHz, were required
to be separated. Determine the sampling frequency interval required dis-
tinguishing the two signals. Determine also the length of record required to
distinguish the signals’ peaks in the Fourier transform.

5. Find the frequency spectrum of a half-wave rectified sine wave of peak
value V,,, represented by Figure 1.10.

an bn
100 1.00
0.9
0.8 0.8
0.5
0.3 Q
0.0 OO n 00 n
0123 4 0123 4

Figure 1.9 Two causal finite-length sequences
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v(t)

-T2 0 T2

Figure 1.10 The frequency spectrum of a half-wave rectified sine wave

Table 1.3 Ionospheric data

Item, ¢ 1 2 3 4 5 6 7 8 9
Index, x; -6 —18 -2 -12 -5 9 =20 -8 -9

10 11
18 21

12

6. An ionospheric sounder generated the data tabulated in Table 1.3. Com-
pute the autocorrelation and the FFT of the data using the program in
Appendix 1A and computationally. Compare the results. Any differ-

ences? And why?



Understanding radar
fundamentals

In designing any radar, for a beginner (and even a professional who needs a
refresher), requires an understanding of the main issues: how radar evolves,
how to analyse component parts and interpret the composite outcome in a
way that becomes an operational tool. For this reason, the author has used
typical radar architecture to explain the radar fundamentals.

2.1 An overview of radar system architecture

Radar is an acronym derived from radio detection and ranging. Today’s
radar is best defined as active electromagnetic surveillance. Basically, the
function of a radar is to transmit a burst of electromagnetic energy necessary
to allow detection of targets intercepting the energy by its receiver.

The purpose of this section is to examine radar system architecture and
explain the functions of various circuit blocks. A schematic diagram of a
typical radar system is shown in Figure 2.1. It may be instructive, therefore,
to walk through Figure 2.1 block by block and summarize their functionality
before concentrating on the iterative procedure for determining the overall
radar expressions that may enable us to estimate the radar merit and power
budget.

2.1.1 Transmitter

The function of a transmitter is to amplify an RF carrier modulated with the
desired signal, adding a minimum distortion to the encoded information.
Essentially three prime components form the transmitter chain: a high-
powered amplifier (HPA) with high-stability electron gun, waveform gen-
erator (local oscillator, LO) and timing, and an antenna (see Figure 2.2).
Unlike the antenna in Figure 2.2, which radiates electromagnetic waves
from the transmitter, the simplex transceiver antenna arrangement in Figure
2.1 serves two purposes: as a radiator and as a receptor. The properties of an
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Simplex
transceiver
antenna

A/D = Analogue-to-digital
! DSP = Digital signal processor
e . T/R =Transmit/Receiver

T/R switch Transmitter
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and timer

A/D converter
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controller

DSP

Data storage

Display/Control Communication

Figure 2.1 A block diagram of a radar system

antenna system when used as a transmitter are similar in nearly all aspects to
the corresponding properties of the same antenna when used as a receiver to
abstract energy from a passing radio wave. Therefore the relative response of
the antenna to waves arriving from different directions is exactly the same as
the relative radiation in different directions from the same antenna when
excited as a transmitting antenna. These reciprocal relations between receiv-
ing and radiating properties of antenna systems make it possible to reach a
conclusion on the merits of a receiving antenna from transmission tests, and
vice versa. How then does one predict the type(s) of radiation patterns
originating from an antenna? Chapter 3 sheds some light on this question.

Antenna

Directional
LO coupler

@— Attenuator| HPA @ LPF

Power
control

Figure 2.2 A schematic diagram of a transmitter
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2.1.1.1 Local oscillator

Local oscillators (LO) are waveform generators. Like any communication
and surveillance systems, radar systems require sophisticated, highly stable,
synthesized LOs with low phase noise, fast frequency lock time, and low
power consumption. Both transmitter and receiver require LOs, as in Figure
2.1, but the LO technology is probably dictated more by the actual applica-
tion than anything else in the receiver. If the receiver’s frequency is expected
to be programmable, a frequency synthesizer may be required.

2.1.1.2 Attenuator

Attenuators are used to increase isolation between the oscillators and the
changing load. An attenuator can be as simple as the T-section pad shown
in Figure 2.3.

To design an attenuator, it is important to know the iterative impedance,
Z,, of the network. Knowing Z,, the insertion loss, A, of the iterative oper-
ation can be expressed as

R, Z
AL—1+R2+R2 (2.1)
In practice, the desired insertion loss is known as part of system requirements,
and the pad’s components can easily be estimated for a given iterative impedance.

2.1.1.3 High-powered amplifiers (HPA)
The high-powered amplifiers (HPA) could be travelling wave tubes (TWT),
magnetrons, or klystrons. These amplifiers permit frequency agility and
in-pulse frequency scanning which are essential features of modern radar
systems. Selection of any of the tubes depends on application. A pictorial
view of a klystron is shown in Figure 2.4.

A klystron is a microwave generator, typically about 1.83m long and
works as follows:

(a) The electron gun (1) produces a flow of electrons.
(b) The bunching cavity (2) regulates the speed of the electrons so that they
arrive in a bunch at the output cavity.

R Ry
NN A fy

~~,
<

g
~

\)RZ

Figure 2.3 A symmetrical T-attenuator pad
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Figure 2.4 A klystron (courtesy: NASA)

(c) The bunch of electrons excites microwaves in the output cavity (3) of the
klystron.

(d) The microwaves flow into the waveguide (4), which transports them to the
accelerator. An accelerator is a device used to produce a high-energy high-
speed beam of charged particles, such as electrons, protons or heavy ions.

(e) The electrons are absorbed in the beam stop (5).

2.1.1.4 Directional coupler

The directional coupler (or circulator) interfaces between the HPA and the RF
amplifier of the transmitter. It provides very low impedance and negligible losses
in the direction of microwave energy flow. It works in a way that when the
assigned ports are active, other ports provide sufficient isolation from micro-
wave energy. The coupling factor in the directional coupler must be sufficiently
high to sample HPA output at the lowest setting in order to prevent harmonics
from coupling back to the detection diodes at the highest power setting.

2.1.1.5 Low-pass filter (LPF)

Following the directional coupler is the low-pass filter (LPF), whose purpose
is to attenuate harmonics of the transmitted signal. An LPF can be as simple
as shown in Figure 2.5.
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N
T T

An LPF is a network designed to have zero attenuation up to a given
frequency (called cut-off frequency, fy) and a large attenuation above this.
Theoretically, it is composed of pure reactance in order to have zero dis-
sipation. The cut-off frequency can be written as

Figure 2.5 A low-pass filter

= 22
The characteristic impedance Z, can be expressed as
L
Zy = (2.3)

0)2
c(1-%)
where ® = 2nf, w9 = 2nfy and f is the propagation frequency. Since the
desire is to have zero attenuation (i.e. o = 0), above ®, the propagation
coefficient, y, has a reference component, and so signals are attenuated

between input and output. So, the phase angle, B, between input and output,
when terminated by Z, can be expressed as

\/LC(1 — <€
B = tan! oy L€ 4) (2.4)

_ 0?LC
1 2

Note that y = o + jB. The phase angle, B, will vary from 0° (when © = 0)
to 180° (when o = wy; that is, tan='(0/—1)). Between o = 0 and ® = wy,
B is positive, and the output lags behind the input. Above wy, B remains
constant at 180° independent of frequency, see Figure 2.6. In practice,
most of the LPFs are reflective. As a precautionary measure, LPFs are
overdesigned to provide more rejection than would normally be necessary
(Morton 1966).

The power control loop is used to slow down the transmitter turn-on and
turn-off times to minimize generation of spectral components of adjacent
channels. Caution must be exercised not to introduce low-frequency instabil-
ity into the control loop. The diagnostic signals are intended to sense HPA
final current and temperature, as well as the forward and reverse power
levels of the directional coupler.
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Figure 2.6 Phase response of an LPF

2.1.2 Receiver

The low energy signal, collected by the antenna, is brought through the
circulator and the transmit/receive (T/R) switch tube, or isolator, and the
radio frequency (RF) amplifier. A typical dual-conversion receiver is shown
in Figure 2.7. It is made of a series of components, namely RF filter,
amplifier, mixers and intermediate frequency (IF) amplifiers.

The received signal is mixed, in some type of non-linear device (i.e. mixer),
with a signal from a local oscillator (LO), to produce an intermediate
frequency (IF), i.e. beat frequency, from which the modulating signal is
recovered (i.e. in the detector). The method of detection used typifies the
receiver, namely direct and coherent detection receivers. Direct-detection
receivers employ a square-law device, which produces an electrical signal
proportional to the intensity of the incident optical signal (e.g. a photo-
diode), whose signal’s power is measured directly.

In the case of coherent-detection, the received signal is beat against a local
oscillator field of nearly the same frequency, and the output signal is pro-
portional to the received field strength. In the ideal case, the proportionality
of the beat term to the local oscillator field strength provides essentially
noiseless predetection gain, so that thermal and dark-current noises inherent
to the direct-detector are dwarfed by the quantum noise inherent in the
signal itself. A truly coherent wave would be perfectly coherent at all points
in space. In practice, however, the region of high coherence may extend over
only a finite distance.

Oand timer
RF input
sy %%W%
Mi 1st stage Mi 2nd stage Detector
fllter ampllfler IX€r|F Amplifier VIX€r IF Amplifier

Figure 2.7 A dual-conversion radar receiver
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Unlike the direct-detection, the coherent-detector is subject to thermal and
dark-current noises as well as the background light incident on the detector.
The coherent-detection ideally requires (i) strict conditions on the spectral
purity of the source signal and (ii) that the received signal and the local
oscillator have spatial phase fronts, which are nearly perfectly aligned, over
the active area of the detector.

Since optical phase information is lost in the direct-detection process, it cannot
be used to measure the Doppler frequency shift of the radar echo. Under ideal
conditions when signal strength is limited, the coherent-detection technique
provides superior sensitivity to direct-detection. However, direct-detection has
advantages over coherent-detection when either source temporal coherence or
the spatial phase characteristics of the received signal cannot be strictly con-
trolled, or when complexity or cost is an important design issue.

The receiver’s input RF filter performs three basic functions:

o tolimit the bandwidth of the spectrum reaching the RF amplifier and mixer to
minimize intermodulation distortion. Intermodulation distortion is caused by
non-linearity of the system components, which upon passing through two
or more signals acts as a mixer and introduces sum-and-difference products
of the applied frequencies. The intermodulation distortion problem is less
important in broadband RF power applications as is harmonic distortion;

e to attenuate receiver spurious image noise and half-IF responses; and

e to suppress LO energy originating in the receiver.

The drive levels of the LO permit higher intercept point performance of the
mixers. The intercept point is a measure of system linearity that allows us
to calculate distortion from the incoming, or outgoing, signal amplitudes.
An intercept point method is used to minimize intermodulation distortion.
For example, for a fixed LO power, the nth order of intercept point, IP,, can
be predicted, provided the distribution products are known for a particular
input or output level, using Vizmuller (1995)

P, = A, + HATSI (dBm) (2.5)

where

A, = the input or output intercept point (dBm)
AS = difference between required signal level and undesired distortion (dBm)
n = order of distortion.

For detailed analysis on how the intercept point is evaluated, the reader is
advised to read Vizmuller (1995).

Example 2.1 Suppose that in a radar system a certain order of spurious
signals was measured. In this case, a certain (4,2) high-order spurious
response was measured to be 70 dB down when the input level is —16 dBm.
Calculate the distortion product for an input level of —22 dBm.
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Solution

The fourth order intercept point, IP4 = —16 + 70/3 = 7.33dBm
The input level 4, = —22dBm

From (2.5), the distortion product AS is

AS = (IP4 — 4,)(n — 1)
=(7.334+22)(4 - 1)
= 87.99dB

Mixers are very important building blocks in any RF system. Down-con-
version mixers link together the low-noise RF amplifier, local oscillator (for
the first stage mixer) and IF stage (for the second stage mixer) of which the
performances are interrelated. Their highly non-linear behaviour makes
analysis and optimization difficult. This non-linearity behaviour can cause
noise and spurious signals to move across frequencies. The sensitivity e, (in
volts) of the receiver can be predicted whether the receiver is limited by
thermal or non-thermal noise using:

(1) For thermal limited receiver noise:
e’ = kFrB,T(SNR) R, (2.6)
(2) For non-thermal limited receiver noise:
¢! = k[Teq + Tu] B(SNR) Req (2.7)
where

Fr =total noise figure. Note that this noise figure should be the total device
noise, which should include the channel noise factor, the noise derived
from image frequency stage noise figure(s) and the noise figure from
the local oscillators

T.q = equivalent system temperature = (Fr — 1)T}

T, = system temperature (K). This temperature is often taken as the standard
ambient temperature in accordance with IEEE Standard 145-1983 (IEEE
Standard 145-1983), where T is 17 °C, equating to 290 K

T, =antenna temperature (K)

R.q = system equivalent impedance (€2)

B, =noise bandwidth (Hz)

k = Boltzmann’s constant, 1.38 x 1072} (W/Hz — K)

SNR =signal-to-noise ratio (linear unit).

How the noise figure is obtained is described fully in Chapter 5, section 5.1.6.
RF amplifier noise figure, gain and intercept-point are set by the receiver
performance requirements.

Example 2.2 A system’s overall equivalent noise factor and bandwidth are
given as 14.87 and 12 kHz respectively. The received signal at the detector
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output is 6 dB. Calculate the sensitivity of the system across 50 Q impedance
if:
(a) it operates at room temperature; and

(b) the antenna temperature is constantly above the room temperature with
an average value of 18.2°C.

Solution

The solution to (a) is found by using (2.6), given that

SNR = 6dB, converting it to linear unit to have SNR = 10%¢ = 3.981
R, =500

Fr=14.87

B, =12 000

k=138x10"%

T =273+17=290

Substituting numerical values in (2.6),
e, = 0.377uV

By using (2.7), the solution to part (b) of the question is solved. Replace
T with [Teq + T,] = (14.87 — 1)290 + (18.2 + 273) = 4313.5, to obtain

ey = 0.3771 pV

2.1.3 Data processing

A digital signal processor (DSP) for data processing buffers the output of the
analogue-to-digital (A/D) converter. The DSP attempts to extract informa-
tion from radar echoes, with a view to classifying targets and characterizing
geophysical phenomena. Signal processing is handled by a DSP operating
under algorithms tailored to the requirements of the radar. Many modern
radars perform a signal spectrum analysis function in a DSP using fast
Fourier transform (FFT) — already discussed in Chapter 1, section 1.4.
More important properties of FFT are discussed briefly at this instance to
allow the reader a feel of the properties in their application to radar system.
The input of an FFT is a sequence of 2" time samples, where m is an integer.
The output, on the other hand, is 2" complex numbers having in-phase and
quadrature components representing the frequency spectrum. The output
is analogous to a bank of uniformly spaced filters covering the frequency
region from zero up to the transmitter pulse repetition frequency (PRF), as
shown in Figure 2.8. As such the filter spacing, A, can be expressed as

PRF
2111

Ar = (28)
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Figure 2.8 FFT with 2" filters

It should be noted that if the input consists of complex samples, then the fre-
quency region from zero to PRF is unambiguous. Conversely, if the input sam-
ples are real, the unambiguous region is simply half the PRF; that is, PRF/2.
The number of Doppler filters depends solely on the number of time samples.
If it is possible to eliminate blind speeds, or resolve Doppler ambiguities, the
frequency (and also bandwidth) spacing of the filters would automatically
adjust. Regardless of whether the Doppler frequency is unambiguous, target
returns would move from one filter to another as PRF changes.

Recently, signal processing has assumed higher-order statistical analysis
with a view to extracting more information from the radar echoes (Cover
and Thomas 1991). Some aspects of signal processing and applicable algo-
rithms are the subjects of Part III.

2.1.4 Data compression and storage

A myriad of data is often acquired during any radar scans or sweeps. An
example of this is that acquired by skywave radars, which are particularly
noted for their wide-area scanning or sweeping. The unprocessed data
acquired can often occupy a large facility. Pre- and post-processed data
could also be large and might require large transfer and processing time.
In a real-time operational situation, in particular during tracking, time is a
critical element if the true-target profile under investigation is to be quickly
ascertained in real time. To ensure fast transportation and delivery of data to
its intended destination, a compression process is used.

Data compression is the process of converting an input data stream (the
source stream, or the original raw data) into a smaller data stream (the
output, or the compressed stream) that has a smaller size. A stream is either
a file or a buffer in memory. If one can denote the input stream by D,, and
the compressed stream by 9(D,,), it must be possible for the compressed data
0(Dyy) to be decoded (reconstructed) back to the original body of data D,,
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or some acceptable approximation. Compressed data are stored on a digital
storage device (e.g. compact disc, tapes) and when retrieved from the device
they are decompressed.

Data compression is a topic grounded in the field of information theory:
the study of the representation, storage, transmission and transformation of
data. The coding and decoding process, being part of information theory, is
quite involved and entails different approaches. It is known by many names
such as entropy coding, lossless coding, data compaction coding, or data
compression. The inquiring reader is advised to consult Kolawole (2002),
McEliece (1977), Cover and Thomas (1991) and Storer (1976).

Based on the requirements of reconstruction, data compression schemes
can be divided into two broad classes: lossless and lossy compression. A
lossless compression technique takes compressed data 9(D,s) and recon-
structs it to the original data D,,. The lossy compression technique is the
process of transforming a body of data D,, to a smaller body 0;(Dy,), where
i=1,2,...,m, from which an approximation of the original can be con-
structed. Lossy compression provides, in general, much higher compression
than lossless compression. Often reconstruction requirements dictate the
type of compression schemes to use. A generalized description of a class of
algorithms is discussed in the following subsections.

2.1.4.1 Effective algorithms for data compression

To effectively discern real target signatures from the noise and clutter, some
decision is made by setting a limit (or threshold) where anything above the
limit is associated with target and anything below is those associated with
noise and/or clutter. The resulting processed data may be called ‘static’
if the probabilities were a priori; that is, they are given in advance. If the
radar data were collected in a ‘hostile environment’, which often is the case
with skywave radars, it would be reasonable to dynamically threshold the
data, that is, using a compression algorithm that estimates these probabilities
dynamically. The Huffman (1951) and Shannon (1959)-Fano (1963)
compression algorithms offer an example of how data compression can be
dynamically achieved. The difference between these algorithms is that
Shannon—Fano constructs its codes top to bottom (from the leftmost to
the rightmost bits), while Huffman constructs a code tree from the bottom
up (builds the codes from right to left). There have been intensive research
activities into data compression since the papers of Huffman, Shannon and
Fano. The next subsection discusses the basic Huffman coding algorithm,
though there have been several enhancements to the original.

2.1.4.2 Huffman coding algorithm

Suppose that one can represent every peak associated with a target in the
data map by the symbols ¢, and corresponding probabilities p(a;), where
k=0,1,2,...,m— 1. These symbols and their probabilities are shown in
Table 2.1 as a list L.
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Table 2.1 List £

Symbol Probability
Ao p(ao)

ay play)

a plaz)

Ap—2 Pam—2)
Am—1 p(amfl)

Tidying up is done by representing the input to the encoder o by
A ={ay, a1, as, ..., ay—1} and the codeword lengths /. = n(ay).

For clarity, an encoder is a means of assigning one of the codewords to an
input, or source, symbol. It compresses the raw data in the input stream and
creates an output with compressed (low-redundancy) data. The decompres-
sor or decoder converts in the opposite direction to the compressor. The
term companding stands for ‘compressing/expanding’. The original input
stream denotes unencoded, raw or original data. The output content, which
is a compressed stream, is the encoded or compressed data.

Using the Kraft inequality theorem, the prefix property ensures that there
exists a necessary and sufficient condition for the Huffman code to be
uniquely decodable (decipherable). This condition is mathematically
expressed as

m—1
d 2k (2.9)
k=0

for a noiseless source code A, encoder o, and codeword lengths /. If the
codeword lengths can be ordered as [y <[, </, < ... <[, 1, then a collec-
tion of codewords will represent a binary tree of depth /,,_;. For example, by
putting m = 4, a binary {1, 0} code tree is drawn as in Figure 2.9 by labelling
one branch ‘0’ and the other ‘1°. By convention, a ‘1’ is normally put on the
upper branch in a horizontally drawn tree and a ‘0’ on the lower branch. The
binary tree starts with a root, which has two branches extending from it.
Each branch ends in a node; in this case as the first level nodes or depth one
nodes. Nodes can extend further into branches leading to more nodes, or
simply terminate. When nodes end, they are called terminal nodes or leaves.

At a further level, a node connected by a branch is said to be a child or
sibling of the preceding node (called the parent node). There is a one-to-one
correspondence between paths from the root node to the terminal node and
the codewords, sometimes called path maps. It can be seen in Figure 2.9 that
the code can be represented by a subtree — denoted by white circle — consist-
ing of branches from the root (source) of the tree to the terminal nodes (or
leaves) — denoted by a blackened circle of the subtree. The codewords
correspond to the sequences of branch labels from the root of the tree to
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Figure 2.9 Binary tree code of variable lengths

the leaf. In summary, binary codewords of length /,,_; or shorter may be
described as paths through the tree, or as terminal nodes of such a path.

With the background information and following Gallager (1978), the
static Huffman coding algorithm is described as follows:

(a) Represent the list of the probabilities of the source that is considered to
be associated with the leaves of a binary tree by L.

(b) Take the two smallest probabilities in £ and make the corresponding
nodes siblings. Generate an intermediate node as their parents and label
the branch from the parent to one of the child nodes ‘1’ and label the
branch from parent to the other child ‘0’.

(c) Replace the two probabilities and associated nodes in £ by the single
new intermediate node with the sum of the two probabilities.

If £ now contains only one element, end iteration. Otherwise go to step (b).
This algorithm is best illustrated by an example.

Example 2.3 Consider a five-symbol alphabet ay, a;, a2, a3, a4 with corres-
ponding probabilities 0.4, 0.2, 0.2, 0.1, 0.1. Using the static Huffman
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Figure 2.10 Huffman codes

algorithm, the tree structure can be constructed and the five symbols paired
in two ways as shown in Figures 2.10(a) and 2.10(b). Let us describe the pair-
ing of Figure 2.10(a) in the following order:

e a4 is paired with a3 and both are replaced with a single symbol a43 with a
combined probability 0.2.

e With the four symbols (a43, a», a; and ay) left, noting that each of the
symbols (a43, a, and a;) has a probability of 0.2, one can arbitrarily take
any two symbols and the combined paired with the third. In doing so, the
resultant symbol a43,; has a probability 0.6.

e Finally, the remaining two symbols (a43>; and ag) are paired and replaced
with a43>19 with probability 1.0.

Having completed the tree, with root node on the right and the five leaves on
the left, it is time to assign codes. With the labelling of every pair of edges,
the resulting codewords are the codes read off from right to left for each of
the symbols: 0, 10, 111, 1101 and 1100. Specifically,

61020
a1:10
a, =111
ay = 1101
ag = 1100

The number of bits n(a,) in each codeword ay, a1, az, az, as is 1, 2, 3, 4, 4
respectively.

Similarly, for the tree structure represented by Figure 2.10(b) and
assigned pairing, each symbol is encoded as

ap = 11
a1:01
a2:00
az = 101

as = 100
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The number of bits, n(ay), in each codeword ay, a;, az, az, ag is 2, 2, 2, 3, 3
respectively, which is different from that of the tree structure of Figure
2.10(a). The difference shows that the arbitrary decisions made when con-
structing the Huffman tree affect the individual codes, but not the average
size of the codewords. The reader might ask which of these codes is better?
To answer this question, the better code is the one with the smallest variance.
Two new terms have just been introduced: ‘average size’ and ‘variance’. How
do we quantify these terms in the light of Huffman coding?

Average size (/) is defined by

m—1

() = pla)n(a) (2.10)
k=0
Variance is defined by
m—1
& =" plaw)n(a) — () (2.11)
k=0

From (2.10), the average size of the codes obtained from Figures 2.10(a, b) is
the same; that is, 2.2 bits/symbol in this instance. However, using (2.11), two
different variances are obtained: 1.36 and 0.16 for Figure 2.10(a) and Figure
2.10(b) respectively. Hence, the code of Figure 2.10(b) is preferred. Often,
the entropy of the code is required. Entropy, H, is the quantity of data
transmitted per second, or the average self-information per transmitted
symbol. The ‘entropy’’ H of symbol ‘a’ is defined by:

m—1

H ==Y plac)log, p(ax) bits (2.12)
k=0

Choosing p(ax) = 1/m for all 1 < g < m gives the maximum possible value
of H for a given value of m. Equation (2.12) shows that the entropy of the
data depends on the individual symbols’ probabilities p(a;) and is smallest
when all m probabilities are equal. This fact is used to define the redundancy
‘R in the data.

' In analogue communication systems in which the transmitted signal is a continuous
voltage waveform v(z), the entropy H for each independent sample of v(¢) may be defined by

H= 7/ p(v)log, p(v)dv bits/sample

where p(v) is the probability density function of v(¢). The form of p(v) that maximizes H for
a given signal power is the Gaussian distribution. When p(v) is Gaussian with square mean value
N, then entropy is

H =InV2neN bits/sample.
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Redundancy is defined as the difference between the entropy and the
smallest entropy:

m—1

R=—>"p(ar)log, p(a) — log, m (2.13)
k=0

With this expression, test for fully compressed data (no redundancy) by

m—1

S p(ar) logs plar) = log, m (2.14)
k=0

In practice, little is known in advance about the input stream and its associated
probabilities. As such, look into ways of devising an approach that is more
adaptive in spirit, which essentially builds on the ‘static’ approach. For example,
suppose that one wishes to modify the estimates of the list’s probabilities as more
data arrive and to adapt the code correspondingly. A strategy similar to the
previous ‘static’ construction could be adopted. For instance, suppose that at
time (i — 1) the probability estimates p;_;(ax) for all of the source symbols a; are
available along with the corresponding Huffman code; i.e.

ni—1(ar)

I 2.1
i1 ' (2.15)

pi-1(ax) =

where k =0, 1,2, ..., m— 1. If the ith input symbol a; = a is encoded and
decoded using this Huffman code and all of the probabilities updated with the
new relative probabilities, then the only count for the symbol ‘@’ would change to

_ml@) 1+ (= Dpai(@

milax) _ 1+ (= Dpioi(ar) (2.16)

l l

pi(a)

pilar) =

provided a; # a. These new and improved probabilities are made available
to the encoder and decoder, which would then be used to design a new
Huffman code for use on the next input symbol.

In practice, radar data are quantified by weights, wy, where k =0,
1,2,...,m—1. Since these weights are non-negatives, the weights can be
used in place of the probabilities to design a Huffman code and to find the
corresponding ordered tree.

Recent advances in technology have enabled system manufacturers to
include encoding/decoding chips in their hardware, invisible to the users that
perform data compression/decompression.

2.1.5 Display and communications system

In modern radar systems, the radar data is highly processed before display. The
display unit provides a full-range presentation of received signals. The display
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device is a console, which is conceptually similar to the computer-driven
monitor. Target detections are often represented by target symbols on the
display unit or console. In some cases, a command from the display unit is
used to trigger control signals to steer the radar antenna in the desired direction.

A communication system ensures that the internal and external commu-
nications systems meet the intended requirements including voice, text, accur-
ate timing and location finding via the global positioning system (GPS).

2.1.6 Radar application

The application purpose of a particular radar determines its limit of operation.
Theoretically, radar may be developed having capabilities that exploit a great
shift in wavelength, or when precision tracking and high resolution in range,
angle (azimuth), target identification and Doppler are required. New develop-
ment in laser radar technology has achieved this. For instance, laser radar has
combined the capabilities of conventional radar and optical systems to achieve
high resolution and accurate target tracking, imaging, aim-pointing assess-
ment, and autonomous operation. By combining laser radar systems with
passive sensors, further improvement can be gained in target estimation and
precision independent of time of the day or night. More is said about laser
radar in Chapter 5. Radar usage varies dramatically including:

strategic and tactical surveillance;

remote atmospheric and sea-state sensing;
tracking and guidance; and

precision disaster control or monitoring.

b s

Radar systems that operate on line-of-sight principles are called conven-
tional radar (examples are microwave, laser and beacon), while those that see
beyond the horizon are called skywave radar (to be discussed in Chapter 7).
The over the horizon radar (OTHR) is an example of a skywave radar. An
OTHR utilizes high frequencies (HF) unlike the conventional microwave
radar, which operates between 0.2 and 40 GHz. A major difference between
the HF skywave and conventional line-of-sight radar is the need to adapt the
waveform and frequency of the former to the environment. The detailed
design of a system for a particular application can differ significantly. It also
involves compromise between cost, implementation, and operating para-
meters to achieve realistic performance. There may also be differences in
the characteristics of the respective propagation media and in the signals
processed which are reflected in the implementation used for the two sys-
tems. Despite this the fundamental principles are common.

2.1.7 Summary

This chapter has explained the fundamental architecture of a typical radar
system. It also covered the issue of receiver sensitivity, data compression and
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radar utilization. The next chapter looks at the physics of an antenna, which
is a major item in radar systems design, as well as range measurements for
signal pulse and train pulses.

Problems

1. If you have any compression/decompression programs on your computer
(e.g. ‘Stufflt’), then perform the following exercise. Use any of your
documents, say joke.doc, and drop the document on ‘Stufflt’. A new
document will be created in your directory called ‘joke.sea’. Compare
the size of uncompressed file ‘joke.doc’ with the compressed file ‘joke.sea’. To
reconstruct (or retrieve) the compressed data to the original, drop ‘joke.sea’
on ‘StuffIt expander’ to create another file called ‘jokel.doc’. Compare the
size of the reconstructed file ‘jokel.doc’ with the original ‘joke.doc’. Both sizes
should be approximately equal.

2. Why is it that an already-compressed data cannot be compressed further?

3. Suppose an eight-symbol list is as given in Table 2.2. Design a Huffman
code for the symbols. Estimate the average length, variance, and the
entropy of codes.

4. Design a Huffman code for a source with seven symbols a;, where
k=0,1,2,...,6 with the symbols’ probabilities having a functional
relation given by p(ay) = 0.3/1.3%. el

5. If the probabilities in problem (3) are weighted as p(a;) = w,/z Wi,
design a corresponding Huffman code.

6. Estimate the noise bandwidth range required for a receiver’s sensitivity to
be maintained at 0.35mV, the antenna is operational at temperatures
between —10°C and 45 °C, the effective impedance is 75€Q, and the total
noise factor is 12.64 dB.

7. Will the noise bandwidth estimated in question (6) be suitable for the
same receiver if the antenna were kept at room temperature?

Table 2.2 List of the eight symbols

Symbol Probability
ap 0.01
a 0.02
a 0.05
as 0.09
ay 0.18
as 0.20
ag 0.20

a; 0.25




Antenna physics and radar
measurements

The previous chapter has briefly explained the functionality of a practical
radar system. One of the major components of radar is an antenna.
The basic physics of antenna radiation and how the field in front of
the antenna is divided into regions are explained in this chapter. In addition,
the concept of pulse compression is investigated for a single pulse and
a train of pulses. The compression filter’s response is used to explain
measurement ambiguities in range and Doppler as well as resolving closely
spaced targets.

3.1 Antenna radiation

One of the simplest forms of radiator is the dipole antenna. A dipole (or
doublet) consists of a metallic wire whose length is an appreciable portion
of a wavelength. If the wire is fed at its centre by an electric source (or a
transmitter or generator), equal charges of opposite signs ("¢ and *¢) are
induced. A schematic representation of a dipole is given in Figure 3.1. If the
values of the charges are varied harmonically in time, the dipole will radiate
energy. By the nature of the generator, the current varies and moving electric
charges produce radiated fields. The faster the charges accelerate the better
the dipole radiates. How does one predict the radiation pattern of an
antenna? The next paragraphs attempt to shed some light on this question.

By Coulomb’s rule, the interaction between two-point charges ~¢g and T¢
is interchangeable. These charges are assumed of equal amplitude and may
be in close proximity compared to the distance in the surrounding field, say
at point P. According to the superposition rule, two or more electric fields
acting at any given point would add vectorially. Thus, the electric potential
at point P can be expressed as the sum of the potentials due to the individual

charges:
qg (1 1
V=—"|——— 3.1
4me <r1 }’2> (3-1)
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Figure 3.1 A centre-fed dipole

Since the distance » measured from the centre of the wire to the observation
point P is far greater than the separation distance / between the electric
charges (i.e. r > /), the approximate distances r; and r, are

lcos©

2
lcos0 (3.2)

2

rRr—

rn~r+

Substituting (3.2) in (3.1), and observing as / — 0, that is, the point-dipole
limit, the electric potential becomes exact:

~ qlcos®
 dmer? (3:3)
Alternatively,
M cos6
 4ner? (34)

where € is a constant, called the permittivity, which depends on the medium
surrounding the charge. In this instance € is maintained constant. M is the
moment of the dipole. Equation (3.4) is also valid at large distances from any
finite size dipole. It can be seen in (3.4) that the electric potential V" varies
inversely as the square of the distance from the dipole, in contrast with the
reciprocal distance law of the point charge expressed in (3.1).

Given that electrostatic fields are conserved, the electric intensity at any
point is equal to the space rate of change of potential:

oV

E:——_
Os

-V (3.5a)
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where VIV is the gradient of V' and defines both the magnitude and the
direction of the maximum rate of change of V. The minus sign arises because
the work done in moving a unit charge is positive when it is done by some
external force against the field.

By defining the dipole moment vector M directed from ~¢ to T¢ as having a
magnitude ¢/, the potential V in (3.4) can then be expressed as

V- M- r
T 4mer?

(3.5b)

The components of the electric intensity F, in spherical coordinates, can be
estimated by performing the gradient operation of ¥ in (3.5b):

oV  2McosH
B = = amer (3.6a)
oV  Msinb
oV
® T T sin00d (3.6¢)

Since E is the vector sum of all the components, the electric intensity
becomes

E = E;i + Eo0 + Eyd

M o (3.7)

=— (2 cos 07 + sin 66)
4mer’

where 7, é,qS are unit vectors in the r, 0, ¢ directions respectively. Often
(3.7) is called the static components in the literature. This equation demon-
strates that the electric intensity of a dipole falls off as the cube of the dist-
ance, in contrast to the inverse square law of the potential expressed in (3.4).

A sketch of the electric intensity pattern of the point dipole is shown in
Figure 3.2.

%
/
/ \,
\
\E
QQ '
I
I}
/
/
N s

Figure 3.2 Radiation pattern of a point dipole
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The preceding discussion has assumed a static dipole. As stated earlier, if
the values of the electric charges are varied harmonically in time and space,
the expectation is that the dipole will radiate energy. Therefore the oscillating
charge, ¢, and its moment, M, would become

q = qoe’"

M = Mye’™ (3:8)

where My = qol.

If a thin wire of negligible resistance is assumed and a capacitance connects
the pair of charges, then an alternating current / that flows upwards from ~¢
to T¢ may be expressed as

= @ :jo)qgej"" = Ioejmt (39)
dt
This expression does not take into account the time t required for charges at
the dipole to travel to observation point P leading to potential retardation at
P, as do V' and E, where T = r/c and c is the velocity of light. At this point, let
us examine the influence of delay on the potential ¥ and electric field
intensity E at point P.
By substituting (3.2) and (3.8) in (3.1), the electric scalar potential is

written as
qo (et eioli-m)
VZ%(V—ICZSG—V‘FIC%SG (310)

1

Which, by expansion

 2goe™ [ud, cosu + jrsinu

Vv (3.11)
4me rz[l _ (%)2}
where
A
"o
_lcosH (3.12)
2
Expressing the trigonometric functions in (3.11) as power series; that is,
1 ot
cosu=1-— 21 + o
L oo’
sinu =u — 30 + 51
By neglecting the higher-order terms, i.e. u?, u, ..., the electric scalar

potential is
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Jjo(1—1) e
szqojr < R 2) (3.13)
Uhy
me s\ ()
Substituting (3.12) in (3.13), and noting that r > [,
1
qol cos© A2NZ (st
=D () 4 L) o=t %) 14
v 4mreh, < +r2 ¢ (3.14)
where
B, = tan"! L (3.15)
* )\’*

By comparing (3.4) with (3.14), one observes how the electric potential
amplitude changes from r~2 dependence for a static dipole to ! dependence
for an oscillating dipole. By letting ® = 0, and A, — oo, both equations (3.4)
and (3.14) agree as expected. Suffice to say that a similar behaviour can be
observed for changes in the magnetic H component for a constant current to
a varying current. This is left to the reader to verify.

For a non-zero frequency, the exponential term in (3.14) indicates that the
potential V" will propagate as a wave at a phase velocity ¢. This is not quite
true, due to the complex (j+ A./r) term. Since r > A,, B, ~ m/2, which is
approximately independent of r. In this instance, V' can be said to have a
phase velocity ¢. However, close to the dipole the magnitude r is not much
larger than A,, the value of B, becomes variable and consequently gives
a phase velocity much larger than ¢. The quantity A, is called the radian
length; the distance over which the phase of the wave changes by one radian;
which is approximately A/6.

By Maxwell theory, the electric field intensity can be obtained using

04
(6t+VV) (3.16a)
where
ov . oV . oV .
VV(EﬁrrJrraGe+rsinea¢¢) (3.16b)

From (3.13), we can write

Mye/®t=7) 20 A e 20\ . aa
—VVZLZ _1—|—J 1+—] $cosOr + J 1+ sin 06
4rrel; r r r r

(3.17a)
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The potential due to current distribution 7 at the same particular moment as
for the electric potential can be deduced as

_ M o5 67 — sin 06
A—4 (coser smee) (3.17b)

"

where | is the propagating medium permeability. Using (3.17b) and equation
(3.9), the current differential

04  Mye/*t=9

TN ol (cos 07 — sin 96) (3.17¢)
Trel;

Hence, substituting (3.17) in (3.16), the electric field intensity is written as

M jﬂ)(t_‘[) 2 * * i * 2 * . A
E:Lz{] r (1 +K—) cos 07 + {]7‘ (1 +2 ) - 1}smee}
dmrels r r r r

(3.18)

As A, — oo and o = 0, (3.18) reverts to (3.7), the static terms.

The electric field intensity E is seen to propagate through space with a
velocity ¢ for r > A, as does V. The situation where r > A, is referred to as
the far field for the doublet. More is said of the division of a radiating field
in front of an antenna into regions in section 3.1.2. In the instance where
r > A, what is left in (3.18) is the radiation term. Specifically

Moej(D(T*T)

Amre)?

E=— sin 00 (3.19)

However, close to the dipole, r in (3.18) would not be much larger than A,,
E will involve five components: two varying as r~2; two varying 2 but
leading by n/2 (radians); and finally the r~! term leading the other r~2 term
by m (radians). Equation (3.19) demonstrates the »~' dependence for an
oscillating doublet ensuring conservation of energy.

Example 3.1 For free space, by substituting (3.8), (3.12) and ¢ = (souo)*”2
in (3.19), the magnitude of the field radiation is simplified as

60nlyl .
nosm@

1= | (v/m) (3:20)

noting that & = gy = 8.854 pF/m, p, = 400 pH/m and ¢ = 3 x 103 m/s, the
speed of light. The normalized polar plot of the radiation field induced by
a unitary current and //A = 0.1 is shown in Figure 3.3; that is, £/60xn versus 0.

It should be noted that if the radiating element were placed vertically on
a plane its image would be taken into account. An example of where the
ground effect is replaced by the radiator image is a vertical monopole,
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Figure 3.3 Polar plot of radiation pattern of a dipole in free space

which is briefly explained in the next section. Also note that a radiating
element is not restricted to dipoles or monopoles, but may be other radiators
such as slots, open-ended waveguides (or small horns) and microstrips. If
radiators are similarly located at regularly spaced points, an antenna array is
formed. In such a formation the array’s resultant electric field will be given
approximately by the sum of the fields contributed by all radiating elements.
The effectiveness of such an array would depend on the operating frequency,
power handling capability, polarization technique and method of feeding.
More is said on the types of antenna array, the formulation of their electric
intensity and applications in Chapter 4.

3.1.1 Vertical monopole

A vertical monopole is the simplest form of vertical antennae; it is grounded
at the lower end. This form of antenna is commonly used as receiving
elements for skywave radars (for example, over-the-horizon-radar: more is
said of this type of radar in Chapter 7). When an antenna is near the ground,
energy radiated toward the ground is reflected as shown in Figure 3.4.

The total field in any direction then represents the vector sum of a direct
wave plus a reflected wave. For purpose of calculation, it is convenient to
consider that the reflected wave is generated not by reflection but rather by a
suitable image antenna located below the surface of the ground.

For clarity, the symbols 0;, 0 and \, in Figure 3.4, are defined as the
target elevation angle, antenna elevation angle and grazing (or reflected)
angle respectively, while / is the height of the antenna above the ground. In
the case of a perfect ground (of infinite conductivity) the reflection coefficient
is unity; that is, p = 1. The currents, /, in corresponding parts of the actual
and image antennas are of the same magnitude and flow in the same direction
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Figure 3.4 Geometry of a vertical monopole

in the vertical arm while the image current flow is opposite to that of the
actual antenna in direction in the horizontal component.

For developmental purposes, consider an element dz at distant z from
ground with radiated field observable at distance r from the source. In view
of (3.20), the resultant electric field of the vertical monopole can be written as

60n [T mzy . Ad
E_TIO [ls1n(7> sm@cos(T)dz (3.21)

where the phase difference A, due to path difference, is given by
z
Ad =2 (7) cos 0 (3.22)
0 and [, are the antenna elevation angle and the magnitude of the current

flowing in the antenna respectively.
Solving (3.21) yields

(3.23a)

120m/1y [1 4 cos(mcos 0)
E= -
I8 sin 0

The term in [.] is called the pattern factor, f(0), for this type of arrangement.
Specifically,

_ 1 +cos(ncos6)

2
sin 0 (3.23b)

/(9)
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Figure 3.5 Polar plot of a vertical monopole radiation pattern

The normalized polar plot of the radiation field, that is, £/60r versus 6 induced
by a unitary current, //A = 0.1, for a vertical monopole, is shown in Figure 3.5.

The difference between the radiation field induced by both dipole and
vertical monopole is shown in Figure 3.6 as a combined plot. Besides field
strength, the effect of ground contribution is visible between the two graphs
when transversing from the positive phase to the next.

In general, if the dipole is symmetrical and of length 2/ and letting /(z) be
the amplitude of the sinusoidal current as a function of the z-axis; that is, in
the form

I(z) = Iysin[B(I — |z])] (3.24)
Then, the far-field expression E in the spherical coordinates is given by
60me /P (! a2
E :j_ne / I(z)e/Pc0s9z (3.25)
7\. r -
E/60n 0.45
Vertical monopole
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Figure 3.6 Combined radiation patterns of free-space dipole and vertical monopole
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Substituting (3.24) in (3.25) and integrating, the following is found:

e /P [cos(Bl cos 0) — cos Bl

E =601 2
J60k sin O (3.26)
The term in [.] is called the pattern factor, f(0); that is,
cos(PlcosB) — cos B/
£(0) = So8(Preost) —cosP (3.27)

sin 0

It describes how the radiation in the far-field region varies with direction
and is independent of the azimuth angle. If / =2X/2, B/ = r; then (3.27)
reverts to (3.23).

For completeness, the sinusoidal current hypothesis is less acceptable
when the dipole is thicker and at a distance from resonance, which is
certainly the case for asymmetrical dipoles. Despite these reservations, the
sinusoidal hypothesis is used because it is an approximate that is simple to
visualize, very practical in the far field and allows students to conceptualize
the subject matter.

3.1.1.1 Radiation resistance and power
Power radiated by a dipole of length 2/ is defined by

_l T *1’2' _n(ﬁ)z 2n rc2
P_2/0 /ORe[EH] smed@dd)—z o /0 /Of(e)dedd) (3.28)

where /,,, is the maximum current, £(0) is the pattern factor from (3.27) and n
is the characteristic impedance of the dipole. In free space,
N ="mp = +/Ho/€0 = 120w (). After performing the integration, the power
expression is found to be

P =301 / ' 1%(0)de (3.29)
0

The radiation resistance can be defined in terms of maximum current, 7, or
the current at the feed point /. In terms of the feed point, the time-averaged
power can be expressed as

1

Equating (3.30) and (3.29) at / = A/2, the radiation resistance expression is

found as
A I,\> ™ cos? (Zcos 0)
Raull=%) =602 — 2/ 3.31
l( 2) (10>/0 sin® 0 (3:31)
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If I, = Iy and let x = cos 0, and change the limits of integration accordingly,
(3.31) can be recast as

1 2(n 1
ro(1=* :60/ cos’(3%) . _ 15 / 1+ cos(my) |
2 1 1—X2 1 l—x

' (3.32)
n / + cos(mx) dx}
-1 1 +Xx
Furthermore, put y = n(1 + x) in (3.32) and change the limits of integration
accordingly,
b 2n 1=
Ryad (l = —) = 30/ 1= cos) (3.33)
2 0 ¥

This expression can be related to a well-known function Cin(x) defined by
Abramowitz and Stegun (1968):

Cin(x) = /0 Xl_cfoso’)dy (3.34)

Comparing (3.34) with (3.33):
A ,
Rl = 5= 30Cin(2m) (3.35)
Since Cin(2m) = 2.438,
A .
Rl l= 5= 30Cin(2n) = 73.14Q (3.36)

Therefore dipoles of length that are multiples of A/2 can readily be obtained.
It is appropriate at this stage to describe field regions and give the reader
some idea of their physical dimensions.

3.1.2 Field regions

The field in front of an antenna may be divided into three regions: the
reactive near-field region, the radiating near-field region (also called the
Fresnel region), and the radiating far-field region (also called the Fraunhofer
region). These regions are devised to identify the field structure in each.
Although there are no discernible changes in the field configurations as the
regions’ boundaries are crossed, various criteria have been established which
identify the regions. Using Figure 3.7 as a guide, these regions are defined as
follows.

The reactive near-field region is the sector of the field immediately
surrounding the antenna. By IEEE Standard 145-1983 (IEEE Standard
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Figure 3.7 Boundaries of field regions

145-1983), for most antennas, the criterion used to define the outer boundary
R of this field is:

ol—

R < 0.62 (%) (3.37)

where D is the largest dimension (aperture) of the antenna and A is the
wavelength: all units in metres.

The radiating near-field region is a sector where the angular distribution
of the radiated energy is dependent on the distance from the antenna where
the radial field component is significant. The radial distance where radiating
near-field region exists is

D3 % D3
02— < — .38¢
06(k>_%<x (3.38a)

The location of the antenna near field as a function of direction (Lewis and
Newell 1985):
(Dcos6,)* D

+ —sin, (3.38b)

R="—"%2 2

where

0, = direction angle from the antenna plane
A = flatness of the field, typically A/16.

Technically, beyond the radiating near-field region is the radiating far field
whose outer field is at infinity. Silver (1949) suggested the immediate limits
of the radiating far-field region by
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3
R > 2% (3.39)

The field components in the far field are primarily transverse to the radial
distance.

3.2 Target measurements

Range is the distance between the radar and the target. Assume a radar
wanting to measure a target range, R. The radar transmits a pulse and meas-
ures the elapsed time ¢, for the target echo to be received. The elapsed time
is measured by placing range gates along the receive time, as in Figure 3.8.
Figure 3.8 is similar to that given in Skolnik (1980).

The consecutive range gates open for the duration of a single pulse T,
beginning with each transmitted Ist pulse. The presence of a signal in these
gates corresponds to the elapsed time. From basic physics, an electro-
magnetic wave travels at the speed of light, ¢. Thus, the target range can
be expressed as

1

R=—ct (3.40a)
2

The maximum unambiguous range, R, is related to the interpulse period, T:
1

Run = 5 CTV (340]3)

Rather than timing the transmit—receive pulses, another type of pulse radar
(called pulse-Doppler radar, which uses pulse repetitive frequency, PRF)
applies the Doppler principle to estimate the target range. The Doppler
principle relates to measuring the frequency shift, or difference between the
transmitted frequency and the target-return frequency, Af" this principle is
explained as follows.

When the source of fluctuation or the observer of the fluctuation is in
motion, a shift in frequency will occur. This effect is called the Doppler
effect. it forms the basis of continuous wave (CW) radar. For example,
consider the distance between a radar and target as R. The total number
of wavelengths A contained in a round trip between the radar and target

1st pulse target echo 2nd
/ / pulse
range gates .
| | | | | | | | | | | | |
| t | 1
1 I Tl
Ts

Figure 3.8 Estimating target range within pulses
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would be 2R/A. Given that one A equates to 2r (radians), the total angular
excursion ¢ for the round trip will be

o =2n (27R> (3.41)

R and ¢ will be continually changing if the target is in motion. From
classical physics,
dé

—r = 0=2mndf (3.42)

Differentiating ¢ in (3.41) with respect to time, ¢, we have
dd 4ndR 2r .

Equating (3.43) to (3.42):

Af = 2R (3.44)
A
The range rate R is radial (i.e. relative to radar). To indicate the direction of
measurement of the target, the range rate can be expressed by
s (3.45)
2
The + in the above equation specifies the target’s direction relative to the
radar. For instance, a negative sign implies an approaching target (decreasing
range or negative range rate) while a positive sign indicates outbound direc-
tion (target moving away from the radar). The Doppler principle helps to
separate echoes of non-moving targets from that of moving target echoes. It
should be noted that cross-range velocity has no Doppler effect.
Doppler (frequency) shift is easily measured by mixing the original
frequency f with f,; backscattered from a target with approaching radial
velocity v,. As such

2 (dR vy
Ja=—5 (E) =25 (3.46)

This expression suggests that the Doppler shift £, will be positive; that is, at a
higher frequency if the target is approaching (when dR/dt is negative), or f,
will be negative if the target is receding (when dR/dt is positive). Expression
(3.46) also implicitly suggests that any magnitude of target speed can be
measured.

Since phase can change between pulses, from (3.41) the phase change Ad
between pulses (samples) can be expressed as

Ap =2n (ZATR) (3.47)



Target measurements 69

where AR denotes the range change between pulses. From this expression,
three certain conditions can be inferred. If:

e Ad < 2m, the Doppler frequency f; can be unambiguously measured;
e Ad = 2x, the Doppler frequency f, equals the PRF, i.e. f; = PRF. Note
that PRF is related to the time interval between pulse (PRI) in the form:

1
PRF = oor (3.48a)

A shift of 2 is indistinguishable from a shift of any multiple of 2m,
including zero. A moving target that moves at such a speed will appear
stationary (non-moving). Its echoes will be cancelled along with echoes
from fixed (stationary) targets. The speeds that cause Doppler shift to be
an integral multiple of 2r are called blind speeds. This phenomenon is due
to the presence of a large ground return at zero that frequently prevents
the detection of the target of interest. More is said about blind zones in
section 3.2.5; and finally

o Ad > 2m, the target will always be detectable but the observed Doppler
frequency f; will not correctly represent the target speed and will be
incorrect by an integral multiple of PRF. Often, multiple PRFs are used
to eliminate blind speed and to resolve ambiguous target speed measure-
ments. In this instance, the observed Doppler frequency is more correctly
represented by

Ja = <%> modulo(PRF) (3.48b)

Example 3.2 For a 1GHz base frequency, and a target radial speed of
20 knots, determine the Doppler shift.

Solution

v, = 20knots (note that 1 knot = 1.852 km/hr)
f=10"Hz ¢=3x10"m/s
Using (3.46), the Doppler shift, f,, is calculated as 68.59 Hz.

The above range measurement discussion has avoided the issue of noise and
other losses and their effect on range estimation. From radar theory, the
maximum range R beyond where a target cannot be seen can be calculated
for low, medium and high PRFs, using the radar equation, this is discussed
in Chapter 5.

Radars with a pulse repetition frequency (PRF) sufficiently low so that
range is unambiguously measured are called low-PRF (LPRF). For example,
the transmitted pulse travels to and from the range of maximum interest
during the interpulse period before the transmission of the next pulse. LPRF
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radars do ambiguously measure Doppler shift. The unambiguous range,
R, 1s calculated by using

o«
~ 2PRF

Ry (3.48¢)

Radars with a PRF sufficiently high so that all velocities (Doppler shifts) of
interest are unambiguously measured are called high-PRF (HPRF). The
maximum Doppler shift that can be unambiguously measured is given by
(3.46), or rightly by (3.48b).

Radars that are ambiguous in both range and Doppler are called medium-
PRF (MPRF). These radars appear to combine the worst of both LPRF and
HPRF radars.

Pulse transmitters are peak-power-limited. When sampling is done at very
short duration (in nanoseconds), it would be difficult to obtain high resolution
in range. For this reason high range resolution is obtained from the received
signal by a process called pulse compression, which reduces the response width
and increases the signal-to-noise ratio (S/N) of uncompressed response to
individual reflection points of the target. When two targets are closely spaced,
it is often difficult to resolve them. The pulse compression technique enables
closely spaced targets to be resolved from received signal.

3.2.1 Pulse compression

Radar waveforms are generally modulated in phase, or frequency, to
increase the bandwidth of the transmitted pulse. The pulse may be repeated
at short intervals to increase the signal duration. This pulse repetition
method is conveniently used in practice to increase the signal duration
without a proportionate decrease in the transmission bandwidth. In this
way, shifting the carrier frequency from one pulse to another can increase
the bandwidth. The enhanced signal bandwidth may be used by matched, or
mismatched, filtering on receive to increase the range resolution of the radar
system. This general pulse compression technique is frequently used in modern
radar systems to simultaneously maintain a requirement range resolution
while increasing average power on a single-pulse basis.

Pulse compression encompasses various signal-modulation and processing
techniques utilized in radar systems, particularly in pulse Doppler radar,
allowing the transmission of relatively long-duration waveforms while retain-
ing the advantages inherent in high range resolution waveforms. Modulation
is a signal processing technique.

The modulation process involves switching or keying the amplitude,
frequency, or phase of the carrier in accordance with the information binary
digits. There are three basic modulation schemes: amplitude shift keying
(ASK), frequency shift keying (FSK), and phase shift keying (PSK). These
schemes are, respectively, the binary equivalent of analogue transmission’s
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amplitude modulation (AM), frequency modulation (FM) and pulse modula-
tion (PM) when used to transmit data signals.
Consider an input signal s(¢) of duration Ty being represented by

s(t) = Agcos(2nfit+ ¢,) (n— DTy <t <nT; (3.49)

where 4y and ¢,, correspond to amplitude and nth phase of the signal.

For the ASK scheme, the signal’s amplitude Ay is varied while the phase,
¢,,, and carrier frequency, f., remain constant. In the FSK, only the frequency
[ 1s varied with 4y and ¢, remaining constant. In the case of PSK, A4 and f.
are kept constant with the ¢,, varied. PSK, compared with the other schemes,
has excellent protection against noise because the information is contained
within its phase. Noise mainly affects the amplitude of the carrier. For radar
modulation schemes, transmitted waveform is maintained at constant ampli-
tude; thereby leaving modulation to either frequency or phase.

The range resolution achievable with a given radar system is given by
(3.40). In a pulse compression system, the transmitted waveform is modulated
in phase or frequency so that the bandwidth is allowed to be far greater than
the reciprocal of transmitted pulse duration; that is, B> 1/T. This effectively
allows an equation of the effective pulse length of the system after compres-
sion to that of the pulse width upon substitution in (3.40a); specifically

1
R= T (3.50)

where ¢ = 1. This equation demonstrates that a pulse compression radar can
use a transmit pulse of duration 7 and still achieve range resolution equivalent
to that of a simple pulse system with a pulse of duration t, where T > .

If a pulse compression scheme is incorporated in a radar system of low
peak power and long-duration pulse, it could be concluded that, by selecting
an appropriate modulation scheme, the compressed (effective) pulse length
of the resulting waveform would have a range resolution and detection
performance of an equivalent short pulsed, high peak power system.

The ratio of T to t is called the pulse compression ratio C,; that is,

C,=— (3.51a)

Alternatively as a time-bandwidth product:
C, = BT (3.51b)

Often, pulse compression systems are characterized by their time-bandwidth
products. This characterization will become obvious to the reader in the next
section.

Of all pulse compression techniques, linear frequency modulation (FM) is
the oldest and best developed. It is used to improve detection performance
while maintaining range resolution. It is particularly useful for detection of
moving targets, since it can provide broad Doppler coverage even with long-
duration transmit waveform. The variety of pulse compression waveforms is
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too large for a comprehensive treatment in this book. However, a linear FM
technique is used to investigate the output response of the pulse compression
filter, which is treated next.

3.2.2 Pulse compression processing technique

Figure 3.9 illustrates a conceptual implementation technique of a radar system
with a pulse compression processor. Consider a chirp signal from an RF
generator of width t. A chirp signal owes its importance to the fact that
constant-amplitude waveforms place the least requirements on radar trans-
mitters. This chirp signal is passed through a dispersive-delay block of
pulse duration Ty, which is assumed to be far greater than the chirp’s width
from the generator. The signal from this dispersive-delay block is amplified and
transmitted through the directional switch to the antenna, if one assumes that
the signal received is properly processed with a minimum loss, and is further
amplified and passed through the pulse compression filter. For brevity, the
effective bandwidth of this filter is matched to the transmitted waveform,
hence, having an effective bandwidth of 1/t(Hz). More is said about the
concept of ‘matched filtering’ in Chapter 10, section 10.3.

The resulting waveform of the matched filter is a compressed pulse of
effective duration of t (sec), with a time extent of the order of 27,. With
this, the system would be capable of resolving targets separated in range by at
least c¢t/2 (m). The filter output has some sidelobes, called range sidelobes, at
|f| < 7 (sec). These sidelobes must be controlled because in a given range bin,
they may appear in adjacent range bins as signals. The compression concept,

Antenna
Directional [ — Amplifier
switch
I -
Amplifier Dispersive delay N .
I ()
RF generator A
B=1/t Filter .

T

N — >
System detection 2Ts
display

Figure 3.9 A block diagram of a pulse compression processing scheme in a radar system
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described above, has been developed mostly on an intuitive basis. To comple-
ment this intuitive approach, a physical basis containing basic mathematical
development is provided next. Those seeking only a qualitative understanding
may skip the next two subsections without loss of continuity.

If one assumes that the chirp signal has a constant-amplitude envelope in
the time domain, but in the frequency domain the rectangular envelope is
only approximated, the signal generated would be by carrier frequency
modulation of a constant-amplitude pulse. Thus, it can conveniently be
expressed that the normalized form of the chirp signal is in the form

VT T

The duality between time and frequency produces an analogous result in
frequency; a form like (3.52) can be written as

u(r) = Lrect (l) e (3.52)

w() = = / Bt it df (3.53)
VB J -5

where b is a factor that determines the slope of the chirp signal, measured in
radian/secz. For example, if an instantaneous frequency is swept over the
band B during the signal duration T, the absolute value of k is given as
B
|b] = T (3.54)
The matched filter response can be obtained by correlating a signal with its
Doppler-shifted and time-translated version: a function that describes the
interplay between measurement ambiguity and target resolution. If the range
bin width were considered the same as nominal range resolution, the
matched filter response would determine the shape and size of a resolution
cell. If y(z, f) represents a two-dimensional correlation function in delay,
7 and Doppler shift, f,; and be defined by

defi) = [ wlow (o= ey (3.53)
where p*(z) is the complex conjugate of p(¢). By this definition the response
of the processed chirp can be investigated. The function of actual interest is
the real envelope of the response, which is simply |y(t, f#)|- In the literature,
x(t, f4) has been called by different names, such as an uncertainty function, a
correlation function, or an ambiguity function. In this book, it is simply called
the pulse compression filter function having a response |x(t,fs)|. (See
Appendix 3A for the derivation of the ambiguity function of a chirp signal
using the non-normalized approach.)
By changing the signs of t and f; in (3.55), one observes that

1=, ~fa) = A" (v, fa) e (3.56)
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As earlier indicated, the quantity of interest is the envelope of the function.
Since

Ix(v.fa)| = %" (t.fa)], by symmetry

(= —fa)| = Ix(v.fa)] (3.57)

So, upon substitution of (3.52) in (3.55), the two-dimensional pulse compres-
sion filter function is written as

1 o0 1= il 27
rect | | e/ -] pi2nfut gy (3.38)
V Ts /—oo |: TS :|

For positive T, this expression becomes

x(t.fa) =

Ts

x(t.fa) = o/ /2T e2mi(bt+1a) gy (3.59)
s -5

By factoring out the exponent term e/™**/47 the integral can be readily
solved as

Mt 0<t<T, (3.60a)

sinn T L) (bt + f2)
Hwta) = <1 - ;> T, ( <— iT\()br +f, :
§ s T, d)

Or
% (T, fa) = /™ (1 - %) sin ¢ [RTS (1 - %) (bt +f;,)} 0<t<T, (3.60b)

Similarly, an expression can be written for negative t. In this case, the limits
of integration will change to (t + T,/2, —T}/2). Although the expression in
(3.58) can be solved with the new limits, instead the relation in (3.57) is used
with some minor modification, specifically

1t fa) = {e.mﬂ/f(l IT\) slnC[TEOT( —l%‘) (bt +fd)} IEI § ;: (3.01)

Alternatively, in view of (3.54),

(T ) = {ejn_/;;r(l \Tl) smc{ngT (1 — ‘%) (% +f_31)} m E ;j (3.62)

The pulse compression filter’s response is simply the amplitude (magnitude)
of (3.62):

Ix( ,fdl—’( )SIHC{“BY;)O H)( M)” mf; (3.63)
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Figure 3.10 Pulse compression filter response

This expression shows the time-bandwidth (BT) product of the chirp signal.
Note also that this time-bandwidth product is the pulse compression ratio. A
plot of (3.63) gives the waveform of the matched filter, shown in figure 3.10,
for a 50kHz bandwidth and time extent of 0.1 ms. As seen in the figure,
sidelobes or subsidiary ridges are of diminishing amplitudes (magnitudes) and
surround the mainlobe, main ridge, of the filter’s response, which is consistent
with [sin (x)/x|, or [sinc(x)|, profile. The compressed pulse is of effective
duration of t with time extent of the order of 27, which is consistent with
the intuitive description given earlier in this section of the filter output.

A quick look at (3.63) reveals that the term (1 — |t|/T}) only attempts to
slowly decrease the amplitude as one moves away from the Doppler axis, f,,.
In fact, its effects near the origin, both proceeding and within the sinc
function, are negligible. This explains the effect of the finite signal duration
and the incomplete overlap between rect(t/Ty) and rect(r — t/(Ty).

In essence, the relative delay t shortens the effective signal duration from

Ts to (Ts - |TD
Neglecting the (1 — |t|/T) term in (3.63), simply turn
i T Ja
lx (T, fa)lo= mnc[chTS(TY + B)] (3.64)

which displays a symmetrical property in T and f;. It is well known from the
sin ¢ property (that is, lin% sin(x)/x = 1) that the peak of (3.64) occurs when
T Ja .
7. B

It can be inferred from (3.64) and (3.65), without loss of generality, that the
matched-filter response in delay t for a Doppler mismatch f,, will be the

0 (3.65)
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response for zero Doppler translated in t by 19 = —f;T,/B. Similarly, the
matched-filter response in Doppler f; for a delay mismatch 1y will be a
response on the f;-axis for zero Doppler translated in f; by fy0 = —Bt/Ts.
This demonstrates the coupling between range and range rate, which is the
equivalence of translations between t and f,,.

Putting f; = 0 in (3.64),

lx(t,fa)|, = sin ¢[nBr] (3.66)

which gives the half-power width of the central peak of the order of
1/B. Thus the peak output is compressed from the original duration of T
to 1/B, which is a compression factor of BT, the time-bandwidth product of
the chirp signal. Conversely, by letting T = 0, the half-bandwidth in Doppler
is 1/T; and the band compression factor is B/(1/T), which again equals to
the time-bandwidth product.

The reader might wonder if there is a lower limit of time-bandwidth
product. Gabor (1946) gave this lower limit as

BT, > (3.67)

The exact value of the time-bandwidth product is of no particular interest, as
it depends on the definition of the signal duration and bandwidth. As noted
by Rihaczek (1969), the important point is that the time-bandwidth product
of a signal has a minimum value of the order of unity.

3.2.3 Repetition of pulsed signals

A way of generating signals with large time-bandwidth products is to repeat
the input waveform. Signal repetition can be contiguous, or gaps can be left
between pulses called pulse trains or pulse bursts. Like (3.52), let us allow a
signal with a complex envelope p.(7) to be repeated coherently so that its
carrier phase remains continuous from one segment to the next. Following
(3.55), the signal’s ambiguity function may be written as

N 1 N—
A =) 3 / et = T (= mT = )ePtdr— (3.68)

Note that T in this case is the repetition period (see Figure 3.11).

JL/L MB
'Ts: 4‘[:
e 1

Figure 3.11 Pulse train
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The expression in (3.68) can be rewritten as

1 N—1N-1 ) 00 o
Hefa) =3 3 0 T [ o= = T = )Py
n=0 m=0 0 (369)
Rt
= N e/ wan Xe [T - (l’l - Wl) Tafd]

0

Il
o

n

N

G

where x (1, 1) = [7 R (Wit — t)e/*Yalds is the ambiguity function of the
component signal. Without further complication, it can be shown that (3.69)
follows the same law as the autocorrelation function of a train of N signals.
So, a solution to (3.69) is written as

1 N—-1

sinfafa(N = 1PDT) o
= (1t —pT : e/Ma(N=14p)T (3 7
1(t.fa) Np:_%N_l)xL(r PTG (3.70)

where its envelope is the sum of the envelopes of the individual parts. So, the
overall magnitude of the pulse-train ambiguity function is

1 N—1 . N T
sl =5 > (- A )T
p=—(N-1)

(3.71)

Hence, the gross structure is determined by the repetition of the ambiguity
surface of the component pulse |y.(t, f7)| with its magnitude decreasing by
(I — |p|/N). By assuming that the ambiguity function of an individual pulse
has a similar simple shape, then, from (3.71), one can deduce that

o the highest peak occurs when the sine term has a value of one;

e a dependence of the mainlobe at each p surface as (1 — |p|/N);

e any sampling in the Doppler domain occurs in accordance with
sin[rnfy(N — |p|)T]/sinnf; T, which would have peaks at f; = k/T, where
k is an integer and with its ambiguity spaced out at 1/T being the repeti-
tion frequency;

e the half-power (—3dB) width in Doppler is of the order of 1/NT, the
inverse duration of the pulse train.

A plot of (3.71) of the uniform pulse train gives the waveform of the matched
filter shown in Figure 3.12 for 1 ms period, N = 5, and 50 kHz bandwidth.

One can observe, from Figures 3.11 and 3.12, that pulse repetition does
not affect close-target resolvability in range, which is the same for a single
pulse and a train of pulses. Close-target resolvability in range rate is
improved with pulse repetition because the sampling in the Doppler domain
narrows the mainlobe width in Doppler. A practical implication of using pulse
repetition is that periodic signal repetition increases the time-bandwidth
product at the expense of introducing pronounced range ambiguities in
delay and Doppler.
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Figure 3.12 Pulse-train compression filter response, 7B = 50, B = 50 kHz

3.2.4 Sidelobes suppression

The pulse compression responses for a single pulse and a train of pulses have
shown that sidelobes are well pronounced in range (delay) domain. Sidelobes
from any range bin are likely to appear as targets in adjacent bins. The
response sidelobes may introduce significant interference even if there are
relatively few targets. Also, radiation from the ‘hot’ ground may enter the
antenna by means of the sidelobes. Consequently, the suppression of side-
lobes is critical in applications expecting high target densities, extended
clutter, or targets of varying reflectivity.

Sidelobes are often suppressed to an acceptable level by tapering the
matched filter by weighting the transmitted waveform, the matched filter,
or both in either frequency or amplitude. To simultaneously apply weighting
at both the frequency and amplitude without loss of signal-to-noise ratio
(S/N) is rather difficult in practice.

If Doppler spread of the targets is negligible, spectrum weighting (i.e.
weighting applied only to the matched filter) suppresses the range sidelobes
and hence the interference, at the cost of a small broadening of the response
mainlobe. A similar advantage might be gained for more complicated target
distributions. Note that spectrum weighting is the same as if a tapered
spectrum has been transmitted, and true target distribution is obtained
only if the range rate is constant over the entire extrapolation interval.

To suppress the Doppler sidelobes, it may be convenient to use a refer-
ence function with tapered amplitude in the correlation process, rather than
to transmit the amplitude-weighted signal.

In theory, complete suppression is achievable only with signals of infinite
extent in time and frequency. There are several types of spectral weighting
functions, namely Dolph—Chebyschev, Taylor, Hamming, and Blackman—
Harris. These weighting functions have been discussed in Chapter 1,
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Table 3.1 Weighting function data (Nathanson 1969)

Weighting function Peak sidelobe Pulse widening Mismatch loss (dB)
level (dB)

Dolph—Chebyschev —40.0 1.35 —

Taylor (N = 6) —40.0 1.41 -1.2

Hamming —42.8 1.47 —1.34

section 1.33. Table 3.1 shows comparative values of spectral weighting
functions for a linear frequency-modulated signal with a rectangular spec-
trum. The Dolph—Chebyschev weighting is theoretical, with all sides equal.
However, a practical approximation to the Dolph—Chebyschev is the Taylor
weighting, with the number of terms, N = 6, meaning that the peaks of the
first five sidelobes, equivalent to (N — 1), are equal; the sides fall off at 6dB
per octave. Weighting the received-signal spectrum to lower the sidelobes
increases the mainlobe width, but reduces the peak (S/N) in comparison to the
unweighted pulse compressed spectrum. If the weighting is not matched with
the received-signal spectrum, a mismatch loss occurs, as shown in column 4 of
Table 3.1. For example, take the case of the Hamming, reducing the sidelobes
to a level of —42.8 dB of weighting results in loss in peak of 1.34dB.

For a treatment of specific types of weighting functions, as well as some
ancillary topics on sidelobe suppression, the reader is referred to Cook and
Bernfield (1967).

3.2.5 Resolution

The ambiguity response, or surface |x(t, f7)|, plays a central part in the
analysis of resolution as well as estimating the limiting values of measure-
ment precision. Target resolution can be analysed from the superposition of
the ambiguity surfaces associated with all targets within the radar beam.
Each ambiguity surface is scaled in height in accordance with the target
cross-section, and it is centred at the proper delay and Doppler coordinates.
As discussed by Siebert (1956) and Woodward (1953), the total volume
under the ambiguity surface is invariant to, or independent of, the choice
of signal. Specifically,

/ / X (5. fa) Pelrdfy = 1x(0,0)P = 1 (3.72)

This expression means that there are limits on achievable resolution perform-
ance in range and range rate. The practical implication of this expression is
profound. For example, if one wants to separate closely spaced targets and for
this reason chooses a waveform having an ambiguity function with a narrow
mainlobe, the bulk of the fixed volume under |y(, fd)|2 will appear elsewhere in
the T — f; plane. There, it might introduce self-clutter, which might mask targets
that are relatively far removed in range and range rate Rihaczek (1969).
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Of course, the Doppler filtering offered by a DFT of N pulses could be
used to separate moving targets from zero-Doppler clutter.

The width of the mainlobe of |x(t, f;)| is a measure for close-target
separability, or nominal resolution, in t and f, while the sidelobes
and other low-level parts of the surface give an indication of the problem
of self-clutter and target masking by mutual interference. Resolution
in range domain corresponds to resolution in the time (range-delay) domain.
For example, consider the two equal target-sinc responses shown in
Figure 3.13. Each response has a bandwidth B. At is the separation time,
where the peak of one response falls directly over the null of the second. The
dotted segment over which the separation time At is the sum of the
two responses.

In practice, closely spaced targets or target scatterers will appear to merge
and separate as the range separation changes on the order of A/2. This half-
wavelength criterion is extremely useful in estimating the resolution capability
of radar. The usefulness of this criterion is demonstrated as follows.

Consider two targets with the same range but a differential range rate of
AR, the differential changes the differential range by TAR, where T is the
signal duration. (Note that 7' = T for a single-pulse transmission.) By setting
the differential range to half-wavelength, that is TAR = 1/2, the limiting close-
target resolvability, or nominal range-rate resolution, can be expressed by

. A
ARmin = ﬁ
In similar vein, if the two targets move with differential range acceleration
AR, the range change during duration T will be 1/2T?AR. If the range
change is equated to half-wavelength, then
1 S
~T?AR == 3.74
From this expression, the limiting close-target resolvability, or nominal
resolution in range acceleration, is

(3.73)

A
T2
For a range measurement on a stationary target, the resolution is the width
in time of the mainlobe of the matched-filter response:

ARpin = (3.75)

A target is considered stationary if its motion is negligible over the signal
duration. Similarly, the radar deals with a constant-range-rate target not if
the range rate is necessarily constant but if the effects of range acceleration
are negligible over the signal duration. Any target that cannot be resolved by
the radar, be it in range, range rate, or another parameter, is considered a
point target (Rihaczek 1969).
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1/B

Figure 3.13 Two targets of equal matched-filter responses resolved to Rayleigh criteria

The bin width in Doppler is simply the half-power width of the matched-
filter response in Doppler:

Afy = % (3.77)

Angular resolution involves knowledge of radar beamwidth and how the
radar aperture, D, is illuminated. The nominal angular resolution is given by

A
Ap=7 D> (3.78)

This expression is often called the Rayleigh resolution.

More fundamentally, equations (3.75) and (3.76) refer to the Rayleigh
resolution for signals that are windowed by rectangular weighting functions
of spectral width B and time duration 7, respectively. Windowing and weight-
ing are synonymous in digital signal processing: filter weighting is called
windowing, already discussed in Chapter 1. Equations (3.76) and (3.77) are
roughly correct for any well-matched, moderately weighted signals.

Example 3.3 A pulse width of 1 psis to be transmitted. Two moving targets
of similar range are to be resolved. If the transmitter’s duty cycle is 0.1, at
0.1 m wavelength, estimate the nominal resolutions in range rate and in
range acceleration. If the horizontal and vertical dimensions of the antenna
aperture are 3m and 0.5 m respectively, calculate the azimuth and elevation
beamwidths of the antenna.

Solution
Duty cycle d, is the ratio of the pulse width to the transmitting period, or the
product of the pulse width and pulse repetition frequency (PRF); that is

dy = —

T, (3.79)
=1tPRF
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Given that 7= T, = 1 us and A = 0.1 m, using (3.79) the duty cycle yields

T
dy=—==0.1
T

Using (3.73) and (3.75) the nominal resolutions are found as
ARpin = 5 km/s (in range rate)
AR, = 10° m/ s2 (in acceleration)

Using (3.78), the beamwidths are:

Ad = % =0.033rad (1.91°) (azimuth)
0.1 .
Ad = 05 = 0.2rad (11.5°) (elevation)

3.2.6 Measurement accuracy for stationary and moving targets

Radar performance on a stationary target depends on the signal bandwidth.
With Rice (1944) and Rihaczek (1969), and upon assumption of Gaussian
noise, radar performance precision in the following domains is obtained:

c

In range: o = (m) (3.80)
28,3
I8
In Doppler: o = (m/s) (3.81)
2Ty /8
A
In angle: o (rad) (3.82)

6 = S
2,/§

where

o; = standard deviation of the variable i of interest
¢ = speed of light (3 x 108 m/s?)
(S/N) = radar signal-to-noise ratio (linear unit).

However, when there is a coupling between range and range rate, for
example when the target is moving and/or manoeuvring, the limiting values
of measurement precision can be expressed as:

c 1
= (m)
23\/§ [ _ (ﬁ)z

In range: og

(3.83)
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2T\/7 /| _ () )
TCD\/, (rad) (3.85)

where a,, is the signal modulation factor

In Doppler: o,

(3.84)

In angle: oy

3.2.7 Effects of pulse compression on Doppler radars

Pulse compression for low- and medium-pulsed Doppler radars is subject to
code sensitivity when there is a Doppler shift across the range bins. As such,
the compression must be preceded by some attempt to compensate for the
Doppler shift in order to minimize this effect. A constant Doppler shift
produces an unwanted linear phase progression over the code length. A
compensation scheme consists of rotating (or derotating as it is sometimes
called) each complex range (in-phase, quadrature 1/Q pair), by linearly
changing phase angle of a range sweep. In airborne-based radar, the derotating
rate in the range cell is calculated using Morris (1988)

do kpVa

o= 3601 5

(degree/range-cell) (3.86)

where

V, = radar carrying platform’s velocity (m/s)
k, = radar platform dependent factor: typically 1.0 <k, < 1.5.

In the frequency domain, however, there is a Doppler ambiguity folding
analogous to range ambiguity folding in the time domain. The maximum
unambiguous Doppler, f;max, 1S

Jamax = PRF (3.87)

which corresponds to a maximum unambiguous relative target velocity
(Vo + Vimax). In view of (3.46), the maximum unambiguous relative target
velocity is given by

A

Example 3.4 To have a feel for this compensation process, suppose that
A=30cm, T=1ps, V, =500m/s, and PRF = 10 kHz. If the mean value of
k, is taken, i.e. k, = 1.25, calculate (i) the compensation velocity, (ii) the
derotation rate required and (iii) the maximum unambiguous target velocity.
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Solution

(i) Vcomp = kp Va = 650 (m/s)

(i1) derotation rate, dd/dr = 7.5°/range-cell
This implies that each range bin would be rotated (or derotated) 7.5 ° more
than the previous range bin. The compensation velocity and rotation
process is often performed after the null pulse during data processing.

(i) V, = Vi 4+ Vimax = 1.5km/s.

Modern radars can detect the Doppler shift of N consecutively returning
pulses as well as their potentially ambiguous range. For example, the radar
assesses Doppler shift by collecting one complex sample; that is, each sample
from the 7 and Q channels of the receiver from each of N received pulses. The
radar in turn uses the N consecutive samples to form the complex fast
Fourier transform (FFT). Of course, the sampling rate is PRF, or the inverse
of the time interval between pulses. Amplitude detection (that is, magnitude
of the I/Q phasor) is frequently used to determine the presence of a target in
low-PRF search.

The use of pulse compression in the high-PRF mode of modern pulsed
Doppler radar systems is obviated by duty cycle constraints and the high
average powers developed. As a result, pulse compression increases the
range blind zones. Range blind zones are zones where target returns cannot
be received when transmitting. In practice, the receiver is off for one or two
extra range gate positions after the transmitter pulse. A simple rule of thumb
is used to detect the possible occurrence of the range-blind zones in a
particular radar transmission. The maximum fraction d, of the interpulse
interval available for target reception may be expressed by

dy=1-d, (3.89)

where d, is the transmitter duty cycle, as defined by (3.79). The maximum
fraction is also called the clear region duty cycle.

For example, consider a pulse width of 1 ps and PRF of 10kHz. d, = 0.1
and d, = 0.99. Clearly, with this example, blind zones are not a major
consideration. However, if a transmitter pulse t of say 13 ps has been
compressed to an effective pulse width of 1 ps, the maximum fraction d,
becomes 0.87. Range blind zones, in this case, are a major concern.

3.3 Summary

This chapter has looked at the antenna physics: using a simple dipole, or
doublet, to formulate expressions that generate its radiation patterns. The
influence of ground termination on vertical monopole antennas was also
discussed.
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Radiation fields were categorized into regions: reactive near-field, radiating
near-field and radiating far-field, relative to the radiation source.

The principle of pulse compression which allows recognition of closely
spaced targets was studied. Since the matched-filter response is of sin ¢
shape, slowly decreasing sidelobes are present. A suppression technique
that reduces sidelobes was discussed. The chapter further studied combined
resolution, or close-target resolvability, in range and range rate in terms of
the complete matched-filter response in delay and Doppler. The analysis
presupposes resolution potential inherent in the radar.

Appendix 3A  Ambiguity function of a chirp pulse

We consider a linearly swept frequency modulation pulse (chirp). The
frequency is allowed to increase or decrease linearly over the pulse duration,
T, so that the time phase changes quadratically. So, with the amplitude
constant over T, we write

eﬂ”z, 0<t<T

k(1) = 0, elsewhere (A3.1)
The ambiguity function of (A3.1) is
T Py ~
x(tfa) = / RO (¢ — )™ dt (A3.2)

which, of course, is the combined correlation function of the pulse, where
w (r) is the complex conjugate of p(¢z). Expanding (A3.2) and collecting
terms, we have

T 2
x(t.fa) =/ I[P b= +2nfat] g

T
_ ot? / ol gy (A3.3)

b7 ) ] )
— e~ Vb=l T _ ,=2jlbr—nfatlt
2j[br—nfat]

The exponential terms in the curly bracket {.} can be expressed in trigono-
metric terms; that is, cos(.) +jsin(.). The magnitude of the solution to
(A3.3) is the magnitude of the ambiguity function of the chirp pulse. After
some algebraic manipulation, we obtain

sin(bt — nfy) (L) T
bt — nfy

(. fa)l =

‘ 0<t<T (A3.4)
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The same result is obtained for — 7T < t < 0. So,

_ sin(bt — nfy) ('7—Tlt‘) T
(v fa)l p— < T (A3.5)

Problems

1. Estimate the radar range Rayleigh resolution provided by a monotone
pulse if its spectrum can be approximated by a rectangular spectrum of
250 kHz width.

2. A linecar FM signal is expressed in terms of an arbitrary real envelope a(r)
as (7)) = a(t)ef“""z, calculate its spectrum.

3. Since the chirp signal measures only extrapolated range, can targets that
have the same extrapolated range be resolved?

4. The coupling between range and range rate for a chirp signal causes a loss
in resolvability for targets that, at the instant of signal reflection, have
certain combinations of range and range rate. Can targets whose differ-
ential range and range rates falling in the mainlobe of the ambiguity
function be resolved from each other? Under what conditions are they
resolvable?

5. A police radar operating at 10 GHz observes a Doppler shift of 1.75kHz
when the radar is pointed at an oncoming car. Estimate the radial speed
of the car towards the radar.

6. A radar operates in a multiple-target environment. We observe that the
interfering targets are moving at a velocity such that there is a minimum
Doppler shift of f,. Our objective is to have a signal such that
x(t, fa) =2 0, | f4| > fo. Design a transmitting signal that could accomplish
this task.

7. Show that the radiation resistance of a dipole whose length is 31/2 with a
sinusoidal current distribution is equal to 105.3 Q.

8. A half-wavelength dipole radiates a time-averaged power of 159.75W in
free space at a frequency of 25 MHz. Find the electric and magnetic field
strengths when viewed at a radial distance 250 m from the source, elevation
and azimuth angles of 85° and 30° respectively. The observation point is
considered to be in the far-field region.
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The properties of a single radiator have been discussed in Chapter 3. While it
is possible to build an antenna in somewhat physically required constraints
and make it look like an antenna of a different shape, it is difficult to achieve
uniform current distribution and radiation pattern as well as steering the
antenna in any preferred directions with such an arrangement. But, if one
uses a group of similar radiators, or antennas, to produce more than a single
radiating source, it is possible to obtain an antenna that has a higher gain
and a radiation pattern that can be steered in any preferred directions. The
collection of radiators, or antennas, is generally referred to as an array.
The fields radiated from the individual antennas composing the array can
add in some preferred direction and cancel in other directions.

The aim of this chapter is to discuss the basic theory of a linear array and
show how the antenna array can be steered in a preferred direction, shape its
radiation pattern and even feed its elements parasitically. The chapter also
examines the role power and time budgets play in moulding antenna design
processes.

4.1 Planar array

The antenna array radiation pattern can be derived from basic relations by
considering the propagation of electric field from a set of radiating elements.
The works of Schekunoff (1943) and Stratton (1941) provide the back-
ground material applicable to the linear array discussed in this section.
Consider N radiating elements, equally spaced a distance d apart, each ele-
ment radiating equal amplitude ag, but with a phase progression difference
between adjacent elements, as shown in Figure 4.1. The phase difference in
adjacent elements may be expressed by

Ad)zZn%sinG (4.1

where 0 is the look angle; that is, angle taken of the incoming wave. To
accommodate for the progressive beam scanning effect, a phase progression
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Figure 4.1 Geometry of a linear array antenna: (a) a linear array configuration; (b) line

representation of radiators

36 between adjacent elements is introduced. The total phase difference of the
radiating fields from the adjacent elements may be expressed as

\|/:A¢+88:2n%sin6+66 (4.2)

The outputs E; of all the elements are summed via lines of equal length to
give the sum output E, as in Figure 4.1(a). If source 1 is taken as the phase
centre so that the field from source 2 is advanced by \, source 3 is advanced
by 2y, and progressively onwards until the source N is advanced by
(N — 1)\, then the sum output E can be written as a geometric series:

E= ao(l +e~f\“+ef2"’+~~+e"<N*‘)"’> (4.3)
For brevity, ag = 1. Multiply (4.3) by e/¥ and by simple geometry,
E@Nj =q (ejw + ej2\|/ + eﬂ‘if + -4 ejN\|/) (44)

Subtracting (4.4) from (4.3) and dividing by (1 — e/V),

o ]
T el A [e%w ~ eﬂ (4.5)
Rearranging (4.5),
E= {7 % (4.6a)
sin (%)
noting that e7* — ¢/¥ = —2jsin x. Two terms emerge from (4.6a): the term {.}

in curly brackets is the phase of the field shifted (N — 1)\{//2; and the second
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term [ ] represents an amplitude factor or simply array factor, f,(\r).
Specifically,

in (¥
£l = Ssm(é; (4.6b)

The array field strength is the magnitude of (4.6), and noting that \ is
directly related to the physical dimension of the antenna in the form

o)
[E(0)] = Sin@)

Note that this expression represents voltage distribution. It can be converted
to power, as the array radiation pattern, or antenna gain G(0), by the
normalized square of the amplitude:

(4.7

sin(N{Z%sin 0 + 3})
sin (% sin 6 + %)

CIE@)P [sin(N{sin6 +21)]

G(0) = = _
0) N? [Nsin(%sin6+5—f)

(4.8)

A normalized radiation pattern of the array for a uniformly illuminated
six-element antenna array, with the inter-element distance of half-wave and
two-phase progression error of 0° and 0.2°, is shown in Figure 4.2. The array
field patterns have a sidelobe structure that decreases monotonically from
the main beam. The effect of the phase progression error is to shift the
response to the left (if 60 = positive), or right (if 66 = negative).

IE(e)/NII N=6
d=0.51

86=0

-90 -60 -30 0 30 60 90
0 (deg)

Figure 4.2 Normalized electric field response of a linear array antenna with two phase
progressions of 0 and 0.2°
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In essence, the array pattern could be defined as the full elevation pattern
of a broadside array that substitutes (imaginary) isotropic radiators in place
of the elements actually used. The broadside of the array is the direction in
which maximum radiation is almost perpendicular to the plane (line) of the
array.

When directive elements are used, the resultant radiation pattern is
expressed as

sin (N {&sin 6 + 2})]’

G(0) =G;(0) =
®) ®) Nsin(Xsin + %)

(4.9)

where G(0;) is the individual element factor, or radiation pattern of an
individual element.

In a two-dimensional rectangular planar array, the radiation pattern may
sometimes be written as the product of the two planes that contain the
principal axes of the antennas. Following equation (4.8) and neglecting
phase progression effect for simplicity (i.e. 60 = 0), the product radiation

pattern G(9)|, ,, can be written as,
2

sin(n%4sin6,) | |sin(m%¢sin 6,,) ?

GO =

nm

(4.10)

nsin(%sin®,)| |msin(%sin6,)
where n, m = number of radiators in 6,, 0,, dimensions with spacing d,a
respectively. Note that 6,, 0,, are not necessarily the elevation, azimuth
angles normally associated with antenna beam.

An advantage of the two-dimensional array is that one can scan and
shape the beam in two directions. However this type of array tends to
have a rather complex and costly feed network.

4.1.1 Nulls

From (4.7) the array factor has nulls (zeros) whenever its numerator is zero.
Also the phase of the field will remain constant whenever £(8) has a value
but changes by 180° in the direction for which E(8) = 0; that is, in the null
direction. For instance, nulls will occur when

d . )
N{%sme+7}=o (4.11)
Again, for simplicity, put 86 = 0 to obtain
d . . .
N%smﬁ =0,+n,+2x,...,£nn  (n is an integer) (4.12)
The inquiring reader might ask what happens when the numerator and

denominator are zero? Of course, this results in zero divided by zero. But,
L’Hospital’s rule allows for separate differentiation of numerator and
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denominator. By so doing it can be demonstrated that the elements’ output
|E| is maximum when

%sin@:ip (4.13)
All the maxima given by (4.13) will have the same value and will be equal to
N. The first maximum (called the main beam maximum) will occur when
sin @ = 0; that is, when p = 0. The other maxima define the grating lobes;
that is, when p > 1. As expressed by (4.13), the visible range 0 is real since the
maximum attainable value of sin 0 is unity. Given that the first grating lobe
occurs at p = 1, the lowest inter-element spacing at which a grating lobe will
appear works out to be

= 1 (4.14)
Thus, the inter-element spacing should never be allowed to reach the value of
one wavelength. Therefore, one could deduce that to avoid grating lobe
formation
d

. <1 (4.15)
The case typified by (4.15) would have only one principal maximum, which
is formed in the direction orthogonal to the axis of the array. Where this
occurred is called the broadside array. As the inter-element spacing d
increases to one wavelength A, (i.e. d — A) grating lobes begin to appear at
the endfire direction at angle 6 = 4+n/2, while the main beam is formed
broadside. An endfire array has its maximum radiation parallel to the array.

As seen in Figure 4.2, secondary maxima occur at the sidelobes. The
peaks of the sidelobes can be computed by differentiating E(8) in (4.6a)
with respect to | and setting the differential to zero:

d};—\(lf)) = Nsin (g) cos (Nqu) — sin (NT¢> cos (%) =0 (4.16)

Rearranging in terms of N to have

sin (NTw) cos (%) tan (NT‘V)
N = = (4.17)
cos (NTW) sin (%) tan (%)
This expression has its first solution at

Ny = 2.8606m (4.18)

By substituting (4.18) in (4.7), the sidelobe ratio for the first sidelobe is
—12.06 dB. The subsequent sidelobe ratios can be estimated. The envelope
of the sidelobe levels follows the (1/\y) law. In practice, the sidelobe levels of
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a uniformly excited array are unacceptably high and would have to be
suppressed. A technique for suppressing sidelobes has been discussed in
Chapter 3, section 3.2.4.

4.1.2 Beamwidth

The array beamwidth, Bgw, can be estimated by finding out the half-power
(—=3dB) points of the main beam. This is done by equating the amplitude
factor of all the elements in (4.6) to N /v/2:

. (N
sin (T‘") N
=— (4.19)
sin (%) V2
The solution to (4.19) was given by Hansen (1990), within 1 per cent error
margin, as
. (Opw) _ 0.4429)

providing that the number of array elements N is greater than 7. Rewrite
(4.20) in terms of half-angle of two incoming signals 0; and 6, as

. . (OBW> 0.4429
sinf, =sin| — | =

2 Nd

6, — i (R _ 044290
1= 2 ) Nd

(4.21)

Upon an application of small angle approximation, it can be shown that the

beamwidth is

0.8858%  0.8858\
Nd D

noting that for small 0, sin(0) ~ 0 and D is the array aperture. Clearly,

(4.22) shows that as the physical length of the array increases, the array
beamwidth decreases for a given propagation wavelength.

Opw = 0, — 0 =

(4.22)

4.2 Phase shifter

The effect of phase shifting on the array radiation pattern can be investi-
gated via (4.8). From (4.8), it is evident that the maximum of the radiation
pattern would occur when sin 6 = —386/2 corresponding to the peak of the
main beam. So,

2nd .

ES — = sin 0o (4.23)
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where 6) serves two definitions. First, the angle the main beam would be
positioned to attain the peak if the phase shift 86 had been inserted at each of
the elements. Second, the angle at which the main beam is steered (scanned)
off the broadside direction of the antenna array, resulting in a process called
beam steering. Equation (4.23) has been derived for a one-dimensional array
antenna. It could be extended to a two-dimensional array where the radiat-
ing elements are located on a flat surface and each element is equipped with a
phase shifter. By attaching n phase shifters to the output of each element, the
signal generated by a single beam can be converted to an n-beam antenna.
The n beams may be fixed in space, steered independently or as a group. The
beams could be generated on the transmitter, or receiver, end of the antenna
system. In practice, it is more convenient to generate multiple beams on the
receiver only while transmitting a wide radiation pattern that gives a total
coverage of the multiple receiving beams.

For a given beam position in azimuth and elevation plane, the phase shift
can be computed by a digital computer and electronically inserted in each
element to point the antenna in a desired spatial-beam position. In practice,
phase shifters often operate with modulo 2n to conserve size and cost and are
introduced into the feed path of each element so that the phase shift can be
controlled by externally generated signal. The question is how to generate
modulo 2n?

Modulo 2 is attained by either switching in a line length, or by changing
the apparent impedance. If the beam is scanned as a function of time, these
phase shifts also change as a function of time. A constant rate of change of
phase with time is equivalent to a constant frequency. Thus a frequency
difference at adjacent elements results in a scanning beam.

Increasing the array line lengths that must be switched in and out, a time
delay steering is introduced. This process introduces path difference, which is
converted to time delay difference:

_dsin9
¢

At

(4.24)

As a result, the time delay introduces phase shift. Often both time delay units
and phase shifters are employed. In such a case, the phase shifter setting
corrects the phase shift introduced by the time delay units.

In general, if N phase shifters were inserted in a series-fed array, the signal
would suffer insertion loss amounting to N times that of a single-phase
shifter loss. For a two-dimensional antenna consisting N x N clements,
with phase steered in both directions, would require N* phase shifters. This
is the common form of phase array radar antenna and the most often
thought of when the term phase array is used. If, however, the insertion
were for a parallel-fed array, the insertion loss would amount to that of a
single-phase shifter loss since the phase shifter is effectively introduced once.
In order to steer the array beam in the desired direction, a single control
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signal is needed for a series-fed array to steer the beam while a separate
control signal is needed for each of the N phase shifters in the parallel-fed
array.

The prime benefit of phase array radar is its reliability, but this degrades
gracefully. With it, failures can be tolerated, particularly in terms of antenna
elements, providing there is no weak link in the failure chain.

The next section is intended to investigate the effect of beam steering or
scanning on linear array antenna.

4.3 Beam steering

By substituting (4.23) in (4.8), a beam steered at 6, will have a normalized
radiation pattern represented by

_ sin®(Nm ¢ [sin 6 — sin 6y])
~ N2sin?(n< [sin O — sin 6y))

G(9) (4.25)
The maximum of the radiation pattern occurs when sin6 = sin 0,
noting that by L’Hospital’s rule, lim(sin x/x) = 1. A plot of (4.25) is shown
in Figure 4.3 for six-element anterﬁﬁf, with a half-wave inter-element spacing
(i.e. d = 0.5)) and scanned off the boresight by 3°.

The only difference between looking at boresight (6p = 0°) and off
boresight (6p = 3°) is that when steering is present the argument of the
function is the difference of the sines of the look and steering angles. The
effect of steering is simply to produce a shift either right (8y), or left (—6) of
the boresight with no distortion in the electric field strength, but reduced

G(0)

104 —

00=3°

0 (deg)

Figure 4.3 Radiation pattern of a linear antenna steered off boresight
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sidelobe amplitudes. Replacing the sine in the denominator of equation
(4.25) by its argument, the gain

G(0) = (S””‘>2 (4.26)

where
d. . .
u= Nnx{sme —sin 6y} (4.27)

Equation (4.26) represents the frequently quoted sinc¢ behaviour of the
antenna pattern for a linear array of radiating elements. Figure 4.4 demon-
strates the difference between using the actual (4.25) and the approximate
(4.26) power gain expressions, for a six-eclement array, d = 0.5\ and scan
angle of 5°. Both responses are very close at the mainlobe where the beam is
steered. Noticeable differences emerge at the sidelobes between the actual
and the approximate. With this approximation typified by (4.26), the half-
power beamwidth, when the spacing is half-wave, is approximately

101.8

The effect of changes in array bandwidth with changes in steering angle 6,
can further be investigated using equation (4.27). The antenna power G(0) in
(4.26) will be reduced to half its maximum value when u = +0.4429n. The

G(6)

N=6
60=3°
d =0.51

-90 -60 -30 0 30 60 90

— 0

Figure 4.4 Difference between the actual and approximate expressions in the derivation of
antenna array radiation patterns
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positive value occurs when 6 > 6, while the negative typifies the case when
0 < 6y. Equating u = £0.44297 to (4.27):

+0.4429 = N—: {sinO — sin 6y} (4.29)

Following Blickmore (1958),
sin 0 — sin 0y = sin(0 — By) cos By — [1 — cos(B — Oy)] sin By (4.30)

If the beam is near broadside, 6 is small and cos(6 — 6y) = 1, as such (4.30)
reduces to

sin B — sin 0y = sin(6 — 0y) cos Oy (4.31)

Substituting (4.31) in (4.29), the half-power beamwidth can be approximated
as

0.8858\
0 — 6y ~ Opw = N cos 0y (4.32)
This expression implies that, in the plane of steer, a change in beamwidth
with a steer angle 0, off broadside, the beamwidth increases inversely as the
cosine of the steer angle. By progressively phase shifting the array in a
programmed manner, the main beam can be moved from broadside towards
endfire (i.e. towards 0y = £mn/2). This is the principle of electronic scanning.
As noted by Skolnik (1980), the expression in (4.32) is not valid for an
antenna beam far removed from the broadside and also when energy is
radiated in the endfire direction.
It is appropriate to investigate, at this stage, the restriction on the spacing
between radiating elements in order to avoid grating lobe formation when
the main beam is steered in a direction other than the broadside.

4.4 Inter-element spacing

Following (4.13), grating lobes would appear whenever the denominator of
(4.25) is zero; that is, when

. . A
(sin® —sin 0y) = j:pg (4.33)
If the angle at which grating lobe occurs is 6, then (4.33) may be expressed as
. . A
sin B, = sin By ipa (4.34)

Given that the primary objective of an antenna array design is to avoid
grating lobes being formed, the expression in (4.34) must be greater than
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Figure 4.5 Minimum inter-element spacing required for variable beam width

unity for all values of 0y, so that 6, is outside the real space. For this, two
solutions would emerge:

sin 6 +&> 1 4.35
d

I8
|sin 6| -5 < -1 (4.36)

The condition set by (4.35) can always be met even when [sin8y| = 0. The
condition set by (4.36) is more exigent: implying that a necessary criterion
for the avoidance of grating lobes in visible space must be

d 1
—l 4.37
A S T+ [sin 6] (4:37)

This expression shows that by scanning to £90° requires a minimum element
spacing of half a wavelength. Using (4.37), a plot of inter-element spacing d,
where grating lobes will occur, is seen in Figure 4.5 for beam coverage
between 15° and 60°. The graph demonstrates that as the beam coverage
increases, the spacing between grating lobes increases for a given propaga-
tion wavelength (frequency). At shorter wavelengths (A < 10 m), wider radar
coverage can be achieved with similar inter-element spacing with little
consequence on radar performance. The narrower the beamwidth, the closer
the separation distance is to the propagation wavelength. A knowledge of
this limiting condition enables manipulation of the grating lobes.

Example 4.1 Consider an array comprising two vertical half-wave dipoles
with currents of equal magnitudes being placed with the array axis along the
east—west direction. (a) Determine the separation distance (in units of A)
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and the phase difference such that the horizontal pattern of the array has
a maximum to the east and a null at an azimuth angle of 135° measured from
the east. (b) Under what condition would the separation distance be such
that the horizontal pattern has a null in any direction while maintaining the
maximum in the preferred east direction?

Solution
Given 0 = 135° and azimuth ¢ = 0°
(a) The necessary condition for the maximum to occur in the preferred east
direction is given by (4.11) is when 6 = 90°. Specifically
d )

L 2n
For a null to occur, using (4.12) with 6 = 135°,
d .
N%sm@ =47
But N =2,
d 1
% T 2sin 135

1

-4+

V2
00 = —135°

(b) To maintain the maximum in the preferred direction

d o0 d
X——% or 66__2’“:%

However, if a null is to occur, (4.12) can be expressed as

nd . 1 d T
TsmGJrE <2nx> = :I:E
d = 1.09A

This expression indicates that there will be no null if d/A < 1.09.

4.5 Pattern multiplication

The principle of pattern multiplication states that the beam pattern of an
array is the product of the element pattern and the array factor. That is, the
total field pattern of an array of point sources can be expressed in two parts,
specifically

E = Fl X Fz (438)
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where

F| =the pattern factor of a single point source radiator, e.g. (3.27)
for a dipole

F, =the array factor for the » radiators,e.g. (4.6b) for a linear
antenna array.

Denoting the array field by E(0) and on application of the pattern multi-
plication principle, the far field of the array is expressed as

E(6)] = (4.39)

r

601 lsin (5 Bd sin ©) cos(l cos ) — cos Bl]

sin (% sin 0) sin 0

Note that 8 = 2n/A.

The expression in (4.38) is a very useful because it enables the field pattern
to be determined for arrays in which the elements may be other than point
source radiators. The principle also shows how theorems relating to array
design are independent of the particular antenna element used to form the
array.

4.6 Slot antenna array

If an aperture of any shape is made in a conducting surface, and if a
potential difference is applied between its two opposite sides, a radiating
system is obtained called a slot because of the structure of most of these
apertures, which take the form of an elongated rectangle, see Figure 4.6.

There exists two main relationships between the slot and the complemen-
tary dipole resulting from the Babinet’s principles. These principles can be
expressed as follows.

4.6.1 First property

The radiation pattern of the slot is identical to that of the complementary
dipole, as long as the E- and H-fields are interchangeable. This means that
the electric field radiated by a slot is polarized orthogonally to the electric

Conducting sheet

Figure 4.6 A geometry of a rectangular slot in a conducting surface
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AA

ol / o

Figure 4.7 Geometry of a slot on a rectangular plate

field radiated by the complementary dipole. So for a thin slot, it is possible to

state by the application of the expression (3.26) in Chapter 3 for a dipole that

the magnetic field radiated is of the form

cos(p/cos0) — cos p/
sin 0

H = H, (4.40)
where H represents the magnetic force induced across the narrow slot of
aperture, /, see Figure 4.7. AA and BB are the edges of the conducting sheet,
w is the width of the narrow aperture, and a and b are the ground plane
dimensions.

If the total number of dipoles in the array is N + 1, then the separation
between dipoles is

/

d =5 (4.41)

The magnetic field radiated by the array in the far field may be expressed as

H=H, ]\i cos(NPd cos0) — cos(NBd)

pe (4.42)

n=1

Because of the edges, there may be an appreciative effect, in the form of
‘ripple’ in the radiation pattern. To suppress the radiation from one edge of
the plate, a finite sheet with slots is bent around a cylinder, thereby creating
an omnidirectional pattern in the horizontal plane, as in Figure 4.8.

The slot and the dipole are an example of a pair of complementary
antennas. By Drabowitch and Ancona (1988), the complementary property
has an important consequence: unlike the dipole, the slot is omnidirectional
in the E-plane and directive in the H-plane. This is the reason why, when



Power and time budgets 101

Figure 4.8 Geometry of a cylindrically bent slot array

aiming for directivity in one plane or the other, solutions based on dipoles or
slots are generally adopted.

4.6.2 Second property

The impedance Z; of the dipole is related to the impedance Z; of the
complementary slot by

n2
ZyxZs= 70 (4.43)
where 1, is characteristic impedance of free space, which equals 120w (2). It
can be concluded from (4.43), for example, that if the impedance of a very
thin half-wave slot is resistive, its impedance can be calculated approxi-
mately from (3.36):
(120m)* (120m)*

= = = 485. 4.44
T IX30Ci(m)  dx 7304 8 [t (4.44)

Generally, a slot antenna will radiate in two half-spaces defined by the
conducting surface. However, if only one half-space is to be irradiated, the
slot must be screened on the opposite side, effectively turning it into a cavity.

Slot antennas have wide applications in communications and defence
industries because of low-profile conformal design. For example, slot
antennas have been used for the following:

e For high-power (television) broadcasting transmitters as vertical collinear
arrays. A collinear array is formed when the radiators are stacked
vertically end to end with centres approximately equidistant apart.

e As radiating elements in aircraft where the vehicle skin acts as the con-
ducting plane. To ensure directionality, the slot arrays are backed with a
second conducting plane to form a plate antenna.

e As antennas providing omnidirectional coverage when wrapped around
missiles, rockets and satellites.

4.7 Power and time budgets

Budgets play an important factor in moulding design processes; they set the
bounds of design and operation of the radar. It is important to remember
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that budgets are not specifications, they only represent an allocation inher-
ent to radar design and operation.

The power budget is bound by the design constraint of the main supply
power, its efficiency and utilization by the radar. The time budget determines
the number of simultaneous beams. Both time and power budgets define how
well the radar can fulfil its functions under strenuous operating conditions.

Another important budget constraint is processing constraint, which is
bound in terms of available power and how many targets can be tracked at
any given time.

As an illustration of how power, time and processing budgets are esti-
mated, consider a radar system in volume search mode. For this mode, the
average power requirement relative to the transmitter average power is

T
Pav = npanfd— (445)

where

n, = no of pulses per scan
n, = total number of beams
d, = transmitter duty cycle
T = pulse width

Ty = frame or scan time.

Using the values in the Table 4.1 and substituting them in (4.45), it is found
that 24 per cent of radar energy would be required for volume search: a
relative power requirement of 0.24 is demanded.

The proportion of time spent, #,, in a particular mode is approximately

o PRI_ nph,
O T, T T,PRF

(4.46)

PRI is the pulse repetitive interval, which is the inverse of pulse repetition
frequency (PRF). To have a feel for the time budget, consider the same radar
system in volume search mode with other parameters in Table 4.1. A relative
time occupancy of 0.0267 is obtained; that is, 2.67 per cent of the time spent
in each volume.

In general, the frame time is variable for volume surveillance because it
depends on the number of targets being tracked by the radar. It could be
argued that the time budget for signal processing is perhaps extravagant

Table 4.1 Scarch data

Number of pulses per scan 2.0
Total number of beams 200
Pulse width 10 ps
PRF 5kHz

Frame or scan time 3s
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when other functions, like tracking, require considerable time frame. The
simplest solution in real time surveillance is to increase volume time frame
as the number of tracks increases. This would allow other parameters that
impact on detection performance to be kept constant. This would not sig-
nificantly affect surveillance tracking since the surveillance frame rate is only
important up to initial detection.

4.8 Summary

In this chapter, the examples of an array theory have been simplified, but the
purpose has been achieved; to develop the concept of array factor and show
how the antenna can be steered in a preferred direction and shape its
radiation pattern by varying the excitation on the array elements. The
concept demonstrates that an array can be broadband, its shape can be
altered somewhat and even feed its elements parasitically.

By varying progressively phase shift of an antenna array in a programmed
manner, the principle of electronic scanning is explained. The scanning
criterion, for the avoidance of grating lobe formation in the desired direc-
tion, whether a progressive phase shift is introduced or not, was established.
And finally, the concept and applications of slot antenna arrays were
discussed.

Problems

1. A new array arrangement is envisaged to comprise half-wave dipoles
oriented horizontally, all parallel to one another, to produce a single beam
of width 20° + 0.5° in the broadside direction. If the array’s elements are
uniformly excited, determine the necessary spacing of the antennas that
lead to the fewest number of dipoles that meet the requirement.

2. Consider a 12-element array, equidistant at d = 0.5A, centre-fed, z-directed
half-wave dipoles, with centres lying symmetrically relative to the origin
along the positive and negative x-axis. The feed point currents of the nth
element are expressed by 7, = Iye/™, where the amplitude I is the same for
all elements. Determine (a) the width of the main beam if the phase angle 6
is set to the value corresponding to an endfire array; (b) the value of the
phase angle and the orientation of the receiving dipole such that the
received signal is maximum if the receiving antenna is in the form of a
half-wave dipole observed at 100 away from the source and elevation
angle of 75°.

3. A uniform array has 60 elements and an inter-clement spacing of a
quarter-wavelength. Determine the width of the mainlobe if the array
is intended to operate as (a) an endfire array, (b) a broadside array, and
(c) an array whose mainlobe maximum occurs at 35° relative to its axis.
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4.

10.

A slot antenna is terminated by an impedance represented by
Z =734 j42.5 Q. Determine (a) the impedance of the antenna. (b) If
the characteristic impedance is resistive and represented by a three-
quarter-wavelength dipole, estimate the slot impedance value.

. If the slot antenna is represented with an equivalent dipole of length

greater than one wavelength, determine whether sidelobes will appear
and when they become dominant.

. By Babinet’s principles, slots antennas can be represented by their equi-

valent dipoles. Will the principles hold if the dipoles are of (a) conical
and (b) elliptical section? Give reasons. (¢) For cylindrical dipoles, will
the sinusoidal current hypothesis used in the derivation of dipole field
pattern also be valid?

. Why is a slot array easier to construct at higher frequencies than a

dipole array?

. How can the phase of a dipole array be reversed?
. It is desired to operate a radar system that is capable of transmitting N

pulses, 1 us pulse width, PRF of 10 kHz, within a timeframe of 2.5s. If
the radar is to maintain a peak power of 1kW when 15-20 per cent
power requirement is allocated for volume search, design such a radar.
An isotropic radiating system means, by definition, a system where the
radiated field is independent of the direction considered both in ampli-
tude and polarization. Is such a system feasible?



The radar equations

The discussion on radar measurements in the previous chapter avoided the
issue of noise and other losses and their effect on parameter estimation.
From radar theory, the maximum range beyond where a target cannot be
seen can be calculated using the radar equations, which are the main subject
of this chapter. Targets have varying reflectivity: as their orientation changes
so also their reflective characteristics change as a function of time. Know-
ledge of the target’s radar cross-section, or backscattering coefficient, is
essential in any radar measurement considerations. This chapter looks at
models that take into consideration target descriptions of sufficient latitude
to accommodate such variations in target characteristics at specific times.
The medium in which radar operates is not ideal. The environment, as well
as the medium the radio waves propagate through, introduces several losses in
addition to system loss. These losses will be discussed and included where
appropriate in the radar equation. By making subtle changes to the basic radar
equation, the laser radar and secondary radar equations will be determined.

5.1 Radar equation for conventional radar

From spherical geometry, the surface area of a sphere of radius R from the
source is 4mR>. If the target is considered to be at the peak of beam, see
Figure 5.1, then the power density uniformly distributed by the transmitter
over the spherical surface may be expressed by
P,
= 5.1
4 R? (5-1)

Py

P, is the transmitted power in watts. Suppose a comparable antenna of gain
G, is used in place of a point source radiator, which is allowed to radiate a
target of o radar cross-section at range R on the main antenna beam axis,
then the target will intercept a fraction of the radar power given by:

_ PGo
" 4nR?

The advantage of developing the radar equation through a very elementary
point source radiator is that it serves as a basis for comparison of many types

(5.2)
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0.=elevation beamwidth
0,=azimuth beamwidth
e =target

Figure 5.1 Geometry of power density of a target at peak of beam

of antennas whose performance is best expressed in terms of such a basic
radiator. Before proceeding further with the development of the radar
equation, it is important that the reader understands the fundamentals and
their meaning.

5.1.1 Some comments on radar gain and target characteristics

5.1.1.1 Antenna gain

Gain, as applied to an antenna system, is a measure of the directivity of the
antenna field pattern as compared with some standard antenna. Qualita-
tively, the gain is a ratio of power that must be supplied to the comparison
antenna to deliver particular field strength in the desired direction, to the
power that must be supplied to the directional antenna system to obtain the
same strength in the same direction. The procedure of calculating the gain
of an antenna system consists of assuming currents in the antenna to be
investigated and in the comparison antenna, such that the field strength
produced in the desired direction is the same in both cases. The total energy
involved is then determined either by the Poynting vector method or in terms
of the radiation resistance (Terman 1949).

The Poynting vector method models the antenna, or antenna array, in the
centre of a large, imaginary sphere; thus allowing the power flowing out of the
sphere to be determined in terms of density per unit of area. From this, the total
power equivalent density and peak (main beam) power density can be deter-
mined. By relating the two power density values, the concentration of power in
the main beam relative to the total input power can be resolved and therefore
the gain of an isotropic radiator. It should be noted that this gain figure has to
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be corrected if a different gain reference is needed. Also, when referencing to a
half-wave dipole, the gain of the dipole would need to be subtracted from any
gain figure that has been referenced to an isotropic source.

5.1.1.2 Re-radiation pattern of a target

The ideal radar target is a point object sending back a spherical wave with the
same polarization as the transmitted signal. Under these conditions, the orien-
tation of the tracking antenna is such that the wave incident on its aperture is
equiphasal, so this orientation corresponds to that of the target (Croft 1972).
Real targets are usually of a complex structure: the wave reflected by the tar-
get’s various components interfere with each other, and the target’s re-radiation
pattern has an irregular, lobed appearance (see Figure 5.2).

As the orientation of the target varies with time, the echo signal fluctuates
according to a probability characteristic similar to Rayleigh’s rules. More is
said of these rules in section 5.2. In addition, adjacent lobes usually differ in
phase by 180°.

5.1.1.3 Radar cross-section
The radar cross-section of most targets does not necessarily demonstrate a
simple relationship to their physical area, except it is highly probable that the
larger the size, the larger the cross-section. Since targets have a probabilistic
distribution associated with their specular aspects, there would exist a wide
fluctuation in target radar cross-section. An example of target fluctuations is
ship and aircraft where their cross-sections change from moment to moment
and with frequency as they change orientation. Swerling (1960) has character-
ized the types of fluctuation. A good albeit brief discussion is given in section 5.2.
Similar to a receiving antenna, a radar target also intercepts a portion of
the power, but reflects (re-radiates) it in the direction of the radar. The
amount of power reflected toward the radar is determined by the radar
cross-section (RCS) of the target. RCS is a characteristic of the target that
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Figure 5.2 Re-radiation pattern of a real target
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represents its size as seen by the radar and has the dimensions of area. RCS
area is not the same as physical area. But the power re-radiated or
reflected by a target, in the direction of the radar, is equivalent to the effective
capture area of the receiving antenna. Therefore, the effective capture area
(A4,) of the receiving antenna is replaced by the RCS. The effective capture
area is also called the aperture of the antenna. More is said of antenna aper-
ture in section 5.3.1.

An acceptable method of estimating radar cross-section of complex target
shapes is a three-stage process:

(1) Decomposing the complex shape into a collection of simple component
parts with recognizable scattering signatures.

(i1) Estimating each component’s cross-section as a function of aspect angle
and measuring frequency.

(ii1) Arithmetically adding each component’s cross-section to form the com-
plex shape combined radar cross-section, assuming random phase
between the simple component parts.

A lot of effort has been devoted to measuring radar cross-section of complex
materials and objects in the literature. Two good sources for the reader are
Crispin and Siegel (1968) and Ruck et al. (1970).

Going back to equation (5.2), a target cross-section, G, can be replaced by
an equivalent target whose geometry is symmetric, such as a sphere, which
would produce at the radar a power density P, equivalent to that of an
isotropic transmitter of power P; located at the target. Hence,

o Pj o P[G[ o
" 4R 4nR24nR?

Py (5.3)
The antenna aperture captures the re-radiated wave from the target whose
power is

PG, o

P, =PsA4, = A, 5.4
d 4nR? A R? (5:4)

This expression is basically the radar equation. It assumes a lossless propaga-
tion medium, which can be recast into a product of three factors:

A 59

where

(1) (P,G,) = Effective radiated power (ERP) of the radar transmission in the
direction of the target.
(ii) [c/4nR?]=Fraction of the effective radiated power intercepted and
backscattered by the target of spherical cross-section.
(iii) {4./4nR?} = Fraction of the resulting scattered power captured by the
receiving aperture.
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Equation (5.5) demonstrates that radar waves, like other forms of electromag-
netic radiation, are inherently subject to the fourth power law of attenuation;
that is, the echo signal will have been attenuated by a factor of 1/R*. This
indicates that range is one of the prime considerations with radar systems and
shows that for any sensor system, the energy received from a reflector
decreases as the target, or object, range increases. Thus, the difficulty of target
detection would increase with range. Conventional wisdom would suggest that
doubling the range of the radar systems would require approximately 16 times
the transmitter power. Unfortunately the design of transmitter and receiver
systems is not restricted to range considerations alone but also to other factors
including power losses, cost, and environmental conditions. Consequently,
great care must be taken when designing radar systems to reduce losses such
that radar receivers are capable of detecting target signals well below ambient
noise levels. In the light of equation (5.5), it is appropriate to discuss the type of
receiver—transmitter radar arrangements.

5.1.2 Receiver-transmitter arrangement

If the same antenna is used for both transmission and reception of energy,
then the receiver and transmitter gains in (5.5) will be replaced with G; that
is, G, = G, = G. Its subsequent expression becomes the monostatic radar
equation. If the receiving and the transmitting antennas are not the same
but are located adjacent to each other, and the separation distance d, is far
less than the distance between the receiver and the target (i.e. dy < R), such
an arrangement is called quasi-monostatic. In this instance, the monostatic
radar equation will still be valid for quasi-monostatic arrangement. How-
ever, when the receiver and transmitter are clearly separated by a significant
distance the situation is called bistatic and the radar equation logically
follows — the bistatic radar equation. In the bistatic case, equation (5.5)
will be valid with two possible changes. First, replacing the target radar
cross-section ¢ by its bistatic value G, which is expected to be functionally
dependent on the angle of incidence and wavelength of the signal; that is,
o, = f(0, ). And second, the target range R, will be replaced with the
effective range R,, perceived to have been measured at the mid-point
between transmit and receive antennas.

5.1.3 Peak and average power

The power P; in the radar equation (5.5) is the peak power. A distinction
should be made between the powers used in radar analysis. The peak power
of a sine wave is not the same as the pulse peak power. Peak power is usually
equal to one-half the maximum instantaneous power. If the input power to a
transmitter is pulsated, the peak pulse power is the power averaged over that
carrier-frequency cycle which occurs at the maximum of the pulse power.
Often a number of pulses are transmitted per cycle and the situation
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assessed. As such, the average power is then considered for the time the

radar activity is observed. The average power P,,, as the name indicates, is
the average transmitted power over the pulse-repetition period, 7.

For example, if the transmitted waveform is a train of pulses of width, or

length, T and period T, the average power is related to the peak power in the form

Pt

P, =— 5.6a

w =7 (5.6a)

As discussed in Chapter 3, equation (3.79), d, = 1/Ty = tPRF, which is the

transmitter duty cycle. Thus, the average power can be written as

P,, = P.d, (5.6b)

PRF is the pulse repetition frequency and d, is transmit duty cycle of the
radar. A continuous wave (CW) radar will have a unity duty cycle; that is
d, =1, with P,, = Ppax.

Following from (5.5) the radar equation may be expressed in terms of
average power and the time #, the radar dwells on (or observes) the target:

toPnGA,
(4n)°R*

The observation time 7, can be estimated using the antenna beamwidth of
0w (deg) and scanning at the rate ®,, (rpm):

Opw
ty = 5.8
0 6('0/77 ( )

Example 5.1 Consider a radar system having the following specifications:

Transmit and receive gain 33 dB
Receiver sensitivity —110dBm
Operating frequency 2.5GHz
Atmospheric attenuation  0.0095dB/km

Calculate the minimum peak transmitter power required in pulsed radar to
detect a target of 15m? radar cross-section at a range of 250 km.

Solution
Since the receiver sensitivity is —110 dBm, the receive power
P, = —110dBm = —140dBW = 10"*W (Note that dBm is dB
relative to 1 mW)
R=250km =2.5x 10°m
c=15m?
A=0.12m
G, =G, =33dB=103.3=1995.3
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One-way losses = 0.0095 x 250 = 2.375dB for one way. Hence, two-way
losses = 4.75dB or 2.985. The transmitter power must be increased at least by
2.985% calculated P, power. In view of the above estimated values, and rearran-
ging (5.5) in terms of P,, the minimum peak transmitter power required is

P,(4n)*R*

- =43kW

Ppeax = 2.985
peak GtGrG

5.1.4 Aperture

By antenna theory, a relationship between the transmitting antenna gain and
the receiving antenna area is formalized as

GV

= (5.9)

e
where 1 is the efficiency. This expression is the effective antenna area, which
is also called the aperture. Strictly speaking, polarization and impedance
mismatches reduce the effectiveness of the aperture area. Upon inclusion of
these mismatches, the effective antenna aperture area can be expressed as the
ratio of received power to the incident power density (Morchin 1993),
specifically

7\/2
A, = pg=—D,(0, 5.1
P - D (0, 6) (5.10)
where

p = polarization mismatch factor
¢ = impedance mismatch factor = 1 — |Ta|* (5.11)
' = input reflection coefficient of the antenna

D, (0, ¢) = directive gain (also called directivity) in the direction of maxi-
mum radiation intensity. It is descriptive of the antenna pattern. The direc-
tive gain is defined as

4mP(0, d) oy (5.12a)

P09 =g, g)d0do

where P(0, ¢) is the radiation intensity in the direction (0, ¢). Alternatively
4
D,(6, ¢) =§n (5.12b)

where B, is the beam area; that is, the solid angle through which all radiated
power would pass if the power per unit solid angle were equal to P(0, ¢),.«
over the beam area. Given that the beamwidths 6, and 0, in elevation 6 and
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Figure 5.3 Geometry of a pyramidal horn antenna

azimuth ¢ planes respectively are orthogonal, the beam area B, approxi-
mates to the product of the beamwidths. Consequently,

47
0.9,

The expression in (5.9) can further be investigated for design purposes. The
design objective is to have a sufficient beamwidth 0z to match the required
vertical coverage or search sector. As such, a mathematical relationship
between the aperture dimension and illumination distribution across the
aperture can be established. For example, consider a pyramidal horn
antenna shown in Figure 5.3.

In the figure, 4 and B are aperture length in the H and E planes respectively;
a and b are length and breadth of matching waveguide if the horn’s shortest
length, L, possible is required; and L is the axial length to apex to the aperture.

A horn is a slightly flared end of a piece of waveguide. Instead of electrical
currents, the waveguide carries a tightly focused electromagnetic wave with
the electric components extending between the parallel walls (Kolawole 2002).
Horns can be square in section (called pyramidal horns) but rectangular in
either two orthogonal planes (called E-plane and H-plane horns).

Pyramidal horns are easily designed and often used for earth coverage
antennas because of their symmetrical radiation properties. The following
equations are applicable to pyramidal horns, whose length is long compared
to a wavelength, A:

D, (0, ) ~ (5.12c)

4
G= 101ogn§AB (dBi) (5.13)
where G is the gain and n is the pyramidal horn’s efficiency, typically 50 per cent.
3dB beamwidth in E plane:6p = 54% (deg) (5.14)

3dB beamwidth in H plane: 0y = 78% (deg) (5.15)
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If it is necessary to have shortest length possible, then by scaling

L L<12i’42’;> (m) (5.16)

A horn’s interior surfaces can be smooth or corrugated, depending on
polarization requirements. When annular corrugations are placed on the
inner wall of a circular waveguide, a hybrid-mode horn is formed. If the
annular corrugations are placed in such a way that neither TE (transverse
electric) nor TM (transverse magnetic) modes can be propagated, then a
hybrid mode is generated. The hybrid-mode horn antennas can be used to
achieve axially symmetric beamwidths, and improve cross-polarization and
sidelobe performance.

Example 5.2 The carth subtends an angle of 17.3° when viewed from
geostationary orbit. Estimate the dimensions and gain of a pyramidal horn
antenna that will provide global coverage at 4.5 GHz.

Solution

By assuming a uniformly illuminated wave across the aperture (length and
breadth) of the pyramidal antenna, the beamwidths in the £ and H planes
may be considered equivalent; that is,

0=17.3° =0 = 0p.

Take the antenna’s efficiency n = 50 per cent.

Wavelength, A = ¢/f = 0.3x10°/4.5x10° = 6.67 cm

From (5.14) and (5.15), the aperture dimensions can be computed:
A =30.06cm
B =20.81cm

Gain, G = 19.46dB

5.1.5 Search coverage

For a uniform search, the azimuth coverage sector is expressed for a rectangu-
lar beam as
Q

. 1
sin®, — sin 0, (5-17)

m

where 0, and 0, correspond to upper and lower search limits, see Figure 5.4.

Antenna theory gives the relationship between the transmitting-search
solid angle Q; and transmitter gain, G,, as
4n

G.L,

Q, = (5.18)
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Figure 5.4 Geometry of search area

L, is the pattern constant and accounts for power radiated outside the
idealized mainlobe: typical value is between 1.2 and 1.6. The number of
beam positions to be searched may be expressed by

The radar observation time 7y depends on the allowable search (frame) time
Ty and assigned solid angle Q:

_ I
=

lo (5.20)
Radar operates in a noisy environment. To utilize (5.5) or (5.7) in real life,
the effect of noise in the system and environment must be accommodated.

5.1.6 Receiver bandwidth, temperature and noise

To calculate the equivalent input noise factor, the noise figures and gains of
all stages must be known. The stage, in this instance, excludes the detector.
Simplistically, the noise figure of passive stages, which do not contain noise
sources other than thermal noise, equals their loss in decibels, or noise factor
equals reciprocal of the gain:

F,=1/G; (5.21)
where

F; = stage noise factor
G, = stage gain.

Equation (5.22) is valid for situations where the passive stage’s temperatures
are relatively uniform. However, if a passive stage is at a higher temperature
than the rest of the receiver chain, its noise figure must be adjusted for the
temperature difference. To do this, assign the lowest component temperature
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as the system noise temperature. Thus, the noise factor for a passive (lossy)
device at any temperature, 7, is:

T(L-1)

F=1+
Tamb

(5.22)

where

F = lossy device noise factor
L = loss of device (=1/gain)
T,..» = ambient temperature.

The reader might ask whether noise figure could be higher than the device
loss. Yes, it is possible. For example, some passive stages, such as double-
balanced diode mixers, often have a noise figure slightly higher than their
loss. It should be noted also that the gains and noise factors of active stages
are not correlated. As such, they must be obtained separately.

Following from (5.22), if two networks are in tandem, the networks’ noise
figure, F;,, may be expressed by

-1

Fi,=F
12 1+ Gr

(5.23)

where

F; =noise figure of first network
G| =gain of first network
F, =noise figure of second network.

If there are N stages comprising the receiver, the cascaded noise figure must
be used as the total equivalent input noise factor for the receiver’s noise
figure, Fy:

-1 F-1 F,—1
Fy=F e 5.24
NEht et e Tt a6 G, (5.24)
Concisely
= Zf (5.25)
S G
where Gy = 1.

Following the noise factor derivation, the effective noise temperature 7,
for N stages in cascade can be deduced as:
T, T; T,

T, =T +=2 I
e +G1G2+ 66 ... G

(5.26)
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Concisely
T;
T.=> —— Go=1 (5.27)

i=1 G:
=0

T
&

How does the noise figure affect the radar equation?

5.1.7 Radar equation modified by noise and other losses

Noise is the primary factor limiting receiver sensitivity. Noise may originate
from the receiver itself, or it may be part of the signal received via the
antenna. While component segmentation could provide, as in (5.25), for
the receiver’s noise figure, this process might be cumbersome. As such,
during the design or analysis process, the receiver’s noise figure is measured
as the ratio of the total noise Ny, at the output of the receiver to the thermal-
noise power Nermal Obtained from an ideal receiver at standard temperature
To. Specifically,

1N
GN thermal

Fy (5.28)
G in this case is the available gain, being the ratio of the signal out, S,, to the
signal in, S;.

The thermal noise (also called Johnson noise (Johnson 1928)) is the noise
generated by the thermal motion of the conduction of electrons in the ohmic
portions of the receiver-input stages. For a receiver of bandwidth B, (in Hz)
at a temperature 7 (in kelvin, K), this noise has been quantified as:

Nthermal = kTBn (529)

where k = Boltzmann’s constant = 1.38 x 1072 W/(Hz-K), and 1 K = 273 +
T(C).

If the receiver circuitry were at some temperature, the thermal-noise
power would be correspondingly different. The thermal-noise power Nermal
is primarily the input noise, NV;.

The radar receiver bandwidth, B,,, is often synonymous with the receiver’s

intermediate frequency (IF) amplification stage. B, is an integrated band-
width, defined as

) N2 g,
g, — I HE (5.30)

|H (fo)]
where H(f) and f, correspond to the filter frequency response characteristic
of an IF amplifier and the frequency of maximum response usually occurring
at the mid-band. When H(f) is normalized at the mid-band, H(f) tends to
unity. B, is called noise bandwidth: a bandwidth equivalent to a rectangular
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Figure 5.5 An equivalent noise bandwidth

filter whose noise-power output is similar to a filter with characteristic H( f),
depicted by Figure 5.5.

Note that the noise bandwidth B,, is not the half-power (3 dB). Although
many receivers have noise bandwidths close enough to the 3 dB to make its
use a good approximation, the measurement of noise bandwidth requires a
complete knowledge of the response characteristic H(f).

In low-PRF (LPRF) radar, the bandwidth of its IF stage can be very
large: usually set at B, = 1, where 7 is the pulse width. If the LPRF radar
operates on time discrimination, a timing pulse is usually initiated at the
start of each transmitted pulse. The target-return pulse is then matched
against the timing pulse, resulting in the elapsed time between the returned
and transmitted pulses. The elapsed time is proportional to the radar-target
range, R. For most air search operations that require broad elevation
sectors, LPRF radars are strongly favoured.

On the other hand, in high-PRF (HPRF) radars, target range rate infor-
mation is primarily obtained using the Doppler principle, already discussed
in Chapter 3, from the Doppler filters formed by FFT processing. The target
in a given Doppler filter, or cell, competes with thermal noise that is folded
into the Doppler ambiguity. In fact, the noise in any Doppler cell is a frac-
tion of the front-end noise bandwidth, B,,. (See Appendix 5A for further discus-
sion on the noise effect in Doppler processing and the implication on range
calculation.) The Doppler filters’ bandwidth is approximately, B; ~ 1/,
where 1. is the compressed pulse width. The total number of Doppler
filters is calculated using the desired range of velocity coverage. Following
(3.44), the number of Doppler filters, n,, is

Af 2R
ng = Bd = de (531)
For surface search, for example sea or land vehicles, navigational or fixed
structures, HPRF radars are preferred.
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Equation (5.28) can be rearranged as

S.

1INy N
Fy=g+ =% (5.32)

St Ny

In view of (5.29) and (5.32), the input signal, S; is expressed as

S; = kToB,Fy (§> (5.33)
N 0

If the minimum detectable signal S,,;, is the input signal S; that corresponds
to the minimum IF signal-to-noise ratio (S/N)g necessary for detection, then
(5.33) is recast as

S
Smin = NthermalFN <ﬁ> (534)
0

In an attempt to estimate the maximum range R,,.x beyond where a target
cannot be seen, the received signal power P, in (5.5) must equate to the
minimum detectable signal Sy, in (5.34). Specifically

PG, o
"7 4nR2 47 R?

S

Ae = NthermalF'v (N)O (535)

PG A, S
= O = (2 (5.36)
4nR?4nR kToB,Fy  \N),
Expressing the range R in terms of other variables

1

toPu0G A, !
Rmax = ;) 12e0 B (537)
(4n)*kToB,Fy (3),

which is in the form of a radar equation. The range for unity (or 0 dB) signal-
to-noise ratio (i.e. when signal power equals the noise power) is called the
free space range. The waveform of the transmitted signal does not enter into
the radar equation. This suggests that the signal can be selected for other
considerations such as range and Doppler resolution. The choice of signal,
however, does play a major part of radar (or sonar) signal processing.

The reader might wonder whether an application of (5.37) is sufficient to
give an accurate range estimate of the target in all conditions. Unfortu-
nately, the answer is no because of the failure of (5.37) to include the various
losses that can occur during radar operation, including an unpredictable
nature of several parameters that have an effect on the radar performance.
For example, the minimum detectable signal Sy, and target radar cross-
section ¢ are statistical in nature and must be expressed in statistical terms.
Also, the environmental conditions along the propagation path(s) introduce
some losses.
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5.1.7.1 Other losses

Detailed discussion of all the factors that influence the prediction of radar
range is beyond the scope of a single chapter. However, a summary of some
of the losses is described in this section.

5.1.7.1.1 System loss

A system loss is associated with each stage of signal processing in both
transmitting and receiving portions of a radar system. The losses in the
transmitting portion include those from waveguide, duplexers and antenna.
These losses are called plumbing losses, typically in the order of 2 to 5dB. In
the receiving portion, the losses include those from waveguide, mixers, RF
and IF amplifiers, and antenna. The noise figure Fy of the receiver is an
indication of its contribution to system loss.

5.1.7.1.2 Beam-shape and processing losses
One of the assumptions taken in radar analysis is that field strength is
constant over the width of the beam. In actuality, as a target passes through
a beam, the signal return is modulated. This causes a loss called the beam-
shape loss.

Processing loss includes those due to FFT windowing, typically of the
order of —2dB.

5.1.7.1.3 Collapsing loss

When noise from different sources converges in the proximity of the true
target return, collapsing loss occurs. Its effect is to increase the background
noise level, thereby decreasing the detectable signal (S/N) level of the true
target. A typical value of 1dB is assigned for the range bin collapsing loss.
The collapsing loss is most pronounced (less than 1dB) in the short-range
mode.

5.1.7.1.4 Propagation loss

Ducting is a form of anomalous propagation. It causes radar beams to
travel in a curved line as opposed to the normal, straight line. Ducting
can cause radar not to pick up objects (or targets) it would otherwise detect
or that it detects objects (or targets) much further away than it normally
would. It is undependable and can degrade the performance of MTI
(moving target indicator) radar by extending the range at which ground
clutter is seen.

Aside, signals propagated through the atmosphere suffer another loss,
called atmospheric attenuation. Depending on the type of radar used, absorp-
tion of radio waves occurs differently in the lower atmosphere (called tropo-
spheric attenuation), or in the upper atmosphere (called ionospheric
attenuation). More is said about the division of the atmosphere into regions
in Chapter 6.
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The absorption of propagation waves in the troposphere is caused by
the presence of both free molecules and suspended particles such as dust
grains and water drops condensed in fog and rain. Rain attenuation is
modelled as

A, =alLr’ (5.38)
where

(1) a and b are coefficients that are calculable theoretically from consider-
ations of electromagnetic propagation in spherical rain drops. These
coefficients are polarization and frequency dependent based on rain-
drop characteristics, and can be approximated to the following analyt-
ical expressions:

{421 x 107529 £ < 54GHz (5.39)
= 14.09 x 1072106 54 < £ < 180 GHz '
[ 1417997 £ < 25GHz (5.40)
T 12,6370 25<f < 164GHz ‘

Outside these frequency ranges, the coefficients are equated as zero. If
the coefficients are linearly polarized vertically or horizontally, the
coefficients for a circularly polarized wave can be calculated using:

a. = 0.5(ay, + ay) (5.41)
apby, + a,b,

= 42

be a (5.42)

The subscripts of the constants indicate their polarization. For example,
subscripts ‘¢’, ‘h’ and ‘v’ denote circular, horizontal, and vertical polar-
ization respectively.

(ii) r, = rain rate (mm/hr). Average values of r, can be obtained from the
Department of Meteorology (or its equivalent) of your country.

(ii1) L = path length (km) of the intervening rain.

Attenuation due to absorption by electromagnetic waves, aside the rain,
follows the relationship (Millan 1965)

Ag = 1070057F (5.43)

where v is decay constant.

The decrease in signal strength, for a radio wave traversing an absorbing
region, is in addition to space or inverse-square-law attenuation.

The absorption of signal energy in the ionosphere occurs when elec-
trons, colliding with other particles, are forced to give up some of their
energy to these particles. More is said about electron formation, collision and
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refractivity in Chapter 6. The amplitude of the signal is attenuated logarithm-
ically with increasing distance, s (Millan 1965):

= [ kyds
Aion =20 lOgE ! (dB) (544)

where

Ajon = lonospheric attenuation
k, = absorption coefficient of the medium
s1 and s, are the limits of the path.

Since the ionosphere can be divided into distinct heights, the path differen-
tial can be expressed in terms of height differential by

ds = f(h)dh (5.45)

This relationship becomes obvious in Chapter 6.

5.1.7.1.5 Polarization loss
The term polarization refers to the direction of an electric or magnetic vector
in the radiated field. If the transmitting and receiving antennas were not
properly polarized, because either the propagation medium changes the
original polarization, or the target depolarizes the signal, polarization losses
would occur. For instance, if an elliptically polarized receiver receives a
linearly polarized transmitted wave, the nature of energy received would
be seriously affected: either a complete loss of signal or the signal is severely
distorted.

Kramer (1986) established a relationship for the polarization loss L,
between an antenna elliptically polarizing and an antenna linearly polarizing as

L, =0.5(1 + ky cos 2y, (5.46a)
where
>
a; —1
= 5.46b
a4 ( )

ay. is the axial ratio of elliptical polarization and y, is the angle between
linear polarization and the ellipse’s major axis. Kramer further established a
cumulative probability expression for estimating the polarization loss L, for
a given value, say /,, when distributed randomly over zero to 2n angular
orientation of one antenna to the other. Specifically

1. 20, — 1
P(L, <1,) =05+ —sin"' (p—) (5.47)
i ky
For brevity, L, denotes these losses. Rigorous radar system engineering
involves careful evaluation of each loss term and the evolution of a design,
which minimizes the losses for the intended application.
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5.1.7.1.6 Multi-path reflection factor
Surface reflection is due to the modification of the free-space field that results
from reflection of the waves from the surface beneath the direct path. Surface
reflection causes multi-path lobing effects on target detection, and multi-path
errors in tracking and radar measurement. To account for this effect, a term
called pattern-propagation factor is included in the radar equation. The quan-
tity F describes the ratio of a one-way field amplitude at range R to that which
would have been obtained under free-space conditions in the centre of the
beam. Thus the pattern-propagation factor can be defined as the value of F
obtained with a broad antenna beam, such that the underlying surface of the
earth is fully illuminated. Our discussion on the propagation factor F is
restricted to a flat earth model whose geometry is shown in Figure 5.6.

Above the flat earth surface, at point A, height /4, a radar antenna is
assumed to be located. A target is located at point C distance /4, above the
earth’s surface and ground range (distance) R, from the antenna. The
reflected wave ABC hits the earth surface at point B and reflects to C. The
direct wave is AC. Symbols 0,, 6, and \ represent the antenna elevation
angle, target elevation angle and grazing angle respectively. By simple geo-
metry, ABC = ABE = R,.

By considering the two right-angle triangles ADC and ADE, these equa-
tions are written:

l hy — hy)*
R, = R,%+(h,—ha)2}2mzh 1+(’ ) Ry > (hy+h;)  (5.48a)
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Figure 5.6 Surface reflection signal path and target image
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: e+ he)?
Ry = [R,% + (h, +ha)2] ~ Ryl +% Ry > (hy+h;)  (5.48b)
h
And the ground range:
Ry, = (hy + h,) cot 6, (5.49)

The path difference between the direct and reflected waves is
2hah,
h

ARd = R2 — Rl ~ (550)

And, providing that the grazing angle s is small, the phase caused by the

path difference may be expressed by

dnh,h;
ARy

Ad = %ARd = (5.51)

If the total phase difference A, in (5.51) for instance, is equal to an even multiple
of m, the waves are said to be in phase. So, a signal maximum results when

4drh,h,
=2 5.52
R, (5.52a)
Conversely, the odd multiple of & gives the null or minimum when
dnh.h,
"Ry 2n+1 (5.52b)

It should be noted that the expressions in (5.52) do not account for any
phase change or amplitude change that might occur at the earth-reflecting
surface. However, if the antenna gain does not change between the direct
and the reflected rays’ directions, and also that the target backscattering
pattern does not change, then the direct and reflected fields reaching the
target are of equal intensity but having a phase difference given by

4rh,h
A(])O - ;Rl [+TC

(5.53)

By allowing a complex factor F to represent the ratio of the resultant field at
the target in the presence of surface reflection coefficient p, an expression for
the factor may be written as

F =1+ pe /(A7) (5.54)

where v, is the phase angle of the reflection coefficient. The power ratio at
the target is |F?|. However, by assuming broad antenna pattern assumption,

FP=1+p"+2p cos (v, + Ady) (5.55)

Given that the same multi-path effect would occur on return signals from the
target to radar, the power ratio received with and without the presence of the
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earth-reflecting surface equals |F#|. For brevity, p ~ 1 and Yy = . Upon an
application of trigonometric relationships, the resultant power ratio can be
written as

|F4| = (24 2pcos Ad,)* = 16 cos* ( ¢0> (5.56)

By substituting (5.53) in (5.56),
2nh,h
4| _ -4 a'ly
|[F*| = 165in ( iR, ) (5.57)

Using a small angle approximation technique

2nh,h\*
4 )~ (AD)? .
|F| 16( iR, ) (Ad) (5.58)

In fact, this expression is a gain rather than a loss to the radar equation.
By including all losses and the multi-path reflection factor in (5.37), the
radar equation is

t0PuG Ao F* \'
R = (5.59)
(4%) kTanFN( ) Lo

This expression assumes that detected peak or echo is at the centre of the
beam associated with a single PRF. In actual digital mechanization, by
placing digital filters that cover the frequency span of one PRF, a particular
digital filter will respond to target returns symmetrically located on either
side of it. This makes the signal-to-noise ratio (S/N)y in (5.59) possible. In
medium-PRF (MPRF) radars, to resolve range and/or Doppler ambiguities,
two or more PRFs are used. Therefore, to calculate (S/N)y, an average PRF
is often used because of the closeness of the PRFs.

The detection and measurement of target reflected energy is most affected
by competing clutter and thermal noise energy. To use (5.59) in a clutter
environment requires knowledge of the clutter and its energy, which will be
used to modify the thermally induced noise-only radar equation typified by
(5.59). Clutter is unwanted echoes, typically from the ground, sea, rain or
other precipitation, chaff, birds, insects and aurora. The characteristics of
ground, sea and rain clutter are studied in section 5.4.

Example 5.3 Consider a transmitter with peak power of 1.5 kW with a gain
of 10dB when propagating at 3 GHz. Calculate (a) the magnitude of the sig-
nal received at room temperature by the receiver of 8 m? aperture if the radar
is upward looking, 20.9dB for all extraneous search losses, and the target
of 1.5m? cross-section is viewed at about 100km away from the receiver.
Consider a noise factor of 5dB and noise bandwidth to match the receiver’s
bandwidth. (b) A mismatch between the noise and receiver bandwidth
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was noticed during observation. If the noise bandwidth was given as 1 kHz,
calculate the magnitude of the signal received. (c) If the radar scans at 100 rpm,
calculate the time frame required for the scan. (d) Calculate the antenna
elevation beamwidth for an equal azimuthal beamwidth. (¢) How long can
the radar dwell on the target?

Solution

Liot =20.9dB = 10*% = 123.03
Fy =5dB =10%° =3.16
G, =10dB = 10
P, =1.5kW = 1500 W
Ty =23.7°C =273 +23.7 = 296.7K
R =100km = 10°m

k=138 x10"%
c=1.5m>
A, =8m’

For an upward looking antenna, |F*| = 1.
Rearranging (5.59) in terms of the receiver signal-to-noise ratio:
S\ PG AG|FY
NJo

(4n)2kTOBnFN R4Ltot

Substituting values that correspond to the afore-listed symbols, the follow-
ing numerical values are obtained:

(a) Matched filter: B, =1
<§> —8.55dB
Ny

(b) Mismatched filter: B, = 1kHz

S
<N>0— —21.5dB

(c) If the radar scans at 100 rpm, calculate the time frame required for the
scan.

Ty =2m/100 = 3.77s
(d) Following (5.18) the solid beam angle Q; that corresponds to antenna
gain of 10dB is:
4n )
Q, = rol 1.26 rad” = 72.0 degrees squared

t
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putting the pattern loss L, = 0 dB. Hence the elevation beamwidth:
0, =0, =+/Q; =8.48°

(e) Following (5.8), the time 7, the radar dwells on the target is

to = ZBW —0.01414s

0‘)}'”

5.2 Target fluctuation models

Basically all radar target objects produce echo signals that vary in ampli-
tudes either in power or cross-sectional terms. These amplitudes can vary
from scan to scan or between echo to echo due to aspect changes relative to
the radar. This variation is often referred to as target scintillation.

A simple target model is shown in Figure 5.7, which could represent a
reflective structure of a satellite, an aircraft, a warship, or a submarine. This
figure is similar to that given in Van Trees (1971). If the direction of signal
propagation is along the x-axis and the target orientation is assumed to be
changing with time, then three target positions are shown in Figure 5.7(a, b,
c). It is assumed that the target in Figure 5.7 is illuminated with a long pulse
of duration 7 whose envelope is shown in Figure 5.8(a) and the received
signal envelope is represented by Figure 5.8(b).

If the received envelope is distorted as shown in Figure 5.8(b), the target is
changing, varying, or fluctuating, with time as the target changes its orienta-
tion. This varying-time attenuation of the received envelope is often called
time-selective fading. On the other hand, if a short pulse is transmitted as in
Figure 5.8(c), and an undistorted signal envelope is received as in Figure
5.8(d), the target can be considered to be slowly fluctuating (Van Trees
1971).

Target cross-section fluctuations are complex to quantify by a simple
mathematical expression. Swerling (1960) postulated models that describe

Time, b

(b) (©)

Figure 5.7 A representation of target orientations at different times
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Figure 5.8 An illustration of time-selective fading of transmitted signals: (a) envelope of trans-
mitted signal; (b) returned envelope of signal (a) with time varying attenuation; (c) short-
pulse transmitted signal; (d) returned short-pulsed signal without distortion

slowly and fast varying targets. The slowly fluctuating-target model is
assumed to have complete correlation, or dependence, between echo signals
during a radar scan, but independent with scan to scan. The fast fluctuating-
target model is assumed to have partial correlation from echo to echo
instead of scan to scan. The virtue of these models lies in the fact that they
are a reasonable approximation of a variety of targets. The models are
briefly described as cases as follows.

Case 1
Swerling designated a target as case 1 when fluctuation is slow. For instance,
when the echo signals or pulses, received from a target on any one scan, are
of constant amplitude throughout the duration of the scan. These signals are
uncorrelated (independent) from scan to scan. The probability density func-
tion for the cross-section o is given by the density function:
e
plo) = c>0 (5.60)

Gy

where G,, is the average cross-section over all target fluctuations. It must be
noted that this case ignores the effect of the antenna beam shape on the
amplitudes of echo signals.

Case 2
This case accounts for a target of fast fluctuation. The probability density
function for the cross-section o has a similar distribution function as that in
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(5.60) but the fluctuations, in this case, are independent from echo to echo
instead of scan to scan.

Case 3

In case 3, the fluctuation is considered to be uncorrelated (independent)
from scan to scan, as in case 1, but with a different probability density
function given by the density function:

plo) = —-em (5.61)

Case 4

This case accounts for a target of fast fluctuation, as in case 2 where
fluctuations are independent from echo to echo instead of scan to scan.
The probability density function is still represented by (5.61).

A known practical application of cases 3 and 4 lies in the use of case 3 to
represent case 1 target observed by dual-diversity radar.

The probability density function given by (5.60) and (5.61) are special
cases of the chi-square, or gamma, distribution with 2n degrees of freedom
(2n DOF). Chi-square distribution is a general approximation of target
models. Specifically

n—1
n nG —nhoc
— (= Sar > .62
PO) = =) (c> er 020 (5.62)

The envelope of ¢ is taken as a Rayleigh random variable whose average is G,,.
When the unresolved target echo results from many scatterers of compar-
able size adding vectorially with random phases, then the echo amplitude is
Rayleigh distributed (and the echo energy is thus exponentially distributed)
(Heering 1977). Unlike in statistical texts where index # is only allowed to be
an integer, # in this instance must be positive and can also be a real number
when applying to target cross-section models.
Nakagami (1960) gave a more generalized chi-square model as

2ncl

[)(G) = We Say c > 0 (563)

where I' (.) is the gamma function of (.) and n can be real or integer.

Another model worth mentioning is the Rician model (Rice 1944). The
Rician model is suitable for the case of one dominant signal in the presence
of many other small signals. Specifically

1 sX | 750
p(x,x) = el [2 \Il_o]e x>0 (5.64)
x<0



Detection probability 129

where

s =ratio of steady reflector’s radar cross-section to the combined average
cross-section of Rayleigh scatterers

X =Yyl +5) (5.65a)
c=VYyvV1+2s (5.65b)

, = mean value of Rayleigh component of x
Iy, = modified Bessel function of the first kind of zero order.

It must be acknowledged that little, if any, real targets fit a mathematical
model with any precision. Targets have complex geometry. As such, the
various mathematical models cannot be expected to produce precise predic-
tions of system performance. In effect, the use of constant (non-fluctuating)
cross-section in radar equation is a very attractive alternative when prior
information about the target is minimal.

5.3 Detection probability

The signal-to-noise ratio (S/N), required to achieve target detection is stat-
istical. It depends on probabilities of detection and false alarm, and other
additional factors that enter into target detection. The minimum (S/N), that
is required at achieving a specific detection probability without exceeding
a specified false-alarm probability could be calculated. An expression that
connects (S/N), with the specific probabilities as well as with target scintilla-
tion was developed by Neuvy (1970) as

<§>: ocnlog(l};—ﬁ
o njfioe(k)]”

where 7, is the number of signal pulses transmitted. This expression has an
inverse and behaved reasonably well in real-life scenarios. The symbols o,
and B, are coefficients, each assumes a specific value as per Swerling case,
shown in Table 5.1.

By using the Neuvy expression given by (5.66), a family of curves was plotted,
as shown in Figures 5.9 to 5.13, for a single pulse and different Swerling

(5.66)

Table 5.1 Neuvy’s coefficients

Swerling case Oy B

0 142 L

1 (14367 L

2 ! ster

3 (1439 3 .
4 1 % 1+2e7)
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Figure 5.9 Curves of minimum signal-to-noise ratio versus probability of detection for various
probability of false alarm

cases and probability of false alarms. If the number of pulses transmitted
increases, the magnitude of the expected minimum signal-to-noise ratio to
detect a fluctuating target decreases. Thus, for a specific probability of
detection, Pp, and probability of false alarms, P, the minimum signal-to-
noise ratio required to achieve detection of target with variable reflectivity
can be estimated.

Pa=10"
SN 26.0 - Swerling case = 1 /1 01_(7)—6
(dB) 24.0 - p=1 zaibpe.
22.0
20.0
18.0
16.0
14.0 A
12.0
10.0
8.0
6.0
4-0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Probability of detection, Pp

4
0

\

Figure 5.10 Curves of minimum signal-to-noise ratio versus probability of detection for
various probability of false alarm
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Figure 5.11 Curves of minimum signal-to-noise ratio versus probability of detection for
various probability of false alarm

The minimum detectable signal has also been described by detectability
factor, D, defined as the energy ratio necessary to achieve detection. If the
target fluctuating density function is described by gamma distribution, with
2n degrees of freedom, then the expression for the detectability factor for
n, transmitted pulses is defined by Barton (1988):

1

_ Ly [log(Pra)
Dylny) = 7 [mg - 1] (5.67)

where

Ly = the steady-state apparent fluctuation loss

k. =number of degrees of freedom describing the target function. This is
equivalent to half the number of independent gaussian components
added together to form a target signal

n,=number of independent signals or pulses integrated during N-pulse
transmission.

If k, and n, are large, (5.67) then describes a steady target (i.e. case 0),
thus:

_ Ly [log(Pr)
Dy (n,) = ;T,: Log(Pd) - 1] (5.68)

For other Swerling cases, the parameters k, and 7, are as defined in Table
5.2, when applied to the generalized expression of (5.67). The fluctuation loss
in (5.67) may be considered as a diversity gain, G, for a system taking
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Figure 5.12 Curves of minimum signal-to-noise ratio versus probability of detection for
various probability of false alarm
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Figure 5.13 Curves of minimum signal-to-noise ratio versus probability of detection for
various probability of false alarm

samples over intervals in time or frequency. The diversity gain may be
defined as:

1

Galne) = (L)' ™ (5.69)

Table 5.2 Independent parameters

Parameters
Swerling case ke N,
1 1 1
2 1 n,
3 2 2
4 2 2n
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Diversity is only possible if a non-diverse system has a fluctuation loss.
Strictly speaking, two cases (time and frequency) can be distinguished for
diversity, with the third being a combination of the two. These diversity
cases are discussed briefly as follows.

5.3.1 Time diversity

Time diversity is when n, independent samples are obtained at intervals
equal to the correlation time of the target. The requirement of time diversity
requires the signal observation (or integration) time f, exceeding the target
correlation time .. Target correlation time approximates to

A
20,4l

S (5.70)
where ®,,, and /, correspond to rate of rotation of the radar (rad/s) and target
length or target broadest part (in metres). In fact, the length should be the section
measured normal to the radar axis of rotation. When the surveillance of long
dwells is observed, the correlation time must be much less than the pulse repetition
interval (PRI), i.e. 1. < 1/PRF. In real life, integration is carried out over several
scans. But if targets move between scans, integration within a narrow range of
cells might be difficult and, when this situation arises, integration is performed
cumulatively. The number of independent samples may be expressed as

ne=1+— (5.71)

Note that n. may not necessarily equal the number of pulses transmitted, 7,,.

5.3.2 Frequency diversity

Frequency agility is a situation in which n, independent samples are received
rapidly by changing transmitter frequency from pulse to pulse. Frequency
agile radar can approach Swerling case 2 classification. In the frequency
diversity case, the number of independent samples is estimated using

Bna
fe
B, and f, are available bandwidth for integration and target correlation fre-

quency respectively. Similar to time diversity analysis, target correlation fre-
quency is related to the target radial length /. and speed of light, ¢. Specifically

n.=1+

(5.72)

fi== (5.73)

In a cluttered environment, a fractional change in frequency between
pulses would decorrelate the clutter, thereby permitting an increase in
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target-to-clutter ratio when the decorrelated pulses are integrated. However,
clutter statistics are non-Rayleigh, particularly sea clutter, where clutter
spikes persistently appear — spikes that tend to correlate over a relatively
long duration, which may reduce the benefit of frequency agility. Conver-
sely, when a radar is hoisted on a moving platform, the clutter might also
decorrelate as the radar resolution cell looks at a different patch of clutter.

5.3.3 Time and frequency diversity

The third diversity case, the combined time and frequency diversity, is a case
where time and frequency effects are used to increase the number of inde-
pendent samples. Specifically

o To B,
e = <1 +ZC) (1 + ) (5.74)

With this scheme, it is essential to ensure that the transmissions are uni-
formly distributed over the time-frequency space to avoid correlation
between pulses, which invariably reduces 7,.

In essence, equation (5.66) or (5.67) corresponds to the desired value of
detection probability P, and false-alarm probability P,, which can be fed
into the radar equation (5.59).

Example 5.4 Consider a transmitter with a peak power of 100 kW with a
gain of 50dB. The transmitter sends three pulses of equal width of 1ps at
every second. It is desired to have a low probability of false alarm at 10~°
and detection probability of 0.9. The receiver is matched to receive the 1 ps-
width pulses. It also has an aperture of 8 m* and noise factor of 5dB. The
total propagation losses envisaged are not more than 18.3 dB. Calculate the
maximum range required detecting a type III target of 3.2m? radar cross-
section at a temperature of 32.8 °C.

Solution
T, =1s
n, =3
Pp=09

G, =50dB = 10°
k=138 x 1072

t=1ps
Ty =273 +32.8 =305.8K
P =107
P, = 100kW = 10° W
o=32m’

B,=1/t=1MHz
F,=5dB = 10" =3.162
Lo = 18.3dB = 10'% = 67.608
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Using the Neuvy expression of (5.66) as well as Table 5.1, the signal-to-noise
ratio (S/N)o can be determined.
For type III target:

3 2 o 2
oc,,:Z(l +§es’> =09339 B, =3

<§> _ M — 13.12dB(20.5)
el

This expression indicates that for the target to be detectable, the received
signal must be at least 13.12dB. With this information, the maximum
detectable range can be estimated. For brevity, |F*| =1 for an upward
looking antenna. Using (5.59) while writing ‘tP,” instead of ‘#yP,’ and
substituting values, the detectable range

B TP,G, A, 0| F?| v
R= A PR T B Fo(5) L = 3.06km
( TE) 0DPn N(N)O tot

5.4 Target detection range in clutter

To derive the radar equation required to evaluate the target detection range
in a background of clutter requires knowledge of the reflectivity of clutter
sources. Instead of the signal-to-noise ratio (S/N) concept previously used,
the signal-to-clutter ratio (S/C) is used. Interference is defined as the combin-
ation of system noise and clutter, which is assumed to add incoherently. The
clutter discussed in this section includes rain clutter, land and sea clutters.
Regardless of the purpose for which radar is intended, clutter is very
harmful because it always appears to accompany the useful target signal. It
is thus imperative to provide a mechanism for rejecting clutter by radar
designers and signal processing professionals; a summary of how the clutter
rejection issue is approached is discussed in section 5.4.3. For a sample of the
background material applicable to the clutter models discussed in this section
see Barton (1988), Beckmann and Spizzichino (1987), Guinard and Daley
(1970), Katzin (1957), Kerr (1951), Keydel (1976), Rice (1944), Sinnott
(1989), Trunk (1972), Ulaby et al. (1986), Vizmuller (1995) and Ward (1982).

5.4.1 Land and sea clutter

Clutter from land, or sea, surfaces can be treated as a target that produces
a radar cross-section, o.. To quantify o, requires knowledge of many factors
such as surface composition, measurement wavelength, roughness, polariza-
tion, look (depression) angle, wind velocity (for sea), etc. Land and sea
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clutter cross-section o, is proportional to the product of land reflectivity, ?,
or sea reflectivity y (to distinguish it from land reflectivity) and the illumin-
ated surface area A. (in mz) within a radar resolution cell. Reflectivity is
dimensionless. So, the clutter radar cross-section is written as

o, =A.6° m? (5.75)

This equation is the clutter radar cross-section of a single unambiguous
range within a cell. However, in a given ambiguity range, all the contribu-
tions from all range cells that map on to the cell that is being resolved must
be added. Knowing the clutter radar cross-section, the clutter power, P,, in
a given range ambiguity can be quantified.

Before exploring further, it is necessary to have a close look at the nature
of clutter in a typical radar antenna pattern. Although radar attempts to
concentrate its energy in a tight beam, in fact, it transmits and receives
energy to some extent from all directions: mainlobe and sidelobes — compris-
ing the near sidelobes (those closest to the mainlobe) and the far sidelobes of
different intensities, see Figure 5.14. However, for analytical purposes, these
sidelobes are lumped as the same.

Whenever the mainlobe and sidelobes illuminate a target, surface clutter is
returned with the signal, see Figure 5.15. Clutter received from the mainlobe
is called mainlobe clutter (MC) and that via the sidelobe is called sidelobe
clutter (SC). In addition, in the mainlobe, there is another clutter called
residual mainlobe clutter (RMC). RMC is present in all detection cells, its
power is more important than the MC since detection is not attempted in
detection cells containing MC. The residual clutter power is the same as that
in MC but modified by the MC rejection factor, K,.;. For completeness, if the
radar antenna is hoisted above the surface at altitude £, (m), altitude clutter
could be received directly below the radar platform. Since radar platform
motion is relatively stable and constant, the altitude clutter is centred on zero

Mainlobe

Magnitude

Closest sidelobes
Far sidelobes

iy

T T T T T T
—-360 —240 -120 0 120 240 360
Degrees away from boresight

Boresight

Figure 5.14 Typical radar antenna pattern
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Land or sea surface
" .. Apatch

Footprint with clutter patches

Figure 5.15 An example of footprint clutter patches in a range cell

Doppler, hence neglected. Consequently, the primary clutter powers of con-

cern are that of the SC and RMC, denoted as P.scy and Prmc) respectively.
A cross-sectional view of a footprint shows a number of clutter-ring

patches. For analytical purpose, the ith clutter patch is considered, as in

Figure 5.16, where R;, Ax;, A; and \; are the range to the clutter patch, the

elemental extent, area and grazing angle of the ith clutter patch respectively.
Using Figure 5.16(b),

sin\; = % (5.76a)
Ax; = C—; (5.76b)
X; = R;cos (5.76¢)
A; = 2nx;Ax; (5.76d)

() (b)

Figure 5.16 Geometry of ith ring of clutter patch: (a) clutter rings; (b) line representation
of ith ring
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The illuminated surface area A4, is

A, _ZA _2ncos¢( )ZR- (5.77)

Note that the sum of all grazing angles equals \: i.e., \ = > ;. Expression
(5.77) is valid for the sidelobe consideration because only the area of the entire
ring is of interest. However, in the mainlobe, only a fraction of the ring’s circum-
ference within the main lobe, that is, Ay;/2mx;, is of interest. Consequently,

Ay
Acurey =) Aiz =" (5.78)
i 1

where
Ayl' = ngl- (5793)

0, =angular extent of a ring’s circumference, in radians. It can also be
expressed in terms of angular extent of the ith ring patch in the main-
lobe footprint and its gain relative to the mainlobe gain. Specifically,

eg = Zg?ei(mainlobe) (579b)
By substituting (5.57) in (5.56),
AC(MC =0 COS\I}( ) ZRZ - ( ) COS\l’ZglR 6 (mainlobe) (580)

Having defined the mainlobe and sidelobe illuminated area given respect-
ively by (5.80) and (5.77), the next task is to define the reflectivity for land
surface, o’ and sea surface, ¥, for the associated clutter radar cross-section
to be determined. After this, the clutter power P,, analogous to (5.5), can be

quantified. Specifically, for land clutter

R;
2 .
(PC(RMC) > _ M [ﬂ} (Kt’jg;mamlobe> < eg ) ; R;L.m GO (581)
Pesc) n(4n)® L2 Giidelobe )\ X
P

And for sea clutter,

R;

: S

PC(RMC) — M @ K“’]Gmalnlobe eg f f Lp’ X (5.82)

P 3 2 G2 2 X '
¢(SC) n (41’[) sidelobe T Z R“L,

where L,; = propagation losses. Other symbols are as previously defined in
the text.

5.4.1.1 Land reflectivity model

A simple model for land reflectivity, at grazing angle Vs, is

o’ = ysiny (5.83)



Target detection range in clutter 139

where y has values between 0.03 to 0.15, characterizing different terrain
types. For instance (Barton 1988; Levanon 1988):

(1) 0.03<y<0.1 land covered by crops, bushes and trees;
(1) y=~0.01 desert, grassland and marshy terrain; and
(iii)) vy ~ 0.32 urban, or mountainous regions.

At low grazing angles, as applied to ground-based radar, propagation con-
siderations become dominant.

With (5.54) and (5.61) in (5.59), the clutter power from land surface is
written as

Pc(RMC)> YPA? <K,€ G2 ) ( 0 > 1

= ha cosS ] - mainlobe g -

( PC(SC) n (47'[)3 \|J |: 2 ] Ggldelobe 2n Z R?L[ﬂ
(5.84)

For practical purpose, R, = Z R; is replaced by R,; the clutter range situ-

ated at the centre of the clutter in any given resolution cell, and Ly = Z Ly
being the effective propagation loss.

5.4.1.2 Sea reflectivity model

Sea clutter reflectivity is a complex mix because it requires several para-
meters to realistically develop it. The parameters include frequency, grazing
angle, sea state, polarization, wind direction and surface roughness. In the
current form, the expression (5.61) does not encompass realistic environ-
mental features.

The sea reflectivity ¥ (to distinguish it from land reflectivity, c°) can vary
from one radar resolution cell to another. Clutter in each of the radar beams,
be it narrow or broad beams, will be seen by the radar as the same. The wind
is assumed to be blowing in a way that allows propagation and detection.
While wave swells make reflectivity measurement accuracy difficult, an
approximate value is often settled for. As such, the mean value of the
reflectivity is expressed in (5.63), with appropriate adjustments, and makes
it as real as possible:

T = Xeer + kg + ks + Ky + kg (5.85)

The terms comprising (5.85) are adjustment factors that are defined as
follows.

(i) Sea state adjustment factor, k,, is defined by
ky = fref(S — Yref) (5.86)

where the reference reflectivity X..r, which applies to all sea states, is
constant and taken as 5. The sea state S is an integer, see Table 5.3,
column 1.
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Table 5.3 Description of state of sea

Code figure

Description of

Significant wave

Average period of

of sea state, S sea state height (m) maximum wave (s)
0 Calm (glassy) 0 —

1 Calm (rippled) 0-0.1 —
2 Smooth (wavelets) 0.1-0.5 —
3 Slight 0.5-1.25 —
4 Moderate 1.25-2.5 7.0
5 Rough 2.5-4.0 7.7
6 Very rough 4.0-6.0 8.5
7 High 6.0-9.0 9.0
8 Very high 9.0-14.0 10.0
9 Phenomenal over 14.0 10.0

(ii) The grazing angle adjustment factor, k,, consists of three regions:

(a) For small grazing angles (y < 0.1°), k, = 0.

(b) For grazing angles less than the transitional angle V,, i.e.

©

(0.1° < < \p,), reflectivity y increases by 20 log . The transitional
angle, \s,, is defined as

. _1{0.066)x
, = sin 1( o >

(5.87)

where 6. = root-mean-square of wave height (m).

For grazing angles beyond V,, % increases as 10log\y. To estimate
the grazing angle adjustment factor, kg, two conditions have to
be met: when \, > 0.I° and when V{, < 0.1°. The dependent of
ko on the grazing angle and transitional angle for these condi-
tions are:

(a) Fory >0.1°:

0 Y <0.1°
k, = { 2010g(10) 0.r <y <V, (5.88)
20log(10V,) + 1010g<\|%> ¥, < < 30°
(b) For y, < 0.1°:
0 V<010
ke = 5.89
g {101og(w%) V> 0.1° (5.89)
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(iii) Polarization adjustment k,
The depolarization component of k, is zero. Also, with vertical polar-
ization, the adjustment k, is also zero. So, the adjustment factor for
horizontal polarization may be written as

1.71n(wy +0.015) — 3.81n(%) — 2.51n (0.0001 +T“{3) 222 f<3
ky={ 1.1In(wy+0.015) — 1.1In(1) — 1.31n(0.0001 +%) ~97 3<f£<10
1.41n(wy) — 3.4In(A) — 1.31n<%) ~186 £>10
(5.90)

where f and wy, correspond to the propagation frequency (in GHz) and
the mean wave height (m), see Table 5.3, column 3. Note that In = log,.

(iv) For downward looking radar, the wind direction adjustment, k. is

defined by
kg=-2(2+1.71 LY g2 (% (5.91)
4= 98 Toa 2 '

For an upwind looking radar, k; = 0.

In essence, with the knowledge of parameters denoted by (5.86) through
(5.91), and upon their substitution in (5.85) and (5.84), the sea clutter power
can be evaluated.

The task now is to account for clutter by calculating the signal-to-clutter
ratio (S/C). If the major clutter contributor is from a land, or sea, surface,
then replace N; in (5.32) with P.rmc), Pescy from (5.84). However, if the
combined noise-plus-clutter power is considered, assuming both effects
occur incoherently, then the clutter is the sum of input noise power — that
is, N; from (5.33) — and surface (land or sea) — that is, P.rmc), Pesc) from
(5.84).

Knowing the (S/C) required to achieve the desired detection performance
(either extrapolating from performance curves, or using Neuvy’s expres-
sions, in section 5.3 in conjunction with an appropriate probability of
detection, P,, and acceptable probability of false alarm, Py) the range
where target detection is possible can be estimated.

The preceding development assumes that there are no additional clutters in
the ‘look-path’ of the radar. If another clutter is present, for instance rain, the
previous equations will need to be modified — discussed in the next section.

5.4.2 Rain clutter

For the rain clutter to be meaningful, rain rate is taken to be the aver-
age over a widespread ‘stratiform’ rainfall. Rain rate, r,, and hence mean
reflectivity, m, are assumed to vary spatially within any typical storm. The
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cross-section of precipitation, o,, is proportional to the product of rain
reflectivity 1,(m?/m?), and the volume V,(m?) within a radar resolution cell:

c,=n,V. (m?) (5.92)

Similar to land and sea clutter, backscattered power is directly proportional
to reflectivity with its proportionality constant being the volume the rain
occupied in a cell.

5.4.2.1 Volume resolution cell

Consider the clutter range R, to be situated at the centre of the clutter in the

resolution cell. The geometry of volume clutter is shown in Figure 5.17.
The volume resolution cell V., is defined as

V.= AwAHAR (m?) (5.93)

The vertical extent of the beam in the rain or height of the radar resolution
cells (whichever is lesser) is AH, which is defined by

AH =0,R. (m) (5.94)

In the cross-range direction, the width Aw of the illuminated area is deter-
mined by the horizontal antenna beamwidth 04, defined by

Aw =06y R, (5.95)

The difference between the leading edge of the pulse and the end of the pulse
being reflected from the surface at a given time delay AR is defined by
1
AR = ¢t (5.96)
This expression is valid for simple uncoded pulses, where ¢ is the speed of
light. For pulse compression radar the time-bandwidth product of the
transmitted pulse equals the pulse compression ratio so that t in (5.96) can

w
VAR~

L7
s

Source

Figure 5.17 Geometry of volume clutter
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be interpreted as the compressed pulse width t.. However, for a matched-
filter receiver with rectangular spectral envelope,
¢

AR =
2B,

(5.97)
where B,, is the receiver beamwidth in Hz.

5.4.2.2 Rain reflectivity model

Rain reflectivity, n,, fluctuates with time within each radar volume resolu-
tion cell. The fluctuation in n, within each cell is governed by the exponen-
tial probability density function

() = %ei (z) (5.98)

y

where 7, is the mean reflectivity for each cell. Mean reflectivity and rain rate
r. (mm/hr) are assumed approximately constant within each resolution cell
and are functionally dependent of propagation frequency /' (GHz):

W, =/ (m?/m?) (5.99)
where « is the proportionality constant, defined as

K:{7><1048 f < 6GHz

13%x 104 f=35GHz (5.100)

Values of x in between the specified frequencies are obtained by linear
interpolation thus:

K = [740.206897( f — 6)] x 104 (5.101)

Figure 5.18 shows the variability of mean rain reflectivity against frequency.
In view of the preceding expressions, the rain clutter radar cross-section is
expressed as

. = Kf4r,l,‘6R39H9V% (5.102)

This relationship holds when the radar range has no ambiguities in which
clutter is present. Like the land and sea surfaces’ power derivation, the rain
clutter power can be expressed as
PtG27\12 CcT
Peiuainy = — 5 O R2(040,} (5) 5.103
¢(rain) 1’](4TC)3R§ Kf T, c{ H } ) ( )

Since f is in GHz and the propagation wavelength A = 0.3/f, then

0,0, = 47/G,. So,
P,G,\ 0.3/ \? /et
e (LG @
Pc(raln) K}’r ( n )(4TERC) (2> (5104)
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Figure 5.18 Mean reflectivity of rain against propagation frequency. Note that the unit of
rain rate (r,) is in mm/hr

To account for clutter in the radar equation, replace the input noise power
N; in (5.33), with the rain contribution in (5.104), if and only if rain is the
major contributor. However, if the combined noise-plus-clutter power is
considered, assuming both effects occur incoherently, then the clutter is the
sum of noise N; in (5.61) and rain (5.104); that is, C = N; + Pe(rain)-

Knowing the (S/C) required to achieve the desired detection performance
(either extrapolating from performance curves, or using Neuvy’s expres-
sions, in section 5.3 in conjunction with an appropriate probability of
detection, P,, and acceptable probability of false alarm, Pr) the range
where target detection is possible can be estimated.

In summarizing therefore that since rain clutter, for a defined rain rate
and propagation frequency, has both mean reflectivity and Doppler compon-
ents that are statistically distributed, the mean reflectivity will vary in space
between rain cells and temporally (in time) as a consequence of variation in
rain rate. The fluctuation in reflectivity over short periods of time does not
invalidate the reflectivity expressions.

5.4.3 A summary of clutter rejection techniques

There are many ways to reject, or at least reduce, clutter. Each of these
techniques has received much attention in the literature of which the section
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could not do substantial justice to its description and implementation.
However, a summary of these techniques is described (Mao 1993):

1. Preventing the clutter energy from entering the radar antenna by

(a) installing the radars in high mountains,
(b) tilting the radar antenna to higher elevation angles, and
(c) surrounding the radar antenna with a ‘clutter shelter fence’.

All these methods can easily be applied to existing radars.

3. Shaping the beam pattern of the radar antenna to enhance its signal-to-
clutter ratio. A typical illustration is the use of dual beam antennas for
airport surveillance, where a high receiving beam is used to increase the
signal strength of neighbouring aircraft.

4. Adopting the polarization technique to enhance its signal-to-clutter ratio.
For instance, circular polarization can reduce the raindrop radar cross-
section by 15~30dB while the cross-polarization technique would
reduce the target-to-precipitation echo by 15~ 25dB.

5. Reducing the clutter energy by decreasing the size of radar’s resolution
cell. Narrowing the pulse width, narrowing the beamwidth (though
limited by the antenna size), or adopting pulse compression can achieve
this. This method is particularly relevant to sea clutter rejection in ship-
borne radars.

6. Preventing the receiver from saturation.

7. Suppressing the clutter in the time domain with the constant false alarm
ratio (CFAR) detector or adaptive threshold or clutter map. More is said
of CFAR in Chapter 10. However, these models only can obtain super-
clutter visibility (S,CV).

8. Suppressing the clutter in the frequency domain with moving target
indication (MTI) or moving target detection (MTD) techniques. These
techniques can obtain sub-clutter visibility (SCV).

5.5 Radar equation for laser radar

Laser radars constitute a direct extension of conventional radar techniques to
very short wavelengths. Like the acronym derived for conventional radar, laser
radar is called either ladar (laser detection and ranging) or /idar (light detection
and ranging). Laser radar systems are active devices that operate similarly to
microwave radars but at a much higher frequency (Hovanessian 1988). This
higher frequency has a beneficial effect because of smaller components and
remarkable angular resolution, but suffers considerable atmospheric attenu-
ation losses at higher frequencies if built to operate on the ground. Laser
radars built for ground operations are range limited (about 10 km). However,
space-borne laser radars have larger ranges (i.e. R>>100km) because they
suffer very little, if any, atmospheric attenuation losses.
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5.5.1 Laser performance calculations

The design of laser radar follows the same general principles as other radars,
but with subtle differences. For example, when the target is in the far field of
the laser radar, and if the laser beam is greater than the target’s width, (5.4)
applies. However, when the laser beam is less than the target’s width, (5.4)
would still hold with certain modification. Also, if the laser radar is operated
in the near-field situation, its beamwidth expression will modify the radar
equation. These conditions are discussed in this section.

For the case of far-field operations and the beamwidth greater than the
target’s width, instead of the antenna gain G, the laser beamwidth is usually
measured. As such the gain can be expressed as

G,:< i )2 (5.105)

0w
Upon substitution in (5.4), yielding
P.cA4,

=—>—° 5.106
1603, R* (5-106)

r

Beamwidth is expressed as a function of lens diameter, D; (m), and wave-
length, A (m):
Opw =k « (5.107)
Bw =Ko .
where kg is the aperture constant determined by the aperture illumination
function. For example, if the aperture is uniformly illuminated

4
0.84 < ko < (5.108a)

And for a Gaussianly illuminated aperture
ko =2.44 (5.108b)

It is appropriate at this junction to make a distinction between the beam-
width measurements in conventional microwave and laser radars.

In conventional microwave radars, the one-half power (3 dB) point is
usually applied. For instance, the 3dB value for a sinc¢ functioned beam
structure is equal to the bandwidth, expressed by

A
O = 0.886 - (5.109)

where D, is the radar’s aperture diameter (m).
In the case of laser radar, as in optical systems, e~ !(=0.36788) is used. So,
A

—1.05> 11
0w osDL (5.110)
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Following a similar procedure in obtaining (5.34), the minimum detectable
signal for laser radar can be developed as follows. Unlike the microwaves
where the receiver sensitivity is determined by thermal noise, quantum
effects determine the sensitivity of laser receivers. The equivalent input
noise power is given by,

N; = hfB, (5.111)

where £ is the Planck’s constant (=6.6256 x 1073 W-s?), and B, is the noise
bandwidth.

Quantum-limited receivers are analogous to superheterodyne (heterodyne
or coherent) receivers in microwave radars. Laser radar of this type is also
called a photomixer. In general, when the background noise is low, and for
short-pulse modulation, the laser detector operates as a quantum limited
device and gives the same detectivity (meaning, inverse of equivalent noise
power) as heterodyne detectors (Skolnik 1980).

For laser radar with a video receiver,

N; = 2hfB, (5.112)

Video receivers, when employed in microwave radars, are far less sensitive.
Video receivers are also called incoherent (envelope) receivers or direct
photodetection. Photodetection receivers are less complicated than the
photomixing type. As such, photomixing receivers require local oscillators
and stable transmitters.

Example 5.5 Compare the thermal noise power and quantum noise power
of the microwave and laser radars if the propagation frequency and noise
bandwidth equal 1 GHz and at room temperature (=27 °C).

Solution

From (5.29), the microwave thermal noise, Nihermal = KTB, = —114dB
From (5.111), the laser (quantum) noise, N; = hfB, = —152dB

Frequency controls primarily the level of noise in laser radar while tempera-
ture primarily influences that of the noise in the microwave radar.

The equivalent noise power expressed by (5.111) and (5.112) assumes that
the sum of the residual powers (i.e. contributions from the dark current
power, local oscillator power and background power) is far less than the
received power and their effect on the minimum detectable signal is negli-
gible. For more discussion on the selection of design components and their
responsiveness, the reader is advised to read Jelalian (1992).

By setting (5.111) or (5.112) to thermal noise as in (5.34) (i.e. Nihermal = N;),
an equivalent noise power (or temperature) can be estimated for the laser
receiver. Laser receivers are generally of greater effective temperature (or noise
figure, Fy) than the contemporary microwave receivers. Subsequently, for #,
photoelectron emissions (analogous to the number of pulsating signals
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received by microwave radar), the minimum detectable signal Sy, for
quantum-limited detection is
N; hfB,
Smin =H,—=n 5.113)
S T (
where n is the detector quantum (or optical) efficiency. Considerable care
must be taken to compensate for large Doppler frequency shift. For
instance, when a target is in motion relative to laser radar, a large frequency
shift occurs which can place the echo signal outside the receiver passband.
To arrest this large shift, a rapidly tuning laser local oscillator and/or a bank
of IF filters are necessary in the laser radar circuitry.
Like in microwave radar, the laser radar received signal power P, in (5.90)
equates to the minimum detectable signal Sy,;, in (5.113). Specifically,
P,cA, hfB,

P, = =1, 5.114a
1603, R* " my ( )

From this expression, the maximum target range is written as:
1

R=1( Nofiode (5.114b)
2\ n,0%,-h/B,

This expression is the laser radar equation, where A, is the effective aperture
area (m?).

If, however, the laser beam is less than the target’s width, the effect of its
surface is generally included in the target’s radar cross-section estimation. If
the surface is a diffuse (i.e. Lambertian) scatterer, of reflectivity p, then the
target’s radar cross-section may be expressed as:

c = pA, (5.115a)

where the target area is

ROz
A,zn( ZBW> cos ¢ (5.115b)

¢ is the angle between the surface normal and incident radar signal.
If the target is normal to radar beam, ¢ = 0. By substituting (5.115) in
(5.114), the coherent laser radar equation can be written for a Lambertian
scatterer as:

R L [mPMoPid.

_— A1
s\ "B, cos ¢ (5.116)

For an extended diffuse radar target, scattering is often restricted to a half-
sphere. In that a case, the target radar cross-section would be expressed as

G = 2pA, (5.117)
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And consequently, substituting (5.115) and (5.117) in (5.114), the laser radar
equation:

1 mpne P4,
R=- [Pholr 118
i\ 2B, 0 (5.118)

5.5.2 Near-field operation

It is not unusual for laser radar to operate in the near field of the optical
systems. If that situation arises, the near-field beamwidth must be modified.
Instead of (5.91), a near-field beamwidth is formed (Jelalian 1992):

7\‘2 DZ %
O = ko <—+—L> (5.119)
D} R?

where R is the range to target and beamwidth constants.

By substituting (5.119) in (5.89), and following procedures for obtaining
equations (5.114) and (5.116), the maximum detectable laser range when
operating in the near field can be expressed as

2 2 i
R = <1WU’M> (5.120)

1.44n,hB,

providing that R > D3 /A, a condition that satisfies that stipulated by (3.38a)
for a radiating near-field region.

5.5.3 Search field

The objective of a search radar is to detect and locate a target within a
defined volume of space during a specified time interval. An ideal search
radar will consist of the following:

e a matched-filter receiver; that is, where the receiver is matched to the
signal spectrum so that the product of the pulse width and bandwidth is
unity, if a rectangular pulse is used;

o the radar beams are uniformly shaped and abut perfectly; that is, the
beams do not overlap or establish gaps; and

e the search pattern is uniform with 100 per cent antenna efficiency or at least
the delivery transmitted energy uniformly over the designated search area.

As in the microwave radar search parameters, specified by (5.18), the laser
radar search solid angle € can be defined:

Ay

QS:E

(5.121)
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where A, corresponds to the area to be searched. If the laser radar diffrac-
tion-limited transmitting aperture solid angle is denoted by Q = (ko(A/D1))*,
the number of cells n,. to be searched can be determined as the ratio of search
solid angle to the aperture solid angle. Specifically,

Qv DL :
R N 122
SUe) <kexR> (5122)

The frame time required to search a field by the laser radar is expressed by

Dr \’
Tr = ton, = t0As| —— 5.123
T ey (5123
Like the conventional radar, ¢, is measurement-interval time or time dwelled
on the target. It can be recognized from (5.123) that a laser radar would
require high repetition rates, or long acquisition time, for it to perform a
target-search function unless multiple beams are utilized. Would this be a
handicap for operational reasons? Not necessarily so because laser radar
angular resolution, combined with modulation capability, allows substantial
target measurement capability during a single measurement (Jelalian 1992).

5.6 Search figure of merit

Figure of merit (FOM) is an aspect of performance analysis of any radar
systems. From an analysis of propagation condition, FOM can be related to
radar availability. In operational cases, FOM is used in conjunction with
propagation estimates to predict radar detection performance.

Equations (5.17) and (5.18) establish a relationship between solid angle,
area of search and transmitter gain as

4

G = Ap(sinB, —sin6;)

(5.124)

for a unity pattern constant L, = 1. In view of (5.124) the microwave radar
equation (5.37) is recast in terms of the received power as

1 1 tPuy A, o|F?|
P.=(— — : - - 5.125
<47r> (Lm,> {nbLnkToB,,FNAm(sm 0, — sin OL)} [ R } ( )
—— N — ———

constant total radar rarget
losses capability characteristics

where P, is the target signal collected at the radar receiver. Reading after the
equality sign from left to right of (5.125), the following terms are described.
The first term is the proportionality constant. The second term (.) represents
the losses due to the environment. The third term {.} is the radar capability.
This term is called the radar figure of merit (FOM). The radar FOM involves
the power-aperture area product. The larger the FOM the more capable is
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the radar system to scan a larger field in a given time frame, ¢, Radar
wavelength A is not particularly obvious in (5.125) and could be said to be
not particularly associated with any of the terms. However, all of the terms
change with frequency. The fourth term [.] is the target characteristics.

A similar expression to (5.125) for the case of laser radar can be written.
In view of (5.106) and (5.121), a similar expression to (5.125) for the case of
laser radar can be written.

1 22 c
Po={(—)Y{P—>} (= 12
t %/_/ target
constant

radar characteristics
capability

The radar capability term {.} demonstrates the wavelength-beamwidth
dependence of the laser radar search FOM unlike the microwave, which
involves the radar power-aperture area product.

5.6.1 Summary

The preceding discussion on radar and the subsequent development of the
radar equations are concerned with primary radar in which the target acts as
a passive reflector. The inverse fourth power relationship between the reflected
signal power and range presents a major problem when long-range detection is
envisaged. It also presents a problem when attempting to estimate the size of
a moving target. Another type of radar, called secondary radar, helps to
overcome these difficulties by actively interrogating the target. The well-
known secondary radars are beacon and transponder. As will be seen in the
next section the power requirements of secondary radars are modest in com-
parison to the previous because transmission is only one way.

5.7 Radar equation for secondary radars

A secondary radar system is a radio visualization system based on the
comparison of reference signals with radio signals retransmitted from the
position to be determined. Examples of secondary radar are beacons, which
can be land based or mobile on ship, and the transponder-based surveillance
on aircraft.

A radar beacon system is a passive device until a suitably coded signal
triggers it, which in turn emits a series of pulses back to the transmitting
radar. The process by which the transmitting signal triggers the beacon is
called interrogation. So, it can be said that when a beacon is interrogated, it
emits a series of pulses, which are received by the transmitting radar (the
interrogator). The beacon’s response is a reply to the interrogator.
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Three principal system requirements (Johnson and Jasik 1984) frequently
imposed on beacon antennas have the ability to:

e support each one-way link from a power budget as well as time-on-target
viewpoint;

o facilitate extraction of echo responses only from main-beam interroga-
tions and process returns received only in the main beam; and

e estimate target bearings from the responses.

These requirements are based on one-way transmission.

The power and frequency of the return signal are fixed by the beacon
transmitter and are not dependent of the target cross-section, or on the
received signal power, providing the triggering signal is at least at the
required threshold. Since there are two distinct events, interrogation and
response, two radar equations would be required depicting these events.

(1) Interrogation

PG A,
R = 4;157;-17 (5.127)
(i) Response
PyGpA
R = (5.128)
min

where

(1) P, and G, are, respectively, transmit power and antenna gain of the
interrogating radar.

(i) P, and G, are the power output and gain of the beacon antenna
respectively. This gain has been found to be approximately © even for
a small airborne antenna (Barton 1988).

(ii1) Spmin and Sy, correspond to the minimum detectable signal of the
beacon receiver and radar receiver.

(iv) A., and A, correspond to effective aperture area of the beacon antenna
and radar receiving antenna.

In practice, R in (5.127) and (5.128) are approximately equal. However, if the
estimated ranges in (5.127) and (5.128) are different, the lower value applies.

Example 5.6 Estimate the power received by a radar beacon that pumps
out 100 W power, with a gain of 30 dB when transmitting at 3 GHz if a target
is 100 km away.

Solution
Rewriting (5.127) in terms of the received power as well as substituting (5.9)
in place of aperture area,

0.3G,>2_ 0 ( 0.3 x 1000

2
I 00— 00 ) 6330w
An/R 4><Tc><3><105) "

Smin:Pt<
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5.7.1 Application of beacon radar systems

Beacon radar systems are used for different applications. Examples include
instances where there is a need:

1. To enhance the target return signals with respect to their strength and/or
information contents (Johnson and Jasik 1984).

2. To provide useful information on the capability of observation data link.

3. To assist in the surveillance of moving targets or provide information on
surveyed points for self-location (e.g. distress signal picked up by satellite
or other sensors).

4. To serve as a position reference for over-the-horizon radar.

5. To maintain accurate target tracking. For instance, when a target of
interest is at a distance far from the radar, the signal reflected from the
target might be too weak to be received. Under such circumstances, accur-
ate tracking can be maintained by placing a beacon on the target.

6. To identify a friend or foe (IFF) target. It has been used, and is still used,
extensively for identifying night fighters by conveying aircraft altitude
and position coordinates to the ground controller as collision avoidance
systems.

7. To assist aircraft homing in to their bases or making rendezvous with
ocean-based convoys.

8. To navigate a ship within horizon range of land with very good precision.

5.8 Summary

This chapter has derived radar equations for three radar types, namely con-
ventional, laser and secondary. Included in these radar equations were system
and atmospheric losses as well as surface effects. The equations enabled us to
estimate the radar’s detectable range in benign and clutter environments. The
figure of merit for a specific radar time frame is also studied.

Appendix 5A Noise in Doppler processing

Noise in a Doppler filter can be obtained as follows. It is known in Chapter 3
that Doppler bandwidth is inversely proportional to the compressed pulse
width by

Te
Alternately
p, = 'RE (5A.2)
Ny

where N, = number of samples coherently processed.
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It is also known in Chapter 1, from the Nyquist theorem, that a foldover,
or an aliasing, occurs at twice the sampling frequency (2fj). So, the number
of ambiguities, N,,,;, that can be folded, or mapped, into a given cell is

B,

Nm i p—
anb = PRF

(5A.3)

Consequently the noise in a Doppler is a fraction of the front-end noise
bandwidth. Specifically,

B B,
Ny=C, FkTyB, |——| =2
d n 0Dn |:PRF:| (Bn)

front end noise (5A4)
o E1kTOle
~ " 1PRF

Note that

B, = 1/1, where t = transmitted (uncompressed) pulse width
C, = compression ratio
TPRF = d,; the duty cycle.

If the noise power in the minimum detectable signal of (5.33b) is replaced
with that in the Doppler (5A.4), the input signal can be written as

_ C.FykToBy [ So
5=~ (No) (5A.5)

Equating this expression to the received signal power in (5.5), the resulting
equation is in the form of a radar equation:

P, G,A.c
(4n)*k Ty BaFy (;3—3)

(5A.6)

Riyax =

where P,, = P,iPRF = P;d, and C, = 1.

The only modification to the radar equations developed in range-cell
processing when Doppler processing is that the noise bandwidth, B,, is
replaced with that of the Doppler, B,;.

Problems

1. Why is the figure of merit important in the design of a radar system?

2. Assume that you are tasked to design a radar system, what are the salient
questions to ask?

3. Examples 5.1 and 5.2 demonstrate the applicable range limits. How will
you obtain significant target detection beyond the limits?
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4. Design a computer program that evaluates the significant target detection
in the face of combined clutter and noise presence during radar surveil-
lance.

5. Is it possible to combine the microwave and laser technologies to over-
come the inherent problems in radar applications? What steps would you
take to overcome mutual interference from both systems?






Part Il

lonosphere and HF Skywave
Radar

This part comprises two chapters: 6 and 7. When a wave traverses the regions
comprising the atmosphere it results in the degradation of signal-target
information due to spatial inhomogeneities that exist and vary continuously
with time in the atmosphere. The spatial variations produce statistical bias
errors, which are an important consideration that must be accounted for
when formulating and designing a high-frequency (HF) skywave radar
system. Chapter 6 explains how these errors are quantified including the
polarization rotational effect on the propagation wave. Chapter 7 explains
the design consideration and performance of the skywave radar.






The ionosphere and its effect
on HF skywave propagation

This chapter explains the structural composition of the atmosphere and the
propagation errors introduced into the skywave radar measurements as
a result of atmospheric anomalies. Propagation errors manifest themselves
as refractive bending, time delays, Doppler errors, rotation of the phase of
polarization (called Faraday effect), dispersion effects, and attenuation.
Atmospheric anomalies brought about by man-made devices are ignored.

6.1 The atmosphere

The structure of the Earth’s atmosphere is shown in Figure 6.1. The Earth’s
atmosphere varies in density and composition as the altitude increases above
the surface. The lowest part of the atmosphere is called the troposphere and
it extends from the surface up to about 10 km. The gases in this region are
predominantly molecular oxygen (O,) and molecular nitrogen (N,). The
Earth’s weather is confined to this lower region (troposphere) containing
90 per cent of the Earth’s atmosphere and 99 per cent of the water vapour.
All of our normal day-to-day activities occur within this lower region. The
high altitude jet stream is found near the tropopause at the upper end of this
region. The atmosphere above 10km is called the stratosphere. In this
region, the gas composition changes slightly as the altitude increases while
the air thins rapidly. Within the stratosphere, incoming solar radiation at
wavelengths below 240 nm is able to break up, or dissociate, molecular oxy-
gen, O,, into individual oxygen atoms, each of which, in turn, may combine
with an oxygen molecule to form ozone, a molecule of oxygen consisting of
three oxygen atoms (Os). This gas reaches a peak density of a few parts per
million at an altitude of about 25 km becoming increasingly rarefied at higher
altitudes. At heights of 80 km, the gas is so thin that free electrons can only
exist for short periods of time before they are captured by a nearby positive
ion. The existence of charged particles at this altitude and above signals the
beginning of the ionosphere: a region having the properties of a gas and of
plasma. The upper atmosphere is collectively called the ionized atmosphere
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Figure 6.1 Structure of the atmosphere (courtesy: NASA)

(simply the ionosphere), comprising D, E and F layers. It is the ionized layers
that constitute the principal factors in radiowave propagation. The compos-
ition of the ionized atmosphere is discussed in detail later under each layer’s
heading. It will be instructive to look at how the ionosphere is formed.

6.2 The ionosphere

At the outer reaches of the Earth’s environment, solar radiation strikes the
atmosphere with an average power density of 1.37 kW/m?, a value known as
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the ‘solar constant’. This intense level of radiation is spread over a broad
spectrum ranging from radio frequencies (RF) through infrared (IR) radi-
ation and visible light to X-rays. Solar radiation at ultraviolet (UV) and
shorter wavelengths — in the 30 nm and 120 nm range — is considered to be
‘ionizing’ since photons of energy at these frequencies are capable of dislodg-
ing an electron from a neutral gas atom, or molecule, during a collision.

When an incoming solar-radiation incident on a molecule, or gas atom,
occurs the molecule absorbs part of this radiation and a free electron and a
positively charged ion are produced. Of course, cosmic rays and solar wind
particles also play a role in this process but their effect is minor compared
with that due to the Sun’s electromagnetic radiation.

At the Earth’s outer atmosphere (i.e. thermosphere and protonosphere,
the highest levels), solar radiation is very strong but there are few atoms to
interact with, so ionization is small. As the altitude decreases, more mol-
ecules are present so the ionization process increases. At the same time,
however, an opposing process called recombination begins to take place in
which a free electron is ‘captured’ by a positive ion if it moves close enough
to it. As the gas density increases at lower altitudes, the recombination
process accelerates since the gas molecules and ions are closer together. A
point of balance between these two processes determines the degree of
‘lonisation’ present at any given time.

The number of molecules increases further even at lower altitudes thereby
creating more opportunity for absorption of energy from a photon of UV
solar radiation albeit at reduced radiation intensity because some of it was
absorbed at the higher levels. The radiation profile through the atmosphere
is neither constant nor monotonic with height. A point is reached, however,
where lower radiation, greater gas density and greater recombination rates
balance out and the ionization rate begins to decrease with decreasing
altitude. This leads to the formation of ionization peaks or layers. Since
the composition of the atmosphere changes with height, the ionization rate
also changes and this leads to the formation of several distinct ionization
layers called the ‘D’, ‘E’, ‘F1°, and ‘F2’ layers or regions.

The altitude of the D layer is between 70 and 90 km above the Earth’s
surface, the E layer is between 90 and 130 km, and the F1 layer is between 130
and 200 km. The F2 layer is above 200 km and its upper limit varies with the
latitudes; namely, at the mid-latitudes, F2 altitude is between 250 and 350 km,
while at the equatorial latitude it is between 350 and 500 km (Rush 1986).

The solar radiation that comes from the hotter regions is closely linked
with sunspot groups on the surface of the sun. The activity of the sunspot
groups varies markedly from month to month and from year to year. Solar
activity also varies, on the average, with an 11-year cycle. The fact that the
ionosphere is created by the sun suggests that its structures and electron-
peak densities will vary greatly with time of day (diurnal variation), season
of year (seasonal variation), the 11-year sunspot cycle, and geographical
location (latitudinal variation).
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As seen in Figure 6.1, the ionosphere envelops the Earth at varying
heights from the D layer to F2 layers. During the day, all the various layers
are present and each layer has its critical frequency (more is said about
critical frequency later in the text). At nighttime, there is no ionizing radi-
ation and the electrons and ions recombine to form neutral atoms or mol-
ecules, thereby causing the low layers to disappear very quickly and leaving
only the F2 layer existing, although at a reduced electron density. The F2
layer is the most important for HF propagation because

e it is present all day long,

e it allows the longest hop lengths to be achieved due to its high altitude,
and

o the highest frequencies in the HF band may be reflected.

Each of the ionospheric layers features different chemical and physical
composition, which is briefly discussed in the next few paragraphs.

6.2.1 Composition

The D layer corresponds to a sparse layer of polyatomic ion ‘clusters’ with
electron density (N,) between 10® and 10'°m=3. N, has a mathematical
functional relationship with altitude, temperature, zenith angle and molecu-
lar composition — more is said about this in the next section. The D layer
plays an important part in low-frequency/very low-frequency (LF/VLF)
propagation. This layer is important also at HF because of its absorbing
properties, which stem from the relatively high air density and consequent
large collision frequency between electrons and neutral molecules (Rishbeth
1988). Because of the absorption property, the D layer is not used as a
reflecting medium for HF skywave radar signals.

The E layer corresponds to a moderately electron dense layer (10° < N,
< 10" m~?) of molecular NO+ ions and atomic O,+ ions, occasionally
‘peaking’ in the so-called sporadic ‘E (Es) phenomenon. As the name sug-
gests, the sporadic E layers are often patchy in nature and occur sporadically
in the E layer. A typical patch may extend horizontally for about 10 km. At
times, they may be continuous over large distances. The Es layer is import-
ant in practice because when it is dense it affects radio propagation quite
seriously; causing fading and preventing any echoes reaching the upper
layers, but when it is patchy it displays near perfect mirror characteristic
creating near perfect reflection when continuous over large distances.

The F region corresponds to an electron dense layer (10'' <
N, <102 m™3) of atomic O,+ ions. One still finds subdivision into the
F1 region — the transition between molecular and atomic ions — and the
F2 region — the ‘peak’ of atomic O,+ ions.

Drukarev (1946) seems to have been the first in foreseeing that photoioniza-
tion would produce an electron gas with excess energy, and that its temperature
T should greatly exceed that of the neutral gas when the rate of ion production
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Figure 6.2 Vertical profiles of neutral and electron temperatures in daytime middle latitude:
(a) neutral gas temperature, T, (b) electron gas temperature, T,

is high. Typical daytime and nighttime temperature curves at mid-latitude for
the E and F regions of the ionosphere are depicted in Figure 6.2. In the figure,
T, and T, are the vertical profiles of the temperatures of neutral gas tempera-
ture and electron gas temperature respectively. At night, however, thermal
equilibrium is restored because photoionization has stopped and the electron
temperature 7, collapsed to 7,. Good fit approximations for daytime and
nighttime temperatures for mid-latitude may be expressed as

To(h) = {50.8018»5225*103’1 h < 300 6.1)
700 otherwise
T, (h) = 125.04¢°7052%10"% (6.2)

Although thermalization of the electron gas and ion gas proceed much
more rapidly than the mutual thermalization of the electrons and ions, there
occurs a situation when both electrons and ions belong to approximately
thermalized populations (Giraud and Petit 1978). This process does not
translate to equal temperatures for electron and ion temperatures. By ther-
malization process the description of the ionosphere changes to a whole
medium consisting of not just the ionized component but charged particles
embedded in the neutral gas and permeated by the magnetic field of the
Earth. The reader can consult Giraud and Petit (1978, Chapter VIII) if more
information is required on the thermalization process. In addition, the
Earth’s magnetic field has some of the propagation waves traversing the
ionosphere. This influence becomes clearer to the reader in section 6.2.2.6.

6.2.2 Ray tracing and propagation errors

6.2.2.1 Refraction and reflection

The level in the atmosphere to which any frequency penetrates depends on
its absorption hardness and the gases it can ionize. For this reason as a signal
is beamed from a transmitter, it undergoes refraction or bending; the extent
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Figure 6.3 An illustration of refraction and reflection

of bending depends on the propagation wavelength. When the signals
undergo sufficient refraction, they return to the Earth’s surface. Reflection
and refraction are sometimes difficult to separate. As an illustration, con-
sider a radio wave being received at point B as shown in Figure 6.3.

The radio wave could equally have been refracted by the ionosphere as it
travelled from point A. Also it could also have been reflected by an apparent
layer at point C. It is apparent therefore that there would be a critical frequency,
f., at which only partial reflection will occur. Conversely, only frequencies
above this critical frequency can traverse the ionosphere. The critical frequency
has a mathematical physical explanation, to be discussed later in this section.

The ionosphere, as a medium, is composed of dielectric materials with
variable dielectric constants, or refractive indices. It is logical to suggest that the
refractive indices are a varying function of the propagation path. From element-
ary physics it is known that when radio waves are subjected to refraction they
undergo a change in direction, or refractive bending, and retardation in the
velocity of propagation. The change in direction causes errors, which are
introduced in the radar angular and range measurements of target position.
To quantify the propagation errors, caused by the ionosphere, knowledge of the
height variation of each layer’s dielectric constant or refractive index is required.

6.2.2.2 Refractive index

By using the transmission line theory, one can generally define a plane wave
that propagates along the x-axis in the ionosphere as having field strength
formalized by

E = Eye" sin ot (6.3)
where

Ey = amplitude of the plane wave
v = propagation coefficient, which is a complex number, definable as

y=a+jB (6.4a)



The ionosphere 165

The reference part, o, of the propagation coefficient represents an attenu-
ation, which is called the attenuation coefficient. The quadrature compon-
ent, B, of the propagation coefficient represents a change of phase down the
ionospheric medium, and so [ is called the phase-change coefficient. So, the
travelling wave would move at a velocity, v, in the direction of decreasing x
defined as

v B (6.4b)
This expression is called retarded function. If the absorption coefficient is
zero, the quadrature component, B, can be neglected. This situation occurs
for higher frequencies, or smaller concentrations of electron densities.
The force, F, exerted on an electron of charge e,, in the direction of the
electric field £, may be defined as

F=¢FE (6.5)

The value of an electron charge is known; thatis, e, = 1.602 x 10~ (coulomb).
This force on the accelerating electrons equates to
d’x
F =am, = m,— 6.6

ame = me— (6.6)
where ‘@’ is the acceleration of the electron and m, is the electron mass whose
value is known; that is, m, = 9.1 x 1072% (gm). Since the mass of an ion is far
greater than that of an electron, the motion of an ion in the field is con-
sidered negligible. Hence, by equating (6.5) to (6.6), and neglecting the
propagation coefficient (exponential) term in (6.3), the differential equation
of the electron motion in the x-plane can be expressed as

d*x
dr?

Integrating this expression, the velocity of the electron may be defined by

M, = e, E( sin ot (6.7)

dx  e.Eysin ot

dt Me® (6.8)

The motion of the electrons produces a convectional-current density i,
defined by

dx
dt
where N, = the electron density (m~): (more is said about this quantity later
in section 6.2.2.4). By substituting (6.8) in (6.9),

i. = e,N, (6.9)

2N, E t
i, = SelleL0COSOT (6.10)

m,m
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The electric field gives rise to a displacement current density ip. By Maxwell
theory, this current may be thought of as due to the rate of electric flux in the
dielectric medium and defined by
OFE

ip = €— 6.11

ip=¢e~ (6.11)
where € = the medium permittivity, or dielectric constant, with no electrons
present. The displacement current simplifies to

ip = ewEycos of (6.12)

The total current density, i, is simply the sum of the convectional and
displacement current densities:

N,é?
i= (a - 662) ®E) cos ot (6.13a)
N1
where
€=¢&8) (6.13b)

g, =relative permittivity, which is unity for air at standard temperature and
pressure g9 = 8.84194 x 10~!2; the permittivity of free space.

Rearranging (6.13a) in view of (6.13b),

N.e?
i= <1 - G 2) gy Ey cos ot (6.14)
€M

If electrons are present in the medium, their presence will reduce the dielec-

tric constant from ¢ to
N,é?
] ———¢ 6.15
< someco2> ( )

It is understood from elementary physics that a transmission medium with
zero conductivity will have its refractive index, n, measured by simply the
square root of its dielectric constant. Hence, the presence of electrons in the
ionosphere causes a decrease in the dielectric constant to

n= (1 egN") (6.16)

?J()me(x)2

If the propagation wave moves at a constant phase, at any point in the
propagation medium, its phase velocity, V,, may be defined as

Vy=tm (6.17)

n 1 2N,
( - somywz)

where ¢ = speed of light (m/s). It is interesting to note from this expression
that if there are no electrons present in the medium, V, = ¢; that is, the
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velocity of propagation in free space. Also, the phase velocity approaches
infinity ¥, — oo when n — 0: this condition represents a situation when
wave propagation is impossible.

The maximum electron density of an ionized layer can be determined by
transmitting radio waves vertically incident to the ionosphere. Reflection
will occur up to the frequency for which the refraction index equals to zero.
Specifically, equating (6.16) to zero:

2
_ e;N, _
€011,

1 0 (6.18)
If the frequency is still increased, the radio waves will penetrate the layer result-
ing in no reflection. The limiting frequency f. at which the reflections begin to
disappear is called the critical frequency of the layer, which from (6.18) is given by

2
2 _ eeNf*

o, (6.19a)

e,

Noting that f, = ®./2m, the critical frequency f. can be written as

1 /e2N,
== 1
Je 21\ €om, (6.19)

This expression is also known as the electronic plasma frequency, f,. Plasma
occurs when an atom has been stripped of its electron resulting in a net
positive electrically charged gas. Evidently, an alternative definition for the
index of refraction, n, can be written as

n:,/l_%ﬁ: 1—;{ (6.20)

The critical frequency f., of each of the reflecting layers E, F1 and F2, is
denoted on ionograms by foE, foF1 and foF2 respectively, see Figure 6.4.
Also, ”'E, F1 and /'F2 correspond to each layer’s virtual height of reflec-
tion (more is said about virtual heights in section 6.2.3). lonograms are
recorded tracings of reflected HF radio pulses generated by a sounder or
ionosonde (more is said about ionograms in section 6.3). The subscripts ‘o’
and ‘x” denote ‘ordinary’ and ‘extraordinary’ wave trace. The ordinary and
extraordinary are components associated with a characteristic wave that
propagates through the ionosphere having a polarization property. How
an ionogram is interpreted is explained fully in section 6.2.3.1.

6.2.2.3 Modelling critical frequencies

Some good fit approximations that consider the problem of seasonal vari-
ations have been given for estimating the critical frequencies foE and foF1
(in MHz). But models of the critical frequency of the F2 region, foF2, are
available in the form of numerical coefficients.
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Figure 6.4 An ionogram showing critical frequencies and virtual heights

6.2.2.3.1 E layer
foE = 0.9[(180 + 1.44R),) cos {]** (6.21)

The notations & and R, are the solar zenith angle and yearly (12-monthly)
smoothed relative sunspot number defined by

n+5

1
Ry = ﬁ; Ric + 0.15(Ry 16 + Ry) (6.22)

This expression is the most widely used index in ionospheric studies, and as
in (6.22) it depicts the smoothed index for the month represented by k = n
and where R, is the mean of R, for a single month k.

R, is the sunspots’ occurrence measured by the Wolf, or Zurich,' sunspot
number, given by

R, = K(10ga + ) (6.23)

where ga and s are the number of sunspot group and number of observed
individual spots respectively. The scale or correction factor K (usually less
than unity) depends on the observer and is intended to effect the conversion
to the scale originated by Wolf.

! Records contain the Zurich number through 31 December, 1980, and the International
Brussels number thereafter.
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Sunspots are dark spots that appear and disappear with time. They
appear dark because their surface temperature is low (about 3000 K) com-
pared to 6000 K of the ambient photosphere. The activity of the sunspot
groups varies markedly from month to month and from year to year: some
last for a few days whereas a few survive for four or five solar rotations (of
about 27 days each). Sunspots tend to cluster or group together. A group
may contain a single spot or several tens. The most notable feature of sun-
spots is that they occur, on the average, with an 11-year cycle.

The solar zenith angle { is an angle measured at the Earth’s surface between
the Sun and the zenith (in degrees). This angle can be determined from

cos{ = sin Ay, sind + cos Ay, cosdcos 4, (6.24)
where

A, =hour angle of the sun measured westward from apparent noon
expressed by (Schutte 1940)

tan o
tan A[m

Ay =cos™! < ) (deg) (6.25)

for an azimuth up to 90°
Ay, = geographic latitude (deg). Geographic latitude is measured from 0° at
the Earth’s equator up to 90° at its pole, positive to the north, negative
to the south
d =solar declination (deg). For monthly averages, solar declination has been
formalized to a sufficient accuracy by (Davies 1990)

0 = 23.445in[0.9856(Y,, — 80.7)] (6.26)
where Y, = day number starting on 1 January.

Leftin (1976) gave different expressions for midnight and sunrise and sunset
as follows:

foE(midnight) = 0.36[1 4 0.0098R,]" (6.27)

foE(sunrise, sunset) = 1.05[1 + 0.008R 5]*? (6.28)

Equations (6.27) and (6.28) do not hold in high latitudes; that is, above 70°
latitude. Above this latitude (>70°), which is in the auroral zone, the night-
time ionization is produced by particles from the magnetosphere.

6.2.2.3.2 F1 layer
foF1 = [4.3 4 0.01R;2]cos"? (MHz) (6.29)

Ducharme et al. (1971) gave a more detailed expression:

ROF1 = fol fin —fin) 122 cos* L (MH2) (6.30)
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where
foo = 4.408 + 0.0076A 4, — 0.00015A7,, (6.31)
f100 = 5365+ 0.0129A 4, — 0.000248A7,, (6.32)
x = 0.11 4 0.0038 A, — 0.000045A7,, + 0.0003 7, (6.33)

Agiy = geomagnetic latitude (rad)
Ig> = ionospheric index.

The expressions (6.21) through (6.33) hold for values of & < 40°, with
Ig; = 100. Rosich and Jones (1973) gave similar expressions to that of
Ducharme ezal. (1971) but arrived at a peak value of foF1~6 MHz for
IF2 = 150 and Aglat ~45°.

6.2.2.3.3 F2 layer

Unlike the expressions for the foE and foF1, the critical frequency of the F2
layer, that is, foF2, does not follow the cosine rule either diurnally or
seasonally but exhibits a marked longitudinal effect due to geomagnetic
control. Using spherical harmonics, world maps have been developed for
the F2 peak critical frequency foF2. Similar maps have been established for
the propagation factor M(3000)F2, which is related to the height of the F2
peak (Rush ez al. 1984). Models for estimating foF2 are available in the form
of numerical coefficients. CCIR provided an atlas of these coefficients
(CCIR) with subsequent updates, enabling regional centres to produce
their ionogram predicting periodic foF2. An example is Figure 6.5 produced
by IPS for the city of Brisbane, Australia.

Other sources of data are the international reference ionosphere (IRI) and
the Chinese Reference Ionosphere (CRI) (Tiehan and Peihan 1996). IRI is
an international project sponsored by the Committee on Space Research
(COSPAR) and the International Union of Radio Science (URSI). The IRI
build-up, and what and how the formulas are derived, are detailed in Bilitza
etal. (1979). Care must be taken while using and interpreting data produced
by any of these agencies ensuring that a common reference is adopted. Some
of the composite models are discussed under composite parameter model in
the next section.

6.2.2.4 Models for electron density

The previous expressions have shown the linkage of the critical frequency
with the electron density, N.. Numerous models have been reported in the
literature that attempt to chart the electron-density profile. These models
provide analytical expressions that are amendable to mathematical manipu-
lation including the following, which are used extensively in radio wave
propagation work, and to some extent in estimating the virtual heights of
reflection.
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Figure 6.5 Real time map of foF2 for the city of Brisbane, Australia. (Courtesy: IPS, Australia)

6.2.2.4.1 Chapman model

The Chapman model (Chapman 1931) is the simplest type of ionized layer
that can be predicted theoretically even though the model is formed under
highly idealized conditions, namely, the atmosphere is isothermal, the ioniz-
ing radiation from the sun is monochromatic, and the recombination coeffi-
cient, or ion decaying, is constant with height. If the distribution of electron
density with height is quasi-stable and homogeneous, then any layer’s elec-
tron density can be defined by Chapman (1931)

No(h) = No(h)e(1==secte™)  (=3) (6.34a)
and the maximum electron density is
No(h) = Ny(h)sect(  (m™?) (6.34b)

The scale, or normalized height, H, is defined for a homogeneous ionosphere
at height / (in km) and temperature 7 (in degree-kelvin, °K) by

EMyy,

I:]:
kT

(h — hana) (6.34c)

where

m,, = mean molecular mass of air = 4.8 x 10~} (gm)
k = Boltzmann’s constant = 1.38 x 10723 (joule/°K)
g = gravitational constant, g = 9.807 m/s’
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h = height of a reflecting layer in the ionosphere (km)

N,n(h) = electron density at the level of maximum ionization at altitude /1 (cm )

hmax = height of maximum ionization density (km). Mitra (1952) gave
approximate average values of /. per layer, on the hypothesis
that the ionospheric regions are all Chapman, as shown in Table 6.1

T = temperature (°K). This changes with day and night. During daytime,

T =T,, while at night T = T,,.

In terms of known parameters, the normalized height given by (6.34c)
becomes

~ 3411

H= — (h — hmax) (6.34d)
For large solar zenith angle (i.e. { > 80°) the effect of the curvature of the
Earth is important. In this situation, sec({ in (6.34a) is replaced by the
Chapman function, Ch(x, &) (Wilkes 1954).

Example 6.1 There is a need to probe the ionosphere at Melbourne,
Australia, on 25 February at

(a) 3.00 pm local time at 122 km, 256 km and 335 km,
(b) 9:12 pm local time at 132 km and 276 km.

Calculate for each layer of the ionosphere the electron density, critical fre-
quency and refractive index when the ionosphere is probed at 1.2 MHz.

Solution

Inserting numerical values, appropriate values to the following notations are
obtained.

From the Atlas World map, Melbourne geographic latitude, Ay, = 37.45°S
Day number starting on 1 January, Y, = 56

From (6.26), 6 = 23.44sin (—24.34) = —9.6624°

From (6.25), A, = 77.16°

From (6.24), calculate the solar zenith angle { = 73.98°

Table 6.1 Electron density at maximum ionization

Daytime
Layer hinax (km) T (°K) Np(m?)
E 100 341 1.5 x 10!
F1 200 1360 3.0 x 10"
F2 300 1710 12.5 x 10!
Nighttime
E 120 341 0.8 x 1010

F 250 1540 4.0 x 1011
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Table 6.2 Computed values for ionospheric layers functions

Daytime Nighttime
Parameters E F1 F2 E F
N; 10" (m—3) 1.282 2.990 11.236 0.0798 3.399
f. (MHz) 0.102 0.155 0.301 0.025 0.166
n 0.996 0.992 0.968 1.0 0.99

Using relevant values of temperature, 4, and N,, appropriate to each layer
from Table 6.1, computed values of electron density, critical frequency and
refractive index for each layer and time of the day are tabulated in Table 6.2.

General comment on the Chapman layer

Diffusion or scattering has been suggested to affect the ionospheric layer profile
particularly in F2 layer (Kato 1980). Even when diffusion was included in the
electron-density analytical expressions, the shape of the F2 layer is approxi-
mately the same as that produced using the Chapman model. Of course, the
Chapman model has its limitations because of the underlying assumption used
in developing the model, namely, isothermal, single species, single ionizing
radiation, which do not apply to the upper atmosphere. The model, however,
provides an invaluable guide to analysing data and as a useful reference.

6.2.2.4.2 Linear model
N, = o (h — hy) (6.35)

where o is the electron density gradient and 4, the layer base.

6.2.2.4.3 Exponential model
(h=hr)

Ne=Nee i (6.36)

where N, is the electron density at a reference height A, and H is a scale
height that is negative in the topside of the ionosphere.

6.2.2.4.4 Sec h-squared model
a

h— hy,
N, = N,, sec i’ <—> (6.37)

where N,, is the maximum electron density at a height /4, and « is the layer’s
thickness.

6.2.2.4.5 Quasi-parabolic model

N. =N, [1 - (M) 2] (6.38)
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where r is the radial distance from the centre of the Earth, r,, is the radial
distance of the peak electron density N,, and ry is the radial distance to the
bottom of the layer.

6.2.2.4.6 Composite model
One of the composite models available is a two-parabola model: one para-
bola representing the E layer and the other representing the F2 layer. The
two parabolas could overlap or be distinct. An example of such parabolas is
shown in Figure 6.6, developed by Bradley and Dudeney (1973).
The height of the peak density of the F2 layer is derived from
1490

W<\ (6.39)

hmFZ =

and its semi-thickness found as

0.618 71°% 0.618 1%
YmF2 = M2 (1 + {m} ) — Iminp2 — 104 {m] (6.40)

where

hmin F2 = minimum height of the F2 layer (km)
0.18

D=—— 6.41
0. 14 (6.41a)
foF2
.= 6.41b
0, foE ( )
The parameters foE, foF2, and /i > can be obtained from ionograms.
MUF(K
M(K) = # (6.42)
Je
hmF2
Ymr2
=
=2
[0}
I
hme
,VmE I_
foE 1.7foE foF2

Plasma frequency

Figure 6.6 Electron density profile using two-parabola model
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The percentage of dependence of the MUF on K for a short-term prediction
is given by (Barghausen et al. 1969)

MUF(K) = (p 0 ;(F)([)’ K) MUF(0) (6.43)

where

po = an intercept ~ 100

b =constant that varies between —13 and 20. The negative value represents
evening and in the low geographic latitude, while the positive value
indicates morning and in the high latitudes. Both b and p, depend on
season, sunspot number R, geographic latitude and local time.

MUF(K) = the maximum-usable-frequency for the magnetic index K. That
is, the upper frequency limit that can be used for transmission between two
points at a specified time. It is also defined as a median frequency applicable
to 50 per cent of the days of a month, as opposed to 90 per cent cited for the
lowest usable high frequency and optimum working frequency (FOT) — desig-
nated from French initials.

The magnetic index K is a 3-hour range designed to measure the irregular
variations associated with magnetic field disturbance. Each observatory
assigns an integer from 0 to 9 to each of the 3-hour UT (universal time)
intervals: (000-0300, 0300-0600, ..., 2100-2400). The magnetic K indices
range in 28 steps from 0 (quite disturbed) to 9 (greatly disturbed) with
fractional parts expressed in thirds of a unit. For example:

e K-value equal to 27 means 2 and 2/3 or 3—;
e K-value equal to 30 means 3 and 0/3 or 3 exactly; and
e K-value equal to 33 means 3 and 1/3 or 3+.

Since the K-value varies from one observatory to another, the arithmetic
mean of the K-values from 13 observatories gives K),.

A word of caution! The ‘short-term prediction model’ cannot be used as
a precursor for long-term prediction, particularly for the F2 layer because
of the departures of the foF2 spatial correlation coefficient of the day-to-day
from the median value.

Bent et al. (1978) developed the ionosphere electron density profile with
particular emphasis on the topside. The model does not include the lower
layers (D, E and F1) and uses a simple quadratic relationship between
CCIR?*s M(3000)F2 factor and the height of the F2 peak. In their model,
the bottomside is described by a bi-parabola:

2
Ne(h) = Nur2 [1 - <m> 2‘| (644)

YmF2

2 CCIR stands for International Radio Consultative Committee.
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The topside profile below 1000 km was subdivided into four intervals: the
upper three covered equal height intervals and assumed a constant logarith-
mic decrement, which depended on the 10.7 cm solar noise flux. While the
fourth interval just above the peak used a parabolic shape, which met the
lowest of the exponential intervals in a way that the gradient was continuous
at the junction height A, defined by

ho = hypy + 2 ”f (m) (6.45)

Ny is the electron density at height /,, given by
No=0.864 Nypr  (m™?) (6.46a)

M(3000) F2 (= MUF(3000)/foF2) is a propagation factor closely related to the
height of the F2 peak (Bilitza 1990; Bilitza et al. 1979). MUF(3000) is the high-
est frequency that, refracted in the ionosphere, can be received at a distance
of 3000 km. As earlier defined, foF2 is the critical frequency of the F2 layer, or F2
peak plasma frequency, which is related to the F2 peak density N,z by

Nppa = 1.24 x 10" foF2  (m™?) (6.46b)

where the unit of foF2 is in MHz. Both parameters foF2 and M(3000)F2 are
routinely scaled from the ionograms.

For a propagation to be possible on a particular circuit, the operating
frequency f must be less than MUF. That is, at a given altitude A,

MUF (h) = f,(h) sec 0, (6.47)

where 0;,. and f, denote, respectively, the angle at which the propagation
wave incidents the layer and the electronic plasma frequency of the layer —
the same as (6.19b). At higher frequencies, the wave will penetrate the
ionosphere and the reusable frequency may be expressed as

MUE () = 0 f;(h) (6.48)

where Q is called the obliquity factor. In the simplest form, Q = sec 0;,.. (This
concept is revisited in section 6.2.4 to discuss ‘skip zone’.) The important
thing is that Q must be greater than or equal to the ratio of the operating
frequency to plasma frequency. In view of (6.20),

0> ]4 e (6.49)

The number of hops, the magneto-ionic component of characteristic wave,
and the distance involved may modify the basic MUF. For example, the
1F2(4000)MUF(o) path via the F2 layer by the ordinary wave. The trans-
mission curve for a distance of 3000 km is often used as a reference, given by

MUF(3000) 67.6542 —0.0149384,

M(3000) = = i

(6.50)
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where h, = virtual height (km); the method of measuring the virtual height is
discussed in section 6.2.3.

The several models given in the literature, particularly those by CCIR,
IRI and CRI, have demonstrated the complexity of the F2 layer and its
variation in measurements. It may be inaccurate to predict the state of the
ionosphere at one point of the data and region for another location. This
suggests that more observatories are needed to spread representatively
across regions and latitudes. The current observatory locations are skewed
and their data are far from being globally representative.

6.2.2.5 Refraction errors by ray tracing

Due to the propagation anomaly of bending of radio waves traversing the
ionosphere, measurement errors are introduced, namely, refraction angle
error, range error, Doppler error for moving targets and polarization
error. These errors are investigated in this section under the appropriate
headings.

For simplicity, a spherical model is employed to explain the concept of
ray tracing and to quantify the propagation errors caused by refraction.
Though simple, the spherical method is capable of rendering theoretical
estimates of propagation errors to a rather high degree of accuracy. The
basic assumption considered in the ray tracing method is that the ionosphere
can be stratified into spherical layers of thicknesses /; and refractive indices
n;. For brevity, the analysis in this text is restricted to the three regions of
interest for radio wave propagation, namely E, F1 and F2, as shown in
Figure 6.7, where i = 0, 1, 2 corresponding to E, F1, F2. Of course, the same
geometry can be used for N layers and variable thicknesses and indices in the
troposphere.

Let us start by tracing a ray from point a to point m as it propagates
through the E to the F2 layer, as shown in Figure 6.7. There are two possible
paths to reach point m from a: namely the direct line-of-sight path, am, and
the apparent ray path, abem. Point o is the centre of the Earth.

Following (6.16), each layer’s refractive index can be estimated. Specifi-

cally, for ith layer
e%Ne(,«)
;= l—— 6.51
" \/( Am2eim,f? (6:51)

where N,; and ¢; denote the ith layer electron density and permittivity
respectively. From Figure 6.6, the ionosphere’s apparent elevation angle is
oo (angle bam) and its true elevation angle is oy, (angle bad). The angle
between apparent path direction and the direct line-of-sight path is called the
ionosphere’s elevation angle error, or refraction angle error, Ao, expressed
by

Aoc,,gf = Olyp — Aoy (6.52)
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Figure 6.7 Ray path geometry by layer stratification

Using the sine’s law,

: T
sing, S (0‘0 + 5) oS 0l

6.53:
ro r " ( d)
Alternatively,
by = sin (:—Ocos oc0> (6.53b)
1
where
ro ="re + he (6543.)

h. =the altitude of the lower edge of the ionosphere above the Earth’s
surface (km)

r. =radius of the Earth at the equator (km) ~ 6378.4 km. If the observation
point is not at the equator, the elliptical distance r of the point as a
function of the geographic latitude Ay, and equatorial radius of the
earth r, can be calculated by (Schutte 1940)

¥ =r,[0.99832 + 0.001684 cos(2A,,) — 0.000004 cos(4A,) -] (6.54b)

The angle that the ray makes with the horizon at the E layer is obtained,
using Snell’s law for symmetrical surface, as
Nprg COS Oy = nry1 COS Ay

(6.55a)
NpI COS Oy = NyF] COS O
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where
r=ro+ hy
rh=r+Mh (655b)
r3=ry+h
Subsequently,
h
o = cos ™! [mcos ocl} (6.56)
noro
Generalizing as
i1 (i + A
o = cos”! [wcos oci+1] (6.57)
n;ri
$; = sin (}—’ cos ocj> (6.58)
T'j+1

where i =0, 1, 2.

It is easier to measure the apparent ground elevation angle o, than the
apparent ionospheric elevation angle oy. It follows therefore that, by Snell’s
law, the relationship between the apparent (ground and ionosphere) eleva-
tion angles is established as

J J
—1 r -1(r
oy = COS cosd, | = cos —COS Qg 6.59
0 (r/ + h(’ g) <r0 é) ( )

Applying sine law again to the direct path, the true elevation angle is
obtained as

oo = cos ! er—3 sin (i 9,)] (6.60)

where 0; = (n/2) — o — ¢;.
And using the cosine law the direct radar range, Ry;», (i.e. path am), is
expressed as

2
R012 = r%+r§—2r0r3cos{zej} (km) (661)

Jj=0

The apparent paths ab = Rj, be = R}, and em = R, (concisely as R;, where
i=0, 1, 2) can be expressed as

SN0 ) (6.62)

Ri=rip

i



180 The ionosphere and its effect on HF skywave propagation

In view of (6.57) through (6.61), the measurement elevation angle error, or
refraction angle error, is readily obtained:

/

) 2
Aot,er = cos™! [V—cosoz ] —cos™! ’—351n 0; de 6.63
/ eosa Rt 20| (e (663

6.2.2.5.1 Range, or time delay, error

If an imaginary observer were placed at the same point on the envelope of an
advancing wave in the ionosphere, he/she will observe the group velocity, V,,
of the wave, which may be expressed as

do
Ve= a (6.64a)
where the wave’s phase constant Y may be defined as
®
= 6.64b
=y (6.64D)

The phase velocity, V), has already been defined in (6.17). In view of (6.64)

and (6.17), the group velocity can be readily shown:
V
Ve=—+"—— y
1= (7) @
Differentiating (6.20) with respect to ®, and substituting the result in (6.65),
Ve=cn (6.66)

Observing the time of travel of the ray path layer by layer, the time to reach
the E layer will be

(6.65)

Ry
to = (6.67a)
Ve(0)

where V() is the phase velocity at the E layer. Since the generalized group
velocity is already defined by (6.66), the group velocity at the E layer may be
written as

Vg(()) = Chy (667b)

Equations for the ray path travel time to F1 and F2 can similarly be written.
The total time of travel® of the beam in the stratified layers can be written as

1SR
Lot = ;;”—z (6.68)

3 If in the troposphere, the total time travel would be calculated from the phase velocity
approach; that is,

l m
tior = — Z niR;
=0

where m = total number of stratified layers in the troposphere.
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Since the product of speed and total time of travel (i.e. ct,;) measures
the radar range in the deviating medium, the range error, AR, is
difference between the refracted path and the direct path, which may be
expressed as

AR = ctio — Ro1z

2 R, (6.69)
— — Ro12
i—0 '

Using (6.61) and (6.62), the range error is easily evaluated.

In summary, the expressions for time delay or range error (6.69) and
refraction error (6.63) demonstrate that the measurement errors are cumu-
lative.

Example 6.2 A 15MHz wave is used to probe the ionosphere. The fre-
quency at which reflection occurs is taken to be 3.04, 4.38 and 5.86 MHz
respectively for the E, F1 and F2 layers. Estimate the refractive index of each
layer and the likely measurement refraction angle and range errors if the
sensor is located at latitude 5°S, longitude 132°E and apparent elevation
angle of 9°. Each layer is approximately 100 km thick. The upper limit of the
D layer is about 115km above the surface of the Earth.

Solution

Geographic latitude Aj,, = —5° (south of the equator)

Apparent elevation angle, o, = 9°

Height of the lowest edge of the E layer, 4, = 115km

Equatorial radius of the earth r, = 6378.4km

Using (6.20) that is, n = /1 — f2/f?, calculate each layer’s refractive index:

nyg = ng — 0.9792
ny = ng; = 0.9564
Ny = Ngy = 0.9255

Since the observation point is not at the equator, then from (6.54b) the
elliptical distance to the edge of the Earth’s surface ¥ = 6378.24 km. Hence,

ro =+ + h, = 6493.24km

From (6.59), the ionosphere’s apparent elevation angle is obtained as
oy ~ 14.02°.
Knowing o and rg, solve other apparent angles and distances iteratively:

Ry=3719km R; =4212km R, =701.4km

So from (6.63), the refraction angle error, Ao, ~ 8.72°.
And, from (6.69), the range error, AR ~ 93.45km
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6.2.2.5.2 Doppler effect
Doppler effect introduces an error, which is localized. This is different to the

refraction and range errors, which are cumulative. The deviating medium
only acts as a refractive medium. Figure 6.8 shows the ray path to target
position. This figure shall be used to explain how errors introduced in the
measurement of the target Doppler velocity can be quantified.

Let us assume that a target at point ‘a’ is travelling with a velocity V, in an
arbitrary direction in any part of the ionosphere of refractive index, ny.
The target velocity can be resolved into various orientations: ray path
direction, V,, direct path direction, ¥, and apparent path direction, V.

V, = Vicos(¥ + Aar) (6.70a)
Vy=V,cos\ (6.70b)
(6.70c)

V, = V;cos\cos Aa.

where

Aa = refraction error angle
Ao = angle between the ray path and the direct part at the target location

\y = orientation of the target velocity.
The error introduced in the target Doppler velocity may be expressed by

AV =V,—-V,

(6.71)

Lower edge \\

of the E -layer \
k Part of ionosphere with

refractive index, ny, and
altitude, h

O Centre of Earth

Figure 6.8 Deviation of ray path trace at target position
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In view of (6.70), this error is simplified further as

AV = V,[coscos Aa — cos( + Aar)]

N (6.72)
= V;cosy[cos Ao — cos Aar] + V;sinsin Aoy

Note that
cos(a+b) =cosacosb Fsinasinb (6.73)

Since Aa, Aot and are very small angles, their trigonometric functions may
be written in a Maclaurin series, noting that

2oyt
cosx=1—-——+——---

20 4l

R (6.74)
smx:x—3!+§—--~

In view of this series expansion, the error in (6.72) is rewritten as

2 2 4 4
R S
3
+ Vysiny [AocT — (A;T) N (6.75)

The higher-order terms can be neglected because in practice the values of Aa
and Aoayg are in the order of one millionth of a radian. As such, the cosine
term in (6.75), which is the target radial component, is neglected, reducing
the error, AV, to

AV = V;siny[Aar] (6.76)

This expression shows that the target Doppler velocity error in the radial
direction attributed to refraction is composed only of the tangential velocity
component of the target velocity. The error is a maximum when the velocity
vector is perpendicular to the direction of the direct path but a minimum
when the target travels along the direct path. The error encountered in the
measurement of the Doppler (frequency) shift Afy is easily determined for a
target with approaching radial velocity, using the definition of (3.46) and in
view of (6.76), as
[N L
A ¢
This expression suggests that the Doppler shift Af; will be positive if the
target is inbound (approaching), or negative if the target is outbound (reced-
ing). Expression (6.77) also implicitly suggests that any magnitude of target
speed can be measured. Next task is to express Aar in terms of apparent
ground elevation angle and distance from the point of observation on the
Earth’s surface.

V,siny(Aar) (6.77)
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By Snell’s law, one can write

noro COS 0y = nyri cos Adr (6.78a)
which, in turn, gives
Aoy = cos™! (M cos ao) (6.78b)
nrri

where

nr = refractive index in the medium the target is traversing
ny = refractive index in the layer prior to the ionosphere, normally taken
as unity.

As expressed in (6.59), there is a relationship between apparent ionospheric
elevation angle oy and the apparent ground elevation angle o,. So, rewrite
(6.78b) as

v

— nee]
Aoy = cos <nT(r0 ) cos ocg) (6.79)

Example 6.3 A sensor operating at 12 MHz frequency is situated at an
elevation angle of 7.6°, latitude 15°S, and longitude 132°E, indicating during
surveillance that signal returns are from an inbound target. These signals,
when analysed, suggested that they are reflected off refractive layer at about
5.6 MHz, 150 km above the Earth’s surface. The target is estimated to be
travelling at 85km/s, bearing 15° east of the zenith. Estimate the Doppler
frequency error.

Solution
It is obvious that the target is traversing in the E region, and
ro 4+ ho = ¥ + 150.
From (6.54b), calculate ' ~ 6377, so ry = 6527 km
From (6.20), calculate the refractive index, n = 0.8844
From (6.77) the error introduced in the Doppler frequency measurement by
an inbound target, at speed V,(=85km/s), may be expressed by
AV 2f

Afa = —27 = L V,sin(Aar) = 1.54kHz
C

Noting that ¢ = 3 x 108 m/s, (Aar) &~ 1.095, and o, = 7.6°.

Before proceeding to the discussion on the polarization effect of radio
wave propagation in stratified layers, it is appropriate to examine the effect
of collisions of electrons with other particles including the effect of the
Earth’s magnetic field on them. This effect has been ignored in the previous
analyses.
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6.2.2.5.3 Effect of Earth’s magnetic field on electron collisions

The polarization properties of electromagnetic waves in magnetized plasma have
been studied extensively in the literature. Radio wave propagation through the
ionosphere is a complex mix of interactions between the ionized constituents, the
Earth’s magnetic field, and the parameters of the propagating signal (such as
frequency, polarization, strength or amplitude, direction, etc.). The direction of
propagation can be resolved into two orthogonal directions, namely, parallel and
perpendicular to the magnetic field, and the characteristic waves. A characteristic
wave is defined as a wave that propagates through the ionosphere without any
change in the polarization state. The characteristic wave that propagates perpen-
dicularly to the magnetic field is further divided into two independently acting
waves: the ordinary ‘0’ wave and the extraordinary ‘x” wave. The ordinary wave
has its electric vector aligned along with the magnetic field, meaning that
the electrons move in the same direction as the constant-force lines in the
magnetic field and no interactions occur. A snapshot of the characteristic wave
would produce two distinct traces. Thus, on each ionogram two traces of
‘0’ and ‘x” waves are present — more is said of ionograms in section 6.2.3.

An inquiring mind might immediately ask: How does this division of
characteristic waves into two magneto-ionic components ‘o’ and ‘x’ affect
the refractive indices of the stratified layers? The next subsections will shed
some light on the question.

6.2.2.5.3.1 No Earth’s magnetic field present during electron collision
Collision of vibrating electrons with the ions and neutral particles frequently
occurs. When electrons collide with other particles they give up some of their
energy to these particles, and in the absence of a magnetic field, some will be
absorbed and converted into thermal energy. The thermal speed of electrons
v, has some mathematical function, given by

3kT,
Ve = 4| —— (6.80)
me
To the plasma frequency, there corresponds a characteristic length A p, called
the Debye length, which may be defined by

v
Ap = ———— (6.81a)
V3(2nf,)

Note that f, denotes plasma frequency, which is the same as the critical frequency

f. expressed by (6.19b). In terms of known parameters, the Debye length is

T,

Ap ~ 69 N, (6.81b)
Symbols are as defined previously in the text. The Debye length is basically the
distance covered by an electron during one cycle of a plasma oscillation, repre-
senting the distance over which potential differences find themselves naturally
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shielded by their effect on the charged particles’ distribution. This means that
fluctuations in electron concentration can exist independently of ions only at
scales smaller than this Debye shielding length. Also, plasma oscillations can
develop for wavelengths greater than the Debye length only.

Example 6.4
Calculate the Debye length for Example 6.1.

Solution

By using the relevant variable values in Table 6.2 and (6.81), the Debye
length for each layer is estimated as shown in Table 6.3. Note that daytime
temperature 7, = T of daytime in Table 6.1.

By treating each stratified layer of the ionosphere as homogeneous, the
vibrating electrons may have an effective angular collision frequency, v. It is
reasonable to suggest that the angular collision frequency, v, obeys the
exponential law:

2 3411x10=3 7y
y=vell =y 1 () (6.82)

where V' is the collision frequency at altitude 4 and T (= T, for nighttime,
and T, for daytime). Other parameters are as defined previously.

It is worth noting that Brace and Theis (1978) gave an empirical model for
daytime electron temperature, T,, as a function of electron density, in the
altitude range 130 to 400 km as

(6.83)
Matsushita (1967) gave approximate collision frequencies of electrons with

neutral particles v/, electrons with ions v/, ions with neutral particles v/,
and ions with ions v/, _ as follows:

V. =0.5N,\/T, (6.84a)
3
T: N
v, = [34 4 8.36log 6.84b
N,
‘=3 1072 —2 84
v, =3.35x% 10 Vi (6.84c)
/
—14 Vi

where N, and N. are number of densities of neutral particles, and positive
and negative ions respectively. Also, 7, and 7, denote temperature
of neutral particle and electron ions respectively in degree-kelvin.
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Table 6.3 Calculated Debye length for Example 6.1

Daytime Nighttime

Item E F1 F2 E F

Debye length (mm) 3.65 4.65 2.69 1425 4.64

A typical temperature profile is shown in Figure 6.2, and expressions (6.1)
and (6.2).

The electron collisions render the ionosphere as an absorbing medium
having a conductivity, o, given by

N, ve?
me(®2 + v2)
Without further mathematical derivation, which is somehow tedious, applic-
able results are given. For the case of electron collision without a magnetic
influence from the Earth, the refractive index may be written as

n= \/(1 - ﬁ) (6.86)

6.2.2.5.3.2  With Earth’s magnetic field present during electron collision
The theory of propagation of electromagnetic waves through an ionized
medium under the influence of an external magnetic field is well founded.
In some literature, this theory is called the magneto-ionic theory. The next
paragraphs attempt to exploit this theory to examine the effect of external
magnetic field on refractive index.

Following Millan (1965), the general equation of an electron in an ionized
region is defined as

met = —e,E — (mev)i — % (r x H) (6.87)

where

E = the electric field vector

H = magnetic field vector

r =displacement vector of the electron and the dots on this vector denote
differentiation with respect to time

Other symbols are as defined previously.

By assuming that the wave that propagates along the x-axis has no compo-
nent of the Earth’s magnetic field along the y-axis, then the equations of
motion in scalar form may be readily written. The incident electron field is
assumed to vary sinusoidally with time. Eventually the solutions to (6.87)
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are readily obtained leading to the general form of the complex index of
refraction, M:

2

M? =1+ (6.88)
20— | () +en]
And the polarization vector of the wave is written as
P= Z - _% (le_ - y) (6.89)

where

H_ and H, correspond to the magnetic field intensity of the wave along z- and

y-direction

y=a + jB is defined by (6.4a) with reference part, o, and quadrature com-
ponent, B, expressed by

o
a=-"9
mv‘”c (6.90)
P
_ O (Hee) o0
L 2 \m,c
i (6.91)
Yr = m—% (mgc> sin 0

H =the magnitude of the magnetic field intensity at any point on the Earth,
defined by Chapman and Bartels (1940) as

H =031/ (1 + 3sin” Agisr) (6.92)

where 0 and A, correspond to the propagation angle and the geomagnetic
latitude, all units in degrees. Other symbols are as defined previously in the text.

The term (He,/m.c) is called the gyromagnetic frequency of the electron
above the Earth’s magnetic field. It is obvious in (6.88) that there are two
possible values for the complex refractive index, which would indicate two
different modes of propagation that travel independently in the deviating
medium and each with a polarization vector associated with it. As noted
earlier, if the absorption coefficient is zero the quadrature component, B, can
be neglected. This situation occurs for higher frequencies, or smaller con-
centrations of electron densities. For smaller concentrations, the magnitude
of o increases, making o > 1. Consequently, the term (1 + ) in (6.88)
approximates to o. With this simplification, the complex refractive index
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expressed by (6.88) reduces to a real quantity n for two different modes of
propagation given by

. o=1+ (6.93)

13

The subscripts ‘0’ and ‘x’ denote ordinary and extraordinary wave
respectively. Similarly, the polarization vector P of the wave can be
expressed as

i1
Ppy=—2 | —— 94
o= <2 oc) (6.94)

Upon substitution of the terms (6.90) and (6.91) in (6.93), the full expres-
sion for the two magneto-ionic components’ refractive index can be
written as

1
. o=1- (6.95)

0.x
. 2 . 2\ 2
@ 1 (oHesin® oHe, sin He,sin” 6 2
©? 2( e, ) + cm,o? \/|:( 2eme® ) -+ cos 9:|

Alternatively, in terms of the individual magneto-ionic components:

1
my=1- (6.96)
. 2 R L a\2
2 ¢, 5in O ¢, sin O L sin?0
o~ () ol ¢ () + costo]
2 1
m=1- (6.97)

&

X
. 2 . L2\ 2
2 1 (wHe,sin@\ _ oHe,sin0 He, sin” 0 2
2 2( CMe®, ) cme? \/|:< 2em, o ) +cos 6:|

Upon an application of necessary conditions, two cases of quasi-propagation
modes can be investigated, namely, quasi-longitudinal mode and quasi-
transverse mode.

Case I: Quasi-longitudinal propagation
The condition under which quasi-longitudinal propagation mode occurs is
when

)
4—> sin” 0 tan> 0 (6.98)
OF
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where the gyromagnetic frequency (or simply gyro frequency) is

He,
Og = ( ¢ ) (6.99)
MeC
By substituting (6.98) in (6.93), the refractive index reduces to
2
2 D (6.100)

o= 1= ®? (1 £ % cos )

At any given frequency, ®*/®? > 1. So, (6.100) can be expanded by its bino-
mial series. Neglecting higher-order terms, the expanded equation becomes

o’ on
Mo 2 1= 525 (1422 cos6) (6.101)

From this expression, the difference in the refractive index An of two
magneto-ionic components is expressed as

2
An=n,—n, = Q)H;D" cos 0 (6.102)
®
Or, in view of (6.19a) and (6.99)
N He? cos 0
An=—"—"¢—"_ 6.103
" 2n2em? f3 ( )

And the polarization vector associated with the refractive index reduces to
P, =+j (6104)

This expression shows that both the ordinary and extraordinary components
are circularly polarized.

Case II: Quasi-transverse propagation
The condition under which a quasi-transverse mode of propagation occurs is
when

2
sin® 0 tan? 0 > 4 (6.105)
OF
which is the reverse of case I. As the frequency is increased, 0 rapidly
approaches 90°. By substituting (6.105) in (6.93), and expanding the
resulting expression by the binomial expansion, while neglecting the
higher-order terms, the individual refractive index reduces to
)

ny =1 -5 (6.106)

> ©% |
ny~1— 2(;2 [1 + m—’jsm2 e} (6.107)
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As seen in (6.106), the ordinary refractive index is independent of the
Earth’s magnetic field, H, which is present in (6.107), the extraordinary refrac-
tive index. Therefore, it could be said that the term in brackets [.] of (6.107)
represents the correction due to the presence of the Earth’s magnetic field.

From (6.106) and (6.107), the difference in the refractive index An of two
magneto-ionic components is expressed as

1 /oo, . 2
An:f( = sme) (6.108)

Or, in view of (6.17a) and (6.99)

N. [He*sin6]
An =2 3[ ek ] (6.109)
(2mm,) of
The polarization vector of the wave in the quasi-transverse mode simply becomes
Py=0
o (6.110)
P, = —joo

This expression shows that both the ordinary and extraordinary components
are linearly polarized but the ordinary component is polarized in the direc-
tion parallel to the Earth’s magnetic field while the extraordinary is polar-
ized in the direction perpendicular to the Earth’s magnetic field.

At 6° geomagnetic latitude, plots of the comparison between the two
quasi-cases, represented by (6.103) and (6.109), are shown in Figures 6.9
and 6.10 for a skywave radar propagating at frequencies 3 and 30 MHz at
0 < 10°. By comparison between Figures 6.9 and 6.10, it can be seen that the

1.40E-30
12 -3
A7 4 20830 N\‘:;?, "
1.00E-30 Q=3%, 5% 10°
8.00E-31
6.00E-31
4.00E-31
2.00E-31
1.50E-36 : :
3 8 13 18 23 28

Frequency (MHz)

Figure 6.9 Difference in the refractive indices of the magneto-ionic components for quasi-
transverse mode of propagation
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5.00E-48 1
4.00E-48
3.00E-48
2.00E-48
1.00E-48
1.00E-51 3
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Figure 6.10 Difference in the refractive indices of the two magneto-ionic components for
quasi-longitudinal mode of propagation

higher the propagation frequency the smaller the value of the difference
between cases. However, the difference is much more discerning when
propagating in the lower frequencies (<10 MHz) for the quasi-transverse
mode. As seen in Figure 6.11, case I has a wider band higher with increasing
elevation angle than case II. Case I (the quasi-longitudinal propagation
mode) holds for nearly all cases of interest in skywave radar propagation
particularly the over-the-horizon radar.

i
An/N,  0.11 ¢ =6
0.01; An;, f= 3 MHz
0.001 1
0.0001 Any, f=3 Mhz
0.00001 {
0.000001 { Any, f= 30 MHz
0.0000001 1
0.00000001 Any, f=30 MHz
0.000000001
5 15 25 35 45 55 65 75 85

Elevation angle (deg)

Figure 6.11 Difference between ordinary and extraordinary refractive indices for quasi-
longitudinal and quasi-transverse propagation modes at 3 and 30MHz frequencies, where
subscripts | and Il denote case | and case Il respectively
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6.2.2.6 Polarization error

The behaviour of polarization of radar signals in the space—time-frequency
domain has an important bearing on radar signal, as well as influencing
radar techniques and signal interpretation. For example, the choice of the
antenna elements to be used for transmission and reception will determine
whether a polarimetric capability is available or not.

As discussed earlier in this chapter, when a linearly polarized wave enters
the ionosphere, it splits into two characteristic waves — called ordinary ‘o’
and extraordinary ‘x’ waves, which have different phase velocities so that a
difference accumulates as they propagate. When they are summed at any
point, the polarization of the resultant wave depends on the phase difference.
If the two characteristics’ waves suffer similar attenuations, their net effect is
simply a rotation of the axis of linear polarization called the Faraday rota-
tion effect. This description can be formalized as follows.

Suppose that the electric field intensities of two linearly polarized pro-
gressive waves can be expressed by

E, . = Ae/(0 1) (6.111)

where A is the field constant amplitude, and for brevity is put as unity.
The subscripts ‘0’ and ‘x” denote the two magneto-ionic components of the
fields traversing path ‘s’. Also, v, , represents the phase propagation coefti-
cient, or proportionality constant, of the two magneto-ionic components
defined by

(O]
Vpo,x

Yox = (6.112)

where V), . is the phase velocity of each of the two magneto-ionic compon-
ents, and in view of (6.17),

®
Yox = ;”o,x (6113)

From this expression, the difference in phase d¢ between the two waves
traversing a distance, ds, may be expressed as

dd = Ayds = (y, — v, )ds (6.114a)

dd = %(no ~ny)ds = %(An)ds (6.114b)
This difference defines the phase shift for a one-way propagation path,
which is also the differential phase shift between two magneto-ionic compon-
ents. The total polarization shift for a two-way path that is within defined
distance limits s; and s, can be defined by

(O]

d(s) = ;/32 Ands (6.115)
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It is convenient to define the phase difference ¢(s) in terms of layer thick-
ness, say between limits /; and /4,. So

/12

b(h) = ? Anr(h, Ouier ) (6.116)
where
r(h, cter) = foth (6.117)
0+ 17+ (10 005 O
ro=71"+h, (6.118)

Ocev = clevation angle of the antenna beam (deg).

The variable // is the distance off the equator to the edge of the Earth’s
surface, defined by (6.54b), and #, is the altitude from the Earth’s surface to
the low edge of the ionosphere.

The difference An was defined in (6.103) for quasi-longitudinal propagation
mode and (6.109) for quasi-transverse propagation mode. By substituting
the difference An represented by (6.103) and (6.109) for each mode in (6.116),
the two-way polarization rotation at any frequency, for each mode and
within the validation range of the propagation angle 6, can be estimated.
Having demonstrated the effect of refractive indices differences for the two
modes of propagation in Figures 6.9 and 6.10, and by assuming identical
propagation conditions, one can infer that for at any given range, the
polarization rotation for the longitudinal case (case I) will be far greater
than the transverse (case II) condition.

Faraday rotation impinges on HF skywave radar performance.
For example, if a differential polarization rotation occurs across the
propagation-signal bandwidth and if the scattering behaviour is appreciably
polarization dependent, the resulting modulation of echo strength may-
spread across the echo in the range domain. This may limit range resolution
on some targets, defeating the very improvement sought earlier in Chapter 3.

Spatially, it is possible to have a polarization fringe pattern across a given
radar footprint. Polarization fringe pattern is particularly recognizable over
the ocean because of the strong polarization dependence of the radar cross-
section of the sea surface. Spatial fringe-pattern distribution has obvious
implications particularly for ship detection because when Doppler spectra
are nested in several beams, where polarization is horizontal for a vertically
polarized receiver, nulls would be registered in the beams where polarization
fringes are noticed. Of course, a large-scale modelling of polarization fringe
patterns can be carried out. Examples include those carried out by Barnum
(1969) and Croft (1972).
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6.2.3 Observing the ionosphere

The problem of inaccurately determining the propagation height, 4, necessi-
tates the need to observe the ionosphere. In addition, observing or probing
the ionosphere helps to provide:

(a) A real-time propagation advice required by skywave radars. The fre-
quency required to optimally illuminate a given area varies with changes
in electron density in the ionosphere and cannot be predicted precisely.
Operating an OTHR requires a real-time evaluation of the ionospheric
path for frequency selection. A vertical sounder, an oblique sounder,
and the radar itself carry out the real-time evaluation. Separate receiver
monitors channel occupancy in the HF band to see which channels are
available. One of the unoccupied channels that falls in the optimal band
can then be selected for operation.

(b) Measurements that support structuring the ionosphere where propaga-
tion delays can be converted accurately into target coordinates; that is,
from target slant coordinates into ground coordinates after factoring in
the propagation errors.

Sounders are some of the tools used to probe the ionosphere. Sounders (also
called ionosondes) are essentially radars. The signal generated, usually a
chirp (swept frequency), by its transmitter system is delivered to the antenna
array. It is then transmitted in an upward direction at an altitude between
100 and 350 km, depending on operating frequency, in a small volume of a
few hundred metres thick and a few tens of kilometres in diameter over the
site. The signal is partially absorbed. The intensity of the signal in the
ionosphere, for example, is less than 3 uW/cm2, which is far less than the
Sun’s natural electromagnetic radiation reaching the Earth. The small effects
that are produced provide information about the dynamics of the plasma
and other processes of solar—terrestrial interactions. The receiver measures
the group delay, or travel time, of the return signals as they bounce back
from the ionosphere. There exist unique relationships between the sounding
frequency and the ionization densities that reflect it. As the sounder sweeps
from the lower to the higher frequencies, the signal rises above the back-
ground noise, including commercial radio sources, and records the return
signals reflected from the different layers of the ionosphere. The records are
ionograms, which are collected at regular time intervals. An example of an
ionogram is shown in Figure 6.12.

Radio waves or pulses travel more slowly within the ionosphere than free
space therefore the apparent, or virtual, height is recorded instead of a true
height. It should be understood that the group delay is not simply related to
the actual distance travelled, or the height of reflection.

For instance, consider the reflection process as single reflections from a
mirror at the appropriate height, with the pulses travelling to and from the
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Figure 6.12 Points on vertical ionogram (VI) showing group delays of ionospheric signal at
different frequencies. The upper right-hand curving section is the extraordinary, 'x' component
while the rest represents the ordinary ‘o’ component. (Crown Copyright Radiocommunications
Agency 2002)

mirror. The group delays of the pulses at different frequencies can be con-
verted into the virtual height, 4,, of the mirror using
ct

=% (6.119)

where ¢ and ¢ correspond to the speed of light and time taken by the pulse to
travel to and from the mirror. Virtual height of each layer is denoted by /'E,
W'F1 and #'F2 corresponding to that of E, F1 and F2 layer. Points on the
ionogram in Figure 6.12 show group delays of ionospheric signals at differ-
ent frequencies. A group delay of 1.25ms means that the ionospheric layer
the signal is reflected from is at height of 187.5 km. The group delay’s axis is
directly converted to virtual height, /,, against the operating frequency, f, for
that particular time and location.

6.2.3.1 Interpreting an ionogram

Figure 6.12 is redrawn as Figure 6.13 to make the description clearer. In
Figure 6.13, each ionospheric layer shows up as an approximately smooth
curve, separated from each other by an asymptote at the layer’s critical
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Figure 6.13 A reconstructed ionogram

frequency. The upwardly curving sections at the start of each layer are due
to the transmitted wave being slowed, but not reflected, from underlying
ionization that has a critical (plasma) frequency close to, but not equalling,
the transmitted wave.

The critical frequency of each layer (foE, foF1 and foF2) is scaled from
the asymptote, while the virtual height of each layer (¥'E, /'F1 and /'F2) is
scaled from the lowest point of each curve. The two magneto-ionic components
‘0’ and ‘x’ of the characteristic wave are also shown in the figure. In this case,
the extraordinary component of the F2 layer (fxF2) is shown. Its virtual height
and critical frequency are denoted by /4 F2 and fxF2 respectively.

The extraordinary mode critical frequency, f,., also has a simple relation
to the electron density, which is the sum of the ‘ordinary mode’ critical
frequency (f., from (6.19b)) and the magnetic component. Specifically

X 1 [e2N. He, , He,
= — =f.+— 6.120
Jex 21\ €gm, + 2m, Jet 2m, ( )

All symbols are as previously defined.

When echoes from other regions of the sky are received with that from the
F layer or overhead, the electron concentration in these regions differs from
the ionosphere overhead, two traces are observed. Of course, if the geometry
is right for echoes to be received from a whole range of locations and the
ionospheric conditions vary over the range (such as when a trough is




198 The ionosphere and its effect on HF skywave propagation

overhead) multiple traces will appear on an ionogram. The F trace in this
situation is said to be spread. The traces associated with spread-F are
resolved by considering the horizontal position of each echo.

Occasionally, the sporadic E layer (Es) appears on the ionogram as a
narrow horizontal line at around 100 km; it does not exhibit an asymptote at
its critical frequency because the transition is too swift.

Due to absorption of transmitted wave by the D layer, no echoes are
received from the low-frequency end of an ionogram.

Ionograms are frequently generated, in fact refreshed hourly, by many
government agencies and research schools, and are easily obtainable on their
websites, examples include IPS Australia and University of Massachusetts.

Different ionograms are produced on the basis of the distance between
the transmitter and receiver. An oblique incidence (OI) ionogram is produced
when the transmitter and receiver are separated by long distances. The plots
produced by an IO are those of group path versus frequency for fixed
distances or circuit lengths. When the transmitter and receiver are
co-located, vertical incidence (VI) ionograms are produced, for example
Figure 6.12 or Figure 6.13. Sometimes, for real-time frequency management
of oblique circuits, it is necessary to use the oblique ionogram from one
circuit to manage another circuit allowing for different path lengths. Using
transformations based on the path length and the time delay measured from
the oblique ionogram easily performs this. By applying similar transforma-
tions, vertical incidence ionograms can be converted to equivalent oblique
ionograms for any path length providing the circuit control points are
reasonably similar to the vertical incident ionosonde location. The advan-
tage of the transformation is that it takes into account all the reflecting
layers in the ionosphere.

When the transmitter and receiver are close to each other and the signals
being received have been scattered back towards the transmitter by ground
backscatter, a backscatter (BS) ionogram is obtained. In the case of BS, the
circuit length is not specified. The most interesting and useful part of the BS
ionograms is the leading edge, which corresponds to the minimum group
path at a given frequency. In addition, calculations arising from BS iono-
grams include the determination of the ground range at a particular
elevation angle to define the relationship between the group path and
ground range: a relationship that is crucial for coordinate registration (CR)
in the over-the-horizon radar (OTHR) system. More is said of CR in section
6.2.5.

6.2.4 Skip zone

At higher-clevation radiation angles the rays escape (i.e. the rays are insuffi-
ciently refracted and pass through the ionosphere rather than returning to
Earth), causing a skip zone of range coverage, see Figure 6.14(a). This shows
that the ionospheric refraction process results in a skip zone (distance) from
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Escape signal

Earth’s surface

Skip zone coverage

Escape signal

Skip zone fy k T/ Earth’s surface
| Srmin | AXq |AX2 | AXs |

Figure 6.14 Ray paths showing different range extents, Ax;, illuminated by different
operating frequencies f;

the transmitter to the closest point on ground illumination indicating
that the radar site must stand back by at least &, distance from the
closest obligatory surveillance zone. Just beyond the skip zone, energy is
returned to the Earth after the reflection height horizon is reached. The
useful range coverage, lying between the escape and refraction limits, is
where illumination is strongest. It is possible that multiple hops exist,
although only one hop is shown in Figure 6.14(a), and energy could circle
the Earth.

The skip zone is usually a problem when it exists but it can sometimes
be put to good use if secure communications are required. For instance, if
we do not want someone to hear our transmissions, we are sometimes
able to ensure that the eavesdropper is within the skip zone (McNamora
1991).

As seen in Figure 6.14(b), different range extents (Ax;) are illuminated by
different operating frequencies; implying that longer ranges require higher
frequencies. It must be recognized that the trailing edge of an extent may
vary as a function of radar parameters and target size, but the start is set by
frequency selection and immediately follows the skip zone.

Figure 6.15 shows a plan view of an azimuthal scan (or coverage area) of
angle 6 (deg). Within the scan are different segmented areas that may be
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Coverage area

Figure 6.15 An azimuthal sectorial scan. Each segment 1 through to 9, A1 and A2 is
illuminated by separate transmit beams each A8 wide

illuminated by a separate transmitter beam of width A6 (deg). By simple
geometry, the transmitter beamwidth is

o ISOAXU(
o,

AD (deg) (6.121)

where

Axjr = the range extent at a particular operating frequency (km)
r. =radius of the Earth (km). If the observed point is not at the equator, then
use ' the elliptical distance equation of (6.54b) instead of r, in (6.121).

It is conceivable that the range of the transmitter footprint could change
with azimuth due to ionospheric effect. Each transmitter footprint is then
filled with N, number of contiguous receiver beams, each (A8/N,) wide.
The transmitter footprints 1 to 9, Al and A2 can be interlaced, abutted
or overlapped, depending on the interest attached to target(s) within the
coverage area. The radar footprint can be moved in range by varying
the frequency and moved in azimuth angle by electronic beam steering — a
process already discussed in Chapter 4. This footprint is sometimes called
instantaneous if only maintained by the radar for a few seconds.
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6.2.5 Ray tracing and coordinate registration

The reader might be wondering how accurate are the measurements taken
via the skywave radar, in particular OTHR, in the face of these multifaceted
reflections? Any radio and radar systems require knowledge of the exact ray
path of the radiowave as it travels through the ionosphere. The accuracy of
these systems depends on both the accuracy of the ionospheric electron
density model and the accuracy of the solutions to the equations used to
trace through this model. Numerical and analytical methods have been used
to trace through the ray path model. Numerical methods allow taking a real-
time snapshot of the ionosphere and ray tracing the leading edges.

The computational demand of the numerical methods may be seen as a
drawback that reduces the effectiveness of real-time operational systems.
The analytical method on the other hand is fast and could provide more
accurate temporal and spatial predictions of the solar—terrestrial environ-
ment. An example is the Segmented Method for Analytical Ray-Tracing
(SMART), which is claimed to meet operational and computer constraints.

Ideally, if the ionosphere were precisely known along the possible paths
between the radar and the target, a simple slant-to-ground transformation tech-
nique, or a ray trace electromagnetic propagation model, would have been
adequate to generate a look-up table — called CR (coordinate registration)
table — of ground coordinates versus slant coordinates. The difficulty is that
the trans-ionospheric paths are of variable length and they add variable biases —
due to mode ambiguity — in range, azimuth and velocity: examples of these
biases have been demonstrated in section 6.2.2.5. Unless these biases are
removed to provide a reasonably well-calibrated ground-truth CR system, the
formation of tracks is of little value since radar measurements are in slant range,
slant azimuth, and radial velocity. With improving knowledge of ray tracings
with credible interpolation scheme(s) improved target ground coordinates can
be formulated.

Certain techniques have been proposed for improving CR accuracy.
These include the use of the following:

o Use of beacons — Beacon assisted CR consists of correcting the ground
coordinates of each raymode by an amount determined from the radar
signal transponded by a beacon of known location. Two limitations of this
technique are that (a) it presupposes correct identification of raymode
types for both the beacon and target (Krolik and Anderson 1997), and (b)
its improved accuracy is likely to be localized; that is, improvement will be
around the beacon rather than the global.

o Use of terrain features — The use of terrain features is similar in concept to
employing beacons except that prominent backscatter from geographical
features of known location is used to estimate the correction factors (Zollo
and Anderson 1992). The number of terrain features that can be unam-
biguously identified may limit this technique (Krolik and Anderson 1997).
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e Developing dynamic optimization model — A real-time dynamic ionospheric
model that allows on-the-spot profiling of the ionosphere based on data
input from sounders (OI, IV and BS), global positioning system (GPS),
transponders and perhaps satellites would be an ideal. An example of
a dynamic optimization model is the CREDO, which stands for Coordin-
ate Registration Enhancement Dynamic Optimization (Nickisch and
Hauuman 1996). The first generation of CREDO attempted to adjust the
ionospheric parameters in real time to minimize the ground range variance
for multimode track data. The current CREDO strives to ‘fit’ ionospheric
parameters to ionospheric sounder data (e.g. vertical incidence (V1) iono-
gram and backscatter (BS) ionogram).

o Use of maximum likelihood technique — Target localization consists of
determining the most likely target ground coordinates over an ensemble
of ionospheric conditions consistent with the ionospheric sounder data
(Krolik and Anderson 1997). While this method attempts to enhance
localization accuracy by employing a statistical model for uncertainties
in the ionospheric propagation conditions, it may be difficult to extra-
polate the solution to a more general case.

o Multiple location of sounders — The ionosphere is dynamic. Periodic sam-
pling of the ionosphere by several equidistantly positioned sounders
would provide instant situation status. The data then can be used to
develop a good fit approximation of the region’s ionospheric profile
within the sounders’ grids. This process would greatly enhance our knowl-
edge of the dynamics of the ionosphere as well as resolving accurately CR
measurements.

In essence, the accuracy of coordinate registration (CR) measurements is
within the CR operating window. This presupposes selection of appropriate
frequency or frequencies that allow optimal illumination of the area to be
observed.

6.2.5.1 Comments

Advances made in the understanding of ionospheric behaviour have been
encouraging. The key assumption to these improvements has been that the
down-range ionosphere is precisely known. This assumption may not be com-
pletely true because measurements taken by the ionospheric sounders (BS, VI
and OI) are only estimates. A case can therefore be established to increase the
number of sounders in designated geographic locations to ensure a better
understanding of the ionospheric behaviour, and thus enhance the accuracy
of the down-range ionospheric data. Errors in the estimates of down-range
ionospheric parameters can seriously degrade the accuracy of the estimated
target ground coordinates. It is obvious that we have a challenging research
programme ahead.
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6.3 Summary

This chapter has discussed the upper part of the atmosphere — the iono-
sphere — where free electrons occur in sufficient density to have an appreci-
able influence on the propagation of radio waves. This ionization depends
primarily on the Sun and its activities. Since the ionosphere is a dynamic
system, better understanding of this part of the atmosphere is required if
improvements on coordinate registration at resolving propagation errors,
and most importantly those arising from multiple paths, are to be achieved.

Problems

1. Thereis a need to probe the ionosphere at your home town on 25 March at

(a) 3.02pm local time at 115km, 156 km and 335 km,
(b) 8:42pm local time at 132 km and 276 km.

Estimate the critical frequency and refractive index of the ionospheric
layers when propagating at 25 MHz.

2. If there is a facility in your home town or nearby that generates hourly
ionograms, compare your critical frequency results in question (1) with
that obtained as foE, foF1, foF2, or foF. Can you spot any differences? If
yes, why?

3. Explain how the maximum reusable frequency can be determined. Also
describe the factors that influence the reusable frequency for a given link
at any given time.

4. What is the electron gyrofrequency? Compute a typical value.

5. Is the Earth’s magnetic field important in the consideration of high-
frequency propagation? Why?

6. How is an ionosphere formed?

7. Do you think it is possible to use the thinning layer of H ions on top of
the F layer as a reflecting medium for skywave radio wave propagation?
Why?

8. What is the solar zenith angle seen at noon by an observer in your home
town on 10 June?

9. You are tasked to measure the virtual heights of the ionosphere at
different frequencies. Transmitted waves sometimes travel round the
world before being received. How will you know when this gerrymander-
ing has occurred?



Skywave radar

Skywave radar is capable of sensing beyond the horizon because it makes
use of the ionosphere to refract the radar wave propagated back to earth. A
typical example is the over-the-horizon radar (OTHR). Skywave radar uti-
lizes the high-frequency (HF) band, specifically 3 to 30 MHz, because this
band enables surface-to-surface radar to target distances well beyond the
horizon. Radar to target ranges of 1000 nautical miles and more are typical.
Skywave radar achieves its long ranges, in effect, by using the ionosphere as
a gigantic mirror.

The conventional microwave radar operates on the line-of-sight principle
and propagates through the ionosphere at frequencies of 0.2-40 GHz,
whereas the HF band utilized by the OTHR, which is lower than that
operated by the microwave radar, interacts with the ionosphere in a way
that can be exploited to provide radar coverage at variable distances.
Another major difference between skywave and microwave radars is the
need to adapt the signal waveform and frequency of the skywave radar to
the environment.

Chapters 3 to 5 have provided the fundamental principles governing the
design, operation and understanding of the limitations of a radar system.
These principles are also fundamental to skywave radar with the added
burden of interference due to the environment, which could be harsh. This
is due to the OTHR looking down on its targets from the ionosphere. As a
result, there are associated constraints:

e the antenna must be very large; one kilometre or more;

e spatial resolution is relatively coarse; typically in tens of kilometres;

e alarge backscatter echo from the Earth’s surface clutter is produced at the
same range as that of the desired targets; and finally

e due to ionospheric electron density distribution, the radar operating fre-
quency and waveform need to be continually assessed.

These constraints might be viewed as an operational nightmare, yet provide
advantages. For example, they provide the capability to detect ocean back-
scatter from water gravity waves with dimensions comparable to those of the
radar waves, which in turn provide an opportunity to study and map the sea
and surface wave behaviour.
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Ships and large aircraft have dimensions that are in the resonant scatter-
ing region. When targets are moving, their echoes may be detected by
measuring the frequency deviation, or Doppler shift, they cause in the
reflected wave. It is believed that aircraft and surface craft with or without
high manoeuvrability and speed, and with small radar cross-sections, may
also be detected by the skywave radar, including stealth aircraft. This is
possible due to aircraft radar cross-section being much more dependent on
gross target dimensions than on detail in shape (Headrick 1990).

The main emphasis in this chapter is the skywave radar. Propagating
radio waves through the regions comprising the atmosphere result in the
degradation of signal-target information. Signal deterioration is due to
spatial inhomogeneities that exist in the atmosphere, which vary continu-
ously with time. The spatial variations produce statistical bias errors, which
have been discussed in detail in Chapter 6. The influence of the spatial
variations is an important consideration, which must be taken into consid-
eration in the formulation and design of skywave radar system.

7.1 Skywave geometry

A skywave geometry is described by Figure 7.1. The regions used by sky-
wave radars are in the ionosphere. When radio waves are beamed from a
transmitter and then refracted down from the ionosphere to illuminate a
target, the echo from the target may travel by a similar path back to the

Escape signal

lonosphere

Signal totally
absorbed
to return to Earth

\ Signals bent sufficiently

Increasing frequency

Microwave radar Target \\Target
\ <

Earth’s
surface

Figure 7.1 Operation of a skywave radar
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receiver. Strictly speaking, objects in the target area scatter the incident
radar illumination in all directions. Nearly all of the energy will be forward
scattered from the ground surface, or sea surface. A small percentage will
return via an ionospheric reflection path to a suitable receiver antenna.
Propagation effects are prevalent when radio waves traversing the atmo-
sphere manifest themselves as refractive bending, time delays, Doppler
errors, rotation of the phase of polarization (called Faraday effect) as well
as attenuation. These effects have been discussed in Chapter 6.

7.2 Basic system architecture

By design, a skywave radar system, in particular an over-the-horizon radar
(OTHR), generally uses continuous transmission in order to maximize
energy. This calls for separate transmit and receive facilities, with the separ-
ation being sufficient to avoid direct ground wave coupling between the
receivers and transmitters, as well as maintaining the far-field criterion.
A basic schematic of skywave radar is shown in Figure 7.2.

Figure 7.2 is similar to the basic structure of a radar system shown in
Chapter 2, Figure 2.1, except that there is an additional need for a frequency
management system including ionospheric sounders or ionosondes.

Transmitter | Receiver
|
Antenna |
elements ~~  Antenna 1~
o _ [ elements
| [1F = —[m]
Ay - — A, |
|
— Beamformer
Beamformer lonospheric l lonospheric I
sounder, Tx || | sounder, Rx | | Peak detection
I |
Control Frequency management system || Track and display
|
| Control

Communications

where A; = power amplifiers, i =1, 2,..... ,n

Figure 7.2 A schematic diagram of a skywave radar
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As discussed in Chapter 6, these sounders allow a sophisticated understand-
ing of the ionosphere’s complexities and aid in the selection of optimal
frequency suitable for propagation.

The separation bracket — the mandatory distance between the transmitter
and receiver facilities — is necessary to achieve:

e receiver isolation from transmission interference or combination;

e avoidance of high transmitted peak power while assuming and maintain-
ing high energy on the target;

e a convenient way of maintaining radiation in the far field; and

e the use of sophisticated modulated waveforms that may allow clever
detection of the electronic counter countermeasure (ECCM) process. The
reader is referred to Chrzanowski (1990) for a good exposition on radar
electronic countermeasures.

Aside from this separation bracket, land buffer zones are required around
the highly energized transmitter antennas to ensure that radar emissions do
not interfere with electrical equipment. Similar precautions are necessary for
the receivers. The receiver antennas need to be protected from extraneous
electrical interference by a series of land buffer zones. In addition, the
receiver site must be isolated from noise generated by power lines. As
such, a continuous operation of internal combustion engines as the power
source to the receivers may be necessary. Alternatively, well-shielded under-
ground power lines could be an option.

Although much of the OTHR signal and data processing is common with
conventional microwave radar, OTHR antenna considerations are quite
different from those arising in general radar. Because of stringent oper-
ational requirements and the ionosphere being birefringent and time vary-
ing, the antenna system design is dominated by consideration for large
physical size for transmit and receive arrays. Table 7.1 shows the array
sizes of the Australian (Jindalee) and United States of America (USA)
OTHRs. The systems in Table 7.1 use linear arrays. Other array geometry
can be used for the OTHRSs such as circular arrays. Operational complexity
and cost effectiveness associated with any arrangements are essential ele-
ments of any choice taken.

Example 7.1 Two frequencies, 3 and 30 MHz, are to be used for propaga-
tion. Using the transmitter and receiver array sizes in Table 7.1, calculate the

Table 7.1 Array sizes of three OTHR systems (Sinnott 1989)

OTHR system Transmitter array Receiver array
Australia (Jindalee) 127m 2.8km
AN/FPS-118 (USAF) 67-345m (frequency dependent) 1.5km

AN/TPS-71 (USN) 335m (total length covering separate bands) 2.5km




208 Skywave radar

Table 7.2 Estimates of far-field ranges for frequencies at 3 and 30 MHz

Array aperture, D (m) Range (km) @ 3 MHz Range (km) @ 30 MHz
127 40.97 409.7
67 6.01 60.1
335 751.91 7519.1

range where the receiver aperture should be located to be in the radiating far
field.

Solution
For an antenna to be considered in the radiating far field, the range R from the
source to the receptor of aperture D may be represented by equation (3.39);
that is, ® > 2D3/A. Putting in the transmitter values from Table 7.1, the
receptor array must be located at least at the distance tabulated in Table 7.2.
Table 7.2, column 3 gives values that are somehow unrealistic for
f = 30MHz. This suggests that the positioning of the receiver for all fre-
quency settings may not be in the ‘strict sense’ in the far field.

7.2.1 Transmitter

The typical power requirement of an OTHR transmitter averages between
10kW and 1 MW. This requirement is necessary to launch high levels of
power efficiently. The USA and Australian OTHRs use a frequency modu-
lated continuous waveform (FMCW), consisting of multiple sweeps with
linear sawtooth frequency modulation (Lees 1987). If propagation by
FMCW is properly constrained, it is intrinsically clean and enables sidelobe
reduction to be efficiently controlled.

Transmit antennas are generally arrays of radiating elements, with each
element driven by a separate power amplifier. The approach of individual
powering of the radiators permits beam steering at low-power amplifier
stages. With technological advances in radar technology, digitally switched
power supplies can deliver the desired current directly into each antenna
element thereby increasing the transmitter capability as well as allowing
subdivision of the array to achieve required performance and operations.

The transmitting antenna is a log-periodic curtain in a uniform line array on
a wire ground mat to provide ground shield. The log-periodic antenna is a
broadband array of closely spaced elements, each 180° out of phase with the
next and the spacing changing proportional to its distance from an apex.
Basically a log-periodic antenna pattern is by subtraction unlike the planar
array in Chapter 4 whose pattern is rather by addition. Log-periodic elements
have a distinct structure. This structure is discussed in the next few paragraphs.

Figure 7.3 shows typical log-periodic elements that can transmit over
the frequency range 6-30 MHz installed at Alice Springs, Australia. Only a
few of the elements, which are near resonance, radiate at a given frequency.
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Figure 7.3 A section of the Australian OTHR transmit array

The alternate phasing of the elements allows the array to radiate electrically
through shorter elements, which in turn perturbs the pattern less than the
longer ones would. The electrical feed serves as the antenna boom, which is
usually a parallel transmission line. The operational OTHRs in Australia
and the USA use log-periodic antennas capable of covering the entire HF
frequency band. The transmitter coverage is potentially enormous: a million
square kilometres could be surveyed by the installation.

The log-periodic antenna can be arranged in parallel (as in Figure 7.4a),
or radially (as in Figure 7.4b). Figure 7.4 is similar to that given in Sinnott
(1987). If log-periodic antennas are arrayed in parallel, the frequency inde-
pendence is lost, as there is frequency-dependent electric spacing between
array elements. Whereas, if log-periodic antennas are arranged radially a
frequency-independent array geometry is possible, with the active regions on
an arc and separated by a frequency-independent electrical length. It should
be noted that there is a limit to the number of such antennas, which can be so
arrayed before the edge elements are ‘firing’ a long way from the boresight of
the array.

High-frequency end High-frequency end

Low-frequency end Low-frequency end

(@) (b)

Figure 7.4 A plan view of array geometries: (a) parallel array; (b) radial array
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Log-periodic antennas have self-scaling properties. Figure 7.5 shows the
structure of a log-periodic antenna with radiators of length /, and distances
d,. If the antenna’s dimensions are scaled by some ratio t, the antenna will
have similar properties at frequencies f, tf, ©°f, ©f, ..., 7""'f. Ratio 7 is
called the geometric ratio.

The lengths of the radiators /, and distances d, increase in a defined
manner. For instance

Lo b ko I,

d_2_5D_ ... = =1 7.1
L I L1 7.1)
di d ds dy
e =T 7.2
d dy dy dyi (7.2)

The spacing between adjacent elements is geometrically related by a factor

B

S]_S2_S3_ Sn

:2_12_2_[3_2_14_...2[}”1 (7.3)

The edges of the dipoles lie along two straight lines, which converge at one
end, with an apex angle n. The apex angle may be expressed in the form

hL—1 -1
n = 2tan ( o5 ) 4B, (7.4)

where, in practice, 0.7 < 1 < 0.95 and 10° < n < 45°.
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Figure 7.5 A log-periodic antenna structure
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The log-periodic antenna characteristic (e.g. impedance and directivity)
varies periodically with the logarithm of the frequency. This accounts for
its name. It is also found that if the periodic variations are small over a
broad band of frequencies, the antenna behaviour is effectively frequency
independent. The array structure is fed at the apex end by a balanced
line, with connections crisscrossed to adjacent elements, to give the correct
phasing of the elements. The problem of aeolian noise is frequent in a
log-periodic antenna structure. The aeolian noise attempts to induce har-
monics of several orders of magnitude, thereby complicating the elements’
phase resolution.

To ensure total absence of grating lobes at the highest frequency, the
array spacing must meet the condition stipulated by equation (4.37) in
Chapter 4 with a little modification. Specifically,

1 1.5
d<iM|—F—F—-——— 7.5
B <1+|Sin90 N) (75)

where

d = array maximum allowable spacing (m)
09 = scan angle steered off boresight (deg)
A = wavelength (m)

N = number of array elements.

The design of log-periodic arrays is often a compromise between the periodic
endfires (or curtains), their spacing and the coupling of the transmitters to
the radiators (or elements). The arrays must be capable of being electron-
ically beam-steered instantaneously to any part of any preferred sectors.

The elevation beamwidth varies with frequency. If D, is the length of the
array (either transmitting or receiving), then, from (4.22), the array’s beam-
width is

08858
BW — Dr

(radians) (7.6)

Note that D, = Nd, where N and d represent the number of array elements
and the separation distance between the elements. However, if the array is
steered off boresight or broadside by 0y, the beamwidth (as well as the array
gain) will degrade according to (4.32):

~0.8858).

-~ 7.7
D, cos 6, (7.7)

Opw

7.2.2 Receiver

The power requirement of transmitters is in the kilo- to megawatt range: the
receivers operate at microwatt levels. In view of the high external noise
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Figure 7.6 A section of Australian OTHR receiving antenna

environment, the efficiency of the receive system will be relatively low.
A typical OTHR receiver is shown in Figure 7.6.

Two steerable receiving antennas are arrayed over distances of 2.3 and
2.5km to receive the HF illuminating signals transmitted and returned via
the ionosphere. The receiver contains a uniform linear array of phased
monopole pairs on a wire ground mat. Each monopole pair has a receiver
and analogue-to-digital converter attached to it. Each monopole pair feeds
its own nearby receiver front-end which, with two frequency conversions,
transmits signals via described propagation paths (e.g. satellite, optical
fibres, etc.) to the receive back-ends. The basic configuration of the
receivers is similar to that described in Chapter 2, section 2.1.2. The digital
beamformer forms the required number of beams, which are then Doppler
processed to separate the moving targets from the ground clutter. More is
said of beamforming in section 7.3. As a result of technological advances, the
receiver backends are digital ensuring high-speed signal and data processing,
for instance, digital bandwidth compression, digital filtering and down-
sampling.

A myriad of data is often acquired during any radar scans or sweeps. An
example of this is an OTHR, which is particularly noted for its wide-area
scanning or sweeping. The unprocessed data acquired often occupy a large
facility. Pre- and post-processed data could also be large and might require a
large transfer and processing time. In a real-time operational situation, in
particular during tracking, time is a critical element if the true-target profile
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under investigation is to be quickly ascertained in real time. To ensure fast
transportation and delivery of data to its intended destination, a compres-
sion process is used.

Data compression is the process of encoding a body of data (say D;,) into
a smaller body of data (say 0(D,,)). It must be possible for the compressed
data 0(D,) to be decoded (reconstructed) back to the original body of data
D, or some acceptable approximation. The data compression method has
been discussed in detail in Chapter 2.

Woodman and Chau (2001) proposed another data compression method,
which works in a similar fashion to complementary phase coding used in
pulse compression — already discussed in Chapter 2 — for coherent radars.
Their method involves transmitting a large array of phase-coded antennas at
full power and later synthesizes it by linear superposition and proper phas-
ing. Full decoding is done by appropriate algorithms, which add the power
and cross-power estimates of the signals of each code, so that no extra
burden is added other than the summations.

7.2.3 Frequency management system

As demonstrated in Chapter 6, the fundamental mechanism enabling sky-
wave HF radar to detect targets at long ranges, or to be used for remote
sea-state sensing, is the ability of the ionosphere to refract electromagnetic
energy. The variability of the skywave transmission medium requires differ-
ent operating frequencies at different times (Earl and Ward 1986). So, a suc-
cessful operation of a skywave radar, in particular the over-the-horizon
radar, is dependent upon the application of a real-time frequency management
system (FMS).

As seen in Figure 7.2, the FMS comprises ionospheric sounders and a
spectral surveillance subsystem. The ionospheric sounders are backscatter
sounder (BSS), oblique incidence (OI) sounder and vertical incidence (VI)
sounder, which have already been discussed in Chapter 6. The sounders’
prime requirements are to provide real-time propagation advice and iono-
spheric structure measurements sufficient for coordinate registration (that
is, enabling conversion from radar measurement space to target ground
coordinates). Often, between OI and VI, and in conjunction with BSS, the
OTHR may be designed to self-calibrate and to achieve acceptable target
location accuracy.

The spectral surveillance subsystem comprises the background noise ana-
lyser (BNA) and clear channel occupancy analyser (COA).

The BNA is used to determine the level of noise gathered by both
omnidirectional and directional antennas looking towards the surveillance
area. Apart from man-made noise, the source of BNA at low frequencies is
from lightning discharges, while at high frequencies the source is from the
galaxy. The BNA evaluation process starts by collecting spectrally processed
data in N frequency bins from m contiguous measurements from x quietest
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channels for, say, p discrete scans. The m measurements are then summed to
reduce data variance and normalized for system gain. Uncorrupted data are
then averaged and interpolated into IF values. The interpolated values are
then converted to power and formatted for transmission.

The use of BSS with BNA becomes a potent tool in clutter-to-noise ratio
and maximum observable frequency. The BSS evaluation process involves
collecting range correlated power measurements from Y range cells from B
bandwidth bands, each band containing P spectra. Each of the B bands is
analysed for noise contamination, and those bands that are uncontaminated
are averaged to give, say, C integrated spectra. If all the spectra over a
particular frequency band is corrupted, the data would be interpolated
from adjacent cells. The data is further analysed to estimate the maximum
observable frequency and the BSS ionogram is then converted to power and
formatted for transmission. When BNA is combined with the BSS, data
yields the ability to predict the achievable clutter-to-noise ratio, which is a
direct indicator of the achievable signal-to-noise ratio. Technically, BNA is
fundamentally involved in the selection of the optimum frequency band for
radar operation.

The frequency channels distributed over a larger part of the HF band are
often congested. This is due to broadcast stations, fixed-service point-to-
point transmitters, essential services operators (ambulance, police, defence,
etc.), and many other spectrum users having regular schedules. The channel
occupancy analyser (COA) provides a real-time description of spectrum
availability by scanning the HF spectrum every couple of minutes and
allocates specific channels for radar use that are guaranteed to be noise-
free — that is, free of radio frequency interference from other transmissions —
and unoccupied. The spectral surveillance subsystem alternates between
measurements of channel occupancy and background noise. The radar
assigned for measuring the background noise data has directional antenna,
and noise is measured on each of the designated number of beams compris-
ing the directional antenna. Whereas, the channel occupancy data is mea-
sured on an omnidirectional antenna in order that transmissions are not
masked in the nulls of the receiving antenna.

A method for evaluating channel occupancy is as follows. Measure the
power level in all the N — 1 kHz channels in the HF range used for propaga-
tion. Obtain estimates based on the average of m passes from contiguous
samples over the spectrum. Develop a convenient algorithm to classify
channels as either clear or occupied by a cumulative-weighted index. The
quietest x kHz bandwidth channel in each of the x bands is detected for use
in the background noise analyser.

If Q is allowed to denote the channels occupied by signals greater than
some threshold, and there are N channels independently occupied, then the
probability of finding N adjacent channels available can be represented by

Py=(1-0)" (7.8)



Basic system architecture 215

Stehel and Hagn (1991) described a method of linking Q to the threshold for
a European situation. This may not be easily extrapolated to other locations.

Example 7.4 Consider eight independently occupied 1kHz channels. If
there is a 95 per cent chance of finding a clear channel, find the probability
of finding 8 kHz adjacent channels for a signal sweep.

Solution

N=38

0O = 95 per cent = 0.95
0=1-0=005

From (7.8), the probability of finding 8 kHz adjacent channels is
Pg = (1 —0.05)® = 0.6634 (66.34 per cent)

7.2.4 Communications

The need for a good communication system cannot be overstated. It is clear
that the radar facilities depend on reliable high-bandwidth communications
for delivering and transferring information between transmit and receive
chains for effective management of the systems. Between the transmitter and
receiver facilities, primary communications may be delivered via radio link.
Within each chain or facility, internal data communications could be in the
form of a local area network (LAN). The design of the overall communica-
tion network required depends on the functions for which the radar system is
designed, the capital outlay and reliability of the service expected.

Strict time synchronization between transmitter and receiver facilities is
necessary. Use of atomic standards with, perhaps, frequent referencing back
to global positioning system (GPS) data may be necessary.

7.2.5 Signal processing and peak detection

Signal processing takes several forms of data acquired by skywave radar
such as range processing and range sidelobe suppression, Doppler process-
ing, beam processing, and data conditioning.

Range processing and range sidelobe suppression are performed on each
of the repetitive frequency sweeps, or preferred transmitted waveforms, by
means of a weighted correlation against a reference waveform generated by
the local oscillator. For a given bandwidth, the matched filtering approach is
sufficient despite possible distortions to the point of response function by the
transmission medium. In principle, compensations for some of those distor-
tions could be included in the correlation process (Jarrott and Soame 1994).
A sidelobe suppression technique has already been discussed in Chapter 3,
section 3.2.4.

Fourier analysing and weighting across a set of repetitive frequency
sweeps or preferred transmitted waveforms that constitute a coherently
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processed dwell may carry out Doppler processing. In fact, the transmission
medium’s distorting effects do not invalidate this approach. As observed in
Chapter 6, ionospheric distortions creep into received signals. But when
lengthy dwells (for example, during sea or ocean surveillance) are employed
that extend beyond the prevailing ionospheric coherence time, unacceptable
degradation of the ‘coherent processing’ occurs. Often, strictly add-on tech-
niques such as the identification and subsequent removal of phase modula-
tions are sufficient to restore the integrity of the signal clutter-to-noise ratio
(Netherway et al. 1989; Southcott et al. 1998).

Fourier analysing each range cell, formed by the uniform-linear array,
together with aperture weighting are adequate in performing beam process-
ing. In real life, the assumptions that noise fields are spatially isotropic and
their presence is at most on one target are far from true. Adaptive data
beamforming could be effective in maximizing signal-to-noise ratios (SNR),
only if formulated for robustness (Kassam and Poor 1985), otherwise any
expected gains from adaptive beamforming would be lost to undue system
sensitivity. More is said about beamforming in section 7.3.

Data conditioning, or a simple clean-up process, supplements those tech-
niques previously addressed. Data conditioning is needed because of the
presence of impulsive phenomena and radio frequency interference (RFI) in
the data. An effective example of a clean-up process is the data whitening
technique. The whitening technique does not restore the SNR but prevents
local false detections. More is said about whitening in Chapter 10. Impulsive
phenomena and other non-white or non-stationary phenomena can be
located by their signatures, which are often localized in one or more
domains, namely, the time domain, the range-azimuth domain, or the Doppler
domain. Recognition always implies the temporary suppression of the otherwise
dominating surface clutter, and when suppressed, frees up useful dwells. The
data-conditioning process helps in estimating and removing ionospheric biases
in any Doppler estimates. Without this correction, ship tracking may be impeded
for a considerable length of time when ionospheric Doppler is notable.

Due to the clutter nature of the skywave data, constant false-alarm rate
(CFAR) processing is critical. This is achieved by estimating the background
energy of each data point, using suitably small local neighbourhoods so that
data whitening can be done prior to peak selection (Jarrott and Soame
1994). More is said about CFAR in Chapter 10. CFAR processing is an
important design aim, confining the radar to output a limited and predeter-
mined number of false detections in a given period of time. If the number of
false detections is low then the threshold may have been set high and con-
sequently the probability of detecting a real target is reduced. Conversely, if
the false alarms are too frequent, then the detection probability is improved
but subsequent parts of the radar system may be overloaded.

Essential signal-peak detection processes are fast Fourier transform
(FFT) and thresholding. The basic concept of FFT has been discussed in
Chapter 1 and that of thresholding is discussed in Chapter 9 with further
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Figure 7.7 An example of linear interpolation between sample points. The solid line curve is
the linear interpolation of the original signal represented by the dashed curve

application in Chapters 11 and 12. Peak detections are declared whenever
the signal estimates exceed a preassigned value, or threshold. This presup-
poses good system’s peak detection and beamforming capabilities. Individ-
ual points that exceed the threshold are resolved into peaks and the position
of each peak is refined by interpolation across the adjacent range, Doppler
and azimuth bins. Interpolation is a commonly used procedure for recon-
structing a function either approximately or exactly from samples. One
simple interpolation procedure is linear interpolation, whereby adjacent
sample points are connected by a straight line as shown in Figure 7.7. In
more complex interpolation formulas, higher-order polynomials or other
applicable mathematical functions may be used to connect sample points.
More is said about interpolation in Chapter 10.

7.2.6 Track and display

After selecting and interpolating a large number of candidate signal peaks
per dwell in the CFAR selection, the detected peaks are then made suitable
for transmission to the next stage of the radar chain (track and display)

Menu

P é . Console
S

:I:I:Il:l\

Control knob

Figure 7.8 A graphical representation of a console containing tracks a, b and ¢, and the
menu icon
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where the emerging tracks of the targets are synthesized. Detected peaks are
passed to the tracking system, which associates successive detections to
establish tracks. Tracks are then synthesized in a multi-dimensional data
format, which are presented to the operator(s) and displayed on the console,
for example as in Figure 7.8. Tracking is the subject of Chapter 12.

7.3 Beamforming

Beamforming is the process of combining the outputs from a number of
antenna elements arranged in an array of arbitrary geometry, so as to enhance
signals from some defined spatial regions while suppressing those from other
regions. This process can be implemented in a variety of ways. This could take
the form of a digital processing technique or a hardware cabling method.

In its simplest form, the cabling method depends on a well-defined geo-
metric structure for the array and location of possible sources. The method
involves accurate switching and matching of cables of known lengths with
antenna feedlines.

Digital beamforming is based on capturing the base signal at each of the
antenna elements (i.e. at the array aperture) and converting to discrete signals
thereby permitting formation of multiple, simultaneous antenna beams. ‘Base
signal’ is used in this context because beamforming can be performed in any of the
signal bands: baseband, narrowband, or broadband. A baseband signal is one in
which the spectrum is primarily concentrated at the designated frequencies and in
which no translation of the spectrum has been performed. Baseband signals
contain amplitudes and phases of the signals received at each element of the
antenna array. Digital beamforming is a process that opens the door to a large
domain of signal processing techniques. The process also provides flexibility in
the type of beam pattern that can be produced.

A schematic diagram of a beamformer is shown in Figure 7.9. Beamform-
ing process involves weighting the digitized signals, and adjusting their
phases and amplitudes such that when added together they form the desired
beam. For instance, in Figure 7.9, the output yy, at time k, is a linear

XN XN

QO QO

() Q
& &
&%

X; = signal from jth element of the x;x,
w; = complex weight applied to x;,
X4 X2 Xn where i=1,2,..., N

wi Wo - W, Yk = beam output at time k

Figure 7.9 A schematic diagram of a beamformer
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combination of the data at the N sensors at the same time k. It should be
noted that the beamformer’s response is a function of frequency, ® and the
direction of arrival. Throughout the beamforming discussions, the func-
tional variables (azimuth or elevation, ¢, and angle of incidence, 0) are
assumed to be available. In practice, for multi-dimensional data streams,
beamforming is done in pairs: yx(¢, ®) and yx(0, ®), primarily to simplify
control, data processing and estimation.

For simplicity and following the established convention, the sampled data
is multiplied by conjugates of the weights, written in a mathematical form as

N
yi=Y_wix,(k) (7.9)
p=1

where * denotes complex conjugate,

X, = the received data from pth element of the array x;x, and
w, = the complex weight applied to x,.

In line with many engineering applications, the data and weights are
assumed to be complex since often a quadrature receiver is used at each
sensor to generate in-phase (/) and quadrature (Q) data. The expression in
(7.9) can be written in the vector form as

yr = wix (k) (7.10)

where superscript H denotes Hermitian' transpose and the subscript &
indicates sampling time or index. The process represented by (7.9) is often
described as ‘element-space beamforming’ because the data x, from the
array are directly multiplied by a set of weights w, to form a beam at a
designated steering angle.

Planar sensor arrays can be considered to be sampled apertures. As such
they can be viewed as multi-dimensional spatial filters and require a multi-
dimensional beamforming technique. For multi-dimensional antenna arrays,
the beamforming concept described by (7.9) can be easily extended. As an
illustration, consider three-dimensional (N x L x M) or volumetric arrays,
the beamformer output at time k is given as

N L M
Vi = Z Z Z Wi Xpji (k) (7.11)
=1 =1 i=1

assuming that there are no delays in each of the N and L sensors.
Since a beamformer represents a linear combination of the sensor data, its

' If 4 is a matrix of order (m x n) with complex elements, a;, then the complex conjugate A*
of A is found by taking the complex conjugates of all the elements. A Hermitian matrix is a
square matrix which is unchanged by the transpose of its complex conjugate, i.e. A is Hermitian
if (4" = 4.



220 Skywave radar

implementation can be represented by decomposing w into a product of
matrices and a vector, such as

w= [IL[ v[] w, (7.12)
i=1

where v, is a series of matrix transformations of comfortable dimensions and
w, is the vector. As a general rule, the matrix transformations are selected to
enhance performance and/or reduce computational complexity (Van Veen
and Buckley 1988). The FFT implementation of the DFT is analogous to
(7.12) since the DFT matrix can be expressed as a series of simple computa-
tions (see Chapter 1 for details).

Instead of direct weighting of sampled data from each element, the data
signals from the elements can first be processed by a multiple-beam beam-
former to form a set of orthogonal beams (Litva and Lo 1996). The output
of each beam can then be weighted and the result combined to produce
the desired output. A process that performs this function is called beam-
space beamforming. The required multiple beamformer usually produces
orthogonal beams. Beams are mutually orthogonal when the average value
over all angles of the product of one beam response with the conjugate of the
other is zero. The beam-space beamforming technique is implemented by
feeding the baseband signals from the antenna elements into the FFT
processor, which generates N simultaneous orthogonal beams. A subset of
the orthogonal beams is then weighted to form the desired output. This
process is explained as follows.

Following the linear array concept of Chapter 4, assume that the antenna
elements are equally spaced at distance, d. Also assume that a plane wave
incidents on the receiver elements at beam angle from broadside. For sim-
plicity, the individual elements are assumed to have an isotropic response in
azimuth. A broadside azimuth beam is formed when the signals at all of the
elements are in phase. Other beams, of approximately equal amplitude to the
first, are formed at all angles for which the phase difference between elem-
ents is an integral number of wavelengths. As also discussed in Chapter 4,
nulls are created in the direction of the interfering sources (in the case ¢p).
For an N-element linear array, N overlapped orthogonal beams v(¢,) can be
formed using

N
v(dy) = D xpe A0 (7.13)
p=1

If the pth desired output is assumed to occur from a combination of the
weighted (b — 1)th and (b 4 1)th beams, then the output may be written as

yp=wi_v(by ) + w[1;+1v(¢b+1) (7.14)

The beamformer described above deals with fixed beam patterns (i.e. with
fixed weights that are time invariant) for a given specification. This is
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Figure 7.10 A schematic diagram of an adaptive beamformer

cognisant of the conventional beamforming technique. A conventional
beamformer can be optimized if a specified optimization criterion is given.
The process of optimization can be compared to optimum filtering, detec-
tion, and estimation. In a real-world application, fixed weights are imprac-
ticable for optimum performance to be achieved. Thus, the weights have to
be adaptively selected. The term adaptive means that the weights are chan-
ging with time. An adaptive beamformer — comparable to adaptive filters —
will sense its operating environment and automatically optimize a prescribed
objective function of the array pattern by adjusting the elemental control
weights. Figure 7.9 can now be modified to indicate the adaptive nature of
the beamformer as shown in Figure 7.10.

The arrows in Figure 7.10 indicate that the elemental weights are time
variant (i.e. changing with time). The choice of the weight vector w is based
on the statistics of the signal vector x received at the array. Basically, the aim
is to optimize the beamformer response with respect to a prescribed criterion
so that its output y, contains the least contribution from noise and other
interference. An algorithm designed for that purpose would specify the
means by which the optimization is to be achieved.

Beamforming optimization implies selecting the weights based on the
statistics of the data received at the antenna array so that the beamformer
output response contains little or no contributions from noise and signals
arriving from directions other than the desired signal direction. A number of
criteria for selecting the optimum weight include:

o Minimum mean-square error — A technique that minimizes the error
between a beamformer output and the desired signal on the notion that
a reference signal is known.

e Linearly constrained minimum variance — A method used where the refer-
ence signal is unknown. It involves constraining the response of the
beamformer so that those signals from the desired direction are passed
with specific gain and phase. The weights are chosen to minimize output
variance, or power, subject to response constraint.
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o Least mean squares — The preceding weight optimization techniques assume
that their optimal solutions are known. Where these optimal solutions are
unknown, adaptive weight estimates may be employed that use the least mean
squares technique. This technique utilizes the steepest descent technique.

For a general description of these techniques the reader is advised to consult
Ahmed (1987), Treichler et al. (1987), or Widrow and Stearns (1985).

The dynamic range D, of the digital beamforming due to thermal and
quantization noise is given as (Schoenberger ef al. 1982)

32217
D, = 2—6N (7.15)

where N and b correspond to the number of array elements and digitization
bits. Another study (Stehel and Hagn 1991) gave the dynamic range as

D, =2"1N, (7.16)

where N, and b correspond to the number of parallel channels and number
of analogue-to-digital bits.

7.3.1 Beam control and calibration

The beam pattern may be controlled by effective reduction in the pattern
sidelobes and optimally changing the aperture weights so as to steer the
beam in any preferred direction negating the sidelobes’ influence. A variety
of techniques for performing weight optimization and sidelobes’ suppression
or cancellation have been discussed in the previous section and Chapter 3
respectively. Our attention now focuses on calibration techniques.

Calibration is the removal of equipmental, or propagation, deviations from
reality, which, if necessary, are estimated or measured in real time. Calibration
may also imply transformation of radar output data into international meas-
urement units (Jarrott and Soame 1994).

Calibration can be performed by injecting a test signal at a particular time
into the inputs of the multi-channel receiver associated with the digital beam
former. The test signal can be supplied by an auxiliary antenna in the near
field of the main antenna or by precise coupling lines across the antenna
face. Both techniques ensure that antenna element and feed errors are
contained within the calibration loop, thereby offsetting channel-matching
errors. The use of an auxiliary antenna requires that the antenna has a
defined directivity so that it can illuminate the face of the main antenna
without also illuminating other structures within the vicinity. This safe-
guards re-radiation towards the antenna face, which could destroy the
prescribed distribution of the calibrating field. The auxiliary antenna must
also be physically offset sufficiently far from the field of view of the main
antenna. This is necessary to prevent undue influence on the distribution
across the main antenna arising from target echoes.
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Let us define the test signal distribution across the receiver inputs as
(Barton 1980)
X1 =[x}, x5, X, . X)) (7.17)

X,
Let the response within the processor be written as

X' =[x, x5, Xy, (7.18)

’vn

A diagonal matrix operator C will be formed in which

x./

e = 7 (7.19)
Signals received during normal operation are weighted by modified weight
values. As such, a nominal weight vector w' required for a particular beam
shape and pointing angle is corrected such that the weight vector actually
applied is

w=Cw (7.20)

It should be noted that time of arrival changes across the antenna aperture,
and cable delays between the antenna elements and the receivers are likely to
cause frequency, amplitude, and phase variations at the beamformer.

7.3.2 Conclusion

The beamforming process attempts to preserve the total information
available at the antenna aperture. With the digital beamforming technique,
the weight w; can easily be exploited by changing its value to steer the beam
in any preferred direction and manipulate its shape to optimize the
system performance. By carefully selecting the aperture weights, which
may be complex, beamforming can be equated to a simple discrete Fourier
transforms (DFT): this presupposes effective beam-pattern control and
calibration.

7.4 Radar equation: a discussion

A form of the radar equation developed for line-of-sight radars, in Chapter 5
equation (5.56), is applicable to skywave radars but with a different emphasis
on certain notations and definitions. As earlier discussed in Chapters 3
through to 5, the ability of the radar to detect target power depends on the
background noise power that competes with the target power, S7. The target
power is approximately equivalent to the received power, S. It should be
noted that the received power S is emphasized because not all signals are
targets and not all backgrounds are noise. These background interferences



224 Skywave radar

are denoted as Np. Like equation (5.56), the received power to background
interference ratio depends on:

S I 1 T,P,G,D,\ [o|F*
No o 3 ) {TRGDL ol (7.21)
Ne  \(4n)* | \NoF,L; Ly R*
~—— N——
cons tan ¢ environment radar t arg et
capability characteristic

where

T; = total integration time

L; = ionospheric losses

L, = total system losses

Ny = external noise, nominally derived from thermal noise (kB,Ty)
but multiplied by the noise density factor

F, — analogous to antenna noise factor

Fy — more is said later in the text.

Reading (7.21) after the equality sign from left to right, the following is described.

The first term is just the proportionality constant.

The second term is the environmental factor comprising external noise
and ionospheric losses including two-way propagation path, polarization
mismatch, and ionospheric anomalies discussed in Chapter 6.

In the HF spectrum, noise levels are generally expressed by a factor, denoted
by F, in (7.21), which is similar to antenna noise factor Fy included in (5.59). The
noise density factor, F,, describes the antenna referred external noise density in
excess of thermal noise (kB,, Ty). The noise density factor is a strong function of
frequency and varies with time of day, season, sunspot number, location, etc.
Kingsley and Quegan (1992) gave a rough mean value for F, as

60 —2fun, 5<f < 15MHz
F"_{45—fMHZ (dB) |5 = r < 28 MHz (7.22)

The nighttime F, values are about 10dB below the daytime given approxi-
mately by (7.22). A more sophisticated approach to obtaining F, is given in
(Weiner 1991).

The third term is the radar capability, or radar figure of merit (FOM),
comprising the transmitter power P, and gain G,, receive beam directivity
D,, effective processing (or integration) time 7;, and system loss L,. The
directivity of the receive array is used, in some cases, instead of the receive
array gain, which can be found from (5.12). An inquiring mind might ask:
what of the influence of the currents flowing in the ground mat, ohmic
heating, cable losses, etc.? Of course, these losses are present but are included
in the system loss. The system loss is separated from the total losses L;,, in
(5.59) in order to distinguish it from environmentally induced losses.
The system loss is localized and can be reduced by the system designer.



Applications of skywave radar 225

The fourth term is the target characteristic comprising radar cross-section, o,
range, R, and ground reflection effect, | F#|. The ground reflection effect increases
in apparent ¢ due to illumination via ground reflection as well as by direct path —
already discussed in Chapter 5, section 5.1.7.1.6. In some literature, the ground
reflection effect is denoted by Mu. This ground reflection effect increases, and gets
worse, with increasing frequency because higher frequencies are associated with
longer ranges.

The last term, A%, is the radar wavelength. Though not particularly
associated with any of the identified terms in (7.21), it, however, influences
the environment, target characteristics, and the radar capability terms; they
change with A. Of course, the radar capability term, or FOM, increases with
frequency because receive beam directivity increases, which about cancels
the explicit A term.

The waveform of the transmitted signal does not enter into the radar
equation. This implies that the signal can be selected for other considerations
such as range and Doppler resolution. The choice of signal, however, does
play a major part of radar (or sonar) signal processing and good discussions
can be found in Cook and Bernfeld (1967) and Vakman (1968).

Before closing the discussion on radar equations, it is beneficial to briefly talk
about the background interference, Np. In practice, ‘background’ implies the
content of cells around the target cell in three dimensions (range, azimuth and
Doppler). The detection process, to be discussed in Chapter 10, must make an
estimate of the power in the cells in the neighbourhood of the potential target cell.
The simplest being the mean power in the defined neighbourhood cells. Often, as
it becomes obvious in Chapters 10 and 12, the signal-to-background interference
ratio (S/Np) value is nominated (like a threshold) to give some satisfactory
standard of detection probability with acceptable probability of false alarm.

1.5 Applications of skywave radar

There are many ways to exploit the largely untapped potential of existing
military skywave radar, in particular OTHR. If properly harnessed, OTHRs
can be used for the following applications.

7.5.1 Shortwave radio forecasting and ionospheric models

Resurgence in military and commercial use of the crowded shortwave radio
spectrum has prompted a renewed interest in HF channel identification. The
resurgence also helps having a better understanding of solar and geomagnetic
influences on climatic changes and ionospheric models. With increased know-
ledge of climatological models, we would be in a good position to:

e develop better ionospheric models for HF radio frequency management over
large parts of the Earth that are inaccessible to conventional ionospheric
sounders;



226 Skywave radar

e develop shortwave prediction models and warnings that are useful for
optimizing point-to-point radio communication;

e map the occurrence of transient phenomena in the ionosphere, such as
polar and equatorial disturbances, and sporadic-E ionization;

e measure the spectral broadening of ionospherically propagated ground
clutter, which can be used as an indicator of the information capacity of
an ionospheric path; and perhaps

e probe the structure and dynamics of the solar corona thereby enabling a
good prediction of space weather. The OTHR will act as a test bed for
developing HF solar radar technology.

7.5.2 Climatic monitoring and forecasting (Georges etal. 1993;
Sinnott 1987)

An OTHR offers a unique capability for continuously mapping sea-surface
winds and waves over very large ocean surface areas. In particular, OTHR’s
ability to map sea-surface wind direction permits an accurate assessment of
the location, shape and growth of the tropical waves, which often intensify
and develop into tropical storms and hurricanes. An OTHR could also map
synoptic and large-scale meteorological features that determine whether
tropical or subtropical waves will grow or die. To this author’s knowledge, no
present or planned observing system offers this capability. Both the Australian
Jindalee and USA Navy’s OTHR systems have demonstrated the radar useful-
ness for weather services and fleet numerical predictions, respectively.

7.5.3 Air traffic control, and search and rescue

Since the primary objective of OTHR is for surveillance purposes, i.e.
tracking of aircraft and surface craft, this capability could be adapted
directly to air traffic control. The ability of the OTHR to see beyond ocean
regions inaccessible to conventional radar and the capability to map surface
currents with high resolution over very large ocean areas could support
search and rescue missions.

7.5.4 Monitoring climate change (Anderson 1986; Croft 1972;
Georges etal. 1998)

The influence of ocean currents has been known to affect our weather and
climate because:

(a) sea state affects ocean albedo, which in turn affects the absorption of
solar radiation;

(b) sea surface roughness affects the uptake of greenhouse gases; and

(c) Surface wind stress affects ocean circulation and the global heat fluxes
and budget.
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OTHRs can be exploited to:

e monitor surface winds, waves and currents over large ocean areas, which
could assist considerably in understanding their role in global environ-
mental change;

e parameterize sea state, crucial to the estimation of the effects of air—sea
interaction on global climate change, and on the El Nifio phenomenon;

e validate and initialize numerical weather prediction models; and

o predict the trajectories of surface-borne pollutants, and monitor bursts of
strong currents that can cause economic damage, such as damage to
offshore oil platforms, which could cause oil spills.

7.6 Summary

The fundamental mechanism that enables the skywave radar to be used for
long-range surveillance is the ability of the ionosphere to refract electro-
magnetic energy. A particular discussion on skywave radar was centred on the
over-the-horizon radar (OTHR). The basic structure of an OTHR system, and
its component parts, has been explained.

Although the OTHR concept is simple, using the ionosphere as reflectors
for the radar requires an understanding of the complexities of the iono-
sphere. Despite this, each propagation mode has been observed to be well
behaved thereby enabling the OTHR to discern between the different pro-
pagation paths. Finally, the capability, channel occupancy, and potential of
the OTHR have been discussed.

Problems

1. If the site of a skywave radar is not well isolated from the urban area,
determine the effect(s) on the spectral surveillance subsystem measure-
ments.

2. Why are OTHR systems much more demanding on the quality of their
propagation paths?

3. Ten 1kHz channels are sampled in the process of establishing the opti-
mum frequency band. Based on previous observations, there is a 90 per
cent chance of finding a clear channel. What is the probability of finding
10 kHz adjacent channels for any signal sweep?

4. In the process of discerning between single path and multipath circuits,
are the data from the sounders sufficient for determining frequencies that
are free from multipath and spectral broadening? If not, what would you
suggest?

5. An array antenna of N elements is required to have a beamwidth of 13.2°
when spaced equidistantly at 0.3A. Calculate the elements required when
propagation is conducted at 13.5 MHz. For these elements, spacing and
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frequency, if the receiving antenna is steered about 12° off the boresight,
will the beamwidth be the same?

6. For an aperture of 2.5km, design a receiver capable of receiving data in
the 5 to 15 MHz frequency band and capable of being steered up to 15°
off the boresight without an occurrence of grating lobes. Clearly state
your assumptions.

7. Example 7.1 demonstrates that the positioning of the receiver for all
frequency settings may not in the ‘strict sense’ be in the far field. Radar
equations are developed on the premise of the far-field situation. What
effect will the non-conformance have on radar measurements?



Part Il

Peak Detection and
Background Theories

The issue of what to do with data acquired by radar becomes relevant after
the data have been processed, which might have been corrupted prior to
being processed and when the data true nature is known. Data processing
involves the transformation of a set of coordinated physical measurements
into decision statistics for some hypotheses. Those hypotheses, in the case of
radar, are whether targets with certain characteristics are present with
certain position, speed, and heading attributes. To test the trueness of the
hypotheses requires knowledge of probability and statistical theory and
decision theory together with those espoused in Chapter 1 — the reader will
be in a better position to know the other process involved in signal-peaks
detection. Hence, this part is structured into three chapters: 8, 9 and 10.

Chapter 8 reviews some of the important properties and definitions of
probability and random processes that bear relevance to the succeeding
topics in Part IV. By this approach, the author consciously attempts to
reduce complex processes involved in synthesizing radar system signals to
their fundamentals so that their basic principles by which they operate can
be easily identified. The basic principles are further built on in Chapter 12 to
solve more technical tracking problems.

Chapter 9 investigates one type of optimization problem; that is, finding
the system that performs the best, within its certain class, of all possible
systems. The signal-reception problem is decoupled into two distinct
domains, namely detection and estimation. The detection problem forms
the central theme of Chapter 10 while estimation is discussed in Part IV,
Chapter 11. Detection is a process of ascertaining the presence of a particular
signal, among other candidate signals, in a noisy or clutter environment.






Probability theory and
distribution functions

In radar applications, such as tracking, the signals plus interference received
are stochastic in nature and can often be described only by statistical means.
Indeed it is the stochastic nature of some of these signals that reflects their
ability to impart information, although noise, clutter, or other interference
may mask the desired signals. The word ‘stochastic’ is used as a synonym for
‘random’. Both are interchangeably used in the literature.

Use of probability measurements arises from the need to extract plausible
explanations from events, which may have too much information of the
undesirable kind. Thus, this chapter attempts to provide the readers with
a sufficient background in probability theory as a precursor to the under-
standing of the subsequent chapters. It does not, however, attempt to
rigorously treat the probability theory, but only attempts to review some
of the important properties and definitions of probability and random
processes upon which succeeding chapters are built.

This chapter also includes a discussion on distribution functions and their
properties that involve more than one random variable. Applications of the
distributions, which are often encountered in signal processing, are given.

8.1 A basic concept of random variables

A random variable, or variant as it is sometimes called, is a function defined
on a sample space, Q. A sample space is the combination of all possible
outcomes of a random experiment. For example, suppose a coin is tossed
thrice. A coin usually has two outcomes: head (H) or tail (T). One possible
outcome of the experiment is that all tosses result in tails. The complete
possible outcomes are: HHH, HTH, HHT, HTT, THH, TTH, THT, TTT.
If, in shorthand form, ®;, ,, ®3, ®4, ®s5, ®g, ®7, ®g, respectively, denote the
outcomes, then the sample space containing the outcomes of the experiment
can be written as Q = {o;, ®2, ©3, 04, ®s, O, O7, O3 }.

A particular outcome of the experiment is known as a sample point.
Suffice to say that within each outcome a sample point can be assigned.
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Where a sample space contains a finite number of sample points, the sample
space is considered to be discrete. For example, in throwing a dice, the
sample space comprises six discrete sample points denoted by the numbers
1,2, 3,4, 5and 6. When a discrete sample space contains an infinite number
of sample points, then the sample space is considered to be continuous. An
example of such a sample space is the thermal noise voltage, which thermally
excites electrons in a finite conductor. In essence, a random variable can be
discrete or continuous in any sample space. An event is a combination of
possible outcomes, which is a subset of the sample space. For example,
obtaining an even or odd number in throwing the dice is an event.

In general, the values of a variant, or a random variable, may be real or
complex. Where multiple variables are involved, vectors can be used to
represent the variables. Given that a random variable is a function defined
on a sample space, it is logical to associate probabilities with the values of
the random variable. A method of associating the probabilities is called the
probability function. For instance, for all possible values associated with a
discrete random variable x, the random variable’s associated probability
function p(x;), may be defined as

p(xi) =Plx=x;) =0 (8.1)

where i = 1, 2, ..., n, and P(x) denotes the ‘probability of variable x’.

8.2 Summary of applicable probability rules

A brief review of some important rules of probability is discussed in this
section.

Rule 1. If P(x) and P(X) correspond to the probabilities of event x occurring
and not occurring, then

P(%)=1- P(x) (8.2)

Rule 2. If x and y denote two independent events, then the probability that both
events will occur is the product of their respective individual probability:

P(xy) = P(x)P(y) (8.3)

This type of probability is known as joint probability. It follows from (8.3)
that if »n independent events occur jointly, then the probability of joint
occurrence is the product of the events’ individual probabilities:

p <ﬁ xi> = P(x1)P(x2) -+ P(xy—1)P(xn) (8.4)
i=1

N-dimensional variables arise in a number of communications and radar
problems, for example in the range-cell averaging techniques for determining
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noise statistics in constant false alarm rate (CFAR) receivers. The basic concept
and measurement of CFAR will be discussed in Chapter 10.

Rule 3. If x and y are two events mutually exclusive, written as m(xy) = 0, then
the events probability is zero; that is, P(xy) = 0. Also, the probability that any
one of these events will occur is the sum of their individual probabilities; that is,

P(xory)=P(x+y)=P(x)+P(y) (8.5)

It follows from (8.5) that the probability of occurrence of one of n mutually
exclusive events can be expressed as

P(i x,~> =3 P(w) (8.6)
i=1

i=1

Rule 4. If the events x and y are not necessarily mutually exclusive; that is,
m(xy) # 0, then the probability that at least one of the two events will
happen is the sum of their individual probabilities less their joint probability.
Concisely written as

P(x and/or y) = P(xUy) = P(x) + P(y) — P(xy) (8.7)
Following the above reasoning, the probability that at least one occurrence
in more than two events can be deduced as follows:
1. at least one of three events:

P(xUyUz) = P(x)+ P(y) + P(z) — P(xy) — P(xz) — P(yz)
+ P(xyz) (8.8)

2. at least one of n events:

P(x; and/or x, and/or---and/or x,) = P<U x,-) (8.9a)
i=1

P(n X[) = i: P(X,‘) — zn: P(Xix/‘) + i: P(Xixjxk)

i i=1 J>i k>j>i
n

— Z P(XixjXpXm) + -+ (8.9b)

m>k>j>i

Equation (8.9b) is equivalent to the probability that at least one of the
n events will take place is one minus the joint probability that none of
these event will happen; that is,

P(x; and/or x,---and/or x,) = 1 — P(X1X2X3 - X)

(i) O
i=1
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If these events are independent, in view of (8.2), (8.4) and (8.10), the prob-
ability that at least one of the n events will occur is

P(x; and/or x;--- and/or x,) = ZP(xi) (8.11)
=1

If the events are mot independent, the probability becomes conditional.
A conditional probability of an event x; with respect to another event
Xy (written as P(x;|xz)) is the probability that x; will take place
given x; has occurred. Consequently,

P(X]Xz)
P(x2)

P(x|x2) = (8.12)

By this expression, the general form of the expression in (8.3) can be written as
P(xy) = P(x)P(r|x) (8.13)

which by extension to three events yields
P(xyz) = P(x)P(y [ x)P(z | xy) (8.14)

The term P(z | xy) can be interpreted as the conditional probability of z given
the occurrence of both x and y. The generalized form of (8.14) is quite useful
in the optimal estimation problem where limited information of any given
set of received random variables is known. This will become obvious to the
reader later in the text when the statistical estimates of target state variables
are being formulated.

To develop the case of a pair of events where the point
x; (= x1, X2, ..., Xy_1, X,) may take on n discrete values, suppose that the
probability of event y depends on knowledge of the previous event occurring in
one of the n distinct ways. The probability of y, which is unconditional, can thus
be expressed as the sum of conditional probabilities weighted by their respect-
ive probabilities, P(x;). That is,

P =3 PO |3 P(x) (515
i=1

n
where x; are mutually exclusive and > P(x;) = 1.
i=1

8.2.1 Bayes' theorem

Bayes’ theorem follows naturally from the conditional probabilities
explained in (8.15). This theorem allows for a method of combining the
initial, or prior, probability concerning the occurrence of some event with
related experimental data to obtain an amended or posterior probability.
Bayes’ theorem can be explained as follows using some of the above rules.
Suppose that the probability P(x;) of values x; are known, where
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i=1,2,...,n Suppose also that an event y occurs in conjunction with
values x; occurring. The question becomes: how has the event y actually
occurred and what will its impact be on the individual probability of x;? This
translates to finding P(x;|y) for all values of i. In view of (8.13),

P(xiy) = P(y|xi)

= POIP( ) 10
Rearranging (8.16), to yield
Pl ly) =~ Ig?yﬁ) _P (X";’()S |x:) (8.17)
Upon substituting (8.15) in (8.17):
P(xi|y) = P(xi) 0120 8.18)

;P(yle)P(xi)

which produces the expression known as the Bayes’ theorem. A closer look
at this expression reveals that two terms are prevalent. Reading from left to
right after the equality sign:

(1) the first term, P(x;), is the i'pitial or prior probability; and
(ii) the second term, P(y|x;)/>_ P(y|x;)P(x;), is the amended or posterior
=1

probability. This probabili?y corrects the prior probability on the basis
of data in hand.

Bayes’ theorem is easily applied in real life in discerning which event prob-
ability is to be used to assign weights to radar received signal as coming from
clutter or from the target. An example can be formalized as follows.

Example 8.1 Suppose a target is observable and its presence (or absence)
in a surveillance region can be denoted as B; (or B,). There is always a
tendency that one can erroneously classify the target to be in the surveillance
region while it is not or vice versa. Let A; denote the signal peak being
correctly associated with the target and A, is when the signal peak is not
correctly associated with the target. Because of the potential misplacement in
the target-peak association, errors are likely to occur. On the assumption
that the target is observable, the probability of associating detected peaks to
the target involves setting up a priori observability correctly. So, the error
probabilities are written as

P(A4y|B2) = qn (8.19)
=1-po
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This is the probability that a peak was detected when there was no target in
the region. Also,

P(A2|B1) = qi0=1—p1o (8.19b)
which is the probability that no peak was detected when there was a target in
the region.

Let’s define p as the probability that the target is observable and

g (=1 — p) that the target is not observable. By this definition, the a priori
probability that a target was observed in the region or not is given as

P(B)) =p (8.20a)
PB)=q=1-p (8.20b)

What is left to be evaluated is the a posteriori probability P(B;|A;) where
J,i=1,2. From (8.18):

P(B;)P(4;| B))

P(B;|A;) = 8.21
(Bi140) = 5053p 0, By) + P(B) PLAL B (820)
The four a priori probabilities can be written as
PP1o
P(B||A4,) = 8.22a
(Br]41) ppio +q(1 — por) ( )
(1 —pio)
P(B; | A45) = 8.22b
(Br [ 42) gpo1 + p(1 — p1o) ( )
q(1 = po1)
P(B | A4)) = 8.22¢
(B2 ] A1) ppio +q(1 — por) ( )
q(1 — po1)
P(By | 4>) = 8.22d
(B2] 42) qpor + p(1 — pio) ( )
Remembering that
P(A1) = P(B1)P(A1 | B1) + P(By)P(A: | By)
(8.22¢)
= pp1o +q(1 = p1o)
P(A4z) = P(B1)P(A2| B1) + P(By) P(A2 | By)
= p(1 = p1o) + (1 = p)po1 (8.22f)

=1-P(4))

A special case occurs when the error probabilities are equal; that is, when
qo1 = q10 and pg; = pio. Also if the a priori are equal, thatis, g = p = 0.5, then:

P(4y) = P(43) = 0.5
P(By|42) = P(B>| A1) = 1 = pio (8.22¢)
P(A1|B1) = P(42] B2) = pro
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Example 8.2 This example is similar to the problem given in Gangolli and
Ylvisaker (1967). Suppose three containers numbered 1, 2 and 3 contain,
respectively, one red and one black ball, two red and three black balls, and
four red and two black balls. Consider an experiment consisting of the
selection of a container followed by the draw of a ball from it. Let ‘Red’
be denoted by R and the ‘Black’ by B. One could arrange a sample space
Q as follows:

Q={(1,R),(1,B),(2,R), (2,B),(3,R), (3,B)}

For the events dictated by the selection process, one could arrange them as
follows:

B, = {(1>R)7 (178)}
B, = {(27R)7 (273)}
B; = {(37R)7 (37B)}

These events are mutually exclusive and exhaustive.
If 4={(1,R),(2,R),(3,R)} and each ball in the container is equally
likely to be drawn, then
1 2 2
PBI(A):E, PBZ(A):g and PBX(A):g
If the container is not observed but a red ball is drawn, what is the prob-
ability that it was drawn from container 1, 2, or container 3?

The question is technically: what are the a posteriori probabilities
P4(B1), P4(B2), and P4(B5)?

The solution to this problem depends on the a priori probabilities:
P(B)), P(By), and P(B3). For this problem, suppose P(B;) = P(B;) =
P(B3) = 1/3.

Using the Bayes’ theorem, that is

P(B)Ps(4)

m

; P(B))P5,(A)

PA(BI'): 21,2,...,7}’1

the following values are obtained for the a posteriori probabilities:

15 12 20
Py(By) = 77 Py(By) = 77 Py(B3) = o
3

Of course, Y P4(B;) = 1.

i=1

8.3 Probability density function

The probability function concept described in the previous section applies
strictly to discrete random variables but becomes less meaningful for
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continuous random variables. Instead, the probability density function is
used. The probability density function is also called the probability density,
density function, or simply density. If in the sample space an arbitrary large
number of experiments are performed, at any given time ¢, a probability
density function (pdf), denoted by f.(x(f)), can be formed, which will be a
continuous histogram of such event x at time ¢. Statistics derived from such
experiments are called ensemble statistics. By definition, the probability' that
a random variable x lies in an infinitesimal interval between x; and x; + Ax is
given as

Plxi<x<xi+Ax) d
= =—F( 2
Ax—0 Ax dx (x) (8.23)

where F(x) is the characteristic function of x. Equation (8.23) is equally
extendable to a single random variable having n-dimensional space:

d}’l

—F R o 8.24
dX17X2,...,Xn (X],Xz, 7Y) ( )

Sre(x1,x0,.00,x,) =

where fy(xy, X2, ..., x,) is the joint probability distribution function of
(x1, X2, ..., x,). The expression given by (8.24) is called the joint pdf. The
equation exists whenever its right side exists. The joint pdf must satisfy the
following conditions:

(i) A(xix,.0,x,) >0 (8.25a)

(i / / / Sr(xr, x2, .oy xy)dxidxy . oodx, = 1 (8.25b)

If x1, x7, ..., x, are continuous random variables, then the marginal density
is defined as

£ulx) :/: /:.../:;fx(xl,xz,...,xn)dxldxz...dxn (8.26)

' It should be noted that, although f(x) is not a probability per se, the phrase probability
density function originates from the fact that the product f(x)Ax approximates to
P(x; < x < x; + Ax) if Ax is small. Therefore, the probability that the random variable x lies in
the interval &; and &, can be expressed as

PE <x<§)= /;zf(x)dx

In general, when the random variable depicts points of a random signal or process that is a
function of time, the probability density function of various orders may be easily defined. For
example, the probability that the random variable x lies between & and & + Ag at the time 7 = 1,
can be written as p(§, ¢;). Conversely, if at #; and 7, the variable x lies, respectively, between
{& and &, + A&} and {&, and &, + A&, }, the corresponding probability can be defined as
p(&;l’ll;&%h)'
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If x1, x2, ..., X, are continuous and independent, then
n
f:‘C(xlaxzv"wxn) = foi(xi) (827)
i=1

It should be noted that when considering the joint pdf of two or more
random variables, the differential term in (8.23), or in (8.24), would be
replaced by a normalizing factor called the Jacobian, J. The definition of
the Jacobian J can be explained by an illustration, as follows.

Consider two random variables X and Y with corresponding functions
defined by Z=/f1(X,Y) and P=f5(X,Y). The values of Z = Z(®)
and P =P(@®) depend on the outcome of the event ®. These values
in turn determine the values of X(®) and Y(®). If the distributions of X
and Y are given, the joint probability distribution of Z and P can be
estimated by:

(i) finding the real solutions to the equations z = fi(x;,y;) and p = f2(x;,y;)
for all ;
(ii) evaluating, at each root, the Jacobian J of the transformation from (x, y)

to (z,p);

where
o op
_|0x; Oy
J = az’ 621 (8.28)
ax]‘ ay,

(iii) calculating the joint pdf of Z and P.

o) = 3L (5.29)

J=1

The J factor plays the same role as the differential term in (8.23), or in (8.24).

Example 8.3 Consider a radar circular display screen of unity radius hav-
ing the locations of a radar target uniformly distributed over the circle
radius. Determine the joint and marginal pdf of the range and azimuth of
the target when the density function is described by

foley) = {3V <] (5.30)

elsewhere

Solution
As in the radar tracking problem, the radar variable is the target range
R having a pdf of fx. Being circular, the range can be formalized in terms
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of the x, y coordinates, the target elevation angle, 6, and the screen radius,
r, as

R=/x?+)?
x=rcosf
y=rsinf (8.31a)
0= tan’1<X>
X

The Jacobian factor J is dependent on the target’s variables R and 0, and in
view of (8.31a) and (8.28),

OR OR
ox oy cos® sinf| 1

=00 00| = |=m we|=; (8310)
ox Oy

Within the limits 0 < r < 1 and 0 < 6 < 2mx, the joint pdf:

ol 0) _fxy|(;€|7 ) _ ’E (8.31c)

Within the limit 0 < r < 1, the marginal pdf

2n 2n
R = | fro(r,0)d0 = / %de —2r (8.31d)
0 0
For a discrete case, consider a set of random variables x;, x», ..., x,, having
corresponding discrete points ki, k», ..., k,. To express a set of probability

density functions in discrete format, certain conditions similar to that stipu-
lated in (8.25) must be met:

(1) P(Xl:kleZZkzw--aXn:kn)ZO (832d)
() Y Y .Y PXi=k,Xa=ky ..., Xy =) =1 (8.32b)
kl kZ kn

Also the marginal density can be written by taking one sample at a time:

P(X, :kl)zzz...ZP(Xl =k, Xo =k, ..., X, =k,)  (8.33)

ky k3 kn

By taking two samples at a time, the marginal density is written as

P(X, = ki, X, = k) :ZZ...ZP(XI =k, Xo=ky, ..., Xy =ky)

k} k4 kn
(8.34)
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Hence, for j samples, the marginal density can be written as
P(Xi =ki, X =ka, ..., X; = k)

=N > . P =k X =k, Xy = k) (8.35)
ki1 kia kn

providing that j < n.

8.4 Moment, average, variance and cumulant

Moments, averages, mean, or expected values (or expectance) are syn-
onymous with random processes. These terms are denoted by many notations,
which are incorporated in the definition below. For example, the first
moment, n, of x(¢) is

[o¢]
my = E[x(1)] :/ x(O)f (x,1)dx (8.36)
which is just the average value of x(f) and where f(x,y) denotes the prob-
ability density function of x at time ¢. There are different notations used in
the literature to represent average including p, av[x(?)], X(¢), or <x(¢)>.
The second moment (also called covariance, or the mean square value)
about the mean is a measure of the dispersion or spread of the random
variable x(¢) on the sample space, defined as

my = E[X(ll)x(lz)} = /_OC /_oo X]Xzf(X]thl]l‘z)dX]dXz (837)

where f(x1,x2:11,1) is the joint probability density of the pair of random
variables [x(7;), x(2)].

Generalizing therefore, the kth moment about the origin of a random
variable x(¢) is the statistical average of the kth power of x(¢) defined as

ny = E[x(l)]k:/ X (1)f (x, 1)dx (8.38)
—00

When order k > 3, the moments are called higher-order moments statistics,
which form the basis of higher-order statistical signal processing. If the
random variable x(¢) is not described about the origin, its moment properties
can be described in terms of cumulant (Rosenblatt 1985). The cumulant,
denoted by ¢, of the kth order is found by successively differentiating the
natural logarithm of the characteristic function and evaluating the derivative
at the origin. A good overview of this approach can be found in Boashash

etal. (1995).
The concept of moments can be extended to bivariant cases of different
orders k, n, involving two random variables x(#) and y(¢) having correspond-
ing powers k and n. Assume that the variables x(¢) and y(¢) lie, respectively,
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within the intervals x and x + dx at time #;, and y and y + dy at t,, then their
joint (k 4+ n)th moment can consequently be expressed as

Mjen = E[ / / X sy, tz)dxdy (839)

for m, and m, having zero means, and where f(x, f1;y, ) is the joint
probability density function of x(¢) and y(¢).

The kth moment (8.38) can be efficiently calculated through the introduc-
tion of a function 3(u), called the characteristic function of the random
variable x(¢), defined as

() = /_ OO‘ eI (x)dx (8.40)

This equation is similar to the inverse Fourier transform definition in (1.11).
Using the kth moment definition of (8.38), a series expansion is obtained:

oo [ 1k
= [JZ!} i (8.41)

k=0

Since 3(u) is the inverse Fourier transform of the probability density f(x,7),
it can easily be calculated and also provide the higher-order moments of the
signal.

Drawing from Rule 2 in section 8.2 that implies the same relationship for
the characteristic function:

S(uy, u2) = / / /N £ (0 el doxs (8.42)

Using the correlation principles discussed in Chapter 1, section 1.3.4, this
expression can be split into two as a product of two characteristic functions:

3(u1,u2) 5(141) 5( 2) (843)

This expression implies that the correlation concept is linearly dependent.
In essence, the bivariant functions can be resolved in similar manner as in
(8.43). In this case, 3(u;) and 3(u;) would denote the characteristic functions
of variables x(¢) and y(7) respectively.
When dealing with multivariable systems, the random variables encoun-
tered can be represented by vector quantitics. As an illustration, for n
observations, let x(¢) denote a column vector

x1 (1)
XQ(I)
x(1) = | %3(7) (8.44)
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where its transpose is [x(1)]7 = [x1(7), x2(7), x3(7), . .., x,(¢)]. From (8.36) the
expectance of the vector can be written as

Elxi(1)] [ x1f(x1,0)dx,
E[xy(1)] f)Qf 1)dx;

Ex(n) = | Ea(] | = | Jxaf (x, (8.45)
E[x,;(t)] Jxnf (xa, 1),

By suppressing the time dependence of vector x(¢), its covariance matrix can
also be expressed as

covx] = E[(x — E[x])(x" — E[x"])] (8.46)

If E[x] =0, and in view of equation (8.45), the covariance matrix can be
expressed as

E[X]X]] E[X]Xz] E[X1X3] . E[xlxn]
E[)QX]] E[XzXz] E[X2X3] . E[xzxn]

covx] = E[xx"] = Elxsx] Elxx] Elaxs] ... Elax) | (3.47)
E[x.nxl] E[x.”xz] E[x;,X3] . . E[x;1xn}

The covariance matrix is symmetric and positive definite.

Before closing this section, it is worth noting that both the expectance and
the covariance matrix could be conditional. Just as the conditional probability
concept discussed above, the conditional expectance of a random variable can
also be developed for mono-, bi-, and/or multivariant cases. Using previous
developments in sections 8.2 and 8.3 together with expectance definitions in
section 8.4, both the scalar and vector cases can be formulated.

Another useful property associated with conditional expectance is that,
for example, if a two-dimensional random variable (X, Y') has a conditional
expectance for X given Y as E(X|Y) and the variables X and Y are
independent, then

E[E(X|Y)] = E(X)

(8.48)
E[E(Y | X)] = E(Y)

A problem of importance in radar tracking and control systems is in deter-
mining the parameters of a model given observations of the physical process
being modelled. In most cases, the system parameters cannot be determined
by a priori, or they vary during an operation. In such cases, an application of
probability concepts to the system parameter estimation becomes a handy
tool indeed. A practical example is determining which radar signals come
from targets in a surveillance area of interest, while these signals are noise
corrupted. The basic assumption frequently utilized in such multi-target
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conditions is that the targets are independent of one another. As such, an
estimated target’s state, ¢, can be developed at any sampling instant, or time
t given the returns n up to time j. Likewise, the covariance associated with
such an estimate can be obtained. Within the bounds of such returns, in view
of (8.12), the conditional probability distribution function of target returns
could be written as

p(Ct|n]an2vn3v"'vnn) .
Glmj) = : j=12,...,n 8.49
r(Glin) PM1, M2 M35 -5 My) (8.49)

n

where p(n;,N2,M3, ---,MN,) = P(J[ n;) is the joint probability distribution
function of n;. =1

The question of which probability models to use in a particular problem is
an important one, and should be answered carefully using all available data
and background information. The answer cannot be dictated by math-
ematics, but must be arrived at by careful examination of the physical
situation.

Before proceeding to the topic of distribution functions, it is necessary to
explain briefly the notion of stationarity and ergodicity.

8.5 Stationarity and ergodicity

A signal is said to be stationary if its mean, expected, or ensemble average,
value at different times is constant. If stationarity exists not for all distribu-
tion functions p,, but only for n < k, then the process is said to be station-
arity to order k. The case k = 2 is called, obviously, stationarity to order 2,
but more often weak stationarity or stationarity in the wide sense. If the
stationary property of the signal can be limited to its first- and second-
order moments, the signal is wide sense stationary when characterized as

E[x(6)x(t + 1)] = R:(7) (8.50)

where R, (t) is the autocorrelation function of the signal (already discussed in
Chapter 1, section 1.3.4).

In general, in a weak or wide sense stationary, < x(f)>= | = constant
since p; does not depend on time 7 and the correlation depends on the time
difference only as p, does (Adomian 1983).

The statistical parameters are, in general, difficult to estimate, or meas-
ure, directly because of the ensemble averages involved (Bellanger 1987).
A reasonably accurate measurement of ensemble averages requires that many
process realizations are available or that the experiment is repeated many
times. In real-time data processing, this is often difficult. On the contrary,
time averages are much easier to come by for time series. Hence, ergodicity
property is of great practical importance. A process for which corresponding



An overview of probability distributions 245
ensemble averages and time averages are equal is called ergodic. A stationary
process is called ergodic if the following conditions are met:

(1) The time average is the same as the ensemble average for given time z;
that is,

E[x(1)] = Tlgn 21T/Tx(t)dt =m (8.51)
Or
1 T
Elx(1)] = Tlgrgcﬁ 2 x(t)=m (8.52)

so that the variance of X(¢) is zero as T — oo.

(i1) The autocorrelation function R,(t) (similar to (1.51)) can be expressed
as a time average as well as the ensemble average

1 T
El(ix(t+1)] = Jim o /_ X(x(i+ 7)d = R() (8.53)

Or

Ex()x(t+1)] = hm

2T+1 x(t+1) = Ry(1) (8.54)

For complex signals, the autocorrelation function may be expressed by

T

1 .
R (1) = ]1L002T x(6)x*(t + t)dt (8.55)
Or
1
R (1) = TlaoczTJrl X(t+1) (8.56)

where x*(z + 1) is the complex conjugate of x(¢ + 1).

It should be noted that the class of ergodic processes is a proper subclass of
the class of stationary processes. As such, an ergodic process could be strictly
stationary but a stationary process does not have to be ergodic.

8.6 An overview of probability distributions

As earlier indicated, in radar systems, the signal received by the radar may be
due to those reflected from clutter, or a combination of that from the target
and surrounding surface. To achieve detection one must assume that some
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noise, or clutter, characteristics may appear at the radar receiver output.
Careful analysis of the outcome should assist in minimizing the total prob-
ability of error. In practice, however, noise or clutter distribution patterns do
not necessarily fit well into known distribution patterns. With experience,
systems designers may modify such distributions and categorize them in a
manner befitting recognizable patterns. Some well-known distributions are
discussed in this section because they approximate physical problems and
satisfy normal laws relating to the independence and randomness of physical
quantities.

8.6.1 Uniform distribution

A continuous or discrete random variable that is equally likely to take on
any value within a given interval is said to be uniformly distributed. If the
random variable were continuous, its probability density function would be
a series of equally weighted-impulse functions. If one allows the discrete
random variable type to be a rectangular function, as shown in Figure 8.1,
its mean value can be written as

E(x) = %(a +b) (8.57a)
And its standard deviation by
b—a
o, = 8.57b
EW; (8.57b)

Note that the height of the probability density function must be selected to
give a unit area.

fe(x)

a b

Figure 8.1 A representation of a uniform density function, f(x)
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8.6.2 Normal or Gaussian distribution

A random variable x is said to be normally or Gaussianly distributed if its
probability law has a density f,(x) that satisfies the normal or Gaussian law
(see Figure 8.2). Specifically,

1 22
—[x=p?/207)] (8.58)
e .
\/irccx

The parameter p is the mean of the variable x and the variance o2 is the
second-order moment of the centred random variable (x — p), where o, is
called the standard deviation. Like (8.40), the function of a mean-centred
(i.e. p = 0), the Gaussian characteristic function” may be written as

J(x) = e ¥ (8.59)
Using the series expansion of (8.41), the nth moment of the variable is written as
_ 2k 2k _

E(x") = {’W =5p0x n=2k k=0,1,...,n (8.60)

0 n=2k+1

fi(x)
11
| X
0 n

Figure 8.2 A Gaussianly distributed function

2 A characteristic function is also defined for a real random variable x (say, chosen at time
from a process) (Adomian 1983):

30 = (™) = K " e p(x)dx

where A is real. It follows that the inverse Fourier transform of the characteristic function
uniquely determines the distribution function p(x); that is,

p(x) = [ " e300

which is one of the principal reasons for the usefulness of the concept of the characteristic
function.
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For k-dimensional Gaussian variable X(x;,x, ...,xx), the characteristic
function is written as

l\)l'—‘

k k

S(ur,uz, ..., Uy) = exXp
i=1 j=1

where m; = E[x;x;].
If a change of variable y = x — p/o, is applied to (8.58), then

/ﬂfx(X)dx :\/—QE/,OOE dy =1 (8.62)

This expression cannot be evaluated analytically. Instead a set of tables
of numerical approximate solutions of ®.(x) is, by definition, given as
(Abramowitz and Stegun 1968)

D, (x) e Tdy (8.63)

NI

which is the distribution function of a unit normal distribution. Since the
integral is even, it follows that

D, (—x)=1—-D\(x) (8.64)
For the case of x = —x = 0, (8.64) becomes
,(0) :% (8.65)

Instead of tables of numerical approximate solutions to the distribution
function, tables of the error integral, or error functions denoted by erf(¢),
are sometimes found which by definition may be expressed by

erf (¢ \/_/ eV dy (8.66)

By putting y = x/v/2 and substituting it in (8.66), the error function becomes

2 Vs
erf(t) = EA e ZTdx (867)

It is evident from (8.63) and (8.64) that erf(¢) is related to the normal distribu-
tion function from the perspective of unit normal distribution in the form

erf(1) = 20, (V2r) - 1 (8.68)

Using the previous definitions of conditional probability, the probability
distribution function can thus be defined as

Sl y) =220
: S (x,9) '
L] x) ==

S ()
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Before closing the discussion on normal or Gaussian distribution, it is worth
considering that the two constraints underlying the formulation of the
previous expressions are seldom true in reality. For instance, mean zero
and identical variance for multiple source data is seldom achieved in prac-
tice. The mean zero is an issue of choice of origin, which is easily accom-
modated in (8.61). For the variance, a group of components could be added
in a way that would all have roughly the same variance. An additionally
important feature of the Gaussian distribution is its behaviour under con-
volution. When two normal distributions are convoluted, the result is still a
normal distribution whether the components have zero means or otherwise.

8.6.3 Bivariate Gaussian distribution

Suppose that two random variables X and Y have corresponding density
functions f(x) and f,(y), see Figure 8.3. If they are independent, then,
by applying rule 2 of section 8.2, their joint density function may be
expressed as

Sy, 3) = fe(X)f3(y) (8.70)

Suppose that X and Y have corresponding mean values p, and p,, and

variances 6> and (5}2,, their distribution function may be written as

Sey(x,p) = ! ex e 2+ y— 2 —00< X,y <00
xy\ %) 2100, Py 73 o oy 4

(8.71)

In general, when variables X and Y are not independent, they become joint
normal, or joint Gaussian, having joint density function

fxy(xay) = nyeffn(x,y) —00 <X,y <00 (8.72)

fy(X)

fi(x) f,(x)

0 Mx My

Figure 8.3 A bivariate gaussianly distributed function
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where

(8.73a)

2 _ _ 2
() v (52 052+ (022
Oy Oy o oy

(8.73b)

1
ny(x,y) = 2(1 R )

Xy

where Ry, is the cross-correlation coefficient of two functions. As discussed
earlier in Chapter 1, section 1.3.4, when R, = 0, the functions are uncorre-
lated and independent. Hence (8.72) is the same as (8.71). However, when
Ry, = %1, equation (8.72) is meaningless because x and y are thus linearly
related and are said to have a singular normal distribution. The joint density
function f ,(x, y) has non-zero values only on the line

X—le::ty_l/ly

.74
- = (8.74)

By rearranging (8.74), a linear relationship is then established between x and
y as

_ G},-(X - Hx)
y=n, +7G (8.75)

X

For p, =0.1, p, =0.5, and o, = o, =2, the linear relationship between
x and y where the joint density function f. ,(x, y) has non-zero values is
demonstrated by Figure 8.4.

y 120
10.0
8.0

6.0 -
4.0

2.0 1

0.0
0 2 4 6 8 10

_ s X

Figure 8.4 For non-zero cross-correlation function, the singular normal distribution of the
joint density function £, ,(x, y)
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8.6.4 Rayleigh distribution

The Rayleigh distribution arises from the theory of post-detection noise. Let,
for example, x and y be the Cartesian coordinate of a vector quantity, each
satisfying the Gaussian distribution. Let the distribution functions of x and y
have a representation described by (8.71). If the distribution of the modulus
of the vector is required, a simple way of doing this is by transforming the
quantities from one frame to another; that is, from (x,y) to (r,0). So, the
differentials of the coordinates may be expressed as

dxdy = rdrd® (8.76)

If the mean of the distribution functions are assumed zero and their vari-
ances equal; that is, p, = p, =0 and o, = o, = o, then using (8.76) in
(8.71) yields

I (242 I (2

72 ¢ (5 )dxdy =572 () rdrd® (8.77)
Since coordinates x and y are separable quantities, » and 0 are also separable.
To secure normalization, the radial density with respect to 6 must be 1/2m,
noting that there is no dependence on 0. Hence, (8.77) resolves to

ro_2
fr) =757 (8.78)
which is the Rayleigh distribution with two degrees of freedom. Its general-
ized expectance can be shown to be

E() z n = even 879)
X" = .
213.5...n6" n=odd

Due to the statistical nature of radar received signals, the Rayleigh distribu-
tion is particularly useful in radar signal processing to characterize noise in
the receiver prior to demodulation (detection) and certain types of clutter
distribution across measurement domains, such as range, Doppler and azimuth.
The expressions in (8.78) and (8.79) generally apply to radar noise. For
post-detection signals, detected noise is called video noise. The video noise has
a different probability distribution to the noise prior to detection.

The Rayleigh distribution has also been used to characterize clutter,
particularly sea clutter, which is stochastic in nature arising perhaps from
superposition of many processes or events. A simple Rayleigh clutter can be
characterized as

) =— e v, >0 (8.80)
VP
with its fluctuating input amplitude proportional to the mean, where |/, is
the clutter mean and v, clutter amplitude or threshold voltage.
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A sea clutter has been characterized by the Weibull distribution, which is
the limiting case of the Rayleigh distribution, written as

f(re) =08l v, >0 (8.81)
where a, B are constants and
9 =log,2v./p) (8.82)

As demonstrated in Chapter 5, section 5.4.1, a simple Rayleigh description
of sea clutter is insufficient because a number of multivariate components
are required to accurately describe sea clutter. If, however, a quick estimate
of sea clutter is required, the Rayleigh function tends to overestimate the
range of values obtained from real clutter.

8.6.5 Poisson distribution
A random variable x is called a Poisson random variable if at x = k,

ek
P(x=k)= k" k=0,1,2,...,00 (8.83)
where A, is average intensity of the variable x, A, > 0 noting that 0! = 1. The
Poisson distribution function can therefore be given by

00 77\],7\’/€
fln =Y = (8.84)

k=0

The expectance of the distribution may be expressed as

< e
— P
E(x) = ;x .~
50 gy (8.85)
r ; (x—=1)!
If (x — 1), in this expression, is replaced with y, then
0 e M)
E(x)=2» —2L=1 (8.86)
=V
since X%)e*”ﬂk;/y! =1
y=
The variance of the distribution is obtained by
X e A
2 o _ o /4
o2 =E(x(x—1)) = ;x(x D—
50 g-hppi-? (8.87)
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Replacing (x — 2) with y, to have

X 00 e*?»/,ky 5
E(x(x=1) =2y —L=2 (8.88)
=
Hence, the variance
oy =E(x(x—1)) =1\ (8.89)

Example 8.4 A surveillance station provides the statistics of system break-
downs per day as follows.

Breakdown/day 0 1 2 3 4 5 6
Frequency 340 121 53 30 12 4 0

Find the mean of the distribution. Using this mean, show that the distribu-
tion follows approximately a Poisson distribution. What is the probability
that there are no breakdowns?

Solution
Let’s denote breakdowns/day by x, and frequency by f. The expectance A, is
defined by

Zfixi
kp = lfo = 0.6875

Using (8.83), the following probability values are obtained and plotted as in
Figure 8.5:

(i) No breakdown, P(0) = " = 0.5028
(i) 1 breakdown, P(1) = e"*}, = 0.3457
P(x) 0.6

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

0 T T T y
0 1 2 3 4 5 6

Figure 8.5 Probability of breakdowns/day
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a2
p
)L,,

(iii) 2 breakdowns, P(2) = - )2! =0.1188
—pa 3

(iv) 3 breakdowns, P(3) = <52 = 0.0272
a4

(v) 4 breakdowns, P(4) = “2"2 = 0.0047

(vi) 5 breakdowns, P(5) = f:;x’b’ = 0.0006

(vii) 6 breakdowns, P(6) =

Ap

e A8
2 =0.00007

Using (8.84), fr(x) = > e Mk = 0.99999 ~ 1, which demonstrates that

e . k=0
the distribution is Poisson.

8.6.6 Binomial distribution

The binomial distribution is frequently used for multiple-pulse detection
scenario. For instance, the possible outcomes from n-pulse received signals
can be determined by writing

(r+49) (8.90)
where 0 < p < 1 is the probability of occurrence and ¢ = (1 — p), not occur-
ring. Following the binomial theorem

N

n —r

=3 (4 ) (891)
r=0

The probability of r outcomes out of n pulses may be expressed as

Piv=n= (1) (8.92)

and the probability distribution as

fulx) = ZN: (':)p"q’” (8.93)

r=0

where

n ! n—1)n-2)...n—r+1)
<r> :r!(nnf r)! == n1.2.3...rn (8.:94)

A special case of the binomial distribution is when n = 1. At this condition,
the distribution is said to have a Bernoulli distribution.

Example 8.5 A count of N pulses transmitted for a test run on an antenna
dish shows that on the average 20 per cent of the pulses will not hit the dish.
If it were possible to randomly select 10 pulses from the batch of pulses, find
the probability that

(1) exactly two pulses will miss the antenna dish;
(if) two or more pulses will miss the antenna dish; and
(iii) more than five pulses will miss the antenna dish.
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Solution

N=10

Probability of miss, ¢ = 0.2

Probability of pulses hitting the dish, p =1 —¢ = 0.8
Using (8.92) the following probability values are obtained:

(1) Exactly two pulses missing target

10x9
2) = <10)0.820.28 = < ; >0 820.2% = 0.0000737

P(x )

(i) Two or more pulses missing target

P(x >2) =1-[P(0) + P(1)] = 0.9999958

10
P(0) = ( 0 )poqlo 0.2'° = 0.0000001

10
P(1) = < | >p1q9 =10 % 0.2° x 0.8 = 0.0000041

(iii) More than five pulses missing target

5

P(x >5) ZP or x>5—1—ZP

P(x > 5) = 0.9672065

8.7 Summary

The distribution of all orders that characterize a process is frequently too
complicated and in some instances represent more than is needed. Often
simpler and necessarily less complete characterizations in the form of expect-
ations or means, dispersions or variances, covariances, joint moments, correla-
tions, etc. are considered. These characterizations are useful ways of measuring
our knowledge of the processes. This chapter has certainly provided such tools,
complemented with examples. It is this author’s belief that enough probability
theory has been presented to the reader to understand the subsequent chapters.
Since models of noise-corrupted signal processes usually specify system statis-
tics, the importance of probability theory becomes self-evident.

Problems

1. In the process of manufacturing several radar system components, the
factory estimates that 0.2 per cent of its production is defective. These
components are sold in packets of 200. What percentage of the packets
contains one or more defectives?
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2.

If a machine produces defective products with a probability of 4 per cent.
What is the expected number of defective items in a random sample of
500 taken from its output? What is the variance of the number of
defective items?

Consider a sample of 9 values x;, i =1, 2, ...,9), of a random variable
X, which is known to be normally distributed with unit variance and
unknown mean. Write a probability expression that an observed value
would lie with any given range of the distribution.

A number is drawn from a hat that contains the numbers 1, 2, 3, ..., 50.
Every number has an equal chance of being drawn from the hat. What is
the probability of drawing a number divisible by 4?

Suppose three containers numbered 1, 2 and 3 contain, respectively, one
red and one black ball, two red and three black balls, and four red and
two black balls. Consider an experiment consisting of the selection of a
container followed by the draw of a ball from it. The container is not
observed but a red ball is drawn, with all events considered mutually
exclusive and exhaustive. The probability that a ball in container 1 is
drawn is 0.45, in container 2 is 0.35 and container 3 is 0.2. What is the
probability that a red ball was drawn from container 1, 2, or container 3?
A coin is flipped seven times. [If an ith event, defined by 4; = {® | ® has
heads in the ith position} fori=1,2, 3, ..., 7.] Allevents 4y, A>, ..., A7
are mutually independent events. Show that the probability of selecting a
head in ith position is

JHP(A,-/) _ G)

Describe three realistic cases where the use of binomial distribution is an
appropriate model for characterizing a random variable.



Decision theory

The last chapter provided the basis of decision theory — which is statistical
and the main discussion of this chapter — and the signal detection process (to
be discussed in Chapter 10).

The basic concepts of decision theory are fundamentally important in all
analyses. As noted in the previous chapters, there is no pure signal. Signals
received by a radar system may contain clutter, the target, or the target and
clutter. The dilemma is making a correct decision that the signal received
comes from the target or not. A decision is sought from statistical tests on
which a hypothesis could be tested that the returns are truly from the target.
A hypothesis is a statement of a possible decision. If the hypothesis were
correctly postulated, the outcome would minimize the total probability of
error. Hypothesis testing involves comparing (Lehman 1959):

e critical value(s) with defined population parameter(s);
e probability of acceptance with set value(s); and
o test value(s) with the specified confidence level(s).

Several decision criteria have been postulated in the literature, which use a
different amount of information and specification. The most popular are the
Maximum Likelihood, Neyman—Pearson, Minimum Error Probability (or
Maximum a posteriori probability) and Bayes minimum risk decision rules.
The basic ideas behind these criteria are discussed in this chapter. Examples
are included to show how these rules are applied.

Before going into the main discussion on decision criteria, the author
considers introducing the concept of the test of significance and the connec-
tion between error probabilities and decision criteria by an example of a
binary detection problem. It is hoped that this approach will enable the
reader to follow the flow of each rule’s development. No attempt will be
made to delve too deeply into mathematical details that govern these rules.
However, the discussion will be explicit enough for easy comprehension of
each of the criteria basic characteristics.
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9.1 Tests of significance

The test of significance is a mode of inference within the framework of the
sampling distribution techniques. This test is concerned with deciding
whether or not a hypothesis concerning statistical parameters is true. As
an illustration, suppose that it is required to test whether a sample space Q of
certain observations xj, Xz, ..., X, is compatible with the hypothesis that
they come from a normal probability density function with specified values
Ho> G%, for the mean and variance.

The steps involved in setting up a significance test follow closely Galati
(1993) and Jenkins and Watts (1968).

(a) Assume a form for the probability density function associated with the
samples is

: N 1 1 < . )

S n(xX1,x2,. ., x, 1, 07) = (\/Z_ngz)nexp{ 262;()@ n) } (9.1)

where the samples’ mean p and variance 6> may or may not be known.
And set up a null hypothesis, H,, that the samples are distributed
normally with the mean p, but unknown variance 2.

(b) Decide a set of alternative hypotheses. For example, it would be natural
to take these to be p >y, meaning that a set of samples would be
rejected if the mean were too high.

(c) Decide on the best function of the observations or statistic to test the null
hypothesis. If the variance 62 is known, it is possible to show that the best
statistic is the mean p. When the variance is unknown, the best statistic is

V(e — 1)

= YmE R0 (9.2)

where ‘¢’ is a sampling distribution with subscript ‘v’ denoting its degrees
of freedom. The probability density function of the random variable ¢,
is called the Student’s t distribution with v degrees of freedom. Y ou might
be interested to know that the name Student was a pseudonym for
W.S. Gosset, a French statistician. He used ‘¢’ to denote the standardized
Student variable given by (9.2).

(d) Derive the sampling distribution of the statistic under the null hypothesis.
From (c), the sampling distribution may be taken as chi-squared distribu-
tion with v degrees of freedom or Student’s t distribution with v degrees of
freedom. In this sampling example, the degrees of freedom v =n — 1.

A quick review of these distributions is now given to broaden the
knowledge of the reader. The sampling distribution of the mean involves
the distribution of sums of random variables; e.g.

fulw) = @exp{—g (SR} 9.3
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The sampling distribution of the variance of normal random variables
involves the sum of squares of random variables. For example, suppose
there are n independent measurements from a normally distributed
population of zero mean, unit variance N(0,1) and it is required to
find the sampling distribution of the random variable:

=X x4 (9.4)

This distribution 2 is called the chi-squared distribution with v degrees of
freedom, and with probability density function
1 .

fal) = gt 0<x<oo) (9.52)

where I'(v/2) is the gamma function with argument (v/2) defined by
o [T et
r(z) /0 e 101 gt (9.5b)

The first two moments of y2 distribution, obtained from the (9.5a), are

Elx]=v

Var[y;] =2v ©:3¢)

Plots of f,2(x) against x for v =1, 2, 3, 5, 7 and 9 are shown in Figure 9.1.
As observed in Figure 9.1, at v = 2 the function f,2(x) is exponential, and
afterwards (v > 3) the function f,(x) settles down to a unimodal form. For
values of 0 <v<1, as shown in Figure 9.2, the function f,2(x) has an
infinite ordinate as x tends to zero but tends to zero as x tends to infinity.
Usually, the observation’s normal distribution is written as N(u, 62). In
the case of y2, it can be written as N(p/c, 12). For unknown variance c°

25 30

- s> X

Figure 9.1 Chi-squared probability density function
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f,2(X) 0.50+
g 0.454 v=1
0.40P-7
0.35-
0.30-
0.25-
0.204 0.2
0.15
0.10
0.05-
0.00 . -

0

_ > X

Figure 9.2 Chi-squared probability density function for v <1

(©)

()

chi-squared probability density function for null variance o3, degrees of
freedom v, the probability limits may be expressed in the form

@ <Zen(-)-1 oo

and may be obtained from statistical tables. Rearranging (9.6), it follows
that the random variable satisfies

v c v

B (RS )
The Student’s ‘z,” distribution may be constructed on intervals ¢,(§/2)
and 7,(1 — &/2) in which ¢, is allowed to lie on a proportion (1 — &) of

occasions. Since the Student’s probability density function is symmetric
t,(&/2) = —t,(1 — £/2), the probability limits may be expressed as

P{—tv(l —%) <T, < tv(l —%)} =1-§ (9.8)

So, this expression can be interpreted as ¢, would be expected to lie
within the interval +7,(1 — &/2) on 100(1 — &) per cent of occasions.
Using (b) and (d), the sample space Q can then be divided into a critical
region Q. and an acceptable region (Q — Q.), which consists of all points in
the space outside the critical region. The critical region is chosen such that
the probability P{x;, x2, ..., x, lies in Q.| Hy is true} = &, where & is a
small value. The probability & is called the significance level of the test.
The significance test then consists of rejecting the null hypothesis if the
observed sample xi, X3, ..., x, falls in Q. and not rejecting if it falls in
(Q — Q). Given that there is a small probability that the sample point

A
|
A

=1-¢ (9.7)
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falls in Q. when Hj is true, any cases when this happens are taken as
evidence against the null hypothesis.

Since P{r, > t,(1 — &)} = &, following (9.2), the critical region is defined
by

N

=R - (9.9)
Alternatively
Cly— 1 - E.'
H=Ho+ 1&}7) (9.10)

If the observed value p does not lie in the critical region, the null hypothesis
is not rejected at the & significance level. This approach is called a one-sided
significance test.

Another situation might arise where p > p, and p < p, are of equal import-
ance. For example, if the mean of a sample has to conform to the specified
mean L. In such a case, it would be reasonable to define the critical region as

t>tn1(l—%), l<—ln1(l—%> (9.11)

In this situation, following (9.8) to write the probability limits, the mean test

may be expressed as
th,1<l —%) th,1(1 —%)
M>H0+T» H<MO_T (9.12)

If the observed value p does not lie in the critical region limits, the null hypoth-
esis would not be rejected at the & significance level. This approach is called a
two-sided significance test as opposed to the one-sided test given by (9.10).

9.2 Error probabilities and decision criteria

Suppose a binary source produces possible signals x;{xo, x;} with respective
probabilities p;{po = P(x0), p1 = P(x1)}. The received signals y; (= x; + noise)
reached the observer in a deteriorated form because of the signals’ contamin-
ation by various random distances. Knowing the binary nature of the source,
the observer can set two hypotheses about the signal identity on the basis of the
observer’s continuous, or discrete, observation of the received signals y;. For
this, the observer must apply a decision criterion. The hypothesis testing, in this
case, is the problem of deciding which hypothesis is correct based on a single
measurement, y, from the observation space, Q {Q € y;}. That s, a decision of
ascertaining whether ‘a target is” or ‘a target is not’ present in Q. Denoting the
two outcomes by dy and d; respectively as ‘a target is not’ and ‘a target is’ in
the desired observation space Q. This becomes a binary detection problem.
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However, if the radar returns from the surveillance area or observation space
contain a set of M hypotheses H;, where i =0,1,2,..., M — 1, then the
sequence would have M-ary detection problem.

The next step is to partition the observation space into two decision regions
Yy and Y;. When y lies in Y, dy is taken as the correct hypothesis and
whenever y lies in Y, d; is taken as the correct hypothesis. The question is:
how then does one choose from these regions to minimize probability of error?

To begin with a suitable criterion for the observation space to test which
of the hypotheses is true is written as

P(di]y) i=0,1 9.13)

which means that the probability that d; is the true hypothesis given a particu-
lar value of y. With this formulation, it is possible to decide whether the true
hypothesis is the one corresponding to the larger of the two possibilities.

The error probabilities can be defined as either of the first kind o (also
called Type I) or second kind B (also called Type II). A Type I error may be
expressed as

a=p(d=d|y=n)

9.14
= p(di | xo) B39

which is the probability of deciding on event x; when x, actually happened
(and hence measurement y, was generated). This type of error is similar to
the probability of false alarm, Py,.

A Type II error may similarly be written as

B=pld=dy|y=m)

= p(do | x1) 1)

which is the probability of deciding on event xy when x; actually happened
(and hence measurement y; was generated). This type of error is similar to
the probability of miss detection, denoted by Pp, which is the same as
(1 — Pp), where Pp is the probability of detection.

At this junction, decisions are made on the basis of:

If y exists in region Yo(y € Yy), dp is decided;
If y exists in region Y (y € Y)), d, is decided.

The error probabilities can be defined using the conditional probability
density functions p(y|xo) and p(y|x;). Thus, the probability of making an
incorrect decision can be defined for each type of error:

0= p(dr |x0) = [ plr|xa)dy (9.16)

1

B:ﬂ%uo:/p@umw 9.17)

Yo
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Table 9.1 Error probabilities and decision criteria

Events
Decision Xo X1
do Correct decision Error Type 11
d, ]15;00; Type 1 CorrBect decision
o 1 -

Similarly, the probability of making the correct decisions is:

p(do

m=/MHm@=r4m (9.18)

Yo

mmm:/mﬂm@:% (9.19)

It is obvious that (9.18) equates to (1 — «) while (9.19) equates to (1 — ). It
follows therefore from (9.16) and (9.18) that

p(do | xo) + p(di | x0) = 1 (9.20)
And also from (9.17) and (9.19)
pldi|x1) +p(do|x1) =1 (9.21)

From (9.20) and (9.21) a decision and error probabilities table can be
developed as in Table 9.1.

The functional relationships formalized in (9.16) through to (9.21) are
used in the next sections.

9.3 Maximum likelihood rule

The maximum likelihood rule (MLR) is a decision based on most likely
causal. It requires that the conditional probability density function of the
observation is given and that every possible event is known. This statement
can be formalized as P(y|x;), where y is the observation and x; represents
possible events. The decision rule is formed by choosing:

_Jdo o p(y|xo)>p(y|x)
d(y) a {dl if p(y xl) >p(y|x0) (922)

Alternatively a likelihood ratio test can be used:

_ry[x)
A(y) = o0 %) (9.23)
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The decision can be written concisely as

di
A(y) Z 1 (9.24)
do

Thus, the decision test consists of comparing the ratio A(y) with a constant,
called the threshold. The threshold in this instance is unity. This kind of
decision process is called the likelihood ratio test (LRT).

In summary, the maximum likelihood is a simple decision rule. Its draw-
back is that it may not represent adequately practical problems. Nonethe-
less, it is a powerful tool in estimation problems.

Example 9.1 Two observations Y, and Y are related to events xy and x;
respectively. Their probability density functions are described by

e 7

Y() : p(y|)€0) = \/—2—n (92521)
_ O L;)
e 20

Yy: X)) = 9.25b

Apply the MLR and decide which event truly comes from observation y;.

Solution
From (9.23), calculate the likelihood ratio

y|’€l 1 { )u}

Ay 9.26
0= p([x0) ©20)
From (9.24), the decision test is
2 d
v -
exp{ 7 752 }d c (9.27)
0
Rearranging after taking log, of both sides to have
dl
(o = 1)y* +2yp — (0* +20%log,5) Z 0 (9.28)
do
Equation (9.28) is a quadratic equation having solutions:
¢ N \/ 2
_ 2 2
5 () 7 |/ W+ o log.0) (9.29)
From (9.29), the following decisions are made
y<—(5) - n? 4 o2 log -
If ( ) \/5 ( . O) d;  decided (9.30)

2 4 62log, o) dy decided
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If p=0,and 6 > 1,

d
2c%log,
R 9.31)
o
For a case of 6% = 2,
di
v > 118 (9.32)
dy

In conclusion, for two observations with normally distributed probability
density functions with a spread of two or more, it can be suggested that the
signals are truly coming from observation y; if the likelihood ratio is greater
than 1.18, otherwise they come from observation yj.

9.4 Neyman-Pearson rule

The Neyman—Pearson rule (NPR) is a problem of constrained optimization
that uses the Lagrange multiplier A. The rule can be expressed as

max "
Y1

Alternatively in the functional form
I'=p(dy |x1) = A p(dy | xo) — o] (9.33)

where o is a desired value. From this expression, it can be said that the
Neyman—Pearson rule expresses the desire to estimate, or set constant, the
probability of false alarm, P, at a given value o while maximizing the
probability of detection, Pp. The optimum value of P(d; | x1) is a function of
A, where A itself is a function of the desired value oy. So, in the likelihood terms,
d
Ay) Zn (9.34)
do
It should be noted that the explicit computation of A is not necessary. If A = 1,
the Neyman—Pearson rule will be identical to the MLR depicted by (9.24).

The Neyman—Pearson rule is particularly suited to radar applications
owing to the concept of ‘Py, threshold’ to be fixed a priori while maximizing
Pp (Galati 1993).

Example 9.2 Using Example 9.1 as the basis for this problem but with a unity
spread, apply the Neyman—Pearson rule to estimate the following variables:

(a) probability of false alarm;

(b) probability of detection;

(c) probability of miss; and finally
(d) optimum threshold.
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Solution
Given 62 = 1.

YOZP(J"XO) = \/ﬁ

e
Yi: p(y ‘ xl) = m

The likelihood ratio test produces

d

>

n

AQy) = e"075) =
do
Rearranging the terms after taking log, of both sides of (9.36)
dy d
Ay) 222
dy dy

This decision is graphically shown in Figure 9.3.

log, A p
"2

(a) The probability of false alarm:
P = pleh | v0) =

logo X | n
e +%

p(y | xo0)dy

}.2

[
M+§ vV 27 Y

n

= erfc [Ioge . + E]
il 2

where erfc[-] denotes the complementary error function of [-].

p(di1x0)

\
A
//’

T
n|E

Yo Ys

Figure 9.3 Transition probabilities and density regions

(9.35a)

(9.35b)

(9.36)

(9.37)

(9.38)
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(b) The probability of detection:

-w?

e R

PD = / dy
Bty V2n (9.39)

= erfc [IOg" h_ E}

1! 2

(¢c) The probability of a miss:
PD =1- Pp
9.40
:l—erfc[IOg"x—E} ( )
p 2

(d) The optimum threshold is obtained when the probability of false alarm
equals the probability of a miss; that is, Py, = Pp. Hence, (9.38) = (9.40):

log, A log, A
f ¢ — 1 f ¢ .41
erfe [—H + —2} —erfe {—H ) (9.41)

In several radar applications, there is the tendency to have a pre-assigned
value as acceptable threshold for which the false alarm probability value can
be tolerated. If the desired threshold value is denoted by y/,, then a miss over
and above the threshold can be attained:

log, A 1
=—4= 9.42
W T2 (9.42)

With prior knowledge of v, and p, the Lagrange multiplier A can be solved.
However, if there is no preferred value of vy, the use of (9.41) is appropriate.

Vta

9.5 Minimum error probability rule

The minimum error probability (MEP) rule is often referred to as the ideal
observer. For simplicity, the MEP rule is defined by using two case events x
and x; where the total error probability P, is written as

Pe = p(x0)p(dy | x0) + p(x1)p(do | x1) (9-43)

where p(xy) and p(x;) are the a priori probabilities of events xy and x;
occurring respectively.
Following (9.21),

p(do | Xl) =1 —p(dl |X1) (9.44)
Substituting (9.44) in (9.43), the total error probability can be written as

Pe = p(xo)p(di | x0) + p(x1)[1 — p(di | x1)]

= p(x1) + {p(x0)p(di | x0) — p(x1)p(di | x1)} (9.45)
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The conditional probabilities p(d; | xo) and p(d; | x;) have been described as
the probabilities of false alarm and detection in (9.16) and (9.19) respect-
ively. The goal is to minimize the total probability of error. So, it is necessary
to make the terms in the curly bracket {-} in (9.45) negative.

Mathematically, a decision rule can be instituted as follows. Substitute
(9.16) and (9.19) in (9.45) and then consider only the {-} terms, which will be
the integrand to be made negative.

a2 2010 plo)

~ p(y|xo) i p(x1)

(9.46)
Cptaly @

~ p(xoly) :

>
<
do
If the a priori probabilities are equal, that is, p(xy) = p(x1), then the MEP
decision rule coincides with the MLR.

Instead of using the initial, or prior, probability concerning the occur-
rence of some event as described above, a similar procedure can be obtained
in terms of an amended, or posterior, probability. This procedure is known
as the maximum a posteriori probability (MAP). This is left to the reader to
verify, using the Bayes’ theorem discussed in Chapter 8 as a guide.

The above discussion can be extended to situations where a decision
between two hypotheses dy and d; is based on multiple observations, 7.
Let the successive measurements of several parameters or combinations
thereof be denoted by yi, y2, ..., yu. These observations can be described
by the conditional density function p(y;|x;) and p(y;|xo) where
i=1,2,...,n Asindicated earlier in Chapter 8, multiple observations are
easily expressed in vector format as'y = [y, ya, ..., ¥,]” where superscript
T denotes transposition. In such a case, the decision rule can be written by
considering the observations as a point in the n-dimensional space:

p(y[x1)
A =
STIEy
d (9.47)
:p(y]ay27"'7yn|xl) >
p(y17y27"'5yn|x0)d< a
0

If a bias value (threshold value) v, is given as the acceptable probability of
false alarm, then vy, can be determined from

/ " p(AY) [ x0)dy = 1 (9.48)
Y.

a
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Example 9.3 Estimate the minimum probability of error, given the follow-
ing conditional probability densities:

o-np)?

(]x1) = e
pyIX1) =———
V2
e (9.49)
Cm)?
() =S
JAWA R o
with 6y =0, =ocand p; — p, #0.
Solution
Error decision:
d»
AY) Z 4 (9.50a)
d
It is known that the sum of a priori probabilities is unity; that is,
p(x1) +plx) =1 (9.50b)

The a priori probabilities can thus be written in terms of the decision thresh-
old v,

Ya
X =
i) = + Y4
(9.51a)
(x2) = 1
P 1+v,
noting that
p(x1)
.= 9.51b
Yo =000 (9.51b)
Taking the likelihood ratio of densities of (9.49):
2 2
X W) - —p
=251 ol e
(9.52)

2y(y — W) + Hf — H%}

= exp{ 757

Taking log, of both sides, and replacing the likelihood ratio with the deci-
sion threshold v,:

d»
log.va | 1+
>c{6 efa - 9.53
yjl Mo — 1y 2( o ) ( )



270 Decision theory

Note that by factorization, p3 — p? = (1, — py)(, + ;). If the right-hand

terms of (9.53) are replaced by A, that is, A = o{(clog,v,)/(ts — 1;) +

(1/2)(ny + py)/c}, then the next task is to define the error probabilities.
First, similar to the definition in (9.41), the false alarm probability is

r-1)?

X T2
P = p(da|x1) = dy
2no (9.54)
I 1 1 -
:erfc[—ul} :erfc[G OgeYa+_(Ll2 Hl)}
S o —ny 2 S

The ratio (1, — u,/o) is often referred to as the signal-to-noise ratio (SNR).
Second, the miss probability is obtained as

A

Pp = pldy | x2) = / Py x2)dy
- (9.55)
— erfe {Hz —u _olog, va]
2o Hy — 14y

Third, given (9.51a), (9.54) and (9.55), estimate the total probability of error
P, from (9.43):

P, = p(xp)erfe {“Z A y“] + p(x;)erfe {“2 Hi 0oL y“}
20 Ho — g 2o Ho — g

N [Hz —t  olog, va} b e {Hz —w _oclog, va}
1+, 2o -] T+, 2o Hy — 1y

1 - log, - I
_ {vu orfe {Hz |, clog, va] +erfe [Hz w _olog, v”
1+, 2o Hy — 1y 2o Hy — Iy

1 SNR log, vy SNR log,y
— f, e ia f’ _ e la
1+ya{"’“e”{ >t SNR]+er‘[ 2~ SNR

(9.56)

It is easily seen in this expression that the minimum probability of error is
dependent on the numeric values of y, and SNR. Increasing the value of
SNR for a given threshold v, reduces the probability of error P,.

In summary, the minimum error probability (MEP) decides which is the most
likely event for a set of observations particularly for events with the greater a
posteriori probability. However, by deduction, the maximum a posteriori
probability (MAP) decision rule ensures that comparison is made between
the probabilities of the causes, having observed the effects. These decision
rules (MAP and MEP) are directly suited to radar applications owing to the
difficulties in evaluating the a priori probabilities.
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9.6 Bayes minimum risk rule

The Bayes minimum risk rule is based on defining a cost for each condi-
tioned decision. To choose an optimum decision rule, one must first assign
costs to the decision through a cost function Cj. Literally, Cj is the cost in
deciding d; when x; is true. A practical example is in radar detection problem
in which the parameter x; may be related to target position and velocity.
A suggestion of a cost structure might be to assign higher premium to
minimizing close or fast moving targets than missing slower, more distant
targets.

For n observations, the Bayes risk, denoted by B, can be represented by
the average cost for all decisions:

=
=
—

B = ZQ/P(X/)P(“’[W)
i -
= CU'P(Xf)/P(HXJ)dy
i=0 j=0 Y
Note that
/Yip(ylxi)dy+/ p(y]x;)dy =1 (9.58)

J

If the number of observations is restricted to 2 for simplicity sake, the Bayes
risk becomes

B=Cyp(xo) + Co1p(x1)

+ . {I(Cro = Coo)p(x0)p(y | x0)] — [(Cor — Ci1)p(x1)p(y | x1)]}dy

(9.59)

where Cyy and C; are direct costs for making incorrect and right decisions
respectively. And the average cost can be written as

Buy = E{Cy}
= E{Cy| %o }p(x0) + E{Cy| x1 }p(x1) (9.60)
= Bop(xo) + Bip(x1)

where By and B; are called the conditional costs. Following (9.20) and (9.21)
the conditional costs may be written as

By = Coo + (Cio — Coo)p(di | x0)

(9.61)
Bi = Co1 + (Co1 — C11)p(dy | x1)
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The goal is to minimize the average cost. Like the case of the minimum error
probability (MEP) rule, the integrand in (9.59) needs to be made negative.
So, the cost decision would be

9.62
Cil P(x0)(C1o — Coo) .62

j p(x1)(Co1 — Cn1)
o

This expression is the hypothesis for which conditional risk is the minimum.
As in the previous two decision rules, the Bayes decision rule also involves
knowledge of the events’ a priori probabilities. If there are no known direct
costs associated with making incorrect or correct decisions, it would be
appropriate to put Cyp=Cy;; =0 and Cyp = Cip=1. By choosing
Cyo — Cop = Co1 — Cq; the Bayes decision rule of (9.62) will be the same as
the ‘maximum a posteriori probability’ (MAP) decision rule:

dr .
AG) _plx1) 2 pxo) 0.63)

py[x0) g p(x1)

In summary, it may not be practical to directly apply the Bayes minimum risk
rule to radar applications owing to the difficulties in evaluating the a priori
probabilities and defining and/or obtaining the Bayes costs Cj;.

Example 9.4 Determine the Bayes rule associated with the following con-
ditional probabilities

il

Xo)=e 7
p(y|xo) (9.64)
p(y|x1) = e
given the costs: C11 = Co() = 0; Co] =1 C]() =2
and a priori probability: P(x;) = 0.75.
Solution
The likelihood ratio:
AQ) =213 oo (9.65)
Py x0)
From (9.62), consider the Bayes cost decision
d d
D¢ zl P(x0)(Cro — Coo) %' 0.25(2 - 0) (9.66)

do POD)(Cor = Cur) 70.75(1 - 0)
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in which the value of y is readily obtained as

‘il 0.5
[y < log, <0—75> =1.10 (9.67)
0

noting that p(xg) + p(x;) = 1. To estimate the Bayes risk, the false alarm and
detection probabilities must be determined. Hence, the false alarm prob-
ability is
R
Pl x0) =p(r|) = [ ¥y =067 (9.68)

~1.1
And the detection probability is
1.1
pldi|x1) =py|x1) = / e Pldy = 0.89 (9.69)

—1.1

By substituting (9.68) and (9.69) in (9.61) the following cost values are
obtained

By =134
B =0.11 (9.70)
B=0.42

9.7 Summary

In this chapter, the basic criteria for developing decision rules have been
discussed. The decision rules discussed are the Maximum Likelihood, Neyman—
Pearson, Minimum Error Probability, and Bayes minimum risk decision
rules. These decision rules are essentially a measure of the comparison
between a function of observations, called likelihood ratio, with a suitable
constant, whose value is a characteristic for each of the rules. The main
difference between the decision rules is in the way the threshold is chosen.
The suitability of each rule to radar problems was discussed.

Problems

1. Suppose that three sensors taken at random from a batch were found to
have lifetimes of 2.8, 1.9 and 1.6 hours respectively. Write an expression
of the sensors’ likelihood function. Find the value that maximizes the
likelihood function.
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2. Consider a multiple hypothesis-testing problem for five known signals.
All the signals are positive and are equally likely. Suppose the hypotheses
are defined by

Hy:y=-2x+w

Hyi:y=—x+w
Hy:y=w
Hy:y=x+w
Hyy=2x+w

where x is the signal and w denotes Gaussian noise of zero mean with
variance 2. If the boundaries of the distributions are given as

3x
Hy —oco<a< ——

2
H1:737x§oc<f§
sz—ggoc<§
H3:g§oc<37x

3
H4:7x§oc<oo

where o is the abscissa of the hypotheses distribution curves. If the cost of
a correct decision is 0, and the costs of all incorrect decisions are 1,
determine which hypothesis to accept by choosing the H; with the largest
a posterior hypothesis. Can you extend your result to an M observation
case?

3. Develop a computer program that tests a simple binary hypothesis prob-
lem with variable signal s(7) and Gaussianly distributed noise v; () with
variable mean and variance. If the hypothesis is defined by

Hy:yi=s(t) + v (1)

=1,2,...,n
H1 :y,':V,'(l‘)

3 )

4. If the cost of a correct decision is 0.12, and the costs of all incorrect
decisions are 0.88 in Example 9.4, calculate the a priori probabilities.
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Signal-peak detection

Typically the radar problem may be divided into two parts: detection of
the presence of target and estimation of target parameters of interest; for
example, target range, target speed, and target bearing. Detection will only
be possible if adequate processing is done on the received signals.

Signal processing techniques used for conventional radar may differ from
that of the skywave radar. However, there are some processing techniques
that are commonly applicable to each of the radar systems. Signal processing
is performed for the purpose of accomplishing certain functions. The func-
tions include signal enhancement, clutter suppression or data conditioning,
sidelobe suppression, radio frequency interference suppression, target detec-
tion or extraction, target classification estimation and imaging. Most of
these processing techniques have been discussed in Chapters 1 and 3 (e.g.
Fourier analysis, spectral correlation, weighting, and sidelobe suppression),
and Chapter 7, section 7.2.5 (e.g. data conditioning, CFAR). Paradoxically,
useful signals and noise have many common features, and to some extent,
follow similar classification. What is discussed in this chapter, however, is
the general description of radar signal processing operations that have not
been discussed previously in section 7.2.5.

Decision-testing rules are useful tools in solving signal-peak detection
problems. Detection of a signal in noise is a question of statistical hypothesis
testing — already discussed in Chapter 9. Detection is an essential stage that
lends itself to analysis; a subsequent objective is tracking — the formation of
tracks. There is no way that tracking can be successfully performed unless
the prior stages hand over a reliable input stream of detected peaks. Track
formation on detected peaks is the central theme of discussion in Chapter 12.
As already demonstrated in Chapter 9, as one attempts to reduce the prob-
ability of error (false alarm) one increases the likelihood of another signal
being missed. The vesting question is: what can be done to maximize the
chances of peak detection? The obvious suggestion will be to ensure that the
signal-to-noise ratio is maximized at the receiver output; for instance,
by enabling the input noise bandwidth to match with the signal noise
bandwidth. This is achieved with matched filtering; more is said about
matched filtering later in this chapter. Where there are fluctuations in
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target cross-sections, the matched filtering technique may not be adequate.
Consequently, the probability density function and correlation properties
over time must be known for the target and its trajectory. Unfortunately,
these properties are usually difficult to obtain in a particularly target-scin-
tillating case, but, with reasonable assumptions, it is possible to propose
models that are credible and that closely represent physical characteristics of
the target. Such models include those already discussed in Chapter 5, section
5.4, thresholding, already discussed in Chapter 9.

10.1 Signal processing

Signal processing plays a large part in radar operations, since signals contain
information transmitted or propagated from sources to receivers, and they
take different forms. It is computationally demanding because, as in the case
of skywave radar, the received signal environment contains clutter that may
originate as Earth surface backscatter or as Doppler-smeared ionospheric
backscatter. The power of this clutter may distort target echoes by multiple
folds. As such, a first distinction is between useful signals and noise — non-
white or non-stationary phenomena. In reality, noise sources are always
present. So any received signal will contain noise, and a significant part of
signal processing operations is aimed at removing the noise. A significant
process of reducing, or eliminating, noises and other biases had been dis-
cussed in Chapter 7, section 7.2.5. A brief discussion of some of the other
techniques as well as expanding on others discussed previously follows.

10.1.1 Processes for detection

The method of signal processing depends on the prevailing environmental
conditions under which the signal becomes available. A commonly used set
of procedures includes preprocessing, prewhitening or data conditioning,
and interpolation with smoothing.

10.1.1.1 Preprocessing
Preprocessing is a method of conditioning the signal into a form suitable for
analysis. For instance, the presence of large amplitude, slowly fluctuating
trends, which may prevent effective analysis of small rapid changes in the sig-
nal by restricting the usable dynamic range to a function of that of the trend
(Beauchamp 1973). Preprocessing may include identification of the calibra-
tion signal, dominant clutter signatures, and calibration technique used and
subsequent removal of such biases or trends. Some of the techniques used
during signal preprocessing include ‘classical methods’ such as the average
slope method, least squares method, decimation, truncation of record
length, and reduction to zero mean.

Decimation is a process of data reduction involving the selection of, say,
m samples of the digital data at uniformly spaced intervals throughout the
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data sequence. Such data reduction may be necessary because too high a rate
of digitization may have been originally used. It could simply have been
constrained by the limited resolution requirements of the analysis. The
implication of this is demonstrated by the ensuing example.

Consider a sequence of data points x;, spaced at equal interval p. Under
this distribution, only constituent frequencies may be represented by up to
1/2p (Hz). If every mth point is retained, then the new sampling interval
p’ equals mp. In this instance, only frequencies up to 1/2mp (Hz) can be
represented. Unless frequencies higher than this are filtered out from the
data they will be effectively translated (aliased or folded) into the band 0 to
1/2mp (Hz) and thus distort the baseband signal. The concept of aliasing has
been discussed in Chapter 1.

In essence, it is important to know the physical characteristics of the
system under study, together with the preprocessing conditions and record-
ing format, for a realistic interpretation of the results to be achieved.

10.1.1.2 Prewhitening or data conditioning

Prewhitening is a means of bringing the spectrum of the signal close to that
of white noise; that is, rejecting any unwanted data from the signal before
analysis starts. White noise is defined as having constant spectral density. By
prewhitening, one attempts to make the rate of change of power spectral
density with frequency relatively small. Hence, prewhitening is particularly
valuable where intermodulation distortion is encountered.

The whitening technique does not restore the received signal-to-noise
ratio (SNR) but prevents local false detections. Following the discussion in
Chapter 7, impulsive phenomena, ionospheric biases, and other non-white
or non-stationary phenomena can be located by their signatures, and be
localized to one or more cells. Recognition always implies the excision of
these biases, correlating their signatures against known templates, and then
forming stable or smoothed estimates of the bias in each of the affected cells.

10.1.1.3 Data points interpolation (with smoothing)

Some interpolation may be necessary to compensate for the dispersion of
signal energy over adjacent resolution cells when attempting to formulate
stable or smoothed estimates. Interpolation involves weighting and summing
of sets of three' adjacent values to form a new series of, say, N data points.
This method is analogous to low-pass filtering, which represents a moving
average form of the digital filter. A number of smoothing or interpolating
algorithms are available for this purpose. A well-known example is that of
Blackman’s, which may be represented linearly as

Vi = Boyiz1 + Byi + Boyisi (10.1)

! Depending on the level of accuracy expected, the set could be more than three using the
Blackman—Harris constants in Table 1.2 of Chapter 1.
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where s are the weightings obtainable from the Blackman constants discussed
in Chapter 1, Table 1.2, and y; is the interpolate which weights adjacent data.

Filters are used in signal processing for a number of reasons; some of which
are smoothing of data, event detection, bandwidth selection, bandwidth
limitation, and signal-to-noise ratio enhancement. Filters are particularly
useful in the preprocessing stage of peak detection. For further reading on
filter design, the reader is advised to consult among many books Orfanidis
(1996). Three broad types of techniques used in practice for signal enhance-
ment are briefly discussed:

e Correlation technique, which is aimed at identifying and retrieving signals
in noise — already discussed in Chapter 1, section 1.3.4.

e Filtering technique is used to reduce the effects of noise components that
lie in a different part of the spectrum to the signal. This technique may be
limited in its application if signal and noise components overlap in frequency.

e Coherent time averaging technique involves the summation of successive
repetitions of a signal in such a way that the time signal reinforces itself,
while the noise tends to cancel out. This technique includes other methods,
such as the equal weight summation, sliding window average, and expo-
nentially weighted running average.

10.2 Peak detection

After preprocessing, a threshold is applied to isolate the target returns from
the residual power present in various range-angle-Doppler resolution cells.
To detect peaks in the signal, a simple threshold test is applied to the signal
mostly of variable amplitude by comparing a pre-assigned (threshold) value,
say v, to the magnitude, M, of the processed (whitened) data. As in Chapter
9, the decision rule may be written as

target
Ml 2 v, (10.2)
no — target

This rule is interpreted with the aid of Figure 10.1 as follows. If the ampli-
tude of the processed data exceeds vy,, then a target is declared to be present.
Otherwise a decision of no-target is made. Cases 1, 2, and 3 in Figure 10.1
are probably false targets, which could trigger a false alarm. The average
noise floor is represented by ®y. The abscissa of Figure 10.1 could be range
(in km), azimuth (in radians), or time (in seconds).

If the noise spectrum is characterized as Gaussian, and knowing threshold v,
then the

e probability of false alarm Py, that is, the probability of interference
greater than the threshold,

e probability of detection Pp, the probability of signal plus interference
greater than the threshold,
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=2 output signal

Figure 10.1 Signal response of a detector. Peaks (1), (2) and (3) are probably false, while (T1)
and (T2) are target echo peaks

can be evaluated using the definitions given in Chapter 9 for these variables.
The error probabilities are signal-to-noise ratio (SNR) dependent; demon-
strated by equation (9.56). The average time 17 between false target peaks
can be computed as

1
B BnPfa

Ta (10.3)
where B,, is the noise bandwidth in Hertz.

In a real-time scenario the residual power is usually higher than those
occurring in a noise-only environment. Even in a noise-only environment, as
demonstrated by (9.56), the probability of error is dependent on the thresh-
old as well as the SNR, and increasing the value of SNR for a given thresh-
old v, could increase the false-alarm rate. If a constant threshold is applied,
the false-alarm rate will increase and the saturation of the processor will
result. To prevent saturation, a method of preventing the false-alarm rate
increasing is mandatory. False-alarm rate increase is unacceptable because
target detectability is significantly reduced, which is also unsatisfactory.
Similar observations hold for the clutter-plus-noise environment, which is
often the case in real life, and a method of preventing the false-alarm rate
increase is again mandatory. Clearly, a form of adjustable, or adaptive,
threshold will be required to monitor the residual power while maintaining
constant false-alarm rate (CFAR) and increasing the chances of target
detectability.

10.2.1 CFAR detection

CFAR is used in automatic detection systems to keep the false-alarm rate as
the noise level at the receiver. It also prevents concealment of detectable
targets by weaker clutter by maintaining the clutter output from the receiver
at a constant value well below the saturation level of the display. The basic
concept of a CFAR technique is that the amplitude of a test cell is compared
to that of a set of reference cells. If the test cell is identical to those of the
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reference cells, the test cell is said to contain no target. However, if amplitude
of the test cell is less than those of the reference cells, the test cell may contain
a target. The intrinsic assumption made is that the reference cells do not
contain a target. This assumption is generally not true. An example is where
two aircraft of different radar cross-sections are separated in flight. When the
larger body aircraft is in the reference cell’s window, its presence will substan-
tially increase the value of the adaptive threshold. The presence of the smaller
aircraft will become increasingly difficult to detect, if not impossible.

How does one obtain a set of reference cells?

There are several methods of obtaining a set of reference cells; prominent
among these methods include cell averaging and clutter mapping. However,
the appropriate method employed, in a particular situation, depends on the
type of propagation environment. The development of any of these methods
is based on the assumption that the interference characteristics do not
change over the periods the measurements are taken. It should be noted
that there is no definitive method available that caters for all environmental
conditions: this calls for the jurisprudence of the radar operators.

A common technique is the cell averaging CFAR, which computes an
adaptive threshold to maintain a constant false-alarm rate, see Figure 10.2.
The signal passes through a tapped shift register with the centre point being
the sample of video under consideration at any instant. The centre tap is
reduced by the greater of the average value of the taps proceeding or
succeeding the centre point. The resultant signal should, in principle, be
reduced to a near noise-like signal, which then passes through the threshold
arrangement. The applicable threshold is set based on the preceding average
value.

The clutter mapping technique uses data from previous sweeps to esti-
mate the clutter power for every resolution cell. The clutter mapping can be

Signal
Tapped shift register Tapped shift register
z z
Threshold setter Comparator — Output

Figure 10.2 CFAR processor using cell averaging technique
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instantaneous on-line processing, where the clutter floor can be estimated from
the on-line scan-to-scan samples, using a suitable application of statistical prin-
ciples. From the instantaneous map, the clutter intensities are sorted in a descend-
ing order. The sorting allows picturing of an instantaneous profile of the target
environment and setting the interference bandwidth to achieve optimum filtering.
As the target enters any of the resolution cells, an increase in the reflected power
will indicate the presence of the target at that instant and allows its detection. The
clutter map information is used to set the threshold for target tracking.

10.3 Matched filter

If the input noise bandwidth matches the noise bandwidth of the radar
receiver, its performance will be optimum. This assertion can be investigated by
the following example. Suppose a simple linear process can be represented by
Figure 10.3.

If the input signal s{z) can be defined within a finite time 7, then the
impulse of the optimum linear filter /,,(f) can be estimated by running the
signal backwards x(—¢) in time from the instant, z,,, at which the maximum
signal-to-noise ratio (SNR) has occurred. This type of filter is normally
referred to as a matched filter. This description is depicted by Figure 10.4.
Mathematically, the output response s,(t) can be expressed by

5o(1) = [5:(1) ® hop(1)] = /  s(0x(et e (10.4)
0

This neatly expresses the relationships between convolution correlation and
filtering. Zadek and Ragazzini (1952) gave the classical solution® that
demonstrated a sufficient and necessary condition for obtaining the impulse
response /,,(¢) of the optimum filter in the form

/T hop(T)8(1 4 1)dt = %hop(t) = ksi(tm + 1) (10.5)
0

Input signal
s(t)=n(t)+ax(t)

Output signal

———  Filterresponse, hgy(t) |——-> Sol(t)
(o}

hop(t)=x(=t)
Figure 10.3 A representation of a matched filter
2 A complete treatment of the solution can be found in their paper. Deductions are only

drawn to explain how the optimum filter approach is used to solve the matched filtering problem
and to draw upon theories developed in previous chapters.
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si(t) x(-t) hau(t)

t t -t T 1 t
0 T -T 0 ti—=T 0 tm

(a) (b) (©

Figure 10.4 A schematic diagram of (a) signal s;(t) of finite period T run backwards as in
(b) from an instant t, with an impulse filter's response he,(t) as in (c)

where d(f), No, and k are, respectively, the Dirac function, input-noise
spectral power, and constant of proportionality. From this expression, an
impulse response can be written as a function of input signal and noise:

hop(1) = ]2v—k0s,-(tm +1) (10.6)

By Fourier transformation, the optimum filter’s frequency response can
be expressed as

2k

_ * fiznftm 1 .7
2 si0e (107)

Hﬂp(f) -

This expression is sometimes referred to as a conjugate filter, where super-
script (*) indicates complex conjugation. Certain requirements need to be
met when designing a matched filter: namely, that

o the filter must be at least as wide as the signal spectrum, otherwise it will
reject signal and reduce SNR, and

e the frequencies where the signal is strong must be emphasized and con-
versely where the noise is strong the associated frequencies must be de-
emphasized.

For a rigorous development of matched filter requirements, the reader is
advised to consult Berkowitz (1965) and Cook and Bernfeld (1967).

In practice, it is difficult to implement a filter that exactly matches the
transmitted radar waveform. A ‘best’ result is achieved only when signal and
noise energy lying within the filter’s band are similarly distributed within the
band. As a result, an approximate filter is often used that minimizes the root-
mean-squared error between the desired filter output (the ‘pure’ signal) and
the actual output (filtered signal-plus-noise).

Example 10.1 Design a matched filter for a finite radio frequency pulse
train, depicted by Figure 10.5. For simplicity, take the interpulse period 7 as
a multiple of the pulse width and the pulse amplitude as unity.
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(1) period, T | |

1 | Nth pulse|
T4 ARA 1 AN,

RRY AN AN A

I I

(N-1T I

Figure 10.5 A finite pulse train

Solution

If the receiver received sequentially the pulse train, the 1st pulse of the train
can be denoted by f{(¢). Supposing the 1st pulse is taken as the phase centre,
then the 2nd pulse train will be advanced by 7 and denoted by f(t — T'). The
3rd pulse will be advanced by 27 and denoted by f(t — 2T). Following this
thread, the Nth pulse train can be denoted as f(t — (N — 1)T). So, the total
pulse train received by the receiver is expressed by

Jr(O)=fO)+f=T)+f(t=2T) +---+f(t=(N-1)T)  (1038)

If the Ist pulse of the train can be Fourier transformed, and be represented by
FA(®), then the Fourier transform of all the pulse train can be expressed as

Fr(o) = Fa(w) {1 +e ol fe2oT oo ¢ efim(N_l)T} (10.9)
Multiplying (10.9) by ¢~7*T to yield
Fr(o)e " = Fy(o)[e 7T + e 20T 4 o7 P0T .. 4 o /oNT] (10.10)

This expression has a geometric progression with ratio e 7*7. Now subtract
(10.10) from (10.9) and divide by 1 — e 7T to get

1 = e—ijT
Using known geometric series expansion
sin(23T)
Fr(0) = Fp(o) — 2L e 0W-1IT (10.12)
sin (%)

A plot of (10.12) is shown in Figure 10.6. The response of the pulse train is
comprised of large spikes resembling the teeth of a comb, whose centres are
separated in frequency by 2n/T. The matched filter of the pulse train is called
a comb filter, whose transfer function H,,(®) will be proportional to the
complex conjugate of (10.12).

It is worth noting that a comparison of the pulse-train response (10.12)
and the linear array of # isotropic radiators (of Chapter 4, equation (4.6a)),
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_10 -
Figure 10.6 The response of a comb filter

shows that, for synthetic purposes, a linearly configured array of isotropic
radiators can be represented by a comb filter approximation.

The idealized approximation to the matched filter, called the uniform comb
filter, and its performance has been the subject of many studies. A typical
classical performance analysis of a uniform comb filter has been given by
George and Zamanakos (1954).

10.4 Summary

In this chapter, the basic extraction process for discerning the presence of target
returns in a noisy environment has been discussed. This process is called detec-
tion. Detection is only possible if adequate processing is done on the received
signals. The commonly used sets of procedures for peak detection, the concept of
adaptive thresholding and CFAR as well as matched filtering were discussed.

An important application area of signal processing is target estimation
and tracking, an area that forms the central theme of Part IV.

Problems

1. Consider an RF pulse of duration 7T (sec) and unity energy with a
rectangular envelope described by

2 0<tr<T
s(t) = { \/;cosmcl <t <

0 elsewhere
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Design a filter that matches the pulse. What will happen if the pulse is
sampled at a rate lower than ®,/n?

. During observation, the noise was seen to be completely uncorrelated
between successive versions of the response. If the frequency bandwidth
of the noise is the same of the signal, will there be an improvement in the
signal-to-noise ratio? Under what condition is an improvement in the
signal-to-noise ratio optimum?

. Write a computer program that sequentially

e samples and sorts radar data into descending order of intensities
e sclects the average values of background noise or clutter windows
across the range-angle-Doppler resolution cells.

The program should be robust to extract target peaks above threshold
values. Observe what happens if more than one target enters the reference
cell. Does the program need re-evaluation of the threshold value(s)?
Explain your reasons.

. Your radar system is tasked to function detect targets in air and sea
environments. Will a simple threshold be sufficient for such operational
environments? Why?

. Why does the concept of matched filter occupy a rather central role in
signal theory?






Part IV

Estimation and Tracking

Part IV is structured into two chapters — 11 and 12 — covering parameter
estimation and radar tracking. Having discussed in the previous chapter the
process of detecting the presence of a particular target signal, among other
candidate signals in a noisy or clutter environment, attention now turns to
how to estimate some characteristics of the target signal that is assumed to be
present. This process ensures that the signal-reception problem is decoupled
into two distinct domains: detection and estimation. Detection is the first
type of optimization problem, which has been studied in Chapter 10. Esti-
mation is the second type of optimization problem and exploits the several
parallels with the decision theory of Chapter 9. Three estimation procedures
are considered in Chapter 11, namely, maximum likelihood, a posteriori, and
linear estimation.

Tracking is the central theme of Chapter 12 and it brings to the fore all the
concepts discussed in previous chapters. For example, target tracking now
turns the tentative decision statistics, discussed in Chapters 9 and 11, into
more highly refined decision statistics. The probability theory discussed in
Chapter 8 is expanded to solve the problem of uncertainty in track initiation
and establishment as well as data association.






11

Parameter estimation and
filtering

Systems are often described by equations in which the independent variable
is time. A system may operate on discrete, or continuous, data with the
defined equations either differential or difference in nature.

Parameter 1s a term used to name a scalar, or vector-valued, quantity.
An estimator is a formula or a procedure for deriving from a sample or set
of observations to generate an estimate. In essence, the estimator is the parallel
of the decision rule discussed in Chapter 9, while the estimate is the parallel of
the decision. Parameter estimation refers to the computation of the numerical
values of the parameters, which invariably enter into system equations. For
example, the detection of a target is generally followed by the estimation of
related quantities, such as range, bearing, Doppler frequency or speed.

After the basic principles of parameter estimation, especially for a system
acted upon by random inputs, have been introduced, the criteria used for
selecting estimators are discussed. Following the two popular estimators,
such as maximum likelihood and Bayesian, lincar estimators are discussed.
Linear estimators form the basis of linear filtering and prediction.

11.1 Basic parameter estimator

The process of estimation may be defined as a process of making a decision
concerning the appropriate value of certain unknown parameters when the
decision is influenced, or weighted, by all available information. As an illus-
tration, let B be a parameter: a state vector unknown to an observer that one
wishes to estimate using observations or data corrupted by random error or
noise, €. Let Y be a random variable such that Y = B+ €. The random error €
is assumed to be an uncorrelated random variable with zero mean and known
variance. Suppose a random sample yy, y», Vs, ..., ¥, of size n has been taken.
It would be natural to take an estimate of the unknown parameter  to be

RS
y:;Zyi (11.1)
i=1
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which is the arithmetic mean of Y. In this expression, the hat on ‘y’ means
that the quantity is an estimate. It should be emphasized that this arithmetic
mean y is also called an estimate of the parameter .

In practical estimation problems, particularly as they applied to real-time
tracking, the parameters are time dependent and the exact knowledge of
samples distribution is not possible. In such situations, a less detailed
description of the estimator is required preferably in terms of its lower-
order moment. Also the sequence in which the measurements are observed
must be preserved in finding the required estimate(s) of the system’s para-
meters. The above illustration has been used to give some meaning to the
parameter B that has sought an estimator y, which has a similar meaning
with respect to the sample.

11.1.1 Choice of an estimator

To choose between different estimators, it is important to define an opti-
mality criterion. The philosophy of these estimation procedures is closely
related to those discussed in Chapter 9. Basically the choice of an estimator
and the design of its associated estimation procedure is partly dependent on
the type of data, the availability of the data’s a priori statistics and import-
antly a matter for the user. A wide variety of methods exists, which lead to
a number of estimators such as the maximum likelihood, Bayes estimator,
least squares, minimum or linear minimum variance, estimators a posteriori
including maximum a posteriori (MAP) and recursive linear estimators. The
most important of these is the mean square error criterion, which is dis-
cussed in section 11.4 as part of linear estimators. A class of estimators,
which have smallest mean square errors for a large sample size, is the
maximum likelihood estimators, to be discussed in section 11.2. Another
class in which a prior knowledge amounts to less than a prior distribution
of parameter values is called the estimators a posteriori, which is discussed in
section 11.3.

11.2 Maximum likelihood estimator

The maximum likelihood estimator relates to choosing from among the
possible values for the parameter; that is, the value that maximizes the
probability of obtaining the sample that was obtained. As an illustration,
suppose vector X contains a set of #» independent random samples described
by (x1, x2, X, ..., Xx,) and characterized by a probability density function
denoted by f,(x;B) where B is a parameter of the distribution. If L is
introduced as a likelihood function, then the likelihood function of x can
be expressed as

L(x;B) = fu(x; B) (11.2)
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Some authors use L for the logarithm of likelihood. Since the samples are
independent, the likelihood function can be written as

L(x; B) =/ (15 B)f (x2; B)f (x35B) - - - f (25 B)
=[]/ 1) (11.3a)
i=1

If the data set consists of discrete elements, (11.3a) is simply written as
L(x;B) = [ ri(B) (11.3b)
i=1

where p;(B) is the probability associated with the ith sample.

The goal of maximum likelihood is selecting (estimating) [3 for B that will
maximize L. Maximization implies differentiating L (or logarithmic function
of L) with respect to the variable(s) to be estimated, in this case B, and
equating the resultant to zero; i.c.,

%IOg"(L) =0 (11.4)
Since log, (L) is a monotonic function, it attains its maximum when L is
a maximum. Equation (11.4) is usually called the /ikelihood equation. Any
solution of B for B that satisfies (11.4) is called a maximum likelihood estimate
of B. Naturally, as in algebra, a second derivative of (11.3) is sought to
ensure that a maximum estimate has been obtained. If the second derivative
is negative, a maximum has been obtained.

In essence, the maximum likelihood estimator is extremely useful because
of its simplicity and requires a minimum amount of statistical information
for its implementation.

Example 11.1 If a sample is normally distributed with mean p and standard
deviation, o can be functionally defined by

f(x):éexp _ZM
! o/ (2n)" 262

i=1

Find the maximum likelihood estimators of p and standard deviation, o, for
distribution.

Solution
Define the distribution’s likelihood function by

n

_ 1 (xi — )’
L(x) = mexp (‘chz> (11.5)

i=1
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It is easier to work with the natural logarithm of the likelihood than just L.
So (11.5) can be written as
n 2
n (xi —m)
log,(L(x)) = —nlog, c — Eloge(Zn) - ;’2? (11.6)
Differentiating (11.6):

dlog, (L) 1

_ Xi— ) = 1.
) SURITEL (11.72)
Olog, (L) 1 1 ¢ 2|
oo _G{_n+621‘1(XI—M) =Y (70
2
Olog,(L) __n _, (11.7c)

T
o’ log, (L) 1 3L
602( ):g{—n—i—gz:(xi—u)z} =0 (11.7d)
i=1

The mean estimate [1 of x; and its standard deviation estimate &, which make
the first derivative equal to zero, maximize log, (L). So, from (11.7a) and
(11.7b), the maximum likelihood estimates of u and ¢ can be obtained as
follows:

iu:ixi (11.8a)
i=1

i=1
~—

=nfi

Hence,

== "x (11.8b)
i=1

S| =

From (11.7b),

6= [2> -2 (11.9)

Since the second derivative of p is always negative, the second derivative of
o at the point where the two first derivatives are zero is
n  3né? 2n
=== (11.10)
6 G I3}
which again is negative; hence the maximum likelihood estimators.

Before leaving the maximum likelihood estimation problem, one of the issues in
the radar estimation problem is the multiple nature of the observations. How then
does one obtain an optimum estimate from multi-dimensional data? This
approach is discussed next.
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11.2.1 Maximum likelihood estimators of multiple observations

Suppose a linear function L = L(X; B;) has joint probability density functions
that depend on unknown parameters ; = (B, B, B3, - .., B,). The estimate
of each of the unknown parameters is a linear function of each of the
unknown estimates. For example,

Bl :Bl(x15x27x37"'7xn)
BZ = Bz(Xl,Xz, X3y 7xn)
(11.11)
Bp = Bp(xlax27 X3yenn 7xn)
The function of x can then be maximized whenever B; = (B;, B,, B3, ..., B,)

is replaced by B = (Bl, [32, B3, ..., By)- Hence B is called the maximum like-
lihood estimator of f;.

As in Example 11.1, there is a unique set of B that maximizes the like-
lihood function L via partial differentiation of the function(s). An illustra-
tion is given as follows.

Example 11.2 Consider a random, Gaussianly distributed function x of
order p with mean p and variance v. If the likelihood function can be
expressed by

L(x) = ln_p eXp{—én (xi—u)rv“(xi—u)} (11.12)

where superscript 7' implies transposition, then estimate the parameters [i
and v that maximize the likelihood function.

Solution

The likelihood function can be maximized by setting the partial derivative
of equation (11.12) with respect to the variables, namely p and v, to
be estimated to zero to obtain their maximum likelihood estimate(s).
Specifically,

Olog,(L) _ np n 5N T i
G0 _ P oe (2m) = Llog, v — =S (x; — -
m 5 log, (2n) — S log,|v] 2;:1 (i =)y (xi — )
o n 1< T ] .
= —710g8(21r) —Eloge|v| ) ;:1 (xi—=X)" v (x; —X)
n

—5E-wHE - (11.13)
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It should be noted that logarithmic function is maximized if the quadratic
form is positive definite

E-wHh ' E-w=0 (11.14)

providing n # 0, v # 0, or (X — ) = 0 implying that X = p. Consequently, if
X = [iis the maximum likelihood estimator of p, it may be deduced that the
maximum likelihood estimate of function x is [i.

The next stage is to find the estimator v. This involves taking the partial
derivative of (11.12) with respect to v and equating the result to zero; that is,

dlog,(L) np n 1 R T .
208 g (2m) — 21 = S (= %) (i -
av 2 Oge( TE) 2 Oge|v| 2 tr v P (A x) (‘C x)
—g@—mn—wx—m (11.15)

where tr{-} denotes the frace of {-}. The trace of a square matrix is by
definition the sum of its diagonal matrix. As demonstrated above for the
case of estimator [i, if X = [i then the right-hand term of (11.15), that is,
—(n/2)(x — )Ty 1(% — [1), must be equal to zero. Thus, the problem now is
that of maximizing the remainder of (11.15); that is,

_np _n LIT) IR o Y S
5 log,(2m) — 5 log,|v| 2tr{v ;(x, )7 (x x)}—O (11.16)

The variance v is maximized if X = [i and

n

9:%Z(xi—X)T(x,»—fc) (11.17)
i=1

Thus the maximum likelihood estimator of v is v.

11.3 Estimators a posteriori

If a prior knowledge of the value or values a set of parameters is likely to
have is known, one would be prepared to obtain better estimates by using
the available information. If the parameter were a random variable, a value
of which has been selected in agreement with its distribution, this value being
an unknown constant throughout the experiment, the use of Bayes’ theorem
would enable the result of the experiment to be obtained that incorporates
prior information. In a situation where a prior knowledge is insufficient, it
may be useful to form one or two hypothetical prior distributions and see
what estimators are suggested by the distributions.

For instance, suppose a prior distribution of parameters X is
available. If the prior distribution has a density function g(6) and the
conditional probability density function of observations given 0 is
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f(x|0) =f(x1,x2,x3, ...,x,]0), then by Bayes’ theorem the posterior density
function of x may be written as

g(e)f(xlax2ax37 o 7xn|6)
75 g()f (x1,x2,x3, ..., Xy | u)du

g(0]x1,x2,x3,...,%,) = (11.18)

If a prior knowledge of the probability function of the parameter is known, a
sum will appear in place of the integral. For some applications of (11.18), it
is convenient to note that 0 appears only in the numerator of the right
hand of the equation. So, a suitable a priori is found among functions
g(0) that is proportional to the likelihood function. In such a case,
g(0]x1,x2,x3, ...,x,) will be proportional to a possible likelihood function.

Example 11.3 Suppose a family of Bernoulli distribution is to be investi-
gated, which is likely to be near 2/3 with the probability density falling off
to zero at 6 = 0 and 6 = 1, and with an expected value of about 0.6. A prior
probability density function is given as 120*(1 — ). For x successes in
n trials, find the posterior density function.

Solution
Given a prior probability density function:

2(0) =120°(1-0) 0<6<1 (11.19)

The conditional probability density function x for n trials given 6 can be
written as

.f'(xlax25x37"'7xn|e):ex(l_e)nix x:()vlvzv"'7n (1120)
Using (11.19) and (11.20), the denominator of (11.18) can be expressed:
1 1
/ 126%(1 — 0)6"(1 — 6)" *d0 :/ 126°72(1 — 6)”““@’9 (11.21)
0 0

This is a classical integral problem, which has a known solution in gamma
I'(-) form:

1 —
/ 126+2(1 — gy g — 2L+ (1= x+2) (11.22)

Thus, the posterior density function:

I'(n+5)

— 12 X+201 _ qyr—xtl
12I'(x + 3)I'(n — x + 2) o1 -9)

g(e|x17x27x37---7xn)
(11.23)

A plot of (11.23) is shown in Figure 11.1 for x = 6 = 2/3.
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Figure 11.1 The posterior density function of equation (11.23)

11.4 Linear estimators

Linear estimators are recursive, or sequential, estimators. These estima-
tors use procedures for each new observation in time, be it discrete
or continuous, to refine the previous estimate(s). In them the latest
measurement (or observation) is approximately weighted to determine
its contribution to the estimate. The contribution is then combined with
the previous estimate to yield an updated estimate. The procedure is
repeated for each new data point of the observed sequence. For the
case of continuous estimation, where the observations are a continuous
function of time of the estimates, the corresponding estimates are updated
continuously.

A simple example of recursive estimation is explained as follows.
Consider the estimate of a scalar constant x from noise corrupted observa-
tions y;, where

yi=x+v i=012,... N—1 (11.24)

The notation v; is the noise measurement on the observations, assumed to be
uncorrelated random variables with zero mean and variance o?. For
N observations, an unbiased minimum variance estimate of scalar constant
x is the average value of the measurements:

1R
xN—N; (11.25)

The expectance of Xy is x; that is, E{Xy} = x. If a new observation yy is
made, the new estimate of x can be expressed as
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N+1
Sl (1129

This expression may be rearranged as

Nxy YN
N+1 N+1

N XN VN
PSR 11.27
NN T1I TN+ (11.27)

XNyl =

. 1 .
=xN+N—H(yN—AN)
This is the recursive linear estimator for the scalar constant x. Equation
(11.27) shows that a new estimate is given by the prior estimate plus an
appropriately weighted contribution of the difference between it and the
most recent measurement yy. Following from (11.27) if an element called
error (or residual) denoted by ‘¢’ can be introduced, then the difference
between the estimate and the actual can equally be defined as

eN:ch—x (1128)

The ultimate objective is to make the absolute value of the error as small as
possible. In view of (11.27), expression (11.28) may be written, in terms of
measurement noise, as

eNi] = enN + (vN—eN) (1129)

N+1
The (N + 1)th error variance Py, |, may be written as

N? o?
Py = Py + : (11.30)
TN+ (N +1)?

where the components of error are considered to have equal dispersion ¢2;

that is,
Py =E[ey] =0, (11.31)

Equation (11.30) is the propagation equation of the variance of the estimator.
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Figure 11.2 Normalized propagation equation

The initial condition is when N = 0. From (11.30), when N = 0, P| = 2.
Recursively, the variance propagation equation for successive iterations
(n > 0) can be written as

o2

Py :(NTV) (11.32)

The normalized propagation equation of (11.32) is plotted in Figure 11.2.
Following the above simple linear scalar estimator discussion, vector
notations can be introduced to the estimation procedure. The vector nota-
tions are used for convenience and in subsequent discussions.
Define a random vector x whose estimate X is sought. If the error vector
is denoted by e, like (11.28), the error vector as the difference between the
estimate and the actual can be defined as

e=X—X (11.33)
If the expectance of the error vector is zero; that is,

E(e)=0 (11.34a)
or the expectance of the estimate to be equal to the actual; i.e.

E(xX)=x (11.34b)

then X is said be an unbiased estimate of x.
Like (11.31), the covariance error matrix can be expressed as

P = E[ee]] :E[(i—x)(x—x)T] (11.35)

An estimator designed in this fashion is called the minimum mean square
estimator. This estimator is unbiased if the covariance error matrix equals

P:E[(XfE(&))(f(fE(X))T} (11.36)
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The objective is to minimize the error matrix, P. The diagonal terms of P are
the variances of the components of the estimate. For this reason, the esti-
mator is called the minimum variance unbiased estimator. If the estimates are
obtained by performing linear operations on the measurements, the estima-
tor is called the linear minimum variance unbiased estimator.

Perhaps the most important part of studying a radar-tracking problem is to
determine a good model that reasonably describes the target dynamics and
orientation. Models frequently take on the form of dynamic systems. A dynamic
system is a mathematical description of a quantity that evolves over time. A brief
introduction to a dynamic system is discussed in the next section. This is intended
to enhance the capability of the reader to follow the development of prediction
and filtering techniques as well as tracking algorithms.

11.4.1 An overview of a dynamic system

Assume that a class of single-input, single-output dynamic system can be
described by an nth order of ordinary differential equation

d”y dnfly dnfzy dy
— 1 + ay,—2 P + ---+a1$+aoy: u(t) (11.37)
This expression can be reduced to the form of # first-order state equations by
redefining the differentials as follows

dy dZy am—ly
- X = —— N )Cn —_ —
i’ AR ’ drT1
Consequently, the »n— 1th first-order differential equations may be
expressed as

X1=y, Xx2= (11.38)

B dﬂy
Tdm

In view of (11.38) and (11.39), the expression (11.37) is concisely rewritten as

(11.39)

X] =Xz, X2=X3, -, Xp—| =Xp, Xp

Xp = —aoX] — a1X2 — AaX3 — -+ — Ap_1 Xy + u(l) (11.40a)
y=x (11.40b)
which in matrix terms

0 1 0 0 0

0 0 0 0
X= x+ [ 0 |u (11.41a)

0 0 0 1
—ay —ai —a —ay Ly

P B

y=[1 0 0 ... 0]x (11.41b)
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Concisely further as

x= Ox + Bu (11.42a)
y = Hx (11.42b)

Equation (11.42a) is the ‘state space’ representation of a continuous-time
linear stochastic system, where x is the state vector, x its time derivative, u the
input disturbance or process noise, and ® and B are matrices. Equation
(11.42b) is the ‘measurement’ vector of the system.

A solution to (11.42a) can be found by multiplying both sides of (11.42a)
by e, and integrating it between #, and ¢, to obtain

t

x(1) = e®=)x (1) +/ ¢®=%) Bu(t)dt (11.43)
)

This expression is the sum of the motions due to the initial condition and those

due to the forcing function. The motion due to the forcing function depends

on B. If u(t) = u(#y) = constant, the integrand component of (11.43) becomes

t
/ ¢®=9 Bu(t)dt = B(t — 1,) (11.44)
fo

If the input variable is maintained constant within a time interval, ¢t — t) =
thh—ty ==ty —t; =T, and the fundamental matrix notation is
defined by A(T) = e®7, then in view of (11.44), the discrete form of the
state equation (11.43) may be written as

x((k+1)T) = A(T)x(kT) + B(T)u(kT) (11.45)

This expression holds so long as the interest is only in the solution at the
instants of sampling.

If a white noise is assumed with zero mean for the forcing function, its
covariance matrix can be defined as

Efu(ku”(j)] = Q(k)3y, (11.46)

where Jy; is the Kronecker symbol, which equals to unity when k = j, and
zero otherwise. In a simplified index-only time notation, the discrete-time
dynamic model of (11.45) is written as

x(k + 1) = Ax(k) + BQ(k) (11.47)

In real life, a system’s measurement components contain some noise. If a
random measurement noise vector, v, with zero mean is introduced to the
output equation (11.42b), the discrete-time measurement equation can be
written as

y(k) = Hx(k) + R(k) (11.48a)
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where the covariance matrix R; defined by
EN(RI (/)] = R(k)3 (11.48b)

Since the sampling interval is held constant, matrices 4 and H do not depend
on k. If the covariances Q and R are also independent of the sampling
interval k, then the discrete-time system will be completely time invariant.

By iterative process, it is easy to find the solution to the discrete equations
(11.47) and (11.48a). For example, assume that Q and R are known, the
solution to the input states can be found iteratively when sampled at discrete
time intervals, such as

k=0; x(1)=A4x(0) + BQ(0) (11.49a)
k=1 x(2) = Ax(1) + BQ(1)

(11.49b)
= A>x(0) + ABQ(0) + BQ(1)
Following same procedure, the kth term can be written as
k
x(k) = 4"x(0) + ) 4 'BQ(i — 1) (11.49¢)
i—1

1

Substituting (11.49¢) in (11.48a), the solution to the output variable can be
written as

y(k) = HA*x(0) + |H s ATBQ - 1) | + R(k) (11.49d)

i=1

For an unbiased state vector the initial value is set at x(0) = 0.
If Q and R are not known, the components of these vectors may be
considered to have equal dispersion and hence

Q(k) = o3/

R() = 0¥ (11.49)

where

I = the identity matrix

cs? = system noise (plant) variance

X
o2 = measurement noise variance.

With the preceding explanation, a system state’s algorithm can be expressed
for discrete-time state and measurement equations. The state vectors, in
practical terms, may comprise several kinematic variables; for example,
range, azimuth or bearing, velocity (Doppler or range rate), and elevation
or direction cosines. For the case of over-the-horizon radar (OTHR), the
measurements of interest are often slant range, azimuth, Doppler and signal-
to-noise ratio (SNR) because of a peak selection and interpolation process,
which is intended to compensate for the dispersion of signal energy over
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adjacent resolution cells. Thus, it could be said that the order of the state
vector depends on the target kinematic variables of interest.

The theory of the dynamic system is rich and fascinating; it is only
employed in this section to explain the linear estimation theory in the
particular form of the Kalman estimator, which is discussed next.

11.4.2 Kalman estimator

Originally, the Kalman estimator was designed as an optimal Bayesian
technique to estimate state variables at a time 7 + Az from indirect noise
measurements at time ¢, assuming that the statistical correlation between
variables and time is known (Gauss 1963). The previous sections have
provided the components necessary to develop a mathematical model for
the Kalman filter. To summarize, suppose that the model for the discrete
dynamic system is defined recursively, step by step, by state equations given
by (11.47):

x(k + 1) = Ax(k) + Bu(k) (11.50)

with x(k + 1) the variables at step (kK + 1), 4 (the system transition matrix), B
(the matrix that relates external input noise u(k) to the state x(k)), and u(k)
(the system process noise vector) with step k. For simplicity, the process
noise has been assumed to be a Gaussian random vector with zero mean and
covariance matrix Q. The Gaussian random signals are assumed to remain
Gaussian after passing through a linear system. The state transition specifies
how a form of the state is transformed into another as time passes. The state
equations x(k) are linearly related to measurements y(k) by other recursive
equations, called measurement equations, given by (11.48a)

y(k) = Hx(k) + v(k) (11.51)

with H (the measurement transition matrix) and v (observation or measure-
ment noise vector) with step k. The measurement noise vector v is still
Gaussian with zero mean and covariance matrix, R.

If the optimal, unbiased estimate of the system state is X and the esti-
mate’s corresponding covariance P(k) is defined from the error vector like
(11.36) as

p= E[(f(—E(ﬁ))(ﬁ—E(i))T} (11.52)

Given the dependence of prediction on available observation, what the
Kalman filter computes is the best, linear, unbiased estimate of x at time k
given measurements Yy, ¥;, ¥s, --., Y5 1his statement introduces ‘condi-
tionality’. As such, the estimate can be written concisely as x(k | k), where
the first k in the notation refers to which variable is being estimated, while
the second refers to which measurements are being used for the estimate.
Thus, in general, x(i | /) is the estimate of the value that x assumes at time
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i given the first j + 1 measurements y, ¥y, ¥, - - -, ¥;- The system state vari-
ables, estimates and their associated covariances would conditionally depend
on the measurements.

11.4.2.1 Measurement update stage
The optimal prediction of the next system state value, in the absence of any
new observation, is based on the current estimate X(k | k) and is given by

x(k+1|k) = Ax(k| k) (11.53)
while the observation estimate is given by
y(k|k) = Hx(k| k) (11.54)

The above equations are often called single-stage optimal prediction. The
prediction properties of the transition matrix are employed, which link the
current states of the system to states at the next time instant. It should be
noted that prediction is a stated expectation about a given attribute that may
be verified by subsequent observation.

The optimal unbiased initial state estimate X(0|0) is a Gaussian random
vector with zero mean:

E{x(0]0)} =x(0)=0 (11.55a)
and with an error covariance matrix P(0) defined as
E{x(O 10)x7 (0| 0)} =P(0|0) =P(0) (11.55b)

The covariance matrix P(k | k) must be computed to keep the Kalman filter
running. Following (11.35), at time k given measurements Yy, ¥;, ¥2, - - - s Yx»
the Kalman filter computes the covariance matrix P(k|k) from the error
e(k| k). Computation happens according to the phases of updates and
propagation. The next phase is to incorporate the new measurement yj
into the estimate that is progressing from x(k | k) to x(k + 1| k). Given y,,
consider the residue

re =y — ¥(k|k) (11.56a)
which, from (11.54), is equal to

rg =y, — Hx(k | k) (11.56b)
The gain matrix

kx = P(k|k)HTR™! (11.57)

The gain matrix is usually called the Kalman gain matrix because it specifies
the amount by which the residue must be multiplied or amplified to obtain
the correction term that transforms the old estimate from x(k|k) to
x(k+1|k).
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If the residue is zero, it means that the initial estimate is exact, otherwise
there is a need to correct the estimate X(k | k) so that the new prediction of the
measurement is very close to the old prediction. The reader might ask how
much correction should one introduce to the state estimate? This requires
some mechanism for comparing the quality of the new measurement y, with
the old estimate X(k | k). The uncertainty of the new measurements arises from
the covariance of the measurement error, R(k), while that of the states is
P(k | k). The update stage of Kalman filter uses R(k) and P(k | k) to weigh past
estimate and new measurements. Also, the uncertainty value of P(k | k) must
be updated so that it is available for the next step (k + 1). Propagation then
accounts for the development of the system state, as well as increasing
uncertainty. Before attempting to write the next state update expressions, let
us examine the recursive nature of (11.50) in obtaining an expression for the
state uncertainty P(k | k). Following (11.49c¢), the error vector

e(k+1k) :Ae(k|k)+zk:Ak’iBQ(i— 1) (11.58)

i=1

From (11.58) it is apparent that e(j|k), where j=k+ 1,k+2,... is a
Gaussian discrete process with a zero mean since for u(i — 1) equation
(11.45) holds. Following similar considerations that applied to (11.58)

e(k+1|k)= Ae(k|k)+ BQ(k) (11.59)
from which it is apparent that the process considered is a Markov process. So, the
state covariance can be derived from the expectance of (11.58) to form the relation

P(k+1]k) = AP(k|k)A" + BQ(k)B" (11.61)

The next stage is to update the previous state estimate. The updated state
parameter estimate may be written as

X(k+1|k) =x(k|k) 4 wxrg

11.62
=x(k|k) + &y ( )

where y, defined by (11.56b), is called the innovations sequence. It provides
an easy check for the optimality of the Kalman filter. And the updated
covariance matrix may be expressed by

Plk+1k) = Pk | k)[I — x.H] (11.63)

where [ is the identity matrix. This expression describes how the error vari-
ance propagates.
The updated Kalman filter gain matrix

-1
K1 = P(k+1|k)H" [HP(k + 1| k)H" + R]

N
=Plk+1|k)H"S™! (11.64)
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is effectively the ratio between the uncertainty in the state estimates and the
uncertainty in the measurements, where S'is called the residual covariance matrix.

In applying the linear filter to a specific system, matrices 4, B, H and
noise statistics Q and R must be specified. The initial estimates, x(0) and
P(0), are assumed a priori of the target’s position at the beginning of the
navigation period. In the absence of a priori data, the best estimate of x(0),
given no observations, may be expressed as

%(1]0) = A%(0]0) = x(0) (11.65)

This implies that X(1 | 0) is the estimate of x(1), given observation up to and
including k& = 0. Since the observations do not start until £ = 1, there are no
observations, and hence X(1|0) is the a priori value. Therefore, the initial
covariance value may be expressed by

P(1]0)=var{x(1]0) —x(0)}
=var{4x(0|0) — x(0)}
=AP(0]0)4" + BQ(0)B"
=P(0)

(11.66)

where ‘var’ means variance. The covariance matrix P(0) will be a diagonal
matrix with large values to ensure relatively fast convergence by the Kalman
filter. Of course, if X(1|0) and P(1]|0) are specified, rather than %(0 |0) and
P(0]0), then they may be used directly as the initial conditions for the
problem. Targets are often tracked in an environment that is cluttered, and
tracks may be initiated on clutter. This will provide an additional problem of
tracks’ initialization where a priori information would be handy for effective
initialization. For easy reference, the preceding algorithms, which describe
the Kalman estimator one-stage prediction, are collated in Table 11.1.

The real merit of the Kalman algorithms, in their application to filtering
and prediction problem, lies in the fact that not only is a solution obtained,
but that the solution directly specifies practical implementation of the
results. The algorithms can handle both stationary (fixed values of noise
statistics Q and R) and non-stationary data (Q, R time varying).

An issue that should be considered regarding the validity of the Kalman
estimator is that precise models need to be postulated for both the target-
state and the measurement process. If these underlying models are not
accurate, the Kalman filter will not perform optimally. The Kalman filtering
approach also implies that the residual covariance matrix S, is adaptively
and optimally ‘matching’ the target and measurement characteristics. Any
deviation from this implied notion indicates the imperfection in the models
and undermines the stability of the system. By comparing the residual’s
statistics (e.g. mean, variance and autocorrelation function) to preset thresh-
old(s), the presence of a model mismatch can be inferred and corrected. This
may be achieved at a cost of an added delay for forming a sliding window
average (Bolgler 1990).
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Table 11.1 Summary of discrete one-stage Kalman filter predictor algorithms

System model x(k + 1) = Ax(k) + Bu(k) (11.50)
Measurement model y(k) = Hx(k) + v(k) (11.51)
Prior statistics E{x(0|0)} =x(0)=0 (11.55a)
E{x(0]0)xT(0]0)} = P(0|0) = P(0) (11.55b)
Extrapolation: X(k + 1|k) = Ax(k | k) (11.53)
Predictor algorithms y(k | k) = Hx(k | k) (11.54)
P(k + 1|k) = AP(k | k)AT + BO(k)B" (11.61)
Update: X(k + 1|k) = x(k | k) + iy (11.62)
New estimation algorithm y =y, — Hx(k|k) (11.56b)
fs1 = Pk + 1| K)HTS™! (11.64)
Gain algorithm S=HPKk+1|k)HT + R (11.64)
Error variance algorithm P(k+1|k) = P(k |k — ki H] (11.63)
%(1]0) = 4%(0]0) = x(0) (11.65)
Initial conditions P(1]0) = P(0) (11.66)
If Q and R unknown
Qk) = o3I
R(k) = 021 (11.49¢)
x(0)=0 (11.49d)

11.4.2.2 Application of the Kalman estimator

to engineering problems

The recursive Kalman filtering technique has been applied to various engin-
eering problems including:

Missile projectile monitoring and tracking

Space navigation (Murtagh 1965)

Plant control (Strejc 1981)

Anti-submarine warfare (Laing 1967)

Aircraft and maritime surveillance (Colegrove et al. 1986; Kolawole 1994)

An application of the technique to the problem of estimating a missile
trajectory is illustrated by Example 11.4. This problem allows the reader
the opportunity of seeing some of the technical issues involved in setting
up the dynamic equations for the system and the subsequent use of the
preceding algorithms.

Example 11.4: A video sensor is attached to a warship, depicted in Figure
11.3, which spots the oncoming missile threat. The variation in intensity of
the blobs appearing on the ship’s sensory screen estimates how close the
threat is. The missile is spotted at about 30 km away from the ship and
released at about 500 m above the sea surface. The ship’s sensor estimates
the missile’s radial speed of about 0.601 km/s, at about 9.46° azimuth. Plot
the missile’s true and estimated speed trajectory as well as its position against
time. Determine also whether there is sufficient time to launch an evasive
action to counter the missile threat.
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Figure 11.3 An illustration of a missile released by a fighter

Solution

A prior knowledge of the type of missile used is assumed to be known as well
as the sensor’s parameters. It is also assumed that the ship sensor keeps track
of the missile’s location within its designated window. At a particular point
in space, the missile’s coordinates could be measured.

Let the missile’s horizontal coordinate and vertical coordinate be repre-
sented by /1 and z respectively. So, the dots of these coordinates will denote
their derivatives. If air drag is very small as to affect the course of the missile
and be considered negligible, at any time ¢, the missile dynamic state equa-
tions and transition matrix can be established following the laws governing
the ballistic trajectory motion.

h(1) = h(0) + h(0)z (11.67a)
2(1) = 2(0) + £(0)¢ —‘%zz (11.67b)
where g denotes acceleration due to gravity ( = 9.8 m/s?). Due to the differ-
ential nature of the above equations, they are continuous. In practice,
measurements are sampled at a given time interval, say k. Since the interest

is only in the solution at the instants of sampling (11.67) can be rewritten as
follows:

hk + 1) = h(k) + h(k)At (11.68a)
2(k + 1) = z(k) +z'(k)Az—§(Az)2 (11.68b)
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where At is now the sampling time, in seconds. The equations given by (11.68)
can be combined as a single dynamic state equation like (11.50); that is,

x(k + 1) = Ax(k) + Bu(k) (same as 11.50)

where in this instance

h(k)
h(k)
k) = 11.69:
x(k) =1 o (11.69)
Z(k)
At 1 0 0
1 0 0 0
A= (11.69b)
0 0 Ar 1
L0 0 1 0
0
0
B: —(Al)2 (11690)
—49)
L At

The system process noise vector u(k) with step k is assumed a Gaussian
random vector with components having equal dispersion. Hence, following
(11.49¢),

E{w"} =Q =011 (11.69d)

where [ is the identity matrix. Due to limited knowledge of the state’s
covariance matrix, the dispersion is made small, that is, csf, =0.1. So

100 0
0=0.1 8 é (1) 8 (11.69)
000 1

Having obtained the state dynamic equations, the next phase is to establish
the measurement equations. From a prior information of the missile, the
elevation and blob size in pixels at any point in space can be expressed. If
missile elevation is represented by e, and blob size by s,,, then

(11.70a)

ey =m

SN

Similarly, the size of the blob, in pixels,
m

—_— 11.70b
o (11.700)

Sm =
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where m is the proportionality constant obtainable from the video par-
ameters. For more information on how depth from image pixels or sequences
can be estimated, the reader is advised to consult Broida et al. (1990). The
task is to express (11.70) as linear approximations, using Taylor series,
around the current estimates to obtain a change in coordinates measure-
ments. For instance,

(11.71a)

Z I—z Z/,
zm{A— _ +A(h—h)}
h h h
from which a change in elevation measurement as a function of the missile
coordinates is

Aem =€m — mi
K (11.71b)
Z 1
~ Wl{ — Th + AZ}
h? h
Similarly, from (11.70b), the blob size is expressed by
o o _m
R/
| h(h=n) sz (11.72a)

Q

N + (;;z B 22)3/2 + (/;2 N 22)3/2

from which a change in image depth measurement as a function of the
missile coordinate is

A . m
Sm = Sm — \/T—TZ—Z
}; 3 (11.72b)
~m h+

(/%2 + 22)3/2 (/32 + 22)3/2 )

The changes depicted by (11.71b) and (11.72b) constitute the elements of the
measurement transition matrix H. Specifically

£ 0 -1
H— |:A€m:| ~ —m /};2 h
Asm ( )3/2 (/;2+22)3/2

0

0 (11.73)

5}

2422

Like (11.51), the measurement equation contains a noise vector v(k) with
step k& with components having equal dispersion. So, following (11.4%¢),

E{w'} =R=o0;I (11.74)
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where I is the identity matrix. Due to limited knowledge of the state’s
covariance matrix, it is reasonable to put Gi =m.

From the available information, the initial state estimate of the pro-
jectile is

h(0) 30 30
%(0) = /;((8; _ —0‘60100.(;5(9.46) _ —0056 (11.75)
2(0) 0.601sin(9.46) 0.1

Having collated the necessary expressions for the state and measurement
vectors, the Kalman filtering equations can now be applied to study
the behaviour of the missile and consider what evasive action can be
implemented before it reaches its intended destination. The other task is
to simulate the missile trajectory using the state and measurement equations,
for each time step k, taking uniform sample time Az = 100 ms. For brevity,
m = 1000. Plots of the missile trajectories are shown in Figures 11.4 and 11.5.

The missile trajectories should be read from right to left; that is, trajec-
tories start from the right inwardly. The difference between the true and
estimated trajectories is shown in the figures. The trajectories in Figure 11.4
are essentially the missile tracks (more is said of tracks in Chapter 12).

14—

1.2 s \

08 /7

0.6 L / Estimated

04r o

Missile’s relative speed (km/s)

_0.2 1 1 1 1 1 I
5 10 15 20 25 30 35

Sampling time (sec)

Figure 11.4 The missile’s true and estimated trajectories versus time
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Figure 11.5 Distance between estimated and true missile position against time

The true and estimated target positions converge readily and quickly
to zero, as shown in Figure 11.5, at about 20 seconds. This allows suffi-
cient time for any evasive action to be implemented; that is, shooting the
missile down before it reaches its intended destination, or abandoning the
warship.

11.5 Summary

Estimation, the second type of optimization problem, has been discussed in
this chapter. It exploited the several parallels with the decision theory dis-
cussed in Chapter 9. The dynamic nature of the parameter in signal estima-
tion adds a new dimension to the statistical modelling of estimation
problems. For example, the dynamic properties of the signal, such as how
fast and in what manner the signal can change, must be modelled at least
statistically to obtain meaningful signal estimation techniques.

The concept of filtering, interpolation (data smoothing) and prediction,
encapsulated in the linear estimation procedure, leads to the Kalman esti-
mator, which allows the study of system causation from the past to the
future. A typical real-time missile example was given that provided the
opportunity of seeing how the dynamic equations for the system were
formulated and the subsequent use of the preceding algorithms.
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Problems

Suppose a sequence x1, X2, X3,. .., X, IS given as a random variable such that
its expectance and variance are defined as

E(x;)=p wherei=1,23,....n
var(x;) = 6*
Suppose that x; —p and x; — p are orthogonal for the case i # ;. If the
estimates of the expectance and variance are defined by

(a) Determine whether the estimate [i is unbiased or not.
(b) Determine whether the variance estimate 6 is an unbiased estimate of

o? or not. n

(c) Prove that n(L—p) = (x; — ).
izl

n 2 n n n
(d) Prove that [Zl (x; — u)} = Zl (x — )+ ; ; (xi — w(x; — p).
i= 1= 7] 1F]
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Tracking

The previous chapters have presented preliminary materials on radar principles,
estimation and applicable probability theories. Radar tracking is an important
application area of signal processing. A radar system repeatedly scans a
geographical area and produces data from which can be inferred the location,
speed, and size of the objects detected. As noted in Chapter 10, tracking can
only be successfully performed when signal processing is capable of producing a
reliable input stream of detected peaks (also called detections). For each of, the
radar scans, a myriad of data points, or returns, are produced. The returns
correspond to reflections of the radar beam from real targets of interest includ-
ing that from other objects in the vicinity of the real targets and clutter. Clutter
refers to returns from the Earth’s surface, electromagnetic interference, meteor,
lightning and even other objects in the vicinity of the target(s) of interest.

In this chapter, a discussion on the basic principles of radar tracking is
presented. The reader may ask: what is tracking? Simply, tracking is a
process of determining the speed and direction of targets and which enables
monitoring of the target throughout the radar cover area. Technically,
tracking is parameter estimation. The missile trajectory problem (of Example
11.4, Chapter 11) is an example of tracking. However, the real-time stage-
by-stage observation of tracks established on returns from a target, as detected
peaks, separates ‘parameter estimation technique’ from ‘tracking’. For
clarity, it is necessary to distinguish between a target and a track. A target
is a physical object that can produce sensor measurements while a track is
the symbolic representation of a target, formed from successive detected
positions. In general, the determination of tracks means the development of
a mathematical model that represents target structure, the parameter values
and, if needed, the values of dependent variables such as state variables.

The tracking process involves filtering, interpolation and prediction: a
process with behaviour dependent on variables past parameter values as well
as the current values of parameters. Armed with the knowledge of the
present state, the future state may be predicted. Measurements of the present
state may include noise, errors and inaccuracies. By preprocessing the data
to remove some, or all, of the clutter prior to tracking reduces the level of the
uncertainties. Despite this, the problem of identifying whether the measure-
ments actually originate from the target, or are due to false alarms, still
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remains. It is because of these errors that tracking and smoothing theory are
needed. The procedure used to imply the origin of measurement uncertainties
is called data association.

This chapter discusses two commonly used tracking methods: the fixed
tracking coefficients (commonly called af filter or afy filter) method and
adaptive coefficients via the Kalman filtering method. As demonstrated in
Chapter 11, section 11.4.2, the Kalman filter computes the parameters of
posterior distributions for certain kinds of stochastic process, characterized
by linear transformations and additive Gaussian noise. The Gaussian random
signals are considered to remain Gaussian after passing through a linear
filtering system. In reality the o3, afy and Kalman are of the fading memory
type, which are implemented recursively.

A brief description of af, afy and Kalman filters will be given in section
12.2. Before developing each of the algorithms that allow tracking to be
achieved it is necessary to reflect on what these algorithms were meant to
achieve. The goal of a tracking algorithm is to provide a best estimate of
quantities of interest. However, actual signals received are corrupted by
disturbances, which are random in nature. As such, the goal of obtaining
the best estimate provides the disposition to create an optimum system or
algorithms, which will produce a minimum mean-square error between the
actual and the desired output. The minimum mean-square error criterion
may not be ideal for all systems; however, the criterion leads to the Kalman
filter theory.

For completeness, more recently another modelling idea, the hidden Markov
technique (Xie and Evans 1991), was introduced. The Hidden Markov tech-
nique formulates the tracking problem in terms of a hidden Markov model and
produces track estimates via the Viterbi algorithm. Like the Kalman filter, the
hidden Markov model deals with stochastic processes in which the hidden
states and measurements are continuous random variables. The Markov’s
nature of computation changes in a sense: instead of dealing in explicit prob-
ability distributions over a finite state space, the means and variance are dealt
with. Detailed discussion and derivation of this approach are not considered in
this book; however, the reader is advised to consult Xie and Evans (1991) for
more details.

12.1 Basic tracking process

When a target is viewed remotely from a point or points of reference, the
determination of the object’s transfer functions, as evident in classical
control theory, is not achievable. Instead, the returns (i.e. the reflected or
backscattered signals) from such a target are processed. The processing
technique has been discussed in Chapter 10. As an aid to understanding
the sensing and tracking process, Figure 12.1 is provided.
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data Ty(k—1)
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Figure 12.1 Basic sensing and tracking process

The radar operates in a track-while-scan mode. A surveillance area (or
region) is defined, and the radar beams are pointed in a particular direction
for a few seconds, denoted as a dwell. Scanning is performed from left to
right at regular intervals until the entire area is covered, after which the
process is repeated. During each scan, a large volume of data points, or
returns, are produced. These returns also contain information that is not
from the targets. During initial scans little information is available to assist
in discerning which returns are due to targets and which are noise. Based on
the strength of the processed signals and after thresholding target peaks are
selected from that of clutter. The peaks are then associated with the target.

The reader might wonder whether selected peaks actually belong to
targets since returns from other objects within the vicinity of the target
might have comparable strength. But it is understood from the basic physics
principles that real targets travel in short time intervals in physically realiz-
able paths, for example straight lines or near smooth curves. With this
knowledge it is highly likely that in the next radar scan there will be a return
present at a location that extrapolates out from the position of each return in
the previous return that corresponds to the target. The converse is also true;
it is unlikely that a return from clutter will be positioned in a regular
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sequence in the next scan. Hence, by associating returns in subsequent scans
with returns from previous scans, it is possible to determine which returns
are targets and which are not. At any time k, tracks 7,(k) can be formed
from successive returns’ positions. Previous track data (or a set of track
data) T,(k — 1) are interrogated to improve on the present and future track
position estimates.

Initial conversion of a return into a target track is called track initiation.
When new tracks are initiated, they are of a tentative nature. Such tentative
tracks are updated, or smoothed, by returns from the next scan that are
within reasonable kinematics limits. Each tentative track is promoted to a
confirmed track when sufficient measurements have been received from
subsequent scans that confirm the track validity to a significant level. The
validation is based on the probability that the track is a target return
exceeding a prearranged, or threshold, value. The number of ensuing
measurements successfully promoted to confirmed status is dependent on
the environment sensed by the radar. All tracks for which no association
could be made are deleted, while those for which associations are made are
maintained throughout the coverage area. This procedure is repeated for
each scan, and for all data points that have not been associated with a track.

The preceding paragraphs capture three broad tracking processes, namely
smoothing, filtering and prediction. These processes can be formulated as
follows. Suppose the return signal as a function of time is represented by
x(t). Also suppose it can be observed within a time frame ¢y < ¢ < #;. Then at
time ¢ = ¢;, these processes can be expressed concisely:

e smoothing (interpolation) at #; < #;;
o filtering at #; = f; and
e predicting at #; > #;.

These processes are closely connected and can be achieved within the general
framework of dynamic system theory. A simple transformation process from
a continuous-time linear stochastic system to a state space discrete time has
been discussed in Chapter 11, section 11.4.1. The discrete-time system notation
is followed throughout this chapter, allowing a system’s behaviour to be
described conveniently in the form of a vector matrix.

12.2 Filters for tracking

A large number of filtering algorithms have been developed for tracking
including

e af}; a two-point extrapolator filter,
e af}y; a three-point extrapolator filter; and
o Kalman filter, which is a multi-point extrapolator filter.
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For each of the filters, the radar system’s selection process takes each track
T,(k) from the measurement data y(k) = {y1(k), y2(k), ..., yu(k)}. The selec-
tion process also has access to the previous track data 7T,(k — 1) up to the
time k — 1. For every track T,(k) in the scanned region at time k, there is a
corresponding target. The track is assumed to contain the target’s state
estimate xX(k). With this preamble, each filter’s algorithm is discussed in the
following sections under their appropriate heading.

12.2.1 of filter

The off trackers are a widely used two-dimensional class of time-invariant
filters for estimating system states (e.g. position and velocity) having the form

xX(k) = xp(k) + oc[y(k) — xp(k)] (12.1)
0(K) = ik~ 1)+ 2 [0 — 8] (12.2)
xp(k) = %(k — 1) + To(k — 1) (12.3)

where, on the k radar scans

o, = position damping factor

B = velocity damping factor

X(k) = estimated or smoothed position
x,(k) = forecast or predicted position
v(k) = estimated or smoothed velocity
y(k) = measured or plotted position

T = data interval (or sampling period).

From (12.1) to (12.3), the time-invariant af filter model for estimating target
kinematics x(k) can concisely be written in the forms

R(k + 1) = x, (k) + W§(k) (12.4)
xp(k) = %(k — 1) + Ti(k — 1) (12.5)

where

y = residual (innovation) vector; being the difference between measured and
predicted quantities
W = the weighting factor, or filter gain, which equates to

W= [E] (12.6)
T
In practice, the gains (o, B) are selected and adjusted using a combination of
intuition, experience and rules of thumb.

The time index k assumes integer values for a constant sampling period T.
In the event that a true measurement is not detected for radar scans, for
which no measurements are received, then set X(k) = x,(k). The velocity
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Figure 12.2 Estimated target track (position) and speed for successive scans with af tracker

equation remains unaltered and the prediction x,(k) to the next scan follows
the same sequence as in (12.3).

Figure 12.2 shows the track (estimated position) of a target as well as its
speed at sampling time 7 of 0.1s for filter gains oo = 0.25 and f = 1.15, and
initial conditions X(—1) = 0.01 km and »(—1) = »(0) = 0.0001 km/s.

12.2.1.1 Coordinate system
Typically, equations (12.1) to (12.3) are applied separately in Cartesian
coordinate systems, although polar and track-oriented coordinate systems
have also been used. To understand the translation from one frame to
another, the Cartesian coordinate system shown in Figure 12.3 is presented.
Assuming that the predicted range r, and bearing 6, are available, the
following relationships are developed between these coordinate systems. The
target predicted position is at (r,, 6,) and the measured position is at
(rm, Om). Let a Cartesian frame (&, V) be constructed at an angle 0, relative
to north axis N such that & and W lie respectively along the line of sight and

N Forecast ol :
(1o, 6p) ’
\\\ Measured
0, e (i Om)
0% -
E

Figure 12.3 Cartesian coordinate system for af tracker
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across the line of sight. In the (§, ¥) frame, the predicted position can be
written as

E;p:rp

(12.7)
¥Y,=0
And, for the measurement position
&y = rmcos(6,, — 6,) (12.8)
le =Tm Sin(em - ep) (129)

The of filter equations (12.1) to (12.3) are applied as follows. For the next
radar scan (i.e. §,, ¥)), the new predicted range and bearing can be calcu-

lated as
=16+, (12.10)

0,=10,4 00 (12.11)
(&
_ 1 5
00 = tan ( ) (12.12)

)4
The next step is to rotate 90 such that the across the line of sight term ‘¥,
becomes zero and &, assumes the predicted range r,. If frame quantities
£ and ¥ are to be modified by rotation of axes through angle 90 = 0’ — 0
given &' such that ¥’ equals to zero, then

& = Ecos 90 + Esin 90 (12.13)
¥ = Wcos 90 — ¥sin 90 (12.14)
Substituting cos 908 = W/r and sin 90 = £/r in (12.13) and (12.14),
o1 -
E= (Gt ¥Y) (12.15)
I R
¥ = (e -2¥) (12.16)

where range r is determined by (12.10). Given that (9,, — 0,) is nominally
small, the trigonometric functions are simplified using a linear approximation.

12.2.1.2 Smoothing factor
The amount of smoothing applied to the system state estimates is determined
by the selection of the values of o and B. According to Simpson (1963), in
order to maintain stability, the limiting values of o and P are determined
using the following relations for a least square fit to the incoming data:
2(k—1)
a_k(k+1) (12.17)
6
k(k+1)

B = (12.18)
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where k is the measurement number. The effect of these damping factors is
graphically shown in Figure 12.4.

Values of o (and B) approaching zero give heavy damping, whereas values
approaching unity give light damping. Benedict and Bordner (1962)
suggested that the aff tracker is optimized when

B= (12.19)

Another method of estimating the values of o and  was given by Benedict
and Bordner (1962) in terms of steady-state variance reduction ratio K. This
reduction ratio is the ratio of the output variance of the smoothed position
estimate o2 to the input measurement variance o, as follows:

o2, 207+ B(2—30)
K, —?—m (12.20)

m

The velocity reduction variance ratio K, is measured as the velocity estimation
output given only the noise input

K, — o2, _ 2p°
o2 aT?(4 — 20— B)

mnoise

(12.21)

Expressions (12.20) and (12.21) are valid only if the probability of detection
is unity.

The of3 approach is satisfactory for straight tracks, and needs some
modification to cope with manoeuvres (i.e. when the target deviates from a
straight-line constant velocity trajectory).

3.5
3.0 -
25 -
204{ \B

1.5 1

Filter coefficient

1.0 1

0.5 1

0.0

0 5 10 15 20

Number of iterations, k

Figure 12.4 of filter coefficient



Filters for tracking 321

12.2.2 ofyy filter

The afy tracker is a logical extension to the af type. It incorporates the
estimates of acceleration, a, but hypothesizes constant acceleration. The af}y
filter equations are written as follows:

5(K) = (k) + e[y (k) — (k)] (same as (12.1))
0K) = ok~ 1)+ 2 [0 — 8] (same as (12.2)
alk) = a(k — 1) + % [y(k) — x, (k)] (12.22)
xp(k) = (k= 1) + TH(k — 1)+%T2&(k— 1) (12.23)

where

(k) = the smoothed acceleration (m/s?)
v = the acceleration component damping coefficient, which is dimensionless
Other terms are the same as defined for the af type in section 12.2.1.

In essence, the above time-invariant of}y filter model equations are
concisely written:

k(k + 1) = x, (k) + W§(k) (12.24a)
xp(k):fc(kf1)+T17(k71)+%T261(k71) (12.24b)

where x(k) is the target kinematics vector and

W= (12.24c)

= Nl R

ﬁ

Figures 12.5(a) and 12.5(b) show the target track (position) as well as its
velocity and acceleration profile using the afy tracker, a sampling time 7 of
0.1s, filter gains o =0.25 p=1.15 y=3.0, and initial conditions
X(—=1) = x(0) = 0.01 km, »(—1) = $#0) = 0.0001 km/s, a(—1) = a(0) = a(1) =
0.0 km/s*.

Following Simpson (1963), the coefficients are defined thus

o - S0k -3k -2) (12.25)
k(k+1)(k+2) '
1802k — 1)
b= e+ D+ 2) (12.26)
30

Y= kD (k+2) (12.27)
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Figure 12.5(a) Estimated target track as well as speed for successive scans by apy tracker

25 15
Speed Acceleration
(km/s) 20 10 (km/sd
5
1.5
0
1.0
-5
0.5
Acceleration 10
0.0 - . . -15
0 5 10 15 20

Number of scans, k

Figure 12.5(b) Estimated target speed and acceleration versus successive scans by apy tracker

And, in terms of variance reduction ratios:

2B (20 + 2B — 30p) — ary(4 — 200 — PB)

Ki= (4 =20 — B)(2Po + ay — 2y) (12.28)
B E-M+2C-w)

K = T%(4 — 20— B)(20 + oy — 2v) (12.29)

K, 4y (12.30)

- T4(4 — 20— B)(20B + oy — 2v)

The values of the damping factors are graphically shown in Figure 12.6. Like
o, B in Figure 12.4, values of o, B and y approaching zero give heavy
damping, whereas values approaching unity give light damping. Again by
extension, when there are insufficient observations made, a low confidence
premium is placed on the predicted target estimates.
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The converse is also true.
The initial conditions can be written as follows:

2(1) = x,(1) = y(1) (12.31a)
(1) = (12.31b)
a2) =a(1) =0 (12.31c¢)
P(2) :“V@);Ty(l) (12.31d)
a3) =28 —2yT(22) +(1) (12.31e)

In summary, the afyy approach is satisfactory if the track is always executing
the same manoecuvre. While a constant maintenance of target manoeuvres
may be difficult, one should not overlook the effect of simply limiting the
maximum value of scans, k, used in the filters’ (aff and/or afy) expressions.
For instance, if the sensor data rate is high enough — in the light of accuracy,
manoeuvre capability, etc.) — the results may be satisfactory. The manoeuvre
capability of manned manoeuvrable vehicles such as aircraft, ships and sub-
marines constitute the single feature that makes off and ofy algorithms
generally unsuitable for accurate tracking.

12.2.3 Dynamic tracking error

It is obvious from the previous developments that both trackers (a8 and apy)
will follow an input ramp (plus constant velocity target for the case of af and
acceleration for the case of afy) with no steady-state mean error. However,
for a unity detection probability (i.e. P; = 1) when target measurements
are made, each dynamic tracker steady-state mean error is determined as
follows.
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Following Bolgler (1990), for a constant second derivative (i.e. constant
accelerator d’x/dr?) input, af tracking error is

lim (x(k) — x,(k)) =%T2(1 — ) (12.32)
However, for a constant third derivative (i.e. da/dt = d*x/d® = constant)
input, afy tracking error is

lim(x(k) — x,(k)) = ~= T3(1 — o) (12.33)

where ¢ is the acceleration rate of change; i.e. (da/dr).

12.2.4 Kalman filter

Kalman filtering theory has been discussed in Chapter 11, section 11.4.2.
The theory assumes that there is a target, which obeys the dynamic model of
the filter, and the sensor measurements that update the filter state estimates
are from the target. This assumption is loaded: it may not be always satisfied
if tracking is performed in a noisy environment. The probability of detection
would not be unity: the optimal estimate in (11.53) would require some
modification, which will be discussed later in the text.

The missile trajectory example in Chapter 11, Example 11.4, has demon-
strated how Kalman filtering theory can be utilized to solve a linear problem.
In the example, the noise and measurement variances are assumed to be the
same and to have accounted for signal scintillation from the target and
environment. In practice, however, the variances tend to vary with sensor
and signal processing characteristics. Barton (1988) formulated the relation-
ships between the variances and sensor and signal processing characteristics as:

¢

o = (12.34)
4B, %
2
oo = (12.35)
20,/3
o= (12.36)

aTa\ 3

o; = standard deviation of the variable i of interest
¢ = speed of light (m/s?)

L = wavelength of the radar signal (m)

B,, = bandwidth of the radar signal (Hz)

D = radar aperture diameter (m)

T = duration of the waveform (s)

S/N = radar signal-to-noise ratio.

where



Filters for tracking 325

With experience, the standard deviations of radar-range, azimuth and
range-rate measurements may also be expressed as fraction of the sensor’s
resolution cell in respective domain.

12.2.4.1 Non-manoeuvring target tracking

One of the merits of Kalman filtering algorithms, as noted in Chapter 11, is
their applicability to practical prediction problems, in particular for non-
manoeuvring and manoeuvring cases. If a target is following a nominally
straight-line constant velocity trajectory, but is subjected to small, random
accelerations due to external forces, then the target is said to be non-
manoeuvring. The application of Kalman filtering theory to these cases
requires different initialization conditions. As an illustration, consider the
observations of an aircraft range and bearing being made at regular intervals
of T seconds. The objective is to track the target and estimate its kinematics:
range (r), range rate (r), bearing (0) and bearing rate (8). A simple dynamic,
discrete model for the target’s kinematics can be written as

r(k+1) =r(k) + Ti(k) (12.37)
ik + 1) =r(k) + TF(k) (12.38)
0(k +1) = 0(k) + TO(k) (12.39)
0(k+ 1) = 0(k) + TO(k) (12.40)
where T = 1/scan rate.
The measurement equations can be written as
v (k) = r(k) + o2, (k) (12.41)
yo(k) = 0(k) + o (k) (12.42)

The measurement noises are assumed additive with zero means: only their
variances o2, and o2, are given by (12.41) and (12.42) respectively. Two
independent channels, or parallel filters, appear in these equations because
target range and bearing are independent variables. If the variances G%r and
G%e are unknown, the use of (12.34) and (12.35) would be appropriate
respectively.

Since the range and bearing acceleration components are assumed to be
uncorrelated from one radar scan to another, from (12.37) through to

(12.40), the target state equations can be arranged in the state space format:

r(k + 1) 1 7 0 0][rk) 0
ik + 1 0 1 0 0]k Ti(k
6((k+1)) “loo 17T 6((k)) M é) (12.43)
Ok +1) 0 0 0 1]|6(k) TO(k)

Concisely written as

X(k + 1) = Ax(k) + Bu(k) (12.44)
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Given that the radial acceleration is constant, it is useful to assume that
random disturbances are uniformly distributed within +(, since targets
(aircraft, missiles, etc.) can accelerate, or decelerate, in either range (r) or
bearing (0) directions to a maximum value 7C. For example, by letting
{ = Ag, and assuming that the disturbance in range and bearing are uncor-
related with zero means, the system noise matrix is:

0
QZ T2
0
CZ TZ
)3

B= (12.45a)

where g is the acceleration due to gravity (g ~ 9.8 m/s?), A is a value which
may be less than or equal to unity and R is the average range. Also

1 000
Q= 8 (1) (1) 8 = diagonal matrix (12.45b)
0 0 0 1
And the measurement equations:
r(k) X
Beig]:[é 8 (1) 8] 6((],3 +[§%J (12.46)
0(k)

Employing the first two measurements, the initial conditions of the Kalman
filter tracker are

(1) = yi(1) (12.47a)
1) = 2 0(1) = 12(0)) (1247b)
0(1) = yo(1) (12.47¢)
0(1) = - {ro(1) — 50(0)) (12.47d)

From these initial conditions, the initial conditions for the error covariance
matrix P(1) are

P(1) = E{(x(1) = x(1)(%(1) = x(1)" } (12.48)

Py P P13 Py
| Pa P Py Pxu
P(1) = P31 P P33 Py (12.49)

Py Py Py Py m
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Note that E{.} is the expectance of {.}. Since there is no coupling between the
range and bearing terms, the elements of the error covariance matrix P(1)
equate to the following:

Pi3=Py=Py3=Py=Pyy=Pyp=Py=Pp=0 (12.50)
Hence (12.49) reduces to

0 0 Pz Py
0 0 Py Py

P(1) = (12.51)

)

All that is needed is to define the elements in (12.51). Note that the measure-
ment noise in range may be expressed by

£(1) = x(1) = #(1) — r(1) = y,(1) = #(1) (12.52a)
As a result,

Py =o,, (12.52b)

Py = E{[f(l) - r'(1)]2} - 2%9 + 72 (12.52¢)

Following the above procedure other elements can be expressed.

P12 = %0’%,, = P21 (1252(1)
P33 =% (12.52¢)
1
P34 = Tﬁge = P43 (1252f)
And finally
R . 2 202, T2
Py = E{ [0(1) —0(1 =% 12.52
= E{ o o] ) = Fam 25z

Substituting (12.52) in (12.51), the initial condition for the error covariance
matrix is written:

2

& F 0
% R} o 0
P(1) = . (12.53)
0 0 S 75
o’ 262 72
0 0 %y {TB W}

Complete information is now available for starting the Kalman tracker,
using the algorithms in Table 11.1, Chapter 11.
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Prediction error, P (km?)

o
o

0 2 4 6 8 10
Number of iterations, k

Figure 12.7 Plot of range prediction errors

Example 12.1 A tracking system registers measurement root-mean-squared
errors of 1km and 1° in range and bearing respectively. Assume A values of
0.36 and 0.66. Compute the system’s range prediction error and Kalman
gain when sampled at 5 second intervals.

Figures 12.7 and 12.8 show the computed results of the range prediction
error and Kalman gain respectively. It can be seen that increasing the A value
improves the prediction error by reaching a steady state quickly. Caution must
be exercised when attempting to improve overall Kalman filter prediction
error by maintaining a balance between practical environment and theory in
order to ensure system stability (Kolawole 1994).

o
[e2)
1

Kalman gain,

o
~
1

o
N
1

o
o

4 6 8 10
Number of iterations, k

o
N

Figure 12.8 Kalman gain
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12.2.4.2 Manoeuvring target tracking

Since it is widely assumed that manoeuvres of aircraft tracks are more likely
to be due to a heading (bearing) change rather than a speed change, it seems
reasonable to consider that there may be some correlation from scan to scan
of the acceleration components u, and ugy. Instead of a white noise approach
to modelling the uncorrelated distances for constant acceleration as in
(12.44), a more realistic approach must include the effect of correlation to
ensure optimal tracking. The simplest, and arguably the most robust, model
for manoeuvres is developed by considering the target acceleration to be
exponentially correlated:

E{w’}, | =ad“E{w"}, (12.54a)

where ‘aa’ relates to the radar and vehicle dynamics and superscript ‘7
denotes transposition. For the purpose of clarity, denote As=1 and
aa = e=™7T where L4 is the manoeuvre correlation coefficient whose inverse
equates to the average manoeuvre duration of the vehicle, and 7 the sampling
interval. So

E{w’},  =e™TE{wm"}, (12.54b)

Let us explore how the model in (12.54) can be employed in the general
framework of the state equation of (12.44). Define

(12.55)

<
Il
=R =

where X is the acceleration. Like (11.42a), the continuous-time state equation
is written as

X(t) = Ox(t) + u(t) (12.56)

where, in this instance, the system noise matrix B is an identity matrix and
the process (plant) noise

u=|a (12.57a)

And the state transition vector has the form

01 0
d=1[0 0 1 (12.57b)
0 0 —hy

The homogeneous solution of equation (12.56) is

e (12.58a)
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which is the fundamental matrix, A. And when defined by the power series
expansion:

o (Dkfk

‘_

=" o (12.58b)
k=0

Note that 0! = 1. If the input variables are considered constant within a

constant interval of time, that is, 7 — #,_; = T, and substituting (12.57b) in

(12.58b), the fundamental matrix becomes

AT
1 T wmT 12+€

o
A= 0 1 1—e*aT (12.580)
a
0 0 e T

Following the procedure in section 11.4.1, the differential state equation in
(12.56) can be written in the discrete-time format:

x(k + 1) = Ax(k) + u(k) (12.59a)

for a constant time, 7, between measurement. Define the measurement
equation as

y(k + 1) = Cx(k + 1) + v(k) (12.59b)

Suppressing the time index k&, the noise has the covariance defined as

qi1 412 413
E{ﬁf{T} = Q = Gfm q21 q22 423 (1260)
q31 432 433

where o2, is the variance of target acceleration. Other elements are
1 2

an=sz 1+ 20T — 20377 + gxgﬂ — oM (AANT + 7T (12.61a)
A

1
qu=qn=:3 (1= 20T + 03T + e T (20T —2+e77)]  (12.61b)

A

q13 = q31 = )%2 [1—e T (2MaT + e 7] (12.61c)
A

g2 =é[2MT—3+e‘W(4—e‘W)] (12.61d)
1

423 = q3n = " [1—e™T(2—e™T)] (12.61e)

g =1—e T (12.61f)
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12.2.4.3 Initiating filter for manoeuvring targets
Like the non-manoeuvring case, the state estimations will need to be initialized
first followed by their corresponding error covariance. Thus

(1) = (1) (12.62a)
) (26
55(1)20 (12.61c¢)

where y(0) and y(1) correspond to the first and second measurements
received. The initial error covariance

Py Py Py
P(l)= | Py Pn Py (12.63a)
Py Py Py
whose elements are defined thus
Py(1) =, (12.63b)
2
Pil) = 67 (12.63c¢)

Since there is no coupling between the position, x, and the acceleration, X,
components,

Pi3(1) = P3(1) =0 (12.63d)
2 o2 2 262

Py(l)=—02 — =% (1-ZTh ac (1 — eI 4 TA 12.

(1) = 5% = 5 (1 =570 ) + 75 (1= T+ 7)) (1263)

2

(1) = (T +e ™ —1)c2, (12.63f)

P33(1) = o2, (12.63g)

By symmetry, Pj3(1) = Py(1) and Pa3(1) = P3p(1). (12.63h)

As noted earlier in the text, independent channels or parallel filters can process
the tracking system because target range and bearing are independent
variables. Thus the system can be decoupled, or partitioned, for processing.
By extending the estimates to the second derivatives of the range (r, 7, ') and
bearing (0, 6, 0) terms, the error covariance matrix P can be written as
comprising submatrices of the order corresponding to these terms:

Pl 0
P=|— | — | =diag(P, Py) (12.64)
0 [ Po

where P, is a 3 by 3 error covariance matrix of the range terms whose
elements are defined by (12.63) and Py is the error covariance of the bearing
terms. Following a similar procedure to obtaining (12.63), and replacing
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subscript ‘r” with ‘0’, the bearing terms can equally be developed. Hence, for
the state vector described by

’
",
X = g (12.65)
0
0
its covariance matrix
Py P P33 O 0 0
Py Pyn Py 0 0 0
pP_ Py Pyp Py 0 0 0 (12.66)

0 0 0  Pas Pss Pus
0 0 0  Pes Pos Pes

Complete information has now been assembled to start a Kalman filter
tracker for both non-manocuvring and manoecuvring targets.

12.2.5 Summary of tracking filters

In conclusion, the aff, afy and Kalman filters are of the fading memory type.
The choice of tracker to use depends on the complexity, accuracy and
requirements of the mission.

The afy filters define pre-computed gains for a three-state data filter. This
type of filtering is accurate if a tracking is restricted to a constant
manoeuvre. Problems associated with transient response and incomplete
data could invalidate the tracking performance if gain calculations are not
performed adaptively. However, the filters are useful in preliminary systems
design and performance prediction stage even if Kalman-based filter tracker
is eventually used.

Kalman-based tracking filters are data filters wherein models are postulated
for the filter accuracy and whose gains change according to the prescribed
models. They handle manoeuvres, provide a better response to initialization
transients, measure accuracy fluctuations, and minimize loss of detection.
Tracking performance, however, can be degraded if miscorrelation is present
in the filter covariance and/or performed in a cluttered environment.

12.3 Tracking with PDA filter in a cluttered environment

In most radar tracking problems, the returns from the target(s) of interest
are sought within a time interval determined by the delay corresponding to
the anticipated range of the target when it reflects the energy transmitted by
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the radar. The outline of a PDA filter is shown in Figure 12.9. A procedure
that computes the probabilities that detections are from the target of the
validation gate measurements and that enables assignments of plots to
tracks is called the probabilistic data association (PDA). More is said of
PDA and gating in the next subsection.

Here the returns from a scanned area are input to a receiver and peak-
detection process. The detection process has been discussed in Chapter 10.
These returns are assumed to contain no origin identification and are from
both clutter and targets. At time k the receiver and detection process forms
measurements y(k) = {y(k), y2(k), ..., yu(k)}. The measurements y(k) from
the receiver and detection process are input to a selection process, which also
has input from the tracking process acting as feedback from previous track
data, T,(k — 1) up to the time k — 1. For every track 7,(k) in the scanned
region, there is a corresponding target. The track is assumed to contain the
target’s state estimate x(k) and covariance P(k). The states of the targets x(k)
are assumed independent of one another and of clutter. The selection process
takes each track T,(k) in turn and uses P(k) with the sensor measurement
error to define a valid gate v(k), centred on x(k), upon which the level of

Scanned region

Clutter region, Vec

o [} Clutter

*
(¢} (0] e |

— Target

Receiver and peak-
detection process

Selection process

Past track data
Ti(k—1)

Tracking process

Tracks Ti(k)

Figure 12.9 Extended sensing and tracking process
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confidence placed on the peaks associated with the targets’ tracks can be
quantified.

Often in practice the radar measurements have multiple components; for
instance, range, bearing or azimuth, and elevation. As such, instead of a
one-dimensional validation gate, a multi-dimensional gate is set up where
multi-dimensional data association with target(s) is made. The selected
measurements are used with the previous track data 7'(k — 1) to update the
selected target’s estimate in the tracking process to give target ith track, 7;(k)
with associated states X;(k) and covariance P;(k). The next task is to formulate
the functions that define the selection and track forming processes.

12.3.1 Gating

Gating is a technique of rejecting improbable observation-to-track pairings.
The gating, or validation gate, technique needs to be developed that assumes
true measurements selected from this gate are made to a high degree of
confidence. In the context of Kalman-based tracking filters, a validation
gate at time k may be expressed as

v(k) = §(k)S™ (K)F" (k) < g/ (12.67)

as a region in the measurement space wherein the measurement sought is
with high probability. The symbols g,, S and § correspond to the gate
threshold, the residual covariance matrix (defined by equation (11.64)) and
residual vector or innovation (defined by equation (11.56b)). The expression
(12.67) is a g-sigma ellipsoid due to the second-order state of the covariance
matrix, S, which also is the probability concentration ellipsoid obtained by
cutting the tail of a multivariate Gaussian density (already discussed in
Chapter 8, section 8.6.3).

The size and shape of a gate may be defined in several ways. A precise
method of gating is to apply the statistical test of (12.67). For a two-
dimensional validation region (‘two-sigma gate’), the gate size is

w(k) = ng2/TS(R)] (12.68)

with the gate probability, P,, lying within the validation region. The value of
g: is generally chosen between 1 and 3, while that of P, depends on the
designer’s choice. In practice, a three-sigma gate is commonly used ensuring
that the measurement will fall in the gate with a probability of 0.998 under
the Gaussian assumption. For a one-step prediction, for example, such a
gate is within

%1(k) £ 3Py (k) (12.69)

It should be noted that while increasing the value of g, would increase the
probability of associating the correct detections, or plots, with the target, it
also increases the probability of associating more false detections with the
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target. Missed detections may occur if the gate is made too small. Lie (1998)
provided a theoretical basis to this practical observation by proposing an
enlargement of the filter covariance matrix.

Since the measurements from the validation gate would contain returns
from the target(s) and clutter, estimating the target probability with a high
degree of confidence poses a major difficulty. This is because targets may be
unobservable but produce some returns or may be observable but laden with
clutter. Thus the probability is event related, and therefore conditional. It
has been coined ‘association’ or ‘event’ probability in the literature. Let the
ith target event probability be denoted by B; — an element that is revisited
later in this section.

A PDA filter associates all the ‘neighbours’ to the target of interest. As a
result, the information obtained is used subsequently to update the PDA
tracks, using detections contained within the validation gate to account for
the measurement origin uncertainty. In practice, if more than one measure-
ment is contained within the validation gate or if the gates from two or more
tracks overlap, the measurements are assigned to tracks on the basis of
‘nearest neighbourhood’, as measured by Euclidean distance. The statistical
Euclidean distance

d>=357s7 1y (12.70)

is the weighted norm of the innovation.
Underlying the development of the PDA procedure are two assumptions:

o the event probabilities 3; are known; and

o for every target in a validation region, there are sufficient statistics for its
past measurement(s) such that, when sampled at time k, the ith target state
estimate X;(k — 1) and covariance matrix P;(k — 1) can be determined for
all events associated with the target.

For convenience, the events ®;(k) are assumed to have a normal density
function, abbreviated as N(mean, variance). Based on the aforelisted
assumptions, the PDA procedure is formulated as follows.

All measurements from the validation gate v(k) defined by (12.68) are
contained in y(k). At time k, let the following events be conditioned on the
measurements from v(k):

®y (k) =none of the measurements originated from the target; in other words,
measurements originated from clutter (12.71)

0;(k) = all measurements originated from the target  (12.72)

B;(k) =Pr{®;(k) | y(k)} = event probability (12.73)

where Pr{.} is the probability of {-} and i=1,2, ..., m
The event probability is explored further in section 12.3.2. Note that the
symbol ‘Pr’ is used in this instance to denote probability rather than P,
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which has been used for error covariance. This expression (12.73) is the
a posteriori probability that the measurements come from the target.

The above events (12.71) to (12.73) are mutually exclusive and exhaustive.
So,

m

> Bilk) =1 (12.74)
i=0

At time k, the conditional mean of the target’s state can be written as

(k) =E{x(k) | y(k)}

=3 ELx(k) | ©,(K),y (k)Y Pr{@,(K) | ()} (1275)
=0
And in view of (12.74)
0 =3 B ELx(K) | ©1(k), y(K))
=0 (12.76)
=3 5B ()
=0

where X;(k) is the updated state estimate conditioned on event ®;(k), on the
proviso that the ith validated measurement is truly from the target. The
density associated with this instance is N(X;(k), P(k)) which reflects that for
the Kalman filter. The expression in (12.76) implies that the state estimate is
the weighted sum of the estimates of the target’s state conditioned on all the
target data. The weighting term is the event probability term B;(k). If none of
the measurements is from the target (i.e. for i = 0), the conditional estimate,
by definition, is

E{x(k) | @9(k)} = 20(K) = £(k — 1) (12.77)

with associated density function N(x;(k — 1), P(k — 1)) because the current
target state will be independent of other targets.
Fori=1,2, ..., m, the conditional estimate is

E{x(k) |0,(K)} = E{x(K) | yi(k)} = 2:(k) (12.78)

with its associated density function N(X;(k), P(k)) since there are corres-
ponding target measurements available in the validation gate. Following
(11.62), the expression in (12.78) can be written as

$(k) = filk — 1) + (k)i (k) (12.79)

where y; is the ith target innovation.
Substituting (12.77) and (12.78) in (12.76), the conditional state estimate
is written as
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f(k) = 5k = 1) + (k) Y B (k)5 (12.80)

By comparing (12.80) with (11.62), it is seen that the y in (11.62) is replaced
with the combined innovation (that is, the sum of the weighted measurements,
S Bk,

The associated covariance P(k) of the conditional mean of the target state
can be estimated, which, by definition, is the covariance of the conditional
mean of the target state:

0= 380 [ 1) sWI®) 50 Prv@ e (1281
i=0

For index i =1, 2, ..., m, write x(k) — x(k) as [x(k) — x;(k) + x;(k) — x(k)]
and substitute the expanded terms in (12.81). The integral component of the
expanded expression would become

/M@—wmuw—n®F<MMP®wx
D) ~ 5] — 20 [ NG, P0)x

(12.82)
+m®—ﬂm/ﬁ®—mw}MM@f®Wx

+/mm-wmwwww%mmmm—ﬂmT

It may be shown that the first integral evaluates to P(k). The second integral
evaluates to unity, while the third and fourth integrals evaluate to zero. For
a particular case of i = 0, replace the subscript ‘7’ with ‘0’ and define the
normal density function as N(Xy(k), P(k)). Then follow the same procedure
as in (12.82). Subsequently, the first integral term would evaluate to P(k — 1)
and while the second, third and fourth integrals will evaluate as unity, zero
and zero respectively. In view of (12.77) and (12.78), the associated covariance
of the conditional mean of the target state can thus be written as

P(k) = By (k —1+fm () + 3 Bk (K57 ()
i=1
- fc(k)ch(k) (12.83)

The covariance of the conditional mean of the target state may alternatively
be written as

P(k) = Bo(k) Pk — 1) + [1 = By (k)] P(K)
k) [Z Bi(k)7iv] — WT] x (k) (12.84)
i=1
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This expression comprises a sum of three terms, which are modified by the
event probabilities:

e the covariance when all measurements are clutter;

e the covariance when all measurements correctly update the filter. Track
merit or confidence is derived from the low-pass filtering by the [1 — By (k)]
term; and

o the uncertainty of the weighted innovation .

By comparing (12.84) with the Kalman filter covariance equation (11.61), it
can be seen that the conditional covariance in (12.84) is dependent on target
measurements while the basic covariance (11.61) is independent of target
measurements.

12.3.2 Formulation of the event probability

If one assumes that there are m out of n detections within the validation
region and that previous data during previous scans, denoted by z(k), are
available and are also in region, then the event probability expression in
(12.73) can be restated and expanded as

B;(k) = Pr{®;(k) | m,n,z(k), y(k)} (12.85)
For simplicity, the index k& will be omitted in subsequent development.

Equation (12.85) can be restructured using the Bayesian rule of Chapter 8,
section 8.2.1:
Pr(y | ®i7 m,n, Z)Pr(®i | m,n, Z)

P =R ) (1236

Like (8.14), the denominator can be expressed as

Pr(y|m,n,z) = Z Pr(y|®;,m,n,z)Pr(®; | m,n, z) (12.87)
i=0
It is clear that (12.87) is a normalization constant. It could be said that the
numerator of (12.86) contains two probability terms:

probability of the event occurring in the current data, Pr(y|®;, m, n, z); and
probability of the event conditioned on number of detections, Pr(®;|m, n, z).

The task now is to define each probability term in the numerator. The
developments in the next two subsections draw from Kolawole (1996) and
Richards (1992).

12.3.3 Probability of current data

If a set of detections y; is considered to occur independently under the
hypothesis ®;, then the probability of the event occurring in the current
data set can be expressed as
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Pr(y|@®;,m,n,z) = HPr(y,-|®,«,m,n,z) (12.88)
j=1

In practice, Pr(y;|®;, m, n,z) can only be obtained by considering the
probability distribution function of the set of detections. If it is possible to
distinguish between the target and clutter distributions in the validation
volume ¥, so also their volumes can be distinguished. As such, define V.
and V; as the volume of clutter and target in the validation volume respect-
ively, and their distributions by f.(y;) and fi(y;) respectively. Thus, the
probability of the event occurring in the currently selected data set is

S R Vi I P

Upon an application of the likelihood ratio definition of (9.23), the like-
lihood ratio of discerning the distributions of the clutter from that of the
target in the set is

_ i)
fe()

By substituting (12.89) and (12.90) in (12.88), two probability states are
developed. Specifically,

L(y;) (12.90)

e when the ith target is observable' and not detected, or detected and not
observable, which is when i = 0; and

o the ith target is observable, detected and selected among the detections,
that is, when i > 0.

The probability for the two states identified is thus expressed by
n

Hlfc () =0

i

Pr(y|©;,m,n,z) = "
L(y)) Hlfc(yj) i>0
=

(12.91)

12.3.4 Probability of event conditioned on detection

If the probability of the current data y occurring under the hypothesis ®; is
assumed to be independent of the previous data, z, then the probability of
the event conditioned on the number of detections may be written as

Pr(®;|m,n,z) = Pr(®; | m,n) (12.92)
' Another state has been described by Colegrove er al. (1986) and Richards (1992) as the

event hypothesis when the target is not observable and not detectable, i.e. for ®; when i = —1.
Even with this additional state, equation (12.89) still holds.
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It is possible that for m out of n true target detections in the validation
region, there may be my, out of ny false detections. If so, from the possible
values of my out of ny, the probability of the event conditioned on the
number of detections may be expressed by

Pr(®,~|m,n):Pr(®,»|mf:m,nf:n—m,m,n)Pr(mf:m,nf:n—m|m,n)
+Pr(©;|my =m—1,ny =n—m,m,n)Pr(my =m—1,n, =n—m|m,n)
+Pr(®,—|mf:m,nf =n—m-— l,m,n)Pr(mf:m,nf:n—m— 1 \m,n)

(12.93)

where

(a) Pr(®;|my =m, nyf =n—m, m, n)=the probability that the target is not
detected whether it is observable or not

(b) Pr(®;|my =m — 1, ny = n— m, m, n)=the probability that the target is
selected from the validation region

(c) Pr(®;|my =m, ny =n—m— 1, m, n)=the probability that the target is
not selected.

The task now is to consider each of the probability terms comprising (12.93)
to evaluate (12.92). This would require an application of the probability
rules discussed in Chapter 8, equation (8.2) through to (8.18).

It is appropriate at this stage to introduce some notations and definitions
that will assist in expressing each of the probability terms in terms of tracker
settings, namely,

e P,=the probability that the target can be observed;

e P,;=the probability that the target can be detected;

e P, =gate probability: the probability that the target is lying within a
validation gate.

If an arbitrary divide can be made of the target portion from the clutter
portion in the validation gate or region, a model could be made of the target
and clutter (false points) distributions with known statistical distribution
models. Some samples of known distribution models have already been
discussed in Chapter 8, section 8.6. It is useful to assume that the number of
detections in the selected target region and clutter region to be independent.
In practical situations, the number of false measurements ny, or detection
points n, is large calling into use the Poisson parametric model.

As demonstrated in Chapter 8, section 8.6, a Poisson density with parameter
A can be expressed independently for the clutter and target distributions,
such as

Target :  p,(m) :ﬁe‘”’ (12.94)
n
Clutter : . (n) ==Se (12.95)
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where A, and A, correspond to the spatial density of false and target meas-
urements (i.e. the average number per unit volume).

A non-parametric model could also be used as a ‘diffuse’ prior. In which
case

m=0,1,2,.... M —1 (12.96a)
p.(n) = n=0,1,2,....,N—1 (12.96b)
The probability terms identified in (12.93) can therefore be defined as

follows.

(a) The probability that the target is not detected whether it is observable,
or not:

Be(6 M i=0 12
N — —n— ={ T-P,P, . .
r( i|my=m,ng =n—m,m, ”) { 0  otherwise (12.97)

(b) The probability that the target is selected from the validation region:

1 P <

(c) The probability that the target is not selected:

0 j <
Pr(®;|m_f-—m,nf—n—m—l,m,n)—{ 1 ml<_inin

n—m

(12.99)

The other probability terms associated with whether the target is observable,
selected, or not selected in the validation region are expressed using the
Bayesian rule as follows.

Pr(m,n|my =m,ny =n—m)Pr(my =m,n; =n—m)
Pr(m,n)

Pr(my =m,ny =n—m|m,n) =

(12.100)

Pr(m,n|my=m—1,n; =n—m)Pr(my =m— 1,ny =n—m)

Pr(ms=m— 1,0y =n—m|m,n) = Pr(mm, )
: m,n

(12.101)

Pr(m,n\mf =m,ny =n—m-— I)Pr(m/ =m,ny =n—m-— 1)

Pr(ms=mny =n—m—1|mn) = Pr(m, 1)
m,n

(12.102)
where the denominator Pr(m, n) is expressed by

Pr(m,n):Pr(mf:m7nf=n—m|m,n) —i—Pr(mf:m— l,nf:n—m|m7n)
+Pr(m_/-:m,nf:nfmf 1|m,n)
(12.103)
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By taking the number of detections and false measurements as independent,
their combined probability becomes the product of their density functions.
Specifically,

Pr(m; = m,n; = n) = p,(m)p.(n) (12.104a)
Pr(my =m,n; = n—m) = p,(m)u.(n — m) (12.104b)
Pr(my =m,ny =n—m—1) =p,(mp.(n—m-1) (12.104c)

The other terms, comprising the components in (12.100) through to (12.102),
are defined as follows:

Pr(m,n|my=m,ny =n—m)=1-P,P, (12.105a)
Pr(m,n|my =m—1,ny =n—m) = PyP,P, (12.105b)
Pr(m,n|my=m,ng =n—m—1) = (1 - Py) PPy (12.105c¢)

And finally, by substituting (12.104) and (12.105) in (12.103) yields

Pr(m, n) =, (m) (11— m)(1 = PoPg) + t,(m — D (n — m)P,PyP,
R (1 — m — 1) P,Py(1 = Py)
(12.106)
By careful rearrangement and substitution of equations (12.88) through to
(12.106) in (12.86), and taking the spatial density of false and target measure-

ments to be the same (i.e. A, = A, = A, = n/V,), a complete expression of the
event probability B; (i.e. (12.73)) is readily obtained for all events:

Ay P,Py(1 —P,) & _
Bp= — | P,(1 — Py) + 2 — &2 Ly))| i=0 (12.107)
AA V(rcxv ./-:%;rl
PUPdPg . .
= 5N L(y; 0 12.108
Bi N7 ; ) i> ( )
where
n(l—P,P;) P PdPg u P Pd ) e
Ap= g ;L ) ZL y;) (12.109)

The second term of (12.107) elevates the probability term [, in those cases
when the distance to the mth measurement is small and when V. is also
small. In the PDA filter based on selection with a gate, a large gate has to be
used to provide a sample of the clutter conditions, which may complicate the
covariance calculation had it not been thresholded.

The development so far has provided the necessary ingredients for the
implementation of a real radar tracking system. They attempt to overcome
discrepancies between theory and practice. The development of probability
procedures conditioned on available data raises the sophistication of the
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basic PDA method to a new paradigm, called improved PDA or joint PDA
(JPDA) in the literature. A good tracker should have a good track initiator:
a filter that caters for non-uniform clutter density.

12.3.5 General initiation techniques

Track initiation is an important function of a tracking system, particularly
where multiple target tracking is done in cluttered environments. Essentially,
a track initiator must be capable of starting, or initiating, a track whenever a
new target appears in the scanned (or surveillance) region while minimizing
the number of false tracks due to clutter. Three groupings of track initiation
techniques have been reported in the literature: rule-based, logic-based and
(modified) Hough transform. These methods are summarized below.

12.3.5.1 Logic-based track initiation technique

Let the target position of the kth measurement at the ith radar scan be
denoted by r](‘,’) . The logic-based track initiation technique is carried out as
follows (Bar-Shalom and Fortmann 1988):

(1) Initialize on the first two scans of the measurements and estimate the
apparent velocity, with every pair of the measurements. Let the velocity
be denoted by v®. Hence

l /@ !
W = — (1 =) (12.110)
If this expression satisfies the speed gating criterion, i.c.,

Imin < VO] < Hrmax (12.111)

then a track is initiated. Then predict the position of the track for the
third scan as

A3 — V,<-2> + 7@ (12.112)

Set an acceptable gate around the predicted position using (12.68) to (12.70).
(i1) On the third scan, any measurement rf) that falls within the gate, i.c.,

’r,ﬂ?) —r(3)’ <v(k) (12.113)

will extend the initiated track. If more than one track satisfies the gating
criterion, the track will be split. If none falls into the gate the initiated
track will be terminated.

Next compute the velocity and acceleration

1
W) — - (r](;) _ ”/((2))

| (12.114)
R (vm _ V<z>)
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Then predict the next scan’s position as
1
3
@ =Y 40 577" (12.115)

Measurements that are not associated with any track at any scan, together
with those not used at the previous scan, are used to initiate new tracks.

(iti) The procedure in (ii) is repeated for a predetermined number of scans.
Every initiated track that remains at the end of the process will start a
new track.

It should be noted that in a clutter environment, the track splitting technique
in step (ii) is highly likely to produce a large number of false tracks. Given
that m out of n detections are selected for the PDA tracking technique, and
upon application of the nearest neighbour approach, the track splitting will
be limited to m measurements. Further on in the tracking process, the split
tracks would be grouped or clustered together to ascertain their origins.
Those from the same source would be merged as one and those from other
sources would be independently tracked and labelled.

12.3.5.2 Rule-based track initiation technique
The rule-based technique is similar to methods used for initiating the off
tracking filter (12.31) and the Kalman-based tracking filter (12.47). It is
sequential and limits the extent of tracking to the assumed target minimum
(Omin) and maximum (n,x) speed, i.e.,
i =] o

9mm<#<9max i=1,2,...,N—1 (12.116)
where r; is the target position at the ith scan of N-scan initiator and T is the
measurement time interval.

12.3.5.3 Hough transform track initiation technique
The Hough transform maps points in the Cartesian coordinate to the 6—p
plane by (Carlson et al. 1994)

p=xcos0+ ysin6 (12.117)

where p is the distance from the line through (x, y) to the origin, and 0 is the
angle to the normal with the x-axis restricted to values between 0° and 180°.
The value of p can be positive or negative. Each point in the x—y plane
defines a curve in the 6—p plane, and the family of curves generated by a set
of collinear points intersect at a point (8p,p,). To initiate a straight-line
target track in the x—y plane is equivalent to searching the intersect points
in the (6—p) plane (Hu et al. 1997). The procedure is as follows:

(i) Divide the parameter 0 into Ny equal segments, each with A® = /Ny in
length, and the centres of these intervals are given as
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On:(n—%)Ae n=1,2,..., Ny (12.118)

The values of p for each observation (x;,y;) are then calculated at all
0, points.

(i) Compute for N measurements from N consecutive scans, resulting in a
set of p values. Denote these values by

p;(0,) = x;c080, + y;sin 0, (12.119)

wherei=1,2,..., Nandn=1,2,..., Ny.

(iii) Calculate the average of p over all i at each of 6, points. Denote this
average by <p(8,)>. Calculate the maximum deviation of p from their
average by

Ap(6,) = max{p;(6,) — (pi(6n))} (12.120)

(iv) Search over all 6,s and obtain the minimum of the deviation
Ap = min{Ap(6,)} (12.121)

If Ap is less than a predetermined threshold, say gy, the detection of a
straight-line trajectory is claimed, and a new track is initiated, otherwise
discarded.

12.3.6 Conclusion

Complete information has now been assembled to start a PDA filter tracker
for both non-manoeuvring and manoeuvring targets in cluttered environ-
ments. It has been demonstrated in the preceding developments that the
PDA tracking technique is a suboptimal Bayesian algorithm whose formula-
tion includes a priori probability of obtaining a target measurement. The
a priori probability is also the detection probability: the probability that the
target is detected. The absence of certainty in sensor measurement data
ensures the inclusion of the event probability as a means of introducing
qualified weightings on the measurement data. This assures a reasonable
interpretation of resulting tracks.

12.4 Summary

This chapter has examined the basic tracking principles including the com-
monly utilized tracking filters: aff, afy and Kalman. These filters are of the
fading memory type, which can be implemented recursively.
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For operational purposes, higher accuracy is demanded of the tracking
system. The use of ‘improved probability data association’ filters attempts to
produce a workable and efficient tracker in a cluttered environment.
An important developmental area that requires further attention is the
development of a robust initiation algorithm that considerably reduces
clutter-initiated tracks within a reasonable specified time. This chapter is
intended to provide a significant basis for an enhanced development of a
practical tracker, which is clearly an active area of investigation.

Problems

1. A rigid communication satellite is to be tracked in all weather. The
satellite has moment inertia of 7,, with an applied torque 7, acting along
the direction of rotation. The equation of motion is written as

L,0(2) = T,(1) + w(z)

where

6 =rotational angular acceleration of the satellite
0 =angle of the satellite
w = process noise with zero mean and unity variance; that is p,, = 0 and

Gi,:E[w(t)wT(t)] =1

By first-order state-space form

x(1) A x(t) B. u(t) w. (1)

X(t) = Aux(t) + Bau(t) + w.(1)

If the angle 0 is sampled on every time interval Az and the applied torque
remains constant over the sampled period, then the continuous-time
mode can be written in discrete form as

x(k+1) = Ax(k) + Bu(k) + O
And the measurement equation:
y(k) = Cx(k)+ R

where the measurement noise v(k) is assumed random with zero mean and
variance
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o2 AP A2
0 ZE[W*WZ} = 32 2
m | AL At
b 1 At
0 1

Suppose At = 1s, o2, = 10* and I,, = 1, plot the satellite trajectory for
the next 40s.

If o2, is varied between 10% and 10°, what significant changes will you
observe in the target’s trajectory?

If the measurement noise variance is made constant, i.e. 0,%1 = 104, and
the process noise variance is not unity, i.e. 62 # 1, but o2 = 5, 10%, 104,
what effects will the process noise changes have on the target trajectory?
. If in the process of tracking, you noticed some discontinuity in the tracks
(missing detections), what improvement do you need to make to the
model in Question 1 to reduce, or eliminate, misses?

. If it is possible for you to collect real-life radar data from any responsible
agencies (e.g. defence department, airport, etc.) write a computer program
based on the improved PDA to track the data and determine any identified
target(s) speed and coordinates in the region where the data are collected.
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Glossary

Algorithm A systematic technique of performing a series of computations
in sequence.

Antenna The interface between a free-space electromagnetic wave and a
guided wave.

Aperture The surface area of an antenna, which is exposed to radio fre-
quency (RF) signals.

Array A collection of radiators or antennas.

Bandwidth The frequency range of a data transmitting or receiving device,
which dictates how much data can flow per unit time.

Beamwidth The width of the sent beam measured in degrees after discount-
ing sidelobes.

Budget (time, power) A set of bounds, or allocations, inherent to radar
design and operation.

Clutter The returns from the Earth’s surface, electromagnetic interference,
meteor, lightning and even other objects in the vicinity of the target(s) of
interest that could mask the true identification and quantification of the
target(s) signatures.

Compression The process of converting an input data stream (the source
stream, or the original raw data) into a smaller data stream (the output, or
the compressed stream).

Correlation A process of determining the mutual relationships that exist
between several functions or signals. If the measurement is the average
self that exists within a signal, then the correlation is called the autocor-
relation function. But measurement that exists between different signals is
called the cross-correlation function.

Critical frequency The limiting frequency at which the reflections of radio
waves begin to disappear for a specific ionospheric layer.

Cumulant A random variable whose moment properties cannot be
described about the origin.

Data association The procedure used to imply the origin of measurement
uncertainties.
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Data conditioning A means of bringing the spectrum of the signal close to that
of white noise by rejecting any unwanted data from the signal before analysis
starts.

Data processing The transformation of a set of coordinated physical meas-
urements into decision statistics for some hypotheses.

Detection The technique by which the signature of a target can be dis-
cerned among various background features.

Entropy The quantity of data transmitted per second, or the average self-
information per transmitted symbol.

Error The difference between the estimate and the actual.

Estimate An arithmetic mean of a set of observations: the parallel of
decision.

Estimator A formula, or a procedure, for deriving from a sample or set of
observations to generate an estimate.

EUV Stands for the extreme ultraviolet. The spectral band that is respon-
sible for ionization in the E and F regions of the ionosphere.

Event A combination of possible outcomes.

Extraordinary wave One of the two magneto-ionic components associated
with a characteristic wave that propagates through the ionosphere having a
polarization property — the second component is called the ordinary wave.

FFT Stands for the ‘fast Fourier transform’. It is an efficient algorithm for
the numerical computation of discrete Fourier transform (DFT) with a
minimum computation time.

Filtering A process of understanding the status of a system at a particular
instant.

FOM Stands for ‘figure of merit’. It is a measure of radar capability.

Gating A technique of rejecting unlikely observation-to-track pairings.

Geographic latitude Latitude measured from 0° at the Earth’s equator up
to 90° at its pole, positive to the north, negative to the south.

Gyromagnetic frequency The electron frequency above the Earth’s mag-
netic field.

Hour angle Sun angle measured westward from apparent noon.

Hypothesis A supposition from which to draw conclusions.

Innovation A sequence that provides an easy check for the optimality of
a filtering system, or the difference between measured and predicted
quantities.

Interpolation A process of calculating approximately a system’s attributes
from past parameters and current values of parameters.

Ionogram Recorded tracings of reflected HF radio pulses generated by a
sounder (also called ionosonde).

Ionosphere A region of the outer atmosphere, starting at a height of 50 km,
which contains many ions and free electrons and is capable of reflecting radio
waves.

Kalman gain The ratio between the uncertainty in the state estimates and
the uncertainty in the measurements.
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Measurement equations Recursive equations that are linearly related to
measurements variables.

MUF The maximum-usable-frequency for a specific magnetic index.

MUF(@3000) The highest frequency that, refracted in the ionosphere, can be
received at a distance of 3000 km.

Ordinary wave One of the two magneto-ionic components associated with
a characteristic wave that propagates through the ionosphere having a
polarization property — the second component is called the extraordinary
wave.

PDA A procedure that computes the probabilities that detections are from
the target of the validation gate measurements and that enables assign-
ments of plots to tracks.

Pixel A dot on a raster output device that represents one picture element.
A pixel may be round, square, oval, or rectangular — whatever shape most
appropriate and convenient for the specific output device manufacturer.

Plasma A phenomenon that occurs when an atom has been stripped of its
electron resulting in a net positive electrically charged gas.

Prediction A stated expectation about a given attribute that may be veri-
fied by subsequent observation.

Preprocessing A method of conditioning a signal, or a number of signals,
into a form suitable for analysis.

Prewhitening Same as Data conditioning.

Probability A notion of chance.

Radar An active electromagnetic surveillance device that transmits a burst
of electromagnetic energy necessary to allow detection of targets inter-
cepting the energy by its receiver.

Redundancy The difference between the entropy and the smallest entropy.

Refraction The bending associated with a signal beamed from a transmitter
sufficient for the signal to return to the Earth’s surface. Reflection and
refraction are sometimes difficult to separate.

Residual Same as Innovation.

Residue Same as Error.

Signal processing A technique used for performing certain functions, namely,
signal enhancement, clutter suppression, interference suppression, target
detection or extraction, target classification estimation and imaging.

Skywave radar A type of radar that sees beyond the horizon because it
makes use of the ionosphere to refract the radar wave propagated back to
Earth.

Solar zenith angle Angle measured at the Earth’s surface between the Sun
and the zenith.

Splitting (tracks) A process of separating tracks formed on closely spaced
targets.

Sporadic E A transient or irregular layer of the ionosphere, which can occur
in patches about 100 km wide and can reflect radio waves up to frequencies
of about 100 MHz.
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State transition A process by which a form of the state is transformed into
another as time passes.

Stationarity A situation when the mean, expected, or ensemble average
value of a signal is constant at different times.

Sunspots Dark spots that appear and disappear with time which occur, on
the average, with an 11-year cycle.

Target A physical object that can produce sensor measurements.

Track The symbolic representation of a target, formed from successive
detected positions.

Tracking A process of determining the speed and direction of a target and
which enables monitoring of the target throughout the radar cover area.

Unbiased estimate An estimate is said to be unbiased if the expectance of the
error vector is zero or the expectance of the estimate is equal to the actual.

Virtual height The point of reflection of radio pulses generated by an
ionospheric sounder or ionosonde.

Zenith angle An angle measured at the Earth’s surface between the Sun
and the zenith.
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Agility 133
Aliasing 13-15, 154, 277
Ambiguity 3, 73, 76, 77, 79, 83, 117,

124, 136, 144, 154

Antenna:

aperture 66, 81, 107, 108, 111, 112,
124, 146, 152, 208, 216, 223, 355
array 61, 87-90, 93, 106, 207, 208,
211, 216, 218, 283, 355
aperture 92, 218
beam steering 93, 94, 200, 208, 211
beamwidth 92, 95, 96, 110, 143,
211, 228
broadside 90, 91, 96, 103, 211
collinear 101
dipole (doublet) 55-61, 63, 64, 84,
86, 97, 99-101, 103, 104, 107
endfire 91, 96, 103, 211
factor 89, 90, 98, 99, 103
grating 91, 96, 97, 103
microstrip 61
phase 93, 94, 103, 149
slot 1, 61, 99-101, 103, 104
impedance 101, 104
spacing 96, 97, 103, 227
auxiliary 222
directivity (directive gain) 111,
211, 222
horn 61, 113
pyramidal 112, 113
log-periodic 6, 208-11
monopole 60-3, 84, 212
omnidirectional 100, 101, 213, 214
radiation resistance 102, 137

Apex angle 210

Atmosphere 119, 157, 159, 160,
161, 163, 164, 171, 203, 205

Atmospheric attenuation 110, 119, 145

Attenuator 39

Azimuth 21, 86, 98, 112, 113, 126, 199,
200, 219, 220, 239, 301, 306, 325, 334

Babinet 99, 104
Bartlett 20
Bayes 234, 235, 237, 294, 295,
302, 338, 341
Beamforming 21, 212, 216, 218-23
Bernoulli 254, 295
Blackman 20, 21, 78
Blind:
speed 69
zone 69, 84
Budget 355
power 37, 101, 102, 355
time 101, 102, 355

CFAR 145, 216, 217, 233, 275, 279, 284

Channel:
analyser (COA) 213,214
occupancy 195, 227
Characteristic:
extraordinary 167, 185, 189-91,
197, 356, 357
function 242, 247
impedance 41, 64
length 185
ordinary 167, 176, 185, 189-91,
197, 357
wave 167, 176, 185
Chebyshev 22, 28, 78, 79
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Chirp pulse 73, 85
Clutter 119, 124, 133-8, 140, 144,
145, 155, 214, 229, 245, 246,
251, 313, 343, 355
altitude 136
land 135, 138
map 145, 280
power 136, 138, 140, 143
radar cross section 138
rain 135, 141, 143
rejection 144, 145
sea 135, 138, 139
Comb filter 283, 284
Compression 1, 46, 70, 72, 78, 83,
85, 142, 145, 212, 213, 355
ratio 71, 75, 142, 154
Communication 52, 215, 232
Conductivity 187
Continuous wave (CW) 67, 110
Convolution 3, 6, 16, 249, 281
Coordinate registration (CR) 198,
201-3, 213
Correlation 3, 23, 71, 215, 242, 244,
278, 302, 329, 355
auto 6, 23, 24, 29, 33, 34, 244,
245, 305, 355
cross 23, 34, 250, 355
Covariance 23, 241, 244, 298, 301,
303, 305, 331, 332, 337, 338
matrix 243, 298, 300, 302, 303,
308, 326, 335
Cumulant 241, 355

Data:
association 287, 314, 333, 355
conditioning 215, 216, 275, 276,
356, 357
Debye length 185, 186
Detection 42, 43, 118, 122, 129, 134,
135, 139, 148, 155, 218, 229, 241,
251, 257, 271, 275, 278, 284, 287,
288, 313, 338-40, 345, 356, 357
peak 216, 217, 275, 278, 284, 313
probability of 130-2, 140, 225,
262, 265, 267, 268, 273,
320, 324, 340
Digital signal processor (DSP) 45
Dirac 6, 10, 282
Direction adjustment 223

Discrete Fourier Transform (DFT) 11-14,

25-7, 29, 220, 223, 356
Inverse (IDFT) 12

Diversity 131-3

Dolph 22, 78, 79

Doppler 17, 67-70, 73, 75-81, 83-6, 117,
118, 124, 137, 144, 148, 153, 154,
159, 182-4, 194, 205, 215, 216,
225, 276, 285, 289, 301

Duty cycle 81, 84, 154

Earth 159-62, 164, 169, 172, 174, 178-81,
183, 184, 187, 191, 194, 195, 198-200,
203, 225, 276, 313, 355-8

Effective radiated power (ERP) 108

Electronic counter countermeasure
(ECCM) 207

Elevation 86, 111, 125, 126, 145, 179,
198, 211, 219, 240, 309, 334

Entropy 47, 51, 356

Ergodic 244

False alarm 129, 278, 279, 313
constant rate (sce CFAR)
probability of 129, 134, 141, 262,

265, 266, 268, 273, 275
Far field 60, 64-6, 85, 99, 146,
206-8, 228
Faraday effect 159, 193, 194, 206, 208
Fast Fourier Transform (FFT) 12, 14,
25, 26, 29-32, 36, 84, 117, 119,
216, 220, 356
Foldover, folding (also see aliasing) 14,
154, 277
Fraunhofer 65

Fresnel 65
Free space range 118
Frequency:
Critical 162, 164, 170, 173, 176,
185, 196, 203
Cut-off 41

Gyromagnetic 188, 190, 203, 356

Optimum working (MUF) 174-6,
203, 214, 227, 357

Sampling 14, 154

Gate (gating) 17, 333-6, 342, 343, 356
Probability 334, 340
Geometric ratio 210



Global positioning system (GPS) 53,
202, 215
Grazing angle 122, 123, 13740
Group:
delay 195, 196, 198
path 198
velocity 180

Hamming 20, 21, 78, 79
Hanning 20, 21
Harris 21, 78
Hermitian 219
High-powered amplifiers (HPA)
39-41
Klystrons 39, 40
Magnetrons 39
TWT 39
Huffman 47, 49-52, 54

Identify friendly or foe (IFF) 153

Innovation 304, 317, 334-7, 356

Interpolation 217, 276, 277, 301,
311, 313, 356

Ionogram 167, 168, 170, 174, 176,
185, 195-8, 202, 214, 356

Ionosonde (see Sounder) 167, 195,
198, 206, 356, 358

Tonosphere 121, 1604, 167, 170-3,
175-8, 182, 184-7, 194, 195, 197,
198, 201-5, 207, 212, 227, 356, 357

Jacobian 239, 240

Kaiser 22
Kalman 302-6, 310, 311, 314, 316,
324-8, 332, 334, 336, 338, 345
gain 303, 304, 356
Kernel 12
Kraft inequality 48

Lambertian Scatterer 148
Laser (see Radar laser)
Lebesgue 28
L’Hospital 90, 94
Lidar (see radar laser)
Likelihood:
estimator 2904
function 290, 293, 295
ratio 263, 264-6, 269, 272, 273, 339

Index 361

Local Oscillator (LO) 37-9, 41-4,
147, 215
Loss:
beam-shape 119
collapsing 119
mismatch 111, 124
plumbing 119
polarization 121
system 105, 119
Low pass filter (LPF) 38, 40, 41, 338

Matched filter 72, 75, 77, 78, 85, 143,
149, 215, 275, 281-5
Markov 304, 314
Maxwell 59, 166
Mean square error 4, 221, 282, 290
Mean Value (MV) 4, 5
Modulation 70, 71, 83, 85, 150
amplitude (AM) 71
amplitude shift keying (ASK) 70, 71
factor 83
frequency (FM) 71, 72
frequency shift keying (FSK) 70, 71
inter 43,277
phase (PM) 71, 216
phase shift keying (PSK) 70, 71
Moving target indication (MTI)
119, 145
Moving target detection (MTD) 145

Near field 65, 66, 85, 149
Neuvy 129, 135, 141, 144
Neyman-Pearson 257, 265
Noise:
aeolian 211
analyser (BNA) 213, 214
bandwidth 44, 116, 117, 124,
275, 279, 281
figure 44, 114-16, 119
quantization 222
temperature 147
thermal 44, 116, 147
Norm 3, 27-9
Nyquist 14, 154

Parseval 6, 27
Phase:
coding 213
velocity 166, 167, 180, 193
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Photo:
ionization 162, 163
mixer 147
sphere 169
Plasma 159, 167, 176, 185, 186, 357
Poisson 252-4, 340
Polarization 61, 104, 107, 111, 113, 120,
121, 135, 139, 141, 145, 157, 184,
185, 188-91, 193, 194, 206, 357
adjustment 141
rotational effect 157
Power spectral density 24
Poynting 106
Probabilistic data association (PDA)
332, 333, 335, 342-7, 357
Propagation equation 297, 298
Pulse Repetition Frequency (PRF) 45,
46, 67, 69, 70, 81, 84, 102, 104,
124, 133, 154
low (LPRF) 69, 70, 117
medium (MPRF) 69, 70, 124
high (HPRF) 69, 70, 84, 117, 118
Pulse Repetition Interval (PRI) 69,
102, 133

Radar:
cross section 1, 105, 107, 108, 110,
118, 126-9, 134-6, 143, 148,
149, 194, 205, 280
equation 1, 105, 108, 124, 144,
148, 151-4, 223
figure of merit (FOM) 150, 151,
153, 154, 224, 225, 356
footprint 137, 138, 194, 200
laser 1, 105, 145-51, 155
microwave (conventional) 1, 53, 105,
146-51, 155, 204, 205, 207, 226
secondary 1, 105, 151
beacon 151-3, 201
transponder 151
skywave 53, 61, 157, 159, 162, 191,
192, 194, 195, 201, 203-6, 213,
215, 223, 225, 227, 275, 276, 357
over-the-horizon radar (OTHR)
53, 61, 153, 192, 195, 198, 201,
204, 2069, 212, 213, 225-7, 301
Radian length 59
Radiation power 64
Radiation resistance 64

Rain 124, 144
attenuation 120
rate 120, 141, 143, 144
Ray trace 201
Rayleigh 81, 107, 128, 129, 134, 251, 252
Reflection 163, 164, 167, 170, 195,
201, 206, 357
Reflectivity 78, 105, 130, 135, 136, 144, 148
land 136, 138, 139
rain 141-3
reference 139
sea 136, 138, 139
Refraction 163, 164, 167, 177, 180,
182, 183, 188, 198, 357
Refractive index 164, 166, 172, 182,
184, 185, 187-90, 194, 203
Residual 297, 305, 357
covariance matrix 305, 334
mainlobe clutter 136
power 278, 279
Resolution 79-82, 118, 136, 139, 142,
145, 150, 194, 204, 211, 276, 302

Scintillation 126, 324
Sea:
adjustment 139
state 139, 140, 226
sensing 213
Sidelobe cancellation 21, 222
Sidelobe suppression 78, 79, 92, 215,
222,275
Shannon 47
Skip zone 198, 199
Solar 160, 161, 168, 176, 225, 226
constant 161
declination 169
zenith angle 162, 168, 169, 172,
203, 357
Sounder (see Ionosonde) 167, 195, 202,
206, 207, 213, 225, 227, 356, 358
Sporadic E 162, 198, 226, 357
Stationary 80, 82, 244, 245, 276, 305
Stationarity 244, 358
Sub-Clutter Visibility (SCV) 145
Sunspot 161, 168, 169, 175, 358
Super-Clutter Visibility (S,CV) 145
Superheterodyne 147
Superposition 24, 55, 79, 213, 251
Swerling 107, 126, 127, 129-33



Tandem 115

Taylor 78, 79, 309

Track initiation 316, 343

Tracking 17, 53, 212, 218, 229, 239,
243, 275, 281, 284, 287, 290,
299, 313-55, 358

error 323, 324

Transitional angle 140

Transverse electric (TE) 113

Transverse magnetic (TM) 113

Uncertainty function 73
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Video:
noise 251
receiver 147
Volume search 102, 104

Whitening 216, 277
Window 3, 17-22, 119, 202, 285,
305, 307

Zenith angle (see solar zenith
angle) 358
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